تدخل المعادلات الخطية من خلال تطبيقاتها في العديد من السياقات، لأنها تشكل الأساس الحسابي للجبر الخطي. كما أنها تسمح بمعالجة جزء كبير من نظر يات الجبر الخطي في الفضاءات ذات الأبعاد المنتهية.

Linear equations, through their applications in many contexts, as they form the computational basis of linear algebra. It also allows the treatment of a large part of the theories of linear algebra in finite-dimensional spaces.

لهـنا سوف نُخَصِصّص هذا الجـزء لموضوع الجمـل الخطيـة ذات عدد كـيفي من المعـادلات أو من
 المتبعـة أثناء الحل لكل طر يقة.
Therefore, we will devote this part to the topic of linear sentences with an arbitrary number of equations or variables. We will study several ways to solve such systems with some numerical examples to explain the stages followed during the solution for each method.

$$
\begin{aligned}
& \text { Linear equations system حمل المهادلات الخڭية" } 1.3 \\
& \text { في كـل مـا سيأتي من هذا الفصل، نعتبر الحقل التبديلي }
\end{aligned}
$$

In all that follows in this chapter, we consider the commutative field $\mathbb{K}=\mathbb{R} \vee \mathbb{C}$

$\underline{\underline{\text { 1.1.3 : Definition - تصر يف }}}$

 معادلا - من الشكل
We call a linear system with n equations and m unknowns or a linear system with coefficients in the field \mathbb{K}, each system of equations of the form:

$$
\begin{aligned}
& (S)\left\{\begin{array}{c}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 p} x_{p}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 p} x_{p}=b_{2} \\
\vdots \\
a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n p} x_{p}=b_{n}
\end{array}\right.
\end{aligned}
$$

where for each $1 \leq i \leq n$ and $1 \leq j \leq p$ the coefficients are $a_{i j}$ and b_{i} of \mathbb{K}. The vector:

$$
x=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{p}
\end{array}\right) \in \mathbb{K}^{p}
$$

بڭفق جمبع المعادلا - الملوْنة للجملة S، و بسمى حلاً للجملة S.
it satisfies all the equations that make up the system S, and is called a solution to the system S.
الشعاع :
The vector:

$$
b=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right) \in \mathbb{K}^{n}
$$

فبسسمى الطرفـ الثانب للجملة الخطبةُ S.
is called, the second term of the linear system S.

We call the set

$$
\mathcal{H}(S)=\left\{x \in \mathbb{K}^{p}, S \text { حل للـجملـة } x(x \text { system solution of } S)\right\}
$$

The system solution set (S).
مـجمو عة حلو ل الجمملـة (S).

حـالات خـاصة Special cases

1) إذا كان : n=p فإن الـجملـة S تسـمى جملـة مـر بعـة.

If: $n=p$, then the system S is called a square system.
2) إذا كان :

$$
\text { بـالر مـز } S^{\text {ذات } n ~ م ـ ع ا د ل ة ً ~ و ~ p ~ م ـ ج ه و ~ ل ~: ~}
$$

If: $b_{1}=b_{2}=\cdots=b_{n}=0$, then we call the system S a homogeneous system, then we denote
the system by S_{0} with n equations and p unknowns:

$$
\left(S_{0}\right)\left\{\begin{array}{c}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 p} x_{p}=0 \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 p} x_{p}=0 \\
\vdots \\
a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n p} x_{p}=0
\end{array}\right.
$$

الجـملة المتـجانسـة المُر افقة للـجملـة الخطيـة S.
The homogeneous system associated to the linear system S.

2.1.3 : Definition - تمر يف

Two systems $S 1$ and $S 2$ are equivalent if they have the same set of solutions, ie.:

$$
\mathcal{H}(S 1)=\mathcal{H}(S 2)
$$

الشُكل المصفو في لجملةٌ خطية Matrix form of linear system

3.1.3 : Definition - تقر يف

Let n and p two non-zero natural numbers. Let the following linear system

$$
(S)\left\{\begin{array}{c}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 p} x_{p}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 p} x_{p}=b_{2} \\
\vdots \\
a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n p} x_{p}=b_{n}
\end{array}\right.
$$

we put

$$
A:=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 p} \\
a_{21} & a_{22} & \cdots & a_{2 p} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n p}
\end{array}\right), X:=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{p}
\end{array}\right), B:=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right)
$$

كُسمى الممفوفةُ A بمهفوفهُ الجملá الخطبَّ (S) و X بشعاع الحلول و B الطرفـ الثاني للجملá. ومنه بنّجّ لدبنا اللِّكابة:
The matrix A is called the matrix of the linear system (S), X is called the solution vector, and B is called the second term of the system. Hence we have writing:

$$
A X=B
$$

أي بِملنَ أن نكلَّبـ
Which we can write

$$
\left(S^{*}\right)\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 p} \\
a_{21} & a_{22} & \cdots & a_{2 p} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n p}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{p}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right)
$$

S^{*} is called the matrix form of the linear system (S).

حل الججمل الخطية Solving linear systems
Substitution method طر يقة التقو يض
لمعر فة مـا إذا كان هناك حل واحد أو أكثر لجملة خطية، و لحسـاب الحلول، فإن الطريقة الأو لى
هي طر يقة التعويض. على سبيل المثال بالنسبة لجملة الخطية التالية:
To find out if there are more than one solutions to a linear system, and to calculate the solutions, the first method is the substitution method. For example let the following linear system:

$$
(S)\left\{\begin{array}{l}
3 x+2 y=1 \\
2 x-7 y=-2
\end{array}\right.
$$

نعيد كتابة السطر الأول $3 x+2 y=1$ على الثكل التالي $3 x+\frac{1}{2}-\frac{3}{2} x$ نستبدل أو نعو y في المعادلة
الثانية بالعبارة $\frac{1}{2}-\frac{3}{2}$ نتحصل على جملة مكافئة :

We rewrite the first line $3 x+2 y=1$ in the following form $y=\frac{1}{2}-\frac{3}{2} x$. We replace or substitute y in the second equation with $\frac{1}{2}-\frac{3}{2} x$. We get an equivalent system:

$$
\left\{\begin{aligned}
y & =\frac{1}{2}-\frac{3}{2} x \\
2 x-7\left(\frac{1}{2}-\frac{3}{2} x\right) & =-2
\end{aligned}\right.
$$

المعادلة الثانيـة تـحتوي على المتتغير x فقط، و يمككننا حلها بكل بسـاطة:
The second equation contains only the variable x, and we can solve it very simply:

$$
\begin{aligned}
y & =\frac{1}{2}-\frac{3}{2} x \\
\left(2+7 \cdot \frac{3}{2}\right) x & =-2+\frac{7}{2}
\end{aligned} \Longleftrightarrow\left\{\begin{array}{l}
y=\frac{1}{2}-\frac{3}{2} x \\
x=\frac{3}{25}
\end{array}\right.
$$

It remains only to substitute the obtained value of x into the first equation:

$$
\begin{aligned}
& \left\{\begin{array}{l}
y=\frac{8}{25} \\
x=\frac{3}{25}
\end{array}\right. \\
& \text { و منـه الجملـة تقبل حـلا و حيدا (} \left.35, \frac{8}{25}\right) \text {) و منـه مـجمو عة الـحلول هي : }
\end{aligned}
$$

Hence, the system accepts a single solution $\left(\frac{3}{25}, \frac{8}{25}\right)$. Then the solutions set is:

$$
\mathcal{H}(\mathcal{S})=\left\{\left(\frac{3}{25}, \frac{8}{25}\right)\right\}
$$

طر يقة كر امر Cramer's method

نأخذ حـالة جملـة خطية بسيطة كي نفهم أكثر طر يقة حل جملـة خطية بواسطة طريقة كرامر
We take the case of a simple linear system in order to understand more how to solve a linear system by Cramer's method, so for this let

$$
\begin{aligned}
\Delta=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right| & =a d-b c \\
& \text { محدد الجملة الخطية ذات المعادلتين و المـجهو لين }
\end{aligned}
$$

The determinant of the linear system with two equations and the two unknowns.

$$
\begin{aligned}
& \left\{\begin{array}{l}
a x+b y=e \\
c x+d y=f
\end{array}\right.
\end{aligned}
$$

If $a d-b c \neq i s 0$, we find a unique solution whose coordinates (x, y) are:

$$
x=\frac{\Delta_{x}}{\Delta}=\frac{\left|\begin{array}{cc}
e & b \\
f & d
\end{array}\right|}{a d-b c}, \quad y=\frac{\Delta_{y}}{\Delta}=\frac{\left|\begin{array}{cc}
a & e \\
c & f
\end{array}\right|}{a d-b c}
$$

بالنسبـة لحسـاب الإحداثيـة الأولى x ، نستبـدل العمـود الأول بالطر ف الثاني للمـعادلة و بـالنسبـة لالٍححداثيـة الثانيـة y ، نستبـلـ العمود الثاني بالطر ف الثاني للمـعادلة.

For calculating the first coordinate x, we replace in the determinant the first column with the second side of the equation and for the second coordinate y we replace the second column with the second side of the equation.

Let the system

$\underline{\underline{\text { 1.2.3 : Example - مثال }}}$
 لنكّن الجملف

$$
\left\{\begin{array}{l}
t x-2 y=1 \\
3 x+t y=1
\end{array}\right.
$$

حسب فْبم الوسبطط $t \in \mathbb{R}$ محدد الجملة هو:
according to intermediate values $t \in \mathbb{R}$. The system determinant is:

$$
\Delta=\left|\begin{array}{cc}
t & -2 \\
3 & t
\end{array}\right|=t^{2}+6
$$

 It does not zero, for this there is only one solution and the linear system is Cramer's system,
the solution (x, y) achieves:

$$
x=\frac{\left|\begin{array}{cc}
1 & -2 \\
1 & t
\end{array}\right|}{t^{2}+6}=\frac{t+2}{t^{2}+6}, \quad y=\frac{\left|\begin{array}{cc}
t & 1 \\
3 & 1
\end{array}\right|}{t^{2}+6}=\frac{t-3}{t^{2}+6} .
$$

For each t the solutions set is:
من أجلل كل t مجموعة الحلول هي:

$$
\mathcal{H}(\mathcal{S})=\left\{\left(\frac{t+2}{t^{2}+6}, \frac{t-3}{t^{2}+6}\right)\right\}
$$

طر يقةّ غــو ص Gauss's method

بفضل استعمـال العمليـات الأسـاسيـة على أسطر المصفو فة A، تعتبـر طريقة غوص طريقة منهـجيـة

 وكل عناصر هـا القطر يـة غير مـعدو مـة (ليس ضر وريـا أن تكو ن مسـاويـة لــ 1). طر يقة غو صـر تسعى إلى جعل جميـع عناصر المصفو فـة التي تقع أسفل القطر الرئيسي معـدو مـة أي أن للـجملـة الخـطيـة مصفو فة متـدر جـة.
With the help of basic processes on the lines of the matrix A, the Gauss's method is a systematic method that allows the conversion of the linear system S into another linear system S^{\prime} equivalent to it, so that the matrix of the new linear system is upper triangular (only, not necessarily diagonal as in the method Gauss-Jordan), and all its diagonal elements are not-zero (it doesn't have to be equal to 1). A Gauss's method seeks to make all elements of the matrix below the main diagonal zero, i.e. the linear system has a gradient matrix.

Before we start, we mention some elementary transformations that we can apply to a system of equations so that we get an equivalent system of equations, that is, they have the same solution, and these transformations are:

- تبـديل مـعادلتـين: و هنا واضـح أنه لا يخيـر الحـل.

Substituting two equations: This obviously does not change the solution.

- ضر ب طر في معـادلة بعـدد غير معـلـو م: إذا كان لـدينـا طر فان متسـاو يـان فإنه بضر ب كـل طرف بنفس العـدد سنـحصل أيضـا على طر فين متسـاو يـين.
Multiplying both sides of an equation by a non-null number: If we have two equal sides, then by multiplying each side by the same number, we will also get two equal sides.
- جمـع مـعادلة مضر و بـة بعـدد مـع مـعادلة أخرى .

Adding an equation multiplied by a number with another equation.

```
إن مبـدأ طر يـة غو ص هو تـحو يـل جملـة المـعادلات الخطيـة
```

The principle of the Gauss method is to transform the system of linear equations.

$$
(S)\left\{\begin{array}{c}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\vdots \\
a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n}=b_{n}
\end{array}\right.
$$

إلى جملـة مـعادلات مكافئـة مـن الشكل :
into a system of equivalent equations of the form:

$$
\left(S^{\prime}\right)\left\{\begin{array}{ccccc}
c_{11} x_{1} & +c_{12} x_{2} & +\cdots & +c_{1 n} x_{n} & =d_{1} \\
& +c_{22} x_{2} & +\cdots & +c_{2 n} x_{n} & =d_{2} \\
& & \ddots & \vdots & \vdots \\
& & & +c_{n n} x_{n} & =d_{n}
\end{array}\right.
$$

أي تحو يل جملـة المعـادلات إلى شكل مـلثثي يسهل معـه حسـاب قيـم المتتغيرات. ففي جـملـة المعـادلات
 على نصل للمـحادلة الأو لى فنعو ض جميـع القيم التي تـحصلنـا عليهـا كي نـجـد قيمـة
That is, converting the system of equations into a trigonometric form, with which it is easy to calculate the values of the variables. Then the equivalent equations, from the last equation we get x_{p} easily, and we substitute it into the next last equation to get x_{p-1} and we substitute the
two values in the equation before it to get the variable before it and so on until we reach the first equation, so we substitute all the values that we got to find the value of x_{1}.

Make transfers إجر اء التتحو يلات

 ضر بـناها في a_{21} ثم طر حنـاهـا مـن المـعادلة الثانيـة و نطبق نفس الطر يقة على بقية المـعادلات حسب الصيغة التالية:

Assuming that a_{11} is not equal to zero: If we divide the first equation from the first system of equations S by a_{11} and multiply it by a_{21}, then we subtract it from the second equation and apply the same method to the rest of the equations according to following formula:

$$
a_{i j}^{(1)}=a_{i j}-\frac{a_{1 j} \cdot a_{i 1}}{a_{11}}, i, j=2, \ldots, n
$$

فإن كان $a_{11}=0$ نقوم عنـدها بـتبـديل المعادلة الأو لى مـع أي مـن الهعـادلات التي تليهـا بـحيث يكون

 أخرى الـعـد هـا التحو يـل نـحصل على جمملة خطيـة مـن الشكل:
If $a_{11}=0$ then we swap the first equation with any of the following equations so that the term is $a_{i 1} \neq 0$ where i is the line number. If we do not find, and they are all equal to zero, then the total linear equations do not have a single solution, and the reason is that one of the equations (or more) is linearly linked to other equations. After this transformation we get a linear system of the form:

$$
\left(S^{(1)}\right)\left\{\begin{array}{ccccc}
a_{11} x_{1} & +a_{12} x_{2} & +\cdots & +a_{1 n} x_{n} & =d_{1} \\
& +a_{22}^{(1)} x_{2} & +\cdots & +a_{2 n}^{(1)} x_{n} & =d_{2}^{(1)} \\
& & \ddots & \vdots & \vdots \\
& +a_{n 2}^{(1)} x_{2} & & +a_{n n}^{(1)} x_{n} & =d_{n}^{(1)}
\end{array}\right.
$$

And so we cancel the first term from all equation after the first equation. We repeat the process by fixing the first equation and working on the rest of the equations in the same way as the first, that is, we divide the second (new) equation on its axis, which is $a_{22}^{(1)}$ and multiply it by $a_{32}^{(1)}$ and subtract it from the third and so on in the same way with the rest according to the following formula:

$$
a_{i j}^{(2)}=a_{i j}^{(1)}-\frac{a_{2 j}^{(1)} \cdot a_{i 2}^{(1)}}{a_{22}^{(1)}}, i, j=3, \ldots, n
$$

و هكذا حذفنا الحـد الثاني أيضـا مـن جميع المعـادلة بـعد المععادلة الثانيـة. نو اصل العمـليـة بنفس المنـو ال

Thus, we have eliminated the second term as well from all equation after the second equation. We continue the process in the same way until we get a trigonometric system, and the general formula for transformations in this case is as follows:

$$
a_{i j}^{(k)}=a_{i j}^{(k-1)}-\frac{a_{k j}^{(k-1)} \cdot a_{i k}^{(k-1)}}{a_{k k}^{(k-1)}}, k=1, \ldots, n-1, i, j=k+1, \ldots, n
$$

$\underline{\underline{\text { 2.2.3 : Example - مثال }}}$

لنسنُعمل طربفة غوه بإ بجاد حلول الجملة :

Let's use the Gauss method to find the solutions of the system:

$$
\left\{\begin{array}{l}
x+y+2 z=3 \\
x+2 y+z=1 \\
2 x+y+z=0
\end{array}\right.
$$

and we write:

$$
\left\{\begin{array}{l}
x+y+2 z=3 \\
x+2 y+z=1 \\
= \\
2 x+y+z=0
\end{array} L_{2} . \Longleftrightarrow\left\{\begin{aligned}
& x+y+2 z=3 \\
& y-z=-2 L_{2} \leftarrow L_{2}-L_{1} \\
&-y-3 z=-6 L_{3} \leftarrow L_{3}-2 L_{1}
\end{aligned}\right.\right.
$$

$$
\begin{gathered}
\Longleftrightarrow\left\{\begin{aligned}
x+y+2 z & =3 \\
y-z & =-2 \\
-4 z & =-8 \quad L_{2} \leftarrow L_{3}+L_{2}
\end{aligned}\right. \\
\Longleftrightarrow\left\{\begin{array}{l}
x=-1 \\
y=0 \\
z=2
\end{array}\right.
\end{gathered}
$$

طر يقة انمكاس المصفو فةّ Matrix inversion method

A linear system in matrix form
الجمملة الخطيـة بـالشكل المصفو في

$$
\left\{\begin{array}{l}
a x+b y=e \\
c x+d y=f
\end{array}\right.
$$

equivalent to

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right), \quad X=\binom{x}{y}, \quad Y=\binom{e}{f}, \quad \text { حيث } \quad A X=Y
$$

If the determinant of A is non-null, i.e. if $a d-b c \neq 0$, then the matrix A is invertible and

$$
\begin{aligned}
& A^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right) \\
& \text { و الـحل الو حيـد } X=\binom{x}{y} \text { للـجمـلة يكتب مـن الشكل: }
\end{aligned}
$$

and the only solution is $X=\binom{x}{y}$ for the system write of the form:

$$
X=A^{-1} Y
$$

Let's solve the following linear system
لنحل الجملةُ الخطبةُ النالبُه

$$
\left\{\begin{aligned}
x+y & =1 \\
x+t^{2} y & =t
\end{aligned}\right.
$$

حسب فبمٍ الوسبط t t. مخدو الجملة هو :
according to values of the intermediate $t \in \mathbb{R}$. The determinant of the system is:

$$
\left|\begin{array}{cc}
1 & 1 \\
1 & t^{2}
\end{array}\right|=t^{2}-1
$$

The first case: $t \neq+1$ and $t \neq-1$.

1) الحالة الأولى:
then $t^{2}-1 \neq 0$. The matrix

$$
A=\left(\begin{array}{cc}
1 & 1 \\
1 & t^{2}
\end{array}\right)
$$

invertible and his inverse is
علَّسة ومفلوبها

$$
A^{-1}=\frac{1}{t^{2}-1}\left(\begin{array}{cc}
t^{2} & -1 \\
-1 & 1
\end{array}\right)
$$

and the solution $X=\binom{x}{y}$ is of the form

$$
\text { والحل } X=\binom{x}{y} \text { من الشلل}
$$

$$
X=A^{-1} Y=\frac{1}{t^{2}-1}\left(\begin{array}{cc}
t^{2} & -1 \\
-1 & 1
\end{array}\right)\binom{1}{t}=\frac{1}{t^{2}-1}\binom{t^{2}-t}{t-1}=\binom{\frac{t}{t+1}}{\frac{1}{t+1}}
$$

من أبل كل $t \neq \pm 1$ مجموعة الحلول هي
For each $t \neq \pm 1$ the solutions set is

$$
\mathcal{H}(\mathcal{S})=\left\{\left(\frac{t}{t+1}, \frac{1}{t+1}\right)\right\}
$$

2) الحالذ الثانبة: +

The second case: if $t=+1$. The linear system is written in the form:

$$
\left\{\begin{array}{l}
x+y=1 \\
x+y=1
\end{array}\right.
$$

والمعاولنّان منطابفُنان. هنالك عدد غبر مننه من الحلول:
The two equations are identical. There are an infinite number of solutions:

$$
\mathcal{H}(\mathcal{S})=\{(x, 1-x) \mid x \in \mathbb{R}\}
$$

3) الحالذ الثالثَة: 1

The third case: if $t=-1$. The linear system is written in the form:

$$
\left\{\begin{array}{l}
x+y=1 \\
x+y=-1
\end{array}\right.
$$

من الواضِ أن المعادلنُبن غبر منواففنّبن وبالنَالب
It is clear that the two equations are not compatible thus

$$
\mathcal{H}(\mathcal{S})=\varnothing
$$

Exercise series Nº 3.3

$$
\text { Exercise Nº - } 1 \text { - تمر ين رقّم }
$$

حل الجمل الخطبةُ النالبةُ باسنُعمال طربفَة غوه:
Solve the following linear system using the Gauss method:

$$
\left\{\begin{array}{rl}
x+y+2 z & =3 \\
x+2 y+z & =1 \\
2 x+y+z & =
\end{array}, \quad\left\{\begin{array}{lll}
x & +2 z & =1 \\
-y & +z & =2 \\
x-2 y & =
\end{array}\right.\right.
$$

