الفصل الخامس

Differential equations المعادلا - النفاضلبة

152 مناهبمر أساسبة Basic concepts 1.5
153 1.1.5
155 الشر ط الإبتدائي والنهائي 2.1.5
156 2.5157Separation of Variables فصل المتغيرات1.2.5
158 المعادلة التفاضلية الخطية Linear differential equation المدر 2.2.5
Homogeneous equations المعادلات المتجانسة 161 3.2.5
162 معادلة بر نو لي Bernoulli equation 4.2.5
164 معادلة ريكاتي Riccati equation مرئو 5.2.5
166 معادلة مـن الر تبة الثانية Second order equation معاي 6.2.5
171 Particular solution الحل الخاص 7.2.5
173 Exercise series N $N^{\circ} 5$ سلسلةُ النُماربن رفـ 3.5
 على حــ سـواء، مـثل وصف عمليـات انتقال الحـرارة أو سـيـلان المـوائــع، الحـر كـة المـو جـيـة و الدو ائر الإلكترو نيـة و استتخدامها في مسـائل الهيـاكل الإنشائيـية للمـادة أو الوصف الرياضي للتفـاعالات

Differential equations are the best way to describe most engineering, mathematical and scientific issues alike, such as describing heat transfer processes or fluid flow, wave motion and electronic circuits and using them in issues of the structural structures of matter or the mathematical description of chemical reactions.

Basic concepts مفـاهيم أسـاسيلة 1.5

يتضمـن هنا الفصل مـجموعة مـن التعـريفات والمفـاهيم في المعـادلات التفاضليـة ، و مـن أهم تلك
المفاهيم :
This chapter includes a set of definitions and concepts in differential equations, the most important of which are:

1.1.5 : Definition - تقر يف

 وهي من الشكل : A differential equation is every equation that contains differentials or derivatives of one or more functions with respect to variables and is of the form:
(E)

$$
F\left(x, y, y^{\prime}, \ldots, y^{(n)}\right)=0
$$

$\underline{\underline{\text { 1.1.5 : Example - مثال }}}$

$$
\frac{d x}{d y} z+y d x=u
$$

وتصنف المـعادلة التفاضليـة الى :
The differential equation is classified into:
1ـ مـعادلة تفاضليـة عاديـة : هي مـحادلة تفاضليـة تـحوي على مشتقات أو تفاضـلات عاديـة لتـابع أو أكثر Ordinary differential equation: It is a differential equation that contains derivatives or ordinary differentials of one or more variables.

2.1.5 : Example - مثال

$$
y d x+x d y=e^{z}
$$

2ـ معادلة تفاضليـة جزئيـة : هي مـعادلة تفاضليـة تحوي على مشتقات أو تفاضـلات جزئيـة لتـابع أو أكثر
Partial differential equation: It is a differential equation that contains derivatives or partial differentials of one or more variables.

$$
\frac{\partial x}{\partial y}=z x . \quad \xlongequal{\text { 3.1.5: Example - مثال }}
$$

3ـ المعادلة التفاضليـة العاديـة الخطية : هي المعـادلة التي تكون خطية بـالنسبـة لكل مـن التابع أو التو ابـع و مشتقاتها و لا تحو ي على جداءات لها .

For the linear ordinary differential equation: it is the equation that is linear with respect to each of the function(s) and their derivatives does not contain their products.

4ـ المـعادلة التفـاضليـة الجـزئيـة الخطيـة : هي المـعادلة التـي تكو ن خطيـة بـالنسبـة للمشتقات الجـزئيـة للتـابـع أو التـوابـع المـو جو دة.

Linear partial differential equation: It is the equation that is linear with respect to the partial derivatives of the existing function or functions.

1.1.5 : Remark -

1- ان مرنبةُ المعاولة هي مرنبةُ أعلى مشنُ موجود فبها.
The order of an equation is the order of the highest derivative present in it.

> 2ـ وبملن نُوبل المعاولذ النُفاضلبة من شلل لآخر لنسهبل حلها.

The differential equation can be converted from one form to another to facilitate its solution.

Order and degree الر تبة واللدر جةة 1.1.5
الر تبة Order

2.1.5 : Definition - تقر يف

 المعادلة.
The order of a differential equation : is the order of the highest derivative (also known as differential coefficient) present in the equation.

4.1.5 : Example - مثال

$$
\frac{d y}{d x}+y^{3}=\cos (x)
$$

بخنو ي فغط على المشنف الأول ول
Contains only the first derivative $\frac{d y}{d x}$, which is a first order differential equation.

$\underline{\underline{\text { 5.1.5 : Example - مثال }}}$

$$
\frac{d^{3} x}{d x^{3}}+3 x \frac{d y}{d x}=e^{y}
$$

In this equation, the order of the highest derivative is 3 hence, this is a third order differential equation.

Degree اللدرجة

3.1.5 : Definition - تمر يف

 The degree of the differential equation is represented by the power of the highest order derivative in the given differential equation.

يـجب أن تكون المعادلة التفاضليـة معادلة متعـددة الحـدود في المشتقات للدرجـة المـراد تحديـهـا.

The differential equation must be a polynomial equation in derivatives for the degree to be defined.

6.1.5 : Example - مثال

$$
\left(\frac{d y}{d x}\right)^{4}+\left(\frac{d^{2} y}{d^{2} x}\right)^{3}+y=\cos (x)
$$

 Here, the up exponent is of the derivative of the highest order derivative is 2 and the given differential equation is a polynomial equation in derivatives.
So it is a Second Order Three Degree ordinary differential equation

In the problems you are required to check the solution of the ordinary differential equation, you can also find the optional constants that appear in the general solution to the equation, and this is done through the initial conditions that are given at the beginning.

و في حال و جود حل عام لمـعادلة تفـاضليـة مـن الر تبـة الثانيـة مـثلا، تحتو ي على ثابتـين أختيـاريـين، يلزم لتـحديـد الثابتيـن شـر طين إضـافيين للمعاددلة.
In the event that there is a general solution to a differential equation of the second order, for example, that contains two optional constants, two additional conditions for the equation are required to determine the constants.

```
إذا أعطى الشـرطان عند نقطتين مـختلفتين y( 
    و وسميت المـعادلة التفاضلـيـة بالإضـافة إلى الشـر و ط الحـديـة: مسـألة القيمـة الحـديـة . 
```

If the two conditions are given at two different points $y\left(x_{1}\right)=y_{1}$ and $y\left(x_{2}\right)=y_{2}$, then the
conditions are boundary conditions, and the differential equation is called in addition to the boundary conditions: the issue of value limitation.

2.5

 A Differential Equation can be a very natural way of describing something. But it is not very useful as it is.

نـحن بـحاجـة لحلهـا!

We need to solve it!
نحلها عندما نجد الدالة y (أو مجموعة الدوال y) التي تحقق المعادلة، ومن ثم يمكن استخدامها بنجاح.

We solve it when we discover the function y (or set of functions y) that satisfies the equation, and then it can be used successfully.

4.2.5 : Definition - تقر يف

نسمي الد اله $y=y(x)$ حلا للمعادلة النفاضلبة:
We call the function $y=y(x)$ a solution to the differential equation:

$$
F\left(x, y, y^{\prime}, y^{\prime \prime}, \ldots, y^{n}\right)
$$

if
1- is n times differentiable.
2- checks the differential equation i.e.:

$$
F\left(x, y(x), y^{\prime}(x), \ldots, y^{(n)}(x)\right)=0
$$

```
لهـذا لنـلقي نظرة على بـض الأنواع المـختلفـة مـن المـعادلات التفاضليـية و كيفيـة حلهـا.
```

So let's look at some different types of differential equations and how to solve them:

Separation of Variables 1.2.5 فصل المتفير ات

فصـل المـتغـيـر ات هي طر يـقة خـاصـة لـحل بـعض الـهعـادلات التتفاضلـيـة،
Separation of variables is a special method to solve some differential equations,

متى يمكن استخدامها؟ ?When can i use it

واحد من المعادلة ، و كـل مصطلحات x (بمـا في ذلك dx) إلى الجانب الآخر.

Separation of Variables can be used when: all the y terms (including $d y$) can be moved to one side of the equation, and all the x terms (including $d x$) to the other side.

7.2.5: Example - مثال

In this example, we will explain the stages of solving a differential equation by separating the variables.

$$
\frac{d y}{d x}=k y
$$

الخطوهُ 1: نفمل ببن المنغغبر ا- عن طربفُ نُربك كلل حرود y إلى جانب واحر من المعادلهُ وكل حرود x إلى الجانب الآخر:
Step 1: Separate the variables by moving all the y terms to one side of the equation and all the x terms to the other side:

$$
\frac{d y}{y}=k d x
$$

الخطوة́ 2: نگآلل طرفي المعادلةُ بشلل منغمل:
Step 2: Integrate both sides of the equation separately.

$$
\begin{aligned}
& \int \frac{d y}{y}=\int k d x \Longrightarrow \ln (y)+C=k x+D \\
& \text { نسنخدم مثلا C كثابـَ النّآمل. ونسنَخدم D للطر فـ الآخر ، لأنم ثابــ مخنلف. }
\end{aligned}
$$

C is the constant of integration. And we use D for the other, as it is a different constant.

Step 3 Simplify: We can roll the two constants into one ($a=D-C$)

$$
\ln (y)=k x+a \Rightarrow y=c e^{k x}, \quad\left(c=e^{a}\right)
$$

هذا النوع من المعادلا This type of differential equations are of the first order, appearing in many real-world examples.

8.2.5 : Example - مثال

Solve the following differential equation:
حل المعادلةُ النُفاضلبةُ النالبةُ :

$$
\begin{aligned}
& x y^{2} d x+\left(1-x^{2}\right) d y=0 . \\
& \text { الحل : نفسم طرفي المعادلة على (1-x2 }{ }^{2} \text { فنحمل على : }
\end{aligned}
$$

Solution: We divide both sides of the equation by $y^{2}\left(1-x^{2}\right)$, so we get:

$$
\frac{x d x}{1-x^{2}}+\frac{d y}{y^{2}}=0
$$

 Which is a differential equation that can separate the variables and the way to solve it is as follows: By integrating the two sides

$$
\begin{aligned}
\int \frac{x d x}{1-x^{2}}+\int \frac{d y}{y^{2}} & =0 \Rightarrow-\frac{1}{2} \ln \left(x^{2}-1\right)-\frac{1}{y}=c \\
& \Rightarrow \ln \left(x^{2}-1\right)^{-\frac{1}{2}}-\frac{1}{y}=c \\
& \Rightarrow \frac{1}{y}=\ln \left(x^{2}-1\right)^{-\frac{1}{2}}-c
\end{aligned}
$$

So the solution to the differential equation is

$$
y=\left(\ln \left(x^{2}-1\right)^{-\frac{1}{2}}-c\right)^{-1}
$$

$\underline{\underline{\text { 5.2.5 : Definition - تصر يف }}}$

نكلون المعادله النُفاضلبةُ خطبةُ إذا كان المنغبر النابع ومشنفانة في المعادلذ من الر جة الأولى .
The differential equation is linear if the dependent variable and its derivatives in the equation are of first degree.

فالمورهُ العامةُ للمعادلةُ النُفافلبَُ الخطبةُ من الرنبَّالأولى نَلون :
The general form of a linear differential equation of the first order is:

$$
\frac{d y}{d x}+y P(x)=Q(x)
$$

It is called linear in y.
ونُسمى خطبةُ في y.

أها المعادلة الخطبةَ فب x فإنها على الصوره́ :
As for the linear equation in x, it takes the form:

$$
\begin{aligned}
& \frac{d x}{d y}+x a(y)=b(y) \\
& \text { الحل العام للمعاولةُ النُفاضلبة من الر بَة الأولى من الشِلل : }
\end{aligned}
$$

The general solution of the differential equation of the first order is of the form:

$$
y(x)=e^{-I(x)}\left(\int e^{I(x)} Q(x) d x+c\right)
$$

where :
حهث :

$$
I(x)=\int P(x) d x
$$

and c is a constant.
9 ع عد

9.2.5 : Example - مثال

أوجد الحل العام للمعادلة النّفاضلبةُ النالبةُ :
Find the general solution to the following differential equation:

$$
\begin{aligned}
& \left(y+y^{2}\right) d x-\left(y^{2}+2 x y+x\right) d y=0
\end{aligned}
$$

The solution :
The equation is linear in x, so it can be put in the following form:

Differential equations Solving dif. equations المعارلا - النُفافلبة

$$
\frac{d x}{d y}+x a(y)=b(y)
$$

بعُسهُ طرفي المعادلهُ على $d y\left(y+y^{2}\right)$ نجر
Dividing both sides of the equation by $d y\left(y+y^{2}\right)$, we get

$$
\frac{d x}{d y}-\frac{y^{2}+2 x y+x}{y+y^{2}}=0
$$

so that

$$
\begin{aligned}
\frac{d x}{d y}-\frac{y^{2}}{y+y^{2}}-\frac{2 x y+x}{y+y^{2}}=0 \Longrightarrow & \frac{d x}{d y}-\frac{2 y+1}{y+y^{2}} x=\frac{y^{2}}{y+y^{2}} \\
& \text { بمغار نةُ المعادلة́ النانجة́ مع المعادلَ الأولى نجر }
\end{aligned}
$$

By comparing the resulting equation with the first equation, we find

$$
b(y)=\frac{y^{2}}{y+y^{2}}, \quad a(y)=-\frac{2 y+1}{y+y^{2}}
$$

Then

$$
I(y)=e^{-\int \frac{2 y+1}{y+y^{2}} d y}=e^{\ln \left(\frac{1}{y+y^{2}}\right)}=e^{-\ln \left(y+y^{2}\right)}=\frac{1}{y+y^{2}}
$$

and

$$
\int I(y) b(y) d y=\int \frac{1}{y+y^{2}} \frac{y}{y+1} d y=\int \frac{1}{(y+1)^{2}} d y=-\frac{1}{y+1}
$$

be the solution of the equation

$$
\begin{gathered}
I(y) x=\int I(y) b(y) d y+c \\
\frac{1}{y+y^{2}} x=-\frac{1}{y+1}+c
\end{gathered}
$$

so

$$
x=-y+c\left(y^{2}+y\right), c \in \mathbb{R}
$$

It is the general solution to the differential equation.

Homogeneous equations المعـادلات المتجـاذسلة

تكو ن المعادلة التفاضليـة مـن الدر جـة الأو لى متـجـانسـة عنـدمـا يـمكن أن تكتب على الشكل:
A first order Differential Equation is Homogeneous when it can be in this form:

$$
\begin{aligned}
& \frac{d y}{d x}=F\left(\frac{y}{x}\right) \\
& \text { يمكننـا حلهـا باستخلدام فصل المتتخيـر ات و لكن أو لاً ننشئ متغيـرا جـديــ }
\end{aligned}
$$

We can solve it using separation of variables but first we create a new variable $v=\frac{y}{x}$.

$$
\text { باستتخدام التحو يل } y=v x \text { و } y=v+x \frac{d v}{d x}=\frac{d y}{d x}=v \text { يمكننـا حل المعـادلة التفاضليـة. }
$$

Using $y=v x$ and $\frac{d y}{d x}=v+x \frac{d v}{d x}$ we can solve the differential equation.
هذا المـثال سيو ضـح كيف يتـم ذالك.
This example shows how this is done.

> 10.2.5: Example - مثثال أوجد حلول

Solve

$$
\frac{d y}{d x}=\frac{x^{2}+y^{2}}{x y}
$$

Can we get it in $F\left(\frac{y}{x}\right)$ style?
We have:

$$
\begin{aligned}
\frac{x^{2}+y^{2}}{x y} & =\frac{x}{y}+\frac{y}{x} \\
& =\left(\frac{y}{x}\right)^{-1}+\frac{y}{x}
\end{aligned}
$$

So

$$
\frac{d y}{d x}=\left(\frac{y}{x}\right)^{-1}+\frac{y}{x} .
$$

Now use separation of variables

$$
y=v x \text { and } \frac{d y}{d x}=v+x \frac{d v}{d x}=v^{-1}+v
$$

Differential equations Solving dif. equations المعارلا - النُفافلبَ

$$
\begin{aligned}
& \Longrightarrow x \frac{d v}{d x}=v^{-1} \\
& \Longrightarrow v d v=\frac{1}{x} d x \\
& \Longrightarrow \frac{v^{2}}{2}=\ln x+\ln c \\
& \Longrightarrow v^{2}=2(\ln c x) \Longrightarrow v= \pm \sqrt{2(\ln c x)}
\end{aligned}
$$

Now substitute back $v=\frac{y}{x}$
بالنُعوبض بـ

$$
\frac{y}{x}= \pm \sqrt{2(\ln c x)} \Rightarrow y=x \pm \sqrt{2(\ln c x)} .
$$

Bernoulli equation معادلة بر نُو لي

 يظهر المتتغير التابـع في المـعادلة في كل مـن الأشكال الخـطيـة و غير الخطيـة. يتـم إعطاء الشكل العام لمـعادلة بـر نو لي التفـاضليـة مـن خالال:

A Bernoulli differential equation is a type of nonlinear first-order differential equation where the dependent variable appears in the equation in both linear and nonlinear forms. The general form of a Bernoulli differential equation is given by:

$$
\frac{d y}{d x}+p(x) y=q(x) y^{n}
$$

where $n \neq 1$.
فيمـا يلي مـخطط عام لحل معـادلة بـرنو لي التفاضليـة: حوّل المعادلة إلى معادلة تفاضليـة قابلـة للفصل بقسمـة كـلا الطر فين على ${ }^{n}$ و وإجر اء الاستبـدال

$$
. z=y^{1-n}
$$

Here is a general outline for solving a Bernoulli differential equation:
Transform the equation into a separable differential equation by dividing both sides by y^{n} and making the substitution $z=y^{1-n}$.

$$
\frac{d z}{d x}+\frac{p(x)}{1-n} z=\frac{q(x)}{1-n}
$$

كامل طر في المعادلة التفاضلية القابلة للفصل.

Integrate both sides of the resulting separable differential equation.

$$
\begin{aligned}
& \int \frac{d z}{z}=\int \frac{p(x)}{1-n} d x+C_{1} \\
& \ln |z|=\int \frac{p(x)}{1-n} d x+C_{1} \\
&|z|=e^{\int \frac{p(x)}{1-n} d x+C_{1}} \\
& z=y^{1-n} .
\end{aligned}
$$

Solve for z and then for y by using the original substitution $z=y^{1-n}$.

$$
y= \pm\left(\frac{e^{\int \frac{p(x)}{11-n} d x+C_{1}}}{C_{2}}\right)^{\frac{1}{1-n}}
$$

11.2.5 : Example - مثثال

لنّلن المعادلة النُفاضلبة

$$
\frac{d y}{d x}+y x^{5}=x^{5} y^{7}
$$

هي معادلة بر نولي مع
It is a Bernoulli equation with $P(x)=x^{5}, Q(x)=x^{5}$, and $n=7$, let's try the substitution:

$$
u=y^{1-n}=y^{-6}
$$

In terms of y that is: بعبارهُ y نُعطبنا:

$$
y=u^{-1 / 6}
$$

Differentiate y with respect to x :

$$
\frac{d y}{d x}=\frac{-1}{6} u^{-7 / 6} \frac{d u}{d x} .
$$

| نعوض

Substitute $\frac{d y}{d x}$ and y into the original equation

$$
\frac{-1}{6} u^{-7 / 6} \frac{d u}{d x}+x^{5} u^{-1 / 6}=x^{5} u^{-7 / 6}
$$

Multiply all terms by $-6 u^{7 / 6}$
|بضر ب كل الأطر افـ في 6u-6-

$$
\frac{d u}{d x}+x^{5} u=-6 x^{5}
$$

لربنا الآن معادلذ بمكن حلها.

We now have an equation we can hopefully solve.

Riccati equation معادلة ريكاتي
معادلة ريكاتي التفاضلية هي معادلة تفاضلية غير خطية من الدرجة الأولى تستخدم في نظرية التحكم و تحليل الأنظمة الديناميكية ونظر يـة النظام
 تغيير المتغيرات. غالبا مـا يشار إلى هذا باسـمْ طريقة الاستبدالْ. فيمـا يلي مخطط عام للخطوات المتضمنة:
A Riccati differential equation is a nonlinear first-order differential equation used in control theory, dynamic systems analysis, and system theory.
One way to solve a Riccati differential equation is by transforming it into a linear differential equation using a change of variables. This is often referred to as the "substitution method". Here is a general outline of the steps involved:

قـ باستبدال المتغير : $y=u^{\prime} / u$ ، حيث u متغير جديد. عوض y في معادلة ريكاتي التفاضلية للحصول على معادلة تفاضلية خطية بدلالة حل المعادلة التفاضلية الخطية باستخدام التقنيات المعروفة، مثل فصل المتغيرات أو طريقة المعاملات غير المحـددة.
Make a substitution of the form: $y=u^{\prime} / u$, where u is a new variable.
Substitute y into the Riccati differential equation to obtain a linear differential equation in terms of u.
Solve the linear differential equation for u using standard techniques, such as separation of variables or the method of undetermined coefficients.
بـــجر د العـثور على u ، يـمكن العـثور على y باستتخـدام المتتغيـر الأصلي y=u'/u.

أخيـر ا ، يـمكن إيـجاد الـحل العام لمـعادلة ريكاتي التفاضليـة الأصليـة بـدمـج y لإيـجاد دالة لـ u ، ثم إيـجاد u'

Once u has been found, y can be found using the original substitution $y=u^{\prime} / u$.
Finally, the general solution to the original Riccati differential equation can be found by integrating y to find a function for u, and then finding u^{\prime} from y.

A Riccati equation has this form:
مـعادلة ريكاتي تأخذ الشكل:

$$
\begin{equation*}
\frac{d y}{d x}+P(x) y^{2}+q(x) y+r(x)=0 \tag{1}
\end{equation*}
$$

إذا كان $p(x)=0$ ، فإن المـعادلة (1) معـادلة خطية ؛
If $p(x)=0$; then equation (1) is linear;
إذا كان $r(x)=0$ ؛ فإن المـعادلة (1) هي معـادلة بـرنو لي ؛
If $r(x)=0$; then equation (1) is Bernoulli;
إذا كان p؛ q و r ثو ابت ، فإن المعـادلة (1) ذات متتغير ات قابلـة للفصل
If $p ; q$ and r are constants, then equation (1) is separable

$$
\frac{d y}{p y^{2}+q y+r}=d x
$$

12.2.5 : Example - مثال
 حل المعادلة النفاضلبة

Solve the differential equation

$$
y^{\prime}=y+y^{2}+1
$$

 لزا بملن الحمول على الحل العام للمعادلة من خلال The given equation is a simple Riccati equation with constant coefficients. Here the variables x
and y can be easily separated, so the general solution of the equation is given by

$$
\begin{aligned}
\frac{d y}{d x} & =y+y^{2}+1, \Rightarrow \frac{d y}{y+y^{2}+1}=d x \\
& \Rightarrow \int \frac{d y}{y+y^{2}+1}=\int d x \\
& \Rightarrow \int \frac{d y}{y^{2}+y+\frac{1}{4}+\frac{3}{4}}=\int d x \\
& \Rightarrow \int \frac{d y}{\left(y+\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}}=\int d x \\
& \Rightarrow \frac{1}{\frac{\sqrt{3}}{2}} \arctan \frac{y+\frac{1}{2}}{\frac{\sqrt{3}}{2}}=x+C \\
& \Rightarrow \frac{2}{\sqrt{3}} \arctan \frac{2 y+1}{\sqrt{3}}=x+C
\end{aligned}
$$

Second order equation 6.2.5 محادلة مز الر تبلة الثانية Sen

يمكننـنا حل مـعادلة تفاضليـة مـن الر تبـة الثانيـة مـن النوع:
We can solve a second order differential equation of the type:

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}+P(x) \frac{d y}{d x}+Q(x) y=f(x) \\
& \text { حيث } P(x) \text { و } Q(x) \text { و } f(x) \text { هي دو ال في } x \text { باستتخدام: }
\end{aligned}
$$

where $P(x), Q(x)$ and $f(x)$ are functions of x, by using:

- طريقة الممعامـلات غير المـحـددة التي تعمل فقط عنـدمـا يكون $f(x)$ متعـدد الحـدود ، أو الأسي، أو الجيب، أو جيب التمـام، أو تر كيبـة خطيـة منـهمـا.
Undetermined coefficients which only works when $f(x)$ is a polynomial, exponential, sine, cosine or a linear combination of those.

- طر يقة الثوابت المتتغيرة التـي تعمل على مـجمـو عة واسعـة مـن الدو ال.

Variation of parameters which works on a wide range of functions.

$$
\text { هنـا نبـدأ بـتعلم الحـالة التـي يكو ن فيهـا } f(x)=0 \text { (و هذا يـجعلهـا معـادلة متـجانسـة): }
$$

Here we begin by learning the case where $f(x)=0$ (this makes it "homogeneous"):

$$
\frac{d^{2} y}{d x^{2}}+P(x) \frac{d y}{d x}+Q(x) y=0
$$

$$
\text { و أيضـا حيـث تكو ن الدالتـان } P(x(x) \text { و } Q(x \text { ثوابت } a \text { و b: }
$$

and also where the functions $P(x)$ and $Q(x)$ are constants a and b :

$$
\frac{d^{2} y}{d x^{2}}+a \frac{d y}{d x}+b y=0
$$

سنستتخدم خاصيـة إشتقاق الدالة الأسيـة:
We are going to use a special property of the derivative of the exponential function:

At any point the slope (derivative) of e^{x} equals the value of e^{x} :
And when we introduce a value r like this:

$$
f(x)=e^{r x}
$$

We find:

$$
f^{\prime}(x)=r e^{r x} \quad \text { and } \quad f^{\prime}(x)=r^{2} e^{r x}
$$

بعبـارة أخر ى ، فإن المشتقات الأو لى و الثانيـة لـ $f(x)$ كالاهمـا مـن مضـاعفات $f(x)$ هـذا سو ف يسـاعدنا كثيرا!
In other words, the first and second derivatives of $f(x)$ are both multiples of $f(x)$. This is going to help us a lot!

Let the differential equation

$$
\frac{d^{2} y}{d x^{2}}+a \frac{d y}{d x}+b y=Q(x)
$$

ولِّلَن $\Delta=a^{2}-4 b$ ممبز المعادلذ الممبزه́ لها
and let $\Delta=a^{2}-4 b$ be the discriminant of the characteristic equation of her

$$
r^{2}+a r+b=0
$$

1)- إذا كان 0 > 0 و كانـ r_{1} و جذور اً للمعادلة الممبزة فإن الحل العام لها هو: If $\Delta>0$ and r_{1} and r_{2} are roots of the characteristic equation, the general solution is:

$$
y=C_{1} e^{r_{1} x}+C_{2} e^{r_{2} x}+y_{p}(x)
$$

حبـث
where C_{1} and C_{2} are constants and $y_{p}(x)$ a particular solution.
2)- إذا كان 0 = 0 و كان r جذراً مفاعفا للمعادلةُ الممبزة فإن الحل العام لها هو: If $\Delta=0$ and r is a double root of the characteristic equation, then the general solution is:

$$
y=e^{r x}\left(C_{1}+C_{2} x\right)+y_{p}(x)
$$

where C_{1} and C_{2} are constants and $y_{p}(x)$ a particular solution.
3- إذا كان 0 < If $\Delta<0$ and $r=\alpha+i \beta$ is a root of the characteristic equation, then the general solution is:

$$
y=e^{\alpha x}\left(C_{1} \cos (\beta x)+C_{2} \sin (\beta x)\right)+y_{p}(x)
$$

حبث
where C_{1} and C_{2} are constants and $y_{p}(x)$ a particular solution.

13.2.5 : Example - مثال

Let the equation

Let $y=e^{r x}$ so we get:
لبَلنَ $y=e^{r x}$ ومنه نحمل على:

$$
\frac{d y}{d x}=r e^{r x} \quad \text { and } \quad \frac{d^{2} y}{d x^{2}}=r^{2} e^{r x}
$$

Substitute these into the equation above:

$$
r^{2} e^{r x}+r e^{r x}-6 e^{r x}=0
$$

Differential equations Solving if. equations المعارلا- 2.

Simplify:

بعر النُبسبط:

$$
e^{r x}\left(r^{2}+r-6\right)=0 \Longrightarrow r^{2}+r-6=0 .
$$

 We have reduced the differential equation to an ordinary quadratic equation!
 This quadratic equation is given the special name of characteristic equation. We can factor this one to:

$$
(r-2)(r+3)=0 \Longrightarrow r_{1}=2 \text { and } r_{2}=-3
$$

and so we have two solutions:

$$
y_{1}=e^{2 x} \text { and } y_{2}=e^{-3 x}
$$

 حل أكثر علوموبةُ:
But that's not the final answer because we can combine different multiples of these two answers to get a more general solution:

$$
y=A y_{1}+B y_{2}=A e^{2 x}+B e^{-3 x}
$$

$$
4 \frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}+y=0
$$

The characteristic equation is:
المعادلةُ الممبزه هي:

$$
4 r^{2}+4 r+1=0
$$

Then

$$
(2 r+1)^{2}=0 \Longrightarrow r=-\frac{1}{2}
$$

So the solution of the differential equation is:

$$
y=A e^{\left(\frac{1}{2}\right) x}+B x e^{\left(-\frac{1}{2}\right) x}=(A+B x) e^{\left(-\frac{1}{2}\right) x}
$$

15.2.5: Example - مثال

$$
(I): \quad \frac{d^{2} y}{d^{2} x}+y=2
$$

The characteristic equation is:

$$
r^{2}+1=0
$$

then

$$
r_{1}=i \quad \text { and } \quad r_{2}=-i .
$$

So the solution is in the form:

$$
y=C_{1} e^{i t}+C_{2} e^{-i t}+y_{p}(t)
$$

خبث Where $y_{p}(t)$ is the special solution, and here we want to simplify this amount (put it in another form, which is Euler's formula).

$$
C_{1} e^{i t}=C_{1} \cos (t)+i C_{1} \sin (t) \quad \text { and } \quad C_{2} e^{-i t}=C_{2} \cos (t)-i C_{2} \sin (t)
$$

بجمع المعادلنُنَ معاً (مع مراعاة الحرود المشابهذ) نجر:

Adding the two equations together (taking into account similar terms), we get:

$$
y=C_{1} e^{i t}+C_{2} e^{-i t}=\left(C_{1}+C_{2}\right) \cos (t)+i\left(C_{1}-C_{2}\right) \sin (t)
$$

و بالنُوبٌن في المعادلة (I) أي أن الحل الخاهv مساوي لـ 2 لنُمبِ المعادلة هي : And by substituting in the equation (I), that is, the special solution is equal to 2 , so that the equation becomes:

$$
y=A \cos (t)+B \sin (t)+2,
$$

this is the general solution to the equation.
وهزا هو الحل العام للمعارلهُ .
 التفاضلية. يتم اشتقاق الحل الخاص للمعادلة التفاضلية عن طر يق تعيين قيم للثوابت الكيفية للحل العـام لـلمعـادلـة التتفاضلـيـة.

Particular solution of the differential equation is a unique solution of the form $y=f(x)$, which satisfies the differential equation. The particular solution of the differential equation is derived by assigning values to the arbitrary constants of the general solution of the differential equation.

$$
\frac{d^{2} y}{d x^{2}}+P(x) \frac{d y}{d x}+Q(x) y=f(x)
$$

قد تضمن f(x) كلاً من دالة الجيب وجيب التمام. ومع ذلك ، حتى لو تضمن (x) f مصطلح الجيب فقط أو مصطلح جيب التمام فقط، يجب أن يكون كلا الهصطلحين موجودين في تخمين الحل

$f(x)$ may include both sine and cosine functions. However, even if $f(x)$ included a sine term only or a cosine term only, both terms must be present in the guess. The method of undetermined coefficients also works with products of polynomials, exponentials, sines, and cosines. Some of the key forms of $f(x)$ and the associated guesses for $y_{p}(x)$ are summarized in this Table.

$f(x)$	Initial guess for $y_{p}(x)$ التتخمـين الأو لي لـ ــ
k (a constant) ثابت	$A \text { (a constant) }$ ثابت
$a x+b$	$A x+B$ يجب أن يتضمـن كال المصطلـحين حتى لو كان $b=0$ The guess must include both terms even if $b=0$.
$a x^{2}+b x+c$	$A x^{2}+B x+C$ يجب أن يتضمن المصطلحات الثالاثة حتى لو كان b أو c صفر ا The guess must include all three terms even if b or c are zero.
كثير ات الحدو د من الدر جة Higher-order polynomials	متعـدد الحـدو د مـن نفس التـر تيب مثثل Polynomial of the same order as $f(x)$
$a e^{\lambda x}$	$A e^{\lambda x}$
$a e^{\alpha x} \cos \beta x+b e^{\alpha x} \sin \beta x$	$A e^{\alpha x} \cos \beta x+B e^{\alpha x} \sin \beta x$
$\left(a x^{2}+b x+c\right) e^{\lambda x}$	$\left(A x^{2}+B x+C\right) e^{\lambda x}$
$\begin{aligned} & \left(a_{2} x^{2}+a_{1} x+a_{0}\right) \cos \beta x \\ & +\left(b_{2} x^{2}+b_{1} x+b_{0}\right) \sin \beta x \end{aligned}$	$\begin{aligned} & \left(A_{2} x^{2}+A_{1} x+A_{0}\right) \cos \beta x \\ + & \left(B_{2} x^{2}+B_{1} x+B_{0}\right) \sin \beta x \end{aligned}$
$\begin{aligned} & \hline\left(a_{2} x^{2}+a_{1} x+a_{0}\right) e^{\alpha x} \cos \beta x \\ & +\left(b_{2} x^{2}+b_{1} x+b_{0}\right) e^{\alpha x} \sin \beta x \end{aligned}$	$\begin{aligned} & \left(A_{2} x^{2}+A_{1} x+A_{0}\right) e^{\alpha x} \cos \beta x \\ + & \left(B_{2} x^{2}+B_{1} x+B_{0}\right) e^{\alpha x} \sin \beta x \end{aligned}$

Let

16.2.5 : Example - مثال

$$
\frac{d y}{d x}=x^{2} \Longrightarrow d y=x^{2} d x
$$

بنّاملا الطر فبن، نحمل على
Integrating both sides, we get

$$
\int d y=\int x^{2} d x
$$

إذا حللنا هذه المعادلذ لإبجاد فبهذ y نخمل على

If we solve this equation to figure out the value of y we get

$$
y=\frac{x^{3}}{3}+C
$$

 where C is an arbitrary constant. In the above-obtained solution, we see that y is a function of x. On substituting this value of y in the given differential equation, both the sides of the differential equation becomes equal.

Exercise series N $N^{\circ} 5.5$ سلسلة التمار ين رقهم

$\xlongequal{\text { Exercise } N^{\circ}-1 \text { - تمر ين رقّم }}$

حدر حل المعادلة النّفاضلبة
Determine the solution to the differential equation

$$
3 y^{\prime}+4 y=0
$$

$$
\text { الذي بِفِ الشرط الإبنرائب } 2 \text { = (0) } 2 .
$$

which satisfies the initial condition $y(0)=2$.

هذه المـعادلة تكتب على الشكل التالي
This equation is written in the following form

$$
y^{\prime}=-\frac{4}{3} y
$$

إذن الـحل الذي يـحقق الشر ط الإبتـدائي هو
So the solution that satisfies the initial condition is

$$
y(x)=y(0) e^{-\frac{4}{3} x}
$$

then

$$
y(x)=2 e^{-\frac{4}{3} x} .
$$

