Guided Work Series Number 1 سلسلaُ الأعمال الموجهةُ رفم 1 Matrix diagonalization نُطبر مصفوفة

$$
\xlongequal{\text { Exercise Nº- } 1 \text { - تمر ين رقّم }}
$$

لنّلن A مصفوفة من
Let A be a matrix of $\mathscr{M}_{3}(\mathbb{R})$ defined as follows:

$$
A=\left(\begin{array}{ccc}
0 & 1 & 0 \\
-4 & 4 & 0 \\
-2 & 1 & 2
\end{array}\right)
$$

1) هل المصفوفة A فابلة للنُفطبر ؟

Is the matrix A diagonalizable?

$$
\text { 2) أحسبד } \left.\left(A-2 I_{3}\right)^{2}\left(A-2 I_{3}\right)^{n}\right) \text { من أجل كل n } n \in \mathbb{N} .
$$

Calculate $\left(A-2 I_{3}\right)^{2}$ then $\left(A-2 I_{3}\right)^{n}$ for each $n \in \mathbb{N}$. Deduce A^{n}.
$\underline{\underline{\text { Exercise } N^{\circ}-2-2-ت م ر ~ ي ن ~ ر ق م ~}}$
Let the matrix لنَّن المصفوفة

$$
A=\left(\begin{array}{ccc}
3 & 0 & -1 \\
2 & 4 & 2 \\
-1 & 0 & 3
\end{array}\right)
$$

1) أوجد كثبر الحدود الممبز للممفوفة A.

Find the characteristic polynomial of the matrix A.

$$
\text { خبٌ } A=P D P^{-1} .
$$

Prove that the matrix A is diagonalizable and then find the diagonal matrix D and the invertible transit matrix P where $A=P D P^{-1}$.

$$
\text { 3) أحسب } A^{n} \text { من أبل }
$$

Calculate A^{n} for $n \in \mathbb{N}$.
$\underline{\underline{\text { Exercise } N^{\circ}-3-3} \text { - تمر ين رقه }}$

Let the matrix A
لنّلن المصفوفة A :

$$
A=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Diagonalize the matrix A.
2) عبر عن حلول الجملة النفاضلبَ Express the solutions of the differential system $X^{\prime}=A X$ in the eigenvector rule and draw
their paths.

$$
\text { Exercise Nº - } 4 \text { - تمر ين رقّم }
$$

Let the matrix A
لثكن المصفوفة A

$$
A=\left(\begin{array}{ccc}
3 & 2 & 4 \\
-1 & 3 & -1 \\
-2 & -1 & -3
\end{array}\right)
$$

1) حلل كثبر الحرود الممبز لـ A إلى جراء عوامل ثم أوجر الفبم الزانْبَ للمصفوفة. Factorize the characteristic polynomial of A and then find the eigenvalues of the matrix.

Find the sub-eigen-vectorial spaces of A.
3) هل المصفوفة A فابلةُ للنفُطبر؟

Is the matrix A diagonalizable?
Exercise Nº-5 - تمر ين رقّم Ex

كان مجموع معاملا- كل من أسطر ها بساوي 1.
We call a matrix $A \in \mathscr{M}_{n}(\mathbb{R})$ random if its coefficients are positive or null real numbers and if the sum of the coefficients of each of its rows is 1 .

$$
\text { 1) أثبـــ أنه إذا كانـ } \lambda \in \mathbb{C} \text { فبِمة ذانُةُ للمصفوفة A فإن } 1 \leq|\leq| | .
$$

Prove that if $\lambda \in \mathbb{C}$ is an eigenvalue of A then $|\lambda| \leq 1$.

Prove that 1 is an eigenvalue and then find its eigenvector.

Exercise No - 6 - تمر ين رقّم

the following matrix diagonalization is not possible:

$$
A=\left(\begin{array}{lll}
i & 1 & 1 \\
0 & i & 1 \\
0 & 0 & i
\end{array}\right)
$$

