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Mechanics P A R T1

! Liftoff of the space shuttle Columbia. The tragic accident of February 1, 2003 that took
the lives of all seven astronauts aboard happened just before Volume 1 of this book went to
press. The launch and operation of a space shuttle involves many fundamental principles of
classical mechanics, thermodynamics, and electromagnetism. We study the principles of
classical mechanics in Part 1 of this text, and apply these principles to rocket propulsion in
Chapter 9. (NASA)

1

hysics, the most fundamental physical science, is concerned with the basic
principles of the Universe. It is the foundation upon which the other sciences—
astronomy, biology, chemistry, and geology—are based. The beauty of physics

lies in the simplicity of the fundamental physical theories and in the manner in which
just a small number of fundamental concepts, equations, and assumptions can alter
and expand our view of the world around us.

The study of physics can be divided into six main areas:

1. classical mechanics, which is concerned with the motion of objects that are large
relative to atoms and move at speeds much slower than the speed of light;

2. relativity, which is a theory describing objects moving at any speed, even speeds
approaching the speed of light;

3. thermodynamics, which deals with heat, work, temperature, and the statistical be-
havior of systems with large numbers of particles;

4. electromagnetism, which is concerned with electricity, magnetism, and electro-
magnetic fields;

5. optics, which is the study of the behavior of light and its interaction with materials;

6. quantum mechanics, a collection of theories connecting the behavior of matter at
the submicroscopic level to macroscopic observations.

The disciplines of mechanics and electromagnetism are basic to all other
branches of classical physics (developed before 1900) and modern physics 
(c. 1900–present). The first part of this textbook deals with classical mechanics,
sometimes referred to as Newtonian mechanics or simply mechanics. This is an ap-
propriate place to begin an introductory text because many of the basic principles
used to understand mechanical systems can later be used to describe such natural
phenomena as waves and the transfer of energy by heat. Furthermore, the laws of
conservation of energy and momentum introduced in mechanics retain their impor-
tance in the fundamental theories of other areas of physics.

Today, classical mechanics is of vital importance to students from all disciplines.
It is highly successful in describing the motions of different objects, such as planets,
rockets, and baseballs. In the first part of the text, we shall describe the laws of clas-
sical mechanics and examine a wide range of phenomena that can be understood
with these fundamental ideas.  !
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Chapter 1

Physics and Measurement

CHAPTE R OUTL I N E

1.1 Standards of Length, Mass,
and Time

1.2 Matter and Model Building

1.3 Density and Atomic Mass

1.4 Dimensional Analysis

1.5 Conversion of Units

1.6 Estimates and Order-of-
Magnitude Calculations

1.7 Significant Figures
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" The workings of a mechanical clock. Complicated timepieces have been built for cen-
turies in an effort to measure time accurately. Time is one of the basic quantities that we use
in studying the motion of objects. (elektraVision/Index Stock Imagery)



Like all other sciences, physics is based on experimental observations and quantitative
measurements. The main objective of physics is to find the limited number of funda-
mental laws that govern natural phenomena and to use them to develop theories that
can predict the results of future experiments. The fundamental laws used in develop-
ing theories are expressed in the language of mathematics, the tool that provides a
bridge between theory and experiment.

When a discrepancy between theory and experiment arises, new theories must be
formulated to remove the discrepancy. Many times a theory is satisfactory only under
limited conditions; a more general theory might be satisfactory without such limita-
tions. For example, the laws of motion discovered by Isaac Newton (1642–1727) in the
17th century accurately describe the motion of objects moving at normal speeds but do
not apply to objects moving at speeds comparable with the speed of light. In contrast,
the special theory of relativity developed by Albert Einstein (1879–1955) in the early
1900s gives the same results as Newton’s laws at low speeds but also correctly describes
motion at speeds approaching the speed of light. Hence, Einstein’s special theory of
relativity is a more general theory of motion.

Classical physics includes the theories, concepts, laws, and experiments in classical
mechanics, thermodynamics, optics, and electromagnetism developed before 1900. Im-
portant contributions to classical physics were provided by Newton, who developed
classical mechanics as a systematic theory and was one of the originators of calculus as
a mathematical tool. Major developments in mechanics continued in the 18th century,
but the fields of thermodynamics and electricity and magnetism were not developed
until the latter part of the 19th century, principally because before that time the appa-
ratus for controlled experiments was either too crude or unavailable.

A major revolution in physics, usually referred to as modern physics, began near the
end of the 19th century. Modern physics developed mainly because of the discovery that
many physical phenomena could not be explained by classical physics. The two most im-
portant developments in this modern era were the theories of relativity and quantum
mechanics. Einstein’s theory of relativity not only correctly described the motion of ob-
jects moving at speeds comparable to the speed of light but also completely revolution-
ized the traditional concepts of space, time, and energy. The theory of relativity also
shows that the speed of light is the upper limit of the speed of an object and that mass
and energy are related. Quantum mechanics was formulated by a number of distin-
guished scientists to provide descriptions of physical phenomena at the atomic level.

Scientists continually work at improving our understanding of fundamental laws,
and new discoveries are made every day. In many research areas there is a great deal of
overlap among physics, chemistry, and biology. Evidence for this overlap is seen in the
names of some subspecialties in science—biophysics, biochemistry, chemical physics,
biotechnology, and so on. Numerous technological advances in recent times are the re-
sult of the efforts of many scientists, engineers, and technicians. Some of the most no-
table developments in the latter half of the 20th century were (1) unmanned planetary
explorations and manned moon landings, (2) microcircuitry and high-speed comput-
ers, (3) sophisticated imaging techniques used in scientific research and medicine, and
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(4) several remarkable results in genetic engineering. The impacts of such develop-
ments and discoveries on our society have indeed been great, and it is very likely that
future discoveries and developments will be exciting, challenging, and of great benefit
to humanity.

1.1 Standards of Length, Mass, and Time

The laws of physics are expressed as mathematical relationships among physical quanti-
ties that we will introduce and discuss throughout the book. Most of these quantities
are derived quantities, in that they can be expressed as combinations of a small number
of basic quantities. In mechanics, the three basic quantities are length, mass, and time.
All other quantities in mechanics can be expressed in terms of these three.

If we are to report the results of a measurement to someone who wishes to repro-
duce this measurement, a standard must be defined. It would be meaningless if a visitor
from another planet were to talk to us about a length of 8 “glitches” if we do not know
the meaning of the unit glitch. On the other hand, if someone familiar with our system
of measurement reports that a wall is 2 meters high and our unit of length is defined
to be 1 meter, we know that the height of the wall is twice our basic length unit. Like-
wise, if we are told that a person has a mass of 75 kilograms and our unit of mass is de-
fined to be 1 kilogram, then that person is 75 times as massive as our basic unit.1 What-
ever is chosen as a standard must be readily accessible and possess some property that
can be measured reliably. Measurements taken by different people in different places
must yield the same result.

In 1960, an international committee established a set of standards for the fundamen-
tal quantities of science. It is called the SI (Système International), and its units of length,
mass, and time are the meter, kilogram, and second, respectively. Other SI standards es-
tablished by the committee are those for temperature (the kelvin), electric current (the
ampere), luminous intensity (the candela), and the amount of substance (the mole). 

Length

In A.D. 1120 the king of England decreed that the standard of length in his country
would be named the yard and would be precisely equal to the distance from the tip of
his nose to the end of his outstretched arm. Similarly, the original standard for the foot
adopted by the French was the length of the royal foot of King Louis XIV. This stan-
dard prevailed until 1799, when the legal standard of length in France became the me-
ter, defined as one ten-millionth the distance from the equator to the North Pole along
one particular longitudinal line that passes through Paris.

Many other systems for measuring length have been developed over the years,
but the advantages of the French system have caused it to prevail in almost all coun-
tries and in scientific circles everywhere. As recently as 1960, the length of the meter
was defined as the distance between two lines on a specific platinum–iridium bar
stored under controlled conditions in France. This standard was abandoned for sev-
eral reasons, a principal one being that the limited accuracy with which the separa-
tion between the lines on the bar can be determined does not meet the current
requirements of science and technology. In the 1960s and 1970s, the meter was de-
fined as 1 650 763.73 wavelengths of orange-red light emitted from a krypton-86
lamp. However, in October 1983, the meter (m) was redefined as the distance
traveled by light in vacuum during a time of 1/299 792 458 second. In effect, this
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1 The need for assigning numerical values to various measured physical quantities was expressed by
Lord Kelvin (William Thomson) as follows: “I often say that when you can measure what you are
speaking about, and express it in numbers, you should know something about it, but when you cannot
express it in numbers, your knowledge is of a meager and unsatisfactory kind. It may be the beginning
of knowledge but you have scarcely in your thoughts advanced to the state of science.”



latest definition establishes that the speed of light in vacuum is precisely 299 792 458
meters per second.

Table 1.1 lists approximate values of some measured lengths. You should study this
table as well as the next two tables and begin to generate an intuition for what is meant
by a length of 20 centimeters, for example, or a mass of 100 kilograms or a time inter-
val of 3.2 ! 107 seconds.

Mass

The SI unit of mass, the kilogram (kg), is defined as the mass of a specific
platinum–iridium alloy cylinder kept at the International Bureau of Weights
and Measures at Sèvres, France. This mass standard was established in 1887 and has
not been changed since that time because platinum–iridium is an unusually stable al-
loy. A duplicate of the Sèvres cylinder is kept at the National Institute of Standards and
Technology (NIST) in Gaithersburg, Maryland (Fig. 1.1a).

Table 1.2 lists approximate values of the masses of various objects.

Time

Before 1960, the standard of time was defined in terms of the mean solar day for the
year 1900. (A solar day is the time interval between successive appearances of the Sun
at the highest point it reaches in the sky each day.) The second was defined as

of a mean solar day. The rotation of the Earth is now known to vary 
slightly with time, however, and therefore this motion is not a good one to use for
defining a time standard.

In 1967, the second was redefined to take advantage of the high precision attainable
in a device known as an atomic clock (Fig. 1.1b), which uses the characteristic frequency
of the cesium-133 atom as the “reference clock.” The second (s) is now defined as
9 192 631 770 times the period of vibration of radiation from the cesium atom.2

! 1
60"! 1

60"! 1
24"
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2 Period is defined as the time interval needed for one complete vibration.

Length (m)

Distance from the Earth to the most remote known quasar 1.4 ! 1026

Distance from the Earth to the most remote normal galaxies 9 ! 1025

Distance from the Earth to the nearest large galaxy 2 ! 1022

(M 31, the Andromeda galaxy)
Distance from the Sun to the nearest star (Proxima Centauri) 4 ! 1016

One lightyear 9.46 ! 1015

Mean orbit radius of the Earth about the Sun 1.50 ! 1011

Mean distance from the Earth to the Moon 3.84 ! 108

Distance from the equator to the North Pole 1.00 ! 107

Mean radius of the Earth 6.37 ! 106

Typical altitude (above the surface) of a 2 ! 105

satellite orbiting the Earth
Length of a football field 9.1 ! 101

Length of a housefly 5 ! 10"3

Size of smallest dust particles # 10"4

Size of cells of most living organisms # 10"5

Diameter of a hydrogen atom # 10"10

Diameter of an atomic nucleus # 10"14

Diameter of a proton # 10"15

Approximate Values of Some Measured Lengths

Table 1.1

" PITFALL PREVENTION
1.2 Reasonable Values
Generating intuition about typi-
cal values of quantities is impor-
tant because when solving prob-
lems you must think about your
end result and determine if it
seems reasonable. If you are cal-
culating the mass of a housefly
and arrive at a value of 100 kg,
this is unreasonable—there is an
error somewhere.

" PITFALL PREVENTION
1.1 No Commas in

Numbers with Many
Digits

We will use the standard scientific
notation for numbers with more
than three digits, in which
groups of three digits are sepa-
rated by spaces rather than
commas. Thus, 10 000 is the
same as the common American
notation of 10,000. Similarly, 
# $ 3.14159265 is written as
3.141 592 65.

Mass (kg)

Observable # 1052

Universe
Milky Way # 1042

galaxy
Sun 1.99 ! 1030

Earth 5.98 ! 1024

Moon 7.36 ! 1022

Shark # 103

Human # 102

Frog # 10"1

Mosquito # 10"5

Bacterium # 1 ! 10"15

Hydrogen 1.67 ! 10"27

atom
Electron 9.11 ! 10"31

Table 1.2
Masses of Various Objects 
(Approximate Values)



To keep these atomic clocks—and therefore all common clocks and watches that are
set to them—synchronized, it has sometimes been necessary to add leap seconds to our
clocks.

Since Einstein’s discovery of the linkage between space and time, precise measure-
ment of time intervals requires that we know both the state of motion of the clock used
to measure the interval and, in some cases, the location of the clock as well. Otherwise,
for example, global positioning system satellites might be unable to pinpoint your loca-
tion with sufficient accuracy, should you need to be rescued.

Approximate values of time intervals are presented in Table 1.3.

6 C H A P T E R  1   •   Physics and Measurement

(a) (b)
Figure 1.1 (a) The National Standard Kilogram No. 20, an accurate copy of the
International Standard Kilogram kept at Sèvres, France, is housed under a double bell jar in
a vault at the National Institute of Standards and Technology. (b) The nation’s primary time
standard is a cesium fountain atomic clock developed at the National Institute of Standards
and Technology laboratories in Boulder, Colorado. The clock will neither gain nor lose a
second in 20 million years.
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Time
Interval (s)

Age of the Universe 5 ! 1017

Age of the Earth 1.3 ! 1017

Average age of a college student 6.3 ! 108

One year 3.2 ! 107

One day (time interval for one revolution of the Earth about its axis) 8.6 ! 104

One class period 3.0 ! 103

Time interval between normal heartbeats 8 ! 10"1

Period of audible sound waves # 10"3

Period of typical radio waves # 10"6

Period of vibration of an atom in a solid # 10"13

Period of visible light waves # 10"15

Duration of a nuclear collision # 10"22

Time interval for light to cross a proton # 10"24

Approximate Values of Some Time Intervals

Table 1.3



In addition to SI, another system of units, the U.S. customary system, is still used in the
United States despite acceptance of SI by the rest of the world. In this system, the units of
length, mass, and time are the foot (ft), slug, and second, respectively. In this text we shall
use SI units because they are almost universally accepted in science and industry. We shall
make some limited use of U.S. customary units in the study of classical mechanics.

In addition to the basic SI units of meter, kilogram, and second, we can also use
other units, such as millimeters and nanoseconds, where the prefixes milli- and nano-
denote multipliers of the basic units based on various powers of ten. Prefixes for the
various powers of ten and their abbreviations are listed in Table 1.4. For example,
10" 3 m is equivalent to 1 millimeter (mm), and 103 m corresponds to 1 kilometer
(km). Likewise, 1 kilogram (kg) is 103 grams (g), and 1 megavolt (MV) is 106 volts (V).

1.2 Matter and Model Building

If physicists cannot interact with some phenomenon directly, they often imagine a
model for a physical system that is related to the phenomenon. In this context, a
model is a system of physical components, such as electrons and protons in an atom.
Once we have identified the physical components, we make predictions about the
behavior of the system, based on the interactions among the components of the sys-
tem and/or the interaction between the system and the environment outside the
system.

As an example, consider the behavior of matter. A 1-kg cube of solid gold, such as
that at the left of Figure 1.2, has a length of 3.73 cm on a side. Is this cube nothing but
wall-to-wall gold, with no empty space? If the cube is cut in half, the two pieces still re-
tain their chemical identity as solid gold. But what if the pieces are cut again and
again, indefinitely? Will the smaller and smaller pieces always be gold? Questions such
as these can be traced back to early Greek philosophers. Two of them—Leucippus and
his student Democritus—could not accept the idea that such cuttings could go on for-
ever. They speculated that the process ultimately must end when it produces a particle
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Power Prefix Abbreviation

10"24 yocto y
10"21 zepto z
10"18 atto a
10"15 femto f
10"12 pico p
10"9 nano n
10"6 micro %

10"3 milli m
10"2 centi c
10"1 deci d
103 kilo k
106 mega M
109 giga G
1012 tera T
1015 peta P
1018 exa E
1021 zetta Z
1024 yotta Y

Prefixes for Powers of Ten

Table 1.4



that can no longer be cut. In Greek, atomos means “not sliceable.” From this comes our
English word atom.

Let us review briefly a number of historical models of the structure of matter.
The Greek model of the structure of matter was that all ordinary matter consists of
atoms, as suggested to the lower right of the cube in Figure 1.2. Beyond that, no ad-
ditional structure was specified in the model— atoms acted as small particles that in-
teracted with each other, but internal structure of the atom was not a part of the
model. 

In 1897, J. J. Thomson identified the electron as a charged particle and as a con-
stituent of the atom. This led to the first model of the atom that contained internal
structure. We shall discuss this model in Chapter 42.

Following the discovery of the nucleus in 1911, a model was developed in which
each atom is made up of electrons surrounding a central nucleus. A nucleus is shown
in Figure 1.2. This model leads, however, to a new question—does the nucleus have
structure? That is, is the nucleus a single particle or a collection of particles? The exact
composition of the nucleus is not known completely even today, but by the early 1930s
a model evolved that helped us understand how the nucleus behaves. Specifically, sci-
entists determined that occupying the nucleus are two basic entities, protons and neu-
trons. The proton carries a positive electric charge, and a specific chemical element is
identified by the number of protons in its nucleus. This number is called the atomic
number of the element. For instance, the nucleus of a hydrogen atom contains one
proton (and so the atomic number of hydrogen is 1), the nucleus of a helium atom
contains two protons (atomic number 2), and the nucleus of a uranium atom contains
92 protons (atomic number 92). In addition to atomic number, there is a second num-
ber characterizing atoms—mass number, defined as the number of protons plus neu-
trons in a nucleus. The atomic number of an element never varies (i.e., the number of
protons does not vary) but the mass number can vary (i.e., the number of neutrons
varies). 

The existence of neutrons was verified conclusively in 1932. A neutron has no
charge and a mass that is about equal to that of a proton. One of its primary purposes
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Figure 1.2 Levels of organization in matter. Ordinary matter consists of atoms, and at the
center of each atom is a compact nucleus consisting of protons and neutrons. Protons and
neutrons are composed of quarks. The quark composition of a proton is shown.



is to act as a “glue” that holds the nucleus together. If neutrons were not present in the
nucleus, the repulsive force between the positively charged particles would cause the
nucleus to come apart.

But is this where the process of breaking down stops? Protons, neutrons, and a host
of other exotic particles are now known to be composed of six different varieties of
particles called quarks, which have been given the names of up, down, strange, charmed,
bottom, and top. The up, charmed, and top quarks have electric charges of that of
the proton, whereas the down, strange, and bottom quarks have charges of that
of the proton. The proton consists of two up quarks and one down quark, as shown at
the top in Figure 1.2. You can easily show that this structure predicts the correct charge
for the proton. Likewise, the neutron consists of two down quarks and one up quark,
giving a net charge of zero.

This process of building models is one that you should develop as you study
physics. You will be challenged with many mathematical problems to solve in
this study. One of the most important techniques is to build a model for the prob-
lem—identify a system of physical components for the problem, and make predic-
tions of the behavior of the system based on the interactions among the compo-
nents of the system and/or the interaction between the system and its surrounding
environment.

1.3 Density and Atomic Mass

In Section 1.1, we explored three basic quantities in mechanics. Let us look now at an
example of a derived quantity—density. The density & (Greek letter rho) of any sub-
stance is defined as its mass per unit volume:

(1.1)

For example, aluminum has a density of 2.70 g/cm3, and lead has a density of
11.3 g/cm3. Therefore, a piece of aluminum of volume 10.0 cm3 has a mass of 27.0 g,
whereas an equivalent volume of lead has a mass of 113 g. A list of densities for various
substances is given in Table 1.5.

The numbers of protons and neutrons in the nucleus of an atom of an element are re-
lated to the atomic mass of the element, which is defined as the mass of a single atom of
the element measured in atomic mass units (u) where 1 u $ 1.660 538 7 ! 10"27 kg.

& $ 
m
V

" 1
3

' 2
3
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A table of the letters in the
Greek alphabet is provided on
the back endsheet of the
textbook.

Substance Density ! (103 kg/m3)

Platinum 21.45
Gold 19.3
Uranium 18.7
Lead 11.3
Copper 8.92
Iron 7.86
Aluminum 2.70
Magnesium 1.75
Water 1.00
Air at atmospheric pressure 0.0012

Densities of Various Substances

Table 1.5



The atomic mass of lead is 207 u and that of aluminum is 27.0 u. However, the ratio of
atomic masses, 207 u/27.0 u $ 7.67, does not correspond to the ratio of densities,
(11.3 ! 103 kg/m3)/(2.70 ! 103 kg/m3) $ 4.19. This discrepancy is due to the differ-
ence in atomic spacings and atomic arrangements in the crystal structures of the two
elements.

1.4 Dimensional Analysis

The word dimension has a special meaning in physics. It denotes the physical nature of
a quantity. Whether a distance is measured in units of feet or meters or fathoms, it is
still a distance. We say its dimension is length.

The symbols we use in this book to specify the dimensions of length, mass, and
time are L, M, and T, respectively.3 We shall often use brackets [ ] to denote the dimen-
sions of a physical quantity. For example, the symbol we use for speed in this book is v,
and in our notation the dimensions of speed are written [v] $ L/T. As another exam-
ple, the dimensions of area A are [A] $ L2. The dimensions and units of area, volume,
speed, and acceleration are listed in Table 1.6. The dimensions of other quantities,
such as force and energy, will be described as they are introduced in the text.

In many situations, you may have to derive or check a specific equation. A useful
and powerful procedure called dimensional analysis can be used to assist in the deriva-
tion or to check your final expression. Dimensional analysis makes use of the fact that
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Quick Quiz 1.1 In a machine shop, two cams are produced, one of alu-
minum and one of iron. Both cams have the same mass. Which cam is larger? (a) the
aluminum cam (b) the iron cam (c) Both cams have the same size.

Example 1.1 How Many Atoms in the Cube?

:
m sample

m 27.0 g
$

Nsample

N27.0 g

" PITFALL PREVENTION
1.3 Setting Up Ratios
When using ratios to solve a
problem, keep in mind that ratios
come from equations. If you start
from equations known to be cor-
rect and can divide one equation
by the other as in Example 1.1 to
obtain a useful ratio, you will
avoid reasoning errors. So write
the known equations first!

3 The dimensions of a quantity will be symbolized by a capitalized, non-italic letter, such as L. The
symbol for the quantity itself will be italicized, such as L for the length of an object, or t for time.

write this relationship twice, once for the actual sample of
aluminum in the problem and once for a 27.0-g sample, and
then we divide the first equation by the second: 

Notice that the unknown proportionality constant k cancels,
so we do not need to know its value. We now substitute the
values:

$ 1.20 ! 1022 atoms

Nsample $
(0.540 g)(6.02 ! 1023 atoms)

27.0 g

0.540 g
27.0 g

$
N sample

6.02 ! 1023 atoms

m 27.0 g  $ kN27.0 g

m sample $ kNsample

A solid cube of aluminum (density 2.70 g/cm3) has a vol-
ume of 0.200 cm3. It is known that 27.0 g of aluminum con-
tains 6.02 ! 1023 atoms. How many aluminum atoms are
contained in the cube?

Solution Because density equals mass per unit volume, the
mass of the cube is

To solve this problem, we will set up a ratio based on the fact
that the mass of a sample of material is proportional to the
number of atoms contained in the sample. This technique
of solving by ratios is very powerful and should be studied
and understood so that it can be applied in future problem
solving. Let us express our proportionality as m $ kN, where
m is the mass of the sample, N is the number of atoms in the
sample, and k is an unknown proportionality constant. We

m $ &V $ (2.70 g/cm3)(0.200 cm3) $ 0.540 g



dimensions can be treated as algebraic quantities. For example, quantities can be
added or subtracted only if they have the same dimensions. Furthermore, the terms on
both sides of an equation must have the same dimensions. By following these simple
rules, you can use dimensional analysis to help determine whether an expression has
the correct form. The relationship can be correct only if the dimensions on both sides
of the equation are the same. 

To illustrate this procedure, suppose you wish to derive an equation for the posi-
tion x of a car at a time t if the car starts from rest and moves with constant accelera-
tion a. In Chapter 2, we shall find that the correct expression is x $ at 2. Let us use
dimensional analysis to check the validity of this expression. The quantity x on the
left side has the dimension of length. For the equation to be dimensionally correct,
the quantity on the right side must also have the dimension of length. We can per-
form a dimensional check by substituting the dimensions for acceleration, L/T2

(Table 1.6), and time, T, into the equation. That is, the dimensional form of the
equation is

The dimensions of time cancel as shown, leaving the dimension of length on the right-
hand side. 

A more general procedure using dimensional analysis is to set up an expression of
the form

where n and m are exponents that must be determined and the symbol ( indicates a
proportionality. This relationship is correct only if the dimensions of both sides are the
same. Because the dimension of the left side is length, the dimension of the right side
must also be length. That is,

[antm] $ L $ L1T0

Because the dimensions of acceleration are L/T2 and the dimension of time is T, we have

(L/T2)n Tm $ L1T0

(Ln Tm "2n) $ L1T0

The exponents of L and T must be the same on both sides of the equation. From the
exponents of L, we see immediately that n $ 1. From the exponents of T, we see that
m " 2n $ 0, which, once we substitute for n, gives us m $ 2. Returning to our original
expression x ( antm, we conclude that x ( at 2. This result differs by a factor of from
the correct expression, which is .x $ 1

2 at 2

1
2

x ( antm

L $
L
T2  )  T2 $ L

x $ 1
2 at 2

1
2 
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Area Volume Speed Acceleration
System (L2) (L3) (L/T) (L/T2)

SI m2 m3 m/s m/s2

U.S. customary ft2 ft3 ft/s ft/s2

Units of Area, Volume, Velocity, Speed, and Acceleration

Table 1.6 " PITFALL PREVENTION
1.4 Symbols for 

Quantities
Some quantities have a small
number of symbols that repre-
sent them. For example, the sym-
bol for time is almost always t.
Others quantities might have var-
ious symbols depending on the
usage. Length may be described
with symbols such as x, y, and z
(for position), r (for radius), a, b,
and c (for the legs of a right tri-
angle), ! (for the length of an
object), d (for a distance), h (for
a height), etc.

Quick Quiz 1.2 True or False: Dimensional analysis can give you the numeri-
cal value of constants of proportionality that may appear in an algebraic expression.



1.5 Conversion of Units

Sometimes it is necessary to convert units from one measurement system to another, or
to convert within a system, for example, from kilometers to meters. Equalities between
SI and U.S. customary units of length are as follows:

1 mile $ 1 609 m $ 1.609 km 1 ft $ 0.304 8 m $ 30.48 cm

1 m $ 39.37 in. $ 3.281 ft 1 in. $ 0.025 4 m $ 2.54 cm (exactly)

A more complete list of conversion factors can be found in Appendix A.
Units can be treated as algebraic quantities that can cancel each other. For exam-

ple, suppose we wish to convert 15.0 in. to centimeters. Because 1 in. is defined as ex-
actly 2.54 cm, we find that

where the ratio in parentheses is equal to 1. Notice that we choose to put the unit of an
inch in the denominator and it cancels with the unit in the original quantity. The re-
maining unit is the centimeter, which is our desired result.

15.0 in. $ (15.0 in.)! 2.54 cm
1 in.

" $ 38.1 cm
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Example 1.2 Analysis of an Equation

Show that the expression v $ at is dimensionally correct,
where v represents speed, a acceleration, and t an instant of
time.

Solution For the speed term, we have from Table 1.6

[v] $
L
T

The same table gives us L/T2 for the dimensions of accelera-
tion, and so the dimensions of at are 

Therefore, the expression is dimensionally correct. (If the
expression were given as v $ at 2 it would be dimensionally
incorrect. Try it and see!)

[at] $
L
T2  T $

L
T

Example 1.3 Analysis of a Power Law

Suppose we are told that the acceleration a of a particle
moving with uniform speed v in a circle of radius r is pro-
portional to some power of r, say r n, and some power of v,
say vm. Determine the values of n and m and write the sim-
plest form of an equation for the acceleration.

Solution Let us take a to be

a $ krnvm

where k is a dimensionless constant of proportionality.
Knowing the dimensions of a, r, and v, we see that the di-
mensional equation must be

L
T2 $ Ln ! L

T "m
$

Ln'm

Tm

Quick Quiz 1.3 The distance between two cities is 100 mi. The number of kilo-
meters between the two cities is (a) smaller than 100 (b) larger than 100 (c) equal to 100.

" PITFALL PREVENTION
1.5 Always Include Units
When performing calculations,
include the units for every quan-
tity and carry the units through
the entire calculation. Avoid the
temptation to drop the units
early and then attach the ex-
pected units once you have an
answer. By including the units in
every step, you can detect errors
if the units for the answer turn
out to be incorrect.

This dimensional equation is balanced under the conditions

n ' m $ and m $

Therefore n $ " 1, and we can write the acceleration ex-
pression as

When we discuss uniform circular motion later, we shall see
that k $ 1 if a consistent set of units is used. The constant k
would not equal 1 if, for example, v were in km/h and you
wanted a in m/s2.

k 
v2

r
a $ kr "1v 2 $

21



1.6 Estimates and Order-of-Magnitude 
Calculations

It is often useful to compute an approximate answer to a given physical problem even
when little information is available. This answer can then be used to determine
whether or not a more precise calculation is necessary. Such an approximation is usu-
ally based on certain assumptions, which must be modified if greater precision is
needed. We will sometimes refer to an order of magnitude of a certain quantity as the
power of ten of the number that describes that quantity. Usually, when an order-of-
magnitude calculation is made, the results are reliable to within about a factor of 10. If
a quantity increases in value by three orders of magnitude, this means that its value in-
creases by a factor of about 103 $ 1 000. We use the symbol # for “is on the order of.”
Thus, 

0.008 6 # 10"2 0.002 1 # 10"3 720 # 103

The spirit of order-of-magnitude calculations, sometimes referred to as “guessti-
mates” or “ball-park figures,” is given in the following quotation: “Make an estimate
before every calculation, try a simple physical argument . . . before every derivation,
guess the answer to every puzzle.”4 Inaccuracies caused by guessing too low for one
number are often canceled out by other guesses that are too high. You will find that
with practice your guesstimates become better and better. Estimation problems can
be fun to work as you freely drop digits, venture reasonable approximations for
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Example 1.4 Is He Speeding?

On an interstate highway in a rural region of Wyoming, a
car is traveling at a speed of 38.0 m/s. Is this car exceeding
the speed limit of 75.0 mi/h?

Solution We first convert meters to miles:

Now we convert seconds to hours:

Thus, the car is exceeding the speed limit and should slow
down.

What If? What if the driver is from outside the U.S. and is
familiar with speeds measured in km/h? What is the speed
of the car in km/h?

Answer We can convert our final answer to the appropriate
units:

(85.0 mi/h) ! 1.609 km
1 mi " $ 137 km/h

(2.36 ! 10"2 mi/s) ! 60 s
1 min " ! 60 min

1 h " $ 85.0 mi/h

(38.0 m/s) ! 1 mi
1 609 m " $ 2.36 ! 10"2 mi/s

Figure 1.3 shows the speedometer of an automobile, with
speeds in both mi/h and km/h. Can you check the conver-
sion we just performed using this photograph?

Figure 1.3 The speedometer of a vehicle that
shows speeds in both miles per hour and kilome-
ters per hour.
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4 E. Taylor and J. A. Wheeler, Spacetime Physics: Introduction to Special Relativity, 2nd ed., San Francisco,
W. H. Freeman & Company, Publishers, 1992, p. 20.
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Example 1.5 Breaths in a Lifetime

Estimate the number of breaths taken during an average life
span.

Solution We start by guessing that the typical life span is
about 70 years. The only other estimate we must make in this
example is the average number of breaths that a person
takes in 1 min. This number varies, depending on whether
the person is exercising, sleeping, angry, serene, and so
forth. To the nearest order of magnitude, we shall choose 10
breaths per minute as our estimate of the average. (This is
certainly closer to the true value than 1 breath per minute or
100 breaths per minute.) The number of minutes in a year is
approximately

Notice how much simpler it is in the expression above to
multiply 400 ! 25 than it is to work with the more accurate
365 ! 24. These approximate values for the number of days

$ 6 ! 105 min1 yr ! 400 days
1 yr " ! 25 h

1 day " ! 60 min
1 h "

in a year and the number of hours in a day are close
enough for our purposes. Thus, in 70 years there will be
(70 yr)(6 ! 105 min/yr) $ 4 ! 107 min. At a rate of 10 

breaths/min, an individual would take 

in a lifetime, or on the order of 109 breaths.

What If? What if the average life span were estimated as
80 years instead of 70? Would this change our final estimate?

Answer We could claim that (80 yr)(6 ! 105 min/yr) $
5 ! 107 min, so that our final estimate should be 5 ! 108

breaths. This is still on the order of 109 breaths, so an order-
of-magnitude estimate would be unchanged. Furthermore,
80 years is 14% larger than 70 years, but we have overesti-
mated the total time interval by using 400 days in a year in-
stead of 365 and 25 hours in a day instead of 24. These two
numbers together result in an overestimate of 14%, which
cancels the effect of the increased life span!

4 ! 108 breaths

Example 1.6 It’s a Long Way to San Jose

Estimate the number of steps a person would take walking
from New York to Los Angeles.

Solution Without looking up the distance between these
two cities, you might remember from a geography class that
they are about 3 000 mi apart. The next approximation we
must make is the length of one step. Of course, this length
depends on the person doing the walking, but we can esti-
mate that each step covers about 2 ft. With our estimated
step size, we can determine the number of steps in 1 mi. Be-
cause this is a rough calculation, we round 5 280 ft/mi to
5 000 ft/mi. (What percentage error does this introduce?)
This conversion factor gives us

5  000 ft/mi
2 ft/step

$ 2  500 steps/mi

Now we switch to scientific notation so that we can do the
calculation mentally:

$

So if we intend to walk across the United States, it will take
us on the order of ten million steps. This estimate is almost
certainly too small because we have not accounted for curv-
ing roads and going up and down hills and mountains.
Nonetheless, it is probably within an order of magnitude of
the correct answer. 

7.5 ! 106 steps # 107 steps

(3 ! 103 mi)(2.5 ! 103 steps/mi)

Example 1.7 How Much Gas Do We Use?

Estimate the number of gallons of gasoline used each year
by all the cars in the United States.

Solution Because there are about 280 million people in
the United States, an estimate of the number of cars in the
country is 100 million (guessing that there are between two
and three people per car). We also estimate that the average

distance each car travels per year is 10 000 mi. If we assume
a gasoline consumption of 20 mi/gal or 0.05 gal/mi, then
each car uses about 500 gal/yr. Multiplying this by the total
number of cars in the United States gives an estimated total 

consumption of 5 ! 1010 gal # 1011 gal.

unknown numbers, make simplifying assumptions, and turn the question around
into something you can answer in your head or with minimal mathematical manipu-
lation on paper. Because of the simplicity of these types of calculations, they can be
performed on a small piece of paper, so these estimates are often called “back-of-the-
envelope calculations.”



1.7 Significant Figures

When certain quantities are measured, the measured values are known only to within
the limits of the experimental uncertainty. The value of this uncertainty can depend
on various factors, such as the quality of the apparatus, the skill of the experimenter,
and the number of measurements performed. The number of significant figures in a
measurement can be used to express something about the uncertainty. 

As an example of significant figures, suppose that we are asked in a laboratory ex-
periment to measure the area of a computer disk label using a meter stick as a measur-
ing instrument. Let us assume that the accuracy to which we can measure the length of
the label is * 0.1 cm. If the length is measured to be 5.5 cm, we can claim only that its
length lies somewhere between 5.4 cm and 5.6 cm. In this case, we say that the mea-
sured value has two significant figures. Note that the significant figures include the first
estimated digit. Likewise, if the label’s width is measured to be 6.4 cm, the actual
value lies between 6.3 cm and 6.5 cm. Thus we could write the measured values as
(5.5 * 0.1) cm and (6.4 * 0.1) cm.

Now suppose we want to find the area of the label by multiplying the two measured
values. If we were to claim the area is (5.5 cm)(6.4 cm) $ 35.2 cm2, our answer would
be unjustifiable because it contains three significant figures, which is greater than the
number of significant figures in either of the measured quantities. A good rule of
thumb to use in determining the number of significant figures that can be claimed in a
multiplication or a division is as follows: 
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When multiplying several quantities, the number of significant figures in the final
answer is the same as the number of significant figures in the quantity having the
lowest number of significant figures. The same rule applies to division.

Applying this rule to the previous multiplication example, we see that the answer
for the area can have only two significant figures because our measured quantities
have only two significant figures. Thus, all we can claim is that the area is 35 cm2,
realizing that the value can range between (5.4 cm)(6.3 cm) $ 34 cm2 and
(5.6 cm)(6.5 cm) $ 36 cm2.

Zeros may or may not be significant figures. Those used to position the decimal
point in such numbers as 0.03 and 0.007 5 are not significant. Thus, there are one
and two significant figures, respectively, in these two values. When the zeros come af-
ter other digits, however, there is the possibility of misinterpretation. For example,
suppose the mass of an object is given as 1 500 g. This value is ambiguous because we
do not know whether the last two zeros are being used to locate the decimal point or
whether they represent significant figures in the measurement. To remove this ambi-
guity, it is common to use scientific notation to indicate the number of significant fig-
ures. In this case, we would express the mass as 1.5 ! 103 g if there are two signifi-
cant figures in the measured value, 1.50 ! 103 g if there are three significant figures,
and 1.500 ! 103 g if there are four. The same rule holds for numbers less than 1, so
that 2.3 ! 10"4 has two significant figures (and so could be written 0.000 23) and
2.30 ! 10"4 has three significant figures (also written 0.000 230). In general, a sig-
nificant figure in a measurement is a reliably known digit (other than a zero
used to locate the decimal point) or the first estimated digit.

For addition and subtraction, you must consider the number of decimal places
when you are determining how many significant figures to report:

When numbers are added or subtracted, the number of decimal places in the result
should equal the smallest number of decimal places of any term in the sum.

" PITFALL PREVENTION
1.6 Read Carefully
Notice that the rule for addition
and subtraction is different from
that for multiplication and divi-
sion. For addition and subtrac-
tion, the important consideration
is the number of decimal places,
not the number of significant
figures.



For example, if we wish to compute 123 ' 5.35, the answer is 128 and not 128.35. If we
compute the sum 1.000 1 ' 0.000 3 $ 1.000 4, the result has five significant figures,
even though one of the terms in the sum, 0.000 3, has only one significant figure. Like-
wise, if we perform the subtraction 1.002 " 0.998 $ 0.004, the result has only one sig-
nificant figure even though one term has four significant figures and the other has
three. In this book, most of the numerical examples and end-of-chapter problems
will yield answers having three significant figures. When carrying out estimates we
shall typically work with a single significant figure.

If the number of significant figures in the result of an addition or subtraction
must be reduced, there is a general rule for rounding off numbers, which states that
the last digit retained is to be increased by 1 if the last digit dropped is greater than
5. If the last digit dropped is less than 5, the last digit retained remains as it is. If the
last digit dropped is equal to 5, the remaining digit should be rounded to the near-
est even number. (This helps avoid accumulation of errors in long arithmetic
processes.)

A technique for avoiding error accumulation is to delay rounding of numbers in a
long calculation until you have the final result. Wait until you are ready to copy the fi-
nal answer from your calculator before rounding to the correct number of significant
figures.
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Quick Quiz 1.4 Suppose you measure the position of a chair with a meter
stick and record that the center of the seat is 1.043 860 564 2 m from a wall. What
would a reader conclude from this recorded measurement?

Example 1.8 Installing a Carpet

A carpet is to be installed in a room whose length is mea-
sured to be 12.71 m and whose width is measured to be
3.46 m. Find the area of the room.

Solution If you multiply 12.71 m by 3.46 m on your calcula-
tor, you will see an answer of 43.976 6 m2. How many of these

numbers should you claim? Our rule of thumb for multiplica-
tion tells us that you can claim only the number of significant
figures in your answer as are present in the measured quan-
tity having the lowest number of significant figures. In this ex-
ample, the lowest number of significant figures is three in 

3.46 m, so we should express our final answer as 44.0 m2.

The three fundamental physical quantities of mechanics are length, mass, and time,
which in the SI system have the units meters (m), kilograms (kg), and seconds (s), re-
spectively. Prefixes indicating various powers of ten are used with these three basic
units. 

The density of a substance is defined as its mass per unit volume. Different sub-
stances have different densities mainly because of differences in their atomic masses
and atomic arrangements.

The method of dimensional analysis is very powerful in solving physics problems.
Dimensions can be treated as algebraic quantities. By making estimates and perform-
ing order-of-magnitude calculations, you should be able to approximate the answer to
a problem when there is not enough information available to completely specify an ex-
act solution.

When you compute a result from several measured numbers, each of which has a
certain accuracy, you should give the result with the correct number of significant fig-
ures. When multiplying several quantities, the number of significant figures in the

S U M M A RY

Take a practice test for
this chapter by clicking on
the Practice Test link at
http://www.pse6.com.
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final answer is the same as the number of significant figures in the quantity having the
lowest number of significant figures. The same rule applies to division. When numbers
are added or subtracted, the number of decimal places in the result should equal the
smallest number of decimal places of any term in the sum.

1. What types of natural phenomena could serve as time stan-
dards? 

2. Suppose that the three fundamental standards of the
metric system were length, density, and time rather than
length, mass, and time. The standard of density in this
system is to be defined as that of water. What considera-
tions about water would you need to address to make
sure that the standard of density is as accurate as
possible?

3. The height of a horse is sometimes given in units of
“hands.” Why is this a poor standard of length?

4. Express the following quantities using the prefixes given in
Table 1.4: (a) 3 ! 10"4 m (b) 5 ! 10"5 s (c) 72 ! 102 g.

5. Suppose that two quantities A and B have different dimen-
sions. Determine which of the following arithmetic opera-
tions could be physically meaningful: (a) A ' B (b) A/B
(c) B " A (d) AB. 

6. If an equation is dimensionally correct, does this mean
that the equation must be true? If an equation is not di-
mensionally correct, does this mean that the equation can-
not be true?

7. Do an order-of-magnitude calculation for an everyday situ-
ation you encounter. For example, how far do you walk or
drive each day?

8. Find the order of magnitude of your age in seconds.

9. What level of precision is implied in an order-of-magnitude
calculation?

10. Estimate the mass of this textbook in kilograms. If a scale is
available, check your estimate. 

11. In reply to a student’s question, a guard in a natural his-
tory museum says of the fossils near his station, “When I
started work here twenty-four years ago, they were eighty
million years old, so you can add it up.” What should the
student conclude about the age of the fossils?

Q U E S T I O N S

Figure P1.1

L

(b)

(a)

d

Section 1.2 Matter and Model Building

1. A crystalline solid consists of atoms stacked up in a repeat-
ing lattice structure. Consider a crystal as shown in
Figure P1.1a. The atoms reside at the corners of cubes of
side L $ 0.200 nm. One piece of evidence for the regular
arrangement of atoms comes from the flat surfaces along
which a crystal separates, or cleaves, when it is broken.
Suppose this crystal cleaves along a face diagonal, as
shown in Figure P1.1b. Calculate the spacing d between
two adjacent atomic planes that separate when the crystal
cleaves.

Note: Consult the endpapers, appendices, and tables in
the text whenever necessary in solving problems. For this
chapter, Appendix B.3 may be particularly useful. Answers
to odd-numbered problems appear in the back of the
book.

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide

= coached solution with hints available at http://www.pse6.com = computer useful in solving problem

= paired numerical and symbolic problems

P R O B L E M S
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Section 1.3 Density and Atomic Mass
2. Use information on the endpapers of this book to calcu-

late the average density of the Earth. Where does the
value fit among those listed in Tables 1.5 and 14.1? Look
up the density of a typical surface rock like granite in an-
other source and compare the density of the Earth to it.

3. The standard kilogram is a platinum–iridium cylinder 
39.0 mm in height and 39.0 mm in diameter. What is the
density of the material?

4. A major motor company displays a die-cast model of its
first automobile, made from 9.35 kg of iron. To celebrate
its hundredth year in business, a worker will recast the
model in gold from the original dies. What mass of gold is
needed to make the new model?

5. What mass of a material with density & is required to make
a hollow spherical shell having inner radius r 1 and outer
radius r 2?

6. Two spheres are cut from a certain uniform rock. One has
radius 4.50 cm. The mass of the other is five times greater.
Find its radius.

7. Calculate the mass of an atom of (a) helium,
(b) iron, and (c) lead. Give your answers in grams. The
atomic masses of these atoms are 4.00 u, 55.9 u, and 207 u,
respectively.

8. The paragraph preceding Example 1.1 in the text
mentions that the atomic mass of aluminum is 
27.0 u $ 27.0 ! 1.66 ! 10"27 kg. Example 1.1 says that
27.0 g of aluminum contains 6.02 ! 1023 atoms. (a) Prove
that each one of these two statements implies the other.
(b) What If ? What if it’s not aluminum? Let M represent
the numerical value of the mass of one atom of any chemi-
cal element in atomic mass units. Prove that M grams of the
substance contains a particular number of atoms, the same
number for all elements. Calculate this number precisely
from the value for u quoted in the text. The number of
atoms in M grams of an element is called Avogadro’s number
NA. The idea can be extended: Avogadro’s number of mol-
ecules of a chemical compound has a mass of M grams,
where M atomic mass units is the mass of one molecule.
Avogadro’s number of atoms or molecules is called one
mole, symbolized as 1 mol. A periodic table of the elements,
as in Appendix C, and the chemical formula for a com-
pound contain enough information to find the molar mass
of the compound. (c) Calculate the mass of one mole of
water, H2O. (d) Find the molar mass of CO2.

9. On your wedding day your lover gives you a gold ring of
mass 3.80 g. Fifty years later its mass is 3.35 g. On the aver-
age, how many atoms were abraded from the ring during
each second of your marriage? The atomic mass of gold is
197 u. 

10. A small cube of iron is observed under a microscope. The
edge of the cube is 5.00 ! 10"6 cm long. Find (a) the
mass of the cube and (b) the number of iron atoms in the
cube. The atomic mass of iron is 55.9 u, and its density is
7.86 g/cm3.

11. A structural I beam is made of steel. A view of its cross-
section and its dimensions are shown in Figure P1.11. The
density of the steel is 7.56 ! 103 kg/m3. (a) What is the

mass of a section 1.50 m long? (b) Assume that the atoms
are predominantly iron, with atomic mass 55.9 u. How
many atoms are in this section?

15.0 cm

1.00 cm

1.00 cm
36.0 cm

Figure P1.11

12. A child at the beach digs a hole in the sand and uses a pail
to fill it with water having a mass of 1.20 kg. The mass of
one molecule of water is 18.0 u. (a) Find the number of
water molecules in this pail of water. (b) Suppose the
quantity of water on Earth is constant at 1.32 ! 1021 kg.
How many of the water molecules in this pail of water are
likely to have been in an equal quantity of water that once
filled one particular claw print left by a Tyrannosaur hunt-
ing on a similar beach?

Section 1.4 Dimensional Analysis
The position of a particle moving under uniform accelera-
tion is some function of time and the acceleration. Suppose
we write this position s $ ka mt n, where k is a dimensionless
constant. Show by dimensional analysis that this expression
is satisfied if m $ 1 and n $ 2. Can this analysis give the
value of k?

14. Figure P1.14 shows a frustrum of a cone. Of the following
mensuration (geometrical) expressions, which describes
(a) the total circumference of the flat circular
faces (b) the volume (c) the area of the curved sur-
face? (i) #(r 1 ' r 2)[h2 ' (r 1 " r 2)2]1/2 (ii) 2#(r 1 ' r 2)
(iii) #h(r 1

2 ' r 1r 2 ' r 2
2).

13.
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Which of the following equations are dimensionally
correct?
(a) vf $ vi ' ax 
(b) y $ (2 m)cos(kx), where k $ 2 m"1.

16. (a) A fundamental law of motion states that the acceleration
of an object is directly proportional to the resultant force ex-
erted on the object and inversely proportional to its mass. If
the proportionality constant is defined to have no dimen-
sions, determine the dimensions of force. (b) The newton is
the SI unit of force. According to the results for (a), how can
you express a force having units of newtons using the funda-
mental units of mass, length, and time?

17. Newton’s law of universal gravitation is represented by

Here F is the magnitude of the gravitational force exerted by
one small object on another, M and m are the masses of the
objects, and r is a distance. Force has the SI units kg ·m/s2.
What are the SI units of the proportionality constant G ?

Section 1.5 Conversion of Units
18. A worker is to paint the walls of a square room 8.00 ft high

and 12.0 ft along each side. What surface area in square
meters must she cover? 

19. Suppose your hair grows at the rate 1/32 in. per day. Find
the rate at which it grows in nanometers per second. Be-
cause the distance between atoms in a molecule is on the
order of 0.1 nm, your answer suggests how rapidly layers of
atoms are assembled in this protein synthesis.

20. The volume of a wallet is 8.50 in.3 Convert this value to m3,
using the definition 1 in. $ 2.54 cm. 

A rectangular building lot is 100 ft by 150 ft. Determine the
area of this lot in m2.

22. An auditorium measures 40.0 m ! 20.0 m ! 12.0 m. The
density of air is 1.20 kg/m3. What are (a) the volume of
the room in cubic feet and (b) the weight of air in the
room in pounds?

23. Assume that it takes 7.00 minutes to fill a 30.0-gal gasoline
tank. (a) Calculate the rate at which the tank is filled in
gallons per second. (b) Calculate the rate at which the
tank is filled in cubic meters per second. (c) Determine
the time interval, in hours, required to fill a 1-m3 volume
at the same rate. (1 U.S. gal $ 231 in.3)

24. Find the height or length of these natural wonders in kilo-
meters, meters and centimeters. (a) The longest cave system
in the world is the Mammoth Cave system in central Ken-
tucky. It has a mapped length of 348 mi. (b) In the United
States, the waterfall with the greatest single drop is Ribbon
Falls, which falls 1 612 ft. (c) Mount McKinley in Denali Na-
tional Park, Alaska, is America’s highest mountain at a
height of 20 320 ft. (d) The deepest canyon in the United
States is King’s Canyon in California with a depth of 8 200 ft.

A solid piece of lead has a mass of 23.94 g and a volume of
2.10 cm3. From these data, calculate the density of lead in
SI units (kg/m3).

25.

21.

F $
GMm

r 2

15. 26. A section of land has an area of 1 square mile and contains
640 acres. Determine the number of square meters in
1 acre.

27. An ore loader moves 1 200 tons/h from a mine to the sur-
face. Convert this rate to lb/s, using 1 ton $ 2 000 lb. 

28. (a) Find a conversion factor to convert from miles per
hour to kilometers per hour. (b) In the past, a federal law
mandated that highway speed limits would be 55 mi/h.
Use the conversion factor of part (a) to find this speed in
kilometers per hour. (c) The maximum highway speed is
now 65 mi/h in some places. In kilometers per hour, how
much increase is this over the 55 mi/h limit?

At the time of this book’s printing, the U.S. national debt
is about $6 trillion. (a) If payments were made at the rate
of $1 000 per second, how many years would it take to pay
off the debt, assuming no interest were charged? (b) A 
dollar bill is about 15.5 cm long. If six trillion dollar bills
were laid end to end around the Earth’s equator, how
many times would they encircle the planet? Take the ra-
dius of the Earth at the equator to be 6 378 km. (Note: Be-
fore doing any of these calculations, try to guess at the an-
swers. You may be very surprised.)

30. The mass of the Sun is 1.99 ! 1030 kg, and the mass of an
atom of hydrogen, of which the Sun is mostly composed, is
1.67 ! 10"27 kg. How many atoms are in the Sun?

One gallon of paint (volume $ 3.78 ! 10"3 m3) covers
an area of 25.0 m2. What is the thickness of the paint on 
the wall?

32. A pyramid has a height of 481 ft and its base covers an area
of 13.0 acres (Fig. P1.32). If the volume of a pyramid is
given by the expression V $ Bh, where B is the area of
the base and h is the height, find the volume of this pyra-
mid in cubic meters. (1 acre $ 43 560 ft2)

1
3

31.

29.

Figure P1.32 Problems 32 and 33.
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33. The pyramid described in Problem 32 contains approxi-
mately 2 million stone blocks that average 2.50 tons each.
Find the weight of this pyramid in pounds.

34. Assuming that 70% of the Earth’s surface is covered with
water at an average depth of 2.3 mi, estimate the mass of
the water on the Earth in kilograms.

35. A hydrogen atom has a diameter of approximately
1.06 ! 10"10 m, as defined by the diameter of the spheri-
cal electron cloud around the nucleus. The hydrogen nu-
cleus has a diameter of approximately 2.40 ! 10"15 m.
(a) For a scale model, represent the diameter of the hy-
drogen atom by the length of an American football field



(100 yd $ 300 ft), and determine the diameter of the
nucleus in millimeters. (b) The atom is how many times
larger in volume than its nucleus?

36. The nearest stars to the Sun are in the Alpha Centauri
multiple-star system, about 4.0 ! 1013 km away. If the Sun,
with a diameter of 1.4 ! 109 m, and Alpha Centauri A are
both represented by cherry pits 7.0 mm in diameter, how
far apart should the pits be placed to represent the Sun
and its neighbor to scale?

The diameter of our disk-shaped galaxy, the Milky Way, is
about 1.0 ! 105 lightyears (ly). The distance to Messier 31,
which is Andromeda, the spiral galaxy nearest to the Milky
Way, is about 2.0 million ly. If a scale model represents the
Milky Way and Andromeda galaxies as dinner plates 25 cm
in diameter, determine the distance between the two plates. 

38. The mean radius of the Earth is 6.37 ! 106 m, and that of
the Moon is 1.74 ! 108 cm. From these data calculate
(a) the ratio of the Earth’s surface area to that of the
Moon and (b) the ratio of the Earth’s volume to that of
the Moon. Recall that the surface area of a sphere is 4#r 2

and the volume of a sphere is 

One cubic meter (1.00 m3) of aluminum has a mass
of 2.70 ! 103 kg, and 1.00 m3 of iron has a mass of
7.86 ! 103 kg. Find the radius of a solid aluminum sphere
that will balance a solid iron sphere of radius 2.00 cm on
an equal-arm balance.

40. Let &Al represent the density of aluminum and &Fe that of
iron. Find the radius of a solid aluminum sphere that bal-
ances a solid iron sphere of radius r Fe on an equal-arm
balance.

Section 1.6 Estimates and Order-of-Magnitude
Calculations

Estimate the number of Ping-Pong balls that would fit
into a typical-size room (without being crushed). In your
solution state the quantities you measure or estimate and
the values you take for them. 

42. An automobile tire is rated to last for 50 000 miles. To an
order of magnitude, through how many revolutions will it
turn? In your solution state the quantities you measure or
estimate and the values you take for them.

43. Grass grows densely everywhere on a quarter-acre plot of
land. What is the order of magnitude of the number of
blades of grass on this plot? Explain your reasoning. Note
that 1 acre $ 43 560 ft2.

44. Approximately how many raindrops fall on a one-acre lot
during a one-inch rainfall? Explain your reasoning.

45. Compute the order of magnitude of the mass of a bathtub
half full of water. Compute the order of magnitude of the
mass of a bathtub half full of pennies. In your solution list
the quantities you take as data and the value you measure
or estimate for each.

46. Soft drinks are commonly sold in aluminum containers. To
an order of magnitude, how many such containers are
thrown away or recycled each year by U.S. consumers?

41.

39.

4
3   #r 3.

37.

How many tons of aluminum does this represent? In your
solution state the quantities you measure or estimate and
the values you take for them.

To an order of magnitude, how many piano tuners are in
New York City? The physicist Enrico Fermi was famous for
asking questions like this on oral Ph.D. qualifying exami-
nations. His own facility in making order-of-magnitude cal-
culations is exemplified in Problem 45.48.

Section 1.7 Significant Figures

48. A rectangular plate has a length of (21.3 * 0.2) cm and a
width of (9.8 * 0.1) cm. Calculate the area of the plate, in-
cluding its uncertainty.

49. The radius of a circle is measured to be (10.5 * 0.2) m.
Calculate the (a) area and (b) circumference of the circle
and give the uncertainty in each value.

50. How many significant figures are in the following num-
bers? (a) 78.9 * 0.2 (b) 3.788 ! 109 (c) 2.46 ! 10"6

(d) 0.005 3.

51. The radius of a solid sphere is measured to be
(6.50 * 0.20) cm, and its mass is measured to be
(1.85 * 0.02) kg. Determine the density of the sphere in
kilograms per cubic meter and the uncertainty in the 
density.

52. Carry out the following arithmetic operations: (a) the sum
of the measured values 756, 37.2, 0.83, and 2.5; (b) the
product 0.003 2 ! 356.3; (c) the product 5.620 ! #.

53. The tropical year, the time from vernal equinox to the next
vernal equinox, is the basis for our calendar. It contains
365.242 199 days. Find the number of seconds in a tropical
year.

54. A farmer measures the distance around a rectangular field.
The length of the long sides of the rectangle is found to
be 38.44 m, and the length of the short sides is found to
be 19.5 m. What is the total distance around the field?

55. A sidewalk is to be constructed around a swimming pool
that measures (10.0 * 0.1) m by (17.0 * 0.1) m. If the side-
walk is to measure (1.00 * 0.01) m wide by (9.0 * 0.1) cm
thick, what volume of concrete is needed, and what is the
approximate uncertainty of this volume?

Additional Problems
56. In a situation where data are known to three significant

digits, we write 6.379 m $ 6.38 m and 6.374 m $ 6.37 m.
When a number ends in 5, we arbitrarily choose to write
6.375 m $ 6.38 m. We could equally well write 6.375 m $
6.37 m, “rounding down” instead of “rounding up,” be-
cause we would change the number 6.375 by equal incre-
ments in both cases. Now consider an order-of-magnitude

Note: Appendix B.8 on propagation of uncertainty may be
useful in solving some problems in this section.

47.
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55.0˚

Figure P1.61

estimate, in which we consider factors rather than incre-
ments. We write 500 m # 103 m because 500 differs from
100 by a factor of 5 while it differs from 1 000 by only a fac-
tor of 2. We write 437 m # 103 m and 305 m # 102 m.
What distance differs from 100 m and from 1 000 m
by equal factors, so that we could equally well choose to
represent its order of magnitude either as # 102 m or as
# 103 m?

57. For many electronic applications, such as in computer
chips, it is desirable to make components as small as possi-
ble to keep the temperature of the components low and to
increase the speed of the device. Thin metallic coatings
(films) can be used instead of wires to make electrical con-
nections. Gold is especially useful because it does not oxi-
dize readily. Its atomic mass is 197 u. A gold film can be
no thinner than the size of a gold atom. Calculate the
minimum coating thickness, assuming that a gold atom oc-
cupies a cubical volume in the film that is equal to the vol-
ume it occupies in a large piece of metal. This geometric
model yields a result of the correct order of magnitude.

58. The basic function of the carburetor of an automobile is to
“atomize” the gasoline and mix it with air to promote
rapid combustion. As an example, assume that 30.0 cm3 of
gasoline is atomized into N spherical droplets, each with a
radius of 2.00 ! 10"5 m. What is the total surface area of
these N spherical droplets?

The consumption of natural gas by a company satis-
fies the empirical equation V $ 1.50t ' 0.008 00t 2, where
V is the volume in millions of cubic feet and t the time in
months. Express this equation in units of cubic feet and
seconds. Assign proper units to the coefficients. Assume a
month is equal to 30.0 days.

60. In physics it is important to use mathematical approxi-
mations. Demonstrate that for small angles (+ 20°)

tan , % sin , % , $ #,-/180°

where , is in radians and ,- is in degrees. Use a calculator
to find the largest angle for which tan , may be approxi-
mated by sin , if the error is to be less than 10.0%. 

A high fountain of water is located at the center of a circu-
lar pool as in Figure P1.61. Not wishing to get his feet wet,

61.

59.

a student walks around the pool and measures its circum-
ference to be 15.0 m. Next, the student stands at the edge
of the pool and uses a protractor to gauge the angle of ele-
vation of the top of the fountain to be 55.0°. How high is
the fountain?

62. Collectible coins are sometimes plated with gold to en-
hance their beauty and value. Consider a commemorative
quarter-dollar advertised for sale at $4.98. It has a diame-
ter of 24.1 mm, a thickness of 1.78 mm, and is completely
covered with a layer of pure gold 0.180 %m thick. The vol-
ume of the plating is equal to the thickness of the layer
times the area to which it is applied. The patterns on the
faces of the coin and the grooves on its edge have a negli-
gible effect on its area. Assume that the price of gold is
$10.0 per gram. Find the cost of the gold added to the
coin. Does the cost of the gold significantly enhance the
value of the coin?

There are nearly # ! 107 s in one year. Find the percent-
age error in this approximation, where “percentage error’’
is defined as

64. Assume that an object covers an area A and has a uniform
height h. If its cross-sectional area is uniform over its
height, then its volume is given by V $ Ah. (a) Show that
V $ Ah is dimensionally correct. (b) Show that the vol-
umes of a cylinder and of a rectangular box can be written
in the form V $ Ah, identifying A in each case. (Note that
A, sometimes called the “footprint” of the object, can have
any shape and the height can be replaced by average
thickness in general.)

65. A child loves to watch as you fill a transparent plastic bot-
tle with shampoo. Every horizontal cross-section is a cir-
cle, but the diameters of the circles have different values,
so that the bottle is much wider in some places than oth-
ers. You pour in bright green shampoo with constant vol-
ume flow rate 16.5 cm3/s. At what rate is its level in the
bottle rising (a) at a point where the diameter of the bot-
tle is 6.30 cm and (b) at a point where the diameter is
1.35 cm?

66. One cubic centimeter of water has a mass of 1.00 ! 10"3 kg.
(a) Determine the mass of 1.00 m3 of water. (b) Biological
substances are 98% water. Assume that they have the same
density as water to estimate the masses of a cell that has a di-
ameter of 1.0 %m, a human kidney, and a fly. Model the kid-
ney as a sphere with a radius of 4.0 cm and the fly as a cylin-
der 4.0 mm long and 2.0 mm in diameter.

Assume there are 100 million passenger cars in the United
States and that the average fuel consumption is 20 mi/gal of
gasoline. If the average distance traveled by each car is
10 000 mi/yr, how much gasoline would be saved per year if
average fuel consumption could be increased to 25 mi/gal?

68. A creature moves at a speed of 5.00 furlongs per fortnight
(not a very common unit of speed). Given that 
1 furlong $ 220 yards and 1 fortnight $ 14 days, deter-
mine the speed of the creature in m/s. What kind of crea-
ture do you think it might be?

67.

Percentage error $   
&assumed value " true value&

true value
! 100%

63.
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69. The distance from the Sun to the nearest star is about
4 ! 1016 m. The Milky Way galaxy is roughly a disk of di-
ameter # 1021 m and thickness # 1019 m. Find the order
of magnitude of the number of stars in the Milky Way.
Assume the distance between the Sun and our nearest
neighbor is typical.

70. The data in the following table represent measurements
of the masses and dimensions of solid cylinders of alu-
minum, copper, brass, tin, and iron. Use these data to
calculate the densities of these substances. Compare your
results for aluminum, copper, and iron with those given
in Table 1.5.

Mass Diameter Length
Substance (g) (cm) (cm)

Aluminum 51.5 2.52 3.75
Copper 56.3 1.23 5.06
Brass 94.4 1.54 5.69
Tin 69.1 1.75 3.74
Iron 216.1 1.89 9.77

71. (a) How many seconds are in a year? (b) If one microme-
teorite (a sphere with a diameter of 1.00 ! 10" 6 m)
strikes each square meter of the Moon each second, how
many years will it take to cover the Moon to a depth of
1.00 m? To solve this problem, you can consider a cubic

box on the Moon 1.00 m on each edge, and find how long
it will take to fill the box.

Answers to Quick Quizzes
1.1 (a). Because the density of aluminum is smaller than that

of iron, a larger volume of aluminum is required for a
given mass than iron.

1.2 False. Dimensional analysis gives the units of the propor-
tionality constant but provides no information about its
numerical value. To determine its numerical value re-
quires either experimental data or geometrical reason-
ing. For example, in the generation of the equation

, because the factor is dimensionless, there is
no way of determining it using dimensional analysis.

1.3 (b). Because kilometers are shorter than miles, a larger
number of kilometers is required for a given distance than
miles.

1.4 Reporting all these digits implies you have determined the
location of the center of the chair’s seat to the near-
est * 0.000 000 000 1 m. This roughly corresponds to be-
ing able to count the atoms in your meter stick because
each of them is about that size! It would be better to
record the measurement as 1.044 m: this indicates that
you know the position to the nearest millimeter, assuming
the meter stick has millimeter markings on its scale.

1
2x $ 1

2 at 2
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Motion in One Dimension

CHAPTE R OUTL I N E

2.1 Position, Velocity, and Speed

2.2 Instantaneous Velocity and
Speed

2.3 Acceleration

2.4 Motion Diagrams

2.5 One-Dimensional Motion with
Constant Acceleration

2.6 Freely Falling Objects

2.7 Kinematic Equations Derived
from Calculus

! One of the physical quantities we will study in this chapter is the velocity of an object
moving in a straight line. Downhill skiers can reach velocities with a magnitude greater than
100 km/h. (Jean Y. Ruszniewski/Getty Images)

Chapter 2

General Problem-Solving
Strategy
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Position

As a first step in studying classical mechanics, we describe motion in terms of space
and time while ignoring the agents that caused that motion. This portion of classical
mechanics is called kinematics. (The word kinematics has the same root as cinema. Can
you see why?) In this chapter we consider only motion in one dimension, that is, mo-
tion along a straight line. We first define position, displacement, velocity, and accelera-
tion. Then, using these concepts, we study the motion of objects traveling in one di-
mension with a constant acceleration.

From everyday experience we recognize that motion represents a continuous
change in the position of an object. In physics we can categorize motion into three
types: translational, rotational, and vibrational. A car moving down a highway is an
example of translational motion, the Earth’s spin on its axis is an example of rota-
tional motion, and the back-and-forth movement of a pendulum is an example of vi-
brational motion. In this and the next few chapters, we are concerned only with
translational motion. (Later in the book we shall discuss rotational and vibrational
motions.)

In our study of translational motion, we use what is called the particle model—
we describe the moving object as a particle regardless of its size. In general, a particle
is a point-like object—that is, an object with mass but having infinitesimal
size. For example, if we wish to describe the motion of the Earth around the Sun, we
can treat the Earth as a particle and obtain reasonably accurate data about its orbit.
This approximation is justified because the radius of the Earth’s orbit is large com-
pared with the dimensions of the Earth and the Sun. As an example on a much
smaller scale, it is possible to explain the pressure exerted by a gas on the walls of a
container by treating the gas molecules as particles, without regard for the internal
structure of the molecules.

2.1 Position, Velocity, and Speed

The motion of a particle is completely known if the particle’s position in space is
known at all times. A particle’s position is the location of the particle with respect to a
chosen reference point that we can consider to be the origin of a coordinate system.

Consider a car moving back and forth along the x axis as in Figure 2.1a. When we
begin collecting position data, the car is 30 m to the right of a road sign, which we will
use to identify the reference position x ! 0. (Let us assume that all data in this exam-
ple are known to two significant figures. To convey this information, we should report
the initial position as 3.0 " 101 m. We have written this value in the simpler form 30 m
to make the discussion easier to follow.) We will use the particle model by identifying
some point on the car, perhaps the front door handle, as a particle representing the
entire car.

We start our clock and once every 10 s note the car’s position relative to the sign at
x ! 0. As you can see from Table 2.1, the car moves to the right (which we have
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Active Figure 2.1 (a) A car moves back and
forth along a straight line taken to be the x
axis. Because we are interested only in the
car’s translational motion, we can model it as
a particle. (b) Position–time graph for the
motion of the “particle.”

Position t(s) x(m)

! 0 30
" 10 52
# 20 38
$ 30 0
% 40 #37
& 50 #53

Table 2.1
Position of the Car at 
Various Times

defined as the positive direction) during the first 10 s of motion, from position ! to
position ". After ", the position values begin to decrease, suggesting that the car is
backing up from position " through position &. In fact, at $, 30 s after we start mea-
suring, the car is alongside the road sign (see Figure 2.1a) that we are using to mark
our origin of coordinates. It continues moving to the left and is more than 50 m to the
left of the sign when we stop recording information after our sixth data point. A graph-
ical representation of this information is presented in Figure 2.1b. Such a plot is called
a position–time graph.

Given the data in Table 2.1, we can easily determine the change in position of the
car for various time intervals. The displacement of a particle is defined as its change
in position in some time interval. As it moves from an initial position xi to a final posi-
tion xf , the displacement of the particle is given by xf # x i . We use the Greek letter
delta ($) to denote the change in a quantity. Therefore, we write the displacement, or
change in position, of the particle as

(2.1)$x ! xf # xi

Displacement

At the Active Figures link at
http://www.pse6.com, you can move
each of the six points ! through & and
observe the motion of the car pictorially
and graphically as it follows a smooth
path through the six points.
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From this definition we see that $x is positive if xf is greater than xi and negative if xf is
less than xi. 

It is very important to recognize the difference between displacement and distance
traveled. Distance is the length of a path followed by a particle. Consider, for example,
the basketball players in Figure 2.2. If a player runs from his own basket down the
court to the other team’s basket and then returns to his own basket, the displacement of
the player during this time interval is zero, because he ended up at the same point as
he started. During this time interval, however, he covered a distance of twice the length
of the basketball court.

Displacement is an example of a vector quantity. Many other physical quantities, in-
cluding position, velocity, and acceleration, also are vectors. In general, a vector quan-
tity requires the specification of both direction and magnitude. By contrast, a
scalar quantity has a numerical value and no direction. In this chapter, we use pos-
itive (%) and negative (#) signs to indicate vector direction. We can do this because
the chapter deals with one-dimensional motion only; this means that any object we
study can be moving only along a straight line. For example, for horizontal motion let
us arbitrarily specify to the right as being the positive direction. It follows that any 
object always moving to the right undergoes a positive displacement $x & 0, and 
any object moving to the left undergoes a negative displacement, so that $x ' 0. We
shall treat vector quantities in greater detail in Chapter 3.

For our basketball player in Figure 2.2, if the trip from his own basket to the oppos-
ing basket is described by a displacement of % 28 m, the trip in the reverse direction
represents a displacement of # 28 m. Each trip, however, represents a distance of
28 m, because distance is a scalar quantity. The total distance for the trip down the
court and back is 56 m. Distance, therefore, is always represented as a positive number,
while displacement can be either positive or negative.

There is one very important point that has not yet been mentioned. Note that the
data in Table 2.1 results only in the six data points in the graph in Figure 2.1b. The
smooth curve drawn through the six points in the graph is only a possibility of the actual
motion of the car. We only have information about six instants of time—we have no
idea what happened in between the data points. The smooth curve is a guess as to what
happened, but keep in mind that it is only a guess. 

If the smooth curve does represent the actual motion of the car, the graph con-
tains information about the entire 50-s interval during which we watch the car move.
It is much easier to see changes in position from the graph than from a verbal de-
scription or even a table of numbers. For example, it is clear that the car was cover-
ing more ground during the middle of the 50-s interval than at the end. Between po-
sitions # and $, the car traveled almost 40 m, but during the last 10 s, between
positions % and &, it moved less than half that far. A common way of comparing
these different motions is to divide the displacement $x that occurs between two
clock readings by the length of that particular time interval $t. This turns out to be a
very useful ratio, one that we shall use many times. This ratio has been given a special
name—average velocity. The average velocity v–x of a particle is defined as the

Figure 2.2 On this basketball court,
players run back and forth for the entire
game. The distance that the players run
over the duration of the game is non-
zero. The displacement of the players
over the duration of the game is
approximately zero because they keep
returning to the same point over and
over again.Ke
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particle’s displacement ∆x divided by the time interval ∆t during which that
displacement occurs:

(2.2)

where the subscript x indicates motion along the x axis. From this definition we see
that average velocity has dimensions of length divided by time (L/T)—meters per sec-
ond in SI units.

The average velocity of a particle moving in one dimension can be positive or nega-
tive, depending on the sign of the displacement. (The time interval $t is always posi-
tive.) If the coordinate of the particle increases in time (that is, if xf & x i ), then $x is
positive and is positive. This case corresponds to a particle moving in the
positive x direction, that is, toward larger values of x. If the coordinate decreases in
time (that is, if xf ' x i ) then $x is negative and hence is negative. This case corre-
sponds to a particle moving in the negative x direction.

We can interpret average velocity geometrically by drawing a straight line between
any two points on the position–time graph in Figure 2.1b. This line forms the hy-
potenuse of a right triangle of height $x and base $t. The slope of this line is the ratio
$x/$t, which is what we have defined as average velocity in Equation 2.2. For example,
the line between positions ! and " in Figure 2.1b has a slope equal to the average ve-
locity of the car between those two times, (52 m # 30 m)/(10 s # 0) ! 2.2 m/s.

In everyday usage, the terms speed and velocity are interchangeable. In physics, how-
ever, there is a clear distinction between these two quantities. Consider a marathon
runner who runs more than 40 km, yet ends up at his starting point. His total displace-
ment is zero, so his average velocity is zero! Nonetheless, we need to be able to quantify
how fast he was running. A slightly different ratio accomplishes this for us. The aver-
age speed of a particle, a scalar quantity, is defined as the total distance traveled di-
vided by the total time interval required to travel that distance:

(2.3)

The SI unit of average speed is the same as the unit of average velocity: meters per sec-
ond. However, unlike average velocity, average speed has no direction and hence car-
ries no algebraic sign. Notice the distinction between average velocity and average
speed—average velocity (Eq. 2.2) is the displacement divided by the time interval, while
average speed (Eq. 2.3) is the distance divided by the time interval.

Knowledge of the average velocity or average speed of a particle does not provide in-
formation about the details of the trip. For example, suppose it takes you 45.0 s to travel
100 m down a long straight hallway toward your departure gate at an airport. At the 100-m
mark, you realize you missed the rest room, and you return back 25.0 m along the 
same hallway, taking 10.0 s to make the return trip. The magnitude of the average 
velocity for your trip is % 75.0 m/55.0 s ! % 1.36 m/s. The average speed for your trip is
125 m/55.0 s ! 2.27 m/s. You may have traveled at various speeds during the walk. Nei-
ther average velocity nor average speed provides information about these details.

Average speed !
total distance

total time

vx

vx ! $x/$t

vx ! 
$x
$t

! PITFALL PREVENTION
2.1 Average Speed and

Average Velocity
The magnitude of the average ve-
locity is not the average speed.
For example, consider the
marathon runner discussed here.
The magnitude of the average ve-
locity is zero, but the average
speed is clearly not zero.

Quick Quiz 2.1 Under which of the following conditions is the magnitude of
the average velocity of a particle moving in one dimension smaller than the average
speed over some time interval? (a) A particle moves in the % x direction without revers-
ing. (b) A particle moves in the # x direction without reversing. (c) A particle moves in
the % x direction and then reverses the direction of its motion. (d) There are no con-
ditions for which this is true.

Average velocity



Example 2.1 Calculating the Average Velocity and Speed
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2.2 Instantaneous Velocity and Speed

Often we need to know the velocity of a particle at a particular instant in time, rather
than the average velocity over a finite time interval. For example, even though you
might want to calculate your average velocity during a long automobile trip, you would
be especially interested in knowing your velocity at the instant you noticed the police
car parked alongside the road ahead of you. In other words, you would like to be able
to specify your velocity just as precisely as you can specify your position by noting what
is happening at a specific clock reading—that is, at some specific instant. It may not be
immediately obvious how to do this. What does it mean to talk about how fast some-
thing is moving if we “freeze time” and talk only about an individual instant? This is a
subtle point not thoroughly understood until the late 1600s. At that time, with the in-
vention of calculus, scientists began to understand how to describe an object’s motion
at any moment in time.

To see how this is done, consider Figure 2.3a, which is a reproduction of the graph
in Figure 2.1b. We have already discussed the average velocity for the interval during
which the car moved from position ! to position " (given by the slope of the dark
blue line) and for the interval during which it moved from ! to & (represented by
the slope of the light blue line and calculated in Example 2.1). Which of these two
lines do you think is a closer approximation of the initial velocity of the car? The car
starts out by moving to the right, which we defined to be the positive direction. There-
fore, being positive, the value of the average velocity during the ! to " interval is
more representative of the initial value than is the value of the average velocity during
the ! to & interval, which we determined to be negative in Example 2.1. Now let us
focus on the dark blue line and slide point " to the left along the curve, toward point
!, as in Figure 2.3b. The line between the points becomes steeper and steeper, and as
the two points become extremely close together, the line becomes a tangent line to
the curve, indicated by the green line in Figure 2.3b. The slope of this tangent line

! PITFALL PREVENTION
2.2 Slopes of Graphs
In any graph of physical data, the
slope represents the ratio of the
change in the quantity repre-
sented on the vertical axis to the
change in the quantity repre-
sented on the horizontal axis. Re-
member that a slope has units (un-
less both axes have the same
units). The units of slope in
Figure 2.1b and Figure 2.3 are
m/s, the units of velocity. 

Find the displacement, average velocity, and average speed
of the car in Figure 2.1a between positions ! and &.

Solution From the position–time graph given in Figure
2.1b, note that xA ! 30 m at tA ! 0 s and that x F ! # 53 m
at t F ! 50 s. Using these values along with the definition of
displacement, Equation 2.1, we find that

This result means that the car ends up 83 m in the nega-
tive direction (to the left, in this case) from where it
started. This number has the correct units and is of the
same order of magnitude as the supplied data. A
quick look at Figure 2.1a indicates that this is the correct
answer.

It is difficult to estimate the average velocity without
completing the calculation, but we expect the units to be
meters per second. Because the car ends up to the left of
where we started taking data, we know the average velocity
must be negative. From Equation 2.2,

#83 m$x ! x F # xA ! #53 m # 30 m ! We cannot unambiguously find the average speed of the
car from the data in Table 2.1, because we do not have infor-
mation about the positions of the car between the data
points. If we adopt the assumption that the details of the
car’s position are described by the curve in Figure 2.1b, then
the distance traveled is 22 m (from ! to ") plus 105 m
(from " to &) for a total of 127 m. We find the car’s average
speed for this trip by dividing the distance by the total time
(Eq. 2.3):

2.5 m/sAverage speed !
127 m
50 s

!

#1.7 m/s!

 !
#53 m # 30 m

50 s # 0 s
!

#83 m
50 s

vx !
$x
$t

!
xf # xi

tf # ti
!

xF # xA

tF # tA
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represents the velocity of the car at the moment we started taking data, at point !.
What we have done is determine the instantaneous velocity at that moment. In other
words, the instantaneous velocity vx equals the limiting value of the ratio !x(!t
as !t approaches zero:1

(2.4)

In calculus notation, this limit is called the derivative of x with respect to t, written dx/dt:

(2.5)

The instantaneous velocity can be positive, negative, or zero. When the slope of the
position–time graph is positive, such as at any time during the first 10 s in Figure 2.3,
vx is positive—the car is moving toward larger values of x. After point ", vx is nega-
tive because the slope is negative—the car is moving toward smaller values of x. At
point ", the slope and the instantaneous velocity are zero—the car is momentarily at
rest.

From here on, we use the word velocity to designate instantaneous velocity. When it
is average velocity we are interested in, we shall always use the adjective average.

The instantaneous speed of a particle is defined as the magnitude of its instan-
taneous velocity. As with average speed, instantaneous speed has no direction
associated with it and hence carries no algebraic sign. For example, if one particle
has an instantaneous velocity of % 25 m/s along a given line and another particle
has an instantaneous velocity of # 25 m/s along the same line, both have a speed2

of 25 m/s.

vx !  lim
$t :  0

$x
$t

!
dx
dt

vx ! lim
$t : 0

$x
$t

Active Figure 2.3 (a) Graph representing the motion of the car in Figure 2.1. (b) An
enlargement of the upper-left-hand corner of the graph shows how the blue line
between positions ! and " approaches the green tangent line as point " is moved
closer to point !.

At the Active Figures link at http://www.pse6.com, you can move point "
as suggested in (b) and observe the blue line approaching the green tangent
line.

Instantaneous velocity

1 Note that the displacement $x also approaches zero as $t approaches zero, so that the ratio
looks like 0/0. As $x and $t become smaller and smaller, the ratio $x/$t approaches a value
equal to the slope of the line tangent to the x-versus-t curve.
2 As with velocity, we drop the adjective for instantaneous speed: “Speed” means instantaneous
speed.

! PITFALL PREVENTION
2.3 Instantaneous Speed

and Instantaneous
Velocity

In Pitfall Prevention 2.1, we ar-
gued that the magnitude of the
average velocity is not the average
speed. Notice the difference
when discussing instantaneous
values. The magnitude of the in-
stantaneous velocity is the instan-
taneous speed. In an infinitesimal
time interval, the magnitude of
the displacement is equal to the
distance traveled by the particle.



A particle moves along the x axis. Its position varies with
time according to the expression x ! # 4t % 2t 2 where x is
in meters and t is in seconds.3 The position–time graph for
this motion is shown in Figure 2.4. Note that the particle
moves in the negative x direction for the first second of mo-
tion, is momentarily at rest at the moment t ! 1 s, and
moves in the positive x direction at times t & 1 s.

(A) Determine the displacement of the particle in the time
intervals t ! 0 to t ! 1 s and t ! 1 s to t ! 3 s.

Solution During the first time interval, the slope is nega-
tive and hence the average velocity is negative. Thus, we
know that the displacement between ! and " must be a
negative number having units of meters. Similarly, we expect
the displacement between " and $ to be positive.

In the first time interval, we set ti ! tA ! 0 and
tf ! t B ! 1 s. Using Equation 2.1, with x ! # 4t % 2t 2, we
obtain for the displacement between t ! 0 and t ! 1 s,

To calculate the displacement during the second time inter-
val (t ! 1 s to t ! 3 s), we set ti ! tB ! 1 s and tf ! tD ! 3 s:

These displacements can also be read directly from the posi-
tion–time graph.

(B) Calculate the average velocity during these two time in-
tervals.

Solution In the first time interval, $t ! tf # ti !
t B # tA ! 1 s. Therefore, using Equation 2.2 and the dis-
placement calculated in (a), we find that

#2 m/svx(A :  B) !
$xA :  B

$t
!

#2 m
1 s

!

%8 m!

 ! [#4(3) % 2(3)2] # [#4(1) % 2(1)2]

$x B :  D ! xf # xi ! x D # x B

#2 m !

 ! [#4(1) % 2(1)2] # [#4(0) % 2(0)2]

$xA :  B ! xf # xi ! xB # xA
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Conceptual Example 2.2 The Velocity of Different Objects

Example 2.3 Average and Instantaneous Velocity

Consider the following one-dimensional motions: (A) A ball
thrown directly upward rises to a highest point and falls
back into the thrower’s hand. (B) A race car starts from rest
and speeds up to 100 m/s. (C) A spacecraft drifts through
space at constant velocity. Are there any points in the mo-
tion of these objects at which the instantaneous velocity has
the same value as the average velocity over the entire mo-
tion? If so, identify the point(s).

Solution (A) The average velocity for the thrown ball is
zero because the ball returns to the starting point; thus its
displacement is zero. (Remember that average velocity is
defined as $x/$t.) There is one point at which the instanta-
neous velocity is zero—at the top of the motion.

(B) The car’s average velocity cannot be evaluated unam-
biguously with the information given, but it must be some
value between 0 and 100 m/s. Because the car will have
every instantaneous velocity between 0 and 100 m/s at
some time during the interval, there must be some instant
at which the instantaneous velocity is equal to the average
velocity.

(C) Because the spacecraft’s instantaneous velocity is con-
stant, its instantaneous velocity at any time and its average
velocity over any time interval are the same.
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Figure 2.4 (Example 2.3) Position–time graph for a particle
having an x coordinate that varies in time according to the
expression x ! # 4t % 2t2.

In the second time interval, $t ! 2 s; therefore,

These values are the same as the slopes of the lines joining
these points in Figure 2.4.

(C) Find the instantaneous velocity of the particle at t ! 2.5 s.

Solution We can guess that this instantaneous velocity must
be of the same order of magnitude as our previous results,
that is, a few meters per second. By measuring the slope of
the green line at t ! 2.5 s in Figure 2.4, we find that 

%6 m/svx !

%4 m/svx(B :  D) !
$x B :  D

$t
!

8 m
2 s

!

3 Simply to make it easier to read, we write the expression as
x ! #4t % 2t2 rather than as x ! (# 4.00 m/s)t % (2.00 m/s2)t2.00.
When an equation summarizes measurements, consider its coeffi-
cients to have as many significant digits as other data quoted in a
problem. Consider its coefficients to have the units required for di-
mensional consistency. When we start our clocks at t ! 0, we usually
do not mean to limit the precision to a single digit. Consider any
zero value in this book to have as many significant figures as you
need.
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Figure 2.5 (a) A car, modeled as a particle, moving along the x
axis from ! to " has velocity vxi at t ! ti and velocity vxf at t ! tf.
(b) Velocity–time graph (rust) for the particle moving in a
straight line. The slope of the blue straight line connecting !
and " is the average acceleration in the time interval
$t ! tf # ti.

The average acceleration a–x of the particle is defined as the change in velocity
$vx divided by the time interval $t during which that change occurs:

2.3 Acceleration

In the last example, we worked with a situation in which the velocity of a particle
changes while the particle is moving. This is an extremely common occurrence. (How
constant is your velocity as you ride a city bus or drive on city streets?) It is possible to
quantify changes in velocity as a function of time similarly to the way in which we quan-
tify changes in position as a function of time. When the velocity of a particle changes
with time, the particle is said to be accelerating. For example, the magnitude of the
velocity of a car increases when you step on the gas and decreases when you apply the
brakes. Let us see how to quantify acceleration.

Suppose an object that can be modeled as a particle moving along the x axis has an
initial velocity vxi at time ti and a final velocity vxf at time tf, as in Figure 2.5a.

Average acceleration(2.6)

As with velocity, when the motion being analyzed is one-dimensional, we can use
positive and negative signs to indicate the direction of the acceleration. Because the di-
mensions of velocity are L/T and the dimension of time is T, acceleration has dimen-
sions of length divided by time squared, or L/T2. The SI unit of acceleration is meters
per second squared (m/s2). It might be easier to interpret these units if you think of
them as meters per second per second. For example, suppose an object has an acceler-
ation of % 2 m/s2. You should form a mental image of the object having a velocity that
is along a straight line and is increasing by 2 m/s during every interval of 1 s. If the ob-
ject starts from rest, you should be able to picture it moving at a velocity of % 2 m/s af-
ter 1 s, at % 4 m/s after 2 s, and so on.

In some situations, the value of the average acceleration may be different over
different time intervals. It is therefore useful to define the instantaneous acceleration
as the limit of the average acceleration as $t approaches zero. This concept is analo-
gous to the definition of instantaneous velocity discussed in the previous section. If
we imagine that point ! is brought closer and closer to point " in Figure 2.5a and
we take the limit of $vx/$t as $t approaches zero, we obtain the instantaneous
acceleration:

(2.7)ax  !  lim
$t :  0

$vx

$t
!

dvx

dt

ax !  

$vx

$t
!

vxf # vxi

tf # ti

Instantaneous acceleration



That is, the instantaneous acceleration equals the derivative of the velocity
with respect to time, which by definition is the slope of the velocity–time graph.
The slope of the green line in Figure 2.5b is equal to the instantaneous acceleration
at point ". Thus, we see that just as the velocity of a moving particle is the slope at a
point on the particle’s x -t graph, the acceleration of a particle is the slope at a point
on the particle’s vx -t graph. One can interpret the derivative of the velocity with re-
spect to time as the time rate of change of velocity. If ax is positive, the acceleration
is in the positive x direction; if ax is negative, the acceleration is in the negative x
direction.

For the case of motion in a straight line, the direction of the velocity of an object
and the direction of its acceleration are related as follows. When the object’s velocity
and acceleration are in the same direction, the object is speeding up. On the
other hand, when the object’s velocity and acceleration are in opposite direc-
tions, the object is slowing down.

To help with this discussion of the signs of velocity and acceleration, we can relate
the acceleration of an object to the force exerted on the object. In Chapter 5 we for-
mally establish that force is proportional to acceleration:

This proportionality indicates that acceleration is caused by force. Furthermore, force
and acceleration are both vectors and the vectors act in the same direction. Thus, let
us think about the signs of velocity and acceleration by imagining a force applied to an
object and causing it to accelerate. Let us assume that the velocity and acceleration are
in the same direction. This situation corresponds to an object moving in some direc-
tion that experiences a force acting in the same direction. In this case, the object
speeds up! Now suppose the velocity and acceleration are in opposite directions. In
this situation, the object moves in some direction and experiences a force acting in the
opposite direction. Thus, the object slows down! It is very useful to equate the direc-
tion of the acceleration to the direction of a force, because it is easier from our every-
day experience to think about what effect a force will have on an object than to think
only in terms of the direction of the acceleration.

F ) a
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Quick Quiz 2.2 If a car is traveling eastward and slowing down, what is the
direction of the force on the car that causes it to slow down? (a) eastward (b) westward
(c) neither of these.

t

(b)

ax

tA tB

tC

tA tB tC

(a)

vx

t

Figure 2.6 The instantaneous
acceleration can be obtained from
the velocity–time graph (a). At
each instant, the acceleration in
the ax versus t graph (b) equals the
slope of the line tangent to the vx
versus t curve (a).

! PITFALL PREVENTION
2.4 Negative 

Acceleration
Keep in mind that negative acceler-
ation does not necessarily mean that
an object is slowing down. If the ac-
celeration is negative, and the ve-
locity is negative, the object is
speeding up!

! PITFALL PREVENTION
2.5 Deceleration
The word deceleration has the com-
mon popular connotation of slow-
ing down. We will not use this word
in this text, because it further con-
fuses the definition we have given
for negative acceleration.

From now on we shall use the term acceleration to mean instantaneous acceleration.
When we mean average acceleration, we shall always use the adjective average.

Because vx ! dx/dt, the acceleration can also be written

(2.8)

That is, in one-dimensional motion, the acceleration equals the second derivative of x
with respect to time. 

Figure 2.6 illustrates how an acceleration–time graph is related to a velocity–time
graph. The acceleration at any time is the slope of the velocity–time graph at that time.
Positive values of acceleration correspond to those points in Figure 2.6a where the ve-
locity is increasing in the positive x direction. The acceleration reaches a maximum at
time tA, when the slope of the velocity–time graph is a maximum. The acceleration
then goes to zero at time t B, when the velocity is a maximum (that is, when the slope of
the vx -t graph is zero). The acceleration is negative when the velocity is decreasing in
the positive x direction, and it reaches its most negative value at time tC.

ax !
dvx

dt
!

d
dt

 " dx
dt # !

d 2x
dt 2
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Conceptual Example 2.4 Graphical Relationships between x, vx , and ax

(a)

(b)

(c)

x

t Ft Et Dt Ct Bt A

t Ft Et Dt Ct B

t
t AO

t
O

t
O t Ft Et Bt A

v x

a x

Figure 2.7 (Example 2.4) (a) Position–time graph for an ob-
ject moving along the x axis. (b) The velocity–time graph for
the object is obtained by measuring the slope of the
position–time graph at each instant. (c) The acceleration–time
graph for the object is obtained by measuring the slope of the
velocity–time graph at each instant.

The position of an object moving along the x axis varies with
time as in Figure 2.7a. Graph the velocity versus time and
the acceleration versus time for the object.

Solution The velocity at any instant is the slope of the
tangent to the x -t graph at that instant. Between t ! 0 and
t ! tA, the slope of the x -t graph increases uniformly, and
so the velocity increases linearly, as shown in Figure 2.7b.
Between tA and tB, the slope of the x -t graph is constant,
and so the velocity remains constant. At tD, the slope of
the x -t graph is zero, so the velocity is zero at that instant.
Between tD and tE, the slope of the x -t graph and thus the
velocity are negative and decrease uniformly in this inter-
val. In the interval tE to tF, the slope of the x-t graph is still
negative, and at tF it goes to zero. Finally, after tF, the
slope of the x -t graph is zero, meaning that the object is at
rest for t & tF .

The acceleration at any instant is the slope of the tan-
gent to the vx -t graph at that instant. The graph of accelera-
tion versus time for this object is shown in Figure 2.7c. The
acceleration is constant and positive between 0 and tA,
where the slope of the vx -t graph is positive. It is zero be-
tween tA and tB and for t & tF because the slope of the vx -t
graph is zero at these times. It is negative between tB and tE
because the slope of the vx -t graph is negative during this 
interval.

Note that the sudden changes in acceleration shown in
Figure 2.7c are unphysical. Such instantaneous changes can-
not occur in reality.

Quick Quiz 2.3 Make a velocity–time graph for the car in Figure 2.1a. The
speed limit posted on the road sign is 30 km/h. True or false? The car exceeds the
speed limit at some time within the interval.

Therefore, the average acceleration in the specified time in-
terval $t ! t B # t A ! 2.0 s is

The negative sign is consistent with our expectations—
namely, that the average acceleration, which is represented
by the slope of the line joining the initial and final points
on the velocity–time graph, is negative.

(B) Determine the acceleration at t ! 2.0 s.

#10 m/s2!

ax !
vxf # vxi

tf # ti
!

vx B # vx A

t B # tA
!

(20 # 40) m/s
(2.0 # 0) s

vx B ! (40 # 5t B
2) m/s ! [40 # 5(2.0)2] m/s ! % 20 m/sThe velocity of a particle moving along the x axis varies in

time according to the expression vx ! (40 # 5t 2 ) m/s,
where t is in seconds.

(A) Find the average acceleration in the time interval t ! 0
to t ! 2.0 s.

Solution Figure 2.8 is a vx -t graph that was created from
the velocity versus time expression given in the problem
statement. Because the slope of the entire vx-t curve is nega-
tive, we expect the acceleration to be negative.

We find the velocities at ti ! tA ! 0 and tf ! tB ! 2.0 s
by substituting these values of t into the expression for the
velocity:

vx A ! (40 # 5tA
2) m/s ! [40 # 5(0)2] m/s ! % 40 m/s

Example 2.5 Average and Instantaneous Acceleration



So far we have evaluated the derivatives of a function by starting with the definition
of the function and then taking the limit of a specific ratio. If you are familiar with cal-
culus, you should recognize that there are specific rules for taking derivatives. These
rules, which are listed in Appendix B.6, enable us to evaluate derivatives quickly. For
instance, one rule tells us that the derivative of any constant is zero. As another exam-
ple, suppose x is proportional to some power of t, such as in the expression

x ! Atn

where A and n are constants. (This is a very common functional form.) The derivative
of x with respect to t is

Applying this rule to Example 2.5, in which vx ! 40 # 5t 2 , we find that the accelera-
tion is ax ! dvx/dt ! #10t .

2.4 Motion Diagrams

The concepts of velocity and acceleration are often confused with each other, but in
fact they are quite different quantities. It is instructive to use motion diagrams to de-
scribe the velocity and acceleration while an object is in motion.

A stroboscopic photograph of a moving object shows several images of the object,
taken as the strobe light flashes at a constant rate. Figure 2.9 represents three sets of
strobe photographs of cars moving along a straight roadway in a single direction, from
left to right. The time intervals between flashes of the stroboscope are equal in each
part of the diagram. In order not to confuse the two vector quantities, we use red for
velocity vectors and violet for acceleration vectors in Figure 2.9. The vectors are

dx
dt

! nAtn#1
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Slope = –20 m/s2

!

"

Figure 2.8 (Example 2.5) The velocity–time graph for a
particle moving along the x axis according to the expression
vx ! (40 # 5t 2) m/s. The acceleration at t ! 2 s is equal to the
slope of the green tangent line at that time.

Solution The velocity at any time t is vxi ! (40 # 5t 2 ) m/s
and the velocity at any later time t % $t is

Therefore, the change in velocity over the time interval $t is

Dividing this expression by $t and taking the limit of the re-
sult as $t approaches zero gives the acceleration at any time t :

Therefore, at t ! 2.0 s,

Because the velocity of the particle is positive and the accel-
eration is negative, the particle is slowing down.

Note that the answers to parts (A) and (B) are different.
The average acceleration in (A) is the slope of the blue line
in Figure 2.8 connecting points ! and ". The instanta-
neous acceleration in (B) is the slope of the green line
tangent to the curve at point ". Note also that the accelera-
tion is not constant in this example. Situations involving con-
stant acceleration are treated in Section 2.5.

#20 m/s2ax ! (#10)(2.0) m/s2 !

ax ! lim
$t : 0

$vx

$t
! lim

$t : 0
(#10t # 5$t) ! #10t  m/s2

$vx ! vxf # vxi ! [#10t  $t # 5($t)2] m/s

vxf ! 40 # 5(t % $t)2 ! 40 # 5t 2 # 10t  $t # 5($t)2



sketched at several instants during the motion of the object. Let us describe the mo-
tion of the car in each diagram.

In Figure 2.9a, the images of the car are equally spaced, showing us that the car
moves through the same displacement in each time interval. This is consistent with the
car moving with constant positive velocity and zero acceleration. We could model the car as a
particle and describe it as a particle moving with constant velocity.

In Figure 2.9b, the images become farther apart as time progresses. In this case, the
velocity vector increases in time because the car’s displacement between adjacent posi-
tions increases in time. This suggests that the car is moving with a positive velocity and a
positive acceleration. The velocity and acceleration are in the same direction. In terms of
our earlier force discussion, imagine a force pulling on the car in the same direction it
is moving—it speeds up.

In Figure 2.9c, we can tell that the car slows as it moves to the right because its dis-
placement between adjacent images decreases with time. In this case, this suggests that
the car moves to the right with a constant negative acceleration. The velocity vector de-
creases in time and eventually reaches zero. From this diagram we see that the acceler-
ation and velocity vectors are not in the same direction. The car is moving with a posi-
tive velocity but with a negative acceleration. (This type of motion is exhibited by a car that
skids to a stop after applying its brakes.) The velocity and acceleration are in opposite
directions. In terms of our earlier force discussion, imagine a force pulling on the car
opposite to the direction it is moving—it slows down.

The violet acceleration vectors in Figures 2.9b and 2.9c are all of the same length.
Thus, these diagrams represent motion with constant acceleration. This is an impor-
tant type of motion that will be discussed in the next section.
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(a)

(b)

(c)

v

v

a

v

a

Active Figure 2.9 (a) Motion diagram for a car moving at constant velocity (zero
acceleration). (b) Motion diagram for a car whose constant acceleration is in the
direction of its velocity. The velocity vector at each instant is indicated by a red arrow,
and the constant acceleration by a violet arrow. (c) Motion diagram for a car whose
constant acceleration is in the direction opposite the velocity at each instant.

Quick Quiz 2.4 Which of the following is true? (a) If a car is traveling east-
ward, its acceleration is eastward. (b) If a car is slowing down, its acceleration must be
negative. (c) A particle with constant acceleration can never stop and stay stopped.

At the Active Figures link
at http://www.pse6.com, you
can select the constant
acceleration and initial velocity
of the car and observe pictorial
and graphical representations
of its motion.



2.5 One-Dimensional Motion with Constant 
Acceleration

If the acceleration of a particle varies in time, its motion can be complex and difficult to
analyze. However, a very common and simple type of one-dimensional motion is that in
which the acceleration is constant. When this is the case, the average acceleration over
any time interval is numerically equal to the instantaneous acceleration ax at any instant
within the interval, and the velocity changes at the same rate throughout the motion.

If we replace by ax in Equation 2.6 and take ti ! 0 and tf to be any later time t, we
find that

or

(2.9)

This powerful expression enables us to determine an object’s velocity at any time t if we
know the object’s initial velocity vxi and its (constant) acceleration ax. A velocity–time
graph for this constant-acceleration motion is shown in Figure 2.10b. The graph is a
straight line, the (constant) slope of which is the acceleration ax; this is consistent with
the fact that ax ! dvx/dt is a constant. Note that the slope is positive; this indicates a
positive acceleration. If the acceleration were negative, then the slope of the line in
Figure 2.10b would be negative.

When the acceleration is constant, the graph of acceleration versus time (Fig.
2.10c) is a straight line having a slope of zero.

Because velocity at constant acceleration varies linearly in time according to Equa-
tion 2.9, we can express the average velocity in any time interval as the arithmetic
mean of the initial velocity vxi and the final velocity vxf :

(2.10)

Note that this expression for average velocity applies only in situations in which the
acceleration is constant.

We can now use Equations 2.1, 2.2, and 2.10 to obtain the position of an object as a
function of time. Recalling that $x in Equation 2.2 represents xf # xi, and recognizing
that $t ! tf # ti ! t # 0 ! t, we find

(2.11)

This equation provides the final position of the particle at time t in terms of the initial
and final velocities.

We can obtain another useful expression for the position of a particle moving with
constant acceleration by substituting Equation 2.9 into Equation 2.11:

(2.12)

This equation provides the final position of the particle at time t in terms of the initial
velocity and the acceleration.

The position–time graph for motion at constant (positive) acceleration shown
in Figure 2.10a is obtained from Equation 2.12. Note that the curve is a parabola.

xf ! xi % vxi t % 1
2 axt 2 (for constant ax)

xf ! xi % 1
2 [vxi % (vxi % axt)]t

x f ! xi % 1
2  (vxi % vxf)t  (for constant ax)

xf # xi ! vt ! 1
2 (vxi % vxf)t

 vx !
vxi % vxf

2
  (for constant ax)

vxf ! vxi % axt  (for constant ax)

ax !
vxf # vxi

t # 0

ax

ax

(b)

vx

vxi

0

vxf

t
vxi

axt

t

Slope  =  ax

(a)

x

0 t

xi

Slope = vxi

t

(c)

ax

0

ax

t

Slope  =  0

Slope = vxf

Active Figure 2.10 A particle
moving along the x axis with con-
stant acceleration ax; (a) the posi-
tion–time graph, (b) the
velocity–time graph, and (c) the
acceleration–time graph.
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Position as a function of
velocity and time

Position as a function of time

At the Active Figures link
at http://www.pse6.com, you
can adjust the constant
acceleration and observe the
effect on the position and
velocity graphs.



The slope of the tangent line to this curve at t ! 0 equals the initial velocity vxi ,
and the slope of the tangent line at any later time t equals the velocity vxf at that
time.

Finally, we can obtain an expression for the final velocity that does not contain
time as a variable by substituting the value of t from Equation 2.9 into Equation
2.11:

(2.13)

This equation provides the final velocity in terms of the acceleration and the displace-
ment of the particle.

For motion at zero acceleration, we see from Equations 2.9 and 2.12 that 

vxf ! vxi ! vx
when ax ! 0

xf ! xi % vxt

That is, when the acceleration of a particle is zero, its velocity is constant and its posi-
tion changes linearly with time.

v 2
xf ! v 2

xi % 2ax (xf # xi)  (for constant ax)

xf ! xi % 1
2 (vxi % vxf) " vxf # vxi

ax
# !

v 2
xf # v 2

xi

2a x

t

vx

(a)

t

ax

(d)

t

vx

(b)
t

ax

(e)

t

vx

(c)

t

ax

(f)

Active Figure 2.11 (Quick Quiz 2.5) Parts (a),
(b), and (c) are vx -t graphs of objects in one-
dimensional motion. The possible accelerations of
each object as a function of time are shown in
scrambled order in (d), (e), and (f).

Quick Quiz 2.5 In Figure 2.11, match each vx -t graph on the left with the
ax -t graph on the right that best describes the motion.
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Velocity as a function of
position

}

Equations 2.9 through 2.13 are kinematic equations that may be used to solve
any problem involving one-dimensional motion at constant acceleration. Keep 
in mind that these relationships were derived from the definitions of velocity and 

At the Active Figures link at
http://www.pse6.com, you can practice
matching appropriate velocity vs. time
graphs and acceleration vs. time graphs.



Example 2.6 Entering the Traffic Flow

Granted, we made many approximations along the way, but
this type of mental effort can be surprisingly useful and
often yields results that are not too different from
those derived from careful measurements. Do not be
afraid to attempt making educated guesses and doing some
fairly drastic number rounding to simplify estimations.
Physicists engage in this type of thought analysis all the time.

(B) How far did you go during the first half of the time in-
terval during which you accelerated?

Solution Let us assume that the acceleration is constant,
with the value calculated in part (A). Because the motion
takes place in a straight line and the velocity is always in the
same direction, the distance traveled from the starting point
is equal to the final position of the car. We can calculate the
final position at 5 s from Equation 2.12:

This result indicates that if you had not accelerated, your
initial velocity of 10 m/s would have resulted in a 50-m
movement up the ramp during the first 5 s. The addi-
tional 25 m is the result of your increasing velocity during
that interval.

75 m!

$ 0 % (10 m/s)(5 s) % 1
2 (2 m/s2)(5 s)2 ! 50 m % 25 m

xf ! xi % vxit % 1
2 axt2

(A) Estimate your average acceleration as you drive up the
entrance ramp to an interstate highway.

Solution This problem involves more than our usual
amount of estimating! We are trying to come up with a value
of ax , but that value is hard to guess directly. The other vari-
ables involved in kinematics are position, velocity, and time.
Velocity is probably the easiest one to approximate. Let us
assume a final velocity of 100 km/h, so that you can merge
with traffic. We multiply this value by (1 000 m/1 km) to
convert kilometers to meters and then multiply by
(1 h/3 600 s) to convert hours to seconds. These two calcu-
lations together are roughly equivalent to dividing by 3.
In fact, let us just say that the final velocity is vxf $ 30 m/s.
(Remember, this type of approximation and the dropping
of digits when performing estimations is okay. If you were
starting with U.S. customary units, you could approximate
1 mi/h as roughly 0.5 m/s and continue from there.)

Now we assume that you started up the ramp at about one
third your final velocity, so that vxi $ 10 m/s. Finally, we as-
sume that it takes about 10 s to accelerate from vxi to vxf , bas-
ing this guess on our previous experience in automobiles. We
can then find the average acceleration, using Equation 2.6:

2 m/s2!

ax !
vxf # vxi

t
$

30 m/s # 10 m/s
10 s

Equation Information Given by Equation

Velocity as a function of time
Position as a function of velocity and time
Position as a function of time
Velocity as a function of position

Note: Motion is along the x axis.

vxf
2 ! vxi

2 % 2ax(xf #xi)
xf ! xi % vxit % 1

2axt 2
xf ! xi % 1

2(vxi % vxf)t
vxf ! vxi % axt

Kinematic Equations for Motion of a Particle Under Constant Acceleration

Table 2.2

acceleration, together with some simple algebraic manipulations and the requirement
that the acceleration be constant.

The four kinematic equations used most often are listed in Table 2.2 for conve-
nience. The choice of which equation you use in a given situation depends on what
you know beforehand. Sometimes it is necessary to use two of these equations to solve
for two unknowns. For example, suppose initial velocity vxi and acceleration ax are
given. You can then find (1) the velocity at time t, using vxf ! vxi % axt and (2) the po-
sition at time t, using . You should recognize that the quantities
that vary during the motion are position, velocity, and time.

You will gain a great deal of experience in the use of these equations by solving a
number of exercises and problems. Many times you will discover that more than one
method can be used to obtain a solution. Remember that these equations of kinemat-
ics cannot be used in a situation in which the acceleration varies with time. They can be
used only when the acceleration is constant.

xf ! xi % vxit % 1
2axt2
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Example 2.7 Carrier Landing

If the plane travels much farther than this, it might fall into
the ocean. The idea of using arresting cables to slow down
landing aircraft and enable them to land safely on ships
originated at about the time of the first World War. The ca-
bles are still a vital part of the operation of modern aircraft
carriers.

What If? Suppose the plane lands on the deck of the air-
craft carrier with a speed higher than 63 m/s but with the
same acceleration as that calculated in part (A). How will that
change the answer to part (B)? 

Answer If the plane is traveling faster at the beginning, it
will stop farther away from its starting point, so the answer
to part (B) should be larger. Mathematically, we see in Equa-
tion 2.11 that if vxi is larger, then xf will be larger. 

If the landing deck has a length of 75 m, we can find the
maximum initial speed with which the plane can land and
still come to rest on the deck at the given acceleration from
Equation 2.13:

! 68 m/s

 ! √0 # 2(#31 m/s2)(75 m # 0)

: vxi ! √vxf 

2 # 2ax (xf # xi)

v 2
xf ! v 2

xi % 2ax (xf # xi)

A jet lands on an aircraft carrier at 140 mi/h ($ 63 m/s).

(A) What is its acceleration (assumed constant) if it stops in
2.0 s due to an arresting cable that snags the airplane and
brings it to a stop?

Solution We define our x axis as the direction of motion of
the jet. A careful reading of the problem reveals that in ad-
dition to being given the initial speed of 63 m/s, we also
know that the final speed is zero. We also note that we have
no information about the change in position of the jet while
it is slowing down. Equation 2.9 is the only equation in
Table 2.2 that does not involve position, and so we use it to
find the acceleration of the jet, modeled as a particle:

(B) If the plane touches down at position xi ! 0, what is the
final position of the plane?

Solution We can now use any of the other three equations
in Table 2.2 to solve for the final position. Let us choose
Equation 2.11:

63 m!

xf ! xi % 1
2(vxi % vxf)t ! 0 % 1

2(63 m/s % 0)(2.0 s)

#31 m/s2!

ax !
vxf # vxi

t
$

0 # 63 m/s
2.0 s

Example 2.8 Watch Out for the Speed Limit!

A car traveling at a constant speed of 45.0 m/s passes a
trooper hidden behind a billboard. One second after the
speeding car passes the billboard, the trooper sets out 
from the billboard to catch it, accelerating at a constant 
rate of 3.00 m/s2. How long does it take her to overtake 
the car?

Solution Let us model the car and the trooper as particles.
A sketch (Fig. 2.12) helps clarify the sequence of events.

First, we write expressions for the position of each vehi-
cle as a function of time. It is convenient to choose the posi-
tion of the billboard as the origin and to set t B ! 0 as the
time the trooper begins moving. At that instant, the car has
already traveled a distance of 45.0 m because it has traveled
at a constant speed of vx ! 45.0 m/s for 1 s. Thus, the initial
position of the speeding car is x B ! 45.0 m.

Because the car moves with constant speed, its accelera-
tion is zero. Applying Equation 2.12 (with ax ! 0) gives for
the car’s position at any time t :

A quick check shows that at t ! 0, this expression gives the
car’s correct initial position when the trooper begins to
move: xcar ! xB ! 45.0 m.

The trooper starts from rest at tB ! 0 and accelerates at
3.00 m/s2 away from the origin. Hence, her position at any

xcar ! x B % vx cart ! 45.0 m % (45.0 m/s)t

time t can be found from Equation 2.12: 

xtrooper ! 0 % (0)t % 1
2 axt2 ! 1

2 (3.00 m/s2)t2

 xf ! xi % vxit % 1
2 ax t2

vx car = 45.0 m/s
ax car = 0
ax trooper = 3.00 m/s2

tC = ?

#!

tA = –1.00 s tB = 0

"

Figure 2.12 (Example 2.8) A speeding car passes a hidden
trooper.

Interactive



2.6 Freely Falling Objects

It is well known that, in the absence of air resistance, all objects dropped near the
Earth’s surface fall toward the Earth with the same constant acceleration under the in-
fluence of the Earth’s gravity. It was not until about 1600 that this conclusion was
accepted. Before that time, the teachings of the great philosopher Aristotle (384–322
B.C.) had held that heavier objects fall faster than lighter ones.

The Italian Galileo Galilei (1564–1642) originated our present-day ideas concern-
ing falling objects. There is a legend that he demonstrated the behavior of falling ob-
jects by observing that two different weights dropped simultaneously from the Leaning
Tower of Pisa hit the ground at approximately the same time. Although there is some
doubt that he carried out this particular experiment, it is well established that Galileo
performed many experiments on objects moving on inclined planes. In his experi-
ments he rolled balls down a slight incline and measured the distances they covered in
successive time intervals. The purpose of the incline was to reduce the acceleration;
with the acceleration reduced, Galileo was able to make accurate measurements of the
time intervals. By gradually increasing the slope of the incline, he was finally able to
draw conclusions about freely falling objects because a freely falling ball is equivalent
to a ball moving down a vertical incline.

You might want to try the following experiment. Simultaneously drop a coin and a
crumpled-up piece of paper from the same height. If the effects of air resistance are neg-
ligible, both will have the same motion and will hit the floor at the same time. In the ide-
alized case, in which air resistance is absent, such motion is referred to as free-fall. If this
same experiment could be conducted in a vacuum, in which air resistance is truly negli-
gible, the paper and coin would fall with the same acceleration even when the paper is
not crumpled. On August 2, 1971, such a demonstration was conducted on the Moon by
astronaut David Scott. He simultaneously released a hammer and a feather, and they fell
together to the lunar surface. This demonstration surely would have pleased Galileo!

When we use the expression freely falling object, we do not necessarily refer to an ob-
ject dropped from rest. A freely falling object is any object moving freely under
the influence of gravity alone, regardless of its initial motion. Objects thrown
upward or downward and those released from rest are all falling freely once they
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The trooper overtakes the car at the instant her position
matches that of the car, which is position #:

This gives the quadratic equation

The positive solution of this equation is t ! 31.0 s.

(For help in solving quadratic equations, see Appendix B.2.)

What If? What if the trooper had a more powerful motorcy-
cle with a larger acceleration? How would that change the
time at which the trooper catches the car? 

Answer If the motorcycle has a larger acceleration, the
trooper will catch up to the car sooner, so the answer for the

1.50t 2 # 45.0t # 45.0 ! 0

1
2(3.00 m/s2)t 2 ! 45.0 m % (45.0 m/s)t

x trooper ! xcar

time will be less than 31 s. Mathematically, let us cast the fi-
nal quadratic equation above in terms of the parameters in
the problem:

The solution to this quadratic equation is,

where we have chosen the positive sign because that is the
only choice consistent with a time t & 0. Because all terms
on the right side of the equation have the acceleration ax in
the denominator, increasing the acceleration will decrease
the time at which the trooper catches the car.

 !
vx car

ax
% √ v2

x car

a 2
x

%
2x B

ax

t !
vx car * √v2

x car % 2axx B

ax

1
2axt 2 # vx cart # x B ! 0

! PITFALL PREVENTION
2.6 g and g
Be sure not to confuse the itali-
cized symbol g for free-fall accel-
eration with the nonitalicized
symbol g used as the abbreviation
for “gram.”

You can study the motion of the car and trooper for various velocities of the car at the Interactive Worked Example link at
http://www.pse6.com.

Galileo Galilei
Italian physicist and
astronomer (1564–1642)

Galileo formulated the laws that
govern the motion of objects in
free fall and made many other
significant discoveries in physics
and astronomy. Galileo publicly
defended Nicholaus Copernicus’s
assertion that the Sun is at the
center of the Universe (the
heliocentric system). He
published Dialogue Concerning
Two New World Systems to
support the Copernican model, a
view which the Church declared
to be heretical. (North Wind)
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are released. Any freely falling object experiences an acceleration directed
downward, regardless of its initial motion.

We shall denote the magnitude of the free-fall acceleration by the symbol g. The value of
g near the Earth’s surface decreases with increasing altitude. Furthermore, slight varia-
tions in g occur with changes in latitude. It is common to define “up” as the % y direction
and to use y as the position variable in the kinematic equations. At the Earth’s surface,
the value of g is approximately 9.80 m/s2. Unless stated otherwise, we shall use this value
for g when performing calculations. For making quick estimates, use g ! 10 m/s2.

If we neglect air resistance and assume that the free-fall acceleration does not vary
with altitude over short vertical distances, then the motion of a freely falling object mov-
ing vertically is equivalent to motion in one dimension under constant acceleration.
Therefore, the equations developed in Section 2.5 for objects moving with constant accel-
eration can be applied. The only modification that we need to make in these equations
for freely falling objects is to note that the motion is in the vertical direction (the y direc-
tion) rather than in the horizontal direction (x) and that the acceleration is downward
and has a magnitude of 9.80 m/s2. Thus, we always choose ay ! # g ! # 9.80 m/s2, where
the negative sign means that the acceleration of a freely falling object is downward. In
Chapter 13 we shall study how to deal with variations in g with altitude.

Quick Quiz 2.6 A ball is thrown upward. While the ball is in free fall, does its
acceleration (a) increase (b) decrease (c) increase and then decrease (d) decrease and
then increase (e) remain constant?

Quick Quiz 2.7 After a ball is thrown upward and is in the air, its speed 
(a) increases (b) decreases (c) increases and then decreases (d) decreases and then 
increases (e) remains the same.

Conceptual Example 2.9 The Daring Sky Divers

A sky diver jumps out of a hovering helicopter. A few seconds
later, another sky diver jumps out, and they both fall along the
same vertical line. Ignore air resistance, so that both sky divers
fall with the same acceleration. Does the difference in their
speeds stay the same throughout the fall? Does the vertical dis-
tance between them stay the same throughout the fall?

Solution At any given instant, the speeds of the divers are
different because one had a head start. In any time interval

$t after this instant, however, the two divers increase their
speeds by the same amount because they have the same ac-
celeration. Thus, the difference in their speeds remains the
same throughout the fall. 

The first jumper always has a greater speed than the sec-
ond. Thus, in a given time interval, the first diver covers a
greater distance than the second. Consequently, the separa-
tion distance between them increases.

Example 2.10 Describing the Motion of a Tossed Ball

A ball is tossed straight up at 25 m/s. Estimate its velocity at
1-s intervals.

Solution Let us choose the upward direction to be positive.
Regardless of whether the ball is moving upward or down-
ward, its vertical velocity changes by approximately # 10 m/s
for every second it remains in the air. It starts out at 25 m/s.
After 1 s has elapsed, it is still moving upward but at 15 m/s
because its acceleration is downward (downward accelera-
tion causes its velocity to decrease). After another second, its
upward velocity has dropped to 5 m/s. Now comes the tricky

part—after another half second, its velocity is zero. The 
ball has gone as high as it will go. After the last half of this 
1-s interval, the ball is moving at # 5 m/s. (The negative sign
tells us that the ball is now moving in the negative direction,
that is, downward. Its velocity has changed from % 5 m/s to
# 5 m/s during that 1-s interval. The change in velocity is
still # 5 m/s # (% 5 m/s) ! # 10 m/s in that second.) It
continues downward, and after another 1 s has elapsed, it is
falling at a velocity of # 15 m/s. Finally, after another 1 s, it
has reached its original starting point and is moving down-
ward at # 25 m/s. 

! PITFALL PREVENTION
2.7 The Sign of g
Keep in mind that g is a positive
number—it is tempting to substi-
tute # 9.80 m/s2 for g, but resist
the temptation. Downward gravi-
tational acceleration is indicated
explicitly by stating the accelera-
tion as ay ! # g.

! PITFALL PREVENTION
2.8 Acceleration at the

Top of The Motion
It is a common misconception
that the acceleration of a projec-
tile at the top of its trajectory
is zero. While the velocity at the
top of the motion of an object
thrown upward momentarily goes
to zero, the acceleration is still that
due to gravity at this point. If the
velocity and acceleration were
both zero, the projectile would
stay at the top!
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Conceptual Example 2.11 Follow the Bouncing Ball

A tennis ball is dropped from shoulder height (about 1.5 m)
and bounces three times before it is caught. Sketch graphs
of its position, velocity, and acceleration as functions of
time, with the % y direction defined as upward.

Solution For our sketch let us stretch things out horizon-
tally so that we can see what is going on. (Even if the ball
were moving horizontally, this motion would not affect its
vertical motion.)

From Figure 2.13a we see that the ball is in contact with
the floor at points ", $, and &. Because the velocity of the
ball changes from negative to positive three times during
these bounces (Fig. 2.13b), the slope of the position–time
graph must change in the same way. Note that the time in-
terval between bounces decreases. Why is that?

During the rest of the ball’s motion, the slope of the 
velocity–time graph in Fig. 2.13b should be # 9.80 m/s2 .
The acceleration–time graph is a horizontal line at these
times because the acceleration does not change when the
ball is in free fall. When the ball is in contact with the floor,
the velocity changes substantially during a very short time

interval, and so the acceleration must be quite large and
positive. This corresponds to the very steep upward lines on
the velocity–time graph and to the spikes on the accelera-
tion–time graph.

(a)

1.0

0.0

0.5

1.5
!

#

%

" $ &

1

0

4

0

–4

–4

–8

–12

tA tB tC tD tE tF

y(m)

vy(m/s)

ay(m/s2)

t(s)

t(s)

t(s)

(b)

Active Figure 2.13 (Conceptual Example 2.11) (a) A ball is dropped from a height of
1.5 m and bounces from the floor. (The horizontal motion is not considered here
because it does not affect the vertical motion.) (b) Graphs of position, velocity, and
acceleration versus time.

Quick Quiz 2.8 Which values represent the ball’s vertical velocity and accel-
eration at points !, #, and % in Figure 2.13a?

(a) vy ! 0, ay ! # 9.80 m/s2

(b) vy ! 0, ay ! 9.80 m/s2

(c) vy ! 0, ay ! 0

(d) vy ! # 9.80 m/s, ay ! 0

At the Active Figures link at http://www.pse6.com, you can adjust both
the value for g and the amount of “bounce” of the ball, and observe the
resulting motion of the ball both pictorially and graphically.
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Example 2.12 Not a Bad Throw for a Rookie!

A stone thrown from the top of a building is given an initial
velocity of 20.0 m/s straight upward. The building is 50.0 m
high, and the stone just misses the edge of the roof on its
way down, as shown in Figure 2.14. Using tA ! 0 as the time
the stone leaves the thrower’s hand at position !, deter-
mine (A) the time at which the stone reaches its maximum
height, (B) the maximum height, (C) the time at which the
stone returns to the height from which it was thrown, 
(D) the velocity of the stone at this instant, and (E) the veloc-
ity and position of the stone at t ! 5.00 s.

Solution (A) As the stone travels from ! to ", its velocity
must change by 20 m/s because it stops at ". Because grav-
ity causes vertical velocities to change by about 10 m/s for
every second of free fall, it should take the stone about 2 s
to go from ! to " in our drawing. To calculate the exact
time tB at which the stone reaches maximum height, we use
Equation 2.9, vy B ! vyA % a yt , noting that vy B ! 0 and set-
ting the start of our clock readings at tA ! 0:

0 ! 20.0 m/s % (# 9.80 m/s2)t

Our estimate was pretty close.

(B) Because the average velocity for this first interval is
10 m/s (the average of 20 m/s and 0 m/s) and because it
travels for about 2 s, we expect the stone to travel about
20 m. By substituting our time into Equation 2.12, we can
find the maximum height as measured from the position of
the thrower, where we set yA ! 0:

Our free-fall estimates are very accurate.

(C) There is no reason to believe that the stone’s motion
from " to # is anything other than the reverse of its mo-
tion from ! to ". The motion from ! to # is symmetric.
Thus, the time needed for it to go from ! to # should be
twice the time needed for it to go from ! to ". When the
stone is back at the height from which it was thrown (posi-
tion #), the y coordinate is again zero. Using Equation 2.12,
with yC ! 0, we obtain

This is a quadratic equation and so has two solutions for 
t ! tC. The equation can be factored to give

t(20.0 # 4.90t) ! 0

One solution is t ! 0, corresponding to the time the stone 

starts its motion. The other solution is which  t ! 4.08 s,

0 ! 0 % 20.0t # 4.90t 2

yC ! yA % vy At % 1
2 ayt2

20.4 m!

 yB ! 0 % (20.0 m/s)(2.04 s) % 1
2(#9.80 m/s2)(2.04 s)2

ymax ! yB ! yA % vx At % 1
2 ayt 2

2.04 st ! t B !
20.0 m/s
9.80 m/s2 !

%

$

#

"

!

  tD = 5.00 s
 yD = –22.5 m
vyD = –29.0 m/s
ayD = –9.80 m/s2

  tC = 4.08 s
 yC = 0
vyC = –20.0 m/s
ayC = –9.80 m/s2

  tB = 2.04 s
 yB = 20.4 m
vyB = 0
ayB = –9.80 m/s2

50.0 m

  tE = 5.83 s
 yE = –50.0 m
vyE = –37.1 m/s
ayE = –9.80 m/s2

  tA = 0
 yA = 0
vyA = 20.0 m/s
ayA = –9.80 m/s2

!

Figure 2.14 (Example 2.12) Position and velocity versus time
for a freely falling stone thrown initially upward with a velocity
vyi ! 20.0 m/s.

is the solution we are after. Notice that it is double the value
we calculated for tB.

(D) Again, we expect everything at # to be the same as it is
at !, except that the velocity is now in the opposite direc-
tion. The value for t found in (c) can be inserted into Equa-
tion 2.9 to give

The velocity of the stone when it arrives back at its original
height is equal in magnitude to its initial velocity but oppo-
site in direction. 

#20.0 m/s!

vyC ! vyA % ayt ! 20.0 m/s % (#9.80 m/s2)(4.08 s)

Interactive



position of the stone at tD ! 5.00 s (with respect to tA ! 0)
by defining a new initial instant, tC ! 0:

What If? What if the building were 30.0 m tall instead of
50.0 m tall? Which answers in parts (A) to (E) would
change?

Answer None of the answers would change. All of the
motion takes place in the air, and the stone does not inter-
act with the ground during the first 5.00 s. (Notice that
even for a 30.0-m tall building, the stone is above the
ground at t ! 5.00 s.) Thus, the height of the building is
not an issue. Mathematically, if we look back over our cal-
culations, we see that we never entered the height of the
building into any equation.

#22.5 m!

% 1
2 (# 9.80 m/s2)(5.00 s #4.08 s)2

 ! 0 % (#20.0 m/s)(5.00 s # 4.08 s)

yD ! yC % vy C t % 1
2 ayt 2

(E) For this part we ignore the first part of the motion
(! : ") and consider what happens as the stone falls from
position ", where it has zero vertical velocity, to position
$. We define the initial time as tB ! 0. Because the given
time for this part of the motion relative to our new zero of
time is 5.00 s # 2.04 s ! 2.96 s, we estimate that the acceler-
ation due to gravity will have changed the speed by about
30 m/s. We can calculate this from Equation 2.9, where we
take t ! 2.96 s:

We could just as easily have made our calculation be-
tween positions ! (where we return to our original initial
time tA ! 0) and $:

To further demonstrate that we can choose different ini-
tial instants of time, let us use Equation 2.12 to find the

! #29.0 m/s

vyD ! vy A % ayt ! 20.0 m/s % (# 9.80 m/s2)(5.00 s)

#29.0 m/s!

vyD ! vy B % ayt ! 0 m/s % (# 9.80 m/s2)(2.96 s)
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vx

t

Area = vxn ∆tn

∆t n

t i t f

vxn

Figure 2.15 Velocity versus
time for a particle moving
along the x axis. The area of
the shaded rectangle is equal
to the displacement $x in the
time interval $tn , while the
total area under the curve is
the total displacement of the
particle.

2.7 Kinematic Equations Derived from Calculus

This section assumes the reader is familiar with the techniques of integral calculus.
If you have not yet studied integration in your calculus course, you should skip this sec-
tion or cover it after you become familiar with integration.

The velocity of a particle moving in a straight line can be obtained if its position as
a function of time is known. Mathematically, the velocity equals the derivative of the
position with respect to time. It is also possible to find the position of a particle if its ve-
locity is known as a function of time. In calculus, the procedure used to perform this
task is referred to either as integration or as finding the antiderivative. Graphically, it is
equivalent to finding the area under a curve.

Suppose the vx -t graph for a particle moving along the x axis is as shown in 
Figure 2.15. Let us divide the time interval tf # t i into many small intervals, each of

You can study the motion of the thrown ball at the Interactive Worked Example link at http://www.pse6.com.
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duration $tn. From the definition of average velocity we see that the displacement 
during any small interval, such as the one shaded in Figure 2.15, is given by

where is the average velocity in that interval. Therefore, the
displacement during this small interval is simply the area of the shaded rectangle. 
The total displacement for the interval tf # ti is the sum of the areas of all the
rectangles:

where the symbol + (upper case Greek sigma) signifies a sum over all terms, that is,
over all values of n. In this case, the sum is taken over all the rectangles from ti to tf .
Now, as the intervals are made smaller and smaller, the number of terms in the sum in-
creases and the sum approaches a value equal to the area under the velocity–time
graph. Therefore, in the limit n : ,, or $tn : 0, the displacement is

(2.14)

or

Note that we have replaced the average velocity with the instantaneous velocity vxn
in the sum. As you can see from Figure 2.15, this approximation is valid in the limit of
very small intervals. Therefore if we know the vx -t graph for motion along a straight
line, we can obtain the displacement during any time interval by measuring the area
under the curve corresponding to that time interval.

The limit of the sum shown in Equation 2.14 is called a definite integral and is
written

(2.15)

where vx(t) denotes the velocity at any time t. If the explicit functional form of vx(t) is
known and the limits are given, then the integral can be evaluated. Sometimes the vx -t
graph for a moving particle has a shape much simpler than that shown in Figure 2.15.
For example, suppose a particle moves at a constant velocity vxi. In this case, the vx -t
graph is a horizontal line, as in Figure 2.16, and the displacement of the particle dur-
ing the time interval $t is simply the area of the shaded rectangle:

As another example, consider a particle moving with a velocity that is proportional to t,
as in Figure 2.17. Taking vx ! axt, where ax is the constant of proportionality (the

$x ! vxi $t  (when vx ! vxi ! constant)

lim
$tn : 0 %

n
vxn $tn ! &tf

ti
vx(t)dt

vxn

Displacement ! area under the vx-t graph

$x ! lim
$tn : 0%

n
vxn $tn

$x ! %
n

vxn $tn

vxn$xn ! vxn $tn

vx = vxi = constant

t f

vxi

t

∆t

t i

vx

vxi

Figure 2.16 The velocity–time curve for a
particle moving with constant velocity vxi.
The displacement of the particle during the
time interval tf # ti is equal to the area of the
shaded rectangle.

Definite integral



acceleration), we find that the displacement of the particle during the time interval
t ! 0 to t ! tA is equal to the area of the shaded triangle in Figure 2.17:

Kinematic Equations

We now use the defining equations for acceleration and velocity to derive two of our
kinematic equations, Equations 2.9 and 2.12.

The defining equation for acceleration (Eq. 2.7),

may be written as dvx ! axdt or, in terms of an integral (or antiderivative), as

For the special case in which the acceleration is constant, ax can be removed from the
integral to give

(2.16)

which is Equation 2.9.
Now let us consider the defining equation for velocity (Eq. 2.5):

We can write this as dx ! vx dt, or in integral form as

Because vx ! vxf ! vxi % axt, this expression becomes

which is Equation 2.12. 
Besides what you might expect to learn about physics concepts, a very valu-

able skill you should hope to take away from your physics course is the ability to
solve complicated problems. The way physicists approach complex situations
and break them down into manageable pieces is extremely useful. On the next
page is a general problem-solving strategy that will help guide you through the
steps. To help you remember the steps of the strategy, they are called Conceptu-
alize, Categorize, Analyze, and Finalize.

 ! vxi t % 1
2axt2

xf # xi ! &t

0
(vxi % axt)dt ! &t

0
vxidt % ax&t

0
tdt ! vxi(t # 0) % ax" t 2

2
# 0#

xf #xi ! &t

0
vxdt

vx !
dx
dt

vxf #vxi ! ax&t

0
dt ! ax(t # 0) ! axt

vxf # vxi ! &t

0
axdt

ax !
dvx

dt

$x ! 1
2(tA)(axtA) ! 1

2 axtA
 

 

2
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t

v x = a xt

v x

a xtA

t A

!

Figure 2.17 The velocity–time curve for a parti-
cle moving with a velocity that is proportional to
the time.



Analyze

• Now you must analyze the problem and strive for a
mathematical solution. Because you have already cat-
egorized the problem, it should not be too difficult to
select relevant equations that apply to the type of situ-
ation in the problem. For example, if the problem in-
volves a particle moving under constant acceleration,
Equations 2.9 to 2.13 are relevant.

• Use algebra (and calculus, if necessary) to solve sym-
bolically for the unknown variable in terms of what is
given. Substitute in the appropriate numbers, calcu-
late the result, and round it to the proper number of
significant figures.

Finalize

• This is the most important part. Examine your nu-
merical answer. Does it have the correct units? Does it
meet your expectations from your conceptualization
of the problem? What about the algebraic form of the
result—before you substituted numerical values?
Does it make sense? Examine the variables in the
problem to see whether the answer would change in a
physically meaningful way if they were drastically in-
creased or decreased or even became zero. Looking
at limiting cases to see whether they yield expected
values is a very useful way to make sure that you are
obtaining reasonable results.

• Think about how this problem compares with others
you have solved. How was it similar? In what critical
ways did it differ? Why was this problem assigned? You
should have learned something by doing it. Can you
figure out what? If it is a new category of problem, be
sure you understand it so that you can use it as a
model for solving future problems in the same cate-
gory.

When solving complex problems, you may need to
identify a series of sub-problems and apply the problem-
solving strategy to each. For very simple problems, you
probably don’t need this strategy at all. But when you
are looking at a problem and you don’t know what to
do next, remember the steps in the strategy and use them
as a guide.

For practice, it would be useful for you to go back
over the examples in this chapter and identify the Concep-
tualize, Categorize, Analyze, and Finalize steps. In the next
chapter, we will begin to show these steps explicitly in the
examples.

Conceptualize

• The first thing to do when approaching a problem is
to think about and understand the situation. Study care-
fully any diagrams, graphs, tables, or photographs
that accompany the problem. Imagine a movie, run-
ning in your mind, of what happens in the problem.

• If a diagram is not provided, you should almost always
make a quick drawing of the situation. Indicate any
known values, perhaps in a table or directly on your
sketch.

• Now focus on what algebraic or numerical informa-
tion is given in the problem. Carefully read the prob-
lem statement, looking for key phrases such as “starts
from rest” (vi ! 0), “stops” (vf ! 0), or “freely falls”
(ay ! # g ! # 9.80 m/s2).

• Now focus on the expected result of solving the prob-
lem. Exactly what is the question asking? Will the fi-
nal result be numerical or algebraic? Do you know
what units to expect?

• Don’t forget to incorporate information from your
own experiences and common sense. What should
a reasonable answer look like? For example, you
wouldn’t expect to calculate the speed of an automo-
bile to be 5 " 106 m/s. 

Categorize

• Once you have a good idea of what the problem is
about, you need to simplify the problem. Remove the
details that are not important to the solution. For
example, model a moving object as a particle. If ap-
propriate, ignore air resistance or friction between a
sliding object and a surface.

• Once the problem is simplified, it is important to cate-
gorize the problem. Is it a simple plug-in problem, such
that numbers can be simply substituted into a defini-
tion? If so, the problem is likely to be finished when
this substitution is done. If not, you face what we can
call an analysis problem—the situation must be ana-
lyzed more deeply to reach a solution.

• If it is an analysis problem, it needs to be categorized
further. Have you seen this type of problem before?
Does it fall into the growing list of types of problems
that you have solved previously? Being able to classify
a problem can make it much easier to lay out a plan
to solve it. For example, if your simplification shows
that the problem can be treated as a particle moving
under constant acceleration and you have already
solved such a problem (such as the examples in Sec-
tion 2.5), the solution to the present problem follows
a similar pattern.

G E N E RAL PROB LE M-SOLVI NG STRATEGY

47
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After a particle moves along the x axis from some initial position xi to some final posi-
tion xf , its displacement is

(2.1)

The average velocity of a particle during some time interval is the displacement
$x divided by the time interval $t during which that displacement occurs:

(2.2)

The average speed of a particle is equal to the ratio of the total distance it travels
to the total time interval during which it travels that distance:

(2.3)

The instantaneous velocity of a particle is defined as the limit of the ratio $x/$t
as $t approaches zero. By definition, this limit equals the derivative of x with respect to
t, or the time rate of change of the position:

(2.5)

The instantaneous speed of a particle is equal to the magnitude of its instantaneous
velocity.

The average acceleration of a particle is defined as the ratio of the change in its
velocity $vx divided by the time interval $t during which that change occurs:

(2.6)

The instantaneous acceleration is equal to the limit of the ratio $vx /$t as $t ap-
proaches 0. By definition, this limit equals the derivative of vx with respect to t, or the
time rate of change of the velocity:

(2.7)

When the object’s velocity and acceleration are in the same direction, the object is
speeding up. On the other hand, when the object’s velocity and acceleration are in op-
posite directions, the object is slowing down. Remembering that F a is a useful way to
identify the direction of the acceleration.

The equations of kinematics for a particle moving along the x axis with uniform
acceleration ax (constant in magnitude and direction) are

(2.9)

(2.11)

(2.12)

(2.13)

An object falling freely in the presence of the Earth’s gravity experiences a free-fall
acceleration directed toward the center of the Earth. If air resistance is neglected, if
the motion occurs near the surface of the Earth, and if the range of the motion is
small compared with the Earth’s radius, then the free-fall acceleration g is constant
over the range of motion, where g is equal to 9.80 m/s2.

Complicated problems are best approached in an organized manner. You should
be able to recall and apply the Conceptualize, Categorize, Analyze, and Finalize steps of the
General Problem-Solving Strategy when you need them.

vxf
2 ! vxi

2 % 2ax(xf # xi)

xf ! xi % vxit % 1
2axt 2

xf ! xi % vxt ! xi % 1
2(vxi % vxf)t

vxf ! vxi % axt

)

ax ! lim
$t : 0

$vx

$t
!

dvx

dt

ax ! 
$vx

$t
!

vxf # vxi

tf # ti

vx ! lim
$t : 0

$x
$t

!
dx
dt

Average speed !
total distance

total time

vx ! 
$x
$t

$x ! xf # xi

S U M M A RY

Take a practice test for
this chapter by clicking the
Practice Test link at
http://www.pse6.com.
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1. The speed of sound in air is 331 m/s. During the next
thunderstorm, try to estimate your distance from a light-
ning bolt by measuring the time lag between the flash and
the thunderclap. You can ignore the time it takes for the
light flash to reach you. Why?

2. The average velocity of a particle moving in one dimen-
sion has a positive value. Is it possible for the instanta-
neous velocity to have been negative at any time in the in-
terval? Suppose the particle started at the origin x ! 0. If
its average velocity is positive, could the particle ever have
been in the # x region of the axis?

If the average velocity of an object is zero in some time in-
terval, what can you say about the displacement of the ob-
ject for that interval?

4. Can the instantaneous velocity of an object at an instant of
time ever be greater in magnitude than the average veloc-
ity over a time interval containing the instant? Can it ever
be less?

5. If an object’s average velocity is nonzero over some time
interval, does this mean that its instantaneous velocity is
never zero during the interval? Explain your answer.

6. If an object’s average velocity is zero over some time inter-
val, show that its instantaneous velocity must be zero at
some time during the interval. It may be useful in your
proof to sketch a graph of x versus t and to note that vx(t )
is a continuous function.

7. If the velocity of a particle is nonzero, can its acceleration
be zero? Explain.

8. If the velocity of a particle is zero, can its acceleration be
nonzero? Explain.

Two cars are moving in the same direction in parallel lanes
along a highway. At some instant, the velocity of car A ex-
ceeds the velocity of car B. Does this mean that the acceler-
ation of A is greater than that of B? Explain.

10. Is it possible for the velocity and the acceleration of an ob-
ject to have opposite signs? If not, state a proof. If so, give
an example of such a situation and sketch a velocity–time
graph to prove your point.

Consider the following combinations of signs and values
for velocity and acceleration of a particle with respect to a
one-dimensional x axis:

11.

9.

3.

Velocity Acceleration

a. Positive Positive
b. Positive Negative
c. Positive Zero
d. Negative Positive
e. Negative Negative
f. Negative Zero
g. Zero Positive
h. Zero Negative

Describe what a particle is doing in each case, and give a
real life example for an automobile on an east-west one-di-
mensional axis, with east considered the positive direction.

12. Can the equations of kinematics (Eqs. 2.9–2.13) be used in
a situation where the acceleration varies in time? Can they
be used when the acceleration is zero?

13. A stone is thrown vertically upward from the roof of a
building. Does the position of the stone depend on the lo-
cation chosen for the origin of the coordinate system?
Does the stone’s velocity depend on the choice of origin?
Explain your answers.

14. A child throws a marble into the air with an initial speed vi.
Another child drops a ball at the same instant. Compare
the accelerations of the two objects while they are in flight. 

A student at the top of a building of height h throws one ball
upward with a speed of vi and then throws a second ball
downward with the same initial speed, vi . How do the final
velocities of the balls compare when they reach the ground?

16. An object falls freely from height h. It is released at time
zero and strikes the ground at time t. (a) When the object
is at height 0.5h, is the time earlier than 0.5t, equal to 0.5t,
or later than 0.5t? (b) When the time is 0.5t, is the height
of the object greater than 0.5h, equal to 0.5h, or less than
0.5h? Give reasons for your answers.

17. You drop a ball from a window on an upper floor of a build-
ing. It strikes the ground with speed v. You now repeat the
drop, but you have a friend down on the street who throws
another ball upward at speed v. Your friend throws the ball
upward at exactly the same time that you drop yours from
the window. At some location, the balls pass each other. Is
this location at the halfway point between window and
ground, above this point, or below this point?

15.

Q U E S T I O N S

Section 2.1 Position, Velocity, and Speed

1. The position of a pinewood derby car was observed at vari-
ous times; the results are summarized in the following
table. Find the average velocity of the car for (a) the first

second, (b) the last 3 s, and (c) the entire period of obser-
vation.

t(s) 0 1.0 2.0 3.0 4.0 5.0

x(m) 0 2.3 9.2 20.7 36.8 57.5

1, 2, 3 = straightforward, intermediate, challenging    = full solution available in the Student Solutions Manual and Study Guide

= coached solution with hints available at http://www.pse6.com = computer useful in solving problem

= paired numerical and symbolic problems

P R O B L E M S
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2. (a) Sand dunes in a desert move over time as sand is swept
up the windward side to settle in the lee side. Such “walk-
ing” dunes have been known to walk 20 feet in a year and
can travel as much as 100 feet per year in particularly
windy times. Calculate the average speed in each case in
m/s. (b) Fingernails grow at the rate of drifting conti-
nents, on the order of 10 mm/yr. Approximately how long
did it take for North America to separate from Europe, a
distance of about 3 000 mi?

The position versus time for a certain particle moving
along the x axis is shown in Figure P2.3. Find the average
velocity in the time intervals (a) 0 to 2 s, (b) 0 to 4 s,
(c) 2 s to 4 s, (d) 4 s to 7 s, (e) 0 to 8 s.

3.

4. A particle moves according to the equation x ! 10t 2 where
x is in meters and t is in seconds. (a) Find the average veloc-
ity for the time interval from 2.00 s to 3.00 s. (b) Find the
average velocity for the time interval from 2.00 to 2.10 s. 

A person walks first at a constant speed of 5.00 m/s along
a straight line from point A to point B and then back
along the line from B to A at a constant speed of 3.00 m/s.
What is (a) her average speed over the entire trip? (b) her
average velocity over the entire trip?

Section 2.2 Instantaneous Velocity and Speed
6. The position of a particle moving along the x axis varies in

time according to the expression x ! 3t 2, where x is in me-
ters and t is in seconds. Evaluate its position (a) at t ! 3.00 s
and (b) at 3.00 s % $t. (c) Evaluate the limit of $x/$t as $t
approaches zero, to find the velocity at t ! 3.00 s.

A position-time graph for a particle moving along the
x axis is shown in Figure P2.7. (a) Find the average veloc-
ity in the time interval t ! 1.50 s to t ! 4.00 s. (b) Deter-
mine the instantaneous velocity at t ! 2.00 s by measuring
the slope of the tangent line shown in the graph. (c) At
what value of t is the velocity zero?

8. (a) Use the data in Problem 1 to construct a smooth graph
of position versus time. (b) By constructing tangents to the
x(t) curve, find the instantaneous velocity of the car at sev-
eral instants. (c) Plot the instantaneous velocity versus time
and, from this, determine the average acceleration of the
car. (d) What was the initial velocity of the car?

7.

5.

9. Find the instantaneous velocity of the particle described
in Figure P2.3 at the following times: (a) t ! 1.0 s,
(b) t ! 3.0 s, (c) t ! 4.5 s, and (d) t ! 7.5 s.

10. A hare and a tortoise compete in a race over a course
1.00 km long. The tortoise crawls straight and steadily at
its maximum speed of 0.200 m/s toward the finish line.
The hare runs at its maximum speed of 8.00 m/s toward
the goal for 0.800 km and then stops to tease the tortoise.
How close to the goal can the hare let the tortoise ap-
proach before resuming the race, which the tortoise wins
in a photo finish? Assume that, when moving, both ani-
mals move steadily at their respective maximum speeds.

Section 2.3 Acceleration

11. A 50.0-g superball traveling at 25.0 m/s bounces off a 
brick wall and rebounds at 22.0 m/s. A high-speed camera
records this event. If the ball is in contact with the wall for
3.50 ms, what is the magnitude of the average acceleration
of the ball during this time interval? (Note: 1 ms ! 10#3 s.)

12. A particle starts from rest and accelerates as shown in
Figure P2.12. Determine (a) the particle’s speed at t !

10.0 s and at t ! 20.0 s, and (b) the distance traveled in
the first 20.0 s.
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Problems 51

13. Secretariat won the Kentucky Derby with times for succes-
sive quarter-mile segments of 25.2 s, 24.0 s, 23.8 s, and
23.0 s. (a) Find his average speed during each quarter-mile
segment. (b) Assuming that Secretariat’s instantaneous
speed at the finish line was the same as the average speed
during the final quarter mile, find his average acceleration
for the entire race. (Horses in the Derby start from rest.)

14. A velocity–time graph for an object moving along the x
axis is shown in Figure P2.14. (a) Plot a graph of the accel-
eration versus time. (b) Determine the average accelera-
tion of the object in the time intervals t ! 5.00 s to
t ! 15.0 s and t ! 0 to t ! 20.0 s.

A particle moves along the x axis according to the
equation x ! 2.00 % 3.00t # 1.00t 2, where x is in meters
and t is in seconds. At t ! 3.00 s, find (a) the position of
the particle, (b) its velocity, and (c) its acceleration.

16. An object moves along the x axis according to the equation
x(t) ! (3.00t2 # 2.00t % 3.00) m. Determine (a) the aver-
age speed between t ! 2.00 s and t ! 3.00 s, (b) the instan-
taneous speed at t ! 2.00 s and at t ! 3.00 s, (c) the aver-
age acceleration between t ! 2.00 s and t ! 3.00 s, and (d)
the instantaneous acceleration at t ! 2.00 s and t ! 3.00 s.

17. Figure P2.17 shows a graph of vx versus t for the motion of
a motorcyclist as he starts from rest and moves along the
road in a straight line. (a) Find the average acceleration
for the time interval t ! 0 to t ! 6.00 s. (b) Estimate the
time at which the acceleration has its greatest positive
value and the value of the acceleration at that instant.
(c) When is the acceleration zero? (d) Estimate the maxi-
mum negative value of the acceleration and the time at
which it occurs.

15.

Section 2.4 Motion Diagrams
18. Draw motion diagrams for (a) an object moving to the

right at constant speed, (b) an object moving to the right
and speeding up at a constant rate, (c) an object moving
to the right and slowing down at a constant rate, (d) an ob-
ject moving to the left and speeding up at a constant rate,
and (e) an object moving to the left and slowing down at a
constant rate. (f) How would your drawings change if the
changes in speed were not uniform; that is, if the speed
were not changing at a constant rate?

Section 2.5 One-Dimensional Motion with Constant
Acceleration

19. Jules Verne in 1865 suggested sending people to the Moon
by firing a space capsule from a 220-m-long cannon with a
launch speed of 10.97 km/s. What would have been the
unrealistically large acceleration experienced by the space
travelers during launch? Compare your answer with the
free-fall acceleration 9.80 m/s2.

20. A truck covers 40.0 m in 8.50 s while smoothly slowing
down to a final speed of 2.80 m/s. (a) Find its original
speed. (b) Find its acceleration.

An object moving with uniform acceleration has a 
velocity of 12.0 cm/s in the positive x direction when its x
coordinate is 3.00 cm. If its x coordinate 2.00 s later is
# 5.00 cm, what is its acceleration?

22. A 745i BMW car can brake to a stop in a distance of 121 ft.
from a speed of 60.0 mi/h. To brake to a stop from a
speed of 80.0 mi/h requires a stopping distance of 211 ft.
What is the average braking acceleration for (a) 60 mi/h
to rest, (b) 80 mi/h to rest, (c) 80 mi/h to 60 mi/h? Ex-
press the answers in mi/h/s and in m/s2.

23. A speedboat moving at 30.0 m/s approaches a no-wake buoy
marker 100 m ahead. The pilot slows the boat with a con-
stant acceleration of # 3.50 m/s2 by reducing the throttle.
(a) How long does it take the boat to reach the buoy?
(b) What is the velocity of the boat when it reaches the buoy? 

24. Figure P2.24 represents part of the performance data of a
car owned by a proud physics student. (a) Calculate from
the graph the total distance traveled. (b) What distance
does the car travel between the times t ! 10 s and t ! 40 s?
(c) Draw a graph of its acceleration versus time between
t ! 0 and t ! 50 s. (d) Write an equation for x as a func-
tion of time for each phase of the motion, represented by
(i) 0a, (ii) ab, (iii) bc. (e) What is the average velocity of
the car between t ! 0 and t ! 50 s?

21.
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25. A particle moves along the x axis. Its position is given by the
equation x ! 2 % 3t # 4t 2 with x in meters and t in seconds.
Determine (a) its position when it changes direction and
(b) its velocity when it returns to the position it had at t ! 0.

26. In the Daytona 500 auto race, a Ford Thunderbird and a
Mercedes Benz are moving side by side down a straight-
away at 71.5 m/s. The driver of the Thunderbird realizes
he must make a pit stop, and he smoothly slows to a stop
over a distance of 250 m. He spends 5.00 s in the pit and
then accelerates out, reaching his previous speed of
71.5 m/s after a distance of 350 m. At this point, how far
has the Thunderbird fallen behind the Mercedes Benz,
which has continued at a constant speed?

A jet plane lands with a speed of 100 m/s and can acceler-
ate at a maximum rate of # 5.00 m/s2 as it comes to rest.
(a) From the instant the plane touches the runway, what is
the minimum time interval needed before it can come to
rest? (b) Can this plane land on a small tropical island air-
port where the runway is 0.800 km long?

28. A car is approaching a hill at 30.0 m/s when its engine
suddenly fails just at the bottom of the hill. The car moves
with a constant acceleration of # 2.00 m/s2 while coasting
up the hill. (a) Write equations for the position along the
slope and for the velocity as functions of time, taking x ! 0
at the bottom of the hill, where vi ! 30.0 m/s. (b) Deter-
mine the maximum distance the car rolls up the hill. 

29. The driver of a car slams on the brakes when he sees a tree
blocking the road. The car slows uniformly with an acceler-
ation of # 5.60 m/s2 for 4.20 s, making straight skid marks
62.4 m long ending at the tree. With what speed does the
car then strike the tree?

30. Help! One of our equations is missing! We describe constant-
acceleration motion with the variables and parameters vxi ,
vxf , ax , t , and xf # x i . Of the equations in Table 2.2, the first
does not involve xf # x i . The second does not contain ax ;
the third omits vxf and the last leaves out t. So to complete
the set there should be an equation not involving vxi . Derive
it from the others. Use it to solve Problem 29 in one step.

For many years Colonel John P. Stapp, USAF, held the
world’s land speed record. On March 19, 1954, he rode a
rocket-propelled sled that moved down a track at a speed
of 632 mi/h. He and the sled were safely brought to rest in
1.40 s (Fig. P2.31). Determine (a) the negative accelera-
tion he experienced and (b) the distance he traveled dur-
ing this negative acceleration.

31.

27.

32. A truck on a straight road starts from rest, accelerating at
2.00 m/s2 until it reaches a speed of 20.0 m/s. Then the
truck travels for 20.0 s at constant speed until the brakes are
applied, stopping the truck in a uniform manner in an addi-
tional 5.00 s. (a) How long is the truck in motion? (b) What
is the average velocity of the truck for the motion described?

33. An electron in a cathode ray tube (CRT) accelerates from
2.00 " 104 m/s to 6.00 " 106 m/s over 1.50 cm. (a) How
long does the electron take to travel this 1.50 cm?
(b) What is its acceleration?

34. In a 100-m linear accelerator, an electron is accelerated to
1.00% of the speed of light in 40.0 m before it coasts for 
60.0 m to a target. (a) What is the electron’s acceleration dur-
ing the first 40.0 m? (b) How long does the total flight take?

35. Within a complex machine such as a robotic assembly line,
suppose that one particular part glides along a straight
track. A control system measures the average velocity of the
part during each successive interval of time $t0 ! t0 # 0,
compares it with the value vc it should be, and switches a
servo motor on and off to give the part a correcting pulse
of acceleration. The pulse consists of a constant accelera-
tion am applied for time interval $tm ! tm # 0 within the
next control time interval $t0. As shown in Fig. P2.35, the
part may be modeled as having zero acceleration when the
motor is off (between tm and t0). A computer in the control
system chooses the size of the acceleration so that the final
velocity of the part will have the correct value vc . Assume
the part is initially at rest and is to have instantaneous veloc-
ity vc at time t0. (a) Find the required value of am in terms
of vc and tm . (b) Show that the displacement $x of the part
during the time interval $t0 is given by $x ! vc (t0 # 0.5tm).
For specified values of vc and t0, (c) what is the minimum
displacement of the part? (d) What is the maximum dis-
placement of the part? (e) Are both the minimum and
maximum displacements physically attainable?
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Figure P2.31 (Left) Col. John Stapp on rocket sled. (Right) Col. Stapp’s face is contorted by the
stress of rapid negative acceleration.
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Problems 53

36. A glider on an air track carries a flag of length ! through a
stationary photogate, which measures the time interval $td
during which the flag blocks a beam of infrared light pass-
ing across the photogate. The ratio vd ! !/$td is the aver-
age velocity of the glider over this part of its motion. Sup-
pose the glider moves with constant acceleration.
(a) Argue for or against the idea that vd is equal to the in-
stantaneous velocity of the glider when it is halfway
through the photogate in space. (b) Argue for or against
the idea that vd is equal to the instantaneous velocity of the
glider when it is halfway through the photogate in time. 

37. A ball starts from rest and accelerates at 0.500 m/s2 while
moving down an inclined plane 9.00 m long. When it
reaches the bottom, the ball rolls up another plane, where,
after moving 15.0 m, it comes to rest. (a) What is the speed
of the ball at the bottom of the first plane? (b) How long
does it take to roll down the first plane? (c) What is the ac-
celeration along the second plane? (d) What is the ball’s
speed 8.00 m along the second plane?

38. Speedy Sue, driving at 30.0 m/s, enters a one-lane tunnel.
She then observes a slow-moving van 155 m ahead travel-
ing at 5.00 m/s. Sue applies her brakes but can accelerate
only at # 2.00 m/s 2 because the road is wet. Will there be
a collision? If yes, determine how far into the tunnel and
at what time the collision occurs. If no, determine the dis-
tance of closest approach between Sue’s car and the van.

39. Solve Example 2.8, “Watch out for the Speed Limit!” by a
graphical method. On the same graph plot position versus
time for the car and the police officer. From the intersec-
tion of the two curves read the time at which the trooper
overtakes the car.

Section 2.6 Freely Falling Objects

Note: In all problems in this section, ignore the effects of
air resistance.

40. A golf ball is released from rest from the top of a very tall
building. Neglecting air resistance, calculate (a) the position
and (b) the velocity of the ball after 1.00, 2.00, and 3.00 s.

41. Every morning at seven o’clock
There’s twenty terriers drilling on the rock.
The boss comes around and he says, “Keep still
And bear down heavy on the cast-iron drill

And drill, ye terriers, drill.” And drill, ye terriers, drill.
It’s work all day for sugar in your tea
Down beyond the railway. And drill, ye terriers, drill.

The foreman’s name was John McAnn.
By God, he was a blamed mean man.
One day a premature blast went off
And a mile in the air went big Jim Goff. And drill ...

Then when next payday came around
Jim Goff a dollar short was found.
When he asked what for, came this reply:
“You were docked for the time you were up in the sky.” And drill...

—American folksong

What was Goff’s hourly wage? State the assumptions you
make in computing it.

42. A ball is thrown directly downward, with an initial speed of
8.00 m/s, from a height of 30.0 m. After what time interval
does the ball strike the ground?

A student throws a set of keys vertically upward to her
sorority sister, who is in a window 4.00 m above. The keys
are caught 1.50 s later by the sister’s outstretched hand.
(a) With what initial velocity were the keys thrown?
(b) What was the velocity of the keys just before they were
caught?

44. Emily challenges her friend David to catch a dollar bill as
follows. She holds the bill vertically, as in Figure P2.44,
with the center of the bill between David’s index finger
and thumb. David must catch the bill after Emily releases it
without moving his hand downward. If his reaction time is
0.2 s, will he succeed? Explain your reasoning.

43.

45. In Mostar, Bosnia, the ultimate test of a young man’s
courage once was to jump off a 400-year-old bridge (now
destroyed) into the River Neretva, 23.0 m below the
bridge. (a) How long did the jump last? (b) How fast was
the diver traveling upon impact with the water? (c) If the
speed of sound in air is 340 m/s, how long after the diver
took off did a spectator on the bridge hear the splash?

46. A ball is dropped from rest from a height h above the
ground. Another ball is thrown vertically upwards from the
ground at the instant the first ball is released. Determine
the speed of the second ball if the two balls are to meet at
a height h/2 above the ground.

A baseball is hit so that it travels straight upward after be-
ing struck by the bat. A fan observes that it takes 3.00 s for
the ball to reach its maximum height. Find (a) its initial
velocity and (b) the height it reaches. 

48. It is possible to shoot an arrow at a speed as high as
100 m/s. (a) If friction is neglected, how high would an ar-
row launched at this speed rise if shot straight up?
(b) How long would the arrow be in the air?

47.

Figure P2.44
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A daring ranch hand sitting on a tree limb wishes to
drop vertically onto a horse galloping under the tree.
The constant speed of the horse is 10.0 m/s, and the dis-
tance from the limb to the level of the saddle is 3.00 m.
(a) What must be the horizontal distance between the
saddle and limb when the ranch hand makes his move?
(b) How long is he in the air?

50. A woman is reported to have fallen 144 ft from the 17th
floor of a building, landing on a metal ventilator box,
which she crushed to a depth of 18.0 in. She suffered only
minor injuries. Neglecting air resistance, calculate (a) the
speed of the woman just before she collided with the venti-
lator, (b) her average acceleration while in contact with
the box, and (c) the time it took to crush the box. 

51. The height of a helicopter above the ground is given by
h ! 3.00t 3, where h is in meters and t is in seconds. After
2.00 s, the helicopter releases a small mailbag. How long
after its release does the mailbag reach the ground?

52. A freely falling object requires 1.50 s to travel the last
30.0 m before it hits the ground. From what height above
the ground did it fall?

Section 2.7 Kinematic Equations Derived from
Calculus

Automotive engineers refer to the time rate of change of
acceleration as the “jerk.” If an object moves in one dimen-
sion such that its jerk J is constant, (a) determine expres-
sions for its acceleration ax(t), velocity vx(t), and position
x(t), given that its initial acceleration, velocity, and posi-
tion are axi , vxi , and xi , respectively. (b) Show that 

.

54. A student drives a moped along a straight road as de-
scribed by the velocity-versus-time graph in Figure P2.54.
Sketch this graph in the middle of a sheet of graph paper.
(a) Directly above your graph, sketch a graph of the posi-
tion versus time, aligning the time coordinates of the two
graphs. (b) Sketch a graph of the acceleration versus time
directly below the vx-t graph, again aligning the time coor-
dinates. On each graph, show the numerical values of x
and ax for all points of inflection. (c) What is the accelera-
tion at t ! 6 s? (d) Find the position (relative to the start-
ing point) at t ! 6 s. (e) What is the moped’s final position
at t ! 9 s?

axi
2 % 2J(vx # vxi)

ax
2 !

53.

49. 55. The speed of a bullet as it travels down the barrel of a
rifle toward the opening is given by v ! (# 5.00 " 107)t 2 %
(3.00 " 105)t, where v is in meters per second and t is in
seconds. The acceleration of the bullet just as it leaves the
barrel is zero. (a) Determine the acceleration and position
of the bullet as a function of time when the bullet is in the
barrel. (b) Determine the length of time the bullet is ac-
celerated. (c) Find the speed at which the bullet leaves the
barrel. (d) What is the length of the barrel?

56. The acceleration of a marble in a certain fluid is propor-
tional to the speed of the marble squared, and is given (in
SI units) by a ! # 3.00v 2 for v & 0. If the marble enters
this fluid with a speed of 1.50 m/s, how long will it take be-
fore the marble’s speed is reduced to half of its initial
value?

Additional Problems
57. A car has an initial velocity v0 when the driver sees an ob-

stacle in the road in front of him. His reaction time is $tr ,
and the braking acceleration of the car is a. Show that the
total stopping distance is

Remember that a is a negative number. 

58. The yellow caution light on a traffic signal should stay on
long enough to allow a driver to either pass through the
intersection or safely stop before reaching the intersec-
tion. A car can stop if its distance from the intersection is
greater than the stopping distance found in the previous
problem. If the car is less than this stopping distance from
the intersection, the yellow light should stay on long
enough to allow the car to pass entirely through the inter-
section. (a) Show that the yellow light should stay on for a
time interval

where $tr is the driver’s reaction time, v0 is the velocity of
the car approaching the light at the speed limit, a is the
braking acceleration, and si is the width of the intersec-
tion. (b) As city traffic planner, you expect cars to
approach an intersection 16.0 m wide with a speed of
60.0 km/h. Be cautious and assume a reaction time
of 1.10 s to allow for a driver’s indecision. Find the length
of time the yellow light should remain on. Use a braking
acceleration of # 2.00 m/s2.

59. The Acela is the Porsche of American trains. Shown in
Figure P2.59a, the electric train whose name is pronounced
ah-SELL-ah is in service on the Washington-New York-
Boston run. With two power cars and six coaches, it can
carry 304 passengers at 170 mi/h. The carriages tilt as much
as 6- from the vertical to prevent passengers from feeling
pushed to the side as they go around curves. Its braking
mechanism uses electric generators to recover its energy of
motion. A velocity-time graph for the Acela is shown in Fig-
ure P2.59b. (a) Describe the motion of the train in each suc-
cessive time interval. (b) Find the peak positive acceleration
of the train in the motion graphed. (c) Find the train’s dis-
placement in miles between t ! 0 and t ! 200 s.

$t light ! $t r # (v0/2a) % (si /v0)

sstop ! v0 $tr # v0
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60. Liz rushes down onto a subway platform to find her train al-
ready departing. She stops and watches the cars go by. Each
car is 8.60 m long. The first moves past her in 1.50 s and the
second in 1.10 s. Find the constant acceleration of the train.

61. A dog’s hair has been cut and is now getting 1.04 mm
longer each day. With winter coming on, this rate of hair
growth is steadily increasing, by 0.132 mm/day every week.
By how much will the dog’s hair grow during 5 weeks?

62. A test rocket is fired vertically upward from a well. A cata-
pult gives it an initial speed of 80.0 m/s at ground level. Its
engines then fire and it accelerates upward at 4.00 m/s2

until it reaches an altitude of 1 000 m. At that point its en-
gines fail and the rocket goes into free fall, with an acceler-
ation of # 9.80 m/s2. (a) How long is the rocket in motion
above the ground? (b) What is its maximum altitude?
(c) What is its velocity just before it collides with the
Earth? (You will need to consider the motion while the en-
gine is operating separate from the free-fall motion.)

63. A motorist drives along a straight road at a constant speed
of 15.0 m/s. Just as she passes a parked motorcycle police
officer, the officer starts to accelerate at 2.00 m/s2 to over-
take her. Assuming the officer maintains this acceleration,
(a) determine the time it takes the police officer to reach
the motorist. Find (b) the speed and (c) the total displace-
ment of the officer as he overtakes the motorist.

64. In Figure 2.10b, the area under the velocity versus time
curve and between the vertical axis and time t (vertical
dashed line) represents the displacement. As shown, this
area consists of a rectangle and a triangle. Compute their
areas and compare the sum of the two areas with the ex-
pression on the right-hand side of Equation 2.12.

65. Setting a new world record in a 100-m race, Maggie and
Judy cross the finish line in a dead heat, both taking 10.2 s.
Accelerating uniformly, Maggie took 2.00 s and Judy 3.00 s
to attain maximum speed, which they maintained for the
rest of the race. (a) What was the acceleration of each
sprinter? (b) What were their respective maximum speeds?
(c) Which sprinter was ahead at the 6.00-s mark, and by
how much?

66. A commuter train travels between two downtown stations.
Because the stations are only 1.00 km apart, the train
never reaches its maximum possible cruising speed. Dur-
ing rush hour the engineer minimizes the time interval $t
between two stations by accelerating for a time interval $t1
at a rate a1 ! 0.100 m/s2 and then immediately braking
with acceleration a 2 ! # 0.500 m/s2 for a time interval
$t 2. Find the minimum time interval of travel $t and the
time interval $t1.

67. A hard rubber ball, released at chest height, falls to the
pavement and bounces back to nearly the same height.
When it is in contact with the pavement, the lower side of
the ball is temporarily flattened. Suppose that the maxi-
mum depth of the dent is on the order of 1 cm. Compute
an order-of-magnitude estimate for the maximum acceler-
ation of the ball while it is in contact with the pavement.
State your assumptions, the quantities you estimate, and
the values you estimate for them.

68. At NASA’s John H. Glenn research center in Cleveland,
Ohio, free-fall research is performed by dropping experi-
ment packages from the top of an evacuated shaft 145 m
high. Free fall imitates the so-called microgravity environ-
ment of a satellite in orbit. (a) What is the maximum time
interval for free fall if an experiment package were to fall
the entire 145 m? (b) Actual NASA specifications allow for a
5.18-s drop time interval. How far do the packages drop and
(c) what is their speed at 5.18 s? (d) What constant accelera-
tion would be required to stop an experiment package in
the distance remaining in the shaft after its 5.18-s fall?

An inquisitive physics student and mountain climber
climbs a 50.0-m cliff that overhangs a calm pool of water.
He throws two stones vertically downward, 1.00 s apart,
and observes that they cause a single splash. The first stone
has an initial speed of 2.00 m/s. (a) How long after release
of the first stone do the two stones hit the water? (b) What
initial velocity must the second stone have if they are to hit
simultaneously? (c) What is the speed of each stone at the
instant the two hit the water?

70. A rock is dropped from rest into a well. The well is not re-
ally 16 seconds deep, as in Figure P2.70. (a) The sound of
the splash is actually heard 2.40 s after the rock is released
from rest. How far below the top of the well is the surface
of the water? The speed of sound in air (at the ambient
temperature) is 336 m/s. (b) What If? If the travel time
for the sound is neglected, what percentage error is intro-
duced when the depth of the well is calculated?

71. To protect his food from hungry bears, a boy scout raises
his food pack with a rope that is thrown over a tree limb at
height h above his hands. He walks away from the vertical
rope with constant velocity vboy, holding the free end of
the rope in his hands (Fig. P2.71). (a) Show that the speed
v of the food pack is given by x(x 2 % h 2)#1/2 v boy where x

69.
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Figure P2.59 (a) The Acela—1 171 000 lb of cold steel
thundering along at 150 mi/h. (b) Velocity-versus-time graph
for the Acela.
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Time (s) Height (m) Time (s) Height (m)

0.00 5.00 2.75 7.62
0.25 5.75 3.00 7.25
0.50 6.40 3.25 6.77
0.75 6.94 3.50 6.20
1.00 7.38 3.75 5.52
1.25 7.72 4.00 4.73
1.50 7.96 4.25 3.85
1.75 8.10 4.50 2.86
2.00 8.13 4.75 1.77
2.25 8.07 5.00 0.58
2.50 7.90

Height of a Rock versus Time

Table P2.74

is the distance he has walked away from the vertical rope.
(b) Show that the acceleration a of the food pack is
h2(x 2 % h2)#3/2 v 2

boy . (c) What values do the acceleration a
and velocity v have shortly after he leaves the point under
the pack (x ! 0)? (d) What values do the pack’s velocity
and acceleration approach as the distance x continues to
increase? 

72. In Problem 71, let the height h equal 6.00 m and the speed
v boy equal 2.00 m/s. Assume that the food pack starts from
rest. (a) Tabulate and graph the speed–time graph.
(b) Tabulate and graph the acceleration-time graph. Let
the range of time be from 0 s to 5.00 s and the time inter-
vals be 0.500 s.

Kathy Kool buys a sports car that can accelerate at the rate
of 4.90 m/s2. She decides to test the car by racing with an-
other speedster, Stan Speedy. Both start from rest, but ex-
perienced Stan leaves the starting line 1.00 s before Kathy.
If Stan moves with a constant acceleration of 3.50 m/s2

and Kathy maintains an acceleration of 4.90 m/s2, find 
(a) the time at which Kathy overtakes Stan, (b) the dis-
tance she travels before she catches him, and (c) the
speeds of both cars at the instant she overtakes him.

73.

74. Astronauts on a distant planet toss a rock into the air.
With the aid of a camera that takes pictures at a steady
rate, they record the height of the rock as a function of
time as given in Table P2.74. (a) Find the average velocity
of the rock in the time interval between each measure-
ment and the next. (b) Using these average velocities to
approximate instantaneous velocities at the midpoints of
the time intervals, make a graph of velocity as a function of
time. Does the rock move with constant acceleration? If so,
plot a straight line of best fit on the graph and calculate its
slope to find the acceleration.

Two objects, A and B, are connected by a rigid rod that has
a length L. The objects slide along perpendicular guide
rails, as shown in Figure P2.75. If A slides to the left with a
constant speed v, find the velocity of B when . ! 60.0°.

75.
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Answers to Quick Quizzes
2.1 (c). If the particle moves along a line without changing di-

rection, the displacement and distance traveled over any
time interval will be the same. As a result, the magnitude
of the average velocity and the average speed will be the
same. If the particle reverses direction, however, the dis-
placement will be less than the distance traveled. In turn,
the magnitude of the average velocity will be smaller than
the average speed.

2.2 (b). If the car is slowing down, a force must be pulling in
the direction opposite to its velocity.

2.3 False. Your graph should look something like the follow-
ing. This vx -t graph shows that the maximum speed is
about 5.0 m/s, which is 18 km/h (! 11 mi/h), and so the
driver was not speeding.

2.4 (c). If a particle with constant acceleration stops and its ac-
celeration remains constant, it must begin to move again
in the opposite direction. If it did not, the acceleration
would change from its original constant value to zero.
Choice (a) is not correct because the direction of accelera-
tion is not specified by the direction of the velocity. Choice
(b) is also not correct by counterexample—a car moving
in the # x direction and slowing down has a positive accel-
eration.

2.5 Graph (a) has a constant slope, indicating a constant accel-
eration; this is represented by graph (e).

Graph (b) represents a speed that is increasing
constantly but not at a uniform rate. Thus, the
acceleration must be increasing, and the graph that best
indicates this is (d).

Graph (c) depicts a velocity that first increases at a
constant rate, indicating constant acceleration. Then the
velocity stops increasing and becomes constant, indicat-
ing zero acceleration. The best match to this situation is
graph (f).

2.6 (e). For the entire time interval that the ball is in free fall,
the acceleration is that due to gravity.

2.7 (d). While the ball is rising, it is slowing down. After reach-
ing the highest point, the ball begins to fall and its speed
increases.

2.8 (a). At the highest point, the ball is momentarily at rest,
but still accelerating at # g.

vx(m/s)

t(s)

6.0

4.0

2.0

0.0

–2.0

–4.0

–6.0

20 30 40 5010

Answer to Quick Quiz 2.3
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! These controls in the cockpit of a commercial aircraft assist the pilot in maintaining
control over the velocity of the aircraft—how fast it is traveling and in what direction it is
traveling—allowing it to land safely. Quantities that are defined by both a magnitude and a di-
rection, such as velocity, are called vector quantities. (Mark Wagner/Getty Images)



In our study of physics, we often need to work with physical quantities that have both
numerical and directional properties. As noted in Section 2.1, quantities of this nature
are vector quantities. This chapter is primarily concerned with vector algebra and with
some general properties of vector quantities. We discuss the addition and subtraction
of vector quantities, together with some common applications to physical situations.

Vector quantities are used throughout this text, and it is therefore imperative that
you master both their graphical and their algebraic properties.

3.1 Coordinate Systems

Many aspects of physics involve a description of a location in space. In Chapter 2,
for example, we saw that the mathematical description of an object’s motion re-
quires a method for describing the object’s position at various times. This descrip-
tion is accomplished with the use of coordinates, and in Chapter 2 we used the
Cartesian coordinate system, in which horizontal and vertical axes intersect at a
point defined as the origin (Fig. 3.1). Cartesian coordinates are also called rectangu-
lar coordinates.

Sometimes it is more convenient to represent a point in a plane by its plane polar co-
ordinates (r, !), as shown in Figure 3.2a. In this polar coordinate system, r is the distance
from the origin to the point having Cartesian coordinates (x, y), and ! is the angle be-
tween a line drawn from the origin to the point and a fixed axis. This fixed axis is usu-
ally the positive x axis, and ! is usually measured counterclockwise from it. From the
right triangle in Figure 3.2b, we find that sin ! " y/r and that cos ! " x/r. (A review of
trigonometric functions is given in Appendix B.4.) Therefore, starting with the plane
polar coordinates of any point, we can obtain the Cartesian coordinates by using the
equations

x " r cos ! (3.1)

y " r sin ! (3.2)
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(–3, 4)

y

O

Q
P

(x, y)

(5, 3)

x Figure 3.1 Designation of points in a Cartesian coor-
dinate system. Every point is labeled with coordinates
(x, y).

O

(x, y)

y

x

r

θ

(a)

θ

(b)

x

r
y

sin θ =
y
r

cos θ = x
r

tan θ = x
y

θ

θ

θ

Active Figure 3.2 (a) The plane
polar coordinates of a point are
represented by the distance r and
the angle !, where ! is measured
counterclockwise from the positive
x axis. (b) The right triangle used
to relate (x, y) to (r, !).

At the Active Figures link
at http://www.pse6.com, you
can move the point and see the
changes to the rectangular and
polar coordinates as well as to
the sine, cosine, and tangent of
angle !.
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Example 3.1 Polar Coordinates

The Cartesian coordinates of a point in the xy plane are 
(x, y) " (# 3.50, # 2.50) m, as shown in Figure 3.3. Find the
polar coordinates of this point.

Solution For the examples in this and the next two chap-
ters we will illustrate the use of the General Problem-Solving

Strategy outlined at the end of Chapter 2. In subsequent
chapters, we will make fewer explicit references to this strat-
egy, as you will have become familiar with it and should be
applying it on your own. The drawing in Figure 3.3 helps us
to conceptualize the problem. We can categorize this as a plug-
in problem. From Equation 3.4,

and from Equation 3.3,

Note that you must use the signs of x and y to find that the
point lies in the third quadrant of the coordinate system.
That is, ! " 216° and not 35.5°.

216$! "

tan ! "
y
x

"
#2.50 m
#3.50 m

" 0.714

4.30 mr " √x2 % y2 " √(#3.50 m)2 % (#2.50 m)2 "

(–3.50, –2.50)

x(m)
θ

r

y(m)

Active Figure 3.3 (Example 3.1) Finding polar coordinates
when Cartesian coordinates are given.

Furthermore, the definitions of trigonometry tell us that

(3.3)

(3.4)

Equation 3.4 is the familiar Pythagorean theorem.
These four expressions relating the coordinates (x, y) to the coordinates (r, !) ap-

ply only when ! is defined as shown in Figure 3.2a— in other words, when positive ! is
an angle measured counterclockwise from the positive x axis. (Some scientific calcula-
tors perform conversions between Cartesian and polar coordinates based on these
standard conventions.) If the reference axis for the polar angle ! is chosen to be one
other than the positive x axis or if the sense of increasing ! is chosen differently, then
the expressions relating the two sets of coordinates will change.

 r " √x2 % y2

tan ! "
y
x

3.2 Vector and Scalar Quantities

As noted in Chapter 2, some physical quantities are scalar quantities whereas others
are vector quantities. When you want to know the temperature outside so that you will
know how to dress, the only information you need is a number and the unit “degrees
C” or “degrees F.” Temperature is therefore an example of a scalar quantity:

A scalar quantity is completely specified by a single value with an appropriate unit
and has no direction.

Other examples of scalar quantities are volume, mass, speed, and time intervals. The
rules of ordinary arithmetic are used to manipulate scalar quantities.

If you are preparing to pilot a small plane and need to know the wind velocity, you
must know both the speed of the wind and its direction. Because direction is important
for its complete specification, velocity is a vector quantity: 

At the Active Figures link at http://www.pse6.com,
you can move the  point in the xy plane and see how its
Cartesian and polar coordinates change.



S ECT I O N  3 . 3 •  Some Properties of Vectors 61

Another example of a vector quantity is displacement, as you know from Chapter 2.
Suppose a particle moves from some point ! to some point " along a straight path, as
shown in Figure 3.4. We represent this displacement by drawing an arrow from ! to
", with the tip of the arrow pointing away from the starting point. The direction of the
arrowhead represents the direction of the displacement, and the length of the arrow
represents the magnitude of the displacement. If the particle travels along some other
path from ! to ", such as the broken line in Figure 3.4, its displacement is still the
arrow drawn from ! to ". Displacement depends only on the initial and final posi-
tions, so the displacement vector is independent of the path taken between these two
points.

In this text, we use a boldface letter, such as A, to represent a vector quantity. An-
other notation is useful when boldface notation is difficult, such as when writing on pa-
per or on a chalkboard—an arrow is written over the symbol for the vector: 

:
A. The

magnitude of the vector A is written either A or !A !. The magnitude of a vector has
physical units, such as meters for displacement or meters per second for velocity. The
magnitude of a vector is always a positive number.

A vector quantity is completely specified by a number and appropriate units plus a
direction.

!

"

Figure 3.4 As a particle moves
from ! to " along an arbitrary
path represented by the broken
line, its displacement is a vector
quantity shown by the arrow drawn
from ! to ".

O

y

x

Figure 3.5 These four vectors are
equal because they have equal
lengths and point in the same
direction.

Quick Quiz 3.1 Which of the following are vector quantities and which are
scalar quantities? (a) your age (b) acceleration (c) velocity (d) speed (e) mass

! PITFALL PREVENTION
3.1 Vector Addition versus

Scalar Addition
Keep in mind that A % B " C is
very different from A % B " C.
The first is a vector sum, which
must be handled carefully, such
as with the graphical method
described here. The second is a
simple algebraic addition of
numbers that is handled with the
normal rules of arithmetic.

B

A

R  =  A  +  B

Active Figure 3.6 When vector B
is added to vector A, the resultant
R is the vector that runs from the
tail of A to the tip of B.

3.3 Some Properties of Vectors

Equality of Two Vectors

For many purposes, two vectors A and B may be defined to be equal if they have the
same magnitude and point in the same direction. That is, A " B only if A " B and if A
and B point in the same direction along parallel lines. For example, all the vectors in
Figure 3.5 are equal even though they have different starting points. This property al-
lows us to move a vector to a position parallel to itself in a diagram without affecting
the vector.

Adding Vectors

The rules for adding vectors are conveniently described by graphical methods. To add
vector B to vector A, first draw vector A on graph paper, with its magnitude repre-
sented by a convenient length scale, and then draw vector B to the same scale with its
tail starting from the tip of A, as shown in Figure 3.6. The resultant vector R "
A % B is the vector drawn from the tail of A to the tip of B.

For example, if you walked 3.0 m toward the east and then 4.0 m toward the north,
as shown in Figure 3.7, you would find yourself 5.0 m from where you started, mea-
sured at an angle of 53° north of east. Your total displacement is the vector sum of the
individual displacements.

A geometric construction can also be used to add more than two vectors. This is
shown in Figure 3.8 for the case of four vectors. The resultant vector R " A % B %
C % D is the vector that completes the polygon. In other words, R is the vector drawn
from the tail of the first vector to the tip of the last vector.

When two vectors are added, the sum is independent of the order of the addition.
(This fact may seem trivial, but as you will see in Chapter 11, the order is important

Go to the Active Figures
link at http://www.pse6.com.
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when vectors are multiplied). This can be seen from the geometric construction in
Figure 3.9 and is known as the commutative law of addition:

A % B " B % A ( 3 . 5 )

When three or more vectors are added, their sum is independent of the way in
which the individual vectors are grouped together. A geometric proof of this rule
for three vectors is given in Figure 3.10. This is called the associative law of
addition:

A % (B % C) " (A % B) % C (3.6)

In summary, a vector quantity has both magnitude and direction and also
obeys the laws of vector addition as described in Figures 3.6 to 3.10. When two or
more vectors are added together, all of them must have the same units and all of
them must be the same type of quantity. It would be meaningless to add a velocity
vector (for example, 60 km/h to the east) to a displacement vector (for example,
200 km to the north) because they represent different physical quantities. The same
rule also applies to scalars. For example, it would be meaningless to add time inter-
vals to temperatures.

Negative of a Vector

The negative of the vector A is defined as the vector that when added to A gives zero
for the vector sum. That is, A % (# A) " 0. The vectors A and # A have the same mag-
nitude but point in opposite directions.

A

B

C

D

R
  =

  A
  +

  B
  +

  C
  +

  D

Figure 3.8 Geometric construc-
tion for summing four vectors. The
resultant vector R is by definition
the one that completes the
polygon.

Figure 3.9 This construction
shows that A % B " B % A—in
other words, that vector addition 
is commutative.

A

B

A

B

R = 
B + 

A = 
A + 

B

3.0 m

(      )4.0
3.0θ = tan–1θ = 53°

|R
| =

   
 (3

.0
 m

)2
 +

 (4
.0

 m
)2

 =
 5

.0
 m

4.0 m

N

S

W E

Figure 3.7 Vector addition. Walking first 3.0 m
due east and then 4.0 m due north leaves you
5.0 m from your starting point.

A

B

B + C

C

A + 
(B

 + 
C)

A

B

A + B

C

(A
 + 

B) +
 C

Associative Law

Figure 3.10 Geometric constructions for verifying the associative law of addition.



Subtracting Vectors

The operation of vector subtraction makes use of the definition of the negative of a
vector. We define the operation A # B as vector # B added to vector A:

A # B " A % (# B) (3.7)

The geometric construction for subtracting two vectors in this way is illustrated in
Figure 3.11a.

Another way of looking at vector subtraction is to note that the difference A # B
between two vectors A and B is what you have to add to the second vector to obtain the
first. In this case, the vector A # B points from the tip of the second vector to the tip
of the first, as Figure 3.11b shows.
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Quick Quiz 3.2 The magnitudes of two vectors A and B are A " 12 units and
B " 8 units. Which of the following pairs of numbers represents the largest and smallest
possible values for the magnitude of the resultant vector R " A % B? (a) 14.4 units,
4 units (b) 12 units, 8 units (c) 20 units, 4 units (d) none of these answers.

Quick Quiz 3.3 If vector B is added to vector A, under what condition does
the resultant vector A % B have magnitude A % B? (a) A and B are parallel and in the
same direction. (b) A and B are parallel and in opposite directions. (c) A and B are
perpendicular.

Quick Quiz 3.4 If vector B is added to vector A, which two of the following
choices must be true in order for the resultant vector to be equal to zero? (a) A and B
are parallel and in the same direction. (b) A and B are parallel and in opposite direc-
tions. (c) A and B have the same magnitude. (d) A and B are perpendicular.

C = A – B

A

B

C = A – B

A

– B

B

Vector Subtraction

(a) (b)

Figure 3.11 (a) This construction shows how to subtract vector B from vector A. The
vector # B is equal in magnitude to vector B and points in the opposite direction. To
subtract B from A, apply the rule of vector addition to the combination of A and # B:
Draw A along some convenient axis, place the tail of # B at the tip of A, and C is the
difference A # B. (b) A second way of looking at vector subtraction. The difference
vector C " A # B is the vector that we must add to B to obtain A.
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Example 3.2 A Vacation Trip

A car travels 20.0 km due north and then 35.0 km in a di-
rection 60.0° west of north, as shown in Figure 3.12a. Find
the magnitude and direction of the car’s resultant
displacement.

Solution The vectors A and B drawn in Figure 3.12a help
us to conceptualize the problem. We can categorize this as a rel-
atively simple analysis problem in vector addition. The
displacement R is the resultant when the two individual dis-
placements A and B are added. We can further categorize
this as a problem about the analysis of triangles, so we
appeal to our expertise in geometry and trigonometry.

In this example, we show two ways to analyze the prob-
lem of finding the resultant of two vectors. The first way is to
solve the problem geometrically, using graph paper and a
protractor to measure the magnitude of R and its direction
in Figure 3.12a. (In fact, even when you know you are going
to be carrying out a calculation, you should sketch the vec-
tors to check your results.) With an ordinary ruler and pro-
tractor, a large diagram typically gives answers to two-digit
but not to three-digit precision.

The second way to solve the problem is to analyze it al-
gebraically. The magnitude of R can be obtained from 
the law of cosines as applied to the triangle (see Appendix
B.4). With ! " 180° # 60° " 120° and R2 " A2 % B2 #
2AB cos !, we find that

The direction of R measured from the northerly direc-
tion can be obtained from the law of sines (Appendix B.4):

48.2 km"

 " √(20.0 km)2 % (35.0 km)2 # 2(20.0 km)(35.0 km) cos 120$

R " √A2 % B2 # 2AB  cos !

y(km)

40

20

60.0°

R

A
x(km)

0

β
θ

y(km)

B

20
A

x(km)
0–20

(b)

N

S

W E

B

–20

R

40

β

(a)

The resultant displacement of the car is 48.2 km in a direc-
tion 39.0° west of north. 

We now finalize the problem. Does the angle & that we
calculated agree with an estimate made by looking at Figure
3.12a or with an actual angle measured from the diagram
using the graphical method? Is it reasonable that the magni-
tude of R is larger than that of both A and B? Are the units
of R correct?

While the graphical method of adding vectors works
well, it suffers from two disadvantages. First, some individu-
als find using the laws of cosines and sines to be awkward.
Second, a triangle only results if you are adding two vectors.
If you are adding three or more vectors, the resulting geo-
metric shape is not a triangle. In Section 3.4, we explore a
new method of adding vectors that will address both of
these disadvantages.

What If? Suppose the trip were taken with the two vectors
in reverse order: 35.0 km at 60.0° west of north first, and then
20.0 km due north. How would the magnitude and the direc-
tion of the resultant vector change?

Answer They would not change. The commutative law
for vector addition tells us that the order of vectors in an
addition is irrelevant. Graphically, Figure 3.12b shows that
the vectors added in the reverse order give us the same
resultant vector.

& " 39.0$

sin & "
'

R
 sin ! "

35.0 km
48.2 km 

 sin 120$ " 0.629

sin &

B
"

sin !

R

Figure 3.12 (Example 3.2) (a) Graphical method for
finding the resultant displacement vector R " A % B.
(b) Adding the vectors in reverse order (B % A) gives
the same result for R.



Multiplying a Vector by a Scalar

If vector A is multiplied by a positive scalar quantity m, then the product mA is a vector
that has the same direction as A and magnitude mA. If vector A is multiplied by a nega-
tive scalar quantity # m, then the product # mA is directed opposite A. For example,
the vector 5A is five times as long as A and points in the same direction as A; the vector

is one-third the length of A and points in the direction opposite A.

3.4 Components of a Vector and Unit Vectors

The graphical method of adding vectors is not recommended whenever high accuracy
is required or in three-dimensional problems. In this section, we describe a method of
adding vectors that makes use of the projections of vectors along coordinate axes.
These projections are called the components of the vector. Any vector can be com-
pletely described by its components.

Consider a vector A lying in the xy plane and making an arbitrary angle ! with the
positive x axis, as shown in Figure 3.13a. This vector can be expressed as the sum of two
other vectors Ax and Ay . From Figure 3.13b, we see that the three vectors form a right
triangle and that A " Ax % Ay . We shall often refer to the “components of a vector A,”
written Ax and Ay (without the boldface notation). The component Ax represents the
projection of A along the x axis, and the component Ay represents the projection of A
along the y axis. These components can be positive or negative. The component Ax is
positive if Ax points in the positive x direction and is negative if Ax points in the nega-
tive x direction. The same is true for the component Ay .

From Figure 3.13 and the definition of sine and cosine, we see that cos ! " Ax/A
and that sin ! " Ay/A. Hence, the components of A are

(3.8)

(3.9)

These components form two sides of a right triangle with a hypotenuse of length A.
Thus, it follows that the magnitude and direction of A are related to its components
through the expressions

(3.10)

(3.11)

Note that the signs of the components Ax and Ay depend on the angle !. For
example, if ! " 120°, then Ax is negative and Ay is positive. If ! " 225°, then both Ax
and Ay are negative. Figure 3.14 summarizes the signs of the components when A lies
in the various quadrants.

When solving problems, you can specify a vector A either with its components Ax
and Ay or with its magnitude and direction A and !.

! " tan#1 " Ay

Ax
#

A " √Ax 

2 % Ay 

2

Ay " A sin !

Ax " A cos !

#1
3A
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y

x

A

O

Ay

Ax

θ

(a)

y

x

A

O Ax

θ

(b)

Ay

Figure 3.13 (a) A vector A lying in
the xy plane can be represented by
its component vectors Ax and Ay .
(b) The y component vector Ay can
be moved to the right so that it
adds to Ax . The vector sum of the
component vectors is A. These
three vectors form a right triangle.

! PITFALL PREVENTION
3.2 Component Vectors

versus Components
The vectors Ax and Ay are the
component vectors of A. These
should not be confused with the
scalars Ax and Ay , which we shall
always refer to as the components
of A.

Quick Quiz 3.5 Choose the correct response to make the sentence true: A
component of a vector is (a) always, (b) never, or (c) sometimes larger than the magni-
tude of the vector.

y

x

Ax  positive

Ay  positive

Ax  positive
Ay  negative

Ax  negative

Ay  positive

Ax  negative
Ay  negative

Figure 3.14 The signs of the com-
ponents of a vector A depend on
the quadrant in which the vector is
located.

Components of the vector A

Suppose you are working a physics problem that requires resolving a vector into its
components. In many applications it is convenient to express the components in a co-
ordinate system having axes that are not horizontal and vertical but are still perpendic-
ular to each other. If you choose reference axes or an angle other than the axes and
angle shown in Figure 3.13, the components must be modified accordingly. Suppose a



vector B makes an angle !( with the x( axis defined in Figure 3.15. The components of
B along the x( and y( axes are Bx( " B cos !( and By( " B sin !(, as specified by Equa-
tions 3.8 and 3.9. The magnitude and direction of B are obtained from expressions
equivalent to Equations 3.10 and 3.11. Thus, we can express the components of a
vector in any coordinate system that is convenient for a particular situation.

Unit Vectors

Vector quantities often are expressed in terms of unit vectors. A unit vector is a dimen-
sionless vector having a magnitude of exactly 1. Unit vectors are used to specify a
given direction and have no other physical significance. They are used solely as a conve-
nience in describing a direction in space. We shall use the symbols î , ĵ, and k̂ to repre-
sent unit vectors pointing in the positive x, y, and z directions, respectively. (The “hats” on
the symbols are a standard notation for unit vectors.) The unit vectors î , ĵ, and k̂ form a
set of mutually perpendicular vectors in a right-handed coordinate system, as shown in
Figure 3.16a. The magnitude of each unit vector equals 1; that is, ! î! = ! ĵ ! = ! k̂! = 1.

Consider a vector A lying in the xy plane, as shown in Figure 3.16b. The product
of the component Ax and the unit vector î is the vector Ax î , which lies on the x axis
and has magnitude !Ax !. (The vector Ax î is an alternative representation of vector
Ax.) Likewise, Ay ĵ is a vector of magnitude !Ay ! lying on the y axis. (Again, vector Ay ĵ
is an alternative representation of vector Ay.) Thus, the unit–vector notation for the
vector A is

A " Ax î % Ay ĵ (3.12)

For example, consider a point lying in the xy plane and having Cartesian coordinates
(x, y), as in Figure 3.17. The point can be specified by the position vector r, which in
unit–vector form is given by

r " x î % y ĵ (3.13)

This notation tells us that the components of r are the lengths x and y.
Now let us see how to use components to add vectors when the graphical method is

not sufficiently accurate. Suppose we wish to add vector B to vector A in Equation 3.12,
where vector B has components Bx and By. All we do is add the x and y components
separately. The resultant vector R " A % B is therefore

R " (Ax î % Ay ĵ) % (Bx î % By ĵ)
or

R " (Ax % Bx) î % (Ay % By) ĵ (3.14)

Because R " Rx î % Ry ĵ, we see that the components of the resultant vector are

Rx " Ax % Bx

Ry " Ay % By

(3.15)
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Active Figure 3.16 (a) The unit
vectors î , ĵ, and k̂ are directed
along the x, y, and z axes, respec-
tively. (b) Vector A " Ax î % Ay ĵ ly-
ing in the xy plane has components
Ax and Ay. 

x

y

z

(a)

y

x

(b)

A

ĵ
î

k̂

A y ĵ

Ax î

y

x
O

r

(x,y)

Figure 3.17 The point whose Cartesian coordinates 
are (x, y) can be represented by the position vector 
r " x î % y ĵ.

Figure 3.15 The component vec-
tors of B in a coordinate system
that is tilted.

x′

y′

B

By′

Bx′

O

θ′

At the Active Figures link
at http://www.pse6.com you
can rotate the coordinate axes
in 3-dimensional space and
view a representation of vector
A in three dimensions.



P R O B L E M - S O LV I N G  H I N T S

Adding Vectors
When you need to add two or more vectors, use this step-by-step procedure:

• Select a coordinate system that is convenient. (Try to reduce the number of
components you need to calculate by choosing axes that line up with as many
vectors as possible.)

• Draw a labeled sketch of the vectors described in the problem.

• Find the x and y components of all vectors and the resultant components (the
algebraic sum of the components) in the x and y directions.

• If necessary, use the Pythagorean theorem to find the magnitude of the
resultant vector and select a suitable trigonometric function to find the angle
that the resultant vector makes with the x axis.

We obtain the magnitude of R and the angle it makes with the x axis from its compo-
nents, using the relationships

(3.16)

(3.17)

We can check this addition by components with a geometric construction, as shown
in Figure 3.18. Remember that you must note the signs of the components when using
either the algebraic or the graphical method.

At times, we need to consider situations involving motion in three component direc-
tions. The extension of our methods to three-dimensional vectors is straightforward. If
A and B both have x, y, and z components, we express them in the form

A " Ax î % Ay ĵ % Az k̂ (3.18)

B " Bx î % By ĵ % Bz k̂ (3.19)

The sum of A and B is

R " (Ax % Bx ) î % (Ay % By ) ĵ % (Az % Bz)k̂ (3.20)

Note that Equation 3.20 differs from Equation 3.14: in Equation 3.20, the resultant vec-
tor also has a z component Rz " Az % B z . If a vector R has x, y, and z components, the 
magnitude of the vector is . The angle !x that R makes with the
x axis is found from the expression cos !x " Rx/R, with similar expressions for the an-
gles with respect to the y and z axes.

 R " √R 2
x % R 2

y % R 2
z  

tan ! "
Ry

Rx
"

Ay % By

Ax % Bx

R " √Rx 

2 % Ry 

2 " √(Ax % Bx)2 % (Ay % By)2
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Quick Quiz 3.6 If at least one component of a vector is a positive number,
the vector cannot (a) have any component that is negative (b) be zero (c) have three
dimensions.

Quick Quiz 3.7 If A % B " 0, the corresponding components of the two vec-
tors A and B must be (a) equal (b) positive (c) negative (d) of opposite sign.

Quick Quiz 3.8 For which of the following vectors is the magnitude of the
vector equal to one of the components of the vector? (a) A " 2î % 5 ĵ (b) B " # 3 ĵ
(c) C " % 5 k̂

Figure 3.18 This geometric con-
struction for the sum of two vectors
shows the relationship between the
components of the resultant R and
the components of the individual
vectors.

y

R B

A
x

Bx

Ay

Ax

Rx

By
Ry

! PITFALL PREVENTION
3.4 Tangents on

Calculators
Generally, the inverse tangent
function on calculators provides
an angle between # 90° and 
% 90°. As a consequence, if the
vector you are studying lies in the
second or third quadrant, the an-
gle measured from the positive x
axis will be the angle your calcu-
lator returns plus 180°.

! PITFALL PREVENTION
3.3 x and y Components
Equations 3.8 and 3.9 associate
the cosine of the angle with the x
component and the sine of the
angle with the y component. This
is true only because we measured
the angle ! with respect to the x
axis, so don’t memorize these
equations. If ! is measured with
respect to the y axis (as in some
problems), these equations will
be incorrect. Think about which
side of the triangle containing
the components is adjacent to
the angle and which side is oppo-
site, and assign the cosine and
sine accordingly.
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Example 3.4 The Resultant Displacement

A particle undergoes three consecutive displacements:
d1 " (15 î % 30 ĵ % 12k̂) cm, d2 " (23 î # 14 ĵ # 5.0k̂) cm
and d3 " (# 13 î % 15 ĵ) cm. Find the components of the
resultant displacement and its magnitude.

Solution Three-dimensional displacements are more diffi-
cult to imagine than those in two dimensions, because the
latter can be drawn on paper. For this problem, let us concep-
tualize that you start with your pencil at the origin of a piece
of graph paper on which you have drawn x and y axes. Move
your pencil 15 cm to the right along the x axis, then 30 cm
upward along the y axis, and then 12 cm vertically away from
the graph paper. This provides the displacement described
by d1. From this point, move your pencil 23 cm to the right
parallel to the x axis, 14 cm parallel to the graph paper in
the # y direction, and then 5.0 cm vertically downward to-
ward the graph paper. You are now at the displacement
from the origin described by d1 % d2. From this point, move
your pencil 13 cm to the left in the # x direction, and (fi-
nally!) 15 cm parallel to the graph paper along the y axis.

Your final position is at a displacement d1 % d2 % d3 from
the origin.

Despite the difficulty in conceptualizing in three dimen-
sions, we can categorize this problem as a plug-in problem due
to the careful bookkeeping methods that we have developed
for vectors. The mathematical manipulation keeps track of
this motion along the three perpendicular axes in an orga-
nized, compact way:

R " d1 % d2 % d3

" (15 % 23 # 13) î cm % (30 # 14 % 15) ĵ cm
% (12 # 5.0 % 0)k̂ cm

" (25 î % 31 ĵ % 7.0k̂) cm

The resultant displacement has components Rx " 25 cm,
Ry " 31 cm, and Rz " 7.0 cm. Its magnitude is

40 cm" √(25 cm)2 % (31 cm)2 % (7.0 cm)2 "

R " √R x
2 % R y

2 % Rz
2

Example 3.3 The Sum of Two Vectors

Find the sum of two vectors A and B lying in the xy plane
and given by

A " (2.0 î % 2.0 ĵ) m and B " (2.0 î # 4.0 ĵ) m

Solution You may wish to draw the vectors to conceptualize
the situation. We categorize this as a simple plug-in problem.
Comparing this expression for A with the general expres-
sion A " Ax î % Ay ĵ, we see that Ax " 2.0 m and Ay " 2.0 m.
Likewise, Bx " 2.0 m and By " # 4.0 m. We obtain the resul-
tant vector R, using Equation 3.14:

R " A % B " (2.0 % 2.0) î m % (2.0 # 4.0) ĵ m

" (4.0 î # 2.0 ĵ) m

or

Rx " 4.0 m Ry " # 2.0 m

The magnitude of R is found using Equation 3.16:

We can find the direction of R from Equation 3.17:

Your calculator likely gives the answer # 27° for ! "
tan#1(# 0.50). This answer is correct if we interpret it to
mean 27° clockwise from the x axis. Our standard form has
been to quote the angles measured counterclockwise from 

the % x axis, and that angle for this vector is  ! " 333° .

tan ! "
Ry

Rx
"

#2.0 m
4.0 m

" #0.50

4.5 m" 

R " √Rx
2 %R y

2 " √(4.0 m)2 % (#2.0 m)2 " √20 m

Example 3.5 Taking a Hike

A hiker begins a trip by first walking 25.0 km southeast from
her car. She stops and sets up her tent for the night. On the
second day, she walks 40.0 km in a direction 60.0° north of
east, at which point she discovers a forest ranger’s tower.

(A) Determine the components of the hiker’s displacement
for each day.

Solution We conceptualize the problem by drawing a sketch as
in Figure 3.19. If we denote the displacement vectors on the
first and second days by A and B, respectively, and use the car
as the origin of coordinates, we obtain the vectors shown in
Figure 3.19. Drawing the resultant R, we can now categorize this
as a problem we’ve solved before—an addition of two vectors.
This should give you a hint of the power of categorization—
many new problems are very similar to problems that we have
already solved if we are careful to conceptualize them.

We will analyze this problem by using our new knowledge
of vector components. Displacement A has a magnitude of
25.0 km and is directed 45.0° below the positive x axis. From
Equations 3.8 and 3.9, its components are

The negative value of Ay indicates that the hiker walks in the
negative y direction on the first day. The signs of Ax and Ay
also are evident from Figure 3.19.

The second displacement B has a magnitude of 40.0 km
and is 60.0° north of east. Its components are

#17.7 kmAy " A sin(#45.0$) " (25.0 km)(#0.707) "

17.7 kmAx " A cos (#45.0$) " (25.0 km)(0.707) "

Interactive



Finally, displacement c, whose magnitude is 195 km, has the
components

cx " c cos(180$) " (195 km)(# 1) " # 195 km

cy " c sin(180$) " 0

Therefore, the components of the position vector R from
the starting point to city C are

Rx " ax % bx % cx " 152 km # 52.3 km # 195 km

Ry " ay % by % cy " 87.5 km % 144 km % 0 " 232 km

#95.3 km"

Solution The resultant displacement for the trip R " A % B
has components given by Equation 3.15:

In unit–vector form, we can write the total displacement as

Using Equations 3.16 and 3.17, we find that the vector R
has a magnitude of 41.3 km and is directed 24.1° north of
east.

Let us finalize. The units of R are km, which is reason-
able for a displacement. Looking at the graphical represen-
tation in Figure 3.19, we estimate that the final position of
the hiker is at about (38 km, 17 km) which is consistent with
the components of R in our final result. Also, both compo-
nents of R are positive, putting the final position in the first
quadrant of the coordinate system, which is also consistent
with Figure 3.19.

(37.7 î % 16.9 ĵ) kmR "

16.9 kmRy  " Ay % By " #17.7 km % 34.6 km "

37.7 kmRx " Ax % Bx " 17.7 km % 20.0 km "
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Figure 3.19 (Example 3.5) The total displace-
ment of the hiker is the vector R " A % B.
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Example 3.6 Let’s Fly Away!
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(B) Determine the components of the hiker’s resultant dis-
placement R for the trip. Find an expression for R in terms
of unit vectors.

34.6 kmBy " B sin 60.0$ " (40.0 km)(0.866) "

20.0 kmBx " B cos 60.0$ " (40.0 km)(0.500) "

A commuter airplane takes the route shown in Figure 3.20.
First, it flies from the origin of the coordinate system shown
to city A, located 175 km in a direction 30.0° north of east.
Next, it flies 153 km 20.0° west of north to city B. Finally, it
flies 195 km due west to city C. Find the location of city C
relative to the origin.

Solution Once again, a drawing such as Figure 3.20 allows us
to conceptualize the problem. It is convenient to choose the co-
ordinate system shown in Figure 3.20, where the x axis points
to the east and the y axis points to the north. Let us denote the
three consecutive displacements by the vectors a, b, and c.

We can now categorize this problem as being similar to
Example 3.5 that we have already solved. There are two pri-
mary differences. First, we are adding three vectors instead
of two. Second, Example 3.5 guided us by first asking for the
components in part (A). The current Example has no such
guidance and simply asks for a result. We need to analyze the
situation and choose a path. We will follow the same pattern
that we did in Example 3.5, beginning with finding the com-
ponents of the three vectors a, b, and c. Displacement a has
a magnitude of 175 km and the components

Displacement b, whose magnitude is 153 km, has the com-
ponents

by  " b sin(110$) " (153 km)(0.940) " 144 km

bx " b cos(110$) " (153 km)(#0.342) " #52.3 km

ay  " a sin(30.0$) " (175 km)(0.500) " 87.5 km

ax " a cos(30.0$) " (175 km)(0.866) " 152 km

Figure 3.20 (Example 3.6) The airplane starts
at the origin, flies first to city A, then to city B,
and finally to city C.

Investigate this situation at the Interactive Worked Example link at http://www.pse6.com.
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Scalar quantities are those that have only a numerical value and no associated direc-
tion. Vector quantities have both magnitude and direction and obey the laws of vector
addition. The magnitude of a vector is always a positive number.

When two or more vectors are added together, all of them must have the same
units and all of them must be the same type of quantity. We can add two vectors A and
B graphically. In this method (Fig. 3.6), the resultant vector R " A % B runs from the
tail of A to the tip of B.

A second method of adding vectors involves components of the vectors. The x com-
ponent Ax of the vector A is equal to the projection of A along the x axis of a coordi-
nate system, as shown in Figure 3.13, where Ax " A cos !. The y component Ay of A is
the projection of A along the y axis, where Ay " A sin !. Be sure you can determine
which trigonometric functions you should use in all situations, especially when ! is de-
fined as something other than the counterclockwise angle from the positive x axis.

If a vector A has an x component Ax and a y component Ay , the vector can be ex-
pressed in unit–vector form as A " Ax î % Ay ĵ. In this notation, î is a unit vector point-
ing in the positive x direction, and ĵ is a unit vector pointing in the positive y direction.
Because î and ĵ are unit vectors, ! î ! = ! ĵ ! = 1.

We can find the resultant of two or more vectors by resolving all vectors into their x
and y components, adding their resultant x and y components, and then using the
Pythagorean theorem to find the magnitude of the resultant vector. We can find the
angle that the resultant vector makes with respect to the x axis by using a suitable
trigonometric function.

S U M M A RY

1. Two vectors have unequal magnitudes. Can their sum be
zero? Explain.

2. Can the magnitude of a particle’s displacement be greater
than the distance traveled? Explain.

3. The magnitudes of two vectors A and B are A " 5 units
and B " 2 units. Find the largest and smallest values possi-
ble for the magnitude of the resultant vector R " A % B .

4. Which of the following are vectors and which are not:
force, temperature, the volume of water in a can, the rat-
ings of a TV show, the height of a building, the velocity of
a sports car, the age of the Universe?

A vector A lies in the xy plane. For what orientations of A
will both of its components be negative? For what orienta-
tions will its components have opposite signs?

5.

Q U E S T I O N S

In unit–vector notation,   R " (# 95.3 î % 232 ĵ) km . Using 

Equations 3.16 and 3.17, we find that the vector R has a
magnitude of 251 km and is directed 22.3° west of north.

To finalize the problem, note that the airplane can reach
city C from the starting point by first traveling 95.3 km due
west and then by traveling 232 km due north. Or it could
follow a straight-line path to C by flying a distance R "
251 km in a direction 22.3° west of north.

What If? After landing in city C, the pilot wishes to return to
the origin along a single straight line. What are the compo-
nents of the vector representing this displacement? What
should the heading of the plane be?

Answer The desired vector H (for Home!) is simply the
negative of vector R:

H " # R " (% 95.3 î # 232 ĵ) km

The heading is found by calculating the angle that the vec-
tor makes with the x axis:

This gives a heading angle of ! " # 67.7°, or 67.7° south of
east.

tan ! "
Ry

Rx
"

#232 m
95.3 m

" #2.43

Take a practice test for
this chapter by clicking on
the Practice Test link at
http://www.pse6.com.



Problems 71

6. A book is moved once around the perimeter of a tabletop
with the dimensions 1.0 m ) 2.0 m. If the book ends up
at its initial position, what is its displacement? What is the
distance traveled?

7. While traveling along a straight interstate highway you no-
tice that the mile marker reads 260. You travel until you
reach mile marker 150 and then retrace your path to the
mile marker 175. What is the magnitude of your resultant
displacement from mile marker 260?

8. If the component of vector A along the direction of vector
B is zero, what can you conclude about the two vectors?

9. Can the magnitude of a vector have a negative value?
Explain.

10. Under what circumstances would a nonzero vector lying
in the xy plane have components that are equal in magni-
tude?

11. If A " B, what can you conclude about the components of
A and B?

Is it possible to add a vector quantity to a scalar quantity?
Explain.

13. The resolution of vectors into components is equivalent to
replacing the original vector with the sum of two vectors,
whose sum is the same as the original vector. There are an
infinite number of pairs of vectors that will satisfy this con-
dition; we choose that pair with one vector parallel to the
x axis and the second parallel to the y axis. What difficul-
ties would be introduced by defining components relative
to axes that are not perpendicular—for example, the
x axis and a y axis oriented at 45° to the x axis?

14. In what circumstance is the x component of a vector given
by the magnitude of the vector times the sine of its direc-
tion angle?

12.

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide

= coached solution with hints available at http://www.pse6.com = computer useful in solving problem

= paired numerical and symbolic problems

P R O B L E M S

Section 3.1 Coordinate Systems

The polar coordinates of a point are r " 5.50 m and
! " 240°. What are the Cartesian coordinates of this point?

2. Two points in a plane have polar coordinates (2.50 m,
30.0°) and (3.80 m, 120.0°). Determine (a) the Cartesian
coordinates of these points and (b) the distance between
them.

A fly lands on one wall of a room. The lower left-hand cor-
ner of the wall is selected as the origin of a two-dimen-
sional Cartesian coordinate system. If the fly is located at
the point having coordinates (2.00, 1.00) m, (a) how far is
it from the corner of the room? (b) What is its location in
polar coordinates?

4. Two points in the xy plane have Cartesian coordinates
(2.00, # 4.00) m and (# 3.00, 3.00) m. Determine (a) the
distance between these points and (b) their polar coordi-
nates.

5. If the rectangular coordinates of a point are given by (2, y)
and its polar coordinates are (r, 30°), determine y and r.

6. If the polar coordinates of the point (x, y) are (r, !), deter-
mine the polar coordinates for the points: (a) (# x, y ),
(b) (# 2x, #2y), and (c) (3x, # 3y).

Section 3.2 Vector and Scalar Quantities

Section 3.3 Some Properties of Vectors

A surveyor measures the distance across a straight river by
the following method: starting directly across from a tree

7.

3.

1.

on the opposite bank, she walks 100 m along the river-
bank to establish a baseline. Then she sights across to the
tree. The angle from her baseline to the tree is 35.0°. How
wide is the river?

8. A pedestrian moves 6.00 km east and then 13.0 km north.
Find the magnitude and direction of the resultant dis-
placement vector using the graphical method.

9. A plane flies from base camp to lake A, 280 km away, in a
direction of 20.0° north of east. After dropping off sup-
plies it flies to lake B, which is 190 km at 30.0° west of
north from lake A. Graphically determine the distance
and direction from lake B to the base camp.

10. Vector A has a magnitude of 8.00 units and makes an an-
gle of 45.0° with the positive x axis. Vector B also has a
magnitude of 8.00 units and is directed along the negative
x axis. Using graphical methods, find (a) the vector sum
A % B and (b) the vector difference A # B.

A skater glides along a circular path of radius 5.00 m.
If he coasts around one half of the circle, find (a) the 
magnitude of the displacement vector and (b) how far the
person skated. (c) What is the magnitude of the displace-
ment if he skates all the way around the circle?

12. A force F1 of magnitude 6.00 units acts at the origin in a
direction 30.0° above the positive x axis. A second force F2
of magnitude 5.00 units acts at the origin in the direction
of the positive y axis. Find graphically the magnitude and
direction of the resultant force F1 % F2.

13. Arbitrarily define the “instantaneous vector height” of a
person as the displacement vector from the point halfway

11.
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Figure P3.15 Problems 15 and 37.

Figure P3.18
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between his or her feet to the top of the head. Make an or-
der-of-magnitude estimate of the total vector height of all
the people in a city of population 100 000 (a) at 10 o’clock
on a Tuesday morning, and (b) at 5 o’clock on a Saturday
morning. Explain your reasoning.

14. A dog searching for a bone walks 3.50 m south, then runs
8.20 m at an angle 30.0° north of east, and finally walks
15.0 m west. Find the dog’s resultant displacement vector
using graphical techniques.

Each of the displacement vectors A and B shown in
Fig. P3.15 has a magnitude of 3.00 m. Find graphically (a)
A % B, (b) A # B, (c) B # A, (d) A # 2B. Report all angles
counterclockwise from the positive x axis.

15.

A vector has an x component of # 25.0 units and a y
component of 40.0 units. Find the magnitude and direc-
tion of this vector.

20. A person walks 25.0° north of east for 3.10 km. How far
would she have to walk due north and due east to arrive at
the same location?

Obtain expressions in component form for the position
vectors having the following polar coordinates: (a) 12.8 m,
150° (b) 3.30 cm, 60.0° (c) 22.0 in., 215°.

22. A displacement vector lying in the xy plane has a magni-
tude of 50.0 m and is directed at an angle of 120° to the
positive x axis. What are the rectangular components of
this vector?

23. A girl delivering newspapers covers her route by traveling
3.00 blocks west, 4.00 blocks north, and then 6.00 blocks
east. (a) What is her resultant displacement? (b) What is
the total distance she travels?

24. In 1992, Akira Matsushima, from Japan, rode a unicycle
across the United States, covering about 4 800 km in six
weeks. Suppose that, during that trip, he had to find his
way through a city with plenty of one-way streets. In the
city center, Matsushima had to travel in sequence 280 m
north, 220 m east, 360 m north, 300 m west, 120 m south,
60.0 m east, 40.0 m south, 90.0 m west (road construction)
and then 70.0 m north. At that point, he stopped to rest.
Meanwhile, a curious crow decided to fly the distance
from his starting point to the rest location directly (“as the
crow flies”). It took the crow 40.0 s to cover that distance.
Assuming the velocity of the crow was constant, find its
magnitude and direction.

25. While exploring a cave, a spelunker starts at the entrance
and moves the following distances. She goes 75.0 m north,
250 m east, 125 m at an angle 30.0° north of east, and 
150 m south. Find the resultant displacement from the
cave entrance.

26. A map suggests that Atlanta is 730 miles in a direction of
5.00° north of east from Dallas. The same map shows that
Chicago is 560 miles in a direction of 21.0° west of north
from Atlanta. Modeling the Earth as flat, use this informa-
tion to find the displacement from Dallas to Chicago.

27. Given the vectors A " 2.00 î % 6.00 ĵ and B " 3.00 î #
2.00 ĵ, (a) draw the vector sum C " A % B and the vector
difference D " A # B. (b) Calculate C and D, first in
terms of unit vectors and then in terms of polar coordi-
nates, with angles measured with respect to the % x axis.

28. Find the magnitude and direction of the resultant of three
displacements having rectangular components (3.00,
2.00) m, (# 5.00, 3.00) m, and (6.00, 1.00) m.

A man pushing a mop across a floor causes it to undergo
two displacements. The first has a magnitude of 150 cm
and makes an angle of 120° with the positive x axis. The re-
sultant displacement has a magnitude of 140 cm and is di-
rected at an angle of 35.0° to the positive x axis. Find the
magnitude and direction of the second displacement.

30. Vector A has x and y components of # 8.70 cm and 15.0
cm, respectively; vector B has x and y components of 13.2
cm and # 6.60 cm, respectively. If A # B % 3C " 0, what
are the components of C?

29.

21.

19.

16. Three displacements are A " 200 m, due south; B "
250 m, due west; C " 150 m, 30.0° east of north. Con-
struct a separate diagram for each of the following possi-
ble ways of adding these vectors: R1 " A % B % C; R2 "
B % C % A; R3 " C % B % A.

A roller coaster car moves 200 ft horizontally, and then
rises 135 ft at an angle of 30.0° above the horizontal. It
then travels 135 ft at an angle of 40.0° downward. What is
its displacement from its starting point? Use graphical
techniques.

Section 3.4 Components of a Vector and Unit Vectors
18. Find the horizontal and vertical components of the 100-m

displacement of a superhero who flies from the top of a
tall building following the path shown in Fig. P3.18.

17.
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through a quarter of a circle of radius 3.70 cm that lies in
a north-south vertical plane. Find (a) the magnitude of
the total displacement of the object, and (b) the angle the
total displacement makes with the vertical.

Figure P3.35

y

x
75.0˚ 60.0˚

F2 =
       80.0 N

F1 =
      120 N

Consider the two vectors A " 3 î # 2 ĵ and B " # î # 4 ĵ.
Calculate (a) A % B, (b) A # B, (c) !A % B !, (d) !A # B !,
and (e) the directions of A % B and A # B.

32. Consider the three displacement vectors A " (3 î # 3 ĵ) m,
B " ( î # 4 ĵ) m, and C " (# 2î % 5 ĵ) m. Use the compo-
nent method to determine (a) the magnitude and direc-
tion of the vector D " A % B % C, (b) the magnitude and
direction of E " # A # B % C.

A particle undergoes the following consecutive displace-
ments: 3.50 m south, 8.20 m northeast, and 15.0 m west.
What is the resultant displacement?

34. In a game of American football, a quarterback takes the
ball from the line of scrimmage, runs backward a distance
of 10.0 yards, and then sideways parallel to the line of
scrimmage for 15.0 yards. At this point, he throws a for-
ward pass 50.0 yards straight downfield perpendicular to
the line of scrimmage. What is the magnitude of the foot-
ball’s resultant displacement?

35. The helicopter view in Fig. P3.35 shows two people pulling
on a stubborn mule. Find (a) the single force that is equiv-
alent to the two forces shown, and (b) the force that a
third person would have to exert on the mule to make the
resultant force equal to zero. The forces are measured in
units of newtons (abbreviated N).

33.

31.

36. A novice golfer on the green takes three strokes to sink the
ball. The successive displacements are 4.00 m to the north,
2.00 m northeast, and 1.00 m at 30.0° west of south. Start-
ing at the same initial point, an expert golfer could make
the hole in what single displacement?

37. Use the component method to add the vectors A and B
shown in Figure P3.15. Express the resultant A % B in
unit–vector notation.

38. In an assembly operation illustrated in Figure P3.38, a ro-
bot moves an object first straight upward and then also to
the east, around an arc forming one quarter of a circle of
radius 4.80 cm that lies in an east-west vertical plane. The
robot then moves the object upward and to the north,

Figure P3.38

39. Vector B has x, y, and z components of 4.00, 6.00, and 3.00
units, respectively. Calculate the magnitude of B and the
angles that B makes with the coordinate axes.

40. You are standing on the ground at the origin of a coordi-
nate system. An airplane flies over you with constant velocity
parallel to the x axis and at a fixed height of 7.60 ) 103 m.
At time t " 0 the airplane is directly above you, so that the
vector leading from you to it is P0 " (7.60 ) 103 m)ĵ. At
t " 30.0 s the position vector leading from you to the
airplane is P30 " (8.04 ) 103 m)î % (7.60 ) 103 m)ĵ. De-
termine the magnitude and orientation of the airplane’s po-
sition vector at t " 45.0 s.

The vector A has x, y, and z components of 8.00, 12.0, and
# 4.00 units, respectively. (a) Write a vector expression for
A in unit–vector notation. (b) Obtain a unit–vector expres-
sion for a vector B one fourth the length of A pointing in
the same direction as A. (c) Obtain a unit–vector expres-
sion for a vector C three times the length of A pointing in
the direction opposite the direction of A.

42. Instructions for finding a buried treasure include the fol-
lowing: Go 75.0 paces at 240°, turn to 135° and walk 125
paces, then travel 100 paces at 160°. The angles are mea-
sured counterclockwise from an axis pointing to the east,
the % x direction. Determine the resultant displacement
from the starting point.

43. Given the displacement vectors A " (3 î # 4 ĵ % 4k̂) m and
B " (2 î % 3 ĵ # 7 k̂) m, find the magnitudes of the vectors
(a) C " A % B and (b) D " 2A # B, also expressing each
in terms of its rectangular components.

44. A radar station locates a sinking ship at range 17.3 km and
bearing 136° clockwise from north. From the same station
a rescue plane is at horizontal range 19.6 km, 153° clock-
wise from north, with elevation 2.20 km. (a) Write the po-
sition vector for the ship relative to the plane, letting î
represent east, ĵ north, and k̂ up. (b) How far apart are the
plane and ship? 

41.



45. As it passes over Grand Bahama Island, the eye of a hurri-
cane is moving in a direction 60.0° north of west with a
speed of 41.0 km/h. Three hours later, the course of the
hurricane suddenly shifts due north, and its speed slows to
25.0 km/h. How far from Grand Bahama is the eye 4.50 h
after it passes over the island?

46. (a) Vector E has magnitude 17.0 cm and is directed 27.0°
counterclockwise from the % x axis. Express it in unit–
vector notation. (b) Vector F has magnitude 17.0 cm and
is directed 27.0° counterclockwise from the % y axis.
Express it in unit–vector notation. (c) Vector G has magni-
tude 17.0 cm and is directed 27.0° clockwise from the # y
axis. Express it in unit–vector notation.

Vector A has a negative x component 3.00 units in length
and a positive y component 2.00 units in length. (a) Deter-
mine an expression for A in unit–vector notation. 
(b) Determine the magnitude and direction of A.
(c) What vector B when added to A gives a resultant 
vector with no x component and a negative y component
4.00 units in length?

48. An airplane starting from airport A flies 300 km east, then
350 km at 30.0° west of north, and then 150 km north to
arrive finally at airport B. (a) The next day, another plane
flies directly from A to B in a straight line. In what direc-
tion should the pilot travel in this direct flight? (b) How
far will the pilot travel in this direct flight? Assume there is
no wind during these flights.

Three displacement vectors of a croquet ball are49.

47.

52. Two vectors A and B have precisely equal magnitudes. In
order for the magnitude of A % B to be larger than the
magnitude of A # B by the factor n, what must be the an-
gle between them?

53. A vector is given by R " 2 î % ĵ % 3 k̂. Find (a) the mag-
nitudes of the x, y, and z components, (b) the magnitude
of R, and (c) the angles between R and the x, y, and z
axes.

54. The biggest stuffed animal in the world is a snake 420 m
long, constructed by Norwegian children. Suppose the
snake is laid out in a park as shown in Figure P3.54, form-
ing two straight sides of a 105° angle, with one side 240 m
long. Olaf and Inge run a race they invent. Inge runs di-
rectly from the tail of the snake to its head and Olaf starts
from the same place at the same time but runs along the
snake. If both children run steadily at 12.0 km/h, Inge
reaches the head of the snake how much earlier than
Olaf?

74 CHAPTE R  3 •  Vectors

Figure P3.54

Figure P3.49
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50. If A " (6.00 î # 8.00 ĵ ) units, B " (# 8.00 î % 3.00 ĵ ) units,
and C " (26.0 î % 19.0 ĵ ) units, determine a and b such
that aA % bB % C " 0.

Additional Problems

51. Two vectors A and B have precisely equal magnitudes. In
order for the magnitude of A % B to be one hundred
times larger than the magnitude of A # B, what must be
the angle between them?

55. An air-traffic controller observes two aircraft on his radar
screen. The first is at altitude 800 m, horizontal distance
19.2 km, and 25.0° south of west. The second aircraft is at
altitude 1 100 m, horizontal distance 17.6 km, and 20.0°
south of west. What is the distance between the two air-
craft? (Place the x axis west, the y axis south, and the z axis
vertical.)

56. A ferry boat transports tourists among three islands. It sails
from the first island to the second island, 4.76 km away, in
a direction 37.0° north of east. It then sails from the sec-
ond island to the third island in a direction 69.0° west of
north. Finally it returns to the first island, sailing in a di-
rection 28.0° east of south. Calculate the distance between
(a) the second and third islands (b) the first and third
islands.

57. The rectangle shown in Figure P3.57 has sides parallel to
the x and y axes. The position vectors of two corners are 
A " 10.0 m at 50.0° and B " 12.0 m at 30.0°. (a) Find the

shown in Figure P3.49, where !A ! " 20.0 units, !B ! " 40.0
units, and !C ! " 30.0 units. Find (a) the resultant in
unit–vector notation and (b) the magnitude and direction
of the resultant displacement.



(30.0 m, # 20.0 m), (60.0 m, 80.0 m), (# 10.0 m, # 10.0 m),
(40.0 m, # 30.0 m), and (# 70.0 m, 60.0 m), all measured
relative to some origin, as in Figure P3.62. His ship’s log 
instructs you to start at tree A and move toward tree B, but 
to cover only one half the distance between A and B. Then
move toward tree C, covering one third the distance be-
tween your current location and C. Next move toward D,
covering one fourth the distance between where you are 
and D. Finally move towards E, covering one fifth the dis-
tance between you and E, stop, and dig. (a) Assume that 
you have correctly determined the order in which the pi-
rate labeled the trees as A, B, C, D, and E, as shown in the
figure. What are the coordinates of the point where his 
treasure is buried? (b) What if you do not really know the
way the pirate labeled the trees? Rearrange the order of the
trees [for instance, B(30 m, # 20 m), A(60 m, 80 m),
E(# 10 m, # 10 m), C(40 m, # 30 m), and D(# 70 m, 
60 m)] and repeat the calculation to show that the answer
does not depend on the order in which the trees are 
labeled.

perimeter of the rectangle. (b) Find the magnitude and
direction of the vector from the origin to the upper right
corner of the rectangle.
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Figure P3.57

Figure P3.59
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63. Consider a game in which N children position themselves

at equal distances around the circumference of a circle. At
the center of the circle is a rubber tire. Each child holds a
rope attached to the tire and, at a signal, pulls on his rope.
All children exert forces of the same magnitude F. In the
case N " 2, it is easy to see that the net force on the tire
will be zero, because the two oppositely directed force vec-
tors add to zero. Similarly, if N " 4, 6, or any even integer,
the resultant force on the tire must be zero, because the
forces exerted by each pair of oppositely positioned chil-
dren will cancel. When an odd number of children are
around the circle, it is not so obvious whether the total
force on the central tire will be zero. (a) Calculate the net
force on the tire in the case N " 3, by adding the compo-
nents of the three force vectors. Choose the x axis to lie
along one of the ropes. (b) What If? Determine the net
force for the general case where N is any integer, odd or
even, greater than one. Proceed as follows: Assume that
the total force is not zero. Then it must point in some par-
ticular direction. Let every child move one position clock-
wise. Give a reason that the total force must then have a di-
rection turned clockwise by 360°/N. Argue that the total
force must nevertheless be the same as before. Explain
that the contradiction proves that the magnitude of the
force is zero. This problem illustrates a widely useful tech-
nique of proving a result “by symmetry ”—by using a bit 
of the mathematics of group theory. The particular situation

58. Find the sum of these four vector forces: 12.0 N to the
right at 35.0° above the horizontal, 31.0 N to the left at
55.0° above the horizontal, 8.40 N to the left at 35.0° be-
low the horizontal, and 24.0 N to the right at 55.0° below
the horizontal. Follow these steps: Make a drawing of this
situation and select the best axes for x and y so you have
the least number of components. Then add the vectors by
the component method.

A person going for a walk follows the path shown in Fig.
P3.59. The total trip consists of four straight-line paths. At
the end of the walk, what is the person’s resultant displace-
ment measured from the starting point?

59.

60. The instantaneous position of an object is specified by its
position vector r leading from a fixed origin to the loca-
tion of the point object. Suppose that for a certain object
the position vector is a function of time, given by 
r " 4 î % 3 ĵ # 2t k̂, where r is in meters and t is in seconds.
Evaluate dr/dt. What does it represent about the object?

61. A jet airliner, moving initially at 300 mi/h to the east, sud-
denly enters a region where the wind is blowing at 100 mi/h
toward the direction 30.0° north of east. What are the new
speed and direction of the aircraft relative to the ground?

62. Long John Silver, a pirate, has buried his treasure on an is-
land with five trees, located at the following points: 

Figure P3.62
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is actually encountered in physics and chemistry when an
array of electric charges (ions) exerts electric forces on an
atom at a central position in a molecule or in a crystal.

64. A rectangular parallelepiped has dimensions a, b, and c, as
in Figure P3.64. (a) Obtain a vector expression for the
face diagonal vector R1. What is the magnitude of this vec-
tor? (b) Obtain a vector expression for the body diagonal
vector R2. Note that R1, ck̂, and R2 make a right triangle 
and prove that the magnitude of R2 is √a2 % b2 % c2.

67. A point P is described by the coordinates (x, y) with re-
spect to the normal Cartesian coordinate system shown in
Fig. P3.67. Show that (x(, y(), the coordinates of this point
in the rotated coordinate system, are related to (x, y) and
the rotation angle * by the expressions

x( " x cos * % y sin *

y( " # x sin * % y cos *

Figure P3.64

Figure P3.66

Figure P3.67
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65. Vectors A and B have equal magnitudes of 5.00. If the 
sum of A and B is the vector 6.00 ĵ, determine the angle be-
tween A and B.

66. In Figure P3.66 a spider is resting after starting to spin its
web. The gravitational force on the spider is 0.150 newton
down. The spider is supported by different tension forces
in the two strands above it, so that the resultant vector
force on the spider is zero. The two strands are perpendic-
ular to each other, so we have chosen the x and y direc-
tions to be along them. The tension Tx is 0.127 newton.
Find (a) the tension Ty , (b) the angle the x axis makes
with the horizontal, and (c) the angle the y axis makes
with the horizontal.

Answers to Quick Quizzes
3.1 Scalars: (a), (d), (e). None of these quantities has a direc-

tion. Vectors: (b), (c). For these quantities, the direction is
necessary to specify the quantity completely.

3.2 (c). The resultant has its maximum magnitude A % B "
12 % 8 " 20 units when vector A is oriented in the same
direction as vector B. The resultant vector has its mini-
mum magnitude A # B " 12 # 8 " 4 units when vector A
is oriented in the direction opposite vector B.

3.3 (a). The magnitudes will add numerically only if the vec-
tors are in the same direction.

3.4 (b) and (c). In order to add to zero, the vectors must point
in opposite directions and have the same magnitude.

3.5 (b). From the Pythagorean theorem, the magnitude of a
vector is always larger than the absolute value of each com-
ponent, unless there is only one nonzero component, in
which case the magnitude of the vector is equal to the ab-
solute value of that component.

3.6 (b). From the Pythagorean theorem, we see that the mag-
nitude of a vector is nonzero if at least one component is
nonzero.

3.7 (d). Each set of components, for example, the two x com-
ponents Ax and Bx , must add to zero, so the components
must be of opposite sign.

3.8 (c). The magnitude of C is 5 units, the same as the z com-
ponent. Answer (b) is not correct because the magnitude
of any vector is always a positive number while the y com-
ponent of B is negative.
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Motion in Two Dimensions

CHAPTE R OUTL I N E

4.1 The Position, Velocity, and
Acceleration Vectors

4.2 Two-Dimensional Motion with
Constant Acceleration

4.3 Projectile Motion

4.4 Uniform Circular Motion

4.5 Tangential and Radial
Acceleration

4.6 Relative Velocity and Relative
Acceleration

! Lava spews from a volcanic eruption. Notice the parabolic paths of embers projected into
the air. We will find in this chapter that all projectiles follow a parabolic path in the absence
of air resistance. (© Arndt/Premium Stock/PictureQuest)

Chapter 4



In this chapter we explore the kinematics of a particle moving in two dimensions. Know-
ing the basics of two-dimensional motion will allow us to examine—in future chapters—a
wide variety of motions, ranging from the motion of satellites in orbit to the motion of
electrons in a uniform electric field. We begin by studying in greater detail the vector
nature of position, velocity, and acceleration. As in the case of one-dimensional motion,
we derive the kinematic equations for two-dimensional motion from the fundamental
definitions of these three quantities. We then treat projectile motion and uniform circular
motion as special cases of motion in two dimensions. We also discuss the concept of
relative motion, which shows why observers in different frames of reference may measure
different positions, velocities, and accelerations for a given particle.

4.1 The Position, Velocity, and 
Acceleration Vectors

In Chapter 2 we found that the motion of a particle moving along a straight line is
completely known if its position is known as a function of time. Now let us extend this
idea to motion in the xy plane. We begin by describing the position of a particle by its
position vector r, drawn from the origin of some coordinate system to the particle lo-
cated in the xy plane, as in Figure 4.1. At time ti the particle is at point !, described by
position vector ri. At some later time tf it is at point ", described by position vector rf .
The path from ! to " is not necessarily a straight line. As the particle moves from !
to " in the time interval !t " tf # ti, its position vector changes from ri to rf . As we
learned in Chapter 2, displacement is a vector, and the displacement of the particle is
the difference between its final position and its initial position. We now define the dis-
placement vector !r for the particle of Figure 4.1 as being the difference between its
final position vector and its initial position vector:

(4.1)

The direction of !r is indicated in Figure 4.1. As we see from the figure, the magnitude of
!r is less than the distance traveled along the curved path followed by the particle.

As we saw in Chapter 2, it is often useful to quantify motion by looking at the ratio
of a displacement divided by the time interval during which that displacement occurs,
which gives the rate of change of position. In two-dimensional (or three-dimensional)
kinematics, everything is the same as in one-dimensional kinematics except that we
must now use full vector notation rather than positive and negative signs to indicate
the direction of motion.

We define the average velocity of a particle during the time interval !t as the dis-
placement of the particle divided by the time interval:

(4.2)v ! 
!r
!t

!r !  rf # ri

Path of
particle

x

y

! ti

ri

∆r
" t f

rf

O

Figure 4.1 A particle moving in
the xy plane is located with the posi-
tion vector r drawn from the origin
to the particle. The displacement of
the particle as it moves from ! to
" in the time interval !t " tf # ti is
equal to the vector !r " rf # ri.

Displacement vector

Average velocity
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Multiplying or dividing a vector quantity by a positive scalar quantity such as !t
changes only the magnitude of the vector, not its direction. Because displacement is a
vector quantity and the time interval is a positive scalar quantity, we conclude that the
average velocity is a vector quantity directed along !r.

Note that the average velocity between points is independent of the path taken. This is
because average velocity is proportional to displacement, which depends only on the
initial and final position vectors and not on the path taken. As with one-dimensional
motion, we conclude that if a particle starts its motion at some point and returns to
this point via any path, its average velocity is zero for this trip because its displacement
is zero. Figure 4.2 suggests such a situation in a baseball park. When a batter hits a
home run, he runs around the bases and returns to home plate. Thus, his average ve-
locity is zero during this trip. His average speed, however, is not zero.

Consider again the motion of a particle between two points in the xy plane, as
shown in Figure 4.3. As the time interval over which we observe the motion becomes
smaller and smaller, the direction of the displacement approaches that of the line tan-
gent to the path at !. The instantaneous velocity v is defined as the limit of the aver-
age velocity !r/!t as !t approaches zero:

(4.3)

That is, the instantaneous velocity equals the derivative of the position vector with
respect to time. The direction of the instantaneous velocity vector at any point in a par-
ticle’s path is along a line tangent to the path at that point and in the direction of 
motion.

The magnitude of the instantaneous velocity vector v " " v " is called the speed,
which is a scalar quantity.

As a particle moves from one point to another along some path, its instantaneous
velocity vector changes from vi at time ti to vf at time tf . Knowing the velocity at these
points allows us to determine the average acceleration of the particle—the average
acceleration of a particle as it moves is defined as the change in the instantaneous
velocity vector !v divided by the time interval !t during which that change occurs:

(4.4)a ! 
vf # vi

tf # ti
"

!v
!t

a

v ! lim
!t : 0

 
!r
!t

"
dr
dt

Figure 4.2 Bird’s-eye view of a baseball dia-
mond. A batter who hits a home run travels
around the bases, ending up where he began.
Thus, his average velocity for the entire trip is
zero. His average speed, however, is not zero
and is equal to the distance around the bases
divided by the time interval during which he
runs around the bases.M
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Figure 4.3 As a particle moves be-
tween two points, its average veloc-
ity is in the direction of the dis-
placement vector !r. As the end
point of the path is moved from "
to "$ to "%, the respective dis-
placements and corresponding
time intervals become smaller and
smaller. In the limit that the end
point approaches !, !t approaches
zero, and the direction of !r ap-
proaches that of the line tangent to
the curve at !. By definition, the
instantaneous velocity at ! is 
directed along this tangent line.
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Because is the ratio of a vector quantity !v and a positive scalar quantity !t, we con-
clude that average acceleration is a vector quantity directed along !v. As indicated in
Figure 4.4, the direction of !v is found by adding the vector # vi (the negative of vi) to
the vector vf , because by definition !v " vf # vi.

When the average acceleration of a particle changes during different time inter-
vals, it is useful to define its instantaneous acceleration. The instantaneous accelera-
tion a is defined as the limiting value of the ratio !v/!t as !t approaches zero:

(4.5)

In other words, the instantaneous acceleration equals the derivative of the velocity vec-
tor with respect to time.

It is important to recognize that various changes can occur when a particle
accelerates. First, the magnitude of the velocity vector (the speed) may change
with time as in straight-line (one-dimensional) motion. Second, the direction of
the velocity vector may change with time even if its magnitude (speed) remains
constant, as in curved-path (two-dimensional) motion. Finally, both the magni-
tude and the direction of the velocity vector may change simultaneously.

a ! lim
!t : 0

 
!v
!t

"
d v
dt

a

Instantaneous acceleration

Quick Quiz 4.1 Which of the following cannot possibly be accelerating?
(a) An object moving with a constant speed (b) An object moving with a constant
velocity (c) An object moving along a curve.

Quick Quiz 4.2 Consider the following controls in an automobile: gas pedal,
brake, steering wheel. The controls in this list that cause an acceleration of the car are
(a) all three controls (b) the gas pedal and the brake (c) only the brake (d) only the
gas pedal.

x

y

O

! vi

ri

rf

vf

"

–vi

∆v vf

or
vi

∆vvf Figure 4.4 A particle moves
from position ! to position ".
Its velocity vector changes from
vi to vf. The vector diagrams at
the upper right show two ways of
determining the vector !v from
the initial and final velocities.

4.2 Two-Dimensional Motion with 
Constant Acceleration

In Section 2.5, we investigated one-dimensional motion in which the acceleration is
constant because this type of motion is common. Let us consider now two-dimensional
motion during which the acceleration remains constant in both magnitude and direc-
tion. This will also be useful for analyzing some common types of motion.

The position vector for a particle moving in the xy plane can be written

(4.6) r " x î & y ĵ

! PITFALL PREVENTION
4.1 Vector Addition
While the vector addition dis-
cussed in Chapter 3 involves dis-
placement vectors, vector addition
can be applied to any type of 
vector quantity. Figure 4.4, for 
example, shows the addition of
velocity vectors using the graphi-
cal approach.
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where x, y, and r change with time as the particle moves while the unit vectors î  and ĵ
remain constant. If the position vector is known, the velocity of the particle can be ob-
tained from Equations 4.3 and 4.6, which give

(4.7)

Because a is assumed constant, its components ax and ay also are constants. Therefore,
we can apply the equations of kinematics to the x and y components of the velocity vec-
tor. Substituting, from Equation 2.9, vxf " vxi & axt and vyf " vyi & ayt into Equation 4.7
to determine the final velocity at any time t, we obtain

(4.8)

This result states that the velocity of a particle at some time t equals the vector sum of
its initial velocity vi and the additional velocity at acquired at time t as a result of con-
stant acceleration. It is the vector version of Equation 2.9.

Similarly, from Equation 2.12 we know that the x and y coordinates of a particle
moving with constant acceleration are

Substituting these expressions into Equation 4.6 (and labeling the final position
vector rf ) gives

(4.9)

which is the vector version of Equation 2.12. This equation tells us that the position
vector rf is the vector sum of the original position ri, a displacement vit arising from
the initial velocity of the particle and a displacement at 2 resulting from the constant
acceleration of the particle.

Graphical representations of Equations 4.8 and 4.9 are shown in Figure 4.5. Note
from Figure 4.5a that vf is generally not along the direction of either vi or a because
the relationship between these quantities is a vector expression. For the same reason,

1
2

rf " ri & vit & 1
2 at 2

 " (xi î & yi ĵ ) & (vxi î & vyi ĵ )t & 1
2(ax î & ay ĵ )t 2

rf " (xi & vxit & 1
2axt 2) î & (yi & vyit & 1

2ayt 2)ĵ

xf " xi & vxit & 1
2axt2  yf " yi & vyit & 1

2ayt2

 vf " vi & at

 " (vxi î & vyi ĵ )& (ax î & ay ĵ )t

vf  " (vxi & axt)î & (vyi & ayt)ĵ

v "
dr
dt

"
dx
dt

î &
dy
dt

 ĵ " vx î & vy ĵ

y

x

ayt

vyf

vyi

vf

vi

at

vxi axt

vxf

(a)

y

x

yf

yi

rf

vit

vxit

xf

(b)

ayt
21

2

vyit

ri

at21
2

axt
21

2xi

Active Figure 4.5 Vector representations and components of (a) the velocity and (b) the posi-
tion of a particle moving with a constant acceleration a. 

Velocity vector as a function of
time

Position vector as a function of
time

At the Active Figures link
at http://www.pse6.com, you
can investigate the effect of
different initial positions and
velocities on the final position
and velocity (for constant
acceleration).
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Example 4.1 Motion in a Plane

A particle starts from the origin at t " 0 with an initial veloc-
ity having an x component of 20 m/s and a y component
of # 15 m/s. The particle moves in the xy plane with an x
component of acceleration only, given by ax " 4.0 m/s2.

(A) Determine the components of the velocity vector at any
time and the total velocity vector at any time.

Solution After carefully reading the problem, we conceptu-
alize what is happening to the particle. The components of
the initial velocity tell us that the particle starts by moving
toward the right and downward. The x component of veloc-
ity starts at 20 m/s and increases by 4.0 m/s every second.
The y component of velocity never changes from its initial
value of # 15 m/s. We sketch a rough motion diagram of
the situation in Figure 4.6. Because the particle is accelerat-
ing in the & x direction, its velocity component in this direc-
tion will increase, so that the path will curve as shown in the
diagram. Note that the spacing between successive images
increases as time goes on because the speed is increasing.
The placement of the acceleration and velocity vectors in
Figure 4.6 helps us to further conceptualize the situation.

Because the acceleration is constant, we categorize this
problem as one involving a particle moving in two dimen-
sions with constant acceleration. To analyze such a problem,
we use the equations developed in this section. To begin the
mathematical analysis, we set vxi " 20 m/s, vyi " # 15 m/s,
ax " 4.0 m/s2, and ay " 0.

Equations 4.8a give

(1) vxf " vxi & axt " (20 & 4.0t) m/s

(2) vyf " vyi & ayt " #15 m/s & 0 " #15 m/s

Therefore 

We could also obtain this result using Equation 4.8 di-
rectly, noting that a " 4.0 î m/s2 and vi " [20î # 15ĵ] m/s.
To finalize this part, notice that the x component of velocity
increases in time while the y component remains constant;
this is consistent with what we predicted.

(B) Calculate the velocity and speed of the particle at
t " 5.0 s.

Solution With t " 5.0 s, the result from part (A) gives

This result tells us that at t " 5.0 s, vxf " 40 m/s and
vyf " # 15 m/s. Knowing these two components for this two-
dimensional motion, we can find both the direction and the
magnitude of the velocity vector. To determine the angle '
that v makes with the x axis at t " 5.0 s, we use the fact that
tan ' " vyf/vxf :

" 

where the negative sign indicates an angle of 21° below the
positive x axis. The speed is the magnitude of vf :

" 

To finalize this part, we notice that if we calculate vi from the
x and y components of vi, we find that vf ( v i . Is this con-
sistent with our prediction?

43 m/s

vf " " vf " " √v 2
xf & v 2

yf " √(40)2 & (#  15)2 m/s

#  21)

(3)   ' " tan#1# vyf
vxf $ " tan#1##15 m/s

40 m/s $

(40 î # 15 ĵ ) m/svf " %(20 & 4.0(5.0))î # 15ĵ&  m/s "

%(20 & 4.0t)î # 15ĵ & m/svf " vxi î & vyi ĵ "

from Figure 4.5b we see that rf is generally not along the direction of vi or a. Finally,
note that vf and rf are generally not in the same direction.

Because Equations 4.8 and 4.9 are vector expressions, we may write them in compo-
nent form:

(4.8a)

(4.9a)

These components are illustrated in Figure 4.5. The component form of the equations
for vf and rf show us that two-dimensional motion at constant acceleration is equivalent
to two independent motions—one in the x direction and one in the y direction—having
constant accelerations ax and ay.

rf " ri & vit & 1
2at2 'xf " xi & vxit & 1

2axt2 

yf " yi & vyit & 1
2ayt2

vf " vi & at 'vxf " vxi & axt
vyf " vyi & ayt

x
y

Figure 4.6 (Example 4.1) Motion diagram for the particle.
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(C) Determine the x and y coordinates of the particle at any
time t and the position vector at this time.

Solution Because xi " yi " 0 at t " 0, Equation 4.9a gives

Therefore, the position vector at any time t is

(Alternatively, we could obtain rf by applying Equation 4.9
directly, with vf " (20î # 15 ĵ) m/s and a " 4.0î m/s2. Try
it!) Thus, for example, at t " 5.0 s, x " 150 m, y " # 75 m,
and rf " (150î # 75ĵ) m. The magnitude of the displace-
ment of the particle from the origin at t " 5.0 s is the mag-
nitude of rf at this time:

Note that this is not the distance that the particle travels in this
time! Can you determine this distance from the available data?

rf " " rf " " √(150)2 & (#75)2
 m " 170 m

%(20t & 2.0t 2)î # 15t ĵ & m(4)  rf " xf î & yf ĵ "

(#  15t)  myf " vyit "

(20t & 2.0t 2) mxf " vxit & 1
2axt 2 "

To finalize this problem, let us consider a limiting case
for very large values of t in the following What If?

What If? What if we wait a very long time and then observe
the motion of the particle? How would we describe the mo-
tion of the particle for large values of the time?

Answer Looking at Figure 4.6, we see the path of the parti-
cle curving toward the x axis. There is no reason to assume
that this tendency will change, so this suggests that the path
will become more and more parallel to the x axis as time
grows large. Mathematically, let us consider Equations (1)
and (2). These show that the y component of the velocity re-
mains constant while the x component grows linearly with t.
Thus, when t is very large, the x component of the velocity
will be much larger than the y component, suggesting that
the velocity vector becomes more and more parallel to the
x axis.

Equation (3) gives the angle that the velocity vector
makes with the x axis. Notice that ' : 0 as the denomina-
tor (vxf ) becomes much larger than the numerator (vyf ).

Despite the fact that the velocity vector becomes more and
more parallel to the x axis, the particle does not approach a
limiting value of y. Equation (4) shows that both xf and yf con-
tinue to grow with time, although xf grows much faster.

4.3 Projectile Motion

Anyone who has observed a baseball in motion has observed projectile motion. The
ball moves in a curved path, and its motion is simple to analyze if we make two assump-
tions: (1) the free-fall acceleration g is constant over the range of motion and is di-
rected downward,1 and (2) the effect of air resistance is negligible.2 With these as-
sumptions, we find that the path of a projectile, which we call its trajectory, is always a
parabola. We use these assumptions throughout this chapter.

To show that the trajectory of a projectile is a parabola, let us choose our reference
frame such that the y direction is vertical and positive is upward. Because air resistance
is neglected, we know that ay " # g (as in one-dimensional free fall) and that ax " 0.
Furthermore, let us assume that at t " 0, the projectile leaves the origin (xi " yi " 0)
with speed vi , as shown in Figure 4.7. The vector vi makes an angle 'i with the horizon-
tal. From the definitions of the cosine and sine functions we have

Therefore, the initial x and y components of velocity are

(4.10)

Substituting the x component into Equation 4.9a with xi " 0 and ax " 0, we find that

(4.11)xf " vxit " (vi  cos 'i)t

vxi " vi   cos 'i  vyi " vi   sin  'i

cos 'i " vxi/vi  sin 'i " vyi/vi

1 This assumption is reasonable as long as the range of motion is small compared with the radius of
the Earth (6.4 * 106 m). In effect, this assumption is equivalent to assuming that the Earth is flat over
the range of motion considered.
2 This assumption is generally not justified, especially at high velocities. In addition, any spin
imparted to a projectile, such as that applied when a pitcher throws a curve ball, can give rise to some
very interesting effects associated with aerodynamic forces, which will be discussed in Chapter 14.

Assumptions of projectile
motion
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x
vxi

vyi v

vxi

θ
vy v

gvxivy = 0

vxi

vy
v

vi

vyi

vxi

y

θ

θiθ

θiθ!

"

#
$

%

Active Figure 4.7 The parabolic path of a projectile that leaves the origin with
a velocity vi. The velocity vector v changes with time in both magnitude and
direction. This change is the result of acceleration in the negative y direction.
The x component of velocity remains constant in time because there is no accel-
eration along the horizontal direction. The y component of velocity is zero at
the peak of the path.

A welder cuts holes through a heavy
metal construction beam with a hot
torch. The sparks generated in the
process follow parabolic paths. 
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Repeating with the y component and using yi " 0 and ay " # g, we obtain

(4.12)

Next, from Equation 4.11 we find t " xf/(vi cos 'i) and substitute this expression for t
into Equation 4.12; this gives

This equation is valid for launch angles in the range 0 + 'i + ,/2. We have left the
subscripts off the x and y because the equation is valid for any point (x, y) along the
path of the projectile. The equation is of the form y " ax # bx 2, which is the equation
of a parabola that passes through the origin. Thus, we have shown that the trajectory of
a projectile is a parabola. Note that the trajectory is completely specified if both the ini-
tial speed vi and the launch angle 'i are known.

The vector expression for the position vector of the projectile as a function of time
follows directly from Equation 4.9, with a " g:

This expression is plotted in Figure 4.8, for a projectile launched from the origin, so
that ri " 0.

The final position of a particle can be considered to be the superposition of the ini-
tial position ri, the term vit, which is the displacement if no acceleration were present,
and the term gt 2 that arises from the acceleration due to gravity. In other words, if
there were no gravitational acceleration, the particle would continue to move along a
straight path in the direction of vi. Therefore, the vertical distance gt 2 through which
the particle “falls” off the straight-line path is the same distance that a freely falling ob-
ject would fall during the same time interval. 

In Section 4.2, we stated that two-dimensional motion with constant acceleration
can be analyzed as a combination of two independent motions in the x and y direc-
tions, with accelerations ax and ay . Projectile motion is a special case of two-
dimensional motion with constant acceleration and can be handled in this way, with
zero acceleration in the x direction and ay " # g in the y direction. Thus, when ana-
lyzing projectile motion, consider it to be the superposition of two motions:

1
2

1
2

rf " ri & vit & 1
2 gt 2

y " (tan 'i)x # # g
2v 2

i     cos2  'i
$x 2

yf " vyit & 1
2ayt 2 " (vi  sin 'i)t # 1

2gt 2

! PITFALL PREVENTION
4.2 Acceleration at the

Highest Point
As discussed in Pitfall Prevention
2.8, many people claim that the
acceleration of a projectile at
the topmost point of its trajec-
tory is zero. This mistake arises
from confusion between zero
vertical velocity and zero acceler-
ation. If the projectile were to
experience zero acceleration at
the highest point, then its veloc-
ity at that point would not
change—the projectile would
move horizontally at constant
speed from then on! This does
not happen, because the acceler-
ation is NOT zero anywhere
along the trajectory.

At the Active Figures link
at http://www.pse6.com, you
can change launch angle and
initial speed. You can also ob-
serve the changing compo-
nents of velocity along the tra-
jectory of the projectile.
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(1) constant-velocity motion in the horizontal direction and (2) free-fall motion
in the vertical direction. The horizontal and vertical components of a projectile’s
motion are completely independent of each other and can be handled separately, with
time t as the common variable for both components.

Quick Quiz 4.3 Suppose you are running at constant velocity and you wish
to throw a ball such that you will catch it as it comes back down. In what direction
should you throw the ball relative to you? (a) straight up (b) at an angle to the ground
that depends on your running speed (c) in the forward direction.

Quick Quiz 4.4 As a projectile thrown upward moves in its parabolic path
(such as in Figure 4.8), at what point along its path are the velocity and acceleration
vectors for the projectile perpendicular to each other? (a) nowhere (b) the highest
point (c) the launch point.

Quick Quiz 4.5 As the projectile in Quick Quiz 4.4 moves along its path, at
what point are the velocity and acceleration vectors for the projectile parallel to each
other? (a) nowhere (b) the highest point (c) the launch point.

Example 4.2 Approximating Projectile Motion

A ball is thrown in such a way that its initial vertical and hor-
izontal components of velocity are 40 m/s and 20 m/s, re-
spectively. Estimate the total time of flight and the distance
the ball is from its starting point when it lands.

Solution A motion diagram like Figure 4.9 helps us concep-
tualize the problem. The phrase “A ball is thrown” allows us
to categorize this as a projectile motion problem, which we
analyze by continuing to study Figure 4.9. The acceleration
vectors are all the same, pointing downward with a magni-
tude of nearly 10 m/s2. The velocity vectors change direc-
tion. Their horizontal components are all the same: 20 m/s. 

Remember that the two velocity components are inde-
pendent of each other. By considering the vertical motion Figure 4.9 (Example 4.2) Motion diagram for a projectile.

rf

x

(x, y)

gt2

vit

O

y

1
2

Figure 4.8 The position vector rf of a projectile launched from the origin whose initial
velocity at the origin is vi. The vector vit would be the displacement of the projectile if
gravity were absent, and the vector is its vertical displacement due to its downward
gravitational acceleration.

1
2 gt 

2
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Horizontal Range and Maximum Height of a Projectile

Let us assume that a projectile is launched from the origin at ti " 0 with a positive vyi
component, as shown in Figure 4.10. Two points are especially interesting to analyze:
the peak point !, which has Cartesian coordinates (R/2, h), and the point ", which
has coordinates (R, 0). The distance R is called the horizontal range of the projectile,
and the distance h is its maximum height. Let us find h and R in terms of vi, 'i, and g.

We can determine h by noting that at the peak, Therefore, we can use
Equation 4.8a to determine the time tA at which the projectile reaches the peak:

Substituting this expression for tA into the y part of Equation 4.9a and replacing
y " yA with h, we obtain an expression for h in terms of the magnitude and direction of
the initial velocity vector: 

(4.13)

The range R is the horizontal position of the projectile at a time that is twice
the time at which it reaches its peak, that is, at time t B " 2tA. Using the x part of Equa-
tion 4.9a, noting that vxi " vxB " vi cos 'i and setting x B " R at t " 2tA, we find that

Using the identity sin 2' " 2sin ' cos ' (see Appendix B.4), we write R in the more
compact form

(4.14)

The maximum value of R from Equation 4.14 is R max " vi
2/g. This result follows

from the fact that the maximum value of sin 2'i is 1, which occurs when 2'i " 90°.
Therefore, R is a maximum when 'i " 45°.

Figure 4.11 illustrates various trajectories for a projectile having a given initial speed
but launched at different angles. As you can see, the range is a maximum for 'i " 45°.
In addition, for any 'i other than 45°, a point having Cartesian coordinates (R, 0) can be
reached by using either one of two complementary values of 'i , such as 75° and 15°. Of
course, the maximum height and time of flight for one of these values of 'i are different
from the maximum height and time of flight for the complementary value.

R "
v 2

i     sin 2'i

g

" (vi  cos 'i)
2vi  sin 'i

g
"

2v 2
i    sin 'i  cos 'i

g

R " vxit B " (vi  cos 'i)2tA

h "
v 2

i    sin2 'i

2g

h " (vi  sin 'i)
vi  sin 'i

g
#

1
2g# vi  sin 'i

g $2

tA "
vi  sin 'i

g

0 " vi sin 'i # gtA

vyf " vyi & ayt

vyA " 0.

first, we can determine how long the ball remains in the
air. Because the vertical motion is free-fall, the vertical
components of the velocity vectors change, second by
second, from 40 m/s to roughly 30, 20, and 10 m/s in the
upward direction, and then to 0 m/s. Subsequently, its ve-
locity becomes 10, 20, 30, and 40 m/s in the downward di-
rection. Thus it takes the ball about 4 s to go up and
another 4 s to come back down, for a total time of flight of
approximately 8 s.

Now we shift our analysis to the horizontal motion. Be-
cause the horizontal component of velocity is 20 m/s, and
because the ball travels at this speed for 8 s, it ends up ap-
proximately 160 m from its starting point.

This is the first example that we have performed for pro-
jectile motion. In subsequent projectile motion problems,
keep in mind the importance of separating the two compo-
nents and of making approximations to give you rough ex-
pected results.

R

x

y

h

vi

vyA = 0

!

"θ i

O

Figure 4.10 A projectile launched
from the origin at ti " 0 with an
initial velocity vi. The maximum
height of the projectile is h, and
the horizontal range is R. At !, the
peak of the trajectory, the particle
has coordinates (R/2, h).

! PITFALL PREVENTION
4.3 The Height and Range

Equations
Equation 4.14 is useful for calcu-
lating R only for a symmetric
path, as shown in Figure 4.10. If
the path is not symmetric, do not
use this equation. The general ex-
pressions given by Equations 4.8
and 4.9 are the more important re-
sults, because they give the posi-
tion and velocity components of
any particle moving in two di-
mensions at any time t.
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x(m)

50

100

150

y(m)

75°

60°

45°

30°

15°

vi = 50 m/s

50 100 150 200 250
Active Figure 4.11 A projectile launched from the origin with an initial speed of
50 m/s at various angles of projection. Note that complementary values of 'i result in
the same value of R (range of the projectile).

P R O B L E M - S O LV I N G  H I N T S

Projectile Motion
We suggest that you use the following approach to solving projectile motion
problems:

• Select a coordinate system and resolve the initial velocity vector into x and y
components.

• Follow the techniques for solving constant-velocity problems to analyze the hori-
zontal motion. Follow the techniques for solving constant-acceleration problems
to analyze the vertical motion. The x and y motions share the same time t.

Example 4.3 The Long Jump

A long-jumper (Fig. 4.12) leaves the ground at an angle of
20.0° above the horizontal and at a speed of 11.0 m/s.

(A) How far does he jump in the horizontal direction? (As-
sume his motion is equivalent to that of a particle.)

Solution We conceptualize the motion of the long-jumper
as equivalent to that of a simple projectile such as the ball
in Example 4.2, and categorize this problem as a projectile
motion problem. Because the initial speed and launch an-
gle are given, and because the final height is the same as
the initial height, we further categorize this problem as
satisfying the conditions for which Equations 4.13 and
4.14 can be used. This is the most direct way to analyze this
problem, although the general methods that we have been
describing will always give the correct answer. We will take
the general approach and use components. Figure 4.10

Quick Quiz 4.6 Rank the launch angles for the five paths in Figure 4.11 with
respect to time of flight, from the shortest time of flight to the longest.

provides a graphical representation of the flight of the
long-jumper. As before, we set our origin of coordinates at
the takeoff point and label the peak as ! and the landing
point as ". The horizontal motion is described by Equa-
tion 4.11:

The value of x B can be found if the time of landing tB is
known. We can find tB by remembering that ay " # g and by
using the y part of Equation 4.8a. We also note that at the top
of the jump the vertical component of velocity vyA is zero:

tA " 0.384 s

0 " (11.0 m/s) sin 20.0) # (9.80 m/s2)tA

vyf " vyA " vi   sin 'i # gtA

xf " x B " (vi  cos 'i)t B " (11.0 m/s)(cos 20.0))t B

At the Active Figures link at
http://www.pse6.com, you can
vary the projection angle to ob-
serve the effect on the trajectory
and measure the flight time.



Figure 4.12 (Example 4.3) Mike Powell, current holder of the
world long jump record of 8.95 m. 
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another 0.384 s passes before the jumper returns to the
ground. Therefore, the time at which the jumper lands is
tB " 2tA " 0.768 s. Substituting this value into the above ex-
pression for xf gives

This is a reasonable distance for a world-class athlete.

(B) What is the maximum height reached?

Solution We find the maximum height reached by using
Equation 4.12:

To finalize this problem, find the answers to parts (A) and
(B) using Equations 4.13 and 4.14. The results should agree.
Treating the long-jumper as a particle is an oversimplifica-
tion. Nevertheless, the values obtained are consistent with
experience in sports. We learn that we can model a compli-
cated system such as a long-jumper as a particle and still ob-
tain results that are reasonable.

0.722 m#1
2(9.80 m/s2)(0.384 s)2 "

" (11.0 m/s)(sin 20.0))(0.384 s)

ymax " yA " (vi   sin 'i)tA # 1
2gtA

2

7.94 mxf " xB " (11.0 m/s)(cos 20.0))(0.768 s) "
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Example 4.4 A Bull’s-Eye Every Time

In a popular lecture demonstration, a projectile is fired at a
target T in such a way that the projectile leaves the gun at
the same time the target is dropped from rest, as shown in
Figure 4.13. Show that if the gun is initially aimed at the sta-
tionary target, the projectile hits the target.

Solution Conceptualize the problem by studying Figure 4.13.
Notice that the problem asks for no numbers. The expected
result must involve an algebraic argument. Because both ob-
jects are subject only to gravity, we categorize this problem as

one involving two objects in free-fall, one moving in one di-
mension and one moving in two. Let us now analyze the
problem. A collision results under the conditions stated by
noting that, as soon as they are released, the projectile and
the target experience the same acceleration, ay " # g. Fig-
ure 4.13b shows that the initial y coordinate of the target is
x T tan 'i and that it falls to a position gt 2 below this coordi-
nate at time t. Therefore, the y coordinate of the target at
any moment after release is

yT " x T  tan 'i # 1
2gt 2

1
2

(a)

1
2

Target

Line of si
ght

y

x

Point of
collision

gt 
2

xT tan θi

yT

Gun

0

xT

θ

iθ

(b)

Figure 4.13 (Example 4.4) (a) Multiflash photograph of projectile–target demonstra-
tion. If the gun is aimed directly at the target and is fired at the same instant the target
begins to fall, the projectile will hit the target. Note that the velocity of the projectile (red
arrows) changes in direction and magnitude, while its downward acceleration (violet
arrows) remains constant. (b) Schematic diagram of the projectile–target demonstration.
Both projectile and target have fallen through the same vertical distance at time t,
because both experience the same acceleration ay " # g.
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This is the time at which the long-jumper is at the top of
the jump. Because of the symmetry of the vertical motion,



A stone is thrown from the top of a building upward at an
angle of 30.0° to the horizontal with an initial speed of
20.0 m/s, as shown in Figure 4.14. If the height of the build-
ing is 45.0 m,

(A) how long does it take the stone to reach the ground?

Solution We conceptualize the problem by studying Figure
4.14, in which we have indicated the various parameters. By
now, it should be natural to categorize this as a projectile mo-
tion problem.

To analyze the problem, let us once again separate mo-
tion into two components. The initial x and y components
of the stone’s velocity are

To find t, we can use yf " yi & vyit & ayt 2(Eq. 4.9a) with
yi " 0, yf " #45.0 m, ay " #g, and vyi " 10.0 m/s (there is a
negative sign on the numerical value of yf because we have
chosen the top of the building as the origin):

Solving the quadratic equation for t gives, for the positive 

root, t " To finalize this part, think: Does the 

negative root have any physical meaning? 

(B) What is the speed of the stone just before it strikes the
ground?

Solution We can use Equation 4.8a, vyf " vyi & ayt, with
t " 4.22 s to obtain the y component of the velocity just be-
fore the stone strikes the ground:

Because vxf " vxi " 17.3 m/s, the required speed is

To finalize this part, is it reasonable that the y component of
the final velocity is negative? Is it reasonable that the final
speed is larger than the initial speed of 20.0 m/s?

35.9 m/svf " √v 2
xf &v 2

yf " √(17.3)2 &(#31.4)2 m/s "

vyf " 10.0 m/s # (9.80 m/s2)(4.22 s) "  #31.4 m/s

4.22 s.

#45.0 m " (10.0 m/s)t # 1
2(9.80 m/s2)t2

1
2

vyi " vi sin 'i " (20.0 m/s)sin 30.0) " 10.0 m/s

vxi " vi  cos 'i " (20.0 m/s)cos 30.0) " 17.3 m/s
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Example 4.5 That’s Quite an Arm!

What If? What if a horizontal wind is blowing in the same
direction as the ball is thrown and it causes the ball to have a
horizontal acceleration component ax ! 0.500 m/s2. Which
part of this example, (A) or (B), will have a different answer?

Answer Recall that the motions in the x and y directions are
independent. Thus, the horizontal wind cannot affect the ver-
tical motion. The vertical motion determines the time of the
projectile in the air, so the answer to (A) does not change. The
wind will cause the horizontal velocity component to increase
with time, so that the final speed will change in part (B).

We can find the new final horizontal velocity component
by using Equation 4.8a:

and the new final speed:

vf " √vxf
2 & v 2

yf " √(19.4)2 & (#31.4)2
  m/s " 36.9 m/s

" 19.4 m/s

vxf " vxi & axt " 17.3 m/s & (0.500 m/s2)(4.22 s)

!

45.0 m

(0, 0)

y

x

vi = 20.0 m/s

θi = 30.0°

yf  = – 45.0 m
xf = ?

xf

Figure 4.14 (Example 4.5) A stone is thrown from the
top of a building.

Investigate this situation at the Interactive Worked Example link at http://www.pse6.com.

Now if we use Equation 4.9a to write an expression for the y
coordinate of the projectile at any moment, we obtain

Thus, by comparing the two previous equations, we see that
when the y coordinates of the projectile and target are
the same, their x coordinates are the same and a collision

yP " x P  tan 'i # 1
2gt 2

results. That is, when y P " y T, x P " x T. You can obtain the
same result, using expressions for the position vectors for
the projectile and target.

To finalize this problem, note that a collision can result
only when where d is the initial elevation
of the target above the floor. If vi sin 'i is less than this
value, the projectile will strike the floor before reaching
the target.

vi  sin 'i - √gd / 2

Investigate this situation at the Interactive Worked Example link at http://www.pse6.com.

Interactive
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100 m

x

40.0 m/s

y

Figure 4.15 (Example 4.6) A package of emergency supplies is
dropped from a plane to stranded explorers.

Example 4.7 The End of the Ski Jump

A ski-jumper leaves the ski track moving in the horizontal di-
rection with a speed of 25.0 m/s, as shown in Figure 4.16.
The landing incline below him falls off with a slope of 35.0°.
Where does he land on the incline?

Solution We can conceptualize this problem based on obser-
vations of winter Olympic ski competitions. We observe the
skier to be airborne for perhaps 4 s and go a distance of
about 100 m horizontally. We should expect the value of d,
the distance traveled along the incline, to be of the same or-
der of magnitude. We categorize the problem as that of a par-
ticle in projectile motion.

To analyze the problem, it is convenient to select the be-
ginning of the jump as the origin. Because vxi " 25.0 m/s
and vyi " 0, the x and y component forms of Equation 4.9a
are

(1)

(2)  yf " vyit & 1
2ayt2 " #1

2(9.80 m/s2)t2

xf " vxit " (25.0 m/s)t

From the right triangle in Figure 4.16, we see that the
jumper’s x and y coordinates at the landing point are
xf " d cos 35.0° and yf " # d sin 35.0°. Substituting these
relationships into (1) and (2), we obtain

(3)

Solving (3) for t and substituting the result into (4), we find
that d " 109 m. Hence, the x and y coordinates of the point
at which the skier lands are

To finalize the problem, let us compare these results to our
expectations. We expected the horizontal distance to be on
the order of 100 m, and our result of 89.3 m is indeed on

#  62.5 myf " #d  sin 35.0) " #(109 m)sin 35.0) "

89.3 mxf " d  cos  35.0) " (109 m)cos  35.0) "

(4)   #d  sin 35.0) " #1
2(9.80 m/s2)t2

d  cos 35.0) " (25.0 m/s)t

Example 4.6 The Stranded Explorers

A plane drops a package of supplies to a party of explorers,
as shown in Figure 4.15. If the plane is traveling horizontally
at 40.0 m/s and is 100 m above the ground, where does the
package strike the ground relative to the point at which it is
released?

Solution Conceptualize what is happening with the assis-
tance of Figure 4.15. The plane is traveling horizontally
when it drops the package. Because the package is in free-
fall while moving in the horizontal direction, we categorize

this as a projectile motion problem. To analyze the problem,
we choose the coordinate system shown in Figure 4.15, in
which the origin is at the point of release of the package.
Consider first its horizontal motion. The only equation avail-
able for finding the position along the horizontal direction
is xf " xi & vxit (Eq. 4.9a). The initial x component of the
package velocity is the same as that of the plane when the
package is released: 40.0 m/s. Thus, we have

If we know t, the time at which the package strikes the
ground, then we can determine xf , the distance the package
travels in the horizontal direction. To find t, we use the
equations that describe the vertical motion of the package.
We know that, at the instant the package hits the ground, its
y coordinate is yf " # 100 m. We also know that the initial
vertical component of the package velocity vyi is zero be-
cause at the moment of release, the package has only a hori-
zontal component of velocity.

From Equation 4.9a, we have

Substitution of this value for the time into the equation
for the x coordinate gives

The package hits the ground 181 m to the right of the drop
point. To finalize this problem, we learn that an object
dropped from a moving airplane does not fall straight down.
It hits the ground at a point different from the one right 
below the plane where it was released. This was an impor-
tant consideration for free-fall bombs such as those used in
World War II.

181 mxf " (40.0 m/s)(4.52 s) "

t " 4.52 s

#100 m " #1
2(9.80 m/s2)t2

yf " #1
2gt 2

xf " (40.0 m/s)t
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y d

25.0 m/s

(0, 0)

x

= 35.0°φ

Figure 4.16 (Example 4.7) A ski jumper leaves the track moving in a horizontal direction.

We can find this optimal angle mathematically. We mod-
ify equations (1) through (4) in the following way, assuming
that the skier is projected at an angle ' with respect to the
horizontal:

If we eliminate the time t between these equations and then
use differentiation to maximize d in terms of ', we arrive (af-
ter several steps— see Problem 72!) at the following equa-
tion for the angle ' that gives the maximum value of d:

For the slope angle in Figure 4.16, . " 35.0°; this equation
results in an optimal launch angle of ' " 27.5°. Notice that
for a slope angle of . " 0°, which represents a horizontal
plane, this equation gives an optimal launch angle of
' " 45°, as we would expect (see Figure 4.11).

' " 45) #
.

2

(2) and (4) :  yf " (vi  sin ')t # 1
2g t2 " #d  sin .

(1) and (3) :  xf " (vi  cos ')t " d  cos .

this order of magnitude. It might be useful to calculate the
time interval that the jumper is in the air and compare it to
our estimate of about 4 s.

What If? Suppose everything in this example is the same
except that the ski jump is curved so that the jumper is pro-
jected upward at an angle from the end of the track. Is this a
better design in terms of maximizing the length of the jump?

Answer If the initial velocity has an upward component, the
skier will be in the air longer, and should therefore travel fur-
ther. However, tilting the initial velocity vector upward will re-
duce the horizontal component of the initial velocity. Thus,
angling the end of the ski track upward at a large angle may ac-
tually reduce the distance. Consider the extreme case. The skier
is projected at 90° to the horizontal, and simply goes up and
comes back down at the end of the ski track! This argument
suggests that there must be an optimal angle between 0 and
90° that represents a balance between making the flight time
longer and the horizontal velocity component smaller.

4.4 Uniform Circular Motion

Figure 4.17a shows a car moving in a circular path with constant speed v. Such motion is
called uniform circular motion, and occurs in many situations. It is often surprising
to students to find that even though an object moves at a constant speed in a cir-
cular path, it still has an acceleration. To see why, consider the defining equation
for average acceleration, (Eq. 4.4).

Note that the acceleration depends on the change in the velocity vector. Because ve-
locity is a vector quantity, there are two ways in which an acceleration can occur, as
mentioned in Section 4.1: by a change in the magnitude of the velocity and/or by a
change in the direction of the velocity. The latter situation occurs for an object mov-
ing with constant speed in a circular path. The velocity vector is always tangent to the

a " !v/!t

! PITFALL PREVENTION
4.4 Acceleration of a

Particle in Uniform
Circular Motion

Remember that acceleration in
physics is defined as a change in
the velocity, not a change in the
speed (contrary to the everyday in-
terpretation). In circular motion,
the velocity vector is changing in
direction, so there is indeed an
acceleration.
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path of the object and perpendicular to the radius of the circular path. We now show
that the acceleration vector in uniform circular motion is always perpendicular to
the path and always points toward the center of the circle. An acceleration of this
nature is called a centripetal acceleration (centripetal means center-seeking), and its
magnitude is 

(4.15)

where r is the radius of the circle. The subscript on the acceleration symbol reminds us
that the acceleration is centripetal.

First note that the acceleration must be perpendicular to the path followed by the
object, which we will model as a particle. If this were not true, there would be a compo-
nent of the acceleration parallel to the path and, therefore, parallel to the velocity vec-
tor. Such an acceleration component would lead to a change in the speed of the parti-
cle along the path. But this is inconsistent with our setup of the situation—the particle
moves with constant speed along the path. Thus, for uniform circular motion, the accel-
eration vector can only have a component perpendicular to the path, which is toward
the center of the circle.

To derive Equation 4.15, consider the diagram of the position and velocity vectors
in Figure 4.17b. In addition, the figure shows the vector representing the change in po-
sition !r. The particle follows a circular path, part of which is shown by the dotted
curve. The particle is at ! at time ti , and its velocity at that time is vi ; it is at " at some
later time tf, and its velocity at that time is vf . Let us also assume that vi and vf differ
only in direction; their magnitudes are the same (that is, vi " vf " v, because it is uni-
form circular motion). In order to calculate the acceleration of the particle, let us begin
with the defining equation for average acceleration (Eq. 4.4):

In Figure 4.17c, the velocity vectors in Figure 4.17b have been redrawn tail to tail.
The vector !v connects the tips of the vectors, representing the vector addition
vf " vi & !v. In both Figures 4.17b and 4.17c, we can identify triangles that help us
analyze the motion. The angle !' between the two position vectors in Figure 4.17b
is the same as the angle between the velocity vectors in Figure 4.17c, because the ve-
locity vector v is always perpendicular to the position vector r. Thus, the two trian-
gles are similar. (Two triangles are similar if the angle between any two sides is the
same for both triangles and if the ratio of the lengths of these sides is the same.)
This enables us to write a relationship between the lengths of the sides for the two
triangles:

" !v "
v

"
" !r "

r

a ! 
vf # vi

tf # ti
"

!v
!t

ac "
v2

r

(a)

v
r

O

(c)

∆v∆θθ
vf

vi

(b)

∆r

vi
vf!

ri rf

"

∆θθ

Figure 4.17 (a) A car moving along a circular path at constant speed experiences uni-
form circular motion. (b) As a particle moves from ! to ", its velocity vector changes
from vi to vf . (c) The construction for determining the direction of the change in ve-
locity !v, which is toward the center of the circle for small !r.

Centripetal acceleration
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where v " vi " vf and r " ri " rf . This equation can be solved for "!v " and the expres-
sion so obtained can be substituted into to give the magnitude of the aver-
age acceleration over the time interval for the particle to move from ! to ":

Now imagine that points ! and " in Figure 4.17b become extremely close together.
As ! and " approach each other, !t approaches zero, and the ratio "!r"/!t approaches
the speed v. In addition, the average acceleration becomes the instantaneous accelera-
tion at point !. Hence, in the limit !t : 0, the magnitude of the acceleration is

Thus, in uniform circular motion the acceleration is directed inward toward the center
of the circle and has magnitude v2/r.

In many situations it is convenient to describe the motion of a particle moving with
constant speed in a circle of radius r in terms of the period T, which is defined as the
time required for one complete revolution. In the time interval T the particle moves a
distance of 2,r, which is equal to the circumference of the particle’s circular path.
Therefore, because its speed is equal to the circumference of the circular path divided
by the period, or v " 2,r/T, it follows that

(4.16)T ! 
2,r
v

ac "
v2

r

" a " "
" !v "
!t

"
v
r

 
" !r "
!t

a " !v/!t

Quick Quiz 4.7 Which of the following correctly describes the centripetal ac-
celeration vector for a particle moving in a circular path? (a) constant and always per-
pendicular to the velocity vector for the particle (b) constant and always parallel to the
velocity vector for the particle (c) of constant magnitude and always perpendicular to
the velocity vector for the particle (d) of constant magnitude and always parallel to the
velocity vector for the particle.

Quick Quiz 4.8 A particle moves in a circular path of radius r with speed v. It
then increases its speed to 2v while traveling along the same circular path. The cen-
tripetal acceleration of the particle has changed by a factor of (a) 0.25 (b) 0.5 (c) 2
(d) 4 (e) impossible to determine

Example 4.8 The Centripetal Acceleration of the Earth

What is the centripetal acceleration of the Earth as it moves
in its orbit around the Sun?

Solution We conceptualize this problem by bringing forth
our familiar mental image of the Earth in a circular orbit
around the Sun. We will simplify the problem by modeling
the Earth as a particle and approximating the Earth’s orbit
as circular (it’s actually slightly elliptical). This allows us to
categorize this problem as that of a particle in uniform circu-
lar motion. When we begin to analyze this problem, we real-
ize that we do not know the orbital speed of the Earth in
Equation 4.15. With the help of Equation 4.16, however, we
can recast Equation 4.15 in terms of the period of the
Earth’s orbit, which we know is one year: 

To finalize this problem, note that this acceleration is much
smaller than the free-fall acceleration on the surface of the
Earth. An important thing we learned here is the technique
of replacing the speed v in terms of the period T of the
motion.

"   5.93 * 10#3 m/s2

"
4,2(1.496 * 1011 m)

(1 yr)2
  # 1 yr

3.156 * 107 s $
2

ac "
v2

r
"

# 2,r
T $2

r
"

4,2r
T 2

! PITFALL PREVENTION
4.5 Centripetal

Acceleration is not
Constant

We derived the magnitude of the
centripetal acceleration vector
and found it to be constant for
uniform circular motion. But the
centripetal acceleration vector is not
constant. It always points toward
the center of the circle, but con-
tinuously changes direction as
the object moves around the cir-
cular path.

Period of circular motion
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4.5 Tangential and Radial Acceleration

Let us consider the motion of a particle along a smooth curved path where the velocity
changes both in direction and in magnitude, as described in Figure 4.18. In this situa-
tion, the velocity vector is always tangent to the path; however, the acceleration vector a
is at some angle to the path. At each of three points !, ", and # in Figure 4.18, we
draw dashed circles that represent a portion of the actual path at each point. The ra-
dius of the circles is equal to the radius of curvature of the path at each point.

As the particle moves along the curved path in Figure 4.18, the direction of the to-
tal acceleration vector a changes from point to point. This vector can be resolved into
two components, based on an origin at the center of the dashed circle: a radial compo-
nent ar along the radius of the model circle, and a tangential component at perpendic-
ular to this radius. The total acceleration vector a can be written as the vector sum of
the component vectors:

(4.17)

The tangential acceleration component causes the change in the speed of the
particle. This component is parallel to the instantaneous velocity, and is given by

(4.18)

The radial acceleration component arises from the change in direction of the ve-
locity vector and is given by

(4.19)

where r is the radius of curvature of the path at the point in question. We recognize the
radial component of the acceleration as the centripetal acceleration discussed in Section
4.4. The negative sign indicates that the direction of the centripetal acceleration is toward
the center of the circle representing the radius of curvature, which is opposite the direc-
tion of the radial unit vector r̂, which always points away from the center of the circle.

Because ar and at are perpendicular component vectors of a, it follows 
that the magnitude of a is . At a given speed, ar is large when 
the radius of curvature is small (as at points ! and " in Fig. 4.18) and small when r is
large (such as at point #). The direction of at is either in the same direction as v (if v
is increasing) or opposite v (if v is decreasing).

In uniform circular motion, where v is constant, at " 0 and the acceleration is al-
ways completely radial, as we described in Section 4.4. In other words, uniform circular
motion is a special case of motion along a general curved path. Furthermore, if the di-
rection of v does not change, then there is no radial acceleration and the motion is
one-dimensional (in this case, ar " 0, but at may not be zero).

a " √ar 

2 & a 2
t   

ar " #ac " #
v2

r

at "
d " v "
dt

a " a r & a t

Path of
particle

at

ar

a

at

ar a

!

"

#
at

ar

a

Active Figure 4.18 The motion of a particle along an arbitrary curved path lying in
the xy plane. If the velocity vector v (always tangent to the path) changes in direction
and magnitude, the components of the acceleration a are a tangential component at
and a radial component ar .

Total acceleration

Tangential acceleration

Radial acceleration

At the Active Figures link
at http://www.pse6.com, you
can study the acceleration
components of a roller coaster
car.
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Quick Quiz 4.9 A particle moves along a path and its speed increases with
time. In which of the following cases are its acceleration and velocity vectors parallel?
(a) the path is circular (b) the path is straight (c) the path is a parabola (d) never.

Quick Quiz 4.10 A particle moves along a path and its speed increases with
time. In which of the following cases are its acceleration and velocity vectors perpendic-
ular everywhere along the path? (a) the path is circular (b) the path is straight (c) the
path is a parabola (d) never.

ˆ
ˆ

θ
x

y

O

r

r

(a)

O

(b)

ar

a

at

a  =  ar  +  at

"

Figure 4.19 (a) Descriptions of the unit vectors r̂ and "̂. (b) The total acceleration a of
a particle moving along a curved path (which at any instant is part of a circle of radius r)
is the sum of radial and tangential component vectors. The radial component vector is
directed toward the center of curvature. If the tangential component of acceleration 
becomes zero, the particle follows uniform circular motion.

Example 4.9 Over the Rise

A car exhibits a constant acceleration of 0.300 m/s2 parallel
to the roadway. The car passes over a rise in the roadway
such that the top of the rise is shaped like a circle of radius
500 m. At the moment the car is at the top of the rise, its ve-
locity vector is horizontal and has a magnitude of 6.00 m/s.
What is the direction of the total acceleration vector for the
car at this instant?

Solution Conceptualize the situation using Figure 4.20a. Be-
cause the car is moving along a curved path, we can catego-

rize this as a problem involving a particle experiencing both
tangential and radial acceleration. Now we recognize that
this is a relatively simple plug-in problem. The radial accel-
eration is given by Equation 4.19. With v " 6.00 m/s and
r " 500 m, we find that

The radial acceleration vector is directed straight downward

#0.072 0 m/s2ar " #
v2

r
" #

(6.00 m/s)2

500 m
"

It is convenient to write the acceleration of a particle moving in a circular path
in terms of unit vectors. We do this by defining the unit vectors r̂ and "̂ shown in
Figure 4.19a, where r̂ is a unit vector lying along the radius vector and directed radially
outward from the center of the circle and "̂ is a unit vector tangent to the circle. The di-
rection of "̂ is in the direction of increasing ', where ' is measured counterclockwise
from the positive x axis. Note that both r̂ and "̂ “move along with the particle” and so
vary in time. Using this notation, we can express the total acceleration as

(4.20)

These vectors are described in Figure 4.19b. 

a " at & ar "
d " v "

dt
 "̂ #

v2

r
 r̂
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4.6 Relative Velocity and Relative Acceleration

In this section, we describe how observations made by different observers in different
frames of reference are related to each other. We find that observers in different
frames of reference may measure different positions, velocities, and accelerations for a
given particle. That is, two observers moving relative to each other generally do not
agree on the outcome of a measurement.

As an example, consider two observers watching a man walking on a moving belt-
way at an airport in Figure 4.21. The woman standing on the moving beltway will see
the man moving at a normal walking speed. The woman observing from the stationary
floor will see the man moving with a higher speed, because the beltway speed com-
bines with his walking speed. Both observers look at the same man and arrive at differ-
ent values for his speed. Both are correct; the difference in their measurements is due
to the relative velocity of their frames of reference.

Suppose a person riding on a skateboard (observer A) throws a ball in such a way
that it appears in this person’s frame of reference to move first straight upward and

while the tangential acceleration vector has magnitude
0.300 m/s2 and is horizontal. Because a " ar & at , the mag-
nitude of a is

" 0.309 m/s2

a " √a 2
r  &   a 2

t " √(#0.072 0)2 & (0.300)2
 
 m/s2

If . is the angle between a and the horizontal, then

This angle is measured downward from the horizontal. (See
Figure 4.20b.)

#13.5°. " tan#1 ar

at
" tan#1# # 0.072 0 m/s2

0.300 m/s2 $ "

at = 0.300 m/s2

at

v
v = 6.00 m/s

φ ar

at

a

(b)(a)

Figure 4.20 (Example 4.9) (a) A car passes over a rise that is shaped like a circle.
(b) The total acceleration vector a is the sum of the tangential and radial acceleration
vectors at and ar .

Figure 4.21 Two observers measure the speed of a man walking on a moving beltway.
The woman standing on the beltway sees the man moving with a slower speed than the
woman observing from the stationary floor.
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then straight downward along the same vertical line, as shown in Figure 4.22a. An ob-
server B on the ground sees the path of the ball as a parabola, as illustrated in Figure
4.22b. Relative to observer B, the ball has a vertical component of velocity (resulting
from the initial upward velocity and the downward acceleration due to gravity) and a
horizontal component.

Another example of this concept is the motion of a package dropped from an air-
plane flying with a constant velocity—a situation we studied in Example 4.6. An ob-
server on the airplane sees the motion of the package as a straight line downward to-
ward Earth. The stranded explorer on the ground, however, sees the trajectory of the
package as a parabola. Once the package is dropped, and the airplane continues to
move horizontally with the same velocity, the package hits the ground directly beneath
the airplane (if we assume that air resistance is neglected)!

In a more general situation, consider a particle located at point ! in Figure 4.23.
Imagine that the motion of this particle is being described by two observers, one in ref-
erence frame S, fixed relative to Earth, and another in reference frame S $, moving to
the right relative to S (and therefore relative to Earth) with a constant velocity v0. (Rel-
ative to an observer in S $, S moves to the left with a velocity # v0.) Where an observer
stands in a reference frame is irrelevant in this discussion, but for purposes of this dis-
cussion let us place each observer at her or his respective origin.

(a) (b)

Path seen
by observer B

AA

Path seen
by observer A

B

Figure 4.22 (a) Observer A on a moving skateboard throws a ball upward and sees it
rise and fall in a straight-line path. (b) Stationary observer B sees a parabolic path for
the same ball. 

S

r
r′

v0t

S ′

O ′O
v0

!

Figure 4.23 A particle located at ! is de-
scribed by two observers, one in the fixed
frame of reference S, and the other in the
frame S $, which moves to the right with a
constant velocity v0. The vector r is the par-
ticle’s position vector relative to S, and r$ is
its position vector relative to S $.
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We define the time t " 0 as that instant at which the origins of the two reference
frames coincide in space. Thus, at time t, the origins of the reference frames will be sepa-
rated by a distance v0t. We label the position of the particle relative to the S frame with the
position vector r and that relative to the S$ frame with the position vector r$, both at time
t. The vectors r and r$ are related to each other through the expression r " r$& v0t, or

(4.21)

If we differentiate Equation 4.21 with respect to time and note that v0 is constant,
we obtain

(4.22)

where v$ is the velocity of the particle observed in the S $ frame and v is its velocity ob-
served in the S frame. Equations 4.21 and 4.22 are known as Galilean transformation
equations. They relate the position and velocity of a particle as measured by observers
in relative motion.

Although observers in two frames measure different velocities for the particle, they
measure the same acceleration when v0 is constant. We can verify this by taking the time
derivative of Equation 4.22:

Because v0 is constant, d v0/dt " 0. Therefore, we conclude that a$ " a because
a$ " d v$/dt and a " d v/dt. That is, the acceleration of the particle measured by
an observer in one frame of reference is the same as that measured by any other
observer moving with constant velocity relative to the first frame.

dv$

dt
"

dv
dt

#
dv0

dt

v$ " v # v0

dr$

dt
"

dr
dt

# v0

r$ " r # v0t

Quick Quiz 4.11 A passenger, observer A, in a car traveling at a constant hor-
izontal velocity of magnitude 60 mi/h pours a cup of coffee for the tired driver. Ob-
server B stands on the side of the road and watches the pouring process through the
window of the car as it passes. Which observer(s) sees a parabolic path for the coffee as
it moves through the air? (a) A (b) B (c) both A and B (d) neither A nor B.

Example 4.10 A Boat Crossing a River

A boat heading due north crosses a wide river with a speed
of 10.0 km/h relative to the water. The water in the river has
a uniform speed of 5.00 km/h due east relative to the Earth.
Determine the velocity of the boat relative to an observer
standing on either bank.

Solution To conceptualize this problem, imagine moving
across a river while the current pushes you along the river.
You will not be able to move directly across the river, but will
end up downstream, as suggested in Figure 4.24. Because of
the separate velocities of you and the river, we can categorize
this as a problem involving relative velocities. We will analyze
this problem with the techniques discussed in this section.
We know vbr, the velocity of the boat relative to the river, and
vrE, the velocity of the river relative to Earth. What we must
find is vbE, the velocity of the boat relative to Earth. The rela-
tionship between these three quantities is

vbE " vbr & vrE

E

N

S

W

vrE

vbr

vbE

θ

Figure 4.24 (Example 4.10) A boat aims directly
across a river and ends up downstream.

Galilean coordinate
transformation

Galilean velocity transformation
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Example 4.11 Which Way Should We Head?

If the boat of the preceding example travels with the same
speed of 10.0 km/h relative to the river and is to travel due
north, as shown in Figure 4.25, what should its heading be?

Solution This example is an extension of the previous one,
so we have already conceptualized and categorized the problem.
The analysis now involves the new triangle shown in Figure
4.25. As in the previous example, we know vrE and the mag-
nitude of the vector vbr, and we want vbE to be directed
across the river. Note the difference between the triangle in
Figure 4.24 and the one in Figure 4.25—the hypotenuse in
Figure 4.25 is no longer vbE. Therefore, when we use the
Pythagorean theorem to find vbE in this situation, we obtain

Now that we know the magnitude of vbE, we can find the di-
rection in which the boat is heading:

To finalize this problem, we learn that the boat must head
upstream in order to travel directly northward across the
river. For the given situation, the boat must steer a course
30.0° west of north.

What If? Imagine that the two boats in Examples 4.10 and
4.11 are racing across the river. Which boat arrives at the op-
posite bank first?

30.0)' " tan#1# vrE

vbE
$ " tan#1# 5.00

8.66 $ "

vbE " √v 2
br # v 2

rE " √(10.0)2 # (5.00)2 km/h " 8.66 km/h

Answer In Example 4.10, the velocity of 10 km/h is aimed
directly across the river. In Example 4.11, the velocity that is
directed across the river has a magnitude of only 8.66 km/h.
Thus, the boat in Example 4.10 has a larger velocity compo-
nent directly across the river and will arrive first.

The terms in the equation must be manipulated as vector
quantities; the vectors are shown in Figure 4.24. The quan-
tity vbr is due north, vrE is due east, and the vector sum of
the two, vbE, is at an angle ', as defined in Figure 4.24. Thus,
we can find the speed vbE of the boat relative to Earth by us-
ing the Pythagorean theorem:

" 11.2 km/h

vbE " √v 2
br & v 2

rE " √(10.0)2 & (5.00)2 km/h

The direction of vbE is

The boat is moving at a speed of 11.2 km/h in the direction
26.6° east of north relative to Earth. To finalize the problem,
note that the speed of 11.2 km/h is faster than your boat
speed of 10.0 km/h. The current velocity adds to yours to
give you a larger speed. Notice in Figure 4.24 that your re-
sultant velocity is at an angle to the direction straight across
the river, so you will end up downstream, as we predicted.

26.6)' " tan#1# vrE

vbr
$ " tan#1# 5.00

10.0 $ "

vrE

vbr

vbE

θ

E

N

S

W

Figure 4.25 (Example 4.11) To move directly
across the river, the boat must aim upstream.

If a particle moves with constant acceleration a and has velocity vi and position ri at
t " 0, its velocity and position vectors at some later time t are

(4.8)

(4.9)

For two-dimensional motion in the xy plane under constant acceleration, each of these
vector expressions is equivalent to two component expressions—one for the motion in
the x direction and one for the motion in the y direction.

Projectile motion is one type of two-dimensional motion under constant accel-
eration, where ax " 0 and ay " #g. It is useful to think of projectile motion as the
superposition of two motions: (1) constant-velocity motion in the x direction and

rf " ri & vit & 1
2at2

vf " vi & at

S U M M A RY

Take a practice test for
this chapter by clicking on
the Practice Test link at
http://www.pse6.com.
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(2) free-fall motion in the vertical direction subject to a constant downward accelera-
tion of magnitude g " 9.80 m/s2.

A particle moving in a circle of radius r with constant speed v is in uniform circu-
lar motion. It undergoes a radial acceleration ar because the direction of v changes in
time. The magnitude of ar is the centripetal acceleration ac :

(4.19)

and its direction is always toward the center of the circle.
If a particle moves along a curved path in such a way that both the magnitude and

the direction of v change in time, then the particle has an acceleration vector that can
be described by two component vectors: (1) a radial component vector ar that causes
the change in direction of v and (2) a tangential component vector at that causes the
change in magnitude of v. The magnitude of ar is v2/r, and the magnitude of at is
d "v "/dt. 

The velocity v of a particle measured in a fixed frame of reference S can be related
to the velocity v$ of the same particle measured in a moving frame of reference S $ by

(4.22)

where v0 is the velocity of S $ relative to S. 

v$ " v # v0

ac "
v2

r

1. Can an object accelerate if its speed is constant? Can an
object accelerate if its velocity is constant?

2. If you know the position vectors of a particle at two points
along its path and also know the time it took to move from
one point to the other, can you determine the particle’s in-
stantaneous velocity? Its average velocity? Explain.

3. Construct motion diagrams showing the velocity and accel-
eration of a projectile at several points along its path if
(a) the projectile is launched horizontally and (b) the pro-
jectile is launched at an angle ' with the horizontal.

4. A baseball is thrown with an initial velocity of (10 î &
15 ĵ) m/s. When it reaches the top of its trajectory, what
are (a) its velocity and (b) its acceleration? Neglect the ef-
fect of air resistance.

5. A baseball is thrown such that its initial x and y compo-
nents of velocity are known. Neglecting air resistance, de-
scribe how you would calculate, at the instant the ball
reaches the top of its trajectory, (a) its position, (b) its ve-
locity, and (c) its acceleration. How would these results
change if air resistance were taken into account?

6. A spacecraft drifts through space at a constant velocity.
Suddenly a gas leak in the side of the spacecraft gives it a
constant acceleration in a direction perpendicular to the
initial velocity. The orientation of the spacecraft does not
change, so that the acceleration remains perpendicular to
the original direction of the velocity. What is the shape of
the path followed by the spacecraft in this situation?

7. A ball is projected horizontally from the top of a building.
One second later another ball is projected horizontally
from the same point with the same velocity. At what point
in the motion will the balls be closest to each other? Will
the first ball always be traveling faster than the second

ball? What will be the time interval between when the balls
hit the ground? Can the horizontal projection velocity of
the second ball be changed so that the balls arrive at the
ground at the same time?

8. A rock is dropped at the same instant that a ball, at the
same initial elevation, is thrown horizontally. Which will
have the greater speed when it reaches ground level?

9. Determine which of the following moving objects obey the
equations of projectile motion developed in this chapter.
(a) A ball is thrown in an arbitrary direction. (b) A jet air-
plane crosses the sky with its engines thrusting the plane
forward. (c) A rocket leaves the launch pad. (d) A rocket
moving through the sky after its engines have failed. (e) A
stone is thrown under water.

10. How can you throw a projectile so that it has zero speed at
the top of its trajectory? So that it has nonzero speed at the
top of its trajectory?

11. Two projectiles are thrown with the same magnitude of ini-
tial velocity, one at an angle ' with respect to the level
ground and the other at angle 90° # '. Both projectiles will
strike the ground at the same distance from the projection
point. Will both projectiles be in the air for the same time
interval?

12. A projectile is launched at some angle to the horizontal
with some initial speed vi, and air resistance is negligible. Is
the projectile a freely falling body? What is its acceleration
in the vertical direction? What is its acceleration in the
horizontal direction?

13. State which of the following quantities, if any, remain con-
stant as a projectile moves through its parabolic trajectory:
(a) speed, (b) acceleration, (c) horizontal component of
velocity, (d) vertical component of velocity.

Q U E S T I O N S
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14. A projectile is fired at an angle of 30° from the horizontal
with some initial speed. Firing the projectile at what other
angle results in the same horizontal range if the initial
speed is the same in both cases? Neglect air resistance.

15. The maximum range of a projectile occurs when it is
launched at an angle of 45.0° with the horizontal, if air
resistance is neglected. If air resistance is not neglected,
will the optimum angle be greater or less than 45.0°?
Explain.

16. A projectile is launched on the Earth with some initial ve-
locity. Another projectile is launched on the Moon with
the same initial velocity. Neglecting air resistance, which
projectile has the greater range? Which reaches the
greater altitude? (Note that the free-fall acceleration on
the Moon is about 1.6 m/s2.)

17. A coin on a table is given an initial horizontal velocity such
that it ultimately leaves the end of the table and hits the
floor. At the instant the coin leaves the end of the table, a
ball is released from the same height and falls to the floor.
Explain why the two objects hit the floor simultaneously,
even though the coin has an initial velocity.

18. Explain whether or not the following particles have an
acceleration: (a) a particle moving in a straight line with
constant speed and (b) a particle moving around a curve
with constant speed.

19. Correct the following statement: “The racing car rounds
the turn at a constant velocity of 90 miles per hour.”

20. At the end of a pendulum’s arc, its velocity is zero. Is its ac-
celeration also zero at that point?

21. An object moves in a circular path with constant speed v.
(a) Is the velocity of the object constant? (b) Is its accelera-
tion constant? Explain.

22. Describe how a driver can steer a car traveling at constant
speed so that (a) the acceleration is zero or (b) the magni-
tude of the acceleration remains constant.

23. An ice skater is executing a figure eight, consisting of two
equal, tangent circular paths. Throughout the first loop
she increases her speed uniformly, and during the second
loop she moves at a constant speed. Draw a motion dia-
gram showing her velocity and acceleration vectors at sev-
eral points along the path of motion.

24. Based on your observation and experience, draw a motion
diagram showing the position, velocity, and acceleration
vectors for a pendulum that swings in an arc carrying it
from an initial position 45° to the right of the central verti-
cal line to a final position 45° to the left of the central ver-
tical line. The arc is a quadrant of a circle, and you should
use the center of the circle as the origin for the position
vectors.

25. What is the fundamental difference between the unit vec-
tors r̂ and "̂ and the unit vectors î and ĵ?

26. A sailor drops a wrench from the top of a sailboat’s mast
while the boat is moving rapidly and steadily in a straight
line. Where will the wrench hit the deck? (Galileo posed
this question.)

27. A ball is thrown upward in the air by a passenger on a train
that is moving with constant velocity. (a) Describe the path
of the ball as seen by the passenger. Describe the path as
seen by an observer standing by the tracks outside the
train. (b) How would these observations change if the
train were accelerating along the track?

28. A passenger on a train that is moving with constant velocity
drops a spoon. What is the acceleration of the spoon rela-
tive to (a) the train and (b) the Earth?

Section 4.1 The Position, Velocity, and Acceleration
Vectors

1. A motorist drives south at 20.0 m/s for 3.00 min,
then turns west and travels at 25.0 m/s for 2.00 min, and
finally travels northwest at 30.0 m/s for 1.00 min. For this
6.00-min trip, find (a) the total vector displacement, (b)
the average speed, and (c) the average velocity. Let the
positive x axis point east.

2. A golf ball is hit off a tee at the edge of a cliff. Its x and y
coordinates as functions of time are given by the following
expressions: 

(a) Write a vector expression for the ball’s position as a
function of time, using the unit vectors î and ĵ. By taking

and  y " (4.00 m/s)t # (4.90 m/s2)t2

x " (18.0 m/s)t

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide

= coached solution with hints available at http://www.pse6.com = computer useful in solving problem

= paired numerical and symbolic problems

P R O B L E M S

derivatives, obtain expressions for (b) the velocity vector v
as a function of time and (c) the acceleration vector a as a
function of time. Next use unit-vector notation to write ex-
pressions for (d) the position, (e) the velocity, and (f) the
acceleration of the golf ball, all at t " 3.00 s.

3. When the Sun is directly overhead, a hawk dives toward
the ground with a constant velocity of 5.00 m/s at 60.0° be-
low the horizontal. Calculate the speed of her shadow on
the level ground.

4. The coordinates of an object moving in the xy plane vary
with time according to the equations x " #(5.00 m) sin(/t)
and y " (4.00 m) # (5.00 m) cos(/t), where / is a constant
and t is in seconds. (a) Determine the components of veloc-
ity and components of acceleration at t " 0. (b) Write ex-
pressions for the position vector, the velocity vector, and the
acceleration vector at any time t ( 0 . (c) Describe the path
of the object in an xy plot.
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Section 4.2 Two-Dimensional Motion with 
Constant Acceleration

5. At t " 0, a particle moving in the xy plane with constant ac-
celeration has a velocity of vi " (3.00 î # 2.00 ĵ) m/s and is
at the origin. At t " 3.00 s, the particle’s velocity is
v " (9.00 î & 7.00 ĵ) m/s. Find (a) the acceleration of the
particle and (b) its coordinates at any time t.

6. The vector position of a particle varies in time according to
the expression r " (3.00 î # 6.00t2 ĵ) m. (a) Find expres-
sions for the velocity and acceleration as functions of time.
(b) Determine the particle’s position and velocity at 
t " 1.00 s.

7. A fish swimming in a horizontal plane has velocity
vi " (4.00 î & 1.00 ĵ) m/s at a point in the ocean where the
position relative to a certain rock is ri " (10.0 î # 4.00 ĵ) m.
After the fish swims with constant acceleration for 20.0 s,
its velocity is v " (20.0 î # 5.00 ĵ) m/s. (a) What are the
components of the acceleration? (b) What is the direction of
the acceleration with respect to unit vector î ? (c) If the fish
maintains constant acceleration, where is it at t " 25.0 s, and
in what direction is it moving?

8. A particle initially located at the origin has an accelera-
tion of a " 3.00 ĵ m/s2 and an initial velocity of
vi " 500 î m/s. Find (a) the vector position and velocity 
at any time t and (b) the coordinates and speed of the 
particle at t " 2.00 s.

9. It is not possible to see very small objects, such as viruses, 
using an ordinary light microscope. An electron micro-
scope can view such objects using an electron beam instead
of a light beam. Electron microscopy has proved invaluable
for investigations of viruses, cell membranes and subcellu-
lar structures, bacterial surfaces, visual receptors, chloro-
plasts, and the contractile properties of muscles. The
“lenses” of an electron microscope consist of electric and
magnetic fields that control the electron beam. As an ex-
ample of the manipulation of an electron beam, consider 
an electron traveling away from the origin along the x axis 
in the xy plane with initial velocity vi " vi î . As it passes
through the region x " 0 to x " d, the electron experi-
ences acceleration a " ax î & ay ĵ, where ax and ay
are constants. For the case vi " 1.80 * 107 m/s, 
ax " 8.00 * 1014 m/s2 and ay " 1.60 * 1015 m/s2, deter-
mine at x " d " 0.0100 m (a) the position of the electron,
(b) the velocity of the electron, (c) the speed of the electron,
and (d) the direction of travel of the electron (i.e., the angle
between its velocity and the x axis). 

Section 4.3 Projectile Motion

Note: Ignore air resistance in all problems and take 
g " 9.80 m/s2 at the Earth’s surface.

10. To start an avalanche on a mountain slope, an artillery
shell is fired with an initial velocity of 300 m/s at 55.0°
above the horizontal. It explodes on the mountainside
42.0 s after firing. What are the x and y coordinates of the
shell where it explodes, relative to its firing point?

11. In a local bar, a customer slides an empty beer mug
down the counter for a refill. The bartender is
momentarily distracted and does not see the mug, which
slides off the counter and strikes the floor 1.40 m from the
base of the counter. If the height of the counter is
0.860 m, (a) with what velocity did the mug leave the
counter, and (b) what was the direction of the mug’s
velocity just before it hit the floor?

12. In a local bar, a customer slides an empty beer mug down
the counter for a refill. The bartender is momentarily dis-
tracted and does not see the mug, which slides off the
counter and strikes the floor at distance d from the base of
the counter. The height of the counter is h. (a) With what
velocity did the mug leave the counter, and (b) what was
the direction of the mug’s velocity just before it hit the
floor?

13. One strategy in a snowball fight is to throw a snowball at a
high angle over level ground. While your opponent is
watching the first one, a second snowball is thrown at a low
angle timed to arrive before or at the same time as the first
one. Assume both snowballs are thrown with a speed of
25.0 m/s. The first one is thrown at an angle of 70.0° with
respect to the horizontal. (a) At what angle should the sec-
ond snowball be thrown to arrive at the same point as the
first? (b) How many seconds later should the second snow-
ball be thrown after the first to arrive at the same time?

14. An astronaut on a strange planet finds that she can jump a
maximum horizontal distance of 15.0 m if her initial speed
is 3.00 m/s. What is the free-fall acceleration on the
planet?

15. A projectile is fired in such a way that its horizontal range
is equal to three times its maximum height. What is the
angle of projection?

16. A rock is thrown upward from the level ground in such a
way that the maximum height of its flight is equal to its
horizontal range d. (a) At what angle ' is the rock thrown?
(b) What If? Would your answer to part (a) be different on
a different planet? (c) What is the range dmax the rock can
attain if it is launched at the same speed but at the optimal
angle for maximum range?

17. A ball is tossed from an upper-story window of a building.
The ball is given an initial velocity of 8.00 m/s at an angle
of 20.0° below the horizontal. It strikes the ground 3.00 s
later. (a) How far horizontally from the base of the building
does the ball strike the ground? (b) Find the height from
which the ball was thrown. (c) How long does it take the
ball to reach a point 10.0 m below the level of launching? 

18. The small archerfish (length 20 to 25 cm) lives in brackish
waters of southeast Asia from India to the Philippines. This
aptly named creature captures its prey by shooting a
stream of water drops at an insect, either flying or at rest.
The bug falls into the water and the fish gobbles it up. The
archerfish has high accuracy at distances of 1.2 m to 1.5 m,
and it sometimes makes hits at distances up to 3.5 m. A
groove in the roof of its mouth, along with a curled
tongue, forms a tube that enables the fish to impart high
velocity to the water in its mouth when it suddenly closes
its gill flaps. Suppose the archerfish shoots at a target
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2.00 m away, at an angle of 30.0o above the horizontal.
With what velocity must the water stream be launched if it
is not to drop more than 3.00 cm vertically on its path to
the target? 

A place-kicker must kick a football from a point
36.0 m (about 40 yards) from the goal, and half the crowd
hopes the ball will clear the crossbar, which is 3.05 m high.
When kicked, the ball leaves the ground with a speed of
20.0 m/s at an angle of 53.0° to the horizontal. (a) By how
much does the ball clear or fall short of clearing the cross-
bar? (b) Does the ball approach the crossbar while still ris-
ing or while falling?

20. A firefighter, a distance d from a burning building, directs
a stream of water from a fire hose at angle 'i above the
horizontal as in Figure P4.20. If the initial speed of
the stream is vi, at what height h does the water strike the
building? 

19.

21. A playground is on the flat roof of a city school, 6.00 m
above the street below. The vertical wall of the building is
7.00 m high, to form a meter-high railing around the play-
ground. A ball has fallen to the street below, and a
passerby returns it by launching it at an angle of 53.0°
above the horizontal at a point 24.0 meters from the base
of the building wall. The ball takes 2.20 s to reach a point
vertically above the wall. (a) Find the speed at which the
ball was launched. (b) Find the vertical distance by which
the ball clears the wall. (c) Find the distance from the wall
to the point on the roof where the ball lands.

22. A dive bomber has a velocity of 280 m/s at an angle '
below the horizontal. When the altitude of the aircraft is
2.15 km, it releases a bomb, which subsequently hits a tar-
get on the ground. The magnitude of the displacement
from the point of release of the bomb to the target is
3.25 km. Find the angle '.

23. A soccer player kicks a rock horizontally off a 40.0-m high
cliff into a pool of water. If the player hears the sound of
the splash 3.00 s later, what was the initial speed given to
the rock? Assume the speed of sound in air to be 343 m/s.

24. A basketball star covers 2.80 m horizontally in a jump to dunk
the ball (Fig. P4.24). His motion through space can be mod-
eled precisely as that of a particle at his center of mass, which
we will define in Chapter 9. His center of mass is at elevation
1.02 m when he leaves the floor. It reaches a maximum
height of 1.85 m above the floor, and is at elevation 0.900 m
when he touches down again. Determine (a) his time of

vi

d

h

θi

Figure P4.20
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Figure P4.27

Figure P4.32

28. From information on the endsheets of this book, compute
the radial acceleration of a point on the surface of the
Earth at the equator, due to the rotation of the Earth
about its axis.

29. A tire 0.500 m in radius rotates at a constant rate of
200 rev/min. Find the speed and acceleration of a small
stone lodged in the tread of the tire (on its outer edge).

30. As their booster rockets separate, Space Shuttle astronauts
typically feel accelerations up to 3g, where g " 9.80 m/s2.
In their training, astronauts ride in a device where they ex-

perience such an acceleration as a centripetal acceleration.
Specifically, the astronaut is fastened securely at the end of
a mechanical arm that then turns at constant speed in a
horizontal circle. Determine the rotation rate, in revolu-
tions per second, required to give an astronaut a cen-
tripetal acceleration of 3.00g while in circular motion with
radius 9.45 m. 

31. Young David who slew Goliath experimented with slings
before tackling the giant. He found that he could revolve a
sling of length 0.600 m at the rate of 8.00 rev/s. If he in-
creased the length to 0.900 m, he could revolve the sling
only 6.00 times per second. (a) Which rate of rotation
gives the greater speed for the stone at the end of the
sling? (b) What is the centripetal acceleration of the stone
at 8.00 rev/s? (c) What is the centripetal acceleration at
6.00 rev/s?

32. The astronaut orbiting the Earth in Figure P4.32 is prepar-
ing to dock with a Westar VI satellite. The satellite is in a
circular orbit 600 km above the Earth’s surface, where the
free-fall acceleration is 8.21 m/s2. Take the radius of the
Earth as 6 400 km. Determine the speed of the satellite
and the time interval required to complete one orbit
around the Earth.

Section 4.5 Tangential and Radial Acceleration

A train slows down as it rounds a sharp horizontal turn,
slowing from 90.0 km/h to 50.0 km/h in the 15.0 s that it
takes to round the bend. The radius of the curve is 
150 m. Compute the acceleration at the moment the train
speed reaches 50.0 km/h. Assume it continues to slow
down at this time at the same rate.

34. An automobile whose speed is increasing at a rate
of 0.600 m/s2 travels along a circular road of radius
20.0 m. When the instantaneous speed of the automo-
bile is 4.00 m/s, find (a) the tangential acceleration
component, (b) the centripetal acceleration component,
and (c) the magnitude and direction of the total acceler-
ation.

33.
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flight (his “hang time”), (b) his horizontal and (c) vertical ve-
locity components at the instant of takeoff, and (d) his take-
off angle. (e) For comparison, determine the hang time of a
whitetail deer making a jump with center-of-mass elevations
yi " 1.20 m, ymax " 2.50 m, yf " 0.700 m.

25. An archer shoots an arrow with a velocity of 45.0 m/s at an
angle of 50.0° with the horizontal. An assistant standing on
the level ground 150 m downrange from the launch point
throws an apple straight up with the minimum initial
speed necessary to meet the path of the arrow. (a) What is
the initial speed of the apple? (b) At what time after the
arrow launch should the apple be thrown so that the arrow
hits the apple?

26. A fireworks rocket explodes at height h, the peak of its
vertical trajectory. It throws out burning fragments in all
directions, but all at the same speed v. Pellets of solidified
metal fall to the ground without air resistance. Find
the smallest angle that the final velocity of an impacting
fragment makes with the horizontal.

Section 4.4 Uniform Circular Motion

Note: Problems 8, 10, 12, and 16 in Chapter 6 can also be
assigned with this section.

The athlete shown in Figure P4.27 rotates a 1.00-kg
discus along a circular path of radius 1.06 m. The maxi-
mum speed of the discus is 20.0 m/s. Determine the 
magnitude of the maximum radial acceleration of the 
discus.

27.
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Figure P4.35 represents the total acceleration of a parti-
cle moving clockwise in a circle of radius 2.50 m at a
certain instant of time. At this instant, find (a) the radial
acceleration, (b) the speed of the particle, and (c) its tan-
gential acceleration.

35.

36. A ball swings in a vertical circle at the end of a rope 1.50 m
long. When the ball is 36.9° past the lowest point on its 
way up, its total acceleration is (#22.5 î & 20.2 ĵ) m/s2. At
that instant, (a) sketch a vector diagram showing the com-
ponents of its acceleration, (b) determine the magnitude
of its radial acceleration, and (c) determine the speed and
velocity of the ball.

37. A race car starts from rest on a circular track. The car in-
creases its speed at a constant rate at as it goes once
around the track. Find the angle that the total acceleration
of the car makes—with the radius connecting the center of
the track and the car—at the moment the car completes
the circle.

Section 4.6 Relative Velocity and Relative
Acceleration

38. Heather in her Corvette accelerates at the rate of
(3.00 î # 2.00 ĵ) m/s2, while Jill in her Jaguar accelerates
at (1.00 î & 3.00 ĵ) m/s2. They both start from rest at the
origin of an xy coordinate system. After 5.00 s, (a) what is
Heather’s speed with respect to Jill, (b) how far apart are
they, and (c) what is Heather’s acceleration relative to
Jill?

39. A car travels due east with a speed of 50.0 km/h. Rain-
drops are falling at a constant speed vertically with respect
to the Earth. The traces of the rain on the side windows of
the car make an angle of 60.0° with the vertical. Find the
velocity of the rain with respect to (a) the car and (b) the
Earth.

40. How long does it take an automobile traveling in the left
lane at 60.0 km/h to pull alongside a car traveling in the
same direction in the right lane at 40.0 km/h if the cars’
front bumpers are initially 100 m apart?

A river has a steady speed of 0.500 m/s. A student swims
upstream a distance of 1.00 km and swims back to the
starting point. If the student can swim at a speed of

41.

1.20 m/s in still water, how long does the trip take? Com-
pare this with the time the trip would take if the water
were still.

42. The pilot of an airplane notes that the compass indicates a
heading due west. The airplane’s speed relative to the air
is 150 km/h. If there is a wind of 30.0 km/h toward the
north, find the velocity of the airplane relative to the
ground. 

43. Two swimmers, Alan and Beth, start together at the same
point on the bank of a wide stream that flows with a speed
v. Both move at the same speed c(c ( v), relative to the wa-
ter. Alan swims downstream a distance L and then up-
stream the same distance. Beth swims so that her motion
relative to the Earth is perpendicular to the banks of the
stream. She swims the distance L and then back the same
distance, so that both swimmers return to the starting
point. Which swimmer returns first? (Note: First guess the
answer.)

44. A bolt drops from the ceiling of a train car that is acceler-
ating northward at a rate of 2.50 m/s2. What is the acceler-
ation of the bolt relative to (a) the train car? (b) the
Earth?

A science student is riding on a flatcar of a train traveling
along a straight horizontal track at a constant speed of
10.0 m/s. The student throws a ball into the air along a
path that he judges to make an initial angle of 60.0° with
the horizontal and to be in line with the track. The stu-
dent’s professor, who is standing on the ground nearby,
observes the ball to rise vertically. How high does she see
the ball rise?

46. A Coast Guard cutter detects an unidentified ship at a 
distance of 20.0 km in the direction 15.0° east of north.
The ship is traveling at 26.0 km/h on a course at 40.0° east
of north. The Coast Guard wishes to send a speedboat to
intercept the vessel and investigate it. If the speedboat trav-
els 50.0 km/h, in what direction should it head? Express
the direction as a compass bearing with respect to due
north.

Additional Problems
47. The “Vomit Comet.” In zero-gravity astronaut training and

equipment testing, NASA flies a KC135A aircraft along a
parabolic flight path. As shown in Figure P4.47, the air-
craft climbs from 24 000 ft to 31 000 ft, where it enters the
zero-g parabola with a velocity of 143 m/s nose-high at
45.0o and exits with velocity 143 m/s at 45.0° nose-low.
During this portion of the flight the aircraft and objects in-
side its padded cabin are in free fall—they have gone bal-
listic. The aircraft then pulls out of the dive with an up-
ward acceleration of 0.800g, moving in a vertical circle
with radius 4.13 km. (During this portion of the flight, oc-
cupants of the plane perceive an acceleration of 1.8g.)
What are the aircraft (a) speed and (b) altitude at the top
of the maneuver? (c) What is the time spent in zero grav-
ity? (d) What is the speed of the aircraft at the bottom of
the flight path? 

45.
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48. As some molten metal splashes, one droplet flies off to the
east with initial velocity vi at angle 'i above the horizontal,
and another droplet to the west with the same speed at the
same angle above the horizontal, as in Figure P4.48. In
terms of vi and 'i , find the distance between them as a
function of time. 

49. A ball on the end of a string is whirled around in a hori-
zontal circle of radius 0.300 m. The plane of the circle is
1.20 m above the ground. The string breaks and the ball
lands 2.00 m (horizontally) away from the point on the
ground directly beneath the ball’s location when the string
breaks. Find the radial acceleration of the ball during its
circular motion.

50. A projectile is fired up an incline (incline angle .) with an
initial speed vi at an angle 'i with respect to the horizontal
('i ( .), as shown in Figure P4.50. (a) Show that the pro-
jectile travels a distance d up the incline, where

(b) For what value of 'i is d a maximum, and what is that
maximum value?

d "
2v 2i  cos  'i   sin('i # .)

g  cos2.

Barry Bonds hits a home run so that the baseball just clears
the top row of bleachers, 21.0 m high, located 130 m from
home plate. The ball is hit at an angle of 35.0° to the hori-
zontal, and air resistance is negligible. Find (a) the initial
speed of the ball, (b) the time at which the ball reaches the
cheap seats, and (c) the velocity components and the speed
of the ball when it passes over the top row. Assume the ball
is hit at a height of 1.00 m above the ground.

52. An astronaut on the surface of the Moon fires a cannon to
launch an experiment package, which leaves the barrel
moving horizontally. (a) What must be the muzzle speed
of the package so that it travels completely around the
Moon and returns to its original location? (b) How long
does this trip around the Moon take? Assume that the free-
fall acceleration on the Moon is one-sixth that on the
Earth.

53. A pendulum with a cord of length r " 1.00 m swings in a
vertical plane (Fig. P4.53). When the pendulum is in
the two horizontal positions ' " 90.0° and ' " 270°, its
speed is 5.00 m/s. (a) Find the magnitude of the radial
acceleration and tangential acceleration for these posi-
tions. (b) Draw vector diagrams to determine the direc-

51.
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tion of the total acceleration for these two positions.
(c) Calculate the magnitude and direction of the total
acceleration.

54. A basketball player who is 2.00 m tall is standing on the
floor 10.0 m from the basket, as in Figure P4.54. If he
shoots the ball at a 40.0° angle with the horizontal, at what
initial speed must he throw so that it goes through the
hoop without striking the backboard? The basket height is
3.05 m.

3.05 m

40.0°

10.0 m

2.00 m

Figure P4.54

Figure P4.57

Figure P4.55

55. When baseball players throw the ball in from the outfield,
they usually allow it to take one bounce before it reaches
the infield, on the theory that the ball arrives sooner that
way. Suppose that the angle at which a bounced ball leaves
the ground is the same as the angle at which the outfielder
threw it, as in Figure P4.55, but that the ball’s speed after
the bounce is one half of what it was before the bounce.
(a) Assuming the ball is always thrown with the same initial
speed, at what angle ' should the fielder throw the ball to
make it go the same distance D with one bounce (blue
path) as a ball thrown upward at 45.0° with no bounce
(green path)? (b) Determine the ratio of the times for the
one-bounce and no-bounce throws.

56. A boy can throw a ball a maximum horizontal distance of
R on a level field. How far can he throw the same ball verti-
cally upward? Assume that his muscles give the ball the
same speed in each case.

57. A stone at the end of a sling is whirled in a vertical circle of
radius 1.20 m at a constant speed v0 " 1.50 m/s as in
Figure P4.57. The center of the sling is 1.50 m above the
ground. What is the range of the stone if it is released when
the sling is inclined at 30.0° with the horizontal (a) at ! ?
(b) at " ? What is the acceleration of the stone (c) just be-
fore it is released at ! ? (d) just after it is released at ! ?

45.0°
θ

D

θ

v0

30.0° 30.0°

1.20 m

v0

!"

58. A quarterback throws a football straight toward a receiver
with an initial speed of 20.0 m/s, at an angle of 30.0°
above the horizontal. At that instant, the receiver is 20.0 m
from the quarterback. In what direction and with what
constant speed should the receiver run in order to catch
the football at the level at which it was thrown?

Your grandfather is copilot of a bomber, flying horizontally
over level terrain, with a speed of 275 m/s relative to the
ground, at an altitude of 3 000 m. (a) The bombardier re-
leases one bomb. How far will it travel horizontally be-
tween its release and its impact on the ground? Neglect
the effects of air resistance. (b) Firing from the people on
the ground suddenly incapacitates the bombardier before
he can call, “Bombs away!” Consequently, the pilot main-
tains the plane’s original course, altitude, and speed
through a storm of flak. Where will the plane be when the
bomb hits the ground? (c) The plane has a telescopic
bomb sight set so that the bomb hits the target seen in the
sight at the time of release. At what angle from the vertical
was the bomb sight set?

60. A high-powered rifle fires a bullet with a muzzle speed of
1.00 km/s. The gun is pointed horizontally at a large
bull’s eye target—a set of concentric rings—200 m away.
(a) How far below the extended axis of the rifle barrel
does a bullet hit the target? The rifle is equipped with a
telescopic sight. It is “sighted in” by adjusting the axis of
the telescope so that it points precisely at the location
where the bullet hits the target at 200 m. (b) Find the an-
gle between the telescope axis and the rifle barrel axis.
When shooting at a target at a distance other than 200 m,
the marksman uses the telescopic sight, placing its
crosshairs to “aim high” or “aim low” to compensate for
the different range. Should she aim high or low, and ap-
proximately how far from the bull’s eye, when the target
is at a distance of (c) 50.0 m, (d) 150 m, or (e) 250 m?
Note: The trajectory of the bullet is everywhere so nearly
horizontal that it is a good approximation to model the
bullet as fired horizontally in each case. What if the tar-
get is uphill or downhill? (f) Suppose the target is 200 m
away, but the sight line to the target is above the horizon-
tal by 30°. Should the marksman aim high, low, or right
on? (g) Suppose the target is downhill by 30°. Should 
the marksman aim high, low, or right on? Explain your
answers.

59.
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A hawk is flying horizontally at 10.0 m/s in a straight line,
200 m above the ground. A mouse it has been carrying
struggles free from its grasp. The hawk continues on its
path at the same speed for 2.00 seconds before attempting
to retrieve its prey. To accomplish the retrieval, it dives in a
straight line at constant speed and recaptures the mouse
3.00 m above the ground. (a) Assuming no air resistance,
find the diving speed of the hawk. (b) What angle did the
hawk make with the horizontal during its descent? (c) For
how long did the mouse “enjoy” free fall?

62. A person standing at the top of a hemispherical rock of
radius R kicks a ball (initially at rest on the top of the rock)
to give it horizontal velocity vi as in Figure P4.62. (a) What
must be its minimum initial speed if the ball is never to hit
the rock after it is kicked? (b) With this initial speed, how
far from the base of the rock does the ball hit the ground?

61.

A car is parked on a steep incline overlooking the
ocean, where the incline makes an angle of 37.0° below
the horizontal. The negligent driver leaves the car in neu-
tral, and the parking brakes are defective. Starting from
rest at t " 0, the car rolls down the incline with a constant
acceleration of 4.00 m/s2, traveling 50.0 m to the edge of a
vertical cliff. The cliff is 30.0 m above the ocean. Find
(a) the speed of the car when it reaches the edge of the
cliff and the time at which it arrives there, (b) the velocity
of the car when it lands in the ocean, (c) the total time
interval that the car is in motion, and (d) the position of
the car when it lands in the ocean, relative to the base of
the cliff.

64. A truck loaded with cannonball watermelons stops sud-
denly to avoid running over the edge of a washed-out
bridge (Fig. P4.64). The quick stop causes a number of
melons to fly off the truck. One melon rolls over the edge
with an initial speed vi " 10.0 m/s in the horizontal direc-
tion. A cross-section of the bank has the shape of the bot-
tom half of a parabola with its vertex at the edge of the
road, and with the equation y2 " 16x, where x and y are
measured in meters. What are the x and y coordinates of
the melon when it splatters on the bank?

65. The determined coyote is out once more in pursuit of the
elusive roadrunner. The coyote wears a pair of Acme jet-
powered roller skates, which provide a constant horizontal

63.

acceleration of 15.0 m/s2 (Fig. P4.65). The coyote starts at
rest 70.0 m from the brink of a cliff at the instant the road-
runner zips past him in the direction of the cliff. (a) If the
roadrunner moves with constant speed, determine the
minimum speed he must have in order to reach the cliff
before the coyote. At the edge of the cliff, the roadrunner
escapes by making a sudden turn, while the coyote contin-
ues straight ahead. His skates remain horizontal and con-
tinue to operate while he is in flight, so that the coyote’s
acceleration while in the air is (15.0 î # 9.80 ĵ) m/s2. (b) If
the cliff is 100 m above the flat floor of a canyon, deter-
mine where the coyote lands in the canyon. (c) Determine
the components of the coyote’s impact velocity.

Figure P4.62

Figure P4.65

Figure P4.64

R x

vi

vi = 10 m/s

Coyoté
Stupidus

Chicken
Delightus

BEEP

BEEP

66. Do not hurt yourself; do not strike your hand against any-
thing. Within these limitations, describe what you do
to give your hand a large acceleration. Compute an order-
of-magnitude estimate of this acceleration, stating the
quantities you measure or estimate and their values.

A skier leaves the ramp of a ski jump with a velocity of
10.0 m/s, 15.0° above the horizontal, as in Figure P4.67.
The slope is inclined at 50.0°, and air resistance is negligi-
ble. Find (a) the distance from the ramp to where the
jumper lands and (b) the velocity components just before
the landing. (How do you think the results might be af-
fected if air resistance were included? Note that jumpers
lean forward in the shape of an airfoil, with their hands 
at their sides, to increase their distance. Why does this
work?)

67.
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68. In a television picture tube (a cathode ray tube) electrons
are emitted with velocity vi from a source at the origin of
coordinates. The initial velocities of different electrons
make different angles ' with the x axis. As they move a
distance D along the x axis, the electrons are acted on by
a constant electric field, giving each a constant accelera-
tion a in the x direction. At x " D the electrons pass
through a circular aperture, oriented perpendicular to the
x axis. At the aperture, the velocity imparted to the elec-
trons by the electric field is much larger than vi in magni-
tude. Show that velocities of the electrons going through
the aperture radiate from a certain point on the x axis,
which is not the origin. Determine the location of this
point. This point is called a virtual source, and it is impor-
tant in determining where the electron beam hits the
screen of the tube.

69. A fisherman sets out upstream from Metaline Falls on the
Pend Oreille River in northwestern Washington State. His
small boat, powered by an outboard motor, travels at a
constant speed v in still water. The water flows at a lower
constant speed vw. He has traveled upstream for 2.00 km
when his ice chest falls out of the boat. He notices that
the chest is missing only after he has gone upstream for
another 15.0 minutes. At that point he turns around and
heads back downstream, all the time traveling at the same
speed relative to the water. He catches up with the float-
ing ice chest just as it is about to go over the falls at his
starting point. How fast is the river flowing? Solve this

problem in two ways. (a) First, use the Earth as a refer-
ence frame. With respect to the Earth, the boat travels up-
stream at speed v # vw and downstream at v & vw. (b) A
second much simpler and more elegant solution is ob-
tained by using the water as the reference frame. This ap-
proach has important applications in many more compli-
cated problems; examples are calculating the motion of
rockets and satellites and analyzing the scattering of sub-
atomic particles from massive targets.

70. The water in a river flows uniformly at a constant speed
of 2.50 m/s between parallel banks 80.0 m apart. You are
to deliver a package directly across the river, but you can
swim only at 1.50 m/s. (a) If you choose to minimize the
time you spend in the water, in what direction should
you head? (b) How far downstream will you be carried?
(c) What If? If you choose to minimize the distance
downstream that the river carries you, in what direction
should you head? (d) How far downstream will you be
carried? 

71. An enemy ship is on the east side of a mountain island,
as shown in Figure P4.71. The enemy ship has maneuvered
to within 2 500 m of the 1 800-m-high mountain peak
and can shoot projectiles with an initial speed of 
250 m/s. If the western shoreline is horizontally 300 m
from the peak, what are the distances from the western
shore at which a ship can be safe from the bombardment
of the enemy ship?

72. In the What If? section of Example 4.7, it was claimed that
the maximum range of a ski-jumper occurs for a launch
angle ' given by

where . is the angle that the hill makes with the horizontal
in Figure 4.16. Prove this claim by deriving the equation
above.

Answers to Quick Quizzes
4.1 (b). An object moving with constant velocity has 

!v " 0, so, according to the definition of acceleration, 
a " !v/!t " 0. Choice (a) is not correct because a parti-
cle can move at a constant speed and change direction.
This possibility also makes (c) an incorrect choice.

4.2 (a). Because acceleration occurs whenever the velocity
changes in any way—with an increase or decrease in

' " 45) #
.

2

10.0 m/s

15.0°

50.0°

Figure P4.67

2 500 m 300 m

1 800 mvi
vi = 250 m/s

θHθ θLθ

Figure P4.71
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speed, a change in direction, or both—all three controls
are accelerators. The gas pedal causes the car to speed
up; the brake pedal causes the car to slow down. The
steering wheel changes the direction of the velocity
vector. 

4.3 (a). You should simply throw it straight up in the air. Be-
cause the ball is moving along with you, it will follow a
parabolic trajectory with a horizontal component of
velocity that is the same as yours.

4.4 (b). At only one point—the peak of the trajectory—are
the velocity and acceleration vectors perpendicular to
each other. The velocity vector is horizontal at that point
and the acceleration vector is downward.

4.5 (a). The acceleration vector is always directed downward.
The velocity vector is never vertical if the object follows a
path such as that in Figure 4.8. 

4.6 15°, 30°, 45°, 60°, 75°. The greater the maximum height,
the longer it takes the projectile to reach that altitude
and then fall back down from it. So, as the launch angle
increases, the time of flight increases.

4.7 (c). We cannot choose (a) or (b) because the centripetal
acceleration vector is not constant—it continuously
changes in direction. Of the remaining choices, only (c)
gives the correct perpendicular relationship between ac
and v.

4.8 (d). Because the centripetal acceleration is proportional
to the square of the speed, doubling the speed increases
the acceleration by a factor of 4.

4.9 (b). The velocity vector is tangent to the path. If the ac-
celeration vector is to be parallel to the velocity vector, it
must also be tangent to the path. This requires that the
acceleration vector have no component perpendicular
to the path. If the path were to change direction, the
acceleration vector would have a radial component,
perpendicular to the path. Thus, the path must remain
straight.

4.10 (d). The velocity vector is tangent to the path. If the ac-
celeration vector is to be perpendicular to the velocity
vector, it must have no component tangent to the path.
On the other hand, if the speed is changing, there must
be a component of the acceleration tangent to the path.
Thus, the velocity and acceleration vectors are never per-
pendicular in this situation. They can only be perpendic-
ular if there is no change in the speed.

4.11 (c). Passenger A sees the coffee pouring in a “normal”
parabolic path, just as if she were standing on the
ground pouring it. The stationary observer B sees the
coffee moving in a parabolic path that is extended hori-
zontally due to the constant horizontal velocity of 
60 mi/h.



The Laws of Motion

! A small tugboat exerts a force on a large ship, causing it to move. How can such a small
boat move such a large object? (Steve Raymer/CORBIS)

Chapter 5
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In Chapters 2 and 4, we described motion in terms of position, velocity, and accelera-
tion without considering what might cause that motion. Now we consider the cause—
what might cause one object to remain at rest and another object to accelerate? The
two main factors we need to consider are the forces acting on an object and the mass
of the object. We discuss the three basic laws of motion, which deal with forces and
masses and were formulated more than three centuries ago by Isaac Newton. Once we
understand these laws, we can answer such questions as “What mechanism changes
motion?” and “Why do some objects accelerate more than others?”

5.1 The Concept of Force

Everyone has a basic understanding of the concept of force from everyday experience.
When you push your empty dinner plate away, you exert a force on it. Similarly, you ex-
ert a force on a ball when you throw or kick it. In these examples, the word force is asso-
ciated with muscular activity and some change in the velocity of an object. Forces do
not always cause motion, however. For example, as you sit reading this book, a gravita-
tional force acts on your body and yet you remain stationary. As a second example, you
can push (in other words, exert a force) on a large boulder and not be able to move it.

What force (if any) causes the Moon to orbit the Earth? Newton answered this and
related questions by stating that forces are what cause any change in the velocity of an
object. The Moon’s velocity is not constant because it moves in a nearly circular orbit
around the Earth. We now know that this change in velocity is caused by the gravita-
tional force exerted by the Earth on the Moon. Because only a force can cause a
change in velocity, we can think of force as that which causes an object to accelerate. In this
chapter, we are concerned with the relationship between the force exerted on an ob-
ject and the acceleration of that object.

What happens when several forces act simultaneously on an object? In this case, the
object accelerates only if the net force acting on it is not equal to zero. The net force
acting on an object is defined as the vector sum of all forces acting on the object. (We
sometimes refer to the net force as the total force, the resultant force, or the unbalanced
force.) If the net force exerted on an object is zero, the acceleration of the object
is zero and its velocity remains constant. That is, if the net force acting on the ob-
ject is zero, the object either remains at rest or continues to move with constant veloc-
ity. When the velocity of an object is constant (including when the object is at rest), the
object is said to be in equilibrium.

When a coiled spring is pulled, as in Figure 5.1a, the spring stretches. When a sta-
tionary cart is pulled sufficiently hard that friction is overcome, as in Figure 5.1b, the
cart moves. When a football is kicked, as in Figure 5.1c, it is both deformed and set in
motion. These situations are all examples of a class of forces called contact forces. That
is, they involve physical contact between two objects. Other examples of contact forces
are the force exerted by gas molecules on the walls of a container and the force ex-
erted by your feet on the floor.

An object accelerates due to an
external force

Definition of equilibrium
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Another class of forces, known as field forces, do not involve physical contact be-
tween two objects but instead act through empty space. The gravitational force of at-
traction between two objects, illustrated in Figure 5.1d, is an example of this class of
force. This gravitational force keeps objects bound to the Earth and the planets in or-
bit around the Sun. Another common example of a field force is the electric force that
one electric charge exerts on another (Fig. 5.1e). These charges might be those of the
electron and proton that form a hydrogen atom. A third example of a field force is the
force a bar magnet exerts on a piece of iron (Fig. 5.1f). 

The distinction between contact forces and field forces is not as sharp as you may
have been led to believe by the previous discussion. When examined at the atomic
level, all the forces we classify as contact forces turn out to be caused by electric (field)
forces of the type illustrated in Figure 5.1e. Nevertheless, in developing models for
macroscopic phenomena, it is convenient to use both classifications of forces. The only
known fundamental forces in nature are all field forces: (1) gravitational forces between
objects, (2) electromagnetic forces between electric charges, (3) nuclear forces between sub-
atomic particles, and (4) weak forces that arise in certain radioactive decay processes. In
classical physics, we are concerned only with gravitational and electromagnetic forces.

Measuring the Strength of a Force

It is convenient to use the deformation of a spring to measure force. Suppose we apply
a vertical force to a spring scale that has a fixed upper end, as shown in Figure 5.2a.
The spring elongates when the force is applied, and a pointer on the scale reads the
value of the applied force. We can calibrate the spring by defining a reference force F1
as the force that produces a pointer reading of 1.00 cm. (Because force is a vector

Field forcesContact forces

(d)(a)

(b)

(c)

(e)

(f)

m M

– q + Q

Iron N S

Figure 5.1 Some examples of applied forces. In each case a force is exerted on the ob-
ject within the boxed area. Some agent in the environment external to the boxed area
exerts a force on the object.



If an object does not interact with other objects, it is possible to identify a reference
frame in which the object has zero acceleration.
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quantity, we use the bold-faced symbol F.) If we now apply a different downward force
F2 whose magnitude is twice that of the reference force F1, as seen in Figure 5.2b, the
pointer moves to 2.00 cm. Figure 5.2c shows that the combined effect of the two
collinear forces is the sum of the effects of the individual forces.

Now suppose the two forces are applied simultaneously with F1 downward and F2
horizontal, as illustrated in Figure 5.2d. In this case, the pointer reads

The single force F that would produce this same reading is the
sum of the two vectors F1 and F2, as described in Figure 5.2d. That is,

units, and its direction is ! " tan# 1(# 0.500) " # 26.6°.
Because forces have been experimentally verified to behave as vectors, you must
use the rules of vector addition to obtain the net force on an object.

5.2 Newton’s First Law and Inertial Frames

We begin our study of forces by imagining some situations. Imagine placing a puck on
a perfectly level air hockey table (Fig. 5.3). You expect that it will remain where it is
placed. Now imagine your air hockey table is located on a train moving with constant
velocity. If the puck is placed on the table, the puck again remains where it is placed. If
the train were to accelerate, however, the puck would start moving along the table, just
as a set of papers on your dashboard falls onto the front seat of your car when you step
on the gas.

As we saw in Section 4.6, a moving object can be observed from any number of
reference frames. Newton’s first law of motion, sometimes called the law of inertia,
defines a special set of reference frames called inertial frames. This law can be stated as
follows:

! F ! " √F1 

2 $ F2 

2 " 2.24

√5.00 cm2 " 2.24 cm.

F2

F1 F

0
1

2
3

4

θ

(d)(a)

0
1
2
3
4

F1

(b)

F2

0
1
2
3
4

(c)

0
1
2
3
4

F2

F1

Figure 5.2 The vector nature of a force is tested with a spring scale. (a) A downward
force F1 elongates the spring 1.00 cm. (b) A downward force F2 elongates the spring
2.00 cm. (c) When F1 and F2 are applied simultaneously, the spring elongates by
3.00 cm. (d) When F1 is downward and F2 is horizontal, the combination of the two

forces elongates the spring √(1.00 cm)2 $ (2.00 cm)2 " 2.24 cm.

Isaac Newton, 
English physicist and 
mathematician
(1642–1727)

Isaac Newton was one of the
most brilliant scientists in history.
Before the age of 30, he
formulated the basic concepts
and laws of mechanics,
discovered the law of universal
gravitation, and invented the
mathematical methods of
calculus. As a consequence of
his theories, Newton was able to
explain the motions of the
planets, the ebb and flow of the
tides, and many special features
of the motions of the Moon and
the Earth. He also interpreted
many fundamental observations
concerning the nature of light.
His contributions to physical
theories dominated scientific
thought for two centuries and
remain important today.
(Giraudon/Art Resource)

Air flow

Electric blower

Figure 5.3 On an air hockey table,
air blown through holes in the sur-
face allow the puck to move almost
without friction. If the table is not
accelerating, a puck placed on the
table will remain at rest.

Newton’s first law
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Such a reference frame is called an inertial frame of reference. When the puck is
on the air hockey table located on the ground, you are observing it from an inertial
reference frame—there are no horizontal interactions of the puck with any other
objects and you observe it to have zero acceleration in that direction. When you
are on the train moving at constant velocity, you are also observing the puck from
an inertial reference frame. Any reference frame that moves with constant
velocity relative to an inertial frame is itself an inertial frame. When the train
accelerates, however, you are observing the puck from a noninertial reference
frame because you and the train are accelerating relative to the inertial reference
frame of the surface of the Earth. While the puck appears to be accelerating accord-
ing to your observations, we can identify a reference frame in which the puck has
zero acceleration. For example, an observer standing outside the train on the
ground sees the puck moving with the same velocity as the train had before it
started to accelerate (because there is almost no friction to “tie” the puck and the
train together). Thus, Newton’s first law is still satisfied even though your observa-
tions say otherwise.

A reference frame that moves with constant velocity relative to the distant stars is
the best approximation of an inertial frame, and for our purposes we can consider the
Earth as being such a frame. The Earth is not really an inertial frame because of its or-
bital motion around the Sun and its rotational motion about its own axis, both of
which result in centripetal accelerations. However, these accelerations are small com-
pared with g and can often be neglected. For this reason, we assume that the Earth is
an inertial frame, as is any other frame attached to it.

Let us assume that we are observing an object from an inertial reference frame.
(We will return to observations made in noninertial reference frames in Section 6.3.)
Before about 1600, scientists believed that the natural state of matter was the state of
rest. Observations showed that moving objects eventually stopped moving. Galileo was
the first to take a different approach to motion and the natural state of matter. He de-
vised thought experiments and concluded that it is not the nature of an object to stop
once set in motion: rather, it is its nature to resist changes in its motion. In his words, “Any
velocity once imparted to a moving body will be rigidly maintained as long as the exter-
nal causes of retardation are removed.” For example, a spacecraft drifting through
empty space with its engine turned off will keep moving forever—it would not seek a
“natural state” of rest.

Given our assumption of observations made from inertial reference frames, we can
pose a more practical statement of Newton’s first law of motion:

In the absence of external forces, when viewed from an inertial reference frame, an
object at rest remains at rest and an object in motion continues in motion with a
constant velocity (that is, with a constant speed in a straight line).

In simpler terms, we can say that when no force acts on an object, the accelera-
tion of the object is zero. If nothing acts to change the object’s motion, then its
velocity does not change. From the first law, we conclude that any isolated object (one
that does not interact with its environment) is either at rest or moving with constant
velocity. The tendency of an object to resist any attempt to change its velocity is
called inertia.

Quick Quiz 5.1 Which of the following statements is most correct? (a) It is
possible for an object to have motion in the absence of forces on the object. (b) It is
possible to have forces on an object in the absence of motion of the object. (c) Neither
(a) nor (b) is correct. (d) Both (a) and (b) are correct.

Inertial frame of reference

Another statement of Newton’s
first law

! PITFALL PREVENTION
5.1 Newton’s First Law
Newton’s first law does not say
what happens for an object with
zero net force, that is, multiple
forces that cancel; it says what
happens in the absence of a force.
This is a subtle but important dif-
ference that allows us to define
force as that which causes a
change in the motion. The de-
scription of an object under the
effect of forces that balance is
covered by Newton’s second law.
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5.3 Mass

Imagine playing catch with either a basketball or a bowling ball. Which ball is more
likely to keep moving when you try to catch it? Which ball has the greater tendency to
remain motionless when you try to throw it? The bowling ball is more resistant to
changes in its velocity than the basketball—how can we quantify this concept?

Mass is that property of an object that specifies how much resistance an object ex-
hibits to changes in its velocity, and as we learned in Section 1.1, the SI unit of mass is
the kilogram. The greater the mass of an object, the less that object accelerates under
the action of a given applied force.

To describe mass quantitatively, we begin by experimentally comparing the acceler-
ations a given force produces on different objects. Suppose a force acting on an object
of mass m1 produces an acceleration a1, and the same force acting on an object of mass
m2 produces an acceleration a2. The ratio of the two masses is defined as the inverse ra-
tio of the magnitudes of the accelerations produced by the force:

(5.1)

For example, if a given force acting on a 3-kg object produces an acceleration of
4 m/s2, the same force applied to a 6-kg object produces an acceleration of 2 m/s2. 
If one object has a known mass, the mass of the other object can be obtained from ac-
celeration measurements.

Mass is an inherent property of an object and is independent of the ob-
ject’s surroundings and of the method used to measure it. Also, mass is a
scalar quantity and thus obeys the rules of ordinary arithmetic. That is, several
masses can be combined in simple numerical fashion. For example, if you combine a
3-kg mass with a 5-kg mass, the total mass is 8 kg. We can verify this result experimen-
tally by comparing the accelerations that a known force gives to several objects sepa-
rately with the acceleration that the same force gives to the same objects combined as
one unit.

Mass should not be confused with weight. Mass and weight are two different
quantities. The weight of an object is equal to the magnitude of the gravitational
force exerted on the object and varies with location (see Section 5.5). For example, a
person who weighs 180 lb on the Earth weighs only about 30 lb on the Moon. On the
other hand, the mass of an object is the same everywhere: an object having a mass of
2 kg on the Earth also has a mass of 2 kg on the Moon.

5.4 Newton’s Second Law

Newton’s first law explains what happens to an object when no forces act on it. It either
remains at rest or moves in a straight line with constant speed. Newton’s second law
answers the question of what happens to an object that has a nonzero resultant force
acting on it.

Imagine performing an experiment in which you push a block of ice across a
frictionless horizontal surface. When you exert some horizontal force F on the block, it
moves with some acceleration a. If you apply a force twice as great, you find that the
acceleration of the block doubles. If you increase the applied force to 3F, the accel-
eration triples, and so on. From such observations, we conclude that the acceleration
of an object is directly proportional to the force acting on it.

The acceleration of an object also depends on its mass, as stated in the preceding
section. We can understand this by considering the following experiment. If you apply
a force F to a block of ice on a frictionless surface, the block undergoes some accelera-
tion a. If the mass of the block is doubled, the same applied force produces an acceler-
ation a/2. If the mass is tripled, the same applied force produces an acceleration a/3,

m1

m2
  "  

a2

a1

Definition of mass

Mass and weight are different
quantities
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and so on. According to this observation, we conclude that the magnitude of the
acceleration of an object is inversely proportional to its mass.

These observations are summarized in Newton’s second law:

When viewed from an inertial reference frame, the acceleration of an object is di-
rectly proportional to the net force acting on it and inversely proportional to its
mass.

Thus, we can relate mass, acceleration, and force through the following mathematical
statement of Newton’s second law:1

(5.2)

In both the textual and mathematical statements of Newton’s second law above, we
have indicated that the acceleration is due to the net force #F acting on an object. The
net force on an object is the vector sum of all forces acting on the object. In solving a
problem using Newton’s second law, it is imperative to determine the correct net force
on an object. There may be many forces acting on an object, but there is only one
acceleration.

Note that Equation 5.2 is a vector expression and hence is equivalent to three com-
ponent equations:

(5.3)#Fx " max  #Fy " may  #Fz " maz

#F " ma

! PITFALL PREVENTION
5.2 Force is the Cause of

Changes in Motion
Force does not cause motion.
We can have motion in the ab-
sence of forces, as described in
Newton’s first law. Force is the
cause of changes in motion, as
measured by acceleration.

Newton’s second law

Quick Quiz 5.2 An object experiences no acceleration. Which of the follow-
ing cannot be true for the object? (a) A single force acts on the object. (b) No forces act
on the object. (c) Forces act on the object, but the forces cancel.

Quick Quiz 5.3 An object experiences a net force and exhibits an accelera-
tion in response. Which of the following statements is always true? (a) The object
moves in the direction of the force. (b) The acceleration is in the same direction as the
velocity. (c) The acceleration is in the same direction as the force. (d) The velocity of
the object increases.

Quick Quiz 5.4 You push an object, initially at rest, across a frictionless floor
with a constant force for a time interval %t, resulting in a final speed of v for the
object. You repeat the experiment, but with a force that is twice as large. What time in-
terval is now required to reach the same final speed v? (a) 4 %t (b) 2 %t (c) %t (d) %t/2
(e) %t/4.

! PITFALL PREVENTION
5.3 ma is Not a Force
Equation 5.2 does not say that the
product ma is a force. All forces
on an object are added vectori-
ally to generate the net force on
the left side of the equation. This
net force is then equated to the
product of the mass of the object
and the acceleration that results
from the net force. Do not in-
clude an “ma force” in your analy-
sis of the forces on an object.

1 Equation 5.2 is valid only when the speed of the object is much less than the speed of light. We
treat the relativistic situation in Chapter 39.

Newton’s second law—
component form

Definition of the newton

Unit of Force

The SI unit of force is the newton, which is defined as the force that, when acting on
an object of mass 1 kg, produces an acceleration of 1 m/s2. From this definition and
Newton’s second law, we see that the newton can be expressed in terms of the follow-
ing fundamental units of mass, length, and time:

(5.4)1 N  " 1 kg&m/s2



118 C H A P T E R  5 •  The Laws of Motion

System of Units Mass Acceleration Force

SI kg m/s2 N " kg · m/s2

U.S. customary slug ft/s2 lb " slug · ft/s2

Units of Mass, Acceleration, and Forcea

Table 5.1

a 1 N " 0.225 lb.

Example 5.1 An Accelerating Hockey Puck

A hockey puck having a mass of 0.30 kg slides on the horizon-
tal, frictionless surface of an ice rink. Two hockey sticks strike
the puck simultaneously, exerting the forces on the puck
shown in Figure 5.4. The force F1 has a magnitude of 5.0 N,
and the force F2 has a magnitude of 8.0 N. Determine both
the magnitude and the direction of the puck’s acceleration.

Solution Conceptualize this problem by studying Figure 5.4.
Because we can determine a net force and we want an accel-
eration, we categorize this problem as one that may be solved
using Newton’s second law. To analyze the problem, we re-
solve the force vectors into components. The net force act-
ing on the puck in the x direction is

The net force acting on the puck in the y direction is

Now we use Newton’s second law in component form to find
the x and y components of the puck’s acceleration:

The acceleration has a magnitude of

and its direction relative to the positive x axis is

30'! " tan#1$ ay

ax
% " tan#1$ 17

29 % "

34  m/s2a " √(29)2 $ (17)2 m/s2 "

ay "
#Fy

m
"

5.2 N
0.30 kg

" 17 m/s2

ax "
#Fx

m
"

8.7 N
0.30 kg

" 29 m/s2

" (5.0 N)(#  0.342) $ (8.0 N)(0.866) " 5.2 N
#Fy " F1y $ F2y " F1 sin (#  20') $ F2 sin 60'

" (5.0 N)(0.940) $ (8.0 N)(0.500) " 8.7 N
#Fx " F1x $ F2x " F1 cos(#  20') $ F2 cos 60'

To finalize the problem, we can graphically add the vectors
in Figure 5.4 to check the reasonableness of our answer. Be-
cause the acceleration vector is along the direction of the re-
sultant force, a drawing showing the resultant force helps us
check the validity of the answer. (Try it!)

What If? Suppose three hockey sticks strike the puck si-
multaneously, with two of them exerting the forces shown in
Figure 5.4. The result of the three forces is that the hockey
puck shows no acceleration. What must be the components
of the third force?

Answer If there is zero acceleration, the net force acting
on the puck must be zero. Thus, the three forces must can-
cel. We have found the components of the combination of
the first two forces. The components of the third force
must be of equal magnitude and opposite sign in order that
all of the components add to zero. Thus, F3x " # 8.7 N,
F3y " # 5.2 N.

In the U.S. customary system, the unit of force is the pound, which is defined as
the force that, when acting on a 1-slug mass,2 produces an acceleration of 1 ft/s2:

(5.5)

A convenient approximation is that .
The units of mass, acceleration, and force are summarized in Table 5.1.

1 N & 1
4 lb

1 lb  " 1 slug& ft/s2

2 The slug is the unit of mass in the U.S. customary system and is that system’s counterpart of the SI
unit the kilogram. Because most of the calculations in our study of classical mechanics are in SI units,
the slug is seldom used in this text.

x

y

60°

F2

F2  =  8.0 N
F1  =  5.0 N

20°

F1

Figure 5.4 (Example 5.1) A hockey puck moving on a
frictionless surface accelerates in the direction of the resultant
force F1 $ F2.
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5.5 The Gravitational Force and Weight

We are well aware that all objects are attracted to the Earth. The attractive force ex-
erted by the Earth on an object is called the gravitational force Fg . This force is di-
rected toward the center of the Earth,3 and its magnitude is called the weight of the
object.

We saw in Section 2.6 that a freely falling object experiences an acceleration g act-
ing toward the center of the Earth. Applying Newton’s second law #F " ma to a freely
falling object of mass m, with a " g and #F " Fg , we obtain

(5.6)

Thus, the weight of an object, being defined as the magnitude of Fg , is equal to mg.
Because it depends on g, weight varies with geographic location. Because g de-

creases with increasing distance from the center of the Earth, objects weigh less at
higher altitudes than at sea level. For example, a 1 000-kg palette of bricks used in
the construction of the Empire State Building in New York City weighed 9 800 N at
street level, but weighed about 1 N less by the time it was lifted from sidewalk level
to the top of the building. As another example, suppose a student has a mass of
70.0 kg. The student’s weight in a location where g " 9.80 m/s2 is Fg " mg " 686 N
(about 150 lb). At the top of a mountain, however, where g " 9.77 m/s2, the
student’s weight is only 684 N. Therefore, if you want to lose weight without
going on a diet, climb a mountain or weigh yourself at 30 000 ft during an airplane
flight!

Because weight is proportional to mass, we can compare the masses of two objects
by measuring their weights on a spring scale. At a given location (at which two objects
are subject to the same value of g), the ratio of the weights of two objects equals the ra-
tio of their masses.

Equation 5.6 quantifies the gravitational force on the object, but notice that this
equation does not require the object to be moving. Even for a stationary object, or
an object on which several forces act, Equation 5.6 can be used to calculate the mag-
nitude of the gravitational force. This results in a subtle shift in the interpretation
of m in the equation. The mass m in Equation 5.6 is playing the role of determining
the strength of the gravitational attraction between the object and the Earth. This
is a completely different role from that previously described for mass, that of mea-
suring the resistance to changes in motion in response to an external force. Thus,
we call m in this type of equation the gravitational mass. Despite this quantity be-
ing different in behavior from inertial mass, it is one of the experimental conclu-
sions in Newtonian dynamics that gravitational mass and inertial mass have the same
value.

Fg " mg

! PITFALL PREVENTION
5.4 “Weight of an Object”
We are familiar with the everyday
phrase, the “weight of an object.”
However, weight is not an inher-
ent property of an object, but
rather a measure of the gravita-
tional force between the object
and the Earth. Thus, weight is a
property of a system of items—the
object and the Earth.

The life-support unit strapped to
the back of astronaut Edwin Aldrin
weighed 300 lb on the Earth.
During his training, a 50-lb mock-up
was used. Although this effectively
simulated the reduced weight the
unit would have on the Moon, it did
not correctly mimic the unchanging
mass. It was just as difficult to accel-
erate the unit (perhaps by jumping
or twisting suddenly) on the Moon
as on the Earth. 
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AQuick Quiz 5.5 A baseball of mass m is thrown upward with some initial

speed. A gravitational force is exerted on the ball (a) at all points in its motion (b) at
all points in its motion except at the highest point (c) at no points in its motion.

Quick Quiz 5.6 Suppose you are talking by interplanetary telephone to your
friend, who lives on the Moon. He tells you that he has just won a newton of gold in a
contest. Excitedly, you tell him that you entered the Earth version of the same contest
and also won a newton of gold! Who is richer? (a) You (b) Your friend (c) You are
equally rich.

3 This statement ignores the fact that the mass distribution of the Earth is not perfectly spherical.

! PITFALL PREVENTION
5.5 Kilogram is Not a Unit

of Weight
You may have seen the “con-
version” 1 kg " 2.2 lb. Despite
popular statements of weights
expressed in kilograms, the kilo-
gram is not a unit of weight, it is a
unit of mass. The conversion state-
ment is not an equality; it is an
equivalence that is only valid on
the surface of the Earth.
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5.6 Newton’s Third Law

If you press against a corner of this textbook with your fingertip, the book pushes back
and makes a small dent in your skin. If you push harder, the book does the same and
the dent in your skin is a little larger. This simple experiment illustrates a general prin-
ciple of critical importance known as Newton’s third law:

If two objects interact, the force F12 exerted by object 1 on object 2 is equal in mag-
nitude and opposite in direction to the force F21 exerted by object 2 on object 1:

(5.7)

When it is important to designate forces as interactions between two objects, we will
use this subscript notation, where Fab means “the force exerted by a on b.” The third
law, which is illustrated in Figure 5.5a, is equivalent to stating that forces always occur
in pairs, or that a single isolated force cannot exist. The force that object 1 exerts
on object 2 may be called the action force and the force of object 2 on object 1 the reac-
tion force. In reality, either force can be labeled the action or reaction force. The action
force is equal in magnitude to the reaction force and opposite in direction. In
all cases, the action and reaction forces act on different objects and must be of
the same type. For example, the force acting on a freely falling projectile is the gravi-
tational force exerted by the Earth on the projectile Fg " FEp (E " Earth, p " projec-
tile), and the magnitude of this force is mg. The reaction to this force is the gravita-
tional force exerted by the projectile on the Earth FpE " # FEp. The reaction force FpE
must accelerate the Earth toward the projectile just as the action force FEp accelerates
the projectile toward the Earth. However, because the Earth has such a large mass, its
acceleration due to this reaction force is negligibly small.

F12 " #  F21

Conceptual Example 5.2 How Much Do You Weigh in an Elevator?

Solution No, your weight is unchanged. To provide the ac-
celeration upward, the floor or scale must exert on your feet
an upward force that is greater in magnitude than your
weight. It is this greater force that you feel, which you inter-
pret as feeling heavier. The scale reads this upward force,
not your weight, and so its reading increases.

You have most likely had the experience of standing in an
elevator that accelerates upward as it moves toward a higher
floor. In this case, you feel heavier. In fact, if you are stand-
ing on a bathroom scale at the time, the scale measures a
force having a magnitude that is greater than your weight.
Thus, you have tactile and measured evidence that leads you
to believe you are heavier in this situation. Are you heavier?

Newton’s third law

2

1

F12 F21

F12  =  –F21

(a)

FnhFhn

(b)

Figure 5.5 Newton’s third law. (a) The force F12 exerted by object 1 on object 2 is
equal in magnitude and opposite in direction to the force F21 exerted by object 2 on
object 1. (b) The force Fhn exerted by the hammer on the nail is equal in magnitude
and opposite to the force Fnh exerted by the nail on the hammer. 
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Another example of Newton’s third law is shown in Figure 5.5b. The force Fhn ex-
erted by the hammer on the nail (the action) is equal in magnitude and opposite the
force Fnh exerted by the nail on the hammer (the reaction). This latter force stops the
forward motion of the hammer when it strikes the nail.

You experience the third law directly if you slam your fist against a wall or kick a
football with your bare foot. You can feel the force back on your fist or your foot. You
should be able to identify the action and reaction forces in these cases.

The Earth exerts a gravitational force Fg on any object. If the object is a computer
monitor at rest on a table, as in Figure 5.6a, the reaction force to Fg " FEm is the force
exerted by the monitor on the Earth FmE " # FEm. The monitor does not accelerate
because it is held up by the table. The table exerts on the monitor an upward force
n " Ftm, called the normal force.4 This is the force that prevents the monitor from
falling through the table; it can have any value needed, up to the point of breaking the
table. From Newton’s second law, we see that, because the monitor has zero accelera-
tion, it follows that #F " n # mg " 0, or n " mg. The normal force balances the gravi-
tational force on the monitor, so that the net force on the monitor is zero. The reaction
to n is the force exerted by the monitor downward on the table, Fmt " # Ftm " # n.

Note that the forces acting on the monitor are Fg and n, as shown in Figure 5.6b. The
two reaction forces FmE and Fmt are exerted on objects other than the monitor. Remem-
ber, the two forces in an action–reaction pair always act on two different objects.

Figure 5.6 illustrates an extremely important step in solving problems involving
forces. Figure 5.6a shows many of the forces in the situation—those acting on the mon-
itor, one acting on the table, and one acting on the Earth. Figure 5.6b, by contrast,
shows only the forces acting on one object, the monitor. This is a critical drawing called a
free-body diagram. When analyzing an object subject to forces, we are interested in
the net force acting on one object, which we will model as a particle. Thus, a free-body
diagram helps us to isolate only those forces on the object and eliminate the other
forces from our analysis. The free-body diagram can be simplified further by represent-
ing the object (such as the monitor) as a particle, by simply drawing a dot.

Fg  = FEm

n = Ftm

Fg  = FEm

Fmt

(a) (b)

FmE

n = Ftm

Figure 5.6 (a) When a computer monitor is at rest on a table, the forces acting on the
monitor are the normal force n and the gravitational force Fg . The reaction to n is the
force Fmt exerted by the monitor on the table. The reaction to Fg is the force FmE
exerted by the monitor on the Earth. (b) The free-body diagram for the monitor.

Definition of normal force

! PITFALL PREVENTION
5.7 Newton’s Third Law
This is such an important and of-
ten misunderstood concept that
it will be repeated here in a Pit-
fall Prevention. Newton’s third
law action and reaction forces act
on different objects. Two forces
acting on the same object, even if
they are equal in magnitude and
opposite in direction, cannot be
an action–reaction pair.

! PITFALL PREVENTION
5.6 n Does Not Always

Equal mg
In the situation shown in Figure
5.6 and in many others, we find
that n " mg (the normal force
has the same magnitude as the
gravitational force). However,
this is not generally true. If an ob-
ject is on an incline, if there are
applied forces with vertical com-
ponents, or if there is a vertical
acceleration of the system, then
n ! mg. Always apply Newton’s
second law to find the relation-
ship between n and mg.

4 Normal in this context means perpendicular.
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5.7 Some Applications of Newton’s Laws

In this section we apply Newton’s laws to objects that are either in equilibrium (a " 0)
or accelerating along a straight line under the action of constant external forces. Re-
member that when we apply Newton’s laws to an object, we are interested only in
external forces that act on the object. We assume that the objects can be modeled as
particles so that we need not worry about rotational motion. For now, we also neglect
the effects of friction in those problems involving motion; this is equivalent to stating
that the surfaces are frictionless. (We will incorporate the friction force in problems in
Section 5.8.)

We usually neglect the mass of any ropes, strings, or cables involved. In this ap-
proximation, the magnitude of the force exerted at any point along a rope is the
same at all points along the rope. In problem statements, the synonymous terms light
and of negligible mass are used to indicate that a mass is to be ignored when you work
the problems. When a rope attached to an object is pulling on the object, the rope
exerts a force T on the object, and the magnitude T of that force is called the
tension in the rope. Because it is the magnitude of a vector quantity, tension is a
scalar quantity.

! PITFALL PREVENTION
5.8 Free-body Diagrams
The most important step in solving
a problem using Newton’s laws is
to draw a proper sketch—the
free-body diagram. Be sure to
draw only those forces that act on
the object that you are isolating.
Be sure to draw all forces acting
on the object, including any field
forces, such as the gravitational
force.

Quick Quiz 5.7 If a fly collides with the windshield of a fast-moving bus,
which object experiences an impact force with a larger magnitude? (a) the fly (b) the
bus (c) the same force is experienced by both.

Quick Quiz 5.8 If a fly collides with the windshield of a fast-moving bus,
which object experiences the greater acceleration: (a) the fly (b) the bus (c) the same
acceleration is experienced by both.

Quick Quiz 5.9 Which of the following is the reaction force to the gravita-
tional force acting on your body as you sit in your desk chair? (a) The normal force ex-
erted by the chair (b) The force you exert downward on the seat of the chair (c) Nei-
ther of these forces.

Quick Quiz 5.10 In a free-body diagram for a single object, you draw
(a) the forces acting on the object and the forces the object exerts on other objects, or
(b) only the forces acting on the object.

Conceptual Example 5.3 You Push Me and I’ll Push You

less of which way it faced.) Therefore, the boy, having the
smaller mass, experiences the greater acceleration. Both
individuals accelerate for the same amount of time, but the
greater acceleration of the boy over this time interval re-
sults in his moving away from the interaction with the
higher speed.

(B) Who moves farther while their hands are in contact?

Solution Because the boy has the greater acceleration and,
therefore, the greater average velocity, he moves farther dur-
ing the time interval in which the hands are in contact.

A large man and a small boy stand facing each other on fric-
tionless ice. They put their hands together and push against
each other so that they move apart.

(A) Who moves away with the higher speed?

Solution This situation is similar to what we saw in Quick
Quizzes 5.7 and 5.8. According to Newton’s third law, the
force exerted by the man on the boy and the force exerted
by the boy on the man are an action–reaction pair, and so
they must be equal in magnitude. (A bathroom scale
placed between their hands would read the same, regard-

Rock climbers at rest are in equilib-
rium and depend on the tension
forces in ropes for their safety. 
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Objects in Equilibrium

If the acceleration of an object that can be modeled as a particle is zero, the particle is
in equilibrium. Consider a lamp suspended from a light chain fastened to the ceiling,
as in Figure 5.7a. The free-body diagram for the lamp (Figure 5.7b) shows that the
forces acting on the lamp are the downward gravitational force Fg and the upward
force T exerted by the chain. If we apply the second law to the lamp, noting that a " 0,
we see that because there are no forces in the x direction, #Fx " 0 provides no helpful
information. The condition #Fy " may " 0 gives

Again, note that T and Fg are not an action–reaction pair because they act on the
same object—the lamp. The reaction force to T is T(, the downward force exerted by
the lamp on the chain, as shown in Figure 5.7c. The ceiling exerts on the chain a
force T ) that is equal in magnitude to the magnitude of T( and points in the opposite
direction.

Objects Experiencing a Net Force

If an object that can be modeled as a particle experiences an acceleration, then there
must be a nonzero net force acting on the object. Consider a crate being pulled to the
right on a frictionless, horizontal surface, as in Figure 5.8a. Suppose you are asked to
find the acceleration of the crate and the force the floor exerts on it. First, note that
the horizontal force T being applied to the crate acts through the rope. The magni-
tude of T is equal to the tension in the rope. The forces acting on the crate are illus-
trated in the free-body diagram in Figure 5.8b. In addition to the force T, the free-
body diagram for the crate includes the gravitational force Fg and the normal force n
exerted by the floor on the crate.

We can now apply Newton’s second law in component form to the crate. The only
force acting in the x direction is T. Applying #Fx " max to the horizontal motion
gives

No acceleration occurs in the y direction. Applying #Fy " may with ay " 0 yields

That is, the normal force has the same magnitude as the gravitational force but acts in
the opposite direction.

If T is a constant force, then the acceleration ax " T/m also is constant. Hence, the
constant-acceleration equations of kinematics from Chapter 2 can be used to obtain
the crate’s position x and velocity vx as functions of time. Because ax " T/m " con-
stant, Equations 2.9 and 2.12 can be written as

In the situation just described, the magnitude of the normal force n is equal to the
magnitude of Fg , but this is not always the case. For example, suppose a book is lying
on a table and you push down on the book with a force F, as in Figure 5.9. Because the
book is at rest and therefore not accelerating, #Fy " 0, which gives n # Fg # F " 0, or
n " Fg $ F. In this situation, the normal force is greater than the force of gravity. Other
examples in which n ! Fg are presented later.

xf " xi $ vxit $ 1
2$ T

m % t2

vxf " vxi $ $ T
m %t

n $ (#  Fg) " 0  or  n " Fg

#Fx " T " max  or  ax "
T
m

#Fy " T # Fg " 0  or  T " Fg

(b) (c)

T

T′

T′′ = T

(a)
Fg

Figure 5.7 (a) A lamp suspended
from a ceiling by a chain of negligi-
ble mass. (b) The forces acting on
the lamp are the gravitational force
Fg and the force T exerted by the
chain. (c) The forces acting on the
chain are the force T! exerted by
the lamp and the force T " exerted
by the ceiling.

(a)

T

n

Fg

y

x

(b)

Figure 5.8 (a) A crate being
pulled to the right on a frictionless
surface. (b) The free-body diagram
representing the external forces
acting on the crate.
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F

Fg n

Figure 5.9 When one object
pushes downward on another
object with a force F, the normal
force n is greater than the
gravitational force: n " Fg $ F.

P R O B L E M - S O LV I N G  H I N T S

Applying Newton’s Laws
The following procedure is recommended when dealing with problems involving
Newton’s laws:

• Draw a simple, neat diagram of the system to help conceptualize the problem.

• Categorize the problem: if any acceleration component is zero, the particle is
in equilibrium in this direction and #F " 0. If not, the particle is undergoing
an acceleration, the problem is one of nonequilibrium in this direction, and
#F " ma.

• Analyze the problem by isolating the object whose motion is being
analyzed. Draw a free-body diagram for this object. For systems containing
more than one object, draw separate free-body diagrams for each object.
Do not include in the free-body diagram forces exerted by the object on its
surroundings.

• Establish convenient coordinate axes for each object and find the
components of the forces along these axes. Apply Newton’s second law, 
#F " ma, in component form. Check your dimensions to make sure that all
terms have units of force.

• Solve the component equations for the unknowns. Remember that you must
have as many independent equations as you have unknowns to obtain a
complete solution.

• Finalize by making sure your results are consistent with the free-body diagram.
Also check the predictions of your solutions for extreme values of the
variables. By doing so, you can often detect errors in your results.

Example 5.4 A Traffic Light at Rest

A traffic light weighing 122 N hangs from a cable tied to two
other cables fastened to a support, as in Figure 5.10a. The
upper cables make angles of 37.0° and 53.0° with the hori-
zontal. These upper cables are not as strong as the vertical
cable, and will break if the tension in them exceeds 100 N.
Will the traffic light remain hanging in this situation, or will
one of the cables break?

Solution We conceptualize the problem by inspecting the
drawing in Figure 5.10a. Let us assume that the cables do
not break so that there is no acceleration of any sort in this
problem in any direction. This allows us to categorize the
problem as one of equilibrium. Because the acceleration of
the system is zero, we know that the net force on the light
and the net force on the knot are both zero. To analyze the

T2T1

T3

53.0°37.0°

(a)

T3

53.0°37.0° x

T2

T1

yT3

Fg

(b) (c)

Figure 5.10 (Example 5.4) (a) A traffic light suspended by cables. (b) Free-body diagram
for the traffic light. (c) Free-body diagram for the knot where the three cables are joined.
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Conceptual Example 5.5 Forces Between Cars in a Train

Example 5.6 The Runaway Car

A car of mass m is on an icy driveway inclined at an angle !,
as in Figure 5.11a.

(A) Find the acceleration of the car, assuming that the 
driveway is frictionless.

Solution Conceptualize the situation using Figure 5.11a. From
everyday experience, we know that a car on an icy incline will
accelerate down the incline. (It will do the same thing as a car
on a hill with its brakes not set.) This allows us to categorize the
situation as a nonequilibrium problem—that is, one in which
an object accelerates. Figure 5.11b shows the free-body dia-
gram for the car, which we can use to analyze the problem.
The only forces acting on the car are the normal force n
exerted by the inclined plane, which acts perpendicular to

the plane, and the gravitational force Fg " mg, which acts
vertically downward. For problems involving inclined planes,
it is convenient to choose the coordinate axes with x along
the incline and y perpendicular to it, as in Figure 5.11b. (It is
possible to solve the problem with “standard” horizontal and
vertical axes. You may want to try this, just for practice.) Then,
we replace the gravitational force by a component of magni-
tude mg sin ! along the positive x axis and one of magnitude
mg cos ! along the negative y axis.

Now we apply Newton’s second law in component form,
noting that ay " 0:

(2)      #Fy " n # mg  cos ! " 0

(1)      #Fx " mg  sin ! " max

problem, we construct two free-body diagrams—one for the
traffic light, shown in Figure 5.10b, and one for the knot
that holds the three cables together, as in Figure 5.10c. This
knot is a convenient object to choose because all the forces
of interest act along lines passing through the knot. 

With reference to Figure 5.10b, we apply the equilib-
rium condition in the y direction, #Fy " 0 : T3 # Fg " 0.
This leads to T3 " Fg " 122 N. Thus, the upward force T3
exerted by the vertical cable on the light balances the gravi-
tational force. 

Next, we choose the coordinate axes shown in Figure
5.10c and resolve the forces acting on the knot into their
components:

the weight of the light. We solve (1) for T2 in terms of T1 to
obtain

This value for T2 is substituted into (2) to yield

Both of these values are less than 100 N ( just barely for T2), so
the cables will not break. Let us finalize this problem by imag-
ining a change in the system, as in the following What If?

What If? Suppose the two angles in Figure 5.10a are equal.
What would be the relationship between T1 and T2?

Answer We can argue from the symmetry of the problem
that the two tensions T1 and T2 would be equal to each
other. Mathematically, if the equal angles are called !, Equa-
tion (3) becomes

which also tells us that the tensions are equal. Without
knowing the specific value of !, we cannot find the values of
T1 and T2. However, the tensions will be equal to each other,
regardless of the value of !.

T2 " T1$ cos !
cos ! % " T1

T2 " 1.33T1 " 97.4  N

T1 " 73.4 N

T1  sin  37.0' $ (1.33T1)(sin  53.0') # 122  N " 0

(3)   T2 " T1$ cos  37.0'

cos  53.0' % " 1.33T1

Train cars are connected by couplers, which are under tension
as the locomotive pulls the train. As you move through the
train from the locomotive to the last car, does the tension in
the couplers increase, decrease, or stay the same as the train
speeds up? When the engineer applies the brakes, the cou-
plers are under compression. How does this compression
force vary from the locomotive to the last car? (Assume that
only the brakes on the wheels of the engine are applied.)

Solution As the train speeds up, tension decreases from
front to back. The coupler between the locomotive and

the first car must apply enough force to accelerate the rest
of the cars. As you move back along the train, each cou-
pler is accelerating less mass behind it. The last coupler
has to accelerate only the last car, and so it is under the
least tension.

When the brakes are applied, the force again decreases
from front to back. The coupler connecting the locomotive
to the first car must apply a large force to slow down the rest
of the cars, but the final coupler must apply a force large
enough to slow down only the last car.

Force x Component y Component

T1 # T1 cos 37.0° T1 sin 37.0°
T2 T2 cos 53.0° T2 sin 53.0°
T3 0 #122 N

Knowing that the knot is in equilibrium (a " 0) allows us to
write

(1)

(2)

From (1) we see that the horizontal components of T1 and
T2 must be equal in magnitude, and from (2) we see that
the sum of the vertical components of T1 and T2 must bal-
ance the downward force T3, which is equal in magnitude to

#Fy " T1 sin 37.0' $ T2   sin 53.0' $ (#  122  N) " 0

#Fx " #T1 cos 37.0' $ T2 cos 53.0' " 0
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Solving (1) for ax , we see that the acceleration along the in-
cline is caused by the component of Fg directed down the
incline:

To finalize this part, note that this acceleration component is
independent of the mass of the car! It depends only on the
angle of inclination and on g.

From (2) we conclude that the component of Fg per-
pendicular to the incline is balanced by the normal force;
that is, n " mg cos !. This is another example of a situation
in which the normal force is not equal in magnitude to the
weight of the object.

(B) Suppose the car is released from rest at the top of the
incline, and the distance from the car’s front bumper to the
bottom of the incline is d. How long does it take the front
bumper to reach the bottom, and what is the car’s speed as
it arrives there?

Solution Conceptualize by imagining that the car is sliding
down the hill and you are operating a stop watch to measure
the entire time interval until it reaches the bottom. This
part of the problem belongs to kinematics rather than to dy-
namics, and Equation (3) shows that the acceleration ax is
constant. Therefore you should categorize this problem as
that of a particle undergoing constant acceleration. Apply
Equation 2.12, xf " xi $ vxit $ axt 2, to analyze the car’s
motion. Defining the initial position of the front bumper
as xi " 0 and its final position as xf " d, and recognizing
that vxi " 0, we obtain

d " 1
2axt 2

1
2

g  sin !(3)   ax " Using Equation 2.13, with vxi " 0, we find that

To finalize this part of the problem, we see from Equations
(4) and (5) that the time t at which the car reaches the bot-
tom and its final speed vxf are independent of the car’s
mass, as was its acceleration. Note that we have combined
techniques from Chapter 2 with new techniques from the
present chapter in this example. As we learn more and
more techniques in later chapters, this process of com-
bining information from several parts of the book will
occur more often. In these cases, use the General Problem-
Solving Strategy to help you identify what techniques you
will need.

What If? (A) What previously solved problem does this
become if # $ 90°? (B) What problem does this become if
# $ 0?

Answer (A) Imagine ! going to 90° in Figure 5.11. The in-
clined plane becomes vertical, and the car is an object in
free-fall! Equation (3) becomes

which is indeed the free-fall acceleration. (We find ax " g
rather than ax " #g because we have chosen positive x to be
downward in Figure 5.11.) Notice also that the condition

ax " g  sin ! " g  sin  90' " g

√2 gd sin !(5)   vxf " √2axd "

vxf
2 " 2axd

√ 2d
g sin  !

(4)   t "  √ 2d
ax

"

(a) (b)

n

m

x

y

g cos

mg sin

Fg = mg

u

u

u

u

Figure 5.11 (Example 5.6) (a) A car of mass m sliding down a frictionless incline.
(b) The free-body diagram for the car. Note that its acceleration along the incline is
g sin!.
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n " mg cos ! gives us n " mg cos 90° " 0. This is consistent
with the fact that the car is falling downward next to the
vertical plane but there is no interaction force between
the car and the plane. Equations (4) and (5) give us

and 

both of which are consistent with a falling object.

(B) Imagine ! going to 0 in Figure 5.11. In this case, the in-
clined plane becomes horizontal, and the car is on a hori-
zontal surface. Equation (3) becomes

" √2gd,vxf " √2gd  sin  90't " √ 2d
g  sin 90'

" √ 2d
g

which is consistent with the fact that the car is at rest in
equilibrium. Notice also that the condition n " mg cos !
gives us n " mg cos 0 " mg, which is consistent with our
expectation.

Equations (4) and (5) give us and 

. These results agree with the fact that
the car does not accelerate, so it will never achieve a non-
zero final velocity, and it will take an infinite amount of time
to reach the bottom of the “hill”!

vxf " √2gd  sin   0 " 0

 t " √ 2d
g   sin 0

 : *

ax " g   sin ! " g  sin  0 " 0

Example 5.7 One Block Pushes Another

Two blocks of masses m1 and m2, with m1 + m2, are placed in
contact with each other on a frictionless, horizontal surface,
as in Figure 5.12a. A constant horizontal force F is applied to
m1 as shown. (A) Find the magnitude of the acceleration of
the system.

Solution Conceptualize the situation using Figure 5.12a and
realizing that both blocks must experience the same acceler-
ation because they are in contact with each other and re-
main in contact throughout the motion. We categorize this as
a Newton’s second law problem because we have a force ap-
plied to a system and we are looking for an acceleration. To
analyze the problem, we first address the combination of two
blocks as a system. Because F is the only external horizontal
force acting on the system, we have

To finalize this part, note that this would be the same acceler-
ation as that of a single object of mass equal to the com-
bined masses of the two blocks in Figure 5.12a and subject
to the same force.

F
m1 $ m2

(1)   ax "

#Fx(system) " F " (m1 $ m2)ax

(B) Determine the magnitude of the contact force between
the two blocks.

Solution Conceptualize by noting that the contact force is in-
ternal to the system of two blocks. Thus, we cannot find this
force by modeling the whole system (the two blocks) as a
single particle. We must now treat each of the two blocks in-
dividually by categorizing each as a particle subject to a net
force. To analyze the situation, we first construct a free-body
diagram for each block, as shown in Figures 5.12b and
5.12c, where the contact force is denoted by P. From Figure
5.12c we see that the only horizontal force acting on m2 
is the contact force P12 (the force exerted by m1 on m2),
which is directed to the right. Applying Newton’s second law
to m2 gives

Substituting the value of the acceleration ax given by (1)
into (2) gives

To finalize the problem, we see from this result that
the contact force P12 is less than the applied force F. This
is consistent with the fact that the force required to
accelerate block 2 alone must be less than the force re-
quired to produce the same acceleration for the two-block
system.

To finalize further, it is instructive to check this expres-
sion for P12 by considering the forces acting on m1, shown
in Figure 5.12b. The horizontal forces acting on m1 are the
applied force F to the right and the contact force P21 to the
left (the force exerted by m2 on m1). From Newton’s third
law, P21 is the reaction to P12, so P21 " P12 . Applying New-
ton’s second law to m1 gives

Substituting into (4) the value of ax from (1), we obtain

This agrees with (3), as it must.

P12 " F # m1ax " F # m1 $ 
F

m1 $ m2
% " $ m2

m1 $ m2
%

 
F

(4)   #Fx " F # P21 " F # P12 " m1ax

$ m2

m1 $ m2
%

 
F(3)   P12 " m2 ax "

(2)   #Fx " P12 " m2ax

m2
m1

F

(a)

(b)

m1

n1

F P21

m1g

y

x

(c)

P12

m2g

n2

m2

Active Figure 5.12 (Example 5.7) A force is applied to a block
of mass m1, which pushes on a second block of mass m2. (b) The
free-body diagram for m1. (c) The free-body diagram for m2.

At the Active Figures link at http://www.pse6.com,
you can study the forces involved in this two-block
system.
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What If? Imagine that the force F in Figure 5.12 is applied
toward the left on the right-hand block of mass m2. Is the
magnitude of the force P12 the same as it was when the force
was applied toward the right on m1?

Answer With the force applied toward the left on m2, the
contact force must accelerate m1. In the original situation,
the contact force accelerates m2. Because m1 + m2, this will
require more force, so the magnitude of P12 is greater than
in the original situation.

Example 5.8 Weighing a Fish in an Elevator

A person weighs a fish of mass m on a spring scale attached
to the ceiling of an elevator, as illustrated in Figure 5.13.
Show that if the elevator accelerates either upward or down-
ward, the spring scale gives a reading that is different from
the weight of the fish.

Solution Conceptualize by noting that the reading on the
scale is related to the extension of the spring in the scale,
which is related to the force on the end of the spring as in
Figure 5.2. Imagine that a string is hanging from the end
of the spring, so that the magnitude of the force exerted
on the spring is equal to the tension T in the string. Thus,
we are looking for T. The force T pulls down on the string
and pulls up on the fish. Thus, we can categorize this prob-
lem as one of analyzing the forces and acceleration associ-
ated with the fish by means of Newton’s second law. To an-
alyze the problem, we inspect the free-body diagrams for
the fish in Figure 5.13 and note that the external forces
acting on the fish are the downward gravitational force

Fg " mg and the force T exerted by the scale. If the eleva-
tor is either at rest or moving at constant velocity, the fish
does not accelerate, and so ,Fy " T # Fg " 0 or
T " Fg " mg. (Remember that the scalar mg is the weight
of the fish.)

If the elevator moves with an acceleration a relative to
an observer standing outside the elevator in an inertial
frame (see Fig. 5.13), Newton’s second law applied to the
fish gives the net force on the fish:

where we have chosen upward as the positive y direction.
Thus, we conclude from (1) that the scale reading T is
greater than the fish’s weight mg if a is upward, so that ay is
positive, and that the reading is less than mg if a is down-
ward, so that ay is negative.

For example, if the weight of the fish is 40.0 N and a is up-
ward, so that ay " $ 2.00 m/s2, the scale reading from (1) is

(1)   #Fy " T # mg " may

m g

a

T

a

m g

T

(b)(a)

Observer in
inertial frame

Figure 5.13 (Example 5.8) Apparent weight versus true weight. (a) When the elevator
accelerates upward, the spring scale reads a value greater than the weight of the fish.
(b) When the elevator accelerates downward, the spring scale reads a value less than
the weight of the fish.
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If a is downward so that ay " # 2.00 m/s2, then (2) gives us

31.8  N"

T " Fg$ ay

g
$ 1% " (40.0  N) $ #2.00  m/s2

9.80  m/s2 $ 1%

48.2  N"

 " Fg $ ay

g
$ 1% " (40.0  N) $ 2.00 m/s2

9.80 m/s2 $ 1%
(2) T " may $ mg " mg $ ay

g
$ 1% To finalize this problem, take this advice—if you buy

a fish in an elevator, make sure the fish is weighed while
the elevator is either at rest or accelerating downward!
Furthermore, note that from the information given here,
one cannot determine the direction of motion of the
elevator.

What If? Suppose the elevator cable breaks, so that the
elevator and its contents are in free-fall. What happens to the
reading on the scale?

Answer If the elevator falls freely, its acceleration is
ay " #g. We see from (2) that the scale reading T is zero in
this case; that is, the fish appears to be weightless.

Example 5.9 The Atwood Machine

downward. Because the objects are connected by an inex-
tensible string, their accelerations must be of equal magni-
tude. The objects in the Atwood machine are subject to the
gravitational force as well as to the forces exerted by the
strings connected to them—thus, we can categorize this as a
Newton’s second law problem. To analyze the situation, the
free-body diagrams for the two objects are shown in Figure
5.14b. Two forces act on each object: the upward force T ex-
erted by the string and the downward gravitational force. In
problems such as this in which the pulley is modeled as
massless and frictionless, the tension in the string on both
sides of the pulley is the same. If the pulley has mass and/or
is subject to friction, the tensions on either side are not the
same and the situation requires techniques we will learn in
Chapter 10.

We must be very careful with signs in problems such as
this. In Figure 5.14a, notice that if object 1 accelerates up-
ward, then object 2 accelerates downward. Thus, for consis-
tency with signs, if we define the upward direction as posi-
tive for object 1, we must define the downward direction as
positive for object 2. With this sign convention, both ob-
jects accelerate in the same direction as defined by the
choice of sign. Furthermore, according to this sign conven-
tion, the y component of the net force exerted on object 1
is T # m1g, and the y component of the net force exerted
on object 2 is m2g # T. Notice that we have chosen the
signs of the forces to be consistent with the choices of
signs for up and down for each object. If we assume that
m2 + m1, then m1 must accelerate upward, while m2 must
accelerate downward.

When Newton’s second law is applied to object 1, we
obtain

Similarly, for object 2 we find

When (2) is added to (1), T cancels and we have

$ m2 # m1

m1 $ m2
%g(3)   ay "

#m1g $ m2g " m1ay $ m2ay

(2)   #Fy " m2g # T " m2ay

(1)   #Fy " T # m1g " m1ay

(b)

m1

T

m1g

T

m2g

(a)

m1

m2

a

a

m2

When two objects of unequal mass are hung vertically over a
frictionless pulley of negligible mass, as in Figure 5.14a, the
arrangement is called an Atwood machine. The device is
sometimes used in the laboratory to measure the free-fall ac-
celeration. Determine the magnitude of the acceleration of
the two objects and the tension in the lightweight cord.

Solution Conceptualize the situation pictured in Figure
5.14a—as one object moves upward, the other object moves

Active Figure 5.14 (Example 5.9) The Atwood machine. (a) Two
objects (m2 + m1) connected by a massless inextensible cord over
a frictionless pulley. (b) Free-body diagrams for the two objects.

Interactive

At the Active Figures link at http://www.pse6.com,
you can adjust the masses of the objects on the Atwood
machine and observe the motion.
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The acceleration given by (3) can be interpreted as the ratio
of the magnitude of the unbalanced force on the system
(m2 # m1)g, to the total mass of the system (m1 $ m2), as ex-
pected from Newton’s second law.

When (3) is substituted into (1), we obtain

Finalize this problem with the following What If?

What If? (A) Describe the motion of the system if 
the objects have equal masses, that is, m1 $ m2. 

$ 2m1m2

m1 $ m2
%g(4)   T "

(B) Describe the motion of the system if one of the masses
is much larger than the other, m1 !! m2.

Answer (A) If we have the same mass on both sides, the
system is balanced and it should not accelerate. Mathemati-
cally, we see that if m1 " m2, Equation (3) gives us ay " 0.
(B) In the case in which one mass is infinitely larger than
the other, we can ignore the effect of the smaller mass.
Thus, the larger mass should simply fall as if the smaller
mass were not there. We see that if m1 ++ m2, Equation (3)
gives us ay " # g.

Investigate these limiting cases at the Interactive Worked Example link at http://www.pse6.com.

Example 5.10 Acceleration of Two Objects Connected by a Cord

A ball of mass m1 and a block of mass m2 are attached by a
lightweight cord that passes over a frictionless pulley of neg-
ligible mass, as in Figure 5.15a. The block lies on a friction-
less incline of angle !. Find the magnitude of the accelera-
tion of the two objects and the tension in the cord.

Solution Conceptualize the motion in Figure 5.15. If m2
moves down the incline, m1 moves upward. Because the ob-
jects are connected by a cord (which we assume does not
stretch), their accelerations have the same magnitude. We
can identify forces on each of the two objects and we are
looking for an acceleration, so we categorize this as a New-
ton’s second-law problem. To analyze the problem, con-
sider the free-body diagrams shown in Figures 5.15b and
5.15c. Applying Newton’s second law in component form
to the ball, choosing the upward direction as positive,
yields

Note that in order for the ball to accelerate upward, it is
necessary that T + m1g. In (2), we replaced ay with a be-
cause the acceleration has only a y component.

For the block it is convenient to choose the positive x(
axis along the incline, as in Figure 5.15c. For consistency

(2)   #Fy " T # m1g " m1ay " m1a

(1)   #Fx " 0

with our choice for the ball, we choose the positive direction
to be down the incline. Applying Newton’s second law in
component form to the block gives

In (3) we replaced ax( with a because the two objects have
accelerations of equal magnitude a. Equations (1) and (4)
provide no information regarding the acceleration. How-
ever, if we solve (2) for T and then substitute this value for T
into (3) and solve for a, we obtain

When this expression for a is substituted into (2), we find

To finalize the problem, note that the block accelerates
down the incline only if m2 sin ! + m1. If m1 + m2 sin !,

m1m2 g (sin ! $ 1)
m1 $ m2

(6)   T "

m2 g  sin ! # m1 g 

m1 $ m2
(5)   a "

(4)   #Fy( " n # m2 g  cos  ! " 0

(3)   #Fx( " m2g  sin ! # T " m2ax( " m 2a

m2g cosθ

a

(a)

θ

m1 x

y

T

m1g

(b)

x′

y′

T

θ

m2g
(c)

n

a

m2g sinθ
m2

m1

Figure 5.15 (Example 5.10) (a) Two objects connected by a lightweight cord strung
over a frictionless pulley. (b) Free-body diagram for the ball. (c) Free-body diagram for
the block. (The incline is frictionless.)

Interactive



5.8 Forces of Friction

When an object is in motion either on a surface or in a viscous medium such as air or
water, there is resistance to the motion because the object interacts with its surround-
ings. We call such resistance a force of friction. Forces of friction are very important
in our everyday lives. They allow us to walk or run and are necessary for the motion of
wheeled vehicles.

Imagine that you are working in your garden and have filled a trash can with yard clip-
pings. You then try to drag the trash can across the surface of your concrete patio, as in
Figure 5.16a. This is a real surface, not an idealized, frictionless surface. If we apply an ex-
ternal horizontal force F to the trash can, acting to the right, the trash can remains sta-
tionary if F is small. The force that counteracts F and keeps the trash can from moving
acts to the left and is called the force of static friction fs . As long as the trash can is not
moving, fs " F. Thus, if F is increased, fs also increases. Likewise, if F decreases, fs also
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then the acceleration is up the incline for the block and
downward for the ball. Also note that the result for the ac-
celeration (5) can be interpreted as the magnitude of the
net force acting on the system divided by the total mass of
the system; this is consistent with Newton’s second law.

What If? (A) What happens in this situation if the angle
# $ 90°? 

(B) What happens if the mass m1 $ 0?

Answer (A) If ! " 90°, the inclined plane becomes vertical
and there is no interaction between its surface and m2.
Thus, this problem becomes the Atwood machine of Exam-
ple 5.9. Letting ! : 90° in Equations (5) and (6) causes
them to reduce to Equations (3) and (4) of Example 5.9!
(B) If m1 " 0, then m2 is simply sliding down an inclined
plane without interacting with m1 through the string. Thus,
this problem becomes the sliding car problem in Example
5.6. Letting m1 : 0 in Equation (5) causes it to reduce to
Equation (3) of Example 5.6!

Investigate these limiting cases at the Interactive Worked Example link at http://www.pse6.com.

F

fk =    kn
f s =

 F

0

|f|

fs,max

Static region

(c)

(a) (b)

Kinetic region

µ

mg

n

F

n
Motion

mg

fkfs
F

Active Figure 5.16 The direction of the force of friction f be-
tween a trash can and a rough surface is opposite the direction
of the applied force F. Because both surfaces are rough, contact
is made only at a few points, as illustrated in the “magnified”
view. (a) For small applied forces, the magnitude of the force of
static friction equals the magnitude of the applied force.
(b) When the magnitude of the applied force exceeds the
magnitude of the maximum force of static friction, the trash
can breaks free. The applied force is now larger than the force
of kinetic friction and the trash can accelerates to the right.
(c) A graph of friction force versus applied force. Note that
fs,max + fk .

Force of static friction

At the Active Figures link at http://www.pse6.com
you can vary the applied force on the trash can and
practice sliding it on surfaces of varying roughness.
Note the effect on the trash can’s motion and the corre-
sponding behavior of the graph in (c).



decreases. Experiments show that the friction force arises from the nature of the two sur-
faces: because of their roughness, contact is made only at a few locations where peaks of
the material touch, as shown in the magnified view of the surface in Figure 5.16a.

At these locations, the friction force arises in part because one peak physically
blocks the motion of a peak from the opposing surface, and in part from chemical
bonding (“spot welds”) of opposing peaks as they come into contact. If the surfaces are
rough, bouncing is likely to occur, further complicating the analysis. Although the de-
tails of friction are quite complex at the atomic level, this force ultimately involves an
electrical interaction between atoms or molecules.

If we increase the magnitude of F, as in Figure 5.16b, the trash can eventually slips.
When the trash can is on the verge of slipping, fs has its maximum value fs,max, as
shown in Figure 5.16c. When F exceeds fs,max, the trash can moves and accelerates to
the right. When the trash can is in motion, the friction force is less than fs,max (Fig.
5.16c). We call the friction force for an object in motion the force of kinetic friction
fk . The net force F # fk in the x direction produces an acceleration to the right, ac-
cording to Newton’s second law. If F " fk , the acceleration is zero, and the trash can
moves to the right with constant speed. If the applied force is removed, the friction
force acting to the left provides an acceleration of the trash can in the #x direction
and eventually brings it to rest, again consistent with Newton’s second law.

Experimentally, we find that, to a good approximation, both fs,max and fk are pro-
portional to the magnitude of the normal force. The following empirical laws of fric-
tion summarize the experimental observations:

• The magnitude of the force of static friction between any two surfaces in contact
can have the values

(5.8)

where the dimensionless constant -s is called the coefficient of static friction and
n is the magnitude of the normal force exerted by one surface on the other. The
equality in Equation 5.8 holds when the surfaces are on the verge of slipping, that
is, when fs " fs,max " -sn. This situation is called impending motion. The inequality
holds when the surfaces are not on the verge of slipping.

• The magnitude of the force of kinetic friction acting between two surfaces is

(5.9)

where -k is the coefficient of kinetic friction. Although the coefficient of kinetic
friction can vary with speed, we shall usually neglect any such variations in this text.

fk " -kn

fs . -sn
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%s %k

Steel on steel 0.74 0.57
Aluminum on steel 0.61 0.47
Copper on steel 0.53 0.36
Rubber on concrete 1.0 0.8
Wood on wood 0.25–0.5 0.2
Glass on glass 0.94 0.4
Waxed wood on wet snow 0.14 0.1
Waxed wood on dry snow — 0.04
Metal on metal (lubricated) 0.15 0.06
Ice on ice 0.1 0.03
Teflon on Teflon 0.04 0.04
Synovial joints in humans 0.01 0.003

Coefficients of Frictiona

Table 5.2

a All values are approximate. In some cases, the coefficient
of friction can exceed 1.0.

Force of kinetic friction

! PITFALL PREVENTION
5.9 The Equal Sign is Used

in Limited Situations
In Equation 5.8, the equal sign is
used only in the case in which the
surfaces are just about to break
free and begin sliding. Do not fall
into the common trap of using
fs " -sn in any static situation.

! PITFALL PREVENTION
5.10 Friction Equations
Equations 5.8 and 5.9 are not vec-
tor equations. They are relation-
ships between the magnitudes of
the vectors representing the fric-
tion and normal forces. Because
the friction and normal forces
are perpendicular to each other,
the vectors cannot be related by a
multiplicative constant.
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• The values of -k and -s depend on the nature of the surfaces, but -k is generally
less than -s. Typical values range from around 0.03 to 1.0. Table 5.2 lists some re-
ported values.

• The direction of the friction force on an object is parallel to the surface with
which the object is in contact and opposite to the actual motion (kinetic
friction) or the impending motion (static friction) of the object relative to the
surface.

• The coefficients of friction are nearly independent of the area of contact between
the surfaces. We might expect that placing an object on the side having the most
area might increase the friction force. While this provides more points in contact,
as in Figure 5.16a, the weight of the object is spread out over a larger area, so that
the individual points are not pressed so tightly together. These effects approxi-
mately compensate for each other, so that the friction force is independent of the
area.

Quick Quiz 5.11 You press your physics textbook flat against a vertical wall
with your hand. What is the direction of the friction force exerted by the wall on the
book? (a) downward (b) upward (c) out from the wall (d) into the wall.

Quick Quiz 5.12 A crate is located in the center of a flatbed truck. The truck
accelerates to the east, and the crate moves with it, not sliding at all. What is the direc-
tion of the friction force exerted by the truck on the crate? (a) to the west (b) to the
east (c) No friction force exists because the crate is not sliding.

Quick Quiz 5.13 You place your physics book on a wooden board. You
raise one end of the board so that the angle of the incline increases. Eventually, the
book starts sliding on the board. If you maintain the angle of the board at this value,
the book (a) moves at constant speed (b) speeds up (c) slows down (d) none of
these.

Quick Quiz 5.14 You are playing with your daughter in the snow. She sits on
a sled and asks you to slide her across a flat, horizontal field. You have a choice of
(a) pushing her from behind, by applying a force downward on her shoulders at 30°
below the horizontal (Fig. 5.17a), or (b) attaching a rope to the front of the sled and
pulling with a force at 30° above the horizontal (Fig 5.17b). Which would be easier for
you and why?

30°
F 30°

(a) (b)

F

Figure 5.17 (Quick Quiz 5.14) A father pushes his daughter on a sled either by
(a) pushing down on her shoulders, or (b) pulling up on a rope.

! PITFALL PREVENTION
5.11 The Direction of the

Friction Force
Sometimes, an incorrect state-
ment about the friction force be-
tween an object and a surface is
made—“the friction force on an
object is opposite to its motion
or impending motion”—rather
than the correct phrasing, “the
friction force on an object is op-
posite to its motion or impend-
ing motion relative to the surface.”
Think carefully about Quick
Quiz 5.12.
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f

y

x

θ

mg sin

mg cos θ

mg

θ
θ

Figure 5.19 (Example 5.12) The external forces exerted on a
block lying on a rough incline are the gravitational force mg, the
normal force n, and the force of friction f. For convenience, the
gravitational force is resolved into a component along the incline
mg sin ! and a component perpendicular to the incline mg cos !.

134 C H A P T E R  5 •  The Laws of Motion

Conceptual Example 5.11 Why Does the Sled Accelerate?

A horse pulls a sled along a level, snow-covered road, causing
the sled to accelerate, as shown in Figure 5.18a. Newton’s
third law states that the sled exerts a force of equal magni-
tude and opposite direction on the horse. In view of this,
how can the sled accelerate—don’t the forces cancel? Under
what condition does the system (horse plus sled) move with
constant velocity?

Solution Remember that the forces described in Newton’s
third law act on different objects—the horse exerts a force 
on the sled, and the sled exerts an equal-magnitude and op-
positely directed force on the horse. Because we are inter-
ested only in the motion of the sled, we do not consider the
forces it exerts on the horse. When determining the motion

of an object, you must add only the forces on that object.
(This is the principle behind drawing a free-body diagram.)
The horizontal forces exerted on the sled are the forward
force T exerted by the horse and the backward force of fric-
tion fsled between sled and snow (see Fig. 5.18b). When the
forward force on the sled exceeds the backward force, the
sled accelerates to the right.

The horizontal forces exerted on the horse are the for-
ward force fhorse exerted by the Earth and the backward ten-
sion force T exerted by the sled (Fig. 5.18c). The resultant
of these two forces causes the horse to accelerate.

The force that accelerates the system (horse plus sled) is
the net force fhorse # fsled. When fhorse balances fsled, the sys-
tem moves with constant velocity.

(b)

T

fsled

(a) (c)

T

fhorse

Figure 5.18 (Conceptual Example 5.11)

Example 5.12 Experimental Determination of %s and %k

The following is a simple method of measuring coefficients
of friction: Suppose a block is placed on a rough surface in-
clined relative to the horizontal, as shown in Figure 5.19.
The incline angle is increased until the block starts to move.
Show that by measuring the critical angle !c at which this
slipping just occurs, we can obtain -s .

Solution Conceptualizing from the free body diagram in Fig-
ure 5.19, we see that we can categorize this as a Newton’s second
law problem. To analyze the problem, note that the only forces
acting on the block are the gravitational force mg, the normal
force n, and the force of static friction fs . These forces balance
when the block is not moving. When we choose x to be paral-
lel to the plane and y perpendicular to it, Newton’s second law
applied to the block for this balanced situation gives

We can eliminate mg by substituting mg " n/cos ! from (2)
into (1) to find

When the incline angle is increased until the block is on the
verge of slipping, the force of static friction has reached its
maximum value -sn. The angle ! in this situation is the criti-
cal angle !c , and (3) becomes

-sn " n  tan  !c

(3)   fs " mg  sin  ! " $ n
cos  ! % sin ! " n   tan  !

(2)   #Fy " n # mg  cos  ! " may " 0

(1)   #Fx " mg  sin  ! # fs " max " 0

For example, if the block just slips at !c " 20.0°, then we
find that -s " tan 20.0° " 0.364.

To finalize the problem, note that once the block starts to
move at ! / !c , it accelerates down the incline and the force
of friction is fk " -kn. However, if ! is reduced to a value less
than !c , it may be possible to find an angle !c( such that the
block moves down the incline with constant speed (ax " 0).
In this case, using (1) and (2) with fs replaced by fk gives

where !c( 0 !c .

-k " tan !c(

-s " tan   !c
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Example 5.13 The Sliding Hockey Puck

A hockey puck on a frozen pond is given an initial speed of
20.0 m/s. If the puck always remains on the ice and slides
115 m before coming to rest, determine the coefficient of ki-
netic friction between the puck and ice.

Solution Conceptualize the problem by imagining that the
puck in Figure 5.20 slides to the right and eventually comes
to rest. To categorize the problem, note that we have forces
identified in Figure 5.20, but that kinematic variables are
provided in the text of the problem. Thus, we must combine
the techniques of Chapter 2 with those of this chapter. (We
assume that the friction force is constant, which will result in
a constant horizontal acceleration.) To analyze the situation,
note that the forces acting on the puck after it is in motion
are shown in Figure 5.20. First, we find the acceleration al-
gebraically in terms of the coefficient of kinetic friction, us-
ing Newton’s second law. Knowing the acceleration of the
puck and the distance it travels, we can then use the equa-
tions of kinematics to find the numerical value of the coeffi-
cient of kinetic friction.

Defining rightward and upward as our positive directions,
we apply Newton’s second law in component form to the
puck and obtain

But fk " -kn, and from (2) we see that n " mg. Therefore,
(1) becomes

The negative sign means the acceleration is to the left in
Figure 5.20; because the velocity of the puck is to the right,
this means that the puck is slowing down. The acceleration
is independent of the mass of the puck and is constant be-
cause we assume that -k remains constant.

Because the acceleration is constant, we can use Equa-
tion 2.13, vxf

2 " vxi
2 $ 2ax(xf # xi), with xi " 0 and vf " 0:

To finalize the problem, note that -k is dimensionless, as it
should be, and that it has a low value, consistent with an ob-
ject sliding on ice.

0.117-k "
(20.0 m/s)2

 2(9.80 m/s2)(115 m)
"

-k "
vxi

2

2gx f

0 " vxi
2 $ 2axx f " vxi

2 # 2-kgx f

ax " #   -k g

#   -kn " #  -kmg " max

(2)   #Fy " n # mg " 0  (ay " 0)

(1)   #Fx " # fk " max

Motionn

fk

mg

Figure 5.20 (Example 5.13) After the puck is given an initial
velocity to the right, the only external forces acting on it are the
gravitational force mg, the normal force n, and the force of
kinetic friction fk.

Example 5.14 Acceleration of Two Connected Objects When Friction Is Present

A block of mass m1 on a rough, horizontal surface is con-
nected to a ball of mass m2 by a lightweight cord over a light-
weight, frictionless pulley, as shown in Figure 5.21a. A force
of magnitude F at an angle ! with the horizontal is applied
to the block as shown. The coefficient of kinetic friction be-
tween the block and surface is -k . Determine the magni-
tude of the acceleration of the two objects.

Solution Conceptualize the problem by imagining what hap-
pens as F is applied to the block. Assuming that F is not
large enough to lift the block, the block will slide to the
right and the ball will rise. We can identify forces and we
want an acceleration, so we categorize this as a Newton’s sec-
ond law problem, one that includes the friction force. To
analyze the problem, we begin by drawing free-body dia-
grams for the two objects, as shown in Figures 5.21b and
5.21c. Next, we apply Newton’s second law in component
form to each object and use Equation 5.9, fk " -kn. Then we
can solve for the acceleration in terms of the parameters
given.

The applied force F has x and y components F cos ! and
F sin !, respectively. Applying Newton’s second law to both

objects and assuming the motion of the block is to the right,
we obtain

Motion of block: (1)

(2)

Motion of ball:

(3)

Because the two objects are connected, we can equate the
magnitudes of the x component of the acceleration of the
block and the y component of the acceleration of the ball.
From Equation 5.9 we know that fk " -kn, and from (2) we
know that n " m1g # F sin ! (in this case n is not equal to
m1g); therefore,

That is, the friction force is reduced because of the positive
y component of F. Substituting (4) and the value of T from
(3) into (1) gives

(4)   fk " -k(m1g # F  sin !)

#Fy " T # m2g " m2ay " m2a

#Fx " m2ax " 0

#Fy " n $ F  sin ! #m1g " m1ay " 0

#Fx " F  cos ! # fk # T " m1ax " m1a
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Solving for a, we obtain

(5)

To finalize the problem, note that the acceleration of the
block can be either to the right or to the left,5 depending
on the sign of the numerator in (5). If the motion is to the
left, then we must reverse the sign of fk in (1) because the

F(cos ! $ -k  sin !) # g(m2 $ -km1)
m1 $ m2

a "

F  cos  ! # -k(m1g # F  sin !) # m2(a $ g) " m1a force of kinetic friction must oppose the motion of the
block relative to the surface. In this case, the value of a is the
same as in (5), with the two plus signs in the numerator
changed to minus signs.

This is the final chapter in which we will explicitly show
the steps of the General Problem-Solving Strategy in all
worked examples. We will refer to them explicitly in occa-
sional examples in future chapters, but you should use the
steps in all of your problem solving.

m 1

m 2

F

θ

(a)

a

a

m 2

m 2g

T

(b)

m 1g

F

T

n
F  sin

F  cosfk

θ

θ

θ

(c)

y

x

Figure 5.21 (Example 5.14) (a) The external force F applied as shown can cause the
block to accelerate to the right. (b) and (c) The free-body diagrams assuming that the
block accelerates to the right and the ball accelerates upward. The magnitude of the
force of kinetic friction in this case is given by fk " -kn " -k(m1g # F sin !).

Application Automobile Antilock Braking Systems (ABS)

If an automobile tire is rolling and not slipping on a road
surface, then the maximum friction force that the road
can exert on the tire is the force of static friction -sn.
One must use static friction in this situation because at
the point of contact between the tire and the road, no
sliding of one surface over the other occurs if the tire is
not skidding. However, if the tire starts to skid, the fric-
tion force exerted on it is reduced to the force of kinetic
friction -kn. Thus, to maximize the friction force and
minimize stopping distance, the wheels must maintain
pure rolling motion and not skid. An additional benefit
of maintaining wheel rotation is that directional control
is not lost as it is in skidding. Unfortunately, in emergency
situations drivers typically press down as hard as they can on
the brake pedal, “locking the brakes.” This stops the wheels
from rotating, ensuring a skid and reducing the friction
force from the static to the kinetic value. To address this
problem, automotive engineers have developed antilock
braking systems (ABS). The purpose of the ABS is to help
typical drivers (whose tendency is to lock the wheels in an
emergency) to better maintain control of their automobiles
and minimize stopping distance. The system briefly releases
the brakes when a wheel is just about to stop turning. This

maintains rolling contact between the tire and the pavement.
When the brakes are released momentarily, the stopping dis-
tance is greater than it would be if the brakes were being ap-
plied continuously. However, through the use of computer
control, the “brake-off” time is kept to a minimum. As a re-
sult, the stopping distance is much less than what it would be
if the wheels were to skid.

Let us model the stopping of a car by examining real
data. In an issue of AutoWeek,6 the braking performance
for a Toyota Corolla was measured. These data correspond
to the braking force acquired by a highly trained, profes-
sional driver. We begin by assuming constant acceleration.
(Why do we need to make this assumption?) The maga-
zine provided the initial speed and stopping distance in
non-SI units, which we show in the left and middle sec-
tions of Table 5.3. After converting these values to SI, we
use vf

2 " vi
2 $ 2ax to determine the acceleration at differ-

ent speeds, shown in the right section. These do not vary
greatly, and so our assumption of constant acceleration is
reasonable.

6 AutoWeek magazine, 48:22–23, 1998.

5 Equation 5 shows that when -km1 + m2, there is a range of
values of F for which no motion occurs at a given angle !.
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We take an average value of acceleration of # 8.4 m/s2,
which is approximately 0.86g. We then calculate the co-
efficient of friction from #F " -smg " ma, which gives
-s " 0.86 for the Toyota. This is lower than the rubber-
on-concrete value given in Table 5.2. Can you think of any
reasons for this?

We now estimate the stopping distance of the car if the
wheels were skidding. From Table 5.2, we see that the dif-
ference between the coefficients of static and kinetic fric-
tion for rubber against concrete is about 0.2. Let us assume
that our coefficients differ by the same amount, so that 
-k & 0.66. This allows us to estimate the stopping distances
when the wheels are locked and the car skids across the
pavement, as shown in the third column of Table 5.4. The
results illustrate the advantage of not allowing the wheels to
skid.

Because an ABS keeps the wheels rotating, the higher
coefficient of static friction is maintained between the tires
and road. This approximates the technique of a professional
driver who is able to maintain the wheels at the point of
maximum friction force. Let us estimate the ABS perfor-
mance by assuming that the magnitude of the acceleration
is not quite as good as that achieved by the professional dri-
ver but instead is reduced by 5%.

Figure 5.22 is a plot of vehicle speed versus distance from
where the brakes were applied (at an initial speed of
80.0 mi/h " 35.8 m/s) for the three cases of amateur driver,
professional driver, and estimated ABS performance (amateur
driver). This shows that a markedly shorter distance is neces-
sary for stopping without locking the wheels compared to skid-
ding. In addition a satisfactory value of stopping distance is
achieved when the ABS computer maintains tire rotation.

Initial Speed Stopping Distance

(mi/h) (m/s) (ft) (m)

30 13.4 34 10.4 # 8.63
60 26.8 143 43.6 # 8.24
80 35.8 251 76.5 # 8.38

Data for a Toyota Corolla:

Table 5.3

Stopping Distance

no skid (m) skidding (m)

30 10.4 13.9
60 43.6 55.5
80 76.5 98.9

Stopping Distance With and Without Skidding

Table 5.4

Speed (m/s)
40

20

0
0 50 100 Distance from point

of application of brakes (m)

ABS, amateur driver
Professional driver
Amateur driver

Figure 5.22 This plot of vehicle speed versus distance from the location at which the
brakes were applied shows that an antilock braking system (ABS) approaches the per-
formance of a trained professional driver.

Acceleration
(m/s2)

Initial Speed
(mi/h)
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An inertial frame of reference is one we can identify in which an object that does not
interact with other objects experiences zero acceleration. Any frame moving with con-
stant velocity relative to an inertial frame is also an inertial frame. Newton’s first law
states that it is possible to find such a frame, or, equivalently, in the absence of an exter-
nal force, when viewed from an inertial frame, an object at rest remains at rest and an
object in uniform motion in a straight line maintains that motion.

Newton’s second law states that the acceleration of an object is directly propor-
tional to the net force acting on it and inversely proportional to its mass. The net force
acting on an object equals the product of its mass and its acceleration: #F " ma. If the
object is either stationary or moving with constant velocity, then the object is in equilib-
rium and the force vectors must cancel each other.

The gravitational force exerted on an object is equal to the product of its mass (a
scalar quantity) and the free-fall acceleration: Fg " m g. The weight of an object is the
magnitude of the gravitational force acting on the object.

Newton’s third law states that if two objects interact, the force exerted by object 1
on object 2 is equal in magnitude and opposite in direction to the force exerted by ob-
ject 2 on object 1. Thus, an isolated force cannot exist in nature.

The maximum force of static friction fs,max between an object and a surface is
proportional to the normal force acting on the object. In general, fs . -sn, where -s is
the coefficient of static friction and n is the magnitude of the normal force. When
an object slides over a surface, the direction of the force of kinetic friction fk is oppo-
site the direction of motion of the object relative to the surface and is also propor-
tional to the magnitude of the normal force. The magnitude of this force is given by 
fk " -kn, where -k is the coefficient of kinetic friction.

S U M M A RY

Take a practice test for
this chapter by clicking the
Practice Test link at
http://www.pse6.com.

1. A ball is held in a person’s hand. (a) Identify all the exter-
nal forces acting on the ball and the reaction to each. 
(b) If the ball is dropped, what force is exerted on it while
it is falling? Identify the reaction force in this case. (Ne-
glect air resistance.)

2. If a car is traveling westward with a constant speed of
20 m/s, what is the resultant force acting on it?

3. What is wrong with the statement “Because the car is at
rest, there are no forces acting on it”? How would you cor-
rect this sentence?

In the motion picture It Happened One Night (Columbia
Pictures, 1934), Clark Gable is standing inside a station-
ary bus in front of Claudette Colbert, who is seated. The
bus suddenly starts moving forward and Clark falls into
Claudette’s lap. Why did this happen?

5. A passenger sitting in the rear of a bus claims that she was
injured as the driver slammed on the brakes, causing a
suitcase to come flying toward her from the front of the
bus. If you were the judge in this case, what disposition
would you make? Why?

6. A space explorer is moving through space far from any
planet or star. She notices a large rock, taken as a speci-
men from an alien planet, floating around the cabin of the

4.

ship. Should she push it gently or kick it toward the stor-
age compartment? Why?

A rubber ball is dropped onto the floor. What force causes
the ball to bounce?

8. While a football is in flight, what forces act on it? What are
the action–reaction pairs while the football is being kicked
and while it is in flight?

9. The mayor of a city decides to fire some city employees be-
cause they will not remove the obvious sags from the ca-
bles that support the city traffic lights. If you were a lawyer,
what defense would you give on behalf of the employees?
Who do you think would win the case in court?

A weightlifter stands on a bathroom scale. He pumps a
barbell up and down. What happens to the reading on the
bathroom scale as this is done? What if he is strong
enough to actually throw the barbell upward? How does the
reading on the scale vary now?

11. Suppose a truck loaded with sand accelerates along a high-
way. If the driving force on the truck remains constant,
what happens to the truck’s acceleration if its trailer leaks
sand at a constant rate through a hole in its bottom?

12. As a rocket is fired from a launching pad, its speed and ac-
celeration increase with time as its engines continue to op-

10.

7.

Q U E S T I O N S
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erate. Explain why this occurs even though the thrust of
the engines remains constant.

13. What force causes an automobile to move? A propeller-dri-
ven airplane? A rowboat?

Identify the action–reaction pairs in the following situa-
tions: a man takes a step; a snowball hits a girl in the back;
a baseball player catches a ball; a gust of wind strikes a win-
dow.

15. In a contest of National Football League behemoths,
teams from the Rams and the 49ers engage in a tug-of-
war, pulling in opposite directions on a strong rope. 
The Rams exert a force of 9 200 N and they are winning,
making the center of the rope move steadily toward 
themselves. Is it possible to know the tension in the 
rope from the information stated? Is it larger or smaller
than 9 200 N? How hard are the 49ers pulling on the
rope? Would it change your answer if the 49ers were 
winning or if the contest were even? The stronger team
wins by exerting a larger force—on what? Explain your 
answers.

16. Twenty people participate in a tug-of-war. The two teams
of ten people are so evenly matched that neither team
wins. After the game they notice that a car is stuck in the
mud. They attach the tug-of-war rope to the bumper of
the car, and all the people pull on the rope. The heavy
car has just moved a couple of decimeters when the rope
breaks. Why did the rope break in this situation when it
did not break when the same twenty people pulled on it
in a tug-of-war?

17. “When the locomotive in Figure Q5.17 broke through the
wall of the train station, the force exerted by the locomo-
tive on the wall was greater than the force the wall could
exert on the locomotive.” Is this statement true or in need
of correction? Explain your answer.

18. An athlete grips a light rope that passes over a low-friction
pulley attached to the ceiling of a gym. A sack of sand pre-
cisely equal in weight to the athlete is tied to the other end
of the rope. Both the sand and the athlete are initially at
rest. The athlete climbs the rope, sometimes speeding up
and slowing down as he does so. What happens to the sack
of sand? Explain.

19. If the action and reaction forces are always equal in magni-
tude and opposite in direction to each other, then doesn’t
the net vector force on any object necessarily add up to
zero? Explain your answer.

20. Can an object exert a force on itself? Argue for your
answer.

21. If you push on a heavy box that is at rest, you must exert
some force to start its motion. However, once the box is

14.

sliding, you can apply a smaller force to maintain that mo-
tion. Why?

22. The driver of a speeding empty truck slams on the brakes
and skids to a stop through a distance d. (a) If the truck
carried a load that doubled its mass, what would be the
truck’s “skidding distance”? (b) If the initial speed of the
truck were halved, what would be the truck’s skidding
distance?

23. Suppose you are driving a classic car. Why should you
avoid slamming on your brakes when you want to stop in
the shortest possible distance? (Many cars have antilock
brakes that avoid this problem.)

24. A book is given a brief push to make it slide up a rough in-
cline. It comes to a stop and slides back down to the start-
ing point. Does it take the same time to go up as to come
down? What if the incline is frictionless?

25. A large crate is placed on the bed of a truck but not tied
down. (a) As the truck accelerates forward, the crate re-
mains at rest relative to the truck. What force causes the
crate to accelerate forward? (b) If the driver slammed on
the brakes, what could happen to the crate?

26. Describe a few examples in which the force of friction ex-
erted on an object is in the direction of motion of the
object.

Figure Q5.17
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Sections 5.1 through 5.6
1. A force F applied to an object of mass m1 produces an

acceleration of 3.00 m/s2. The same force applied to a sec-
ond object of mass m2 produces an acceleration of
1.00 m/s2. (a) What is the value of the ratio m1/m2? (b) If
m1 and m2 are combined, find their acceleration under
the action of the force F.

2. The largest-caliber antiaircraft gun operated by the Ger-
man air force during World War II was the 12.8-cm Flak
40. This weapon fired a 25.8-kg shell with a muzzle speed
of 880 m/s. What propulsive force was necessary to attain
the muzzle speed within the 6.00-m barrel? (Assume the
shell moves horizontally with constant acceleration and ne-
glect friction.)

A 3.00-kg object undergoes an acceleration given by
a " (2.00 î $ 5.00 ĵ) m/s2. Find the resultant force acting
on it and the magnitude of the resultant force.

4. The gravitational force on a baseball is #Fg ĵ. A pitcher
throws the baseball with velocity v î by uniformly acceler-
ating it straight forward horizontally for a time interval
%t " t #0 " t. If the ball starts from rest, (a) through
what distance does it accelerate before its release?
(b) What force does the pitcher exert on the ball?

To model a spacecraft, a toy rocket engine is securely
fastened to a large puck, which can glide with negligible
friction over a horizontal surface, taken as the xy plane.
The 4.00-kg puck has a velocity of 300 î m/s at one instant.
Eight seconds later, its velocity is to be (800 î $ 10.0 ĵ) m/s.
Assuming the rocket engine exerts a constant horizontal
force, find (a) the components of the force and (b) its
magnitude.

6. The average speed of a nitrogen molecule in air is about
6.70 1 102 m/s, and its mass is 4.68 1 10#26 kg. (a) If it
takes 3.00 1 10#13 s for a nitrogen molecule to hit a wall
and rebound with the same speed but moving in the op-
posite direction, what is the average acceleration of the
molecule during this time interval? (b) What average
force does the molecule exert on the wall?

An electron of mass 9.11 1 10#31 kg has an initial speed of
3.00 1 105 m/s. It travels in a straight line, and its speed
increases to 7.00 1 105 m/s in a distance of 5.00 cm. As-
suming its acceleration is constant, (a) determine the
force exerted on the electron and (b) compare this force
with the weight of the electron, which we neglected.

8. A woman weighs 120 lb. Determine (a) her weight in new-
tons (N) and (b) her mass in kilograms (kg).

9. If a man weighs 900 N on the Earth, what would he weigh
on Jupiter, where the acceleration due to gravity is
25.9 m/s2?

7.

5.

3.

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide

= coached solution with hints available at http://www.pse6.com = computer useful in solving problem

= paired numerical and symbolic problems

P R O B L E M S

10. The distinction between mass and weight was discovered
after Jean Richer transported pendulum clocks from
Paris to French Guyana in 1671. He found that they ran
slower there quite systematically. The effect was reversed
when the clocks returned to Paris. How much weight
would you personally lose in traveling from Paris, where
g " 9.809 5 m/s2, to Cayenne, where g " 9.780 8 m/s2?
[We will consider how the free-fall acceleration influ-
ences the period of a pendulum in Section 15.5.]

Two forces F1 and F2 act on a 5.00-kg object. If F1 " 20.0 N
and F2 " 15.0 N, find the accelerations in (a) and (b) of
Figure P5.11.

11.

(a)

90.0°

F2

F1m

(b)

60.0°

F2

F1m

Figure P5.11

12. Besides its weight, a 2.80-kg object is subjected to one
other constant force. The object starts from rest and in
1.20 s experiences a displacement of (4.20 î # 3.30 ĵ) m,
where the direction of ĵ is the upward vertical direction.
Determine the other force.

13. You stand on the seat of a chair and then hop off. (a) Dur-
ing the time you are in flight down to the floor, the Earth
is lurching up toward you with an acceleration of what or-
der of magnitude? In your solution explain your logic.
Model the Earth as a perfectly solid object. (b) The Earth
moves up through a distance of what order of magnitude?

14. Three forces acting on an object are given by
F1 " (#2.00 î $ 2.00 ĵ) N, F2 " (5.00 î # 3.00 ĵ) N, and
F3 " (#45.0 î) N. The object experiences an acceleration
of magnitude 3.75 m/s2. (a) What is the direction of the
acceleration? (b) What is the mass of the object? (c) If
the object is initially at rest, what is its speed after 10.0 s?
(d) What are the velocity components of the object after
10.0 s?

15. A 15.0-lb block rests on the floor. (a) What force does the
floor exert on the block? (b) If a rope is tied to the block
and run vertically over a pulley, and the other end is at-
tached to a free-hanging 10.0-lb weight, what is the force
exerted by the floor on the 15.0-lb block? (c) If we replace
the 10.0-lb weight in part (b) with a 20.0-lb weight, what is
the force exerted by the floor on the 15.0-lb block?
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Section 5.7 Some Applications of Newton’s Laws

16. A 3.00-kg object is moving in a plane, with its x and y coor-
dinates given by x " 5t 2 # 1 and y " 3t 3 $ 2, where x and
y are in meters and t is in seconds. Find the magnitude of
the net force acting on this object at t " 2.00 s.

17. The distance between two telephone poles is 50.0 m.
When a 1.00-kg bird lands on the telephone wire midway
between the poles, the wire sags 0.200 m. Draw a free-body
diagram of the bird. How much tension does the bird pro-
duce in the wire? Ignore the weight of the wire.

18. A bag of cement of weight 325 N hangs from three wires as
suggested in Figure P5.18. Two of the wires make angles
!1 " 60.0° and !2 " 25.0° with the horizontal. If the sys-
tem is in equilibrium, find the tensions T1, T2, and T3 in
the wires.

21. The systems shown in Figure P5.21 are in equilibrium. If
the spring scales are calibrated in newtons, what do they
read? (Neglect the masses of the pulleys and strings, and
assume the incline in part (c) is frictionless.)

22. Draw a free-body diagram of a block which slides down a
frictionless plane having an inclination of ! " 15.0°
(Fig. P5.22). The block starts from rest at the top and the
length of the incline is 2.00 m. Find (a) the acceleration of

1θ 2θ

T1 T2

T3

Figure P5.18 Problems 18 and 19.

A bag of cement of weight Fg hangs from three wires as
shown in Figure P5.18. Two of the wires make angles !1
and !2 with the horizontal. If the system is in equilibrium,
show that the tension in the left-hand wire is

T1 " Fg cos !2 /sin (!1$ !2)

20. You are a judge in a children’s kite-flying contest, and two
children will win prizes for the kites that pull most strongly
and least strongly on their strings. To measure string ten-
sions, you borrow a weight hanger, some slotted weights,
and a protractor from your physics teacher, and use the
following protocol, illustrated in Figure P5.20: Wait for a
child to get her kite well controlled, hook the hanger onto
the kite string about 30 cm from her hand, pile on weight
until that section of string is horizontal, record the mass
required, and record the angle between the horizontal
and the string running up to the kite. (a) Explain how this
method works. As you construct your explanation, imagine
that the children’s parents ask you about your method,
that they might make false assumptions about your ability
without concrete evidence, and that your explanation is an
opportunity to give them confidence in your evaluation

19.

Figure P5.20

5.00 kg

(a)

5.00 kg

5.00 kg 5.00 kg

(b)

5.00 kg

(c)

30.0°

Figure P5.21

technique. (b) Find the string tension if the mass is 132 g
and the angle of the kite string is 46.3°.
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the block and (b) its speed when it reaches the bottom of
the incline.

A 1.00-kg object is observed to have an acceleration
of 10.0 m/s2 in a direction 30.0° north of east (Fig.
P5.23). The force F2 acting on the object has a magni-
tude of 5.00 N and is directed north. Determine the mag-
nitude and direction of the force F1 acting on the object.

23.

A block is given an initial velocity of 5.00 m/s up a
frictionless 20.0° incline (Fig. P5.22). How far up the in-
cline does the block slide before coming to rest?

26. Two objects are connected by a light string that passes over
a frictionless pulley, as in Figure P5.26. Draw free-body dia-
grams of both objects. If the incline is frictionless and if 
m1 " 2.00 kg, m2 " 6.00 kg, and ! " 55.0°, find (a) the ac-
celerations of the objects, (b) the tension in the string,
and (c) the speed of each object 2.00 s after being released
from rest.

25.

27. A tow truck pulls a car that is stuck in the mud, with a
force of 2 500 N as in Fig. P5.27. The tow cable is under
tension and therefore pulls downward and to the left on
the pin at its upper end. The light pin is held in equilib-
rium by forces exerted by the two bars A and B. Each bar
is a strut: that is, each is a bar whose weight is small com-
pared to the forces it exerts, and which exerts forces only
through hinge pins at its ends. Each strut exerts a force
directed parallel to its length. Determine the force of
tension or compression in each strut. Proceed as follows:
Make a guess as to which way (pushing or pulling) each
force acts on the top pin. Draw a free-body diagram of
the pin. Use the condition for equilibrium of the pin to
translate the free-body diagram into equations. From the
equations calculate the forces exerted by struts A and B.
If you obtain a positive answer, you correctly guessed the
direction of the force. A negative answer means the di-
rection should be reversed, but the absolute value cor-
rectly gives the magnitude of the force. If a strut pulls on
a pin, it is in tension. If it pushes, the strut is in compres-
sion. Identify whether each strut is in tension or in com-
pression.

28. Two objects with masses of 3.00 kg and 5.00 kg are con-
nected by a light string that passes over a light friction-
less pulley to form an Atwood machine, as in Figure
5.14a. Determine (a) the tension in the string, (b) the
acceleration of each object, and (c) the distance each
object will move in the first second of motion if they start
from rest.

29. In Figure P5.29, the man and the platform together weigh
950 N. The pulley can be modeled as frictionless. Deter-
mine how hard the man has to pull on the rope to lift him-
self steadily upward above the ground. (Or is it impossible?
If so, explain why.)

F1

30.0°

F2

a = 10.0 m/s2

1.00 kg

Figure P5.23

5.00 kg

9.00 kg

Figure P5.24 Problems 24 and 43.

m2
m1

θ

Figure P5.26

θ

Figure P5.22 Problems 22 and 25.

60.0°
50.0°A

B

Figure P5.27

24. A 5.00-kg object placed on a frictionless, horizontal table
is connected to a string that passes over a pulley and
then is fastened to a hanging 9.00-kg object, as in Figure
P5.24. Draw free-body diagrams of both objects. Find the
acceleration of the two objects and the tension in the
string.
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30. In the Atwood machine shown in Figure 5.14a, m1 " 2.00 kg
and m2 " 7.00 kg. The masses of the pulley and string are
negligible by comparison. The pulley turns without friction
and the string does not stretch. The lighter object is released
with a sharp push that sets it into motion at vi " 2.40 m/s
downward. (a) How far will m1 descend below its initial level?
(b) Find the velocity of m1 after 1.80 seconds.

In the system shown in Figure P5.31, a horizontal force Fx
acts on the 8.00-kg object. The horizontal surface is fric-
tionless. (a) For what values of Fx does the 2.00-kg object
accelerate upward? (b) For what values of Fx is the tension
in the cord zero? (c) Plot the acceleration of the 8.00-kg
object versus Fx. Include values of Fx from # 100 N to
$ 100 N.

31.

A 72.0-kg man stands on a spring scale in an elevator.
Starting from rest, the elevator ascends, attaining its maxi-
mum speed of 1.20 m/s in 0.800 s. It travels with this con-
stant speed for the next 5.00 s. The elevator then under-
goes a uniform acceleration in the negative y direction for
1.50 s and comes to rest. What does the spring scale regis-
ter (a) before the elevator starts to move? (b) during the
first 0.800 s? (c) while the elevator is traveling at constant
speed? (d) during the time it is slowing down?

34. An object of mass m1 on a frictionless horizontal table is
connected to an object of mass m2 through a very light pul-
ley P1 and a light fixed pulley P2 as shown in Figure P5.34.
(a) If a1 and a2 are the accelerations of m1 and m2, respec-
tively, what is the relation between these accelerations? Ex-
press (b) the tensions in the strings and (c) the accelera-
tions a1 and a2 in terms of the masses m1 and m2, and g.

33.

Figure P5.29

8.00
kg

2.00
kg

Fx

Figure P5.31

m2

P2
P1

m1

Figure P5.34

Section 5.8 Forces of Friction

35. The person in Figure P5.35 weighs 170 lb. As seen from
the front, each light crutch makes an angle of 22.0° with
the vertical. Half of the person’s weight is supported by the
crutches. The other half is supported by the vertical forces
of the ground on his feet. Assuming the person is moving

32. A frictionless plane is 10.0 m long and inclined at 35.0°.
A sled starts at the bottom with an initial speed of
5.00 m/s up the incline. When it reaches the point at
which it momentarily stops, a second sled is released
from the top of this incline with an initial speed vi. Both
sleds reach the bottom of the incline at the same mo-
ment. (a) Determine the distance that the first sled trav-
eled up the incline. (b) Determine the initial speed of
the second sled.

22.0°22.0°

Figure P5.35
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with constant velocity and the force exerted by the ground
on the crutches acts along the crutches, determine (a) the
smallest possible coefficient of friction between crutches
and ground and (b) the magnitude of the compression
force in each crutch.

36. A 25.0-kg block is initially at rest on a horizontal surface. A
horizontal force of 75.0 N is required to set the block in
motion. After it is in motion, a horizontal force of 60.0 N is
required to keep the block moving with constant speed.
Find the coefficients of static and kinetic friction from this
information.

37. A car is traveling at 50.0 mi/h on a horizontal highway.
(a) If the coefficient of static friction between road and
tires on a rainy day is 0.100, what is the minimum distance
in which the car will stop? (b) What is the stopping dis-
tance when the surface is dry and -s " 0.600?

38. Before 1960 it was believed that the maximum attainable
coefficient of static friction for an automobile tire was less
than 1. Then, about 1962, three companies independently
developed racing tires with coefficients of 1.6. Since then,
tires have improved, as illustrated in this problem. Accord-
ing to the 1990 Guinness Book of Records, the shortest
time in which a piston-engine car initially at rest has cov-
ered a distance of one-quarter mile is 4.96 s. This record
was set by Shirley Muldowney in September 1989. (a) As-
sume that, as in Figure P5.38, the rear wheels lifted the
front wheels off the pavement. What minimum value of -s
is necessary to achieve the record time? (b) Suppose Mul-
downey were able to double her engine power, keeping
other things equal. How would this change affect the
elapsed time?

39. To meet a U.S. Postal Service requirement, footwear must
have a coefficient of static friction of 0.5 or more on a speci-
fied tile surface. A typical athletic shoe has a coefficient of
0.800. In an emergency, what is the minimum time interval
in which a person starting from rest can move 
3.00 m on a tile surface if she is wearing (a) footwear meet-
ing the Postal Service minimum? (b) a typical athletic shoe?

40. A woman at an airport is towing her 20.0-kg suitcase at
constant speed by pulling on a strap at an angle ! above
the horizontal (Fig. P5.40). She pulls on the strap with a
35.0-N force, and the friction force on the suitcase is
20.0 N. Draw a free-body diagram of the suitcase. 
(a) What angle does the strap make with the horizontal?
(b) What normal force does the ground exert on the
suitcase?

A 3.00-kg block starts from rest at the top of a 30.0°
incline and slides a distance of 2.00 m down the incline in
1.50 s. Find (a) the magnitude of the acceleration of the
block, (b) the coefficient of kinetic friction between block
and plane, (c) the friction force acting on the block, and
(d) the speed of the block after it has slid 2.00 m.

42. A Chevrolet Corvette convertible can brake to a stop from
a speed of 60.0 mi/h in a distance of 123 ft on a level road-
way. What is its stopping distance on a roadway sloping
downward at an angle of 10.0°?

43. A 9.00-kg hanging weight is connected by a string over a
pulley to a 5.00-kg block that is sliding on a flat table (Fig.
P5.24). If the coefficient of kinetic friction is 0.200, find
the tension in the string.

44. Three objects are connected on the table as shown in
Figure P5.44. The table is rough and has a coefficient of
kinetic friction of 0.350. The objects have masses of
4.00 kg, 1.00 kg, and 2.00 kg, as shown, and the pulleys
are frictionless. Draw free-body diagrams of each of the
objects. (a) Determine the acceleration of each object
and their directions. (b) Determine the tensions in the
two cords.

41.

Figure P5.38
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Figure P5.44

Two blocks connected by a rope of negligible mass are be-
ing dragged by a horizontal force F (Fig. P5.45). Suppose
that F " 68.0 N, m1 " 12.0 kg, m2 " 18.0 kg, and the coef-
ficient of kinetic friction between each block and the sur-
face is 0.100. (a) Draw a free-body diagram for each block.

45.
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(b) Determine the tension T and the magnitude of the ac-
celeration of the system.

46. A block of mass 3.00 kg is pushed up against a wall by a
force P that makes a 50.0° angle with the horizontal as
shown in Figure P5.46. The coefficient of static friction be-
tween the block and the wall is 0.250. Determine the possi-
ble values for the magnitude of P that allow the block to
remain stationary.

value of F will move the block up the plane with constant
velocity?

50. Review problem. One side of the roof of a building slopes
up at 37.0°. A student throws a Frisbee onto the roof. It
strikes with a speed of 15.0 m/s and does not bounce, but
slides straight up the incline. The coefficient of kinetic
friction between the plastic and the roof is 0.400. The Fris-
bee slides 10.0 m up the roof to its peak, where it goes into
free fall, following a parabolic trajectory with negligible air
resistance. Determine the maximum height the Frisbee
reaches above the point where it struck the roof.

Additional Problems
An inventive child named Pat wants to reach an apple in a
tree without climbing the tree. Sitting in a chair connected
to a rope that passes over a frictionless pulley (Fig. P5.51),
Pat pulls on the loose end of the rope with such a force
that the spring scale reads 250 N. Pat’s true weight is 320
N, and the chair weighs 160 N. (a) Draw free-body dia-
grams for Pat and the chair considered as separate systems,
and another diagram for Pat and the chair considered as
one system. (b) Show that the acceleration of the system is
upward and find its magnitude. (c) Find the force Pat ex-
erts on the chair.

51.

Fm2
T

m1

Figure P5.45

P

50.0°

Figure P5.46

Figure P5.48

47. You and your friend go sledding. Out of curiosity, you
measure the constant angle ! that the snow-covered
slope makes with the horizontal. Next, you use the fol-
lowing method to determine the coefficient of friction
-k between the snow and the sled. You give the sled a
quick push up so that it will slide up the slope away from
you. You wait for it to slide back down, timing the mo-
tion. It turns out that the sled takes twice as long to slide
down as it does to reach the top point in the round trip.
In terms of !, what is the coefficient of friction?

48. The board sandwiched between two other boards in
Figure P5.48 weighs 95.5 N. If the coefficient of friction
between the boards is 0.663, what must be the magnitude
of the compression forces (assume horizontal) acting on
both sides of the center board to keep it from slipping?

49. A block weighing 75.0 N rests on a plane inclined at 25.0°
to the horizontal. A force F is applied to the object at 40.0°
to the horizontal, pushing it upward on the plane. The co-
efficients of static and kinetic friction between the block
and the plane are, respectively, 0.363 and 0.156. (a) What
is the minimum value of F that will prevent the block from
slipping down the plane? (b) What is the minimum value
of F that will start the block moving up the plane? (c) What

52. A time-dependent force, F " (8.00 î # 4.00t ĵ) N, where t is
in seconds, is exerted on a 2.00-kg object initially at rest.
(a) At what time will the object be moving with a speed of
15.0 m/s? (b) How far is the object from its initial position
when its speed is 15.0 m/s? (c) Through what total dis-
placement has the object traveled at this time?

53. To prevent a box from sliding down an inclined plane,
student A pushes on the box in the direction parallel to
the incline, just hard enough to hold the box stationary.
In an identical situation student B pushes on the box
horizontally. Regard as known the mass m of the box, the
coefficient of static friction -s between box and incline,
and the inclination angle !. (a) Determine the force A

Figure P5.51
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An object of mass M is held in place by an applied
force F and a pulley system as shown in Figure P5.55. The
pulleys are massless and frictionless. Find (a) the tension
in each section of rope, T1, T2, T3, T4, and T5 and (b) the
magnitude of F. Suggestion: Draw a free-body diagram for
each pulley.

55.

59. A 1.30-kg toaster is not plugged in. The coefficient of static
friction between the toaster and a horizontal countertop is
0.350. To make the toaster start moving, you carelessly pull
on its electric cord. (a) For the cord tension to be as small
as possible, you should pull at what angle above the hori-
zontal? (b) With this angle, how large must the tension be?

60. Materials such as automobile tire rubber and shoe soles
are tested for coefficients of static friction with an appara-
tus called a James tester. The pair of surfaces for which -s
is to be measured are labeled B and C in Figure P5.60.
Sample C is attached to a foot D at the lower end of a piv-
oting arm E, which makes angle ! with the vertical. The
upper end of the arm is hinged at F to a vertical rod G,
which slides freely in a guide H fixed to the frame of the
apparatus and supports a load I of mass 36.4 kg. The
hinge pin at F is also the axle of a wheel that can roll ver-
tically on the frame. All of the moving parts have masses
negligible in comparison to the 36.4-kg load. The pivots
are nearly frictionless. The test surface B is attached to a

T4

T1 T2 T3

T5

F
M

Figure P5.55

m

θ

h

H

R

Figure P5.58 Problems 58 and 70.

m1 m2 m3F

Figure P5.54

has to exert. (b) Determine the force B has to exert. 
(c) If m " 2.00 kg, ! " 25.0°, and -s " 0.160, who has the
easier job? (d) What if -s " 0.380? Whose job is easier?

54. Three blocks are in contact with each other on a fric-
tionless, horizontal surface, as in Figure P5.54. A hori-
zontal force F is applied to m1. Take m1 " 2.00 kg, m2 "
3.00 kg, m3 " 4.00 kg, and F " 18.0 N. Draw a separate
free-body diagram for each block and find (a) the accel-
eration of the blocks, (b) the resultant force on each
block, and (c) the magnitudes of the contact forces be-
tween the blocks. (d) You are working on a construction
project. A coworker is nailing up plasterboard on one
side of a light partition, and you are on the opposite
side, providing “backing” by leaning against the wall with
your back pushing on it. Every blow makes your back
sting. The supervisor helps you to put a heavy block of
wood between the wall and your back. Using the situa-
tion analyzed in parts (a), (b), and (c) as a model, ex-
plain how this works to make your job more comfortable.

56. A high diver of mass 70.0 kg jumps off a board 10.0 m
above the water. If his downward motion is stopped 2.00 s
after he enters the water, what average upward force did
the water exert on him?

57. A crate of weight Fg is pushed by a force P on a horizon-
tal floor. (a) If the coefficient of static friction is -s and P
is directed at angle ! below the horizontal, show that the
minimum value of P that will move the crate is given by

(b) Find the minimum value of P that can produce motion
when -s " 0.400, Fg " 100 N, and ! " 0°, 15.0°, 30.0°,
45.0°, and 60.0°.

58. Review problem. A block of mass m " 2.00 kg is released
from rest at h " 0.500 m above the surface of a table, at
the top of a ! " 30.0° incline as shown in Figure P5.58.
The frictionless incline is fixed on a table of height
H " 2.00 m. (a) Determine the acceleration of the block
as it slides down the incline. (b) What is the velocity of the
block as it leaves the incline? (c) How far from the table
will the block hit the floor? (d) How much time has
elapsed between when the block is released and when it
hits the floor? (e) Does the mass of the block affect any of
the above calculations?

P "
-s  Fg  sec !

1#-s tan !
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What horizontal force must be applied to the cart shown
in Figure P5.61 in order that the blocks remain stationary
relative to the cart? Assume all surfaces, wheels, and pulley
are frictionless. (Hint: Note that the force exerted by the
string accelerates m1.)

61.

62. A student is asked to measure the acceleration of a cart
on a “frictionless” inclined plane as in Figure 5.11, using an
air track, a stopwatch, and a meter stick. The height of the
incline is measured to be 1.774 cm, and the total length of
the incline is measured to be d " 127.1 cm. Hence, the
angle of inclination ! is determined from the relation

I

θ

H

G

F

E

C

A
DB

Figure P5.60

m1

m2
F M

Figure P5.61 Problems 61 and 63.

rolling platform A. The operator slowly moves the plat-
form to the left in the picture until the sample C sud-
denly slips over surface B. At the critical point where slid-
ing motion is ready to begin, the operator notes the
angle !s of the pivoting arm. (a) Make a free-body dia-
gram of the pin at F. It is in equilibrium under three
forces. These forces are the gravitational force on the
load I, a horizontal normal force exerted by the frame,
and a force of compression directed upward along the
arm E. (b) Draw a free-body diagram of the foot D and
sample C, considered as one system. (c) Determine the
normal force that the test surface B exerts on the sample
for any angle !. (d) Show that -s " tan !s . (e) The pro-
tractor on the tester can record angles as large as 50.2°.
What is the greatest coefficient of friction it can measure?

sin ! " 1.774/127.1. The cart is released from rest at the
top of the incline, and its position x along the incline is
measured as a function of time, where x " 0 refers to the
initial position of the cart. For x values of 10.0 cm, 20.0 cm,
35.0 cm, 50.0 cm, 75.0 cm, and 100 cm, the measured
times at which these positions are reached (averaged over
five runs) are 1.02 s, 1.53 s, 2.01 s, 2.64 s, 3.30 s, and 3.75 s,
respectively. Construct a graph of x versus t2, and perform a
linear least-squares fit to the data. Determine the accelera-
tion of the cart from the slope of this graph, and compare
it with the value you would get using a( " g sin !, where 
g " 9.80 m/s2.

63. Initially the system of objects shown in Figure P5.61 is held
motionless. All surfaces, pulley, and wheels are frictionless.
Let the force F be zero and assume that m2 can move only
vertically. At the instant after the system of objects is re-
leased, find (a) the tension T in the string, (b) the acceler-
ation of m2, (c) the acceleration of M, and (d) the acceler-
ation of m1. (Note : The pulley accelerates along with the
cart.)

64. One block of mass 5.00 kg sits on top of a second rectan-
gular block of mass 15.0 kg, which in turn is on a horizon-
tal table. The coefficients of friction between the two
blocks are -s " 0.300 and -k " 0.100. The coefficients of
friction between the lower block and the rough table are
-s " 0.500 and -k " 0.400. You apply a constant horizon-
tal force to the lower block, just large enough to make this
block start sliding out from between the upper block and
the table. (a) Draw a free-body diagram of each block,
naming the forces on each. (b) Determine the magnitude
of each force on each block at the instant when you have
started pushing but motion has not yet started. In particu-
lar, what force must you apply? (c) Determine the accelera-
tion you measure for each block.

65. A 1.00-kg glider on a horizontal air track is pulled by a
string at an angle !. The taut string runs over a pulley and
is attached to a hanging object of mass 0.500 kg as in Fig.
P5.65. (a) Show that the speed vx of the glider and the

h0

vx

θ vy

z

m

Figure P5.65
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speed vy of the hanging object are related by vx " uvy,
where u " z(z2 # h0

2)#1/2. (b) The glider is released
from rest. Show that at that instant the acceleration ax of
the glider and the acceleration ay of the hanging object
are related by ax " uay . (c) Find the tension in the string
at the instant the glider is released for h0 " 80.0 cm and 
! " 30.0°.

66. Cam mechanisms are used in many machines. For exam-
ple, cams open and close the valves in your car engine to
admit gasoline vapor to each cylinder and to allow the
escape of exhaust. The principle is illustrated in Figure
P5.66, showing a follower rod (also called a pushrod) of
mass m resting on a wedge of mass M. The sliding wedge
duplicates the function of a rotating eccentric disk on a
camshaft in your car. Assume that there is no friction be-
tween the wedge and the base, between the pushrod and
the wedge, or between the rod and the guide through
which it slides. When the wedge is pushed to the left by
the force F, the rod moves upward and does something,
such as opening a valve. By varying the shape of the
wedge, the motion of the follower rod could be made
quite complex, but assume that the wedge makes a con-
stant angle of ! " 15.0°. Suppose you want the wedge
and the rod to start from rest and move with constant ac-
celeration, with the rod moving upward 1.00 mm in
8.00 ms. Take m " 0.250 kg and M " 0.500 kg. What
force F must be applied to the wedge?

67. Any device that allows you to increase the force you ex-
ert is a kind of machine. Some machines, such as the pry-
bar or the inclined plane, are very simple. Some ma-
chines do not even look like machines. An example is
the following: Your car is stuck in the mud, and you can’t
pull hard enough to get it out. However, you have a long
cable which you connect taut between your front
bumper and the trunk of a stout tree. You now pull side-
ways on the cable at its midpoint, exerting a force f. Each
half of the cable is displaced through a small angle !
from the straight line between the ends of the cable.
(a) Deduce an expression for the force exerted on the
car. (b) Evaluate the cable tension for the case where
! " 7.00° and f " 100 N.

A van accelerates down a hill (Fig. P5.69), going from rest
to 30.0 m/s in 6.00 s. During the acceleration, a toy (m "
0.100 kg) hangs by a string from the van’s ceiling. The ac-
celeration is such that the string remains perpendicular to
the ceiling. Determine (a) the angle ! and (b) the tension
in the string.

69.
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Figure P5.66
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Figure P5.69
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35.0° 35.0°

Figure P5.68

68. Two blocks of mass 3.50 kg and 8.00 kg are connected by a
massless string that passes over a frictionless pulley (Fig.
P5.68). The inclines are frictionless. Find (a) the magni-
tude of the acceleration of each block and (b) the tension
in the string.

70. In Figure P5.58 the incline has mass M and is fastened to
the stationary horizontal tabletop. The block of mass m is
placed near the bottom of the incline and is released with
a quick push that sets it sliding upward. It stops near the
top of the incline, as shown in the figure, and then slides
down again, always without friction. Find the force that the
tabletop exerts on the incline throughout this motion.

71. A magician pulls a tablecloth from under a 200-g mug lo-
cated 30.0 cm from the edge of the cloth. The cloth exerts
a friction force of 0.100 N on the mug, and the cloth is
pulled with a constant acceleration of 3.00 m/s2. How far
does the mug move relative to the horizontal tabletop be-
fore the cloth is completely out from under it? Note that
the cloth must move more than 30 cm relative to the table-
top during the process.

72. An 8.40-kg object slides down a fixed, frictionless in-
clined plane. Use a computer to determine and tabulate
the normal force exerted on the object and its accelera-
tion for a series of incline angles (measured from the
horizontal) ranging from 0° to 90° in 5° increments. Plot
a graph of the normal force and the acceleration as
functions of the incline angle. In the limiting cases of 0°
and 90°, are your results consistent with the known be-
havior?
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73. A mobile is formed by supporting four metal butterflies of
equal mass m from a string of length L. The points of sup-
port are evenly spaced a distance ! apart as shown in Fig-
ure P5.73. The string forms an angle !1 with the ceiling at
each end point. The center section of string is horizontal.
(a) Find the tension in each section of string in terms of
!1, m, and g. (b) Find the angle !2, in terms of !1, that the
sections of string between the outside butterflies and the
inside butterflies form with the horizontal. (c) Show that
the distance D between the end points of the string is

D "
L
5

 (2 cos  !1 $ 2 cos  [tan#1(1
2 tan  !1)] $ 1)

"

""
"

D

1
2"

m

m

m

m

L = 5"

θ 1θ
θ 2θ

Figure P5.73

Answers to Quick Quizzes

5.1 (d). Choice (a) is true. Newton’s first law tells us that mo-
tion requires no force: an object in motion continues to
move at constant velocity in the absence of external
forces. Choice (b) is also true. A stationary object can
have several forces acting on it, but if the vector sum of
all these external forces is zero, there is no net force and
the object remains stationary.

5.2 (a). If a single force acts, this force constitutes the net
force and there is an acceleration according to Newton’s
second law.

5.3 (c). Newton’s second law relates only the force and the
acceleration. Direction of motion is part of an object’s ve-
locity, and force determines the direction of acceleration,
not that of velocity.

5.4 (d). With twice the force, the object will experience twice
the acceleration. Because the force is constant, the accel-

eration is constant, and the speed of the object (starting
from rest) is given by v " at. With twice the acceleration,
the object will arrive at speed v at half the time.

5.5 (a). The gravitational force acts on the ball at all points in
its trajectory.

5.6 (b). Because the value of g is smaller on the Moon than
on the Earth, more mass of gold would be required to
represent 1 newton of weight on the Moon. Thus, your
friend on the Moon is richer, by about a factor of 6!

5.7 (c). In accordance with Newton’s third law, the fly and
bus experience forces that are equal in magnitude but
opposite in direction.

5.8 (a). Because the fly has such a small mass, Newton’s
second law tells us that it undergoes a very large accelera-
tion. The huge mass of the bus means that it more effec-
tively resists any change in its motion and exhibits a small
acceleration.

5.9 (c). The reaction force to your weight is an upward gravi-
tational force on the Earth due to you.

5.10 (b). Remember the phrase “free-body.” You draw one body
(one object), free of all the others that may be interact-
ing, and draw only the forces exerted on that object.

5.11 (b). The friction force acts opposite to the gravitational
force on the book to keep the book in equilibrium. Be-
cause the gravitational force is downward, the friction
force must be upward.

5.12 (b). The crate accelerates to the east. Because the only
horizontal force acting on it is the force of static friction
between its bottom surface and the truck bed, that force
must also be directed to the east.

5.13 (b). At the angle at which the book breaks free, the
component of the gravitational force parallel to the
board is approximately equal to the maximum static
friction force. Because the kinetic coefficient of friction
is smaller than the static coefficient, at this angle, the
component of the gravitational force parallel to the
board is larger than the kinetic friction force. Thus,
there is a net downhill force parallel to the board and
the book speeds up.

5.14 (b). When pulling with the rope, there is a component of
your applied force that is upward. This reduces the normal
force between the sled and the snow. In turn, this reduces
the friction force between the sled and the snow, making it
easier to move. If you push from behind, with a force with
a downward component, the normal force is larger, the
friction force is larger, and the sled is harder to move.



Chapter 6

Circular Motion and Other
Applications of Newton’s Laws

CHAPTE R OUTL I N E

6.1 Newton’s Second Law Applied
to Uniform Circular Motion

6.2 Nonuniform Circular Motion

6.3 Motion in Accelerated Frames

6.4 Motion in the Presence of
Resistive Forces

6.5 Numerical Modeling in
Particle Dynamics

! The London Eye, a ride on the River Thames in downtown London. Riders travel in a
large vertical circle for a breathtaking view of the city. In this chapter, we will study the forces
involved in circular motion. (© Paul Hardy/CORBIS)
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In the preceding chapter we introduced Newton’s laws of motion and applied them to
situations involving linear motion. Now we discuss motion that is slightly more compli-
cated. For example, we shall apply Newton’s laws to objects traveling in circular paths.
Also, we shall discuss motion observed from an accelerating frame of reference and
motion of an object through a viscous medium. For the most part, this chapter consists
of a series of examples selected to illustrate the application of Newton’s laws to a wide
variety of circumstances.

6.1 Newton’s Second Law Applied 
to Uniform Circular Motion

In Section 4.4 we found that a particle moving with uniform speed v in a circular path
of radius r experiences an acceleration that has a magnitude

The acceleration is called centripetal acceleration because ac is directed toward the center
of the circle. Furthermore, ac is always perpendicular to v. (If there were a component
of acceleration parallel to v, the particle’s speed would be changing.)

Consider a ball of mass m that is tied to a string of length r and is being whirled at
constant speed in a horizontal circular path, as illustrated in Figure 6.1. Its weight is
supported by a frictionless table. Why does the ball move in a circle? According to
Newton’s first law, the ball tends to move in a straight line; however, the string prevents

ac !
v2

r

m

Fr

Fr

r

Figure 6.1 Overhead view of a ball moving in a
circular path in a horizontal plane. A force Fr
directed toward the center of the circle keeps
the ball moving in its circular path.

An athlete in the process of
throwing the hammer at the 1996
Olympic Games in Atlanta, Georgia.
The force exerted by the chain
causes the centripetal acceleration
of the hammer. Only when the
athlete releases the hammer will it
move along a straight-line path
tangent to the circle.
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motion along a straight line by exerting on the ball a radial force Fr that makes it fol-
low the circular path. This force is directed along the string toward the center of the
circle, as shown in Figure 6.1. 

If we apply Newton’s second law along the radial direction, we find that the net
force causing the centripetal acceleration can be evaluated:

(6.1)

A force causing a centripetal acceleration acts toward the center of the circular path
and causes a change in the direction of the velocity vector. If that force should van-
ish, the object would no longer move in its circular path; instead, it would move
along a straight-line path tangent to the circle. This idea is illustrated in Figure 6.2
for the ball whirling at the end of a string in a horizontal plane. If the string breaks
at some instant, the ball moves along the straight-line path tangent to the circle at
the point where the string breaks.

! F ! mac ! m
v2

r
Force causing centripetal
acceleration

r

Active Figure 6.2 An overhead view of a ball
moving in a circular path in a horizontal plane.
When the string breaks, the ball moves in the
direction tangent to the circle.

Quick Quiz 6.1 You are riding on a Ferris wheel (Fig. 6.3) that is rotating
with constant speed. The car in which you are riding always maintains its correct
upward orientation—it does not invert. What is the direction of your centripetal ac-
celeration when you are at the top of the wheel? (a) upward (b) downward (c) im-
possible to determine. What is the direction of your centripetal acceleration
when you are at the bottom of the wheel? (d) upward (e) downward (f) impossible to
determine.

Quick Quiz 6.2 You are riding on the Ferris wheel of Quick Quiz 6.1. What is
the direction of the normal force exerted by the seat on you when you are at the top of
the wheel? (a) upward (b) downward (c) impossible to determine. What is the direc-
tion of the normal force exerted by the seat on you when you are at the bottom of the
wheel? (d) upward (e) downward (f) impossible to determine.

Figure 6.3 (Quick Quiz 6.1 and
6.2) A Ferris wheel located on the
Navy Pier in Chicago, Illinois.
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! PITFALL PREVENTION
6.1 Direction of Travel

When the String is Cut
Study Figure 6.2 very carefully.
Many students (wrongly) think
that the ball will move radially
away from the center of the circle
when the string is cut. The veloc-
ity of the ball is tangent to the cir-
cle. By Newton’s first law, the ball
continues to move in the direc-
tion that it is moving just as the
force from the string disappears.

At the Active Figures link
at http://www.pse6.com, you
can “break” the string yourself
and observe the effect on the
ball’s motion.
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Conceptual Example 6.1 Forces That Cause Centripetal Acceleration

The force causing centripetal acceleration is sometimes
called a centripetal force. We are familiar with a variety of
forces in nature—friction, gravity, normal forces, tension,
and so forth. Should we add centripetal force to this list?

Solution No; centripetal force should not be added to this
list. This is a pitfall for many students. Giving the force caus-
ing circular motion a name—centripetal force—leads many
students to consider it as a new kind of force rather than a
new role for force. A common mistake in force diagrams is to
draw all the usual forces and then to add another vector for
the centripetal force. But it is not a separate force—it is sim-
ply one or more of our familiar forces acting in the role of a
force that causes a circular motion.

Consider some examples. For the motion of the Earth
around the Sun, the centripetal force is gravity. For an ob-
ject sitting on a rotating turntable, the centripetal force is
friction. For a rock whirled horizontally on the end of a
string, the magnitude of the centripetal force is the tension
in the string. For an amusement-park patron pressed against
the inner wall of a rapidly rotating circular room, the cen-
tripetal force is the normal force exerted by the wall. Further-
more, the centripetal force could be a combination of two
or more forces. For example, as you pass through the lowest
point of the Ferris wheel in Quick Quiz 6.1, the centripetal
force on you is the difference between the normal force ex-
erted by the seat and the gravitational force. We will not use
the term centripetal force in this book after this discussion.

Example 6.3 How Fast Can It Spin?

A ball of mass 0.500 kg is attached to the end of a cord
1.50 m long. The ball is whirled in a horizontal circle as
shown in Figure 6.1. If the cord can withstand a maximum
tension of 50.0 N, what is the maximum speed at which the
ball can be whirled before the cord breaks? Assume that the
string remains horizontal during the motion.

Solution It makes sense that the stronger the cord, the
faster the ball can twirl before the cord breaks. Also, we ex-
pect a more massive ball to break the cord at a lower speed.
(Imagine whirling a bowling ball on the cord!)

Because the force causing the centripetal acceleration in
this case is the force T exerted by the cord on the ball,

Equation 6.1 yields 

Solving for v, we have

This shows that v increases with T and decreases with larger
m, as we expect to see—for a given v, a large mass requires a
large tension and a small mass needs only a small tension.
The maximum speed the ball can have corresponds to the

v ! √ Tr
m

(1)      T ! m  
v  

2

r

Example 6.2 The Conical Pendulum

A small object of mass m is suspended from a string of
length L. The object revolves with constant speed v in a hor-
izontal circle of radius r, as shown in Figure 6.4. (Because
the string sweeps out the surface of a cone, the system is
known as a conical pendulum.) Find an expression for v.

Solution Conceptualize the problem with the help of Fig-
ure 6.4. We categorize this as a problem that combines equi-
librium for the ball in the vertical direction with uniform
circular motion in the horizontal direction. To analyze the
problem, begin by letting " represent the angle between
the string and the vertical. In the free-body diagram shown,
the force T exerted by the string is resolved into a vertical
component T cos " and a horizontal component T sin " act-
ing toward the center of revolution. Because the object does
not accelerate in the vertical direction, Fy ! may ! 0 and
the upward vertical component of T must balance the down-
ward gravitational force. Therefore,

Because the force providing the centripetal acceleration in
this example is the component T sin ", we can use Equation
6.1 to obtain

(2)   ! F ! T  sin " ! mac !
mv  2

r

(1)   T  cos " ! mg

!

Dividing (2) by (1) and using sin "/cos " ! tan ", we elimi-
nate T and find that

From the geometry in Figure 6.4, we see that r ! L sin ";
therefore,

v !

Note that the speed is independent of the mass of the object.

√Lg  sin  "  tan "

v ! √r g  tan "

tan " !
v 

2

r g

T

mg

T cos

mg

T sin
r

θ θ

θ

θ

L

Figure 6.4 (Example 6.2) The conical pendulum and its free-
body diagram.
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Example 6.4 What Is the Maximum Speed of the Car?

A 1 500-kg car moving on a flat, horizontal road negotiates a
curve, as shown in Figure 6.5. If the radius of the curve is
35.0 m and the coefficient of static friction between the tires
and dry pavement is 0.500, find the maximum speed the car
can have and still make the turn successfully.

Solution In this case, the force that enables the car to re-
main in its circular path is the force of static friction. (Static
because no slipping occurs at the point of contact between
road and tires. If this force of static friction were zero—for
example, if the car were on an icy road—the car would con-
tinue in a straight line and slide off the road.) Hence, from
Equation 6.1 we have

(1)      fs ! m 
v  2

r

The maximum speed the car can have around the curve is the
speed at which it is on the verge of skidding outward. At this
point, the friction force has its maximum value fs, max ! #sn.
Because the car shown in Figure 6.5b is in equilibrium in the
vertical direction, the magnitude of the normal force equals
the weight (n ! mg) and thus fs, max ! #smg. Substituting this
value for fs into (1), we find that the maximum speed is

!

Note that the maximum speed does not depend on the mass
of the car. That is why curved highways do not need multi-
ple speed limit signs to cover the various masses of vehicles
using the road.

What If? Suppose that a car travels this curve on a wet day
and begins to skid on the curve when its speed reaches only
8.00 m/s. What can we say about the coefficient of static fric-
tion in this case?

Answer The coefficient of friction between tires and a wet
road should be smaller than that between tires and a dry road.
This expectation is consistent with experience with driving, be-
cause a skid is more likely on a wet road than a dry road.

To check our suspicion, we can solve (2) for the coeffi-
cient of friction:

Substituting the numerical values,

This is indeed smaller than the coefficient of 0.500 for the
dry road.

#s !
v  2

max

g r
!

(8.00 m/s)2

(9.80 m/s2)(35.0 m)
! 0.187

#s !
vmax 

2

g r

13.1 m/s

! √(0.500)(9.80 m/s2)(35.0 m)

(2)      v max ! √ fs , max r
m

! √ #sm g r
m

! √#s  g r

n

mg

(a)

(b)

f s

f s

Figure 6.5 (Example 6.4) (a) The force of static friction di-
rected toward the center of the curve keeps the car moving in a
circular path. (b) The free-body diagram for the car.

Study the relationship between the car’s speed, radius of the turn, and the coefficient of static friction between road and
tires at the Interactive Worked Example link at http://www.pse6.com.

Interactive

maximum tension. Hence, we find

!

What If? Suppose that the ball is whirled in a circle of
larger radius at the same speed v. Is the cord more likely to
break or less likely?

Answer The larger radius means that the change in the di-
rection of the velocity vector will be smaller for a given time
interval. Thus, the acceleration is smaller and the required
force from the string is smaller. As a result, the string is less
likely to break when the ball travels in a circle of larger
radius. To understand this argument better, let us write

12.2 m/sv max ! √ T maxr
m

! √ (50.0 N) (1.50 m)
0.500 kg

Equation (1) twice, once for each radius:

Dividing the two equations gives us,

If we choose r2 $ r1, we see that T2 % T1. Thus, less tension
is required to whirl the ball in the larger circle and the
string is less likely to break.

T2

T1
!

" mv2

r2
#

" mv2

r1
#

!
r 1

r 2

T1 !
mv 

2

r 1
    T2 !

mv 
2

r 2
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Example 6.5 The Banked Exit Ramp

A civil engineer wishes to design a curved exit ramp for a
highway in such a way that a car will not have to rely on
friction to round the curve without skidding. In other
words, a car moving at the designated speed can negotiate
the curve even when the road is covered with ice. Such a
ramp is usually banked; this means the roadway is tilted to-
ward the inside of the curve. Suppose the designated speed
for the ramp is to be 13.4 m/s (30.0 mi/h) and the radius
of the curve is 50.0 m. At what angle should the curve be
banked?

Solution On a level (unbanked) road, the force that causes
the centripetal acceleration is the force of static friction be-
tween car and road, as we saw in the previous example.
However, if the road is banked at an angle ", as in Figure
6.6, the normal force n has a horizontal component n sin "
pointing toward the center of the curve. Because the ramp
is to be designed so that the force of static friction is zero,
only the component nx ! n sin " causes the centripetal

acceleration. Hence, Newton’s second law for the radial di-
rection gives

The car is in equilibrium in the vertical direction. Thus,
from Fy ! 0 we have

Dividing (1) by (2) gives

If a car rounds the curve at a speed less than 13.4 m/s, fric-
tion is needed to keep it from sliding down the bank (to the
left in Fig. 6.6). A driver who attempts to negotiate the curve
at a speed greater than 13.4 m/s has to depend on friction
to keep from sliding up the bank (to the right in Fig. 6.6).
The banking angle is independent of the mass of the vehicle
negotiating the curve.

What If? What if this same roadway were built on Mars in
the future to connect different colony centers; could it be
traveled at the same speed?

Answer The reduced gravitational force on Mars would
mean that the car is not pressed so tightly to the roadway.
The reduced normal force results in a smaller component
of the normal force toward the center of the circle. This
smaller component will not be sufficient to provide the cen-
tripetal acceleration associated with the original speed. The
centripetal acceleration must be reduced, which can be
done by reducing the speed v.

Equation (3) shows that the speed v is proportional to
the square root of g for a roadway of fixed radius r banked at
a fixed angle ". Thus, if g is smaller, as it is on Mars, the
speed v with which the roadway can be safely traveled is also
smaller.

20.1&" ! tan'1" (13.4 m/s)2

(50.0 m)(9.80 m/s2) # !

(3)      tan " !
v 

2

r g

(2)      n  cos " ! mg

!

(1)      ! Fr ! n  sin " !
mv 

2

r

n

nx

ny

Fg
θ

Figure 6.6 (Example 6.5) A car rounding a curve on a road
banked at an angle " to the horizontal. When friction is ne-
glected, the force that causes the centripetal acceleration and
keeps the car moving in its circular path is the horizontal com-
ponent of the normal force.

You can adjust the turn radius and banking angle at the Interactive Worked Example link at http://www.pse6.com.

Example 6.6 Let’s Go Loop-the-Loop!

A pilot of mass m in a jet aircraft executes a loop-the-loop,
as shown in Figure 6.7a. In this maneuver, the aircraft
moves in a vertical circle of radius 2.70 km at a constant
speed of 225 m/s. Determine the force exerted by the seat
on the pilot (A) at the bottom of the loop and (B) at the
top of the loop. Express your answers in terms of the weight
of the pilot mg.

Solution To conceptualize this problem, look carefully at
Figure 6.7. Based on experiences with driving over small

hills in a roadway, or riding over the top of a Ferris wheel,
you would expect to feel lighter at the top of the path. Simi-
larly, you would expect to feel heavier at the bottom of the
path. By looking at Figure 6.7, we expect the answer for
(A) to be greater than that for (B) because at the bottom of
the loop the normal and gravitational forces act in opposite
directions, whereas at the top of the loop these two forces
act in the same direction. The vector sum of these two forces
gives the force of constant magnitude that keeps the pilot
moving in a circular path at a constant speed. To yield net

Interactive
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force vectors with the same magnitude, the normal force at
the bottom must be greater than that at the top. Because
the speed of the aircraft is constant (how likely is this?), we
can categorize this as a uniform circular motion problem,
complicated by the fact that the gravitational force acts at all
times on the aircraft. 

(A) Analyze the situation by drawing a free-body diagram for
the pilot at the bottom of the loop, as shown in Figure 6.7b.
The only forces acting on him are the downward gravitational
force Fg ! mg and the upward force nbot exerted by the seat.
Because the net upward force that provides the centripetal ac-
celeration has a magnitude nbot ' mg, Newton’s second law
for the radial direction gives

Substituting the values given for the speed and radius gives

Hence, the magnitude of the force nbot exerted by the seat
on the pilot is greater than the weight of the pilot by a fac-
tor of 2.91. This means that the pilot experiences an appar-

2.91mgnbot ! mg "1 (
(225 m/s)2

(2.70 ) 103 m)(9.80 m/s2) # !

nbot ! mg ( m
v  2

r
! mg"1 (

v  2

r g #
! F ! n bot 'mg ! m 

v2

r

ent weight that is greater than his true weight by a factor
of 2.91. 

(B) The free-body diagram for the pilot at the top of the
loop is shown in Figure 6.7c. As we noted earlier, both the
gravitational force exerted by the Earth and the force ntop
exerted by the seat on the pilot act downward, and so the
net downward force that provides the centripetal accelera-
tion has a magnitude n top ( mg. Applying Newton’s second
law yields

!

In this case, the magnitude of the force exerted by the seat
on the pilot is less than his true weight by a factor of 0.913,
and the pilot feels lighter. To finalize the problem, note that
this is consistent with our prediction at the beginning of the
solution.

0.913mg

n  top ! mg " (225 m/s)2

(2.70 ) 103 m)(9.80 m/s2)
' 1#

n top ! m 
v 

2

r
 ' mg ! mg " v 

2

rg
' 1#

! F ! n top ( mg ! m  
v2

r

nbot

mg

ntop

mg

(b) (c)

Top

Bottom

A

(a)

Figure 6.7 (Example 6.6) (a) An aircraft executes a loop-the-loop maneuver as it
moves in a vertical circle at constant speed. (b) Free-body diagram for the pilot at the
bottom of the loop. In this position the pilot experiences an apparent weight greater
than his true weight. (c) Free-body diagram for the pilot at the top of the loop.



Quick Quiz 6.3 Which of the following is impossible for a car moving in a
circular path? (a) the car has tangential acceleration but no centripetal acceleration.
(b) the car has centripetal acceleration but no tangential acceleration. (c) the car has
both centripetal acceleration and tangential acceleration.

Quick Quiz 6.4 A bead slides freely along a horizontal, curved wire at con-
stant speed, as shown in Figure 6.9. Draw the vectors representing the force exerted by
the wire on the bead at points !, ", and #.

Quick Quiz 6.5 In Figure 6.9, the bead speeds up with constant tangential
acceleration as it moves toward the right. Draw the vectors representing the force on
the bead at points !, ", and #.

Figure 6.9 (Quick Quiz 6.4 and 6.5) A bead
slides along a curved wire.
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*F

*Fr

*Ft

Active Figure 6.8 When the force
acting on a particle moving in a
circular path has a tangential
component Ft , the particle’s speed
changes. The total force exerted on
the particle in this case is the vector
sum of the radial force and the
tangential force. That is, 

F ! Fr ( Ft .!!!

!

Passengers on a “corkscrew” roller coaster experience a radial force toward the center
of the circular track and a tangential force due to gravity.
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6.2 Nonuniform Circular Motion

In Chapter 4 we found that if a particle moves with varying speed in a circular path,
there is, in addition to the radial component of acceleration, a tangential compo-
nent having magnitude dv/dt. Therefore, the force acting on the particle must also
have a tangential and a radial component. Because the total acceleration is
a ! ar ( at, the total force exerted on the particle is F ! Fr ( Ft, as shown in
Figure 6.8. The vector Fr is directed toward the center of the circle and is responsi-
ble for the centripetal acceleration. The vector Ft tangent to the circle is responsi-
ble for the tangential acceleration, which represents a change in the speed of the
particle with time.

!
!

!!!

#

"

! At the Active Figures link
at http://www.pse6.com, you
can adjust the initial position
of the particle and compare
the component forces acting
on the particle to those for a
child swinging on a swing set.
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Example 6.7 Keep Your Eye on the Ball

A small sphere of mass m is attached to the end of a cord of
length R and set into motion in a vertical circle about a fixed
point O, as illustrated in Figure 6.10a. Determine the ten-
sion in the cord at any instant when the speed of the sphere
is v and the cord makes an angle " with the vertical.

Solution Unlike the situation in Example 6.6, the speed is
not uniform in this example because, at most points along the
path, a tangential component of acceleration arises from the
gravitational force exerted on the sphere. From the free-body
diagram in Figure 6.10a, we see that the only forces acting on
the sphere are the gravitational force Fg ! mg exerted by the
Earth and the force T exerted by the cord. Now we resolve Fg
into a tangential component mg sin " and a radial component
mg cos ". Applying Newton’s second law to the forces acting
on the sphere in the tangential direction yields

This tangential component of the acceleration causes v to
change in time because at ! dv/dt.

Applying Newton’s second law to the forces acting on
the sphere in the radial direction and noting that both T
and ar are directed toward O, we obtain

T ! m " v 
2

R
( g  cos "#

! Fr ! T ' mg  cos " !
mv 

2

R

at ! g  sin " 

! Ft ! mg  sin  " ! mat

What If? What if we set the ball in motion with a slower
speed? (A) What speed would the ball have as it passes over
the top of the circle if the tension in the cord goes to zero in-
stantaneously at this point? 

Answer At the top of the path (Fig. 6.10b), where
" ! 180&, we have cos 180& ! ' 1, and the tension equation
becomes

Let us set Ttop ! 0. Then,

(B) What if we set the ball in motion such that the speed at
the top is less than this value? What happens?

Answer In this case, the ball never reaches the top of the
circle. At some point on the way up, the tension in the string
goes to zero and the ball becomes a projectile. It follows a
segment of a parabolic path over the top of its motion, re-
joining the circular path on the other side when the tension
becomes nonzero again.

vtop ! √gR

0 ! m " v  top
 2

R
' g#

Ttop ! m " v  top
 2

R
' g#

Investigate these alternatives at the Interactive Worked Example link at http://www.pse6.com.

O

Tbot

Ttop

vbot

mg

mg

vtop

(b)(a)

R

O

T
θ

mg cos
mg sin

mg

θ θ θ

Figure 6.10 (a) Forces acting on a sphere of mass m connected to a cord of length R and
rotating in a vertical circle centered at O. (b) Forces acting on the sphere at the top and
bottom of the circle. The tension is a maximum at the bottom and a minimum at the top.

Interactive
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6.3 Motion in Accelerated Frames

When Newton’s laws of motion were introduced in Chapter 5, we emphasized that
they are valid only when observations are made in an inertial frame of reference. In
this section, we analyze how Newton’s second law is applied by an observer in a non-
inertial frame of reference, that is, one that is accelerating. For example, recall the
discussion of the air hockey table on a train in Section 5.2. The train moving at con-
stant velocity represents an inertial frame. The puck at rest remains at rest, and New-
ton’s first law is obeyed. The accelerating train is not an inertial frame. According to
you as the observer on the train, there appears to be no visible force on the puck, yet
it accelerates from rest toward the back of the train, violating Newton’s first law.

As an observer on the accelerating train, if you apply Newton’s second law to the
puck as it accelerates toward the back of the train, you might conclude that a force
has acted on the puck to cause it to accelerate. We call an apparent force such as this
a fictitious force, because it is due to an accelerated reference frame. Remember
that real forces are always due to interactions between two objects. A fictitious force
appears to act on an object in the same way as a real force, but you cannot identify a
second object for a fictitious force.

The train example above describes a fictitious force due to a change in the speed of
the train. Another fictitious force is due to the change in the direction of the velocity vec-
tor. To understand the motion of a system that is noninertial because of a change in di-
rection, consider a car traveling along a highway at a high speed and approaching a
curved exit ramp, as shown in Figure 6.11a. As the car takes the sharp left turn onto the
ramp, a person sitting in the passenger seat slides to the right and hits the door. At that
point, the force exerted by the door on the passenger keeps her from being ejected from
the car. What causes her to move toward the door? A popular but incorrect explanation
is that a force acting toward the right in Figure 6.11b pushes her outward. This is often
called the “centrifugal force,” but it is a fictitious force due to the acceleration associated
with the changing direction of the car’s velocity vector. (The driver also experiences this
effect but wisely holds on to the steering wheel to keep from sliding to the right.)

The phenomenon is correctly explained as follows. Before the car enters the ramp,
the passenger is moving in a straight-line path. As the car enters the ramp and travels a
curved path, the passenger tends to move along the original straight-line path. This is
in accordance with Newton’s first law: the natural tendency of an object is to continue
moving in a straight line. However, if a sufficiently large force (toward the center of
curvature) acts on the passenger, as in Figure 6.11c, she moves in a curved path along
with the car. This force is the force of friction between her and the car seat. If this fric-
tion force is not large enough, she slides to the right as the seat turns to the left under
her. Eventually, she encounters the door, which provides a force large enough to en-
able her to follow the same curved path as the car. She slides toward the door not be-
cause of an outward force but because the force of friction is not sufficiently great
to allow her to travel along the circular path followed by the car.

Another interesting fictitious force is the “Coriolis force.” This is an apparent force
caused by changing the radial position of an object in a rotating coordinate system. For
example, suppose you and a friend are on opposite sides of a rotating circular platform
and you decide to throw a baseball to your friend. As Figure 6.12a shows, at t ! 0 you
throw the ball toward your friend, but by the time tf when the ball has crossed the plat-
form, your friend has moved to a new position.

Figure 6.12a represents what an observer would see if the ball is viewed while the
observer is hovering at rest above the rotating platform. According to this observer,
who is in an inertial frame, the ball follows a straight line, as it must according to New-
ton’s first law. Now, however, consider the situation from your friend’s viewpoint. Your
friend is in a noninertial reference frame because he is undergoing a centripetal ac-
celeration relative to the inertial frame of the Earth’s surface. He starts off seeing the
baseball coming toward him, but as it crosses the platform, it veers to one side, as
shown in Figure 6.12b. Thus, your friend on the rotating platform claims that the ball

(a)

(c)

(b)

Figure 6.11 (a) A car approaching
a curved exit ramp. What causes a
front-seat passenger to move toward
the right-hand door? (b) From the
frame of reference of the passenger,
a force appears to push her toward
the right door, but this is a fictitious
force. (c) Relative to the reference
frame of the Earth, the car seat ap-
plies a leftward force to the passen-
ger, causing her to change direction
along with the rest of the car.
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Quick Quiz 6.6 Consider the passenger in the car making a left turn in Fig-
ure 6.11. Which of the following is correct about forces in the horizontal direction if
the person is making contact with the right-hand door? (a) The passenger is in equilib-
rium between real forces acting to the right and real forces acting to the left. (b) The
passenger is subject only to real forces acting to the right. (c) The passenger is subject
only to real forces acting to the left. (d) None of these is true.

does not obey Newton’s first law and claims that a force is causing the ball to follow a
curved path. This fictitious force is called the Coriolis force.

Fictitious forces may not be real forces, but they can have real effects. An object
on your dashboard really slides off if you press the accelerator of your car. As you ride
on a merry-go-round, you feel pushed toward the outside as if due to the fictitious
“centrifugal force.” You are likely to fall over and injure yourself if you walk along a ra-
dial line while the merry-go-round rotates. The Coriolis force due to the rotation of
the Earth is responsible for rotations of hurricanes and for large-scale ocean currents.

! PITFALL PREVENTION
6.2 Centrifugal Force
The commonly heard phrase
“centrifugal force” is described as
a force pulling outward on an ob-
ject moving in a circular path. If
you are feeling a “centrifugal
force” on a rotating carnival ride,
what is the other object with
which you are interacting? You
cannot identify another object
because this is a fictitious force
that occurs as a result of your be-
ing in a noninertial reference
frame.

(a) (b)

Active Figure 6.12 (a) You and your friend sit at the edge of a rotating turntable. In
this overhead view observed by someone in an inertial reference frame attached to the
Earth, you throw the ball at t ! 0 in the direction of your friend. By the time tf that the
ball arrives at the other side of the turntable, your friend is no longer there to catch it.
According to this observer, the ball followed a straight line path, consistent with
Newton’s laws. (b) From the point of view of your friend, the ball veers to one side
during its flight. Your friend introduces a fictitious force to cause this deviation from
the expected path. This fictitious force is called the “Coriolis force.”

Example 6.8 Fictitious Forces in Linear Motion

A small sphere of mass m is hung by a cord from the ceiling
of a boxcar that is accelerating to the right, as shown in Fig-
ure 6.13. The noninertial observer in Figure 6.13b claims
that a force, which we know to be fictitious, must act in or-
der to cause the observed deviation of the cord from the
vertical. How is the magnitude of this force related to the ac-
celeration of the boxcar measured by the inertial observer
in Figure 6.13a?

Solution According to the inertial observer at rest (Fig.
6.13a), the forces on the sphere are the force T exerted by
the cord and the gravitational force. The inertial observer
concludes that the acceleration of the sphere is the same as
that of the boxcar and that this acceleration is provided by
the horizontal component of T. Also, the vertical compo-
nent of T balances the gravitational force because the
sphere is in equilibrium in the vertical direction. Therefore,

At the Active Figures link
at http://www.pse6.com, you
can observe the ball’s path
simultaneously from the
reference frame of an inertial
observer and from the
reference frame of the rotating
turntable.
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θT

mg

Inertial
observer

Noninertial
observer

θT

mg

(a)

(b)

F  fictitious

a

she writes Newton’s second law as F ! T ( mg ! ma,
which in component form becomes

According to the noninertial observer riding in the car
(Fig. 6.13b), the cord also makes an angle " with the verti-
cal; however, to him the sphere is at rest and so its accelera-
tion is zero. Therefore, he introduces a fictitious force in
the horizontal direction to balance the horizontal compo-
nent of T and claims that the net force on the sphere is zero!
In this noninertial frame of reference, Newton’s second law
in component form yields

Noninertial observer
 $

 ! Fx+ ! T  sin " ' Ffictitious ! 0

 ! Fy+ ! T  cos " ' mg ! 0

Inertial observer
 $

 (1)      ! Fx ! T  sin " ! ma

 (2)      ! Fy ! T  cos " ' mg ! 0

! We see that these expressions are equivalent to (1) and
(2) if Ffictitious ! ma, where a is the acceleration according
to the inertial observer. If we were to make this substitution
in the equation for F +x above, the noninertial observer ob-
tains the same mathematical results as the inertial ob-
server. However, the physical interpretation of the deflec-
tion of the cord differs in the two frames of reference.

What If? Suppose the inertial observer wants to measure
the acceleration of the train by means of the pendulum (the
sphere hanging from the cord). How could she do this?

Answer Our intuition tells us that the angle " that the cord
makes with the vertical should increase as the acceleration
increases. By solving (1) and (2) simultaneously for a, the
inertial observer can determine the magnitude of the car’s
acceleration by measuring the angle " and using the rela-
tionship a ! g tan ". Because the deflection of the cord
from the vertical serves as a measure of acceleration, a simple
pendulum can be used as an accelerometer.

Figure 6.13 (Example 6.8) A small sphere suspended from the ceiling of a boxcar
accelerating to the right is deflected as shown. (a) An inertial observer at rest outside
the car claims that the acceleration of the sphere is provided by the horizontal
component of T. (b) A noninertial observer riding in the car says that the net force on
the sphere is zero and that the deflection of the cord from the vertical is due to a
fictitious force Ffictitious that balances the horizontal component of T.

Example 6.9 Fictitious Force in a Rotating System

Suppose a block of mass m lying on a horizontal, frictionless
turntable is connected to a string attached to the center of
the turntable, as shown in Figure 6.14. How would each of
the observers write Newton’s second law for the block?

Solution According to an inertial observer (Fig. 6.14a), if
the block rotates uniformly, it undergoes an acceleration of
magnitude v2/r, where v is its linear speed. The inertial
observer concludes that this centripetal acceleration is
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m g

(a) Inertial observer

n

T

m g

(b)

Noninertial observer

F  fictitious

Figure 6.14 (Example 6.9) A block of mass m connected to a string tied to the
center of a rotating turntable. (a) The inertial observer claims that the force causing
the circular motion is provided by the force T exerted by the string on the block.
(b) The noninertial observer claims that the block is not accelerating, and therefore
she introduces a fictitious force of magnitude mv 2/r that acts outward and balances
the force T.

6.4 Motion in the Presence of Resistive Forces

In the preceding chapter we described the force of kinetic friction exerted on an ob-
ject moving on some surface. We completely ignored any interaction between the ob-
ject and the medium through which it moves. Now let us consider the effect of that
medium, which can be either a liquid or a gas. The medium exerts a resistive force R
on the object moving through it. Some examples are the air resistance associated with
moving vehicles (sometimes called air drag) and the viscous forces that act on objects
moving through a liquid. The magnitude of R depends on factors such as the speed of
the object, and the direction of R is always opposite the direction of motion of the ob-
ject relative to the medium. Furthermore, the magnitude of R nearly always increases
with increasing speed.

The magnitude of the resistive force can depend on speed in a complex way, and
here we consider only two situations. In the first situation, we assume the resistive force
is proportional to the speed of the moving object; this assumption is valid for objects
falling slowly through a liquid and for very small objects, such as dust particles, moving
through air. In the second situation, we assume a resistive force that is proportional to
the square of the speed of the moving object; large objects, such as a skydiver moving
through air in free fall, experience such a force.

Resistive Force Proportional to Object Speed

If we assume that the resistive force acting on an object moving through a liquid or gas
is proportional to the object’s speed, then the resistive force can be expressed as

(6.2)

where v is the velocity of the object and b is a constant whose value depends on the
properties of the medium and on the shape and dimensions of the object. If the object
is a sphere of radius r, then b is proportional to r. The negative sign indicates that R is
in the opposite direction to v.

Consider a small sphere of mass m released from rest in a liquid, as in Figure 6.15a.
Assuming that the only forces acting on the sphere are the resistive force R ! 'b v and

R ! 'b v

provided by the force T exerted by the string and writes
Newton’s second law as T ! mv2/r.

According to a noninertial observer attached to the
turntable (Fig 6.14b), the block is at rest and its acceleration is

zero. Therefore, she must introduce a fictitious outward force
of magnitude mv2/r to balance the inward force exerted by
the string. According to her, the net force on the block is zero,
and she writes Newton’s second law as T ' mv2/r ! 0.
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the gravitational force Fg , let us describe its motion.1 Applying Newton’s second law
to the vertical motion, choosing the downward direction to be positive, and noting that

Fy ! mg ' bv, we obtain

(6.3)

where the acceleration dv/dt is downward. Solving this expression for the acceleration
gives

(6.4)

This equation is called a differential equation, and the methods of solving it may not be fa-
miliar to you as yet. However, note that initially when v ! 0, the magnitude of the resis-
tive force bv is also zero, and the acceleration dv/dt is simply g. As t increases, the magni-
tude of the resistive force increases and the acceleration decreases. The acceleration
approaches zero when the magnitude of the resistive force approaches the sphere’s
weight. In this situation, the speed of the sphere approaches its terminal speed vT. In
reality, the sphere only approaches terminal speed but never reaches terminal speed. 

We can obtain the terminal speed from Equation 6.3 by setting a ! dv/dt ! 0. This
gives

The expression for v that satisfies Equation 6.4 with v ! 0 at t ! 0 is

(6.5)

This function is plotted in Figure 6.15c. The symbol e represents the base of the nat-
ural logarithm, and is also called Euler’s number: e ! 2.718 28. The time constant
, ! m/b (Greek letter tau) is the time at which the sphere released from rest reaches
63.2% of its terminal speed. This can be seen by noting that when t ! ,, Equation 6.5
yields v ! 0.632vT.

v !
mg
b

 (1 ' e'bt/m ) ! vT (1 ' e't/, )

mg ' bvT ! 0      or      vT !
mg
b

dv
dt

! g '
b
m

 v

mg ' bv ! ma ! m
dv
dt

!

(c)

v

vT

0.632vT

tτ

R

mg

v

(a)

v = vT
a = 0

v = 0
a = g

(b)

Active Figure 6.15 (a) A small sphere falling through a liquid. (b) Motion diagram of
the sphere as it falls. (c) Speed–time graph for the sphere. The sphere reaches a
maximum (or terminal) speed vT, and the time constant , is the time interval during
which it reaches a speed of 0.632vT.

Terminal speed

At the Active Figures link
at http://www.pse6.com, you
can vary the size and mass of
the sphere and the viscosity
(resistance to flow) of the
surrounding medium, then
observe the effects on the
sphere’s motion and its
speed–time graph.

1 There is also a buoyant force acting on the submerged object. This force is constant, and its
magnitude is equal to the weight of the displaced liquid. This force changes the apparent weight
of the sphere by a constant factor, so we will ignore the force here. We discuss buoyant forces in
Chapter 14.
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We can check that Equation 6.5 is a solution to Equation 6.4 by direct differentiation:

(See Appendix Table B.4 for the derivative of e raised to some power.) Substituting into
Equation 6.4 both this expression for dv/dt and the expression for v given by Equation
6.5 shows that our solution satisfies the differential equation.

dv
dt

!
d
dt

 " mg
b

'
mg
b

 e'bt/m# ! '
mg
b

 
d
dt

 e'bt/m ! ge'bt/m

Air Drag at High Speeds

For objects moving at high speeds through air, such as airplanes, sky divers, cars, and
baseballs, the resistive force is approximately proportional to the square of the speed.
In these situations, the magnitude of the resistive force can be expressed as

(6.6)

where - is the density of air, A is the cross-sectional area of the moving object measured
in a plane perpendicular to its velocity, and D is a dimensionless empirical quantity
called the drag coefficient. The drag coefficient has a value of about 0.5 for spherical ob-
jects but can have a value as great as 2 for irregularly shaped objects.

Let us analyze the motion of an object in free-fall subject to an upward air resistive
force of magnitude . Suppose an object of mass m is released from rest. As Fig-
ure 6.16 shows, the object experiences two external forces:2 the downward gravitational
force Fg ! mg and the upward resistive force R. Hence, the magnitude of the net force is

(6.7)

where we have taken downward to be the positive vertical direction. Combining F ! ma
with Equation 6.7, we find that the object has a downward acceleration of magnitude

(6.8)

We can calculate the terminal speed vT by using the fact that when the gravitational
force is balanced by the resistive force, the net force on the object is zero and therefore
its acceleration is zero. Setting a ! 0 in Equation 6.8 gives

g ' " D-A
2m #v

 T
2 ! 0

a ! g ' " D-A
2m #v 2

!
! F ! mg ' 

1
2 D-Av  2

R ! 1
2 D-Av 

2

R ! 1
2 D-Av 

2

Example 6.10 Sphere Falling in Oil

A small sphere of mass 2.00 g is released from rest in a
large vessel filled with oil, where it experiences a resistive
force proportional to its speed. The sphere reaches a ter-
minal speed of 5.00 cm/s. Determine the time constant ,
and the time at which the sphere reaches 90.0% of its ter-
minal speed.

Solution Because the terminal speed is given by vT ! mg/b,
the coefficient b is

Therefore, the time constant , is 

5.10 ) 10'3 s, !
m
b

!
2.00 g

392 g/s
!

b !
mg
vT

!
(2.00 g)(980 cm/s2)

5.00 cm/s
! 392 g/s

The speed of the sphere as a function of time is given by
Equation 6.5. To find the time t at which the sphere reaches
a speed of 0.900vT, we set v ! 0.900vT in Equation 6.5 and
solve for t :

Thus, the sphere reaches 90.0% of its terminal speed in a
very short time interval.

11.7 ms! 11.7 ) 10'3 s !

 t ! 2.30, ! 2.30(5.10 ) 10'3 s)

'
t
,

! ln(0.100) ! '2.30 

 e't/, ! 0.100 

1 ' e't/, ! 0.900 

0.900vT ! vT  (1 'e't/,) 

v

vT

R

mg

R

mg

Figure 6.16 An object falling
through air experiences a resistive
force R and a gravitational force
Fg ! mg. The object reaches
terminal speed (on the right)
when the net force acting on it is
zero, that is, when R ! ' Fg or
R ! mg. Before this occurs, the
acceleration varies with speed
according to Equation 6.8. 2 There is also an upward buoyant force that we neglect.
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so that,

(6.9)

Using this expression, we can determine how the terminal speed depends on the di-
mensions of the object. Suppose the object is a sphere of radius r. In this case, A . r 2

(from A ! /r 2) and m . r 3 (because the mass is proportional to the volume of the
sphere, which is ). Therefore, .

Table 6.1 lists the terminal speeds for several objects falling through air.
vT . √rV ! 4

3 /r  
3

vT ! √ 2mg
D-A

Object Mass (kg) Cross-Sectional Area (m2) vT (m/s)

Sky diver 75 0.70 60
Baseball (radius 3.7 cm) 0.145 4.2 ) 10'3 43
Golf ball (radius 2.1 cm) 0.046 1.4 ) 10'3 44
Hailstone (radius 0.50 cm) 4.8 ) 10'4 7.9 ) 10'5 14
Raindrop (radius 0.20 cm) 3.4 ) 10'5 1.3 ) 10'5 9.0

Terminal Speed for Various Objects Falling Through Air

Table 6.1

Conceptual Example 6.11 The Sky Surfer

Consider a sky surfer (Fig. 6.17) who jumps from a plane
with her feet attached firmly to her surfboard, does some
tricks, and then opens her parachute. Describe the forces
acting on her during these maneuvers.

Solution When the surfer first steps out of the plane, she has
no vertical velocity. The downward gravitational force causes
her to accelerate toward the ground. As her downward speed
increases, so does the upward resistive force exerted by the air
on her body and the board. This upward force reduces their
acceleration, and so their speed increases more slowly. Eventu-
ally, they are going so fast that the upward resistive force
matches the downward gravitational force. Now the net force
is zero and they no longer accelerate, but reach their terminal
speed. At some point after reaching terminal speed, she opens
her parachute, resulting in a drastic increase in the upward re-
sistive force. The net force (and thus the acceleration) is now
upward, in the direction opposite the direction of the velocity.
This causes the downward velocity to decrease rapidly; this
means the resistive force on the chute also decreases. Eventu-
ally the upward resistive force and the downward gravitational
force balance each other and a much smaller terminal speed
is reached, permitting a safe landing.

(Contrary to popular belief, the velocity vector of a sky
diver never points upward. You may have seen a videotape in
which a sky diver appears to “rocket” upward once the chute
opens. In fact, what happens is that the diver slows down
while the person holding the camera continues falling at
high speed.)

Figure 6.17 (Conceptual Example 6.11) A sky surfer.
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Quick Quiz 6.7 A baseball and a basketball, having the same mass, are
dropped through air from rest such that their bottoms are initially at the same height
above the ground, on the order of 1 m or more. Which one strikes the ground first?
(a) the baseball (b) the basketball (c) both strike the ground at the same time.
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Example 6.12 Falling Coffee Filters

The dependence of resistive force on speed is an empirical
relationship. In other words, it is based on observation
rather than on a theoretical model. Imagine an experiment
in which we drop a series of stacked coffee filters, and mea-
sure their terminal speeds. Table 6.2 presents data for these
coffee filters as they fall through the air. The time constant ,
is small, so that a dropped filter quickly reaches terminal
speed. Each filter has a mass of 1.64 g. When the filters are
nested together, they stack in such a way that the front-
facing surface area does not increase. Determine the rela-
tionship between the resistive force exerted by the air and
the speed of the falling filters.

Solution At terminal speed, the upward resistive force bal-
ances the downward gravitational force. So, a single filter
falling at its terminal speed experiences a resistive force of

Two filters nested together experience 0.032 2 N of resis-
tive force, and so forth. A graph of the resistive force on
the filters as a function of terminal speed is shown in
Figure 6.18a. A straight line would not be a good fit, indi-
cating that the resistive force is not proportional to the
speed. The behavior is more clearly seen in Figure 6.18b,
in which the resistive force is plotted as a function of the
square of the terminal speed. This indicates a proportion-
ality of the resistive force to the square of the speed, as sug-
gested by Equation 6.6.

R ! mg ! (1.64 g)" 1 kg
100 0 g #(9.80 m/s2) ! 0.016 1 N

Number of
Filters vT (m/s)a

1 1.01
2 1.40
3 1.63
4 2.00
5 2.25
6 2.40
7 2.57
8 2.80
9 3.05

10 3.22

Terminal Speed for 
Stacked Coffee Filters

Table 6.2

a All values of vT are approximate.

Figure 6.18 (Example 6.12) (a) Relationship between the
resistive force acting on falling coffee filters and their terminal
speed. The curved line is a second-order polynomial fit.
(b) Graph relating the resistive force to the square of the
terminal speed. The fit of the straight line to the data points
indicates that the resistive force is proportional to the terminal
speed squared. Can you find the proportionality constant?

Pleated coffee filters can be nested together so that the force of
air resistance can be studied.
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Example 6.13 Resistive Force Exerted on a Baseball

A pitcher hurls a 0.145-kg baseball past a batter at 40.2 m/s
(! 90 mi/h). Find the resistive force acting on the ball at
this speed.

Solution We do not expect the air to exert a huge force
on the ball, and so the resistive force we calculate from
Equation 6.6 should not be more than a few newtons.
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6.5 Numerical Modeling in Particle Dynamics 3

As we have seen in this and the preceding chapter, the study of the dynamics of a parti-
cle focuses on describing the position, velocity, and acceleration as functions of time.
Cause-and-effect relationships exist among these quantities: Velocity causes position to
change, and acceleration causes velocity to change. Because acceleration is the direct
result of applied forces, any analysis of the dynamics of a particle usually begins with an
evaluation of the net force acting on the particle.

Until now, we have used what is called the analytical method to investigate the position,
velocity, and acceleration of a moving particle. This method involves the identification of
well-behaved functional expressions for the position of a particle (such as the kinematic
equations of Chapter 2), generated from algebraic manipulations or the techniques of
calculus. Let us review this method briefly before learning about a second way of ap-
proaching problems in dynamics. (Because we confine our discussion to one-dimen-
sional motion in this section, boldface notation will not be used for vector quantities.)

If a particle of mass m moves under the influence of a net force F, Newton’s sec-
ond law tells us that the acceleration of the particle is a ! F/m. In general, we apply
the analytical method to a dynamics problem using the following procedure:

1. Sum all the forces acting on the particle to find the net force F.

2. Use this net force to determine the acceleration from the relationship a ! F/m.

3. Use this acceleration to determine the velocity from the relationship dv/dt ! a.

4. Use this velocity to determine the position from the relationship dx/dt ! v.

The following straightforward example illustrates this method.

!
!

!
!

First, we must determine the drag coefficient D. We do
this by imagining that we drop the baseball and allow it to
reach terminal speed. We solve Equation 6.9 for D and
substitute the appropriate values for m, vT, and A from
Table 6.1. Taking the density of air as 1.20 kg/m3, we
obtain

! 0.305

D !
2mg

vT
 2 -A

!
2(0.145 kg)(9.80 m/s2)

(43 m/s)2(1.20 kg/m3)(4.2 ) 10'3 m2)

This number has no dimensions. We have kept an extra
digit beyond the two that are significant and will drop it at
the end of our calculation.

We can now use this value for D in Equation 6.6 to find
the magnitude of the resistive force:

! 1.2 N

! 1
2 (0.305)(1.20 kg/m3)(4.2 ) 10'3 m2)(40.2 m/s)2

R !  
1
2 D-Av 2

3 The authors are most grateful to Colonel James Head of the U.S. Air Force Academy for
preparing this section.

Example 6.14 An Object Falling in a Vacuum—Analytical Method

Consider a particle falling in a vacuum under the influence
of the gravitational force, as shown in Figure 6.19. Use the
analytical method to find the acceleration, velocity, and po-
sition of the particle.

Solution The only force acting on the particle is the down-
ward gravitational force of magnitude Fg , which is also the net
force. Applying Newton’s second law, we set the net force act-
ing on the particle equal to the mass of the particle times its
acceleration (taking upward to be the positive y direction):

Fg ! may ! '  mg
Figure 6.19 (Example 6.14) An object falling in vacuum under
the influence of gravity.
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The analytical method is straightforward for many physical situations. In the “real
world,” however, complications often arise that make analytical solutions difficult and
perhaps beyond the mathematical abilities of most students taking introductory
physics. For example, the net force acting on a particle may depend on the particle’s
position, as in cases where the gravitational acceleration varies with height. Or the
force may vary with velocity, as in cases of resistive forces caused by motion through a
liquid or gas.

Another complication arises because the expressions relating acceleration, velocity,
position, and time are differential equations rather than algebraic ones. Differential
equations are usually solved using integral calculus and other special techniques that
introductory students may not have mastered. 

When such situations arise, scientists often use a procedure called numerical model-
ing to study motion. The simplest numerical model is called the Euler method, after
the Swiss mathematician Leonhard Euler (1707–1783).

The Euler Method

In the Euler method for solving differential equations, derivatives are approximated
as ratios of finite differences. Considering a small increment of time 0t, we can ap-
proximate the relationship between a particle’s speed and the magnitude of its accel-
eration as

Then the speed v(t ( 0t) of the particle at the end of the time interval 0t is approxi-
mately equal to the speed v(t) at the beginning of the time interval plus the magnitude
of the acceleration during the interval multiplied by 0t:

(6.10)

Because the acceleration is a function of time, this estimate of v(t ( 0t) is accurate
only if the time interval 0t is short enough such that the change in acceleration during
the interval is very small (as is discussed later). Of course, Equation 6.10 is exact if the
acceleration is constant.

The position x(t ( 0t) of the particle at the end of the interval 0t can be found in
the same manner:

(6.11)

You may be tempted to add the term to this result to make it look like the
familiar kinematics equation, but this term is not included in the Euler method be-
cause 0t is assumed to be so small that (0t)2 is nearly zero.

If the acceleration at any instant t is known, the particle’s velocity and position at a
time t ( 0t can be calculated from Equations 6.10 and 6.11. The calculation then pro-
ceeds in a series of finite steps to determine the velocity and position at any later time.

1
2 a(0t)2

x(t ( 0t) % x(t) ( v(t) 0t

v(t) %
0x
0t

!
x(t ( 0t) ' x(t)

0t

v(t ( 0t) % v(t) ( a(t) 0t

a(t) %
0v
0t

!
v(t ( 0t) ' v(t)

0t

Thus, ay ! ' g, which means the acceleration is constant.
Because dvy/dt ! ay, we see that dvy/dt ! ' g, which may be
integrated to yield

Then, because vy ! dy/dt, the position of the particle is ob-
tained from another integration, which yields the well-

vy(t) ! vyi ' gt

known result

In these expressions, yi and vyi represent the position and
speed of the particle at ti ! 0.

 y(t) ! yi ( vyit ' 1
2 gt 

2
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The acceleration is determined from the net force acting on the particle, and this
force may depend on position, velocity, or time:

(6.12)

It is convenient to set up the numerical solution to this kind of problem by num-
bering the steps and entering the calculations in a table. Table 6.3 illustrates how to do
this in an orderly way. Many small increments can be taken, and accurate results can
usually be obtained with the help of a computer. The equations provided in the table
can be entered into a spreadsheet and the calculations performed row by row to deter-
mine the velocity, position, and acceleration as functions of time. The calculations can
also be carried out using a programming language, or with commercially available
mathematics packages for personal computers. Graphs of velocity versus time or posi-
tion versus time can be displayed to help you visualize the motion.

One advantage of the Euler method is that the dynamics is not obscured—the
fundamental relationships between acceleration and force, velocity and acceleration,
and position and velocity are clearly evident. Indeed, these relationships form the
heart of the calculations. There is no need to use advanced mathematics, and the basic
physics governs the dynamics.

The Euler method is completely reliable for infinitesimally small time increments,
but for practical reasons a finite increment size must be chosen. For the finite differ-
ence approximation of Equation 6.10 to be valid, the time increment must be small
enough that the acceleration can be approximated as being constant during the incre-
ment. We can determine an appropriate size for the time increment by examining the
particular problem being investigated. The criterion for the size of the time increment
may need to be changed during the course of the motion. In practice, however, we usu-
ally choose a time increment appropriate to the initial conditions and use the same
value throughout the calculations.

The size of the time increment influences the accuracy of the result, but unfortu-
nately it is not easy to determine the accuracy of an Euler-method solution without a
knowledge of the correct analytical solution. One method of determining the accuracy
of the numerical solution is to repeat the calculations with a smaller time increment
and compare results. If the two calculations agree to a certain number of significant
figures, you can assume that the results are correct to that precision.

a(x, v, t) ! ! F(x, v, t)
m

Step Time Position Velocity Acceleration

0 t0 x0 v0 a0 ! F(x0 , v0 , t0)/m
1 t1 ! t0 ( 0t x1 ! x0 ( v0 0t v1 ! v0 ( a0 0t a1 ! F(x1 , v1 , t1)/m
2 t2 ! t1 ( 0t x2 ! x1 ( v1 0t v2 ! v1 ( a1 0t a2 ! F(x2 , v2 , t2)/m
3 t3 ! t2 ( 0t x3 ! x2 ( v2 0t v3 ! v2 ( a2 0t a3 ! F(x3 , v3 , t3)/m
. . . . .. . . . .. . . . .
n tn xn vn an

The Euler Method for Solving Dynamics Problems

Table 6.3

Example 6.15 Euler and the Sphere in Oil Revisited

Consider the sphere falling in oil in Example 6.10. Using
the Euler method, find the position and the acceleration of
the sphere at the instant that the speed reaches 90.0% of
terminal speed.

Solution The net force on the sphere is

!F ! 'mg ( bv
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Thus, the acceleration values in the last column of Table 6.3
are

Choosing a time increment of 0.1 ms, the first few lines of the
spreadsheet modeled after Table 6.3 look like Table 6.4. We
see that the speed is increasing while the magnitude of the ac-
celeration is decreasing due to the resistive force. We also see
that the sphere does not fall very far in the first millisecond.

Further down the spreadsheet, as shown in Table 6.5,
we find the instant at which the sphere reaches the speed

a !
*F(x, v, t)

m
!

'  mg ( bv
m

! '  g (
bv
m

0.900vT, which is 0.900 ) 5.00 cm/s ! 4.50 cm/s. This
calculation shows that this occurs at t ! 11.6 ms, which
agrees within its uncertainty with the value obtained in Ex-
ample 6.10. The 0.1-ms difference in the two values is due
to the approximate nature of the Euler method. If a
smaller time increment were used, the instant at which the
speed reaches 0.900vT approaches the value calculated in
Example 6.10.

From Table 6.5, we see that the position and accelera-
tion of the sphere when it reaches a speed of 0.900vT are

y ! and a ! '99 cm/s2 '0.035 cm

Time Acceleration 
Step (ms) Position (cm) Velocity (cm/s) (cm/s2)

0 0.0 0.000 0 0.0 '980.0
1 0.1 0.000 0 '0.10 '960.8
2 0.2 0.000 0 '0.19 '942.0
3 0.3 0.000 0 '0.29 '923.5
4 0.4 '0.000 1 '0.38 '905.4
5 0.5 '0.000 1 '0.47 '887.7
6 0.6 '0.000 1 '0.56 '870.3
7 0.7 '0.000 2 '0.65 '853.2
8 0.8 '0.000 3 '0.73 '836.5
9 0.9 '0.000 3 '0.82 '820.1

10 1.0 '0.000 4 '0.90 '804.0

The Sphere Begins to Fall in Oil

Table 6.4

Time Acceleration 
Step (ms) Position (cm) Velocity (cm/s) (cm/s2)

110 11.0 '0.032 4 '4.43 '111.1
111 11.1 '0.032 8 '4.44 '108.9
112 11.2 '0.033 3 '4.46 '106.8
113 11.3 '0.033 7 '4.47 '104.7
114 11.4 '0.034 2 '4.48 '102.6
115 11.5 '0.034 6 '4.49 '100.6
116 11.6 '0.035 1 '4.50 '98.6
117 11.7 '0.035 5 '4.51 '96.7
118 11.8 '0.036 0 '4.52 '94.8
119 11.9 '0.036 4 '4.53 '92.9
120 12.0 '0.036 9 '4.54 '91.1

The Sphere Reaches 0.900 vT

Table 6.5

Newton’s second law applied to a particle moving in uniform circular motion states
that the net force causing the particle to undergo a centripetal acceleration is

(6.1)

A particle moving in nonuniform circular motion has both a radial component of
acceleration and a nonzero tangential component of acceleration. In the case of a par-

! F ! mac !
mv  2

r
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ticle rotating in a vertical circle, the gravitational force provides the tangential compo-
nent of acceleration and part or all of the radial component of acceleration.

An observer in a noninertial (accelerating) frame of reference must introduce fic-
titious forces when applying Newton’s second law in that frame. If these fictitious
forces are properly defined, the description of motion in the noninertial frame is
equivalent to that made by an observer in an inertial frame. However, the observers in
the two frames do not agree on the causes of the motion.

An object moving through a liquid or gas experiences a speed-dependent resis-
tive force. This resistive force, which opposes the motion relative to the medium,
generally increases with speed. The magnitude of the resistive force depends on the
size and shape of the object and on the properties of the medium through which
the object is moving. In the limiting case for a falling object, when the magnitude of
the resistive force equals the object’s weight, the object reaches its terminal speed.
Euler’s method provides a means for analyzing the motion of a particle under the
action of a force that is not simple.

1. Why does mud fly off a rapidly turning automobile tire?

2. Imagine that you attach a heavy object to one end of a
spring, hold onto the other end of the spring, and then
whirl the object in a horizontal circle. Does the spring
stretch? If so, why? Discuss this in terms of the force caus-
ing the motion to be circular. 

3. Describe a situation in which the driver of a car can have a
centripetal acceleration but no tangential acceleration.

4. Describe the path of a moving body in the event that its ac-
celeration is constant in magnitude at all times and (a) per-
pendicular to the velocity; (b) parallel to the velocity.

5. An object executes circular motion with constant speed
whenever a net force of constant magnitude acts perpen-
dicular to the velocity. What happens to the speed if the
force is not perpendicular to the velocity?

6. Explain why the Earth is not spherical in shape and bulges
at the equator.

7. Because the Earth rotates about its axis, it is a noninertial
frame of reference. Assume the Earth is a uniform sphere.
Why would the apparent weight of an object be greater at
the poles than at the equator? 

8. What causes a rotary lawn sprinkler to turn?

9. If someone told you that astronauts are weightless in orbit
because they are beyond the pull of gravity, would you ac-
cept the statement? Explain.

It has been suggested that rotating cylinders about 10 mi in
length and 5 mi in diameter be placed in space and used as
colonies. The purpose of the rotation is to simulate gravity
for the inhabitants. Explain this concept for producing an
effective imitation of gravity.

11. Consider a rotating space station, spinning with just the
right speed such that the centripetal acceleration on the
inner surface is g. Thus, astronauts standing on this inner
surface would feel pressed to the surface as if they were
pressed into the floor because of the Earth’s gravitational
force. Suppose an astronaut in this station holds a ball
above her head and “drops” it to the floor. Will the ball fall
just like it would on the Earth?

10.

12. A pail of water can be whirled in a vertical path such that
none is spilled. Why does the water stay in the pail, even
when the pail is above your head?

13. How would you explain the force that pushes a rider to-
ward the side of a car as the car rounds a corner?

Why does a pilot tend to black out when pulling out of a
steep dive?

15. The observer in the accelerating elevator of Example 5.8
would claim that the “weight” of the fish is T, the scale
reading. This is obviously wrong. Why does this observa-
tion differ from that of a person outside the elevator, at
rest with respect to the Earth?

16. If you have ever taken a ride in an express elevator of a
high-rise building, you may have experienced a nauseating
sensation of heaviness or lightness depending on the di-
rection of the acceleration. Explain these sensations. Are
we truly weightless in free-fall?

A falling sky diver reaches terminal speed with her para-
chute closed. After the parachute is opened, what parame-
ters change to decrease this terminal speed?

18. Consider a small raindrop and a large raindrop falling
through the atmosphere. Compare their terminal speeds.
What are their accelerations when they reach terminal
speed?

19. On long journeys, jet aircraft usually fly at high altitudes of
about 30 000 ft. What is the main advantage of flying at
these altitudes from an economic viewpoint?

20. Analyze the motion of a rock falling through water in
terms of its speed and acceleration as it falls. Assume that
the resistive force acting on the rock increases as the speed
increases.

21. “If the current position and velocity of every particle in
the Universe were known, together with the laws describ-
ing the forces that particles exert on one another, then
the whole future of the Universe could be calculated.
The future is determinate and preordained. Free will is
an illusion.” Do you agree with this thesis? Argue for or
against it.

17.

14.

Q U E S T I O N S
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Section 6.1 Newton’s Second Law Applied to
Uniform Circular Motion

A light string can support a stationary hanging load of
25.0 kg before breaking. A 3.00-kg object attached to the
string rotates on a horizontal, frictionless table in a circle
of radius 0.800 m, while the other end of the string is held
fixed. What range of speeds can the object have before the
string breaks?

2. A curve in a road forms part of a horizontal circle. As a
car goes around it at constant speed 14.0 m/s, the total
force on the driver has magnitude 130 N. What is the
total vector force on the driver if the speed is 18.0 m/s
instead?

3. In the Bohr model of the hydrogen atom, the speed of the
electron is approximately 2.20 ) 106 m/s. Find (a) the
force acting on the electron as it revolves in a circular orbit
of radius 0.530 ) 10'10 m and (b) the centripetal acceler-
ation of the electron.

4. In a cyclotron (one type of particle accelerator), a
deuteron (of atomic mass 2.00 u) reaches a final speed of
10.0% of the speed of light while moving in a circular path
of radius 0.480 m. The deuteron is maintained in the cir-
cular path by a magnetic force. What magnitude of force is
required?

A coin placed 30.0 cm from the center of a rotating, hori-
zontal turntable slips when its speed is 50.0 cm/s. (a) What
force causes the centripetal acceleration when the coin is
stationary relative to the turntable? (b) What is the coeffi-
cient of static friction between coin and turntable?

6. Whenever two Apollo astronauts were on the surface of the
Moon, a third astronaut orbited the Moon. Assume the or-
bit to be circular and 100 km above the surface of the
Moon, where the acceleration due to gravity is 1.52 m/s2.
The radius of the Moon is 1.70 ) 106 m. Determine (a) the
astronaut’s orbital speed, and (b) the period of the orbit.

A crate of eggs is located in the middle of the flat bed of a
pickup truck as the truck negotiates an unbanked curve in
the road. The curve may be regarded as an arc of a circle
of radius 35.0 m. If the coefficient of static friction be-
tween crate and truck is 0.600, how fast can the truck be
moving without the crate sliding?

8. The cornering performance of an automobile is evaluated
on a skidpad, where the maximum speed that a car can
maintain around a circular path on a dry, flat surface is
measured. Then the centripetal acceleration, also called
the lateral acceleration, is calculated as a multiple of the
free-fall acceleration g. The main factors affecting the per-
formance are the tire characteristics and the suspension
system of the car. A Dodge Viper GTS can negotiate a skid-
pad of radius 61.0 m at 86.5 km/h. Calculate its maximum
lateral acceleration.

7.

5.

1.

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide

= coached solution with hints available at http://www.pse6.com = computer useful in solving problem

= paired numerical and symbolic problems

P R O B L E M S

9. Consider a conical pendulum with an 80.0-kg bob on a
10.0-m wire making an angle of 5.00° with the vertical
(Fig. P6.9). Determine (a) the horizontal and vertical
components of the force exerted by the wire on the pen-
dulum and (b) the radial acceleration of the bob.

10. A car initially traveling eastward turns north by traveling in
a circular path at uniform speed as in Figure P6.10. The
length of the arc ABC is 235 m, and the car completes the
turn in 36.0 s. (a) What is the acceleration when the car is
at B located at an angle of 35.0°? Express your answer in
terms of the unit vectors î and ĵ. Determine (b) the car’s
average speed and (c) its average acceleration during the
36.0-s interval.

11. A 4.00-kg object is attached to a vertical rod by two strings,
as in Figure P6.11. The object rotates in a horizontal circle
at constant speed 6.00 m/s. Find the tension in (a) the up-
per string and (b) the lower string.

12. Casting of molten metal is important in many industrial
processes. Centrifugal casting is used for manufacturing
pipes, bearings and many other structures. A variety of so-
phisticated techniques have been invented, but the basic
idea is as illustrated in Figure P6.12. A cylindrical enclo-
sure is rotated rapidly and steadily about a horizontal axis.
Molten metal is poured into the rotating cylinder and then
cooled, forming the finished product. Turning the cylin-
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der at a high rotation rate forces the solidifying metal
strongly to the outside. Any bubbles are displaced toward
the axis, so unwanted voids will not be present in the cast-
ing. Sometimes it is desirable to form a composite casting,
such as for a bearing. Here a strong steel outer surface is
poured, followed by an inner lining of special low-friction
metal. In some applications a very strong metal is given a
coating of corrosion-resistant metal. Centrifugal casting re-
sults in strong bonding between the layers.

Suppose that a copper sleeve of inner radius 2.10 cm
and outer radius 2.20 cm is to be cast. To eliminate bubbles
and give high structural integrity, the centripetal accelera-
tion of each bit of metal should be 100g. What rate of rota-
tion is required? State the answer in revolutions per minute.

Section 6.2 Nonuniform Circular Motion

A 40.0-kg child swings in a swing supported by two chains,
each 3.00 m long. If the tension in each chain at the lowest
point is 350 N, find (a) the child’s speed at the lowest
point and (b) the force exerted by the seat on the child at
the lowest point. (Neglect the mass of the seat.)

14. A child of mass m swings in a swing supported by two
chains, each of length R. If the tension in each chain at
the lowest point is T, find (a) the child’s speed at the low-
est point and (b) the force exerted by the seat on the child
at the lowest point. (Neglect the mass of the seat.)

13.

Tarzan (m ! 85.0 kg) tries to cross a river by swinging
from a vine. The vine is 10.0 m long, and his speed at the
bottom of the swing (as he just clears the water) will be
8.00 m/s. Tarzan doesn’t know that the vine has a breaking
strength of 1 000 N. Does he make it safely across the river?

16. A hawk flies in a horizontal arc of radius 12.0 m at a con-
stant speed of 4.00 m/s. (a) Find its centripetal acceleration.
(b) It continues to fly along the same horizontal arc but in-
creases its speed at the rate of 1.20 m/s2. Find the accelera-
tion (magnitude and direction) under these conditions.

A pail of water is rotated in a vertical circle of radius
1.00 m. What is the minimum speed of the pail at the top
of the circle if no water is to spill out?

18. A 0.400-kg object is swung in a vertical circular path on a
string 0.500 m long. If its speed is 4.00 m/s at the top of
the circle, what is the tension in the string there?

19. A roller coaster car (Fig. P6.19) has a mass of 500 kg when
fully loaded with passengers. (a) If the vehicle has a speed
of 20.0 m/s at point !, what is the force exerted by the
track on the car at this point? (b) What is the maximum
speed the vehicle can have at " and still remain on the
track?

17.

15.

20. A roller coaster at the Six Flags Great America amusement
park in Gurnee, IL, incorporates some clever design tech-
nology and some basic physics. Each vertical loop, instead of
being circular, is shaped like a teardrop (Fig. P6.20). The
cars ride on the inside of the loop at the top, and the speeds
are high enough to ensure that the cars remain on the
track. The biggest loop is 40.0 m high, with a maximum
speed of 31.0 m/s (nearly 70 mi/h) at the bottom. Suppose

10 m
15 m

!

"

Figure P6.19
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the speed at the top is 13.0 m/s and the corresponding cen-
tripetal acceleration is 2g. (a) What is the radius of the arc
of the teardrop at the top? (b) If the total mass of a car plus
the riders is M, what force does the rail exert on the car at
the top? (c) Suppose the roller coaster had a circular loop
of radius 20.0 m. If the cars have the same speed, 13.0 m/s
at the top, what is the centripetal acceleration at the top?
Comment on the normal force at the top in this situation.

Section 6.3 Motion in Accelerated Frames
21. An object of mass 5.00 kg, attached to a spring scale, rests

on a frictionless, horizontal surface as in Figure P6.21. The
spring scale, attached to the front end of a boxcar, has a
constant reading of 18.0 N when the car is in motion.
(a) If the spring scale reads zero when the car is at rest, de-
termine the acceleration of the car. (b) What constant
reading will the spring scale show if the car moves with
constant velocity? (c) Describe the forces on the object as
observed by someone in the car and by someone at rest
outside the car.

22. If the coefficient of static friction between your coffee cup
and the horizontal dashboard of your car is #s ! 0.800,
how fast can you drive on a horizontal roadway around a
right turn of radius 30.0 m before the cup starts to slide? If
you go too fast, in what direction will the cup slide relative
to the dashboard?

A 0.500-kg object is suspended from the ceiling of an ac-
celerating boxcar as in Figure 6.13. If a ! 3.00 m/s2, find

23.

(a) the angle that the string makes with the vertical and
(b) the tension in the string.

24. A small container of water is placed on a carousel inside a
microwave oven, at a radius of 12.0 cm from the center.
The turntable rotates steadily, turning through one revolu-
tion in each 7.25 s. What angle does the water surface
make with the horizontal?

A person stands on a scale in an elevator. As the elevator
starts, the scale has a constant reading of 591 N. As the ele-
vator later stops, the scale reading is 391 N. Assume the
magnitude of the acceleration is the same during starting
and stopping, and determine (a) the weight of the person,
(b) the person’s mass, and (c) the acceleration of the
elevator.

26. The Earth rotates about its axis with a period of 24.0 h.
Imagine that the rotational speed can be increased. If
an object at the equator is to have zero apparent weight,
(a) what must the new period be? (b) By what factor would
the speed of the object be increased when the planet is ro-
tating at the higher speed? Note that the apparent weight
of the object becomes zero when the normal force exerted
on it is zero.

27. A small block is at rest on the floor at the front of a rail-
road boxcar that has length !. The coefficient of kinetic
friction between the floor of the car and the block is #k.
The car, originally at rest, begins to move with acceleration
a. The block slides back horizontally until it hits the back
wall of the car. At that moment, what is its speed (a) rela-
tive to the car? (b) relative to Earth? 

28. A student stands in an elevator that is continuously acceler-
ating upward with acceleration a. Her backpack is sitting
on the floor next to the wall. The width of the elevator car
is L. The student gives her backpack a quick kick at t ! 0,
imparting to it speed v, and making it slide across the ele-
vator floor. At time t, the backpack hits the opposite wall.
Find the coefficient of kinetic friction #k between the
backpack and the elevator floor.

29. A child on vacation wakes up. She is lying on her back.
The tension in the muscles on both sides of her neck is
55.0 N as she raises her head to look past her toes and out
the motel window. Finally it is not raining! Ten minutes
later she is screaming feet first down a water slide at termi-
nal speed 5.70 m/s, riding high on the outside wall of a
horizontal curve of radius 2.40 m (Figure P6.29). She
raises her head to look forward past her toes; find the ten-
sion in the muscles on both sides of her neck.

25.
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30. One popular design of a household juice machine is a coni-
cal, perforated stainless steel basket 3.30 cm high with a
closed bottom of diameter 8.00 cm and open top of diame-
ter 13.70 cm that spins at 20 000 revolutions per minute
about a vertical axis (Figure P6.30). Solid pieces of fruit are
chopped into granules by cutters at the bottom of the spin-
ning cone. Then the fruit granules rapidly make their way
to the sloping surface where the juice is extracted to the
outside of the cone through the mesh perforations. The dry
pulp spirals upward along the slope to be ejected from the
top of the cone. The juice is collected in an enclosure im-
mediately surrounding the sloped surface of the cone. 
(a) What centripetal acceleration does a bit of fruit experi-
ence when it is spinning with the basket at a point midway
between the top and bottom? Express the answer as a multi-
ple of g. (b) Observe that the weight of the fruit is a negligi-
ble force. What is the normal force on 2.00 g of fruit at that
point? (c) If the effective coefficient of kinetic friction be-
tween the fruit and the cone is 0.600, with what acceleration
relative to the cone will the bit of fruit start to slide up the
wall of the cone at that point, after being temporarily stuck?

31. A plumb bob does not hang exactly along a line directed
to the center of the Earth’s rotation. How much does the
plumb bob deviate from a radial line at 35.0° north lati-
tude? Assume that the Earth is spherical. 

Section 6.4 Motion in the Presence of Resistive
Forces

32. A sky diver of mass 80.0 kg jumps from a slow-moving air-
craft and reaches a terminal speed of 50.0 m/s. (a) What is
the acceleration of the sky diver when her speed is
30.0 m/s? What is the drag force on the diver when her
speed is (b) 50.0 m/s? (c) 30.0 m/s?

33. A small piece of Styrofoam packing material is dropped
from a height of 2.00 m above the ground. Until it reaches
terminal speed, the magnitude of its acceleration is given
by a ! g ' bv. After falling 0.500 m, the Styrofoam effec-
tively reaches terminal speed, and then takes 5.00 s

more to reach the ground. (a) What is the value of the
constant b? (b) What is the acceleration at t ! 0? (c) What
is the acceleration when the speed is 0.150 m/s?

34. (a) Estimate the terminal speed of a wooden sphere (den-
sity 0.830 g/cm3) falling through air if its radius is 8.00 cm
and its drag coefficient is 0.500. (b) From what height
would a freely falling object reach this speed in the ab-
sence of air resistance?

35. Calculate the force required to pull a copper ball of radius
2.00 cm upward through a fluid at the constant speed
9.00 cm/s. Take the drag force to be proportional to the
speed, with proportionality constant 0.950 kg/s. Ignore
the buoyant force.

36. A fire helicopter carries a 620-kg bucket at the end of a ca-
ble 20.0 m long as in Figure P6.36. As the helicopter flies
to a fire at a constant speed of 40.0 m/s, the cable makes
an angle of 40.0° with respect to the vertical. The bucket
presents a cross-sectional area of 3.80 m2 in a plane per-
pendicular to the air moving past it. Determine the drag
coefficient assuming that the resistive force is proportional
to the square of the bucket’s speed.

A small, spherical bead of mass 3.00 g is released from rest
at t ! 0 in a bottle of liquid shampoo. The terminal speed
is observed to be vT ! 2.00 cm/s. Find (a) the value of the
constant b in Equation 6.2, (b) the time , at which the
bead reaches 0.632vT , and (c) the value of the resistive
force when the bead reaches terminal speed.

38. The mass of a sports car is 1 200 kg. The shape of the body
is such that the aerodynamic drag coefficient is 0.250 and
the frontal area is 2.20 m2. Neglecting all other sources of
friction, calculate the initial acceleration of the car if it has
been traveling at 100 km/h and is now shifted into neutral
and allowed to coast.

A motorboat cuts its engine when its speed is
10.0 m/s and coasts to rest. The equation describing the
motion of the motorboat during this period is v ! vie'ct,
where v is the speed at time t, vi is the initial speed, and c is
a constant. At t ! 20.0 s, the speed is 5.00 m/s. (a) Find the
constant c. (b) What is the speed at t ! 40.0 s? (c) Differen-
tiate the expression for v(t) and thus show that the acceler-
ation of the boat is proportional to the speed at any time.

40. Consider an object on which the net force is a resistive force
proportional to the square of its speed. For example, as-
sume that the resistive force acting on a speed skater is
f ! ' kmv2, where k is a constant and m is the skater’s mass.
The skater crosses the finish line of a straight-line race with

39.
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speed v0 and then slows down by coasting on his skates.
Show that the skater’s speed at any time t after crossing the
finish line is v(t) ! v0/(1 ( ktv0). This problem also pro-
vides the background for the two following problems.

41. (a) Use the result of Problem 40 to find the position x as a
function of time for an object of mass m, located at x ! 0
and moving with velocity v0 î at time t ! 0 and thereafter
experiencing a net force ' kmv2 î. (b) Find the object’s
velocity as a function of position.

42. At major league baseball games it is commonplace to flash
on the scoreboard a speed for each pitch. This speed is de-
termined with a radar gun aimed by an operator posi-
tioned behind home plate. The gun uses the Doppler shift
of microwaves reflected from the baseball, as we will study
in Chapter 39. The gun determines the speed at some par-
ticular point on the baseball’s path, depending on when
the operator pulls the trigger. Because the ball is subject to
a drag force due to air, it slows as it travels 18.3 m toward
the plate. Use the result of Problem 41(b) to find how
much its speed decreases. Suppose the ball leaves the
pitcher’s hand at 90.0 mi/h ! 40.2 m/s. Ignore its vertical
motion. Use data on baseballs from Example 6.13 to deter-
mine the speed of the pitch when it crosses the plate.

43. You can feel a force of air drag on your hand if you stretch
your arm out of the open window of a speeding car. [Note:
Do not endanger yourself.] What is the order of magni-
tude of this force? In your solution state the quantities you
measure or estimate and their values.

Section 6.5 Numerical Modeling in Particle
Dynamics

44. A 3.00-g leaf is dropped from a height of 2.00 m
above the ground. Assume the net downward force ex-
erted on the leaf is F ! mg ' bv, where the drag factor is
b ! 0.030 0 kg/s. (a) Calculate the terminal speed of the
leaf. (b) Use Euler’s method of numerical analysis to find
the speed and position of the leaf, as functions of time,
from the instant it is released until 99% of terminal speed
is reached. (Suggestion: Try 0t ! 0.005 s.)

A hailstone of mass 4.80 ) 10'4 kg falls through
the air and experiences a net force given by

F ! 'mg ( Cv2

where C ! 2.50 ) 10'5 kg/m. (a) Calculate the terminal
speed of the hailstone. (b) Use Euler’s method of numeri-
cal analysis to find the speed and position of the hailstone
at 0.2-s intervals, taking the initial speed to be zero. Con-
tinue the calculation until the hailstone reaches 99% of
terminal speed.

46. A 0.142-kg baseball has a terminal speed of 42.5 m/s
(95 mi/h). (a) If a baseball experiences a drag force of
magnitude R ! Cv2, what is the value of the constant C ?
(b) What is the magnitude of the drag force when the
speed of the baseball is 36.0 m/s? (c) Use a computer to
determine the motion of a baseball thrown vertically up-
ward at an initial speed of 36 m/s. What maximum height
does the ball reach? How long is it in the air? What is its
speed just before it hits the ground? 

45.

47. A 50.0-kg parachutist jumps from an airplane and falls
to Earth with a drag force proportional to the square of
the speed, R ! Cv2. Take C ! 0.200 kg/m (with the para-
chute closed) and C ! 20.0 kg/m (with the chute open).
(a) Determine the terminal speed of the parachutist in
both configurations, before and after the chute is opened.
(b) Set up a numerical analysis of the motion and com-
pute the speed and position as functions of time, assuming
the jumper begins the descent at 1 000 m above the
ground and is in free fall for 10.0 s before opening the
parachute. (Suggestion: When the parachute opens, a sud-
den large acceleration takes place; a smaller time step may
be necessary in this region.)

48. Consider a 10.0-kg projectile launched with an initial
speed of 100 m/s, at an elevation angle of 35.0°. The resis-
tive force is R ! ' bv, where b ! 10.0 kg/s. (a) Use a nu-
merical method to determine the horizontal and vertical
coordinates of the projectile as functions of time. (b) What
is the range of this projectile? (c) Determine the elevation
angle that gives the maximum range for the projectile.
(Suggestion: Adjust the elevation angle by trial and error to
find the greatest range.)

49. A professional golfer hits her 5-iron 155 m (170 yd). A
46.0-g golf ball experiences a drag force of magnitude
R ! Cv2, and has a terminal speed of 44.0 m/s. (a) Calcu-
late the drag constant C for the golf ball. (b) Use a numer-
ical method to calculate the trajectory of this shot. If the
initial velocity of the ball makes an angle of 31.0° (the loft
angle) with the horizontal, what initial speed must the ball
have to reach the 155-m distance? (c) If this same golfer
hits her 9-iron (47.0° loft) a distance of 119 m, what is the
initial speed of the ball in this case? Discuss the differences
in trajectories between the two shots. 

Additional Problems

50. In a home laundry dryer, a cylindrical tub containing wet
clothes is rotated steadily about a horizontal axis, as shown
in Figure P6.50. So that the clothes will dry uniformly, they
are made to tumble. The rate of rotation of the smooth-
walled tub is chosen so that a small piece of cloth will lose
contact with the tub when the cloth is at an angle of 68.0°

68.0°

Figure P6.50



59. The pilot of an airplane executes a constant-speed loop-the-
loop maneuver in a vertical circle. The speed of the airplane
is 300 mi/h, and the radius of the circle is 1 200 ft. (a) What
is the pilot’s apparent weight at the lowest point if his true
weight is 160 lb? (b) What is his apparent weight at the
highest point? (c) What If? Describe how the pilot could ex-
perience weightlessness if both the radius and the speed can
be varied. (Note: His apparent weight is equal to the magni-
tude of the force exerted by the seat on his body.)

60. A penny of mass 3.10 g rests on a small 20.0-g block sup-
ported by a spinning disk (Fig. P6.60). The coefficients of
friction between block and disk are 0.750 (static) and

above the horizontal. If the radius of the tub is 0.330 m,
what rate of revolution is needed?

51. We will study the most important work of Nobel laureate
Arthur Compton in Chapter 40. Disturbed by speeding
cars outside the physics building at Washington University
in St. Louis, Compton designed a speed bump and had it
installed. Suppose that a 1 800-kg car passes over a bump
in a roadway that follows the arc of a circle of radius
20.4 m as in Figure P6.51. (a) What force does the road ex-
ert on the car as the car passes the highest point of the
bump if the car travels at 30.0 km/h? (b) What If? What is
the maximum speed the car can have as it passes this high-
est point without losing contact with the road? 

52. A car of mass m passes over a bump in a road that follows
the arc of a circle of radius R as in Figure P6.51. (a) What
force does the road exert on the car as the car passes the
highest point of the bump if the car travels at a speed v?
(b) What If? What is the maximum speed the car can have
as it passes this highest point without losing contact with
the road?

53. Interpret the graph in Figure 6.18(b). Proceed as follows:
(a) Find the slope of the straight line, including its units.
(b) From Equation 6.6, , identify the theoreti-
cal slope of a graph of resistive force versus squared speed.
(c) Set the experimental and theoretical slopes equal to
each other and proceed to calculate the drag coefficient of
the filters. Use the value for the density of air listed on the
book’s endpapers. Model the cross-sectional area of the fil-
ters as that of a circle of radius 10.5 cm. (d) Arbitrarily
choose the eighth data point on the graph and find its ver-
tical separation from the line of best fit. Express this scat-
ter as a percentage. (e) In a short paragraph state what the
graph demonstrates and compare it to the theoretical pre-
diction. You will need to make reference to the quantities
plotted on the axes, to the shape of the graph line, to the
data points, and to the results of parts (c) and (d).

54. A student builds and calibrates an accelerometer, which
she uses to determine the speed of her car around a cer-
tain unbanked highway curve. The accelerometer is a
plumb bob with a protractor that she attaches to the roof
of her car. A friend riding in the car with her observes that
the plumb bob hangs at an angle of 15.0° from the vertical
when the car has a speed of 23.0 m/s. (a) What is the cen-
tripetal acceleration of the car rounding the curve?
(b) What is the radius of the curve? (c) What is the speed
of the car if the plumb bob deflection is 9.00° while round-
ing the same curve? 

55. Suppose the boxcar of Figure 6.13 is moving with constant
acceleration a up a hill that makes an angle 1 with the

R ! 1
2 
D-Av 

2

horizontal. If the pendulum makes a constant angle " with
the perpendicular to the ceiling, what is a?

56. (a) A luggage carousel at an airport has the form of a sec-
tion of a large cone, steadily rotating about its vertical axis.
Its metallic surface slopes downward toward the outside,
making an angle of 20.0° with the horizontal. A piece of
luggage having mass 30.0 kg is placed on the carousel, 
7.46 m from the axis of rotation. The travel bag goes
around once in 38.0 s. Calculate the force of static friction
between the bag and the carousel. (b) The drive motor is
shifted to turn the carousel at a higher constant rate of
rotation, and the piece of luggage is bumped to another
position, 7.94 m from the axis of rotation. Now going
around once in every 34.0 s, the bag is on the verge of slip-
ping. Calculate the coefficient of static friction between
the bag and the carousel.

Because the Earth rotates about its axis, a point on
the equator experiences a centripetal acceleration of
0.033 7 m/s2, while a point at the poles experiences no
centripetal acceleration. (a) Show that at the equator the
gravitational force on an object must exceed the normal
force required to support the object. That is, show that the
object’s true weight exceeds its apparent weight. (b) What
is the apparent weight at the equator and at the poles of a
person having a mass of 75.0 kg? (Assume the Earth is a
uniform sphere and take g ! 9.800 m/s2.)

58. An air puck of mass m1 is tied to a string and allowed to re-
volve in a circle of radius R on a frictionless horizontal
table. The other end of the string passes through a hole in
the center of the table, and a counterweight of mass m2 is
tied to it (Fig. P6.58). The suspended object remains in
equilibrium while the puck on the tabletop revolves. What
is (a) the tension in the string? (b) the radial force acting
on the puck? (c) the speed of the puck?

57.

Problems 177

m1
R

m2

Figure P6.58

v

Figure P6.51 Problems 51 and 52.
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Figure P6.65

(a) Find the speed of a point on the rim of the wheel in
terms of the acceleration due to gravity and the radius R of
the wheel. (b) If the mass of the putty is m, what is the
magnitude of the force that held it to the wheel?

An amusement park ride consists of a large vertical cylin-
der that spins about its axis fast enough such that any per-
son inside is held up against the wall when the floor drops
away (Fig. P6.65). The coefficient of static friction between
person and wall is #s , and the radius of the cylinder is R.
(a) Show that the maximum period of revolution neces-
sary to keep the person from falling is T ! (4/2R#s/g)1/2.
(b) Obtain a numerical value for T if R ! 4.00 m and
#s ! 0.400. How many revolutions per minute does the
cylinder make?

65.

θ

8.00 m

2.50 m

Figure P6.63

Block

Disk Penny

12.0 cm

Figure P6.60

Figure P6.61
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0.640 (kinetic) while those for the penny and block are
0.520 (static) and 0.450 (kinetic). What is the maximum
rate of rotation in revolutions per minute that the disk can
have, without the block or penny sliding on the disk?

61. Figure P6.61 shows a Ferris wheel that rotates four times
each minute. It carries each car around a circle of diame-
ter 18.0 m. (a) What is the centripetal acceleration of a
rider? What force does the seat exert on a 40.0-kg rider
(b) at the lowest point of the ride and (c) at the highest
point of the ride? (d) What force (magnitude and direc-
tion) does the seat exert on a rider when the rider is
halfway between top and bottom?

62. A space station, in the form of a wheel 120 m in diameter,
rotates to provide an “artificial gravity” of 3.00 m/s2 for
persons who walk around on the inner wall of the outer
rim. Find the rate of rotation of the wheel (in revolutions
per minute) that will produce this effect.

63. An amusement park ride consists of a rotating circular
platform 8.00 m in diameter from which 10.0-kg seats
are suspended at the end of 2.50-m massless chains
(Fig. P6.63). When the system rotates, the chains make an
angle " ! 28.0° with the vertical. (a) What is the speed of
each seat? (b) Draw a free-body diagram of a 40.0-kg child
riding in a seat and find the tension in the chain.

64. A piece of putty is initially located at point A on the rim of
a grinding wheel rotating about a horizontal axis. The
putty is dislodged from point A when the diameter
through A is horizontal. It then rises vertically and returns
to A at the instant the wheel completes one revolution.
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66. An example of the Coriolis effect. Suppose air resistance is negli-
gible for a golf ball. A golfer tees off from a location
precisely at 1i ! 35.0° north latitude. He hits the ball due
south, with range 285 m. The ball’s initial velocity is at 48.0°
above the horizontal. (a) For how long is the ball in flight?
The cup is due south of the golfer’s location, and he would
have a hole-in-one if the Earth were not rotating. The
Earth’s rotation makes the tee move in a circle of ra-
dius RE cos 1i ! (6.37 ) 106 m) cos 35.0°, as shown in Fig-
ure P6.66. The tee completes one revolution each day. 
(b) Find the eastward speed of the tee, relative to the stars.
The hole is also moving east, but it is 285 m farther south,
and thus at a slightly lower latitude 1f . Because the hole
moves in a slightly larger circle, its speed must be greater
than that of the tee. (c) By how much does the hole’s speed
exceed that of the tee? During the time the ball is in flight,
it moves upward and downward as well as southward with
the projectile motion you studied in Chapter 4, but it also
moves eastward with the speed you found in part (b). The
hole moves to the east at a faster speed, however, pulling
ahead of the ball with the relative speed you found in part
(c). (d) How far to the west of the hole does the ball land?

67. A car rounds a banked curve as in Figure 6.6. The radius
of curvature of the road is R, the banking angle is ", and
the coefficient of static friction is #s. (a) Determine the
range of speeds the car can have without slipping up or
down the road. (b) Find the minimum value for #s such
that the minimum speed is zero. (c) What is the range of
speeds possible if R ! 100 m, " ! 10.0°, and #s ! 0.100
(slippery conditions)?

68. A single bead can slide with negligible friction on a wire
that is bent into a circular loop of radius 15.0 cm, as in
Figure P6.68. The circle is always in a vertical plane and ro-
tates steadily about its vertical diameter with (a) a period
of 0.450 s. The position of the bead is described by the an-
gle " that the radial line, from the center of the loop to the
bead, makes with the vertical. At what angle up from the
bottom of the circle can the bead stay motionless relative

to the turning circle? (b) What If? Repeat the problem if
the period of the circle’s rotation is 0.850 s.

69. The expression F ! arv ( br 2v 2 gives the magnitude of the
resistive force (in newtons) exerted on a sphere of radius r
(in meters) by a stream of air moving at speed v (in meters
per second), where a and b are constants with appropriate
SI units. Their numerical values are a ! 3.10 ) 10' 4 and 
b ! 0.870. Using this expression, find the terminal speed
for water droplets falling under their own weight in air, tak-
ing the following values for the drop radii: (a) 10.0 #m,
(b) 100 #m, (c) 1.00 mm. Note that for (a) and (c) you
can obtain accurate answers without solving a quadratic
equation, by considering which of the two contributions
to the air resistance is dominant and ignoring the lesser
contribution.

70. A 9.00-kg object starting from rest falls through a viscous
medium and experiences a resistive force R ! ' bv, where
v is the velocity of the object. If the object reaches one-half
its terminal speed in 5.54 s, (a) determine the terminal
speed. (b) At what time is the speed of the object three-
fourths the terminal speed? (c) How far has the object
traveled in the first 5.54 s of motion?

A model airplane of mass 0.750 kg flies in a horizontal
circle at the end of a 60.0-m control wire, with a speed of
35.0 m/s. Compute the tension in the wire if it makes a
constant angle of 20.0° with the horizontal. The forces
exerted on the airplane are the pull of the control wire,
the gravitational force, and aerodynamic lift, which acts at
20.0° inward from the vertical as shown in Figure P6.71.

71.

φi

RE cos φφi

Golf ball
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Figure P6.66

θ

Figure P6.68
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Figure P6.71
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72. Members of a skydiving club were given the following
data to use in planning their jumps. In the table, d is the
distance fallen from rest by a sky diver in a “free-fall stable
spread position,” versus the time of fall t. (a) Convert the
distances in feet into meters. (b) Graph d (in meters)
versus t. (c) Determine the value of the terminal speed vT
by finding the slope of the straight portion of the curve.
Use a least-squares fit to determine this slope.

t (s) d (ft) t (s) d (ft)

1 16 11 1 309
2 62 12 1 483
3 138 13 1 657
4 242 14 1 831
5 366 15 2 005
6 504 16 2 179
7 652 17 2 353
8 808 18 2 527
9 971 19 2 701

10 1 138 20 2 875

73. If a single constant force acts on an object that moves on a
straight line, the object’s velocity is a linear function of
time. The equation v ! v i ( at gives its velocity v as a func-
tion of time, where a is its constant acceleration. What if
velocity is instead a linear function of position? Assume
that as a particular object moves through a resistive
medium, its speed decreases as described by the equation
v ! vi ' kx, where k is a constant coefficient and x is the
position of the object. Find the law describing the total
force acting on this object.

Answers to Quick Quizzes
6.1 (b), (d). The centripetal acceleration is always toward the

center of the circular path.

6.2 (a), (d). The normal force is always perpendicular to the
surface that applies the force. Because your car maintains
its orientation at all points on the ride, the normal force is
always upward.

6.3 (a). If the car is moving in a circular path, it must have
centripetal acceleration given by Equation 4.15.

6.4 Because the speed is constant, the only direction the
force can have is that of the centripetal acceleration.
The force is larger at # than at ! because the radius at
# is smaller. There is no force at " because the wire is
straight.

6.5 In addition to the forces in the centripetal direction in
Quick Quiz 6.4, there are now tangential forces to provide
the tangential acceleration. The tangential force is the
same at all three points because the tangential accelera-
tion is constant.

6.6 (c). The only forces acting on the passenger are the con-
tact force with the door and the friction force from the
seat. Both of these are real forces and both act to the left
in Figure 6.11. Fictitious forces should never be drawn in a
force diagram.

6.7 (a). The basketball, having a larger cross-sectional area,
will have a larger force due to air resistance than the base-
ball. This will result in a smaller net force in the downward
direction and a smaller downward acceleration.
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Chapter 7

Energy and Energy Transfer

! On a wind farm, the moving air does work on the blades of the windmills, causing the
blades and the rotor of an electrical generator to rotate. Energy is transferred out of the sys-
tem of the windmill by means of electricity. (Billy Hustace/Getty Images)
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The concept of energy is one of the most important topics in science and engineer-
ing. In everyday life, we think of energy in terms of fuel for transportation and heating,
electricity for lights and appliances, and foods for consumption. However, these ideas
do not really define energy. They merely tell us that fuels are needed to do a job and
that those fuels provide us with something we call energy.

The definitions of quantities such as position, velocity, acceleration, and force and
associated principles such as Newton’s second law have allowed us to solve a variety of
problems. Some problems that could theoretically be solved with Newton’s laws, how-
ever, are very difficult in practice. These problems can be made much simpler with a
different approach. In this and the following chapters, we will investigate this new ap-
proach, which will include definitions of quantities that may not be familiar to you.
Other quantities may sound familiar, but they may have more specific meanings in
physics than in everyday life. We begin this discussion by exploring the notion of
energy.

Energy is present in the Universe in various forms. Every physical process that oc-
curs in the Universe involves energy and energy transfers or transformations. Unfortu-
nately, despite its extreme importance, energy cannot be easily defined. The variables
in previous chapters were relatively concrete; we have everyday experience with veloci-
ties and forces, for example. The notion of energy is more abstract, although we do
have experiences with energy, such as running out of gasoline, or losing our electrical
service if we forget to pay the utility bill.

The concept of energy can be applied to the dynamics of a mechanical system
without resorting to Newton’s laws. This “energy approach” to describing motion is
especially useful when the force acting on a particle is not constant; in such a case,
the acceleration is not constant, and we cannot apply the constant acceleration
equations that were developed in Chapter 2. Particles in nature are often subject
to forces that vary with the particles’ positions. These forces include gravita-
tional forces and the force exerted on an object attached to a spring. We shall
describe techniques for treating such situations with the help of an important con-
cept called conservation of energy. This approach extends well beyond physics, and
can be applied to biological organisms, technological systems, and engineering
situations.

Our problem-solving techniques presented in earlier chapters were based on the
motion of a particle or an object that could be modeled as a particle. This was called
the particle model. We begin our new approach by focusing our attention on a system and
developing techniques to be used in a system model.

7.1 Systems and Environments

In the system model mentioned above, we focus our attention on a small portion of the
Universe—the system—and ignore details of the rest of the Universe outside of the
system. A critical skill in applying the system model to problems is identifying the system.
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A valid system may

• be a single object or particle

• be a collection of objects or particles

• be a region of space (such as the interior of an automobile engine combustion
cylinder)

• vary in size and shape (such as a rubber ball, which deforms upon striking a
wall)

Identifying the need for a system approach to solving a problem (as opposed to a
particle approach) is part of the “categorize” step in the General Problem-Solving
Strategy outlined in Chapter 2. Identifying the particular system and its nature is part
of the “analyze” step.

No matter what the particular system is in a given problem, there is a system
boundary, an imaginary surface (not necessarily coinciding with a physical surface)
that divides the Universe into the system and the environment surrounding the
system.

As an example, imagine a force applied to an object in empty space. We can define
the object as the system. The force applied to it is an influence on the system from the
environment that acts across the system boundary. We will see how to analyze this situa-
tion from a system approach in a subsequent section of this chapter.

Another example is seen in Example 5.10 (page 130). Here the system can be de-
fined as the combination of the ball, the cube, and the string. The influence from the
environment includes the gravitational forces on the ball and the cube, the normal
and friction forces on the cube, and the force exerted by the pulley on the string. The
forces exerted by the string on the ball and the cube are internal to the system and,
therefore, are not included as an influence from the environment.

We shall find that there are a number of mechanisms by which a system can be in-
fluenced by its environment. The first of these that we shall investigate is work.

7.2 Work Done by a Constant Force

Almost all the terms we have used thus far—velocity, acceleration, force, and so on—
convey a similar meaning in physics as they do in everyday life. Now, however, we en-
counter a term whose meaning in physics is distinctly different from its everyday mean-
ing—work.

To understand what work means to the physicist, consider the situation illus-
trated in Figure 7.1. A force is applied to a chalkboard eraser, and the eraser slides

(a) (b) (c)

Figure 7.1 An eraser being pushed along a chalkboard tray.

! PITFALL PREVENTION
7.1 Identify the System
The most important step to take
in solving a problem using the
energy approach is to identify the
appropriate system of interest.
Make sure this is the first step you
take in solving a problem.
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along the tray. If we want to know how effective the force is in moving the eraser, we
must consider not only the magnitude of the force but also its direction. Assuming
that the magnitude of the applied force is the same in all three photographs, the
push applied in Figure 7.1b does more to move the eraser than the push in Figure
7.1a. On the other hand, Figure 7.1c shows a situation in which the applied force
does not move the eraser at all, regardless of how hard it is pushed. (Unless, of
course, we apply a force so great that we break the chalkboard tray.) So, in analyzing
forces to determine the work they do, we must consider the vector nature of forces.
We must also know how far the eraser moves along the tray if we want to determine
the work associated with that displacement. Moving the eraser 3 m requires more
work than moving it 2 cm.

Let us examine the situation in Figure 7.2, where an object undergoes a displace-
ment along a straight line while acted on by a constant force F that makes an angle !
with the direction of the displacement.

θ

∆r

F

F cos θθ

Figure 7.2 If an object undergoes
a displacement "r under the action
of a constant force F, the work
done by the force is F "r cos !. 

The weightlifter does no work on the weights as he holds them on his shoulders. (If he
could rest the bar on his shoulders and lock his knees, he would be able to support the
weights for quite some time.) Did he do any work when he raised the weights to this
height?
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The work W done on a system by an agent exerting a constant force on the system is
the product of the magnitude F of the force, the magnitude "r of the displacement
of the point of application of the force, and cos !, where ! is the angle between the
force and displacement vectors:

(7.1)W  !  F  "r  cos !

As an example of the distinction between this definition of work and our everyday
understanding of the word, consider holding a heavy chair at arm’s length for 3 min.
At the end of this time interval, your tired arms may lead you to think that you have
done a considerable amount of work on the chair. According to our definition, how-
ever, you have done no work on it whatsoever.1 You exert a force to support the chair,
but you do not move it. A force does no work on an object if the force does not move
through a displacement. This can be seen by noting that if "r # 0, Equation 7.1 gives
W # 0—the situation depicted in Figure 7.1c.

Also note from Equation 7.1 that the work done by a force on a moving object is
zero when the force applied is perpendicular to the displacement of its point of

Work done by a constant force

! PITFALL PREVENTION
7.2 What is being

Displaced?
The displacement in Equation 7.1
is that of the point of application of
the force.  If the force is applied to
a particle or a non-deformable,
non-rotating system, this displace-
ment is the same as the displace-
ment of the particle or system.
For deformable systems, however,
these two displacements are often
not the same.

1 Actually, you do work while holding the chair at arm’s length because your muscles are continu-
ously contracting and relaxing; this means that they are exerting internal forces on your arm. Thus,
work is being done by your body—but internally on itself rather than on the chair.

! PITFALL PREVENTION
7.3 Work is Done by . . . 

on . . .
Not only must you identify the
system, you must also identify
the interaction of the system with
the environment. When dis-
cussing work, always use the
phrase, “the work done by . . .
on . . . ” After “by,” insert the
part of the environment that is
interacting directly with the sys-
tem. After “on,” insert the system.
For example, “the work done by
the hammer on the nail” identi-
fies the nail as the system and the
force from the hammer repre-
sents the interaction with the en-
vironment. This is similar to our
use in Chapter 5 of “the force ex-
erted by . . . on . . .”
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application. That is, if ! # 90°, then W # 0 because cos 90° # 0. For example, in
Figure 7.3, the work done by the normal force on the object and the work done by
the gravitational force on the object are both zero because both forces are perpen-
dicular to the displacement and have zero components along an axis in the
direction of "r.

The sign of the work also depends on the direction of F relative to "r. The work
done by the applied force is positive when the projection of F onto "r is in the same
direction as the displacement. For example, when an object is lifted, the work done
by the applied force is positive because the direction of that force is upward, in the
same direction as the displacement of its point of application. When the projection
of F onto "r is in the direction opposite the displacement, W is negative. For exam-
ple, as an object is lifted, the work done by the gravitational force on the object is
negative. The factor cos ! in the definition of W (Eq. 7.1) automatically takes care
of the sign.

If an applied force F is in the same direction as the displacement "r, then ! # 0
and cos 0 # 1. In this case, Equation 7.1 gives

Work is a scalar quantity, and its units are force multiplied by length. Therefore,
the SI unit of work is the newton ! meter (N · m). This combination of units is used so
frequently that it has been given a name of its own: the joule ( J).

An important consideration for a system approach to problems is to note that work
is an energy transfer. If W is the work done on a system and W is positive, energy is
transferred to the system; if W is negative, energy is transferred from the system. Thus, if
a system interacts with its environment, this interaction can be described as a transfer
of energy across the system boundary. This will result in a change in the energy stored
in the system. We will learn about the first type of energy storage in Section 7.5, after
we investigate more aspects of work.

W # F  "r

Quick Quiz 7.1 The gravitational force exerted by the Sun on the Earth
holds the Earth in an orbit around the Sun. Let us assume that the orbit is perfectly cir-
cular. The work done by this gravitational force during a short time interval in which
the Earth moves through a displacement in its orbital path is (a) zero (b) positive
(c) negative (d) impossible to determine.

Quick Quiz 7.2 Figure 7.4 shows four situations in which a force is applied to
an object. In all four cases, the force has the same magnitude, and the displacement of
the object is to the right and of the same magnitude. Rank the situations in order of
the work done by the force on the object, from most positive to most negative.

Figure 7.4 (Quick Quiz 7.2)

F

(c) (d)(b)

F

(a)

FF

! PITFALL PREVENTION
7.4 Cause of the

Displacement
We can calculate the work done
by a force on an object, but that
force is not necessarily the cause
of the object’s displacement. For
example, if you lift an object,
work is done by the gravitational
force, although gravity is not the
cause of the object moving 
upward!

F

θ

n

∆ r

mg

Figure 7.3 When an object is dis-
placed on a frictionless, horizontal
surface, the normal force n and the
gravitational force mg do no work
on the object. In the situation
shown here, F is the only force do-
ing work on the object. 
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7.3 The Scalar Product of Two Vectors

Because of the way the force and displacement vectors are combined in Equation 7.1,
it is helpful to use a convenient mathematical tool called the scalar product of two
vectors. We write this scalar product of vectors A and B as A ! B. (Because of the dot
symbol, the scalar product is often called the dot product.)

In general, the scalar product of any two vectors A and B is a scalar quantity equal
to the product of the magnitudes of the two vectors and the cosine of the angle ! be-
tween them:

(7.2)

Note that A and B need not have the same units, as is the case with any multiplication.
Comparing this definition to Equation 7.1, we see that we can express Equation 7.1

as a scalar product:

(7.3)

In other words, F ! "r (read “F dot "r”) is a shorthand notation for F "r cos !.
Before continuing with our discussion of work, let us investigate some properties of

the dot product. Figure 7.6 shows two vectors A and B and the angle ! between them
that is used in the definition of the dot product. In Figure 7.6, B cos ! is the projection
of B onto A. Therefore, Equation 7.2 means that A ! B is the product of the magnitude
of A and the projection of B onto A.2

W # F  "r  cos ! # F ! "r

A$B ! AB  cos !

Figure 7.5 (Example 7.1) (a) A vacuum cleaner being pulled at
an angle of 30.0° from the horizontal. (b) Free-body diagram of
the forces acting on the vacuum cleaner. 

Example 7.1 Mr. Clean

A man cleaning a floor pulls a vacuum cleaner with a force
of magnitude F # 50.0 N at an angle of 30.0° with the hori-
zontal (Fig. 7.5a). Calculate the work done by the force on
the vacuum cleaner as the vacuum cleaner is displaced
3.00 m to the right.

Solution Figure 7.5a helps conceptualize the situation. We
are given a force, a displacement, and the angle between the
two vectors, so we can categorize this as a simple problem
that will need minimal analysis. To analyze the situation, we
identify the vacuum cleaner as the system and draw a free-
body diagram as shown in Figure 7.5b. Using the definition
of work (Eq. 7.1),

To finalize this problem, notice in this situation that the
normal force n and the gravitational Fg # mg do no work
on the vacuum cleaner because these forces are perpendicu-
lar to its displacement.

130 J# 130 N$m #

W #  F  "r cos ! # (50.0 N)(3.00 m)(cos 30.0%)

mg

30.0°

50.0 N

(a)

n

50.0 N

30.0°

n

mg

x

y

(b)

B

A

B cos θ

θ

θ

θA . B  =  AB cos

Figure 7.6 The scalar product A ! B
equals the magnitude of A multi-
plied by B cos !, which is the pro-
jection of B onto A.

Scalar product of any two
vectors A and B

2 This is equivalent to stating that A ! B equals the product of the magnitude of B and the pro-
jection of A onto B.
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From the right-hand side of Equation 7.2 we also see that the scalar product is
commutative.3 That is,

Finally, the scalar product obeys the distributive law of multiplication, so that

The dot product is simple to evaluate from Equation 7.2 when A is either per-
pendicular or parallel to B. If A is perpendicular to B (! # 90°), then A ! B # 0.
(The equality A ! B # 0 also holds in the more trivial case in which either A or B is
zero.) If vector A is parallel to vector B and the two point in the same direction
(! # 0), then A ! B # AB. If vector A is parallel to vector B but the two point in op-
posite directions (! # 180°), then A ! B # & AB. The scalar product is negative
when 90° ' ! ( 180°.

The unit vectors î , ĵ, and k̂, which were defined in Chapter 3, lie in the positive x,
y, and z directions, respectively, of a right-handed coordinate system. Therefore, it fol-
lows from the definition of A ! B that the scalar products of these unit vectors are

(7.4)

(7.5)

Equations 3.18 and 3.19 state that two vectors A and B can be expressed in compo-
nent vector form as

Using the information given in Equations 7.4 and 7.5 shows that the scalar product of
A and B reduces to

(7.6)

(Details of the derivation are left for you in Problem 6.) In the special case in which
A # B, we see that

A ! A # Ax
2 ) Ay

2 ) Az
2 # A2

A ! B # AxBx ) AyBy ) AzBz

B # Bx î ) By ĵ ) Bz k̂

A # Ax î ) Ay ĵ ) Az k̂

î ! ĵ " î ! k̂ " ĵ ! k̂ " 0

î ! î " ĵ ! ĵ " k̂ ! k̂ " 1

A ! (B ) C) # A ! B ) A ! C

A ! B # B ! A

Quick Quiz 7.3 Which of the following statements is true about the relation-
ship between A ! B and (& A) ! (& B)? (a) A ! B # &[(& A) ! (& B)]; (b) If A ! B #

AB cos !, then (& A) ! (& B) # AB cos (! ) 180°); (c) Both (a) and (b) are true.
(d) Neither (a) nor (b) is true.

Quick Quiz 7.4 Which of the following statements is true about the relation-
ship between the dot product of two vectors and the product of the magnitudes of the
vectors? (a) A ! B is larger than AB; (b) A ! B is smaller than AB; (c) A ! B could be larger
or smaller than AB, depending on the angle between the vectors; (d) A ! B could be
equal to AB.

Dot products of unit vectors

! PITFALL PREVENTION
7.5 Work is a Scalar
Although Equation 7.3 defines
the work in terms of two vectors,
work is a scalar—there is no direc-
tion associated with it. All types of
energy and energy transfer are
scalars. This is a major advantage
of the energy approach—we
don’t need vector calculations!

3 This may seem obvious, but in Chapter 11 you will see another way of combining vectors that
proves useful in physics and is not commutative.
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7.4 Work Done by a Varying Force

Consider a particle being displaced along the x axis under the action of a force that
varies with position. The particle is displaced in the direction of increasing x from
x # xi to x # xf . In such a situation, we cannot use W # F "r cos ! to calculate the work
done by the force because this relationship applies only when F is constant in magni-
tude and direction. However, if we imagine that the particle undergoes a very small dis-
placement "x, shown in Figure 7.7a, the x component Fx of the force is approximately
constant over this small interval; for this small displacement, we can approximate the
work done by the force as

This is just the area of the shaded rectangle in Figure 7.7a. If we imagine that the Fx
versus x curve is divided into a large number of such intervals, the total work done for
the displacement from xi to xf is approximately equal to the sum of a large number of
such terms:

W " #
xf

xi

 Fx "x

W " Fx  "x

Example 7.2 The Scalar Product

The vectors A and B are given by A # 2 î ) 3 ĵ and B #
& î ) 2 ĵ.

(A) Determine the scalar product A ! B.

Solution Substituting the specific vector expressions for A
and B, we find,

where we have used the facts that î ! î # ĵ ! ĵ # 1 and
î ! ĵ # ĵ ! î # 0. The same result is obtained when we use
Equation 7.6 directly, where Ax # 2, Ay # 3, Bx # &1, and
By # 2.

4 # &2 ) 6 #

 # &2(1) ) 4(0) & 3(0) ) 6(1)
 # & 2 î ! î ) 2î ! 2 ĵ & 3 ĵ ! î ) 3 ĵ ! 2 ĵ

A ! B # (2 î ) 3 ĵ)$(& î ) 2 ĵ)

(B) Find the angle ! between A and B.

Solution The magnitudes of A and B are

Using Equation 7.2 and the result from part (a) we find
that

60.2%! # cos&1 4
8.06

#

cos ! #
A ! B
AB

#
4

√13√5
#

4

√65

B # √Bx
2 ) By

2 # √(&1)2 ) (2)2 # √5

A # √Ax
2 ) Ay

2 # √(2)2 ) (3)2 # √13

Example 7.3 Work Done by a Constant Force

(B) Calculate the work done by F.

Solution Substituting the expressions for F and "r into
Equation 7.3 and using Equations 7.4 and 7.5, we obtain

16  J # [10 ) 0 ) 0 ) 6] N$m #

 # (5.0 î $2.0 î ) 5.0 î $3.0 ĵ ) 2.0 ĵ $2.0 î ) 2.0 ĵ $3.0 ĵ)N$m

W # F$"r # [(5.0î ) 2.0ĵ )N]$[(2.0 î ) 3.0ĵ ) m]

A particle moving in the xy plane undergoes a displacement 
"r # (2.0 î ) 3.0 ĵ) m as a constant force F # (5.0 î ) 2.0 ĵ) N
acts on the particle.

(A) Calculate the magnitudes of the displacement and the
force.

Solution We use the Pythagorean theorem:

5.4 NF # √Fx
2 ) Fy

2 # √(5.0)2 ) (2.0)2 #

3.6 m"r # √("x)2 ) ("y)2 # √(2.0)2 ) (3.0)2 #
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Example 7.4 Calculating Total Work Done from a Graph

A force acting on a particle varies with x, as shown in
Figure 7.8. Calculate the work done by the force as the parti-
cle moves from x # 0 to x # 6.0 m.

Solution The work done by the force is equal to the area
under the curve from xA # 0 to xC # 6.0 m. This area is
equal to the area of the rectangular section from ! to "
plus the area of the triangular section from " to #. The
area of the rectangle is (5.0 N)(4.0 m) # 20 J, and the area
of the triangle is . Therefore, the to-

tal work done by the force on the particle is 25 J.

1
2(5.0 N)(2.0 m) # 5.0  J

Example 7.5 Work Done by the Sun on a Probe

Graphical Solution The negative sign in the equation for
the force indicates that the probe is attracted to the Sun. 
Because the probe is moving away from the Sun, we expect 
to obtain a negative value for the work done on it. A spread-
sheet or other numerical means can be used to generate a
graph like that in Figure 7.9b. Each small square of the grid 
corresponds to an area (0.05 N)(0.1 * 1011 m) # 5 * 108 J. 
The work done is equal to the shaded area in Figure 7.9b. Be-
cause there are approximately 60 squares shaded, the total

The interplanetary probe shown in Figure 7.9a is attracted
to the Sun by a force given by

in SI units, where x is the Sun-probe separation distance.
Graphically and analytically determine how much work is
done by the Sun on the probe as the probe–Sun separation
changes from 1.5 * 1011 m to 2.3 * 1011 m.

F #  &
1.3 * 1022

x 2

1 2 3 4 5 6
x(m)0

5

Fx(N)

#

! "

Figure 7.8 (Example 7.4) The force acting on a particle is con-
stant for the first 4.0 m of motion and then decreases linearly
with x from xB # 4.0 m to xC # 6.0 m. The net work done by
this force is the area under the curve.

If the size of the displacements is allowed to approach zero, the number of terms in
the sum increases without limit but the value of the sum approaches a definite value
equal to the area bounded by the Fx curve and the x axis:

Therefore, we can express the work done by Fx as the particle moves from xi to xf as

(7.7)

This equation reduces to Equation 7.1 when the component Fx # F cos ! is constant.
If more than one force acts on a system and the system can be modeled as a particle, the

total work done on the system is just the work done by the net force. If we express the
net force in the x direction as +Fx, then the total work, or net work, done as the particle
moves from xi to xf is

(7.8)

If the system cannot be modeled as a particle (for example, if the system consists of
multiple particles that can move with respect to each other), we cannot use Equation
7.8. This is because different forces on the system may move through different dis-
placements. In this case, we must evaluate the work done by each force separately and
then add the works algebraically.

#W # Wnet # $xf

xi

 %# Fx&
 

dx

W # $xf

xi

 Fx dx

lim
"x :0#

xf

xi

 Fx "x # $xf

xi

 Fxdx

(a)

Fx

Area  =  ∆A = Fx ∆x

Fx

xxfxi

∆x

(b)

Fx

xxfxi

Work

Figure 7.7 (a) The work done by
the force component Fx for the
small displacement "x is Fx "x,
which equals the area of the shaded
rectangle. The total work done for
the displacement from xi to xf is ap-
proximately equal to the sum of the
areas of all the rectangles. (b) The
work done by the component Fx of
the varying force as the particle
moves from xi to xf is exactly equal to
the area under this curve. 
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Mars’s
orbit

Earth’s orbit

Sun

(a)

0.5 1.0 1.5 2.0 2.5 3.0 x(× 1011m)
0.0

–0.1

–0.2

–0.3

–0.4

–0.5

–0.6

–0.7

–0.8

–0.9

–1.0
F(N)

(b)

Figure 7.9 (Example 7.5) (a) An interplanetary
probe moves from a position near the Earth’s or-
bit radially outward from the Sun, ending up near
the orbit of Mars. (b) Attractive force versus dis-
tance for the interplanetary probe. 

Spring force

area (which is negative because the curve is below the x axis)
is about & 3 * 1010 J. This is the work done by the Sun on
the probe.

Analytical Solution We can use Equation 7.7 to calculate
a more precise value for the work done on the probe by the
Sun. To solve this integral, we make use of the integral

with n # & 2:

# &3.0 * 1010 J

 # (&  1.3 * 1022)% &  1
2.3 * 1011 &

&  1
1.5 * 1011&

 # (&  1.3 * 1022)%x&
 
1

&  1&'
2.3*1011

1.5*1011

 # (&1.3 * 1022)$2.3*1011

1.5*1011
x&2dx

W # $2.3*1011

1.5*1011 %&1.3 * 1022

x2 & dx

$xndx #  xn)1/(n ) 1)

Work Done by a Spring

A model of a common physical system for which the force varies with position is shown
in Figure 7.10. A block on a horizontal, frictionless surface is connected to a spring. If
the spring is either stretched or compressed a small distance from its unstretched
(equilibrium) configuration, it exerts on the block a force that can be expressed as

(7.9)

where x is the position of the block relative to its equilibrium (x # 0) position and k is
a positive constant called the force constant or the spring constant of the spring. In
other words, the force required to stretch or compress a spring is proportional to the
amount of stretch or compression x. This force law for springs is known as Hooke’s
law. The value of k is a measure of the stiffness of the spring. Stiff springs have large k
values, and soft springs have small k values. As can be seen from Equation 7.9, the units
of k are N/m.

The negative sign in Equation 7.9 signifies that the force exerted by the spring is al-
ways directed opposite to the displacement from equilibrium. When x , 0 as in Figure
7.10a, so that the block is to the right of the equilibrium position, the spring force is di-
rected to the left, in the negative x direction. When x ' 0 as in Figure 7.10c, the block
is to the left of equilibrium and the spring force is directed to the right, in the positive
x direction. When x # 0 as in Figure 7.10b, the spring is unstretched and Fs # 0.

Fs # & kx
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Because the spring force always acts toward the equilibrium position (x # 0), it is
sometimes called a restoring force. If the spring is compressed until the block is at the
point & xmax and is then released, the block moves from & xmax through zero to
) xmax. If the spring is instead stretched until the block is at the point ) xmax and is
then released, the block moves from ) xmax through zero to & xmax. It then reverses
direction, returns to )xmax, and continues oscillating back and forth.

Suppose the block has been pushed to the left to a position &xmax and is then re-
leased. Let us identify the block as our system and calculate the work Ws done by the
spring force on the block as the block moves from xi # &xmax to xf # 0. Applying

(c)

(b)

(a)

x

x = 0

Fs is negative.
  x is positive.

x

x = 0

Fs = 0
 x = 0

x

x = 0
x

x

Fs is positive.
  x is negative.

Fs

x
0

kxmax

xmax Fs = –kx

(d)

Area = – kx2
max

1
2

Active Figure 7.10 The force exerted by a spring on a block varies with the block’s
position x relative to the equilibrium position x # 0. (a) When x is positive (stretched
spring), the spring force is directed to the left. (b) When x is zero (natural length of
the spring), the spring force is zero. (c) When x is negative (compressed spring), the
spring force is directed to the right. (d) Graph of Fs versus x for the block–spring
system. The work done by the spring force as the block moves from &xmax to 0 is 
the area of the shaded triangle, .1

2kx2
max

At the Active Figures
link at http://www.pse6.com,
you can observe the block’s
motion for various maximum
displacements and spring
constants.
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Equation 7.7 and assuming the block may be treated as a particle, we obtain

(7.10)

where we have used the integral with n # 1. The work done by
the spring force is positive because the force is in the same direction as the displace-
ment of the block (both are to the right). Because the block arrives at x # 0 with some
speed, it will continue moving, until it reaches a position )xmax. When we consider the
work done by the spring force as the block moves from xi # 0 to xf # xmax, we find that

because for this part of the motion the displacement is to the right and
the spring force is to the left. Therefore, the net work done by the spring force as the
block moves from xi # &xmax to xf # xmax is zero.

Figure 7.10d is a plot of Fs versus x. The work calculated in Equation 7.10 is the
area of the shaded triangle, corresponding to the displacement from &xmax to 0. Be-
cause the triangle has base xmax and height kxmax, its area is the work done by
the spring as given by Equation 7.10.

If the block undergoes an arbitrary displacement from x # xi to x # xf , the work
done by the spring force on the block is

(7.11)

For example, if the spring has a force constant of 80 N/m and is compressed 3.0 cm
from equilibrium, the work done by the spring force as the block moves from
xi # & 3.0 cm to its unstretched position xf # 0 is 3.6 * 10&2 J. From Equation 7.11 we
also see that the work done by the spring force is zero for any motion that ends where
it began (xi # xf). We shall make use of this important result in Chapter 8, in which we
describe the motion of this system in greater detail.

Equations 7.10 and 7.11 describe the work done by the spring on the block. Now let
us consider the work done on the spring by an external agent that stretches the spring very
slowly from xi # 0 to xf # xmax, as in Figure 7.11. We can calculate this work by noting
that at any value of the position, the applied force Fapp is equal in magnitude and opposite
in direction to the spring force Fs, so that Fapp # &(&kx) # kx. Therefore, the work done
by this applied force (the external agent) on the block–spring system is

This work is equal to the negative of the work done by the spring force for this dis-
placement.

The work done by an applied force on a block–spring system between arbitrary po-
sitions of the block is

(7.12)

Notice that this is the negative of the work done by the spring as expressed by Equa-
tion 7.11. This is consistent with the fact that the spring force and the applied force are
of equal magnitude but in opposite directions.

WFapp
# $xf

xi

Fappdx # $xf

xi

kx dx # 1
2kx 2

f & 1
2kx 2

i

WFapp
# $x max

0
Fapp dx # $x max

0
kx dx # 1

2kx 2
max

Ws # $xf

xi

(&  kx)dx # 1
2kx 2

i & 1
2kx 2

f

1
2kx 2

max,

Ws # &1
2kx 2

max

$xndx # xn)1/(n ) 1)

Ws # $xf

xi

Fsdx # $0

&x max

(&  kx)dx # 1
2 kx 2

max

xi = 0 xf = xmax

Fs Fapp

Figure 7.11 A block being pulled
from xi # 0 to xf # xmax on a fric-
tionless surface by a force Fapp. If
the process is carried out very
slowly, the applied force is equal in
magnitude and opposite in direc-
tion to the spring force at all times. 

Quick Quiz 7.5 A dart is loaded into a spring-loaded toy dart gun by pushing
the spring in by a distance d. For the next loading, the spring is compressed a distance
2d. How much work is required to load the second dart compared to that required to
load the first? (a) four times as much (b) two times as much (c) the same (d) half as
much (e) one-fourth as much.

Work done by a spring
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7.5 Kinetic Energy and the Work–Kinetic 
Energy Theorem

We have investigated work and identified it as a mechanism for transferring energy
into a system. One of the possible outcomes of doing work on a system is that the sys-
tem changes its speed. In this section, we investigate this situation and introduce our
first type of energy that a system can possess, called kinetic energy.

Consider a system consisting of a single object. Figure 7.13 shows a block of mass m
moving through a displacement directed to the right under the action of a net force 

F, also directed to the right. We know from Newton’s second law that the block
moves with an acceleration a. If the block moves through a displacement "r # "x î #
(xf & xi) î , the work done by the net force F is

(7.13)

Using Newton’s second law, we can substitute for the magnitude of the net force
+F # ma, and then perform the following chain-rule manipulations on the integrand:

#W # $xf

xi

 # Fdx

#

#

vf

ΣF
m

vi

∆ x

Figure 7.13 An object undergoing
a displacement "r # "x î and a
change in velocity under the action
of a constant net force F.#

Fs

mg

d

(c)(b)(a)

Figure 7.12 (Example 7.6) Determining the force constant k of
a spring. The elongation d is caused by the attached object,
which has a weight mg. Because the spring force balances the
gravitational force, it follows that k # mg/d.

Example 7.6 Measuring k for a Spring

A common technique used to measure the force constant of
a spring is demonstrated by the setup in Figure 7.12. The
spring is hung vertically, and an object of mass m is attached
to its lower end. Under the action of the “load” mg, the
spring stretches a distance d from its equilibrium position.

(A) If a spring is stretched 2.0 cm by a suspended object hav-
ing a mass of 0.55 kg, what is the force constant of the spring?

Solution Because the object (the system) is at rest, the up-
ward spring force balances the downward gravitational force
mg. In this case, we apply Hooke’s law to give 'Fs ' # kd # mg,
or

(B) How much work is done by the spring as it stretches
through this distance?

2.7 * 102 N/mk #
mg
d

#
(0.55 kg)(9.80 m/s2)

2.0 * 10&2 m
#

Solution Using Equation 7.11, 

What If? Suppose this measurement is made on an eleva-
tor with an upward vertical acceleration a. Will the unaware ex-
perimenter arrive at the same value of the spring constant?

Answer The force Fs in Figure 7.12 must be larger than mg
to produce an upward acceleration of the object. Because Fs
must increase in magnitude, and 'Fs ' # kd, the spring must
extend farther. The experimenter sees a larger extension for
the same hanging weight and therefore measures the spring
constant to be smaller than the value found in part (A) for
a # 0.

Newton’s second law applied to the hanging object gives

where k is the actual spring constant. Now, the experimenter
is unaware of the acceleration, so she claims that 'Fs ' #
k-d # mg where k- is the spring constant as measured by the
experimenter. Thus,

If the acceleration of the elevator is upward so that ay is posi-
tive, this result shows that the measured spring constant will
be smaller, consistent with our conceptual argument.

k- #
mg
d

#
mg

% m(g ) ay)
k &

#
g

g ) ay
k

d #
m(g ) ay)

k

kd & mg # may

# Fy # ' Fs ' & mg # may

&5.4 * 10&2  J #

Ws 
# 0 & 1

2kd2 # &1
2(2.7 * 102 N/m)(2.0 * 10&2 m)2
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(7.14)

where vi is the speed of the block when it is at x # xi and vf is its speed at xf .
This equation was generated for the specific situation of one-dimensional motion,

but it is a general result. It tells us that the work done by the net force on a particle of
mass m is equal to the difference between the initial and final values of a quantity

. The quantity represents the energy associated with the motion of the parti-
cle. This quantity is so important that it has been given a special name—kinetic
energy. Equation 7.14 states that the net work done on a particle by a net force F
acting on it equals the change in kinetic energy of the particle.

In general, the kinetic energy K of a particle of mass m moving with a speed v is de-
fined as

(7.15)

Kinetic energy is a scalar quantity and has the same units as work. For example, a
2.0 kg object moving with a speed of 4.0 m/s has a kinetic energy of 16 J. Table 7.1 lists
the kinetic energies for various objects.

It is often convenient to write Equation 7.14 in the form

(7.16)

Another way to write this is Kf # Ki ) W, which tells us that the final kinetic energy is
equal to the initial kinetic energy plus the change due to the work done.

Equation 7.16 is an important result known as the work–kinetic energy theorem:

#

#W # Kf & Ki # "K

K  !  
1
2mv2

#

1
2mv21

2mv2

# W # 1
2mvf

2 & 1
2mv 2

i

# W # $xf

xi
 madx # $xf

xi
 m 

dv
dt

 dx # $xf

xi
 m 

dv
dx

  
dx
dt

 dx # $vf

vi
 mv dv

Object Mass (kg) Speed (m/s) Kinetic Energy ( J)

Earth orbiting the Sun 5.98 * 1024 2.98 * 104 2.66 * 1033

Moon orbiting the Earth 7.35 * 1022 1.02 * 103 3.82 * 1028

Rocket moving at escape speeda 500 1.12 * 104 3.14 * 1010

Automobile at 65 mi/h 2 000 29 8.4 * 105

Running athlete 70 10 3 500
Stone dropped from 10 m 1.0 14 98
Golf ball at terminal speed 0.046 44 45
Raindrop at terminal speed 3.5 * 10&5 9.0 1.4 * 10&3

Oxygen molecule in air 5.3 * 10&26 500 6.6 * 10&21

Kinetic Energies for Various Objects

Table 7.1

a Escape speed is the minimum speed an object must reach near the Earth’s surface in order to move
infinitely far away from the Earth.

In the case in which work is done on a system and the only change in the system is
in its speed, the work done by the net force equals the change in kinetic energy of
the system.

! PITFALL PREVENTION
7.6 Conditions for the

Work–Kinetic Energy
Theorem

The work–kinetic energy theorem
is important, but limited in its ap-
plication—it is not a general prin-
ciple. There are many situations in
which other changes in the system
occur besides its speed, and there
are other interactions with the en-
vironment besides work. A more
general principle involving energy
is conservation of energy in Sec-
tion 7.6.

Kinetic energy 

Work–kinetic energy theorem

The work–kinetic energy theorem indicates that the speed of a particle will increase if
the net work done on it is positive, because the final kinetic energy will be greater than
the initial kinetic energy. The speed will decrease if the net work is negative, because the
final kinetic energy will be less than the initial kinetic energy.
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Example 7.7 A Block Pulled on a Frictionless Surface

A 6.0-kg block initially at rest is pulled to the right along a
horizontal, frictionless surface by a constant horizontal force
of 12 N. Find the speed of the block after it has moved 3.0 m.

Solution We have made a drawing of this situation in Figure
7.14. We could apply the equations of kinematics to determine
the answer, but let us practice the energy approach. The block
is the system, and there are three external forces acting on the
system. The normal force balances the gravitational force on
the block, and neither of these vertically acting forces does
work on the block because their points of application are hori-
zontally displaced. Thus, the net external force acting on the
block is the 12-N force. The work done by this force is

W # F "x # (12 N)(3.0 m) # 36  J

Using the work–kinetic energy theorem and noting that the
initial kinetic energy is zero, we obtain

What If? Suppose the magnitude of the force in this
example is doubled to F - # 2F. The 6.0-kg block accel-
erates to 3.5 m/s due to this applied force while moving
through a displacement "x-. (A) How does the displace-
ment "x- compare to the original displacement "x?
(B) How does the time interval "t- for the block to ac-
celerate from rest to 3.5 m/s compare to the original in-
terval "t?

Answer (A) If we pull harder, the block should acceler-
ate to a higher speed in a shorter distance, so we expect 
"x- ' "x. Mathematically, from the work–kinetic energy
theorem W # "K, we find

and the distance is shorter as suggested by our conceptual
argument.

"x- #
F
F -

"x #
F
2F

"x # 1
2 "x

F -"x- # "K # F"x

3.5 m/svf # √ 2W
m

# √ 2(36  J)
6.0 kg

#

W # Kf &  Ki # 1
2mv 2

f & 0

n

F

mg
∆x

vf

Figure 7.14 (Example 7.7) A block pulled to the right on a fric-
tionless surface by a constant horizontal force.

Because we have only investigated translational motion through space so far, we ar-
rived at the work–kinetic energy theorem by analyzing situations involving translational
motion. Another type of motion is rotational motion, in which an object spins about an
axis. We will study this type of motion in Chapter 10. The work–kinetic energy theorem
is also valid for systems that undergo a change in the rotational speed due to work
done on the system. The windmill in the chapter opening photograph is an example of
work causing rotational motion.

The work–kinetic energy theorem will clarify a result that we have seen earlier in this
chapter that may have seemed odd. In Section 7.4, we arrived at a result of zero net work
done when we let a spring push a block from xi # & xmax to xf # xmax . Notice that the
speed of the block is continually changing during this process, so it may seem compli-
cated to analyze this process. The quantity "K in the work–kinetic energy theorem, how-
ever, only refers to the initial and final points for the speeds—it does not depend on de-
tails of the path followed between these points. Thus, because the speed is zero at both
the initial and final points of the motion, the net work done on the block is zero. We will
see this concept of path independence often in similar approaches to problems.

Earlier, we indicated that work can be considered as a mechanism for transferring
energy into a system. Equation 7.16 is a mathematical statement of this concept. We do
work +W on a system and the result is a transfer of energy across the boundary of the
system. The result on the system, in the case of Equation 7.16, is a change "K in kinetic
energy. We will explore this idea more fully in the next section.

Quick Quiz 7.6 A dart is loaded into a spring-loaded toy dart gun by pushing
the spring in by a distance d. For the next loading, the spring is compressed a distance
2d. How much faster does the second dart leave the gun compared to the first? (a) four
times as fast (b) two times as fast (c) the same (d) half as fast (e) one-fourth as fast.

! PITFALL PREVENTION
7.7 The Work–Kinetic

Energy Theorem:
Speed, not Velocity

The work–kinetic energy theo-
rem relates work to a change in
the speed of an object, not a
change in its velocity. For exam-
ple, if an object is in uniform
circular motion, the speed is con-
stant. Even though the velocity is
changing, no work is done by the
force causing the circular motion.
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Conceptual Example 7.8 Does the Ramp Lessen the Work Required?

A man wishes to load a refrigerator onto a truck using a
ramp, as shown in Figure 7.15. He claims that less work
would be required to load the truck if the length L of the
ramp were increased. Is his statement valid?

Solution No. Suppose the refrigerator is wheeled on a dolly
up the ramp at constant speed. Thus, "K # 0. The normal
force exerted by the ramp on the refrigerator is directed at
90° to the displacement and so does no work on the refrigera-
tor. Because "K # 0, the work–kinetic energy theorem gives

The work done by the gravitational force equals the product
of the weight mg of the refrigerator, the height h through
which it is displaced, and cos 180°, or Wby gravity # &mgh.
(The negative sign arises because the downward gravitational
force is opposite the displacement.) Thus, the man must do
the same amount of work mgh on the refrigerator, regardless of
the length of the ramp. Although less force is required with a
longer ramp, that force must act over a greater distance.

Wnet # Wby man ) Wby gravity # 0

L

Figure 7.15 (Conceptual Example 7.8) A refrigerator attached to a frictionless wheeled
dolly is moved up a ramp at constant speed.

d
vi

fk

vf

Figure 7.16 A book sliding to the
right on a horizontal surface slows
down in the presence of a force of
kinetic friction acting to the left.
The initial velocity of the book is
vi , and its final velocity is vf . The
normal force and the gravitational
force are not included in the dia-
gram because they are perpendicu-
lar to the direction of motion and
therefore do not influence the
book’s speed.

(B) If we pull harder, the block should accelerate to a
higher speed in a shorter time interval, so we expect 
"t- ' "t. Mathematically, from the definition of average
velocity,

Because both the original force and the doubled force cause
the same change in velocity, the average velocity is thev

v #
"x
"t

 :  "t #
"x
v

same in both cases. Thus,

and the time interval is shorter, consistent with our concep-
tual argument.

"t - #
"x-

v
#

1
2"x

v
# 1

2 
"t

7.6 The Nonisolated System—Conservation 
of Energy

We have seen examples in which an object, modeled as a particle, is acted on by vari-
ous forces, resulting in a change in its kinetic energy. This very simple situation is the
first example of the nonisolated system—a common scenario in physics problems.
Physical problems for which this scenario is appropriate involve systems that interact
with or are influenced by their environment, causing some kind of change in the sys-
tem. If a system does not interact with its environment it is an isolated system, which
we will study in Chapter 8.

The work–kinetic energy theorem is our first example of an energy equation ap-
propriate for a nonisolated system. In the case of the work–kinetic energy theorem, the
interaction is the work done by the external force, and the quantity in the system that
changes is the kinetic energy.

In addition to kinetic energy, we now introduce a second type of energy that a sys-
tem can possess. Let us imagine the book in Figure 7.16 sliding to the right on the sur-
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face of a heavy table and slowing down due to the friction force. Suppose the surface is
the system. Then the friction force from the sliding book does work on the surface.
The force on the surface is to the right and the displacement of the point of applica-
tion of the force is to the right—the work is positive. But the surface is not moving af-
ter the book has stopped. Positive work has been done on the surface, yet there is no
increase in the surface’s kinetic energy. Is this a violation of the work–kinetic energy
theorem?

It is not really a violation, because this situation does not fit the description of the
conditions given for the work–kinetic energy theorem. Work is done on the system of
the surface, but the result of that work is not an increase in kinetic energy. From your
everyday experience with sliding over surfaces with friction, you can probably guess
that the surface will be warmer after the book slides over it. (Rub your hands together
briskly to experience this!) Thus, the work that was done on the surface has gone into
warming the surface rather than increasing its speed. We call the energy associated
with an object’s temperature its internal energy, symbolized Eint. (We will define inter-
nal energy more generally in Chapter 20.) In this case, the work done on the surface
does indeed represent energy transferred into the system, but it appears in the system
as internal energy rather than kinetic energy.

We have now seen two methods of storing energy in a system—kinetic energy, re-
lated to motion of the system, and internal energy, related to its temperature. A third
method, which we cover in Chapter 8, is potential energy. This is energy related to the
configuration of a system in which the components of the system interact by forces. For
example, when a spring is stretched, elastic potential energy is stored in the spring due to
the force of interaction between the spring coils. Other types of potential energy in-
clude gravitational and electric.

We have seen only one way to transfer energy into a system so far—work. We men-
tion below a few other ways to transfer energy into or out of a system. The details of
these processes will be studied in other sections of the book. We illustrate these in
Figure 7.17 and summarize them as follows:

Work, as we have learned in this chapter, is a method of transferring energy to a
system by applying a force to the system and causing a displacement of the point of ap-
plication of the force (Fig. 7.17a).

Mechanical waves (Chapters 16–18) are a means of transferring energy by allow-
ing a disturbance to propagate through air or another medium. This is the method by
which energy (which you detect as sound) leaves your clock radio through the loud-
speaker and enters your ears to stimulate the hearing process (Fig. 7.17b). Other ex-
amples of mechanical waves are seismic waves and ocean waves.

Heat (Chapter 20) is a mechanism of energy transfer that is driven by a tempera-
ture difference between two regions in space. One clear example is thermal conduc-
tion, a mechanism of transferring energy by microscopic collisions. For example, a
metal spoon in a cup of coffee becomes hot because fast-moving electrons and atoms
in the submerged portion of the spoon bump into slower ones in the nearby part of
the handle (Fig. 7.17c). These particles move faster because of the collisions and bump
into the next group of slow particles. Thus, the internal energy of the spoon handle
rises from energy transfer due to this bumping process.4

Matter transfer (Chapter 20) involves situations in which matter physically crosses
the boundary of a system, carrying energy with it. Examples include filling your auto-
mobile tank with gasoline (Fig. 7.17d), and carrying energy to the rooms of your home
by circulating warm air from the furnace, a process called convection.

4 The process we call heat can also proceed by convection and radiation, as well as conduction.
Convection and radiation, described in Chapter 20, overlap with other types of energy transfer in
our list of six.

! PITFALL PREVENTION
7.8 Heat is not a Form 

of Energy
The word heat is one of the most
misused words in our popular
language. In this text, heat is a
method of transferring energy, not
a form of storing energy. Thus,
phrases such as “heat content,”
“the heat of the summer,” and
“the heat escaped” all represent
uses of this word that are incon-
sistent with our physics defini-
tion. See Chapter 20. 
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Electrical Transmission (Chapters 27–28) involves energy transfer by means of
electric currents. This is how energy transfers into your hair dryer (Fig. 7.17e), stereo
system, or any other electrical device.

Electromagnetic radiation (Chapter 34) refers to electromagnetic waves such as
light, microwaves, radio waves, and so on (Fig. 7.17f). Examples of this method of
transfer include cooking a baked potato in your microwave oven and light energy trav-
eling from the Sun to the Earth through space.5

5 Electromagnetic radiation and work done by field forces are the only energy transfer mecha-
nisms that do not require molecules of the environment to be available at the system boundary.
Thus, systems surrounded by a vacuum (such as planets) can only exchange energy with the envi-
ronment by means of these two possibilities.

Figure 7.17 Energy transfer mechanisms. (a) Energy is transferred to the block by
work; (b) energy leaves the radio from the speaker by mechanical waves; (c) energy trans-
fers up the handle of the spoon by heat; (d) energy enters the automobile gas tank by
matter transfer; (e) energy enters the hair dryer by electrical transmission; and (f) energy
leaves the light bulb by electromagnetic radiation.
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One of the central features of the energy approach is the notion that we can nei-
ther create nor destroy energy—energy is always conserved. Thus, if the total
amount of energy in a system changes, it can only be due to the fact that energy
has crossed the boundary of the system by a transfer mechanism such as one of
the methods listed above. This is a general statement of the principle of conserva-
tion of energy. We can describe this idea mathematically as follows:

(7.17)

where Esystem is the total energy of the system, including all methods of energy storage
(kinetic, internal, and potential, as discussed in Chapter 8) and T is the amount of en-
ergy transferred across the system boundary by some mechanism. Two of our transfer
mechanisms have well-established symbolic notations. For work, Twork # W, as we have
seen in the current chapter, and for heat, Theat # Q , as defined in Chapter 20. The
other four members of our list do not have established symbols.

This is no more complicated in theory than is balancing your checking account
statement. If your account is the system, the change in the account balance for a given
month is the sum of all the transfers—deposits, withdrawals, fees, interest, and checks
written. It may be useful for you to think of energy as the currency of nature !

Suppose a force is applied to a nonisolated system and the point of application of the
force moves through a displacement. Suppose further that the only effect on the system is
to change its speed. Then the only transfer mechanism is work (so that +T in Equation
7.17 reduces to just W ) and the only kind of energy in the system that changes is the ki-
netic energy (so that "E system reduces to just "K ). Equation 7.17 then becomes

which is the work–kinetic energy theorem. The work–kinetic energy theorem is a spe-
cial case of the more general principle of conservation of energy. We shall see several
more special cases in future chapters.

"K # W

"Esystem # # T

Quick Quiz 7.7 By what transfer mechanisms does energy enter and leave
(a) your television set; (b) your gasoline-powered lawn mower; (c) your hand-cranked
pencil sharpener?

Quick Quiz 7.8 Consider a block sliding over a horizontal surface with fric-
tion. Ignore any sound the sliding might make. If we consider the system to be the
block, this system is (a) isolated (b) nonisolated (c) impossible to determine.

Quick Quiz 7.9 If we consider the system in Quick Quiz 7.8 to be the surface,
this system is (a) isolated (b) nonisolated (c) impossible to determine.

Quick Quiz 7.10 If we consider the system in Quick Quiz 7.8 to be the block
and the surface, this system is (a) isolated (b) nonisolated (c) impossible to determine.

7.7 Situations Involving Kinetic Friction

Consider again the book in Figure 7.16 sliding to the right on the surface of a heavy
table and slowing down due to the friction force. Work is done by the friction force be-
cause there is a force and a displacement. Keep in mind, however, that our equations
for work involve the displacement of the point of application of the force. The friction force
is spread out over the entire contact area of an object sliding on a surface, so the force

Conservation of energy
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is not localized at a point. In addition, the magnitudes of the friction forces at various
points are constantly changing as spot welds occur, the surface and the book deform
locally, and so on. The points of application of the friction force on the book are jump-
ing all over the face of the book in contact with the surface. This means that the dis-
placement of the point of application of the friction force (assuming we could calcu-
late it!) is not the same as the displacement of the book.

The work–kinetic energy theorem is valid for a particle or an object that can be
modeled as a particle. When an object cannot be treated as a particle, however, things
become more complicated. For these kinds of situations, Newton’s second law is still
valid for the system, even though the work–kinetic energy theorem is not. In the case
of a nondeformable object like our book sliding on the surface,6 we can handle this in
a relatively straightforward way.

Starting from a situation in which a constant force is applied to the book, we can fol-
low a similar procedure to that in developing Equation 7.14. We start by multiplying each
side of Newton’s second law (x component only) by a displacement "x of the book:

(7.18)

For a particle under constant acceleration, we know that the following relationships
(Eqs. 2.9 and 2.11) are valid:

where vi is the speed at t # 0 and vf is the speed at time t. Substituting these expres-
sions into Equation 7.18 gives

This looks like the work–kinetic energy theorem, but the left hand side has not been called
work. The quantity "x is the displacement of the book—not the displacement of the
point of application of the friction force.

Let us now apply this equation to a book that has been projected across a surface.
We imagine that the book has an initial speed and slows down due to friction, the only
force in the horizontal direction. The net force on the book is the kinetic friction force
fk, which is directed opposite to the displacement "x. Thus,

(7.19)

which mathematically describes the decrease in kinetic energy due to the friction
force.

We have generated these results by assuming that a book is moving along a straight
line. An object could also slide over a surface with friction and follow a curved path. In
this case, Equation 7.19 must be generalized as follows:

(7.20)

where d is the length of the path followed by an object.
If there are other forces besides friction acting on an object, the change in kinetic

energy is the sum of that due to the other forces from the work–kinetic energy theo-
rem, and that due to friction:

&fkd # "K

&fk  "x # "K

%# Fx&
 
"x # &fk "x # 1

2mv 2
f & 1

2mv 2
i # "K

%# Fx&"x # 1
2 mv 2

f & 1
2mv 2

i

%# Fx& "x # m % vf & vi

t & 1
2(vi ) vf)t

ax #
vf & vi

t
  "x # 1

2(vi ) vf)t

%# Fx&"x # (max)"x

6 The overall shape of the book remains the same, which is why we are saying it is nonde-
formable. On a microscopic level, however, there is deformation of the book’s face as it slides
over the surface.

Change in kinetic energy due to
friction
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Quick Quiz 7.11 You are traveling along a freeway at 65 mi/h. Your car has
kinetic energy. You suddenly skid to a stop because of congestion in traffic. Where is
the kinetic energy that your car once had? (a) All of it is in internal energy in the road.
(b) All of it is in internal energy in the tires. (c) Some of it has transformed to internal
energy and some of it transferred away by mechanical waves. (d) All of it is transferred
away from your car by various mechanisms.

Example 7.9 A Block Pulled on a Rough Surface

A 6.0-kg block initially at rest is pulled to the right along a
horizontal surface by a constant horizontal force of 12 N.

(A) Find the speed of the block after it has moved 3.0 m if
the surfaces in contact have a coefficient of kinetic friction
of 0.15. (This is Example 7.7, modified so that the surface is
no longer frictionless.)

Solution Conceptualize this problem by realizing that the
rough surface is going to apply a friction force opposite to
the applied force. As a result, we expect the speed to be
lower than that found in Example 7.7. The surface is
rough and we are given forces and a distance, so we cate-
gorize this as a situation involving kinetic friction that
must be handled by means of Equation 7.21. To analyze
the problem, we have made a drawing of this situation in
Figure 7.18a. We identify the block as the system, and
there are four external forces interacting with the system.
The normal force balances the gravitational force on the

block, and neither of these vertically acting forces does
work on the block because their points of application are
displaced horizontally. The applied force does work just as
in Example 7.7:

In this case we must use Equation 7.21a to calculate the ki-
netic energy change due to friction, "K friction . Because
the block is in equilibrium in the vertical direction, the
normal force n counterbalances the gravitational force
mg, so we have n # mg. Hence, the magnitude of the fric-
tion force is

The change in kinetic energy of the block due to friction is

"K friction # & fkd # &(8.82 N)(3.0 m) # &26.5  J

fk # .kn # .kmg # (0.15)(6.0 kg)(9.80 m/s2) # 8.82 N

W # F "x # (12 N)(3.0 m) # 36  J

Interactive

(7.21a)

or (7.21b)

Now consider the larger system of the book and the surface as the book slows down
under the influence of a friction force alone. There is no work done across the boundary
of this system—the system does not interact with the environment. There are no other
types of energy transfer occurring across the boundary of the system, assuming we ignore
the inevitable sound the sliding book makes! In this case, Equation 7.17 becomes

The change in kinetic energy of this book-plus-surface system is the same as the change
in kinetic energy of the the book alone in Equation 7.20, because the book is the only
part of the book-surface system that is moving. Thus,

(7.22)

Thus, the increase in internal energy of the system is equal to the product of the fric-
tion force and the displacement of the book.

The conclusion of this discussion is that the result of a friction force is to trans-
form kinetic energy into internal energy, and the increase in internal energy is
equal to the decrease in kinetic energy.

"Eint # fkd

&fkd ) "E int # 0

"Esystem # "K ) "Eint # 0

Kf # Ki & fk d ) #Wother forces

"K # & fk d ) #Wother forces

Change in internal energy due
to friction
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n

F

mg
∆x

vf

fk

∆x

(b)

n

F

mg

vf

fk θ

Figure 7.18 (Example 7.9) (a) A block pulled to the right on a
rough surface by a constant horizontal force. (b) The applied
force is at an angle ! to the horizontal.

The final speed of the block follows from Equation 7.21b:

To finalize this problem note that, after covering the same
distance on a frictionless surface (see Example 7.7), the
speed of the block was 3.5 m/s.

1.8 m/s #

 # √0 )
2

6.0 kg
(&26.5  J ) 36  J)

vf # √v 2
i )

2
m

 %& fkd ) # Wother forces&

1
2mvf

2 # 1
2mvi

2 & fkd ) # Wother forces

(B) Suppose the force F is applied at an angle ! as shown in
Figure 7.18b. At what angle should the force be applied to
achieve the largest possible speed after the block has moved
3.0 m to the right?

Solution The work done by the applied force is now

where "x # d because the path followed by the block is a
straight line. The block is in equilibrium in the vertical di-
rection, so

and

Because Ki # 0, Equation 7.21b can be written,

Maximizing the speed is equivalent to maximizing the final
kinetic energy. Consequently, we differentiate Kf with re-
spect to ! and set the result equal to zero:

For .k # 0.15, we have,

8.5%! # tan&1(.k) # tan&1(0.15) #

tan ! # .k

.k cos ! & sin ! # 0

d(Kf )

d!
# &.k(0 & F   cos !)d & Fd sin ! # 0

 # &.k(mg & F  sin !)d ) Fd cos ! 

 # &.knd ) Fd cos !

Kf # &fkd ) # Wother forces

n # mg & F  sin !

# Fy # n ) F  sin ! & mg # 0

W # F "x cos ! # Fd cos !

Conceptual Example 7.10 Useful Physics for Safer Driving

Try out the effects of pulling the block at various angles at the Interactive Worked Example link at  http://www.pse6.com.

A car traveling at an initial speed v slides a distance d to a
halt after its brakes lock. Assuming that the car’s initial
speed is instead 2v at the moment the brakes lock, estimate
the distance it slides.

Solution Let us assume that the force of kinetic friction be-
tween the car and the road surface is constant and the same

for both speeds. According to Equation 7.20, the friction
force multiplied by the distance d is equal to the initial
kinetic energy of the car (because Kf # 0). If the speed is
doubled, as it is in this example, the kinetic energy is
quadrupled. For a given friction force, the distance traveled
is four times as great when the initial speed is doubled, and
so the estimated distance that the car slides is 4d.

Example 7.11 A Block—Spring System

A block of mass 1.6 kg is attached to a horizontal spring that
has a force constant of 1.0 * 103 N/m, as shown in Figure
7.10. The spring is compressed 2.0 cm and is then released
from rest.

(A) Calculate the speed of the block as it passes through the
equilibrium position x # 0 if the surface is frictionless.

Solution In this situation, the block starts with vi # 0 at
xi # & 2.0 cm, and we want to find vf at xf # 0. We use
Equation 7.10 to find the work done by the spring with
xmax # xi # & 2.0 cm # & 2.0 * 10&2 m:

Ws # 1
2kx 2

max # 1
2(1.0 * 103 N/m)(&2.0 * 10&

 
2 m)2 # 0.20  J

Interactive

(a)
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7.8 Power

Consider Conceptual Example 7.8 again, which involved rolling a refrigerator up a
ramp into a truck. Suppose that the man is not convinced by our argument that the
work is the same regardless of the length of the ramp and sets up a long ramp with a
gentle rise. Although he will do the same amount of work as someone using a shorter
ramp, he will take longer to do the work simply because he has to move the refrigera-
tor over a greater distance. While the work done on both ramps is the same, there is
something different about the tasks—the time interval during which the work is done.

The time rate of energy transfer is called power. We will focus on work as the en-
ergy transfer method in this discussion, but keep in mind that the notion of power is
valid for any means of energy transfer. If an external force is applied to an object
(which we assume acts as a particle), and if the work done by this force in the time in-
terval "t is W, then the average power during this interval is defined as

Thus, while the same work is done in rolling the refrigerator up both ramps, less power
is required for the longer ramp.

In a manner similar to the way we approached the definition of velocity and accel-
eration, we define the instantaneous power ! as the limiting value of the average
power as "t approaches zero:

!  !  lim
"t :0

W
"t

#
dW
dt

!  !  
W
"t

Using the work–kinetic energy theorem with vi # 0, we set
the change in kinetic energy of the block equal to the work
done on it by the spring:

(B) Calculate the speed of the block as it passes through the
equilibrium position if a constant friction force of 4.0 N re-
tards its motion from the moment it is released.

Solution Certainly, the answer has to be less than what we
found in part (A) because the friction force retards the mo-
tion. We use Equation 7.20 to calculate the kinetic energy
lost because of friction and add this negative value to the ki-
netic energy we calculated in the absence of friction. The ki-
netic energy lost due to friction is

"K # &fkd # &(4.0 N)(2.0 * 10&
 
2 m) # &0.080 J

0.50 m/s #

 # √0 )
2

1.6 kg
(0.20  J)

vf # √v 2
i )

2
m

Ws

Ws # 1
2mv 2

f & 1
2mv 2

i

In part (A), the work done by the spring was found to be
0.20 J. Therefore, the final kinetic energy in the presence of
friction is

As expected, this value is somewhat less than the 0.50 m/s
we found in part (A). If the friction force were greater, then
the value we obtained as our answer would have been even
smaller.

What If? What if the friction force were increased to 10.0 N?
What is the block’s speed at x # 0?

Answer In this case, the loss of kinetic energy as the block
moves to x # 0 is

which is equal in magnitude to the kinetic energy at x # 0
without the loss due to friction. Thus, all of the kinetic en-
ergy has been transformed by friction when the block arrives
at x # 0 and its speed at this point is v # 0.

In this situation as well as that in part (B), the speed of
the block reaches a maximum at some position other than
x # 0. Problem 70 asks you to locate these positions.

"K # &fk d # &(10.0 N)(2.0 * 10&
 
2 m)# &0.20  J

0.39 m/svf # √ 2Kf

m
# √ 2(0.12  J)

1.6 kg
#

Kf # 0.20  J & 0.080  J # 0.12  J # 1
2mv 2

f

Investigate the role of the spring constant, amount of spring compression, and surface friction at the Interactive Worked
Example link at http://www.pse6.com.
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where we have represented the infinitesimal value of the work done by dW. We find
from Equation 7.3 that dW # F ·dr. Therefore, the instantaneous power can be written

(7.23)

where we use the fact that v # dr/dt.
In general, power is defined for any type of energy transfer. Therefore, the most

general expression for power is

(7.24)

where dE/dt is the rate at which energy is crossing the boundary of the system by a
given transfer mechanism.

The SI unit of power is joules per second ( J/s), also called the watt (W) (after
James Watt):

A unit of power in the U.S. customary system is the horsepower (hp):

A unit of energy (or work) can now be defined in terms of the unit of power. 
One kilowatt-hour (kWh) is the energy transferred in 1 h at the constant rate of 
1 kW # 1 000 J/s. The amount of energy represented by 1 kWh is

Note that a kilowatt-hour is a unit of energy, not power. When you pay your electric bill,
you are buying energy, and the amount of energy transferred by electrical transmission
into a home during the period represented by the electric bill is usually expressed in
kilowatt-hours. For example, your bill may state that you used 900 kWh of energy during
a month, and you are being charged at the rate of 10¢ per kWh. Your obligation is then
$90 for this amount of energy. As another example, suppose an electric bulb is rated at
100 W. In 1.00 hour of operation, it would have energy transferred to it by electrical
transmission in the amount of (0.100 kW)(1.00 h) # 0.100 kWh # 3.60 * 105 J.

1 kWh # (103 W)(3 600 s) # 3.60 * 106 J

1 hp # 746 W

1 W # 1 J/s # 1 kg$m2/s3

! #
dE
dt

! #
dW
dt

# F !
dr
dt

# F ! v

Example 7.12 Power Delivered by an Elevator Motor

Quick Quiz 7.12 An older model car accelerates from rest to speed v in
10 seconds. A newer, more powerful sports car accelerates from rest to 2v in the same
time period. What is the ratio of the power of the newer car to that of the older car?
(a) 0.25 (b) 0.5 (c) 1 (d) 2 (e) 4

An elevator car has a mass of 1 600 kg and is carrying passen-
gers having a combined mass of 200 kg. A constant fric-
tion force of 4 000 N retards its motion upward, as shown in
Figure 7.19a.

(A) What power delivered by the motor is required to lift the
elevator car at a constant speed of 3.00 m/s?

Solution The motor must supply the force of magnitude
T that pulls the elevator car upward. The problem states
that the speed is constant, which provides the hint that
a # 0. Therefore we know from Newton’s second law that

+Fy # 0. The free-body diagram in Figure 7.19b specifies
the upward direction as positive. From Newton’s second
law we obtain

where M is the total mass of the system (car plus passengers),
equal to 1 800 kg. Therefore,

 # 2.16 * 104 N

 # 4.00 * 103 N ) (1.80 * 103 kg)(9.80 m/s2)

T # f ) Mg

# Fy # T & f & Mg # 0

! PITFALL PREVENTION
7.9 W, W, and watts
Do not confuse the symbol W for
the watt with the italic symbol W
for work. Also, remember that
the watt already represents a rate
of energy transfer, so that “watts
per second” does not make sense.
The watt is the same as a joule per
second.

The watt

Instantaneous power
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7.9 Energy and the Automobile

Automobiles powered by gasoline engines are very inefficient machines. Even under
ideal conditions, less than 15% of the chemical energy in the fuel is used to power the
vehicle. The situation is much worse than this under stop-and-go driving conditions in
a city. In this section, we use the concepts of energy, power, and friction to analyze au-
tomobile fuel consumption.

Many mechanisms contribute to energy loss in an automobile. About 67% of the
energy available from the fuel is lost in the engine. This energy ends up in the atmos-
phere, partly via the exhaust system and partly via the cooling system. (As explained in
Chapter 22, energy loss from the exhaust and cooling systems is required by a funda-
mental law of thermodynamics.) Approximately 10% of the available energy is lost to
friction in the transmission, drive shaft, wheel and axle bearings, and differential. Fric-
tion in other moving parts transforms approximately 6% of the energy to internal en-
ergy, and 4% of the energy is used to operate fuel and oil pumps and such accessories
as power steering and air conditioning. This leaves a mere 13% of the available energy
to propel the automobile! This energy is used mainly to balance the energy loss due to
flexing of the tires and the friction caused by the air, which is more commonly referred
to as air resistance.

Let us examine the power required to provide a force in the forward direction that
balances the combination of the two friction forces. The coefficient of rolling friction
. between the tires and the road is about 0.016. For a 1 450-kg car, the weight is
14 200 N and on a horizontal roadway the force of rolling friction has a magnitude of
.n # .mg # 227 N. As the car’s speed increases, a small reduction in the normal force

Figure 7.19 (Example 7.12) (a) The motor exerts an upward
force T on the elevator car. The magnitude of this force is the
tension T in the cable connecting the car and motor. The down-
ward forces acting on the car are a friction force f and the gravi-
tational force Fg # Mg. (b) The free-body diagram for the ele-
vator car.

Motor

T

f

Mg

+

(a) (b)

Using Equation 7.23 and the fact that T is in the same direc-
tion as v, we find that

(B) What power must the motor deliver at the instant the
speed of the elevator is v if the motor is designed to provide
the elevator car with an upward acceleration of 1.00 m/s2?

Solution We expect to obtain a value greater than we did in
part (A), where the speed was constant, because the motor
must now perform the additional task of accelerating the car.
The only change in the setup of the problem is that in this
case, a , 0. Applying Newton’s second law to the car gives

Therefore, using Equation 7.23, we obtain for the required
power

where v is the instantaneous speed of the car in meters per
second. To compare to part (A), let v # 3.00 m/s, giving a
power of

This is larger than the power found in part (A), as we expect.

! # (2.34 * 104 N)(3.00 m/s) # 7.02 * 104 W

(2.34 * 104 N)v! # Tv #

 # 2.34 * 104 N
) 4.00 * 103 N

 # (1.80 * 103 kg)(1.00 m/s2 ) 9.80 m/s2)

T # M(a ) g) ) f

# Fy # T & f & Mg # Ma

6.48 * 104 W# (2.16 * 104 N)(3.00 m/s) #

! # T ! v # Tv
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occurs as a result of decreased pressure as air flows over the top of the car. (This phe-
nomenon is discussed in Chapter 14.) This reduction in the normal force causes a re-
duction in the force of rolling friction fr with increasing speed, as the data in Table 7.2
indicate.

Now let us consider the effect of the resistive force that results from the movement
of air past the car. For large objects, the resistive force fa associated with air friction is
proportional to the square of the speed (see Section 6.4) and is given by Equation 6.6:

where D is the drag coefficient, / is the density of air, and A is the cross-sectional area
of the moving object. We can use this expression to calculate the fa values in Table 7.2,
using D # 0.50, / # 1.20 kg/m3, and A " 2 m2.

The magnitude of the total friction force ft is the sum of the rolling friction force
and the air resistive force:

At low speeds, rolling friction is the predominant resistive force, but at high speeds
air drag predominates, as shown in Table 7.2. Rolling friction can be decreased by a re-
duction in tire flexing (for example, by an increase in the air pressure slightly above
recommended values) and by the use of radial tires. Air drag can be reduced through
the use of a smaller cross-sectional area and by streamlining the car. Although driving a
car with the windows open increases air drag and thus results in a 3% decrease in
mileage, driving with the windows closed and the air conditioner running results in a
12% decrease in mileage.

The total power needed to maintain a constant speed v is ftv, and this is the power
that must be delivered to the wheels. For example, from Table 7.2 we see that at 
v # 26.8 m/s (60 mi/h) the required power is

This power can be broken down into two parts: (1) the power frv needed to compen-
sate for rolling friction, and (2) the power fav needed to compensate for air drag. At
v # 26.8 m/s, we obtain the values

Note that ! # !r ) !a and 67% of the power is used to compensate for air drag.
On the other hand, at v # 44.7 m/s(100 mi/h), !r # 9.03 kW, !a # 53.6 kW,

! # 62.6 kW and 86% of the power is associated with air drag. This shows the impor-
tance of air drag at high speeds.

!a # fav # (431 N)(26.8 m/s) # 11.6 kW

!r # frv # (218 N)(26.8 m/s) # 5.84 kW

! # ftv # (649 N)(26.8 m/s) # 17.4 kW

ft # fr ) fa

fa # 1
2D/0v2

v(mi/h) v(m/s) n(N) fr(N) fa(N) ft(N) ! # ftv(kW)

0 0 14 200 227 0 227 0
20 8.9 14 100 226 48 274 2.4
40 17.9 13 900 222 192 414 7.4
60 26.8 13 600 218 431 649 17.4
80 35.8 13 200 211 767 978 35.0

100 44.7 12 600 202 1 199 1 400 62.6

a In this table, n is the normal force, fr is rolling friction, fa is air friction, ft is total friction, and ! is the
power delivered to the wheels.

Friction Forces and Power Requirements for a Typical Cara

Table 7.2
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Example 7.15 Car Accelerating Up a Hill

Figure 7.20 (Example 7.15) A car climbs a hill.

Consider a car of mass m that is accelerating up a hill, as
shown in Figure 7.20. An automotive engineer measures the
magnitude of the total resistive force to be

where v is the speed in meters per second. Determine the
power the engine must deliver to the wheels as a function of
speed.

Solution The forces on the car are shown in Figure 7.20, in
which F is the force of friction from the road that propels
the car; the remaining forces have their usual meaning.

ft # (218 ) 0.70v2) N

Applying Newton’s second law to the motion along the road
surface, we find that

Therefore, the power required to move the car forward is

The term mva represents the power that the engine must de-
liver to accelerate the car. If the car moves at constant speed,
this term is zero and the total power requirement is reduced.
The term mvg sin ! is the power required to provide a force
to balance a component of the gravitational force as the car
moves up the incline. This term would be zero for motion on
a horizontal surface. The term 218v is the power required to
provide a force to balance rolling friction, and the term
0.70v3 is the power needed against air drag.

If we take m # 1 450 kg, v # 27 m/s ( # 60 mi/h), a #
1.0 m/s2, and ! # 10°, then the various terms in ! are cal-
culated to be

 # 39 kW # 52 hp

mva # (1 450 kg)(27 m/s)(1.0 m/s2)

! # Fv # mva ) mvg  sin ! ) 218v ) 0.70v3

 # ma ) mg  sin ! ) (218 ) 0.70v2)

F # ma ) mg  sin ! ) ft

# Fx # F & ft & mg  sin ! # ma

n
F

ft

m g

θ

y

x

Example 7.13 Gas Consumed by a Compact Car

Example 7.14 Power Delivered to the Wheels

A compact car has a mass of 800 kg, and its efficiency is
rated at 18%. (That is, 18% of the available fuel energy is
delivered to the wheels.) Find the amount of gasoline
used to accelerate the car from rest to 27 m/s (60 mi/h).
Use the fact that the energy equivalent of 1 gal of gasoline
is 1.3 * 108 J.

Solution The energy required to accelerate the car from
rest to a speed v is equal to its final kinetic energy, :

If the engine were 100% efficient, each gallon of gasoline
would supply 1.3 * 108 J of energy. Because the engine
is only 18% efficient, each gallon delivers an energy of only

K # 1
2mv2 # 1

2(800 kg)(27 m/s)2 # 2.9 * 105 J

1
2mv2

(0.18)(1.3 * 108 J) # 2.3 * 107 J. Hence, the number of
gallons used to accelerate the car is

Let us estimate that it takes 10 s to achieve the indicated
speed. The distance traveled during this acceleration is

At a constant cruising speed, 0.013 gal of gasoline is suffi-
cient to propel the car nearly 0.5 mi, over six times farther.
This demonstrates the extreme energy requirements of stop-
and-start driving.

 # 135 m " 0.08 mi

"x # v"t #
vxf ) vxi

2
  ("t) #

27 m/s ) 0
2

 (10 s)

0.013 galNumber of gal #
2.9 * 105 J

2.3 * 107 J/gal
#

Suppose the compact car in Example 7.13 has a gas mileage
of 35 mi/gal at 60 mi/h. How much power is delivered to
the wheels?

Solution We find the rate of gasoline consumption by di-
viding the speed by the gas mileage:

Using the fact that each gallon is equivalent to 1.3 * 108 J,
we find that the total power used is

60 mi/h
35 mi/gal

# 1.7 gal/h

Because 18% of the available power is used to propel the car,
the power delivered to the wheels is (0.18)(62 kW) #

This is 37% less than the 17.4-kW value obtained 

for the 1 450-kg car discussed in the text. Vehicle mass is
clearly an important factor in power-loss mechanisms.

11 kW.

# 62 kW

! # (1.7 gal/h)(1.3 * 108 J/gal) % 1 h
3.6 * 103 s &
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A system is most often a single particle, a collection of particles or a region of space. A
system boundary separates the system from the environment. Many physics prob-
lems can be solved by considering the interaction of a system with its environment.

The work W done on a system by an agent exerting a constant force F on the sys-
tem is the product of the magnitude "r of the displacement of the point of application
of the force and the component F cos ! of the force along the direction of the displace-
ment "r:

(7.1)

The scalar product (dot product) of two vectors A and B is defined by the rela-
tionship

(7.2)

where the result is a scalar quantity and ! is the angle between the two vectors. The
scalar product obeys the commutative and distributive laws.

If a varying force does work on a particle as the particle moves along the x axis
from xi to xf , the work done by the force on the particle is given by

(7.7)

where Fx is the component of force in the x direction.
The kinetic energy of a particle of mass m moving with a speed v is

(7.15)

The work–kinetic energy theorem states that if work is done on a system by exter-
nal forces and the only change in the system is in its speed, then

(7.14, 7.16)

For a nonisolated system, we can equate the change in the total energy stored in the
system to the sum of all the transfers of energy across the system boundary. For an iso-
lated system, the total energy is constant—this is a statement of conservation of energy.

If a friction force acts, the kinetic energy of the system is reduced and the appropri-
ate equation to be applied is

(7.21a)

or

(7.21b)

The instantaneous power ! is defined as the time rate of energy transfer. If an agent
applies a force F to an object moving with a velocity v, the power delivered by that agent is

(7.23)!  !  
dW
dt

# F ! v

Kf # Ki & fkd ) # Wother forces

"K # &fkd ) # Wother forces

# W # Kf & Ki # 1
2mv 2

f & 1
2mv 2

i

K  !  
1
2mv2

W   ! $xf

xi

Fxdx

A ! B  !  AB cos !

W  !  F  "r cos !

S U M M A RY

Take a practice test for
this chapter by clicking on
the Practice Test link at
http://www.pse6.com.

Hence, the total power required is 126 kW or 167 hp.

0.70v3 # 0.70(27 m/s)3 # 14 kW # 18 hp

218v # 218(27 m/s) # 5.9 kW # 7.9 hp

 # 67 kW # 89 hp

mvg  sin ! # (1 450 kg)(27 m/s)(9.80 m/s2)(sin 10%) Note that the power requirements for traveling at constant
speed on a horizontal surface are only 20 kW, or 27 hp (the
sum of the last two terms). Furthermore, if the mass were
halved (as in the case of a compact car), then the power re-
quired also is reduced by almost the same factor.
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Section 7.2 Work Done by a Constant Force
A block of mass 2.50 kg is pushed 2.20 m along a friction-
less horizontal table by a constant 16.0-N force directed
25.0° below the horizontal. Determine the work done on
the block by (a) the applied force, (b) the normal force
exerted by the table, and (c) the gravitational force.
(d) Determine the total work done on the block.

1.

1, 2, 3 = straightforward, intermediate, challenging        = full solution available in the Student Solutions Manual and Study Guide

= coached solution with hints available at http://www.pse6.com = computer useful in solving problem             

= paired numerical and symbolic problems

P R O B L E M S

2. A shopper in a supermarket pushes a cart with a force of
35.0 N directed at an angle of 25.0° downward from the
horizontal. Find the work done by the shopper on the cart
as he moves down an aisle 50.0 m long.

Batman, whose mass is 80.0 kg, is dangling on the
free end of a 12.0-m rope, the other end of which is fixed
to a tree limb above. He is able to get the rope in motion

3.

1. When a particle rotates in a circle, a force acts on it di-
rected toward the center of rotation. Why is it that this
force does no work on the particle?

2. Discuss whether any work is being done by each of the fol-
lowing agents and, if so, whether the work is positive or
negative: (a) a chicken scratching the ground, (b) a per-
son studying, (c) a crane lifting a bucket of concrete,
(d) the gravitational force on the bucket in part (c),
(e) the leg muscles of a person in the act of sitting down.

3. When a punter kicks a football, is he doing any work on
the ball while his toe is in contact with it? Is he doing any
work on the ball after it loses contact with his toe? Are any
forces doing work on the ball while it is in flight?

4. Cite two examples in which a force is exerted on an object
without doing any work on the object.

As a simple pendulum swings back and forth, the forces
acting on the suspended object are the gravitational force,
the tension in the supporting cord, and air resistance.
(a) Which of these forces, if any, does no work on the pen-
dulum? (b) Which of these forces does negative work at all
times during its motion? (c) Describe the work done by
the gravitational force while the pendulum is swinging.

6. If the dot product of two vectors is positive, does this imply
that the vectors must have positive rectangular components?

7. For what values of ! is the scalar product (a) positive and
(b) negative?

8. As the load on a vertically hanging spiral spring is in-
creased, one would not expect the Fs -versus-x graph line to
remain straight, as shown in Figure 7.10d. Explain qualita-
tively what you would expect for the shape of this graph as
the load on the spring is increased.

9. A certain uniform spring has spring constant k. Now the
spring is cut in half. What is the relationship between k
and the spring constant k- of each resulting smaller
spring? Explain your reasoning.

Can kinetic energy be negative? Explain.

11. Discuss the work done by a pitcher throwing a baseball.
What is the approximate distance through which the force
acts as the ball is thrown?

10.

5.

One bullet has twice the mass of a second bullet. If both
are fired so that they have the same speed, which has more
kinetic energy? What is the ratio of the kinetic energies of
the two bullets?

13. Two sharpshooters fire 0.30-caliber rifles using identical
shells. A force exerted by expanding gases in the barrels
accelerates the bullets. The barrel of rifle A is 2.00 cm
longer than the barrel of rifle B. Which rifle will have the
higher muzzle speed?

(a) If the speed of a particle is doubled, what happens to
its kinetic energy? (b) What can be said about the speed of
a particle if the net work done on it is zero?

15. A car salesman claims that a souped-up 300-hp engine is a
necessary option in a compact car, in place of the conven-
tional 130-hp engine. Suppose you intend to drive the car
within speed limits (( 65 mi/h) on flat terrain. How
would you counter this sales pitch?

16. Can the average power over a time interval ever be equal
to the instantaneous power at an instant within the inter-
val? Explain.

17. In Example 7.15, does the required power increase or
decrease as the force of friction is reduced?

18. The kinetic energy of an object depends on the frame of
reference in which its motion is measured. Give an exam-
ple to illustrate this point.

19. Words given precise definitions in physics are sometimes
used in popular literature in interesting ways. For example,
a rock falling from the top of a cliff is said to be “gathering
force as it falls to the beach below.” What does the phrase
“gathering force” mean, and can you repair this phrase?

20. In most circumstances, the normal force acting on an ob-
ject and the force of static friction do zero work on the ob-
ject. However, the reason that the work is zero is different
for the two cases. Explain why each does zero work.

21. “A level air track can do no work.” Argue for or against this
statement.

22. Who first stated the work–kinetic energy theorem? Who
showed that it is useful for solving many practical prob-
lems? Do some research to answer these questions.

14.

12.

Q U E S T I O N S
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as only Batman knows how, eventually getting it to swing
enough that he can reach a ledge when the rope makes a
60.0° angle with the vertical. How much work was done by
the gravitational force on Batman in this maneuver?

4. A raindrop of mass 3.35 * 10&5 kg falls vertically at con-
stant speed under the influence of gravity and air resis-
tance. Model the drop as a particle. As it falls 100 m, what
is the work done on the raindrop (a) by the gravitational
force and (b) by air resistance?

Section 7.3 The Scalar Product of Two Vectors
5. Vector A has a magnitude of 5.00 units, and B has a magni-

tude of 9.00 units. The two vectors make an angle of 50.0°
with each other. Find A ! B.

6. For any two vectors A and B, show that A ! B # AxBx ) AyBy
) AzBz. (Suggestion: Write A and B in unit vector form and
use Equations 7.4 and 7.5.)

A force F # (6 î & 2 ĵ) N acts on a particle that under-
goes a displacement "r # (3 î ) ĵ) m. Find (a) the work
done by the force on the particle and (b) the angle be-
tween F and "r.

8. Find the scalar product of the vectors in Figure P7.8.

7.

Note: In Problems 7 through 10, calculate numerical an-
swers to three significant figures as usual.

12. The force acting on a particle is Fx # (8x & 16) N, where
x is in meters. (a) Make a plot of this force versus x from
x # 0 to x # 3.00 m. (b) From your graph, find the net
work done by this force on the particle as it moves from
x # 0 to x # 3.00 m.

A particle is subject to a force Fx that varies with po-
sition as in Figure P7.13. Find the work done by the force
on the particle as it moves (a) from x # 0 to x # 5.00 m,
(b) from x # 5.00 m to x # 10.0 m, and (c) from x #
10.0 m to x # 15.0 m. (d) What is the total work done by
the force over the distance x # 0 to x # 15.0 m?

13.

118°

132°

y

x

32.8 N

17.3 cm/s

Figure P7.8

2 4 6 8 10
x(m)

–2

–4

2

4

6

Fx(N)

Figure P7.11

0 2 4 6 8 10 12 14 16

1

2

3

Fx(N)

x(m)

Figure P7.13 Problems 13 and 28.

9. Using the definition of the scalar product, find the angles
between (a) A # 3 î & 2 ĵ and B # 4 î & 4 ĵ; (b) A #
&2 î ) 4 ĵ and B # 3 î & 4 ĵ ) 2 k̂; (c) A # î & 2 ĵ ) 2k̂ and
B # 3 ĵ ) 4 k̂.

10. For A # 3 î ) ĵ & k̂, B # & î ) 2 ĵ ) 5k̂, and C # 2 ĵ & 3k̂,
find C ! (A & B).

Section 7.4 Work Done by a Varying Force
11. The force acting on a particle varies as in Figure P7.11.

Find the work done by the force on the particle as it moves
(a) from x # 0 to x # 8.00 m, (b) from x # 8.00 m to 
x # 10.0 m, and (c) from x # 0 to x # 10.0 m.

14. A force F # (4x î ) 3y ĵ) N acts on an object as the 
object moves in the x direction from the origin to 
x # 5.00 m. Find the work done on the ob-
ject by the force.

15. When a 4.00-kg object is hung vertically on a certain light
spring that obeys Hooke’s law, the spring stretches
2.50 cm. If the 4.00-kg object is removed, (a) how far will
the spring stretch if a 1.50-kg block is hung on it, and
(b) how much work must an external agent do to stretch
the same spring 4.00 cm from its unstretched position?

16. An archer pulls her bowstring back 0.400 m by exerting a
force that increases uniformly from zero to 230 N. (a) What
is the equivalent spring constant of the bow? (b) How much
work does the archer do in pulling the bow?

17. Truck suspensions often have “helper springs” that engage
at high loads. One such arrangement is a leaf spring with a
helper coil spring mounted on the axle, as in Figure
P7.17. The helper spring engages when the main leaf
spring is compressed by distance y0, and then helps to
support any additional load. Consider a leaf spring
constant of 5.25 * 105 N/m, helper spring constant of
3.60 * 105 N/m, and y0 # 0.500 m. (a) What is the

W # $F$dr
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22. A light spring with spring constant k1 is hung from an ele-
vated support. From its lower end a second light spring is
hung, which has spring constant k2 . An object of mass m is
hung at rest from the lower end of the second spring.
(a) Find the total extension distance of the pair of springs.
(b) Find the effective spring constant of the pair of springs
as a system. We describe these springs as in series.

23. Express the units of the force constant of a spring in SI
base units.

Section 7.5 Kinetic Energy and the Work–Kinetic 
Energy Theorem

Section 7.6 The Nonisolated System—Conservation
of Energy

24. A 0.600-kg particle has a speed of 2.00 m/s at point ! and
kinetic energy of 7.50 J at point ". What is (a) its kinetic
energy at !?  (b) its speed at "? (c) the total work done
on the particle as it moves from ! to "?

25. A 0.300-kg ball has a speed of 15.0 m/s. (a) What is its ki-
netic energy? (b) What If? If its speed were doubled, what
would be its kinetic energy?

26. A 3.00-kg object has a velocity (6.00 î & 2.00 ĵ) m/s. 
(a) What is its kinetic energy at this time? (b) Find the 
total work done on the object if its velocity changes to
(8.00 î ) 4.00 ĵ) m/s. (Note: From the definition of the dot
product, v2 # v ! v.)

A 2 100-kg pile driver is used to drive a steel I-beam into the
ground. The pile driver falls 5.00 m before coming into con-
tact with the top of the beam, and it drives the beam 12.0 cm
farther into the ground before coming to rest. Using energy
considerations, calculate the average force the beam exerts
on the pile driver while the pile driver is brought to rest.

28. A 4.00-kg particle is subject to a total force that varies with
position as shown in Figure P7.13. The particle starts 
from rest at x # 0. What is its speed at (a) x # 5.00 m, 
(b) x # 10.0 m, (c) x # 15.0 m?

29. You can think of the work–kinetic energy theorem as a sec-
ond theory of motion, parallel to Newton’s laws in describ-
ing how outside influences affect the motion of an object.
In this problem, solve parts (a) and (b) separately from
parts (c) and (d) to compare the predictions of the two

27.
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Figure P7.20

compression of the leaf spring for a load of 5.00 * 105 N?
(b) How much work is done in compressing the springs?

18. A 100-g bullet is fired from a rifle having a barrel 0.600 m
long. Assuming the origin is placed where the bullet be-
gins to move, the force (in newtons) exerted by the ex-
panding gas on the bullet is 15 000 ) 10 000x & 25 000x2,
where x is in meters. (a) Determine the work done by the
gas on the bullet as the bullet travels the length of the bar-
rel. (b) What If? If the barrel is 1.00 m long, how much
work is done, and how does this value compare to the
work calculated in (a)?

If it takes 4.00 J of work to stretch a Hooke’s-law spring
10.0 cm from its unstressed length, determine the extra
work required to stretch it an additional 10.0 cm.

20. A small particle of mass m is pulled to the top of a fric-
tionless half-cylinder (of radius R) by a cord that passes
over the top of the cylinder, as illustrated in Figure
P7.20. (a) If the particle moves at a constant speed, show
that F # mg cos !. (Note: If the particle moves at constant
speed, the component of its acceleration tangent to the
cylinder must be zero at all times.) (b) By directly inte-
grating , find the work done in moving the
particle at constant speed from the bottom to the top of
the half-cylinder.

W # $F$dr

19.

21. A light spring with spring constant 1 200 N/m is hung
from an elevated support. From its lower end a second
light spring is hung, which has spring constant 1 800 N/m.
An object of mass 1.50 kg is hung at rest from the lower
end of the second spring. (a) Find the total extension dis-
tance of the pair of springs. (b) Find the effective spring
constant of the pair of springs as a system. We describe
these springs as in series.



212 CHAPTE R  7 •  Energy and Energy Transfer

theories. In a rifle barrel, a 15.0-g bullet is accelerated from
rest to a speed of 780 m/s. (a) Find the work that is done
on the bullet. (b) If the rifle barrel is 72.0 cm long, find
the magnitude of the average total force that acted on it, as
F # W/("r cos !). (c) Find the constant acceleration of a
bullet that starts from rest and gains a speed of 
780 m/s over a distance of 72.0 cm. (d) If the bullet has
mass 15.0 g, find the total force that acted on it as F # ma.

30. In the neck of the picture tube of a certain black-and-white
television set, an electron gun contains two charged metallic
plates 2.80 cm apart. An electric force accelerates each elec-
tron in the beam from rest to 9.60% of the speed of light
over this distance. (a) Determine the kinetic energy of the
electron as it leaves the electron gun. Electrons carry this en-
ergy to a phosphorescent material on the inner surface of
the television screen, making it glow. For an electron passing
between the plates in the electron gun, determine (b) the
magnitude of the constant electric force acting on the elec-
tron, (c) the acceleration, and (d) the time of flight.

Section 7.7 Situations Involving Kinetic Friction
A 40.0-kg box initially at rest is pushed 5.00 m along a rough,
horizontal floor with a constant applied horizontal force of
130 N. If the coefficient of friction between box and floor is
0.300, find (a) the work done by the applied force, (b) the
increase in internal energy in the box-floor system due to
friction, (c) the work done by the normal force, (d) the work
done by the gravitational force, (e) the change in kinetic en-
ergy of the box, and (f) the final speed of the box.

32. A 2.00-kg block is attached to a spring of force constant
500 N/m as in Figure 7.10. The block is pulled 5.00 cm to
the right of equilibrium and released from rest. Find the
speed of the block as it passes through equilibrium if 
(a) the horizontal surface is frictionless and (b) the coeffi-
cient of friction between block and surface is 0.350.

A crate of mass 10.0 kg is pulled up a rough incline with
an initial speed of 1.50 m/s. The pulling force is 100 N
parallel to the incline, which makes an angle of 20.0° with
the horizontal. The coefficient of kinetic friction is 0.400,
and the crate is pulled 5.00 m. (a) How much work is done
by the gravitational force on the crate? (b) Determine the
increase in internal energy of the crate–incline system due
to friction. (c) How much work is done by the 100-N force
on the crate? (d) What is the change in kinetic energy of
the crate? (e) What is the speed of the crate after being
pulled 5.00 m?

34. A 15.0-kg block is dragged over a rough, horizontal sur-
face by a 70.0-N force acting at 20.0° above the horizontal.
The block is displaced 5.00 m, and the coefficient of ki-
netic friction is 0.300. Find the work done on the block by
(a) the 70-N force, (b) the normal force, and (c) the gravi-
tational force. (d) What is the increase in internal energy
of the block-surface system due to friction? (e) Find the to-
tal change in the block’s kinetic energy.

A sled of mass m is given a kick on a frozen pond.
The kick imparts to it an initial speed of 2.00 m/s. The co-
efficient of kinetic friction between sled and ice is 0.100.
Use energy considerations to find the distance the sled
moves before it stops.

35.

33.

31.

#

Section 7.8 Power
36. The electric motor of a model train accelerates the train

from rest to 0.620 m/s in 21.0 ms. The total mass of the
train is 875 g. Find the average power delivered to the
train during the acceleration.

A 700-N Marine in basic training climbs a 10.0-m ver-
tical rope at a constant speed in 8.00 s. What is his power
output?

38. Make an order-of-magnitude estimate of the power a car
engine contributes to speeding the car up to highway
speed. For concreteness, consider your own car if you use
one. In your solution state the physical quantities you take
as data and the values you measure or estimate for them.
The mass of the vehicle is given in the owner’s manual. If
you do not wish to estimate for a car, consider a bus or
truck that you specify.

39. A skier of mass 70.0 kg is pulled up a slope by a motor-
driven cable. (a) How much work is required to pull him a
distance of 60.0 m up a 30.0° slope (assumed frictionless)
at a constant speed of 2.00 m/s? (b) A motor of what
power is required to perform this task?

40. A 650-kg elevator starts from rest. It moves upward for 
3.00 s with constant acceleration until it reaches its cruis-
ing speed of 1.75 m/s. (a) What is the average power of
the elevator motor during this period? (b) How does this
power compare with the motor power when the elevator
moves at its cruising speed?

41. An energy-efficient lightbulb, taking in 28.0 W of power,
can produce the same level of brightness as a conven-
tional bulb operating at power 100 W. The lifetime of
the energy efficient bulb is 10 000 h and its purchase
price is $17.0, whereas the conventional bulb has life-
time 750 h and costs $0.420 per bulb. Determine the to-
tal savings obtained by using one energy-efficient bulb
over its lifetime, as opposed to using conventional bulbs
over the same time period. Assume an energy cost of
$0.080 0 per kilowatt-hour.

42. Energy is conventionally measured in Calories as well as in
joules. One Calorie in nutrition is one kilocalorie, defined
as 1 kcal # 4 186 J. Metabolizing one gram of fat can re-
lease 9.00 kcal. A student decides to try to lose weight by
exercising. She plans to run up and down the stairs in a
football stadium as fast as she can and as many times as
necessary. Is this in itself a practical way to lose weight? To
evaluate the program, suppose she runs up a flight of 80
steps, each 0.150 m high, in 65.0 s. For simplicity, ignore
the energy she uses in coming down (which is small). As-
sume that a typical efficiency for human muscles is 20.0%.
This means that when your body converts 100 J from me-
tabolizing fat, 20 J goes into doing mechanical work (here,
climbing stairs). The remainder goes into extra internal
energy. Assume the student’s mass is 50.0 kg. (a) How
many times must she run the flight of stairs to lose one
pound of fat? (b) What is her average power output, in
watts and in horsepower, as she is running up the stairs?

43. For saving energy, bicycling and walking are far more effi-
cient means of transportation than is travel by automobile.
For example, when riding at 10.0 mi/h a cyclist uses food
energy at a rate of about 400 kcal/h above what he would

37.
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use if merely sitting still. (In exercise physiology, power is
often measured in kcal/h rather than in watts. Here 
1 kcal # 1 nutritionist’s Calorie # 4 186 J.) Walking at 
3.00 mi/h requires about 220 kcal/h. It is interesting to
compare these values with the energy consumption re-
quired for travel by car. Gasoline yields about 1.30 *
108 J/gal. Find the fuel economy in equivalent miles per
gallon for a person (a) walking, and (b) bicycling.

Section 7.9 Energy and the Automobile
44. Suppose the empty car described in Table 7.2 has a fuel

economy of 6.40 km/liter (15 mi/gal) when traveling at
26.8 m/s (60 mi/h). Assuming constant efficiency, deter-
mine the fuel economy of the car if the total mass of pas-
sengers plus driver is 350 kg.

A compact car of mass 900 kg has an overall motor effi-
ciency of 15.0%. (That is, 15% of the energy supplied by
the fuel is delivered to the wheels of the car.) (a) If burn-
ing one gallon of gasoline supplies 1.34 * 108 J of en-
ergy, find the amount of gasoline used in accelerating
the car from rest to 55.0 mi/h. Here you may ignore the
effects of air resistance and rolling friction. (b) How
many such accelerations will one gallon provide? (c) The
mileage claimed for the car is 38.0 mi/gal at 55 mi/h.
What power is delivered to the wheels (to overcome fric-
tional effects) when the car is driven at this speed?

Additional Problems

46. A baseball outfielder throws a 0.150-kg baseball at a speed
of 40.0 m/s and an initial angle of 30.0°. What is the
kinetic energy of the baseball at the highest point of its
trajectory?

47. While running, a person dissipates about 0.600 J of me-
chanical energy per step per kilogram of body mass. If a
60.0-kg runner dissipates a power of 70.0 W during a race,
how fast is the person running? Assume a running step is
1.50 m long.

48. The direction of any vector A in three-dimensional space
can be specified by giving the angles 1, 2, and 3 that the
vector makes with the x, y, and z axes, respectively. If A #
Ax î ) Ay ĵ + Azk̂, (a) find expressions for cos 1, cos 2, and
cos 3 (these are known as direction cosines), and (b) show
that these angles satisfy the relation cos21 ) cos22 )
cos23 # 1. (Hint: Take the scalar product of A with î, ĵ,
and k̂ separately.)

A 4.00-kg particle moves along the x axis. Its position varies
with time according to x # t ) 2.0t 3, where x is in meters
and t is in seconds. Find (a) the kinetic energy at any time
t, (b) the acceleration of the particle and the force acting
on it at time t, (c) the power being delivered to the parti-
cle at time t, and (d) the work done on the particle in the
interval t # 0 to t # 2.00 s.

50. The spring constant of an automotive suspension spring
increases with increasing load due to a spring coil that is
widest at the bottom, smoothly tapering to a smaller diam-
eter near the top. The result is a softer ride on normal
road surfaces from the narrower coils, but the car does not
bottom out on bumps because when the upper coils col-

49.

45.

lapse, they leave the stiffer coils near the bottom to absorb
the load. For a tapered spiral spring that compresses 
12.9 cm with a 1 000-N load and 31.5 cm with a 5 000-N
load, (a) evaluate the constants a and b in the empirical
equation F # axb and (b) find the work needed to com-
press the spring 25.0 cm.

51. A bead at the bottom of a bowl is one example of an ob-
ject in a stable equilibrium position. When a physical sys-
tem is displaced by an amount x from stable equilibrium, 
a restoring force acts on it, tending to return the system 
to its equilibrium configuration. The magnitude of the
restoring force can be a complicated function of x. For 
example, when an ion in a crystal is displaced from its 
lattice site, the restoring force may not be a simple func-
tion of x. In such cases we can generally imagine the 
function F(x) to be expressed as a power series in x, as 
F(x) # & (k1x ) k2x2 ) k3x3 ) . . .). The first term here 
is just Hooke’s law, which describes the force exerted by 
a simple spring for small displacements. For small excur-
sions from equilibrium we generally neglect the higher 
order terms, but in some cases it may be desirable to 
keep the second term as well. If we model the restoring
force as F # & (k1x ) k2x2), how much work is done in 
displacing the system from x # 0 to x # xmax by an applied
force & F ?

52. A traveler at an airport takes an escalator up one floor, as
in Figure P7.52. The moving staircase would itself carry
him upward with vertical velocity component v between
entry and exit points separated by height h. However,
while the escalator is moving, the hurried traveler climbs
the steps of the escalator at a rate of n steps/s. Assume that
the height of each step is hs . (a) Determine the amount of
chemical energy converted into mechanical energy by the
traveler’s leg muscles during his escalator ride, given that
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his mass is m. (b) Determine the work the escalator motor
does on this person.

53. A mechanic pushes a car of mass m, doing work W in mak-
ing it accelerate from rest. Neglecting friction between car
and road, (a) what is the final speed of the car? During
this time, the car moves a distance d. (b) What constant
horizontal force did the mechanic exert on the car?

54. A 5.00-kg steel ball is dropped onto a copper plate from a
height of 10.0 m. If the ball leaves a dent 3.20 mm deep,
what is the average force exerted by the plate on the ball
during the impact?

55. A single constant force F acts on a particle of mass m. The
particle starts at rest at t # 0. (a) Show that the instanta-
neous power delivered by the force at any time t is 
! # (F 2/m)t. (b) If F # 20.0 N and m # 5.00 kg, what is
the power delivered at t # 3.00 s?

56. Two springs with negligible masses, one with spring con-
stant k1 and the other with spring constant k2, are attached
to the endstops of a level air track as in Figure P7.56. A
glider attached to both springs is located between them.
When the glider is in equilibrium, spring 1 is stretched by
extension xi1 to the right of its unstretched length and
spring 2 is stretched by xi2 to the left. Now a horizontal
force Fapp is applied to the glider to move it a distance xa
to the right from its equilibrium position. Show that in this
process (a) the work done on spring 1 is k1(xa

2 ) 2xaxi1),
(b) the work done on spring 2 is k2(xa

2 & 2xaxi2), (c) xi2
is related to xi1 by xi2 # k1xi1/k2, and (d) the total work
done by the force Fapp is 

57. As the driver steps on the gas pedal, a car of mass 1 160 kg
accelerates from rest. During the first few seconds of mo-
tion, the car’s acceleration increases with time according
to the expression

(a) What work is done by the wheels on the car during the
interval from t # 0 to t # 2.50 s? (b) What is the output
power of the wheels at the instant t # 2.50 s?

58. A particle is attached between two identical springs on a
horizontal frictionless table. Both springs have spring con-
stant k and are initially unstressed. (a) If the particle is
pulled a distance x along a direction perpendicular to the

a # (1.16 m/s3)t & (0.210 m/s4)t2 ) (0.240 m/s5)t3

1
2(k1 ) k2)xa

2.

1
2

1
2

initial configuration of the springs, as in Figure P7.58,
show that the force exerted by the springs on the particle
is

(b) Determine the amount of work done by this force in
moving the particle from x # A to x # 0.

F # &  2kx  %1 &
L

√x2 ) L2& î
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k2

Fapp

Figure P7.56
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59. A rocket body of mass M will fall out of the sky with ter-
minal speed vT after its fuel is used up. What power out-
put must the rocket engine produce if the rocket is to fly
(a) at its terminal speed straight up; (b) at three times
the terminal speed straight down? In both cases assume
that the mass of the fuel and oxidizer remaining in the
rocket is negligible compared to M. Assume that the
force of air resistance is proportional to the square of
the rocket’s speed.

60. Review problem. Two constant forces act on a 5.00-kg ob-
ject moving in the xy plane, as shown in Figure P7.60.
Force F1 is 25.0 N at 35.0°, while F2 is 42.0 N at 150°. At
time t # 0, the object is at the origin and has velocity
(4.00 î ) 2.50 ĵ) m/s. (a) Express the two forces in unit-
vector notation. Use unit-vector notation for your other
answers. (b) Find the total force on the object. (c) Find
the object’s acceleration. Now, considering the instant
t # 3.00 s, (d) find the object’s velocity, (e) its location,
(f) its kinetic energy from mvf

2, and (g) its kinetic energy
from .1

2mv 2
i ) #F ! "r

1
2
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A 200-g block is pressed against a spring of force con-
stant 1.40 kN/m until the block compresses the spring
10.0 cm. The spring rests at the bottom of a ramp in-
clined at 60.0° to the horizontal. Using energy considera-
tions, determine how far up the incline the block moves
before it stops (a) if there is no friction between the
block and the ramp and (b) if the coefficient of kinetic
friction is 0.400.

62. When different weights are hung on a spring, the
spring stretches to different lengths as shown in the follow-
ing table. (a) Make a graph of the applied force versus the
extension of the spring. By least-squares fitting, determine
the straight line that best fits the data. (You may not want
to use all the data points.) (b) From the slope of the best-
fit line, find the spring constant k. (c) If the spring is
extended to 105 mm, what force does it exert on the sus-
pended weight? 

F (N) 2.0 4.0 6.0 8.0 10 12 14 16 18 20 22
L (mm) 15 32 49 64 79 98 112 126 149 175 190

The ball launcher in a pinball machine has a spring that
has a force constant of 1.20 N/cm (Fig. P7.63). The sur-
face on which the ball moves is inclined 10.0° with respect
to the horizontal. If the spring is initially compressed
5.00 cm, find the launching speed of a 100-g ball when the
plunger is released. Friction and the mass of the plunger
are negligible.

63.

61.

forces at short distances. For many molecules, the
Lennard-Jones law is a good approximation to the magni-
tude of these forces:

where r is the center-to-center distance between the atoms
in the molecule, 4 is a length parameter, and F0 is the
force when r # 4. For an oxygen molecule, we find that
F0 # 9.60 * 10&11 N and 4 # 3.50 * 10&10 m. Determine
the work done by this force if the atoms are pulled apart
from r # 4.00 * 10&10 m to r # 9.00 * 10&10 m.

66. As it plows a parking lot, a snowplow pushes an ever-
growing pile of snow in front of it. Suppose a car moving
through the air is similarly modeled as a cylinder pushing a
growing plug of air in front of it. The originally stationary
air is set into motion at the constant speed v of the cylin-
der, as in Figure P7.66. In a time interval "t, a new disk of
air of mass "m must be moved a distance v"t and hence
must be given a kinetic energy . Using this model,
show that the automobile’s power loss due to air resistance
is /Av3 and that the resistive force acting on the car is

/Av2, where / is the density of air. Compare this result
with the empirical expression D/Av2 for the resistive
force.
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64. A 0.400-kg particle slides around a horizontal track. The
track has a smooth vertical outer wall forming a circle with
a radius of 1.50 m. The particle is given an initial speed of
8.00 m/s. After one revolution, its speed has dropped to
6.00 m/s because of friction with the rough floor of the
track. (a) Find the energy converted from mechanical to
internal in the system due to friction in one revolution.
(b) Calculate the coefficient of kinetic friction. (c) What is
the total number of revolutions the particle makes before
stopping?

65. In diatomic molecules, the constituent atoms exert attrac-
tive forces on each other at large distances and repulsive

F1
F2

150°

35.0°

y

x

Figure P7.60

67. A particle moves along the x axis from x # 12.8 m to
x # 23.7 m under the influence of a force

where F is in newtons and x is in meters. Using numerical
integration, determine the total work done by this force
on the particle during this displacement. Your result
should be accurate to within 2%.

68. A windmill, such as that in the opening photograph of this
chapter, turns in response to a force of high-speed air re-
sistance, R # D/Av2. The power available is ! # Rv #
D/5r2v3, where v is the wind speed and we have assumed

a circular face for the windmill, of radius r. Take the drag
coefficient as D # 1.00 and the density of air from the
front endpaper. For a home windmill with r # 1.50 m,
calculate the power available if (a) v # 8.00 m/s and
(b) v # 24.0 m/s. The power delivered to the generator is
limited by the efficiency of the system, which is about 25%.
For comparison, a typical home needs about 3 kW of elec-
tric power.

69. More than 2 300 years ago the Greek teacher Aristotle
wrote the first book called Physics. Put into more precise
terminology, this passage is from the end of its Section Eta:

1
2

1
2
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Let ! be the power of an agent causing motion; w, the
thing moved; d, the distance covered; and "t, the time
interval required. Then (1) a power equal to ! will in a
period of time equal to "t move w/2 a distance 2d; or (2) it
will move w/2 the given distance d in the time interval
"t/2. Also, if (3) the given power ! moves the given object
w a distance d/2 in time interval "t/2, then (4) !/2 will
move w/2 the given distance d in the given time interval "t. 

(a) Show that Aristotle’s proportions are included in the
equation !"t # bwd where b is a proportionality constant.
(b) Show that our theory of motion includes this part of
Aristotle’s theory as one special case. In particular, de-
scribe a situation in which it is true, derive the equation
representing Aristotle’s proportions, and determine the
proportionality constant.

70. Consider the block-spring-surface system in part (b) of Ex-
ample 7.11. (a) At what position x of the block is its speed
a maximum? (b) In the What If? section of this example,
we explored the effects of an increased friction force of
10.0 N. At what position of the block does its maximum
speed occur in this situation?

Answers to Quick Quizzes

7.1 (a). The force does no work on the Earth because the force
is pointed toward the center of the circle and is therefore
perpendicular to the direction of the displacement.

7.2 c, a, d, b. The work in (c) is positive and of the largest
possible value because the angle between the force and
the displacement is zero. The work done in (a) is zero be-
cause the force is perpendicular to the displacement. In
(d) and (b), negative work is done by the applied force
because in neither case is there a component of the force
in the direction of the displacement. Situation (b) is the
most negative value because the angle between the force
and the displacement is 180°.

7.3 (d). Answer (a) is incorrect because the scalar product
(& A) ! (& B) is equal to A ! B. Answer (b) is incorrect be-

cause AB cos (! ) 180%) gives the negative of the correct
value.

7.4 (d). Because of the range of values of the cosine function,
A ! B has values that range from AB to &AB.

7.5 (a). Because the work done in compressing a spring is
proportional to the square of the compression distance x,
doubling the value of x causes the work to increase four-
fold.

7.6 (b). Because the work is proportional to the square of the
compression distance x and the kinetic energy is propor-
tional to the square of the speed v, doubling the compres-
sion distance doubles the speed.

7.7 (a) For the television set, energy enters by electrical trans-
mission (through the power cord) and electromagnetic ra-
diation (the television signal). Energy leaves by heat (from
hot surfaces into the air), mechanical waves (sound from
the speaker), and electromagnetic radiation (from the
screen). (b) For the gasoline-powered lawn mower, energy
enters by matter transfer (gasoline). Energy leaves by work
(on the blades of grass), mechanical waves (sound), and
heat (from hot surfaces into the air). (c) For the hand-
cranked pencil sharpener, energy enters by work (from
your hand turning the crank). Energy leaves by work (done
on the pencil) and mechanical waves (sound).

7.8 (b). The friction force represents an interaction with the
environment of the block.

7.9 (b). The friction force represents an interaction with the
environment of the surface.

7.10 (a). The friction force is internal to the system, so there
are no interactions with the environment.

7.11 (c). The brakes and the roadway are warmer, so their inter-
nal energy has increased. In addition, the sound of the skid
represents transfer of energy away by mechanical waves.

7.12 (e). Because the speed is doubled, the kinetic energy is four
times as large. This kinetic energy was attained for the
newer car in the same time interval as the smaller kinetic
energy for the older car, so the power is four times as large.
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! A strobe photograph of a pole vaulter. During this process, several types of energy transforma-
tions occur. The two types of potential energy that we study in this chapter are evident in the 
photograph. Gravitational potential energy is associated with the change in vertical position of the
vaulter relative to the Earth. Elastic potential energy is evident in the bending of the pole. (©Harold
E. Edgerton/Courtesy of Palm Press, Inc.)

Chapter 8



In Chapter 7 we introduced the concepts of kinetic energy associated with the motion
of members of a system and internal energy associated with the temperature of a sys-
tem. In this chapter we introduce potential energy, the energy associated with the config-
uration of a system of objects that exert forces on each other.

The potential energy concept can be used only when dealing with a special class of
forces called conservative forces. When only conservative forces act within an isolated sys-
tem, the kinetic energy gained (or lost) by the system as its members change their rela-
tive positions is balanced by an equal loss (or gain) in potential energy. This balancing
of the two forms of energy is known as the principle of conservation of mechanical energy.

Potential energy is present in the Universe in various forms, including gravita-
tional, electromagnetic, chemical, and nuclear. Furthermore, one form of energy in a
system can be converted to another. For example, when a system consists of an electric
motor connected to a battery, the chemical energy in the battery is converted to kinetic
energy as the shaft of the motor turns. The transformation of energy from one form to
another is an essential part of the study of physics, engineering, chemistry, biology,
geology, and astronomy.

8.1 Potential Energy of a System

In Chapter 7, we defined a system in general, but focused our attention primarily on
single particles or objects under the influence of an external force. In this chapter, we
consider systems of two or more particles or objects interacting via a force that is inter-
nal to the system. The kinetic energy of such a system is the algebraic sum of the ki-
netic energies of all members of the system. There may be systems, however, in which
one object is so massive that it can be modeled as stationary and its kinetic energy can
be neglected. For example, if we consider a ball–Earth system as the ball falls to the
ground, the kinetic energy of the system can be considered as just the kinetic energy of
the ball. The Earth moves so slowly in this process that we can ignore its kinetic energy.
On the other hand, the kinetic energy of a system of two electrons must include the
kinetic energies of both particles.

Let us imagine a system consisting of a book and the Earth, interacting via the grav-
itational force. We do some work on the system by lifting the book slowly through a
height !y " yb # ya, as in Figure 8.1. According to our discussion of energy and energy
transfer in Chapter 7, this work done on the system must appear as an increase in en-
ergy of the system. The book is at rest before we perform the work and is at rest after
we perform the work. Thus, there is no change in the kinetic energy of the system.
There is no reason why the temperature of the book or the Earth should change, so
there is no increase in the internal energy of the system.

Because the energy change of the system is not in the form of kinetic energy or inter-
nal energy, it must appear as some other form of energy storage. After lifting the book,
we could release it and let it fall back to the position ya . Notice that the book (and, there-
fore, the system) will now have kinetic energy, and its source is in the work that was done
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mg

mg

yb

ya

∆r

Figure 8.1 The work done by an
external agent on the system of the
book and the Earth as the book is
lifted from a height ya to a height yb
is equal to mgyb # mgya.



S ECT I O N  8 . 1 •  Potential Energy of a System 219

in lifting the book. While the book was at the highest point, the energy of the system had
the potential to become kinetic energy, but did not do so until the book was allowed to
fall. Thus, we call the energy storage mechanism before we release the book potential
energy. We will find that a potential energy can only be associated with specific types of
forces. In this particular case, we are discussing gravitational potential energy.

Let us now derive an expression for the gravitational potential energy associated
with an object at a given location above the surface of the Earth. Consider an external
agent lifting an object of mass m from an initial height ya above the ground to a final
height yb, as in Figure 8.1. We assume that the lifting is done slowly, with no accelera-
tion, so that the lifting force can be modeled as being equal in magnitude to the
weight of the object—the object is in equilibrium and moving at constant velocity. The
work done by the external agent on the system (object and Earth) as the object under-
goes this upward displacement is given by the product of the upward applied force
Fapp and the upward displacement !r " !y ĵ :

(8.1)

Notice how similar this equation is to Equation 7.14 in the preceding chapter. In
each equation, the work done on a system equals a difference between the final and
initial values of a quantity. In Equation 7.14, the work represents a transfer of energy
into the system, and the increase in energy of the system is kinetic in form. In Equation
8.1, the work represents a transfer of energy into the system, and the system energy ap-
pears in a different form, which we have called gravitational potential energy.

Thus, we can identify the quantity mgy as the gravitational potential energy Ug :

(8.2)

The units of gravitational potential energy are joules, the same as those of work and ki-
netic energy. Potential energy, like work and kinetic energy, is a scalar quantity. Note
that Equation 8.2 is valid only for objects near the surface of the Earth, where g is ap-
proximately constant.1

Using our definition of gravitational potential energy, Equation 8.1 can now be
rewritten as

(8.3)

which mathematically describes the fact that the work done on the system in this situa-
tion appears as a change in the gravitational potential energy of the system.

The gravitational potential energy depends only on the vertical height of the object
above the surface of the Earth. The same amount of work must be done on an
object–Earth system whether the object is lifted vertically from the Earth or is pushed
starting from the same point up a frictionless incline, ending up at the same height.
This can be shown by calculating the work with a displacement having both vertical
and horizontal components:

where there is no term involving x in the final result because ĵ $ î " 0.
In solving problems, you must choose a reference configuration for which the grav-

itational potential energy is set equal to some reference value, which is normally zero.
The choice of reference configuration is completely arbitrary because the important
quantity is the difference in potential energy and this difference is independent of the
choice of reference configuration.

It is often convenient to choose as the reference configuration for zero potential
energy the configuration in which an object is at the surface of the Earth, but this is
not essential. Often, the statement of the problem suggests a convenient configuration
to use.

W " (Fapp) $!r " (mg ĵ) $[(x b # x a)î % (yb # ya) ĵ] " mgyb # mgya

W " !Ug

Ug  
! mgy

W " (Fapp) ! !r " (mg ĵ) ! [(yb # ya) ĵ] " mgyb # mgya

! PITFALL PREVENTION
8.1 Potential Energy

Belongs to a System
Potential energy is always associ-
ated with a system of two or more
interacting objects. When a small
object moves near the surface of
the Earth under the influence of
gravity, we may sometimes refer
to the potential energy “associ-
ated with the object” rather than
the more proper “associated with
the system” because the Earth
does not move significantly. We
will not, however, refer to the po-
tential energy “of the object” be-
cause this clearly ignores the role
of the Earth.

Gravitational potential energy

1 The assumption that g is constant is valid as long as the vertical displacement is small com-
pared with the Earth’s radius.
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8.2 The Isolated System–Conservation 
of Mechanical Energy

The introduction of potential energy allows us to generate a powerful and universally
applicable principle for solving problems that are difficult to solve with Newton’s laws.
Let us develop this new principle by thinking about the book–Earth system in Figure
8.1 again. After we have lifted the book, there is gravitational potential energy stored in
the system, which we can calculate from the work done by the external agent on the
system, using W " !Ug.

Let us now shift our focus to the work done on the book alone by the gravita-
tional force (Fig. 8.2) as the book falls back to its original height. As the book
falls from yb to ya, the work done by the gravitational force on the book is

(8.4)

From the work–kinetic energy theorem of Chapter 7, the work done on the book is
equal to the change in the kinetic energy of the book:

Won book " !K book

Won book " (mg) ! !r " (#  mg ĵ) ! [(ya # yb) ĵ] " mgyb # mgya

Example 8.1 The Bowler and the Sore Toe

A bowling ball held by a careless bowler slips from the
bowler’s hands and drops on the bowler’s toe. Choosing floor
level as the y " 0 point of your coordinate system, estimate
the change in gravitational potential energy of the ball–Earth
system as the ball falls. Repeat the calculation, using the top
of the bowler’s head as the origin of coordinates.

Solution First, we need to estimate a few values. A bowling
ball has a mass of approximately 7 kg, and the top of a
person’s toe is about 0.03 m above the floor. Also, we shall
assume the ball falls from a height of 0.5 m. Keeping
nonsignificant digits until we finish the problem, we
calculate the gravitational potential energy of the ball–Earth
system just before the ball is released to be Ui " mgyi "
(7 kg)(9.80 m/s2)(0.5 m) " 34.3 J. A similar calculation for

when the ball reaches his toe gives Uf " mgyf "
(7 kg)(9.80 m/s2)(0.03 m) " 2.06 J. So, the change in gravi-
tational potential energy of the ball–Earth system is
!Ug " Uf # Ui " # 32.24 J. We should probably keep only
one digit because of the roughness of our estimates; thus, we
estimate that the change in gravitational potential energy
is # 30 J. The system had 30 J of gravitational potential energy
relative to the top of the toe before the ball began its fall.

When we use the bowler’s head (which we estimate to be
1.50 m above the floor) as our origin of coordinates, we find
that Ui " mgyi " (7 kg)(9.80 m/s2)(# 1 m) " # 68.6 J and
Uf " mgyf " (7 kg)(9.80 m/s2)(# 1.47 m) " # 100.8 J. The
change in gravitational potential energy of the ball–Earth 

system is !Ug " Uf # Ui " # 32.24 J " This is 

the same value as before, as it must be.

# 30 J.

Quick Quiz 8.1 Choose the correct answer. The gravitational potential energy
of a system (a) is always positive (b) is always negative (c) can be negative or positive.

Quick Quiz 8.2 An object falls off a table to the floor. We wish to analyze the
situation in terms of kinetic and potential energy. In discussing the kinetic energy of
the system, we (a) must include the kinetic energy of both the object and the Earth 
(b) can ignore the kinetic energy of the Earth because it is not part of the system 
(c) can ignore the kinetic energy of the Earth because the Earth is so massive com-
pared to the object.

Quick Quiz 8.3 An object falls off a table to the floor. We wish to analyze the
situation in terms of kinetic and potential energy. In discussing the potential energy of
the system, we identify the system as (a) both the object and the Earth (b) only the ob-
ject (c) only the Earth.

yb

ya

∆r

Figure 8.2 The work done by the
gravitational force on the book as
the book falls from yb to a height ya
is equal to mgyb # mgya.
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Therefore, equating these two expressions for the work done on the book,

(8.5)

Now, let us relate each side of this equation to the system of the book and the Earth. For
the right-hand side,

where Ug is the gravitational potential energy of the system. For the left-hand side of
Equation 8.5, because the book is the only part of the system that is moving, we see
that !Kbook " !K, where K is the kinetic energy of the system. Thus, with each side of
Equation 8.5 replaced with its system equivalent, the equation becomes

(8.6)

This equation can be manipulated to provide a very important general result for solv-
ing problems. First, we bring the change in potential energy to the left side of the
equation:

(8.7)

On the left, we have a sum of changes of the energy stored in the system. The
right hand is zero because there are no transfers of energy across the boundary of the
system—the book–Earth system is isolated from the environment.

We define the sum of kinetic and potential energies as mechanical energy:

We will encounter other types of potential energy besides gravitational later in the text,
so we can write the general form of the definition for mechanical energy without a sub-
script on U :

(8.8)

where U represents the total of all types of potential energy.
Let us now write the changes in energy in Equation 8.7 explicitly:

(8.9)

For the gravitational situation that we have described, Equation 8.9 can be written as

As the book falls to the Earth, the book–Earth system loses potential energy and gains ki-
netic energy, such that the total of the two types of energy always remains constant.

Equation 8.9 is a statement of conservation of mechanical energy for an iso-
lated system. An isolated system is one for which there are no energy transfers across
the boundary. The energy in such a system is conserved—the sum of the kinetic and
potential energies remains constant. (This statement assumes that no nonconservative
forces act within the system; see Pitfall Prevention 8.2.)

  12mv 2
f  % mgyf "  12mv 2

i % mgyi

Kf % Uf " K i % Ui

(Kf # K i) % (Uf # Ui) " 0

Emech ! K % U

Emech " K % Ug

!K % !Ug " 0

!K " #  !Ug

mgyb # mgya " #  (mgya # mgyb) " #  (Uf # Ui) " # !Ug

!K book " mgyb # mgya

Quick Quiz 8.4 In an isolated system, which of the following is a correct
statement of the quantity that is conserved? (a) kinetic energy (b) potential energy 
(c) kinetic energy plus potential energy (d) both kinetic energy and potential energy.

Mechanical energy of a system 

The mechanical energy of an
isolated, friction-free system is
conserved.

! PITFALL PREVENTION
8.2 Conditions on

Equation 8.6
Equation 8.6 is true for only one
of two categories of forces. These
forces are called conservative forces,
as discussed in the next section.

! PITFALL PREVENTION
8.3 Mechanical Energy in

an Isolated System
Equation 8.9 is not the only state-
ment we can make for an isolated
system. This describes conserva-
tion of mechanical energy only for
the isolated system. We will see
shortly how to include internal
energy. In later chapters, we will
generate new conservation state-
ments (and associated equations)
related to other conserved
quantities.
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Elastic Potential Energy

We are familiar now with gravitational potential energy; let us explore a second type
of potential energy. Consider a system consisting of a block plus a spring, as shown
in Figure 8.4. The force that the spring exerts on the block is given by Fs " # kx. In
the previous chapter, we learned that the work done by an external applied
force Fapp on a system consisting of a block connected to the spring is given by
Equation 7.12:

(8.10)

In this situation, the initial and final x coordinates of the block are measured from its
equilibrium position, x " 0. Again (as in the gravitational case), we see that the work
done on the system is equal to the difference between the initial and final values of an
expression related to the configuration of the system. The elastic potential energy
function associated with the block–spring system is defined by

(8.11)

The elastic potential energy of the system can be thought of as the energy stored in
the deformed spring (one that is either compressed or stretched from its equilibrium
position). To visualize this, consider Figure 8.4, which shows a spring on a frictionless,
horizontal surface. When a block is pushed against the spring (Fig. 8.4b) and the spring
is compressed a distance x, the elastic potential energy stored in the spring is .1

2kx2

Us  !   
1
2kx2

WFapp
"  12 

kx 2
f # 1

2  
kx 2

i

Quick Quiz 8.5 A rock of mass m is dropped to the ground from a height h.
A second rock, with mass 2m, is dropped from the same height. When the second rock
strikes the ground, its kinetic energy is (a) twice that of the first rock (b) four times
that of the first rock (c) the same as that of the first rock (d) half as much as that of the
first rock (e) impossible to determine.

Quick Quiz 8.6 Three identical balls are thrown from the top of a building,
all with the same initial speed. The first is thrown horizontally, the second at some an-
gle above the horizontal, and the third at some angle below the horizontal, as shown in
Figure 8.3. Neglecting air resistance, rank the speeds of the balls at the instant each
hits the ground.

1

3

2

Active Figure 8.3 (Quick Quiz 8.6)
Three identical balls are thrown with the
same initial speed from the top of a 
building.

Elastic potential energy stored
in a spring

At the Active Figures link at
http://www.pse6.com, you can
throw balls at different angles from
the top of the building and compare
the trajectories and the speeds as
the balls hit the ground.
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When the block is released from rest, the spring exerts a force on the block and returns
to its original length. The stored elastic potential energy is transformed into kinetic en-
ergy of the block (Fig. 8.4c).

The elastic potential energy stored in a spring is zero whenever the spring is unde-
formed (x " 0). Energy is stored in the spring only when the spring is either stretched
or compressed. Furthermore, the elastic potential energy is a maximum when the
spring has reached its maximum compression or extension (that is, when #x # is a maxi-
mum). Finally, because the elastic potential energy is proportional to x2, we see that Us
is always positive in a deformed spring.

Active Figure 8.4 (a) An undeformed spring on a frictionless horizontal surface.
(b) A block of mass m is pushed against the spring, compressing it a distance x. 
(c) When the block is released from rest, the elastic potential energy stored in the
spring is transferred to the block in the form of kinetic energy. 

x = 0

x

m

x = 0

v

(c)

(b)

(a)

Us =    kx21
2

Ki = 0

Kf =    mv21
2

Us = 0

m

m

m

Figure 8.5 (Quick Quizzes 8.7 and
8.8) A ball connected to a massless
spring suspended vertically. What
forms of potential energy are
associated with the system when
the ball is displaced downward?

Quick Quiz 8.7 A ball is connected to a light spring suspended vertically, as
shown in Figure 8.5. When displaced downward from its equilibrium position and re-
leased, the ball oscillates up and down. In the system of the ball, the spring, and the Earth,
what forms of energy are there during the motion? (a) kinetic and elastic potential
(b) kinetic and gravitational potential (c) kinetic, elastic potential, and gravitational
potential (d) elastic potential and gravitational potential.

Quick Quiz 8.8 Consider the situation in Quick Quiz 8.7 once again.
In the system of the ball and the spring, what forms of energy are there during the
motion? (a) kinetic and elastic potential (b) kinetic and gravitational potential
(c) kinetic, elastic potential, and gravitational potential (d) elastic potential and
gravitational potential.

At the Active Figures
link at http://www.pse6.com,
you can compress the spring
by varying amounts and
observe the effect on the
block’s speed.
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P R O B L E M - S O LV I N G  H I N T S

Isolated Systems—Conservation of Mechanical Energy
We can solve many problems in physics using the principle of conservation of
mechanical energy. You should incorporate the following procedure when you
apply this principle:

• Define your isolated system, which may include two or more interacting
particles, as well as springs or other structures in which elastic potential energy
can be stored. Be sure to include all components of the system that exert
forces on each other. Identify the initial and final configurations of the system.

• Identify configurations for zero potential energy (both gravitational and
spring). If there is more than one force acting within the system, write an
expression for the potential energy associated with each force.

• If friction or air resistance is present, mechanical energy of the system is not
conserved and the techniques of Section 8.4 must be employed.

• If mechanical energy of the system is conserved, you can write the total energy
Ei " Ki % Ui for the initial configuration. Then, write an expression for the
total energy Ef " Kf % Uf for the final configuration that is of interest.
Because mechanical energy is conserved, you can equate the two total
energies and solve for the quantity that is unknown.

Example 8.2 Ball in Free Fall

A ball of mass m is dropped from a height h above the
ground, as shown in Figure 8.6.

(A) Neglecting air resistance, determine the speed of the
ball when it is at a height y above the ground.

Solution Figure 8.6 and our everyday experience with falling
objects allow us to conceptualize the situation. While we can
readily solve this problem with the techniques of Chapter 2,

let us take an energy approach and categorize this as an en-
ergy problem for practice. To analyze the problem, we identify
the system as the ball and the Earth. Because there is no air re-
sistance and the system is isolated, we apply the principle of
conservation of mechanical energy to the ball–Earth system.

At the instant the ball is released, its kinetic energy is
Ki " 0 and the potential energy of the system is Ui " mgh.
When the ball is at a distance y above the ground, its kinetic
energy is and the potential energy relative to
the ground is Uf " mgy. Applying Equation 8.9, we obtain

The speed is always positive. If we had been asked to find
the ball’s velocity, we would use the negative value of the
square root as the y component to indicate the downward
motion.

(B) Determine the speed of the ball at y if at the instant of
release it already has an initial upward speed vi at the initial
altitude h.

Solution In this case, the initial energy includes kinetic en-
ergy equal to and Equation 8.9 gives

 12 mvf
2 % mgy " 1

2 mvi
2 % mgh

 12 
mvi

2

√2g(h # y)vf "

v 2
f " 2g(h # y)

 12 mv 2
f % mgy " 0 % mgh

Kf % Uf " Ki % Ui

Kf " 1
2mvf

2

h

y
vf

yi = h
Ui = mgh
Ki = 0

y = 0
U = 0

yf = y
Uf = mgy
Kf =   mvf

21
2

Figure 8.6 (Example 8.2) A ball is dropped from a height h
above the ground. Initially, the total energy of the ball–Earth
system is potential energy, equal to mgh relative to the ground.
At the elevation y, the total energy is the sum of the kinetic and
potential energies.

Interactive
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You are designing an apparatus to support an actor of mass
65 kg who is to “fly” down to the stage during the perfor-
mance of a play. You attach the actor’s harness to a 130-kg
sandbag by means of a lightweight steel cable running

smoothly over two frictionless pulleys, as in Figure 8.8a. You
need 3.0 m of cable between the harness and the nearest
pulley so that the pulley can be hidden behind a curtain.
For the apparatus to work successfully, the sandbag must

Note that this result is consistent with the expression
from kinematics, where yi " h. Fur-

thermore, this result is valid even if the initial velocity is at
an angle to the horizontal (Quick Quiz 8.6) for two reasons:
(1) energy is a scalar, and the kinetic energy depends only
on the magnitude of the velocity; and (2) the change in the

vyf 

2 " v 2
yi # 2g(yf # yi)

√v 2
i % 2g (h # y)vf "

v 2
f " v 2

i % 2g(h # y) gravitational potential energy depends only on the change
in position in the vertical direction.

What If? What if the initial velocity vi in part (B) were down-
ward? How would this affect the speed of the ball at position y?

Answer We might be tempted to claim that throwing it
downward would result in it having a higher speed at y than
if we threw it upward. Conservation of mechanical energy,
however, depends on kinetic and potential energies, which
are scalars. Thus, the direction of the initial velocity vector
has no bearing on the final speed.

Example 8.3 The Pendulum

A pendulum consists of a sphere of mass m attached to a
light cord of length L, as shown in Figure 8.7. The sphere is
released from rest at point ! when the cord makes an angle
&A with the vertical, and the pivot at P is frictionless. 

(A) Find the speed of the sphere when it is at the lowest
point ".

Solution The only force that does work on the sphere is
the gravitational force. (The force applied by the cord is al-
ways perpendicular to each element of the displacement
and hence does no work.) Because the pendulum–Earth sys-
tem is isolated, the energy of the system is conserved. As the
pendulum swings, continuous transformation between po-
tential and kinetic energy occurs. At the instant the pendu-
lum is released, the energy of the system is entirely potential
energy. At point " the pendulum has kinetic energy, but
the system has lost some potential energy. At # the system

has regained its initial potential energy, and the kinetic en-
ergy of the pendulum is again zero.

If we measure the y coordinates of the sphere from the
center of rotation, then yA " # L cos &A and yB " # L .
Therefore, UA " # mg L cos &A and UB " # mgL .

Applying the principle of conservation of mechanical en-
ergy to the system gives

(1)

(B) What is the tension TB in the cord at "?

Solution Because the tension force does no work, it does
not enter into an energy equation, and we cannot determine
the tension using the energy method. To find TB , we can ap-
ply Newton’s second law to the radial direction. First, recall
that the centripetal acceleration of a particle moving in a cir-
cle is equal to v 2/r directed toward the center of rotation.
Because r " L in this example, Newton’s second law gives

Substituting Equation (1) into Equation (2) gives the ten-
sion at point " as a function of &A:

"

From Equation (2) we see that the tension at " is greater
than the weight of the sphere. Furthermore, Equation (3)
gives the expected result that TB " mg when the initial angle
&A " 0. Note also that part (A) of this example is catego-
rized as an energy problem while part (B) is categorized as a
Newton’s second law problem.

mg(3 # 2 cos &A )(3)    TB " mg % 2mg (1 # cos &A)

(2)      $ Fr " mg # TB " mar " #m  
vB 

2

L

vB " √2gL(1 # cos &A)

1
2mvB

2 # mgL " 0 # mgL  cos &A

KB % UB " KA % UA

#

"

!

θAL cos θA

L

T

P

m g

θ θ

Figure 8.7 (Example 8.3) If the sphere is released from rest at
the angle &A, it will never swing above this position during its
motion. At the start of the motion, when the sphere is at
position !, the energy of the sphere–Earth system is entirely
potential. This initial potential energy is transformed into
kinetic energy when the sphere is at the lowest elevation ". As
the sphere continues to move along the arc, the energy again
becomes entirely potential energy when the sphere is at #.

Example 8.4 A Grand Entrance

Compare the effect of upward, downward, and zero initial velocities at the Interactive Worked Example link at
http://www.pse6.com.

Interactive
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never lift above the floor as the actor swings from above the
stage to the floor. Let us call the initial angle that the actor’s
cable makes with the vertical &. What is the maximum value
& can have before the sandbag lifts off the floor?

Solution We must use several concepts to solve this prob-
lem. To conceptualize, imagine what happens as the actor
approaches the bottom of the swing. At the bottom, the
cable is vertical and must support his weight as well as
provide centripetal acceleration of his body in the upward
direction. At this point, the tension in the cable is the
highest and the sandbag is most likely to lift off the floor.
Looking first at the swinging of the actor from the
initial point to the lowest point, we categorize this as an
energy problem involving an isolated system—the actor
and the Earth. We use the principle of conservation of me-
chanical energy for the system to find the actor’s speed as
he arrives at the floor as a function of the initial angle &
and the radius R of the circular path through which he
swings.

Applying conservation of mechanical energy to the 
actor–Earth system gives

(1)   1
2 mactorv 2

f % 0 " 0 % mactor gyi  
 Kf % Uf " Ki % Ui

where yi is the initial height of the actor above the floor and
vf is the speed of the actor at the instant before he lands.
(Note that Ki " 0 because he starts from rest and that
Uf " 0 because we define the configuration of the actor at
the floor as having a gravitational potential energy of zero.)
From the geometry in Figure 8.8a, and noting that yf " 0, we
see that yi " R # R cos & " R(1 # cos &). Using this relation-
ship in Equation (1), we obtain

Next, we focus on the instant the actor is at the lowest
point. Because the tension in the cable is transferred as a
force applied to the sandbag, we categorize the situation at
this instant as a Newton’s second law problem. We apply
Newton’s second law to the actor at the bottom of his path,
using the free-body diagram in Figure 8.8b as a guide:

Finally, we note that the sandbag lifts off the floor when
the upward force exerted on it by the cable exceeds the
gravitational force acting on it; the normal force is zero
when this happens. Thus, when we focus our attention on
the sandbag, we categorize this part of the situation as an-
other Newton’s second law problem. A force T of the magni-
tude given by Equation (3) is transmitted by the cable to the
sandbag. If the sandbag is to be just lifted off the floor, the
normal force on it becomes zero and we require that 
T " mbagg, as in Figure 8.8c. Using this condition together
with Equations (2) and (3), we find that

Solving for cos & and substituting in the given parameters,
we obtain

Note that we had to combine techniques from different ar-
eas of our study—energy and Newton’s second law. Further-
more, we see that the length R of the cable from the actor’s
harness to the leftmost pulley did not appear in the final al-
gebraic equation. Thus, the final answer is independent of R.

What If? What if a stagehand locates the sandbag so that
the cable from the sandbag to the right-hand pulley in Figure
8.8a is not vertical but makes an angle ' with the vertical? If
the actor swings from the angle found in the solution above,
will the sandbag lift off the floor? Assume that the length R
remains the same.

Answer In this situation, the gravitational force acting on
the sandbag is no longer parallel to the cable. Thus, only a
component of the force in the cable acts against the gravita-
tional force, and the vertical resultant of this force compo-
nent and the gravitational force should be downward. As a

& " 60(

cos & "
3mactor # mbag

2mactor
"

3(65 kg) # 130 kg
2(65 kg)

" 0.50

mbagg " mactorg % mactor 
2gR(1 # cos &)

R

(3)      T " mactorg % mactor
v 2

f

R

$ Fy " T # mactorg " m actor
v 2

f

R

(2)      v 2
f " 2gR(1 # cos &)

(a)

θ
R

Actor Sandbag

(b)

mactor

mactorg

T

m bag

m bagg

(c)

T

yi

Figure 8.8 (Example 8.4) (a) An actor uses some clever stag-
ing to make his entrance. (b) Free-body diagram for the actor
at the bottom of the circular path. (c) Free-body diagram for
the sandbag.
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The launching mechanism of a toy gun consists of a spring
of unknown spring constant (Fig. 8.9a). When the spring is

compressed 0.120 m, the gun, when fired vertically, is able
to launch a 35.0-g projectile to a maximum height of 20.0 m
above the position of the projectile before firing.

(A) Neglecting all resistive forces, determine the spring
constant.

Solution Because the projectile starts from rest, its initial ki-
netic energy is zero. If we take the zero configuration for the
gravitational potential energy of the projectile–spring–Earth
system to be when the projectile is at the lowest position xA,
then the initial gravitational potential energy of the system
also is zero. The mechanical energy of this system is con-
served because the system is isolated.

Initially, the only mechanical energy in the system 
is the elastic potential energy stored in the spring of the
gun, , where the compression of the spring is
x " 0.120 m. The projectile rises to a maximum height
xC " h " 20.0 m, and so the final gravitational potential en-
ergy of the system when the projectile reaches its peak is
mgh. The final kinetic energy of the projectile is zero, and
the final elastic potential energy stored in the spring is zero.
Because the mechanical energy of the system is conserved,
we find that

953 N/m"

k "
2mgh

x2 "
2(0.035 0 kg)(9.80 m/s2)(20.0 m)

(0.120 m)2

0 % mgh % 0 " 0 % 0 % 1
2 kx2

KC % Ug C % UsC " KA % Ug A % UsA

EC " EA

UsA " 1
2kx 2

result, there should be a nonzero normal force to balance
this resultant, and the sandbag should not lift off the floor.

If the sandbag is in equilibrium in the y direction and the
normal force from the floor goes to zero, Newton’s second
law gives us T cos ' " mbagg. In this case, Equation (3) gives 

Substituting for vf from Equation (2) gives

Solving for cos &, we have

For ' " 0, which is the situation in Figure 8.8a, cos ' " 1.
For nonzero values of ', the term cos ' is smaller than 1.

(4)      cos & "   

3mactor #
mbag

cos '
2mactor

mbagg
cos '

" mactorg % mactor
2gR(1 # cos &)

R

 
mbagg
cos '

" mactorg % mactor
v 2f

R

This makes the numerator of the fraction in Equation (4)
smaller, which makes the angle & larger. Thus, the sandbag
remains on the floor if the actor swings from a larger angle.
If he swings from the original angle, the sandbag remains
on the floor. For example, suppose ' " 10°. Then, Equa-
tion (4) gives

Thus, if he swings from 60°, he is swinging from an angle be-
low the new maximum allowed angle, and the sandbag re-
mains on the floor.

One factor we have not addressed is the friction force be-
tween the sandbag and the floor. If this is not large enough,
the sandbag may break free and start to slide horizontally as
the actor reaches some point in his swing. This will cause the
length R to increase, and the actor may have a frightening
moment as he begins to drop in addition to swinging!

cos & "

3(65 kg) #
130 kg
cos 10°

2(65 kg)
" 0.48 99: & " 61(

Example 8.5 The Spring-Loaded Popgun

(a)

v

(b)

x x
xA = 0

!

"

xB = 0.120 m

xC = 20.0 m#

Figure 8.9 (Example 8.5) A spring-loaded popgun.

Let the actor fly or crash without injury to people at the Interactive Worked Example link at http://www.pse6.com.
You may choose to include the effect of friction between the sandbag and the floor.
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8.3 Conservative and Nonconservative Forces

As an object moves downward near the surface of the Earth, the work done by the grav-
itational force on the object does not depend on whether it falls vertically or slides
down a sloping incline. All that matters is the change in the object’s elevation. How-
ever, the energy loss due to friction on that incline depends on the distance the object
slides. In other words, the path makes no difference when we consider the work done
by the gravitational force, but it does make a difference when we consider the energy
loss due to friction forces. We can use this varying dependence on path to classify
forces as either conservative or nonconservative.

Of the two forces just mentioned, the gravitational force is conservative and the
friction force is nonconservative.

Conservative Forces

Conservative forces have these two equivalent properties:

1. The work done by a conservative force on a particle moving between any two points
is independent of the path taken by the particle.

2. The work done by a conservative force on a particle moving through any closed path
is zero. (A closed path is one in which the beginning and end points are identical.)

The gravitational force is one example of a conservative force, and the force that a
spring exerts on any object attached to the spring is another. As we learned in the pre-
ceding section, the work done by the gravitational force on an object moving between
any two points near the Earth’s surface is Wg " mgyi # mgyf. From this equation, we see
that Wg depends only on the initial and final y coordinates of the object and hence is
independent of the path. Furthermore, Wg is zero when the object moves over any
closed path (where yi " yf).

For the case of the object–spring system, the work Ws done by the spring force is
given by (Eq. 7.11). Again, we see that the spring force is conserva-
tive because Ws depends only on the initial and final x coordinates of the object and is
zero for any closed path.

We can associate a potential energy for a system with any conservative force acting
between members of the system and can do this only for conservative forces. In the
previous section, the potential energy associated with the gravitational force was de-
fined as Ug ! mgy. In general, the work Wc done by a conservative force on an object
that is a member of a system as the object moves from one position to another is equal
to the initial value of the potential energy of the system minus the final value:

(8.12)Wc " Ui # Uf " # !U

Ws " 1
2kx 2

i # 1
2kx 2

f

(B) Find the speed of the projectile as it moves through the
equilibrium position of the spring (where xB " 0.120 m) as
shown in Figure 8.9b.

Solution As already noted, the only mechanical energy in
the system at ! is the elastic potential energy . The total
energy of the system as the projectile moves through the
equilibrium position of the spring includes the kinetic en-
ergy of the projectile and the gravitational potential
energy mgxB of the system. Hence, the principle of conserva-
tion of mechanical energy in this case gives

EB " EA

1
2mvB

2

1
2kx2

Solving for vB gives

19.7 m/s"

 " √ (953 N/m)(0.120 m)2

(0.0350 kg)
# 2(9.80 m/s2)(0.120 m)

vB " √ kx2

m
# 2gxB

1
2 mv 2

B % mgxB % 0 " 0 % 0 % 1
2 kx2

KB % Ug  B % Us B " KA % Ug A % UsA

Properties of a conservative
force

! PITFALL PREVENTION
8.4 Similar Equation

Warning
Compare Equation 8.12 to Equa-
tion 8.3. These equations are simi-
lar except for the negative sign,
which is a common source of con-
fusion. Equation 8.3 tells us that
the work done by an outside agent
on a system causes an increase in
the potential energy of the system
(with no change in the kinetic or
internal energy). Equation 8.12
states that work done on a compo-
nent of a system by a conservative force
internal to an isolated system causes a
decrease in the potential energy
of the system (with a correspond-
ing increase in kinetic energy).
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This equation should look familiar to you. It is the general form of the equation for
work done by the gravitational force (Eq. 8.4) as an object moves relative to the Earth
and that for the work done by the spring force (Eq. 7.11) as the extension of the
spring changes. 

Nonconservative Forces

A force is nonconservative if it does not satisfy properties 1 and 2 for conservative
forces. Nonconservative forces acting within a system cause a change in the mechanical
energy Emech of the system. We have defined mechanical energy as the sum of the ki-
netic and all potential energies. For example, if a book is sent sliding on a horizontal
surface that is not frictionless, the force of kinetic friction reduces the book’s kinetic
energy. As the book slows down, its kinetic energy decreases. As a result of the friction
force, the temperatures of the book and surface increase. The type of energy associ-
ated with temperature is internal energy, which we introduced in Chapter 7. Only part
of the book’s kinetic energy is transformed to internal energy in the book. The rest ap-
pears as internal energy in the surface. (When you trip and fall while running across a
gymnasium floor, not only does the skin on your knees warm up, so does the floor!)
Because the force of kinetic friction transforms the mechanical energy of a system into
internal energy, it is a nonconservative force.

As an example of the path dependence of the work, consider Figure 8.10. Suppose
you displace a book between two points on a table. If the book is displaced in a straight
line along the blue path between points ! and " in Figure 8.10, you do a certain
amount of work against the kinetic friction force to keep the book moving at a con-
stant speed. Now, imagine that you push the book along the brown semicircular path
in Figure 8.10. You perform more work against friction along this longer path than
along the straight path. The work done depends on the path, so the friction force can-
not be conservative.

8.4 Changes in Mechanical Energy 
for Nonconservative Forces

As we have seen, if the forces acting on objects within a system are conservative, then
the mechanical energy of the system is conserved. However, if some of the forces acting
on objects within the system are not conservative, then the mechanical energy of the
system changes.

Consider the book sliding across the surface in the preceding section. As the book
moves through a distance d, the only force that does work on it is the force of kinetic
friction. This force causes a decrease in the kinetic energy of the book. This decrease
was calculated in Chapter 7, leading to Equation 7.20, which we repeat here:

(8.13)

Suppose, however, that the book is part of a system that also exhibits a change in po-
tential energy. In this case, # fkd is the amount by which the mechanical energy of the
system changes because of the force of kinetic friction. For example, if the book moves
on an incline that is not frictionless, there is a change in both the kinetic energy and
the gravitational potential energy of the book–Earth system. Consequently,

In general, if a friction force acts within a system,

(8.14)

where !U is the change in all forms of potential energy. Notice that Equation 8.14 re-
duces to Equation 8.9 if the friction force is zero.

!E mech " !K % !U " #  fkd

!E mech " !K % !Ug " #  fkd

!K " #  fkd

!

"

Figure 8.10 The work done
against the force of kinetic friction
depends on the path taken as the
book is moved from ! to ". The
work is greater along the red path
than along the blue path. 

Change in mechanical energy of
a system due to friction within
the system
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Quick Quiz 8.9 A block of mass m is projected across a horizontal surface
with an initial speed v. It slides until it stops due to the friction force between the block
and the surface. The same block is now projected across the horizontal surface with an
initial speed 2v. When the block has come to rest, how does the distance from the pro-
jection point compare to that in the first case? (a) It is the same. (b) It is twice as large.
(c) It is four times as large. (d) The relationship cannot be determined.

Quick Quiz 8.10 A block of mass m is projected across a horizontal surface
with an initial speed v. It slides until it stops due to the friction force between the block
and the surface. The surface is now tilted at 30°, and the block is projected up the sur-
face with the same initial speed v. Assume that the friction force remains the same as
when the block was sliding on the horizontal surface. When the block comes to rest
momentarily, how does the decrease in mechanical energy of the block–surface–Earth
system compare to that when the block slid over the horizontal surface? (a) It is the
same. (b) It is larger. (c) It is smaller. (d) The relationship cannot be determined.

P R O B L E M - S O LV I N G  H I N T S

Isolated Systems—Nonconservative Forces
You should incorporate the following procedure when you apply energy methods
to a system in which nonconservative forces are acting:

• Follow the procedure in the first three bullets of the Problem-Solving Hints in
Section 8.2. If nonconservative forces act within the system, the third bullet
should tell you to use the techniques of this section. 

• Write expressions for the total initial and total final mechanical energies of
the system. The difference between the total final mechanical energy and the
total initial mechanical energy equals the change in mechanical energy of
the system due to friction.

Example 8.6 Crate Sliding Down a Ramp

A 3.00-kg crate slides down a ramp. The ramp is 1.00 m in
length and inclined at an angle of 30.0°, as shown in Figure
8.11. The crate starts from rest at the top, experiences a con-
stant friction force of magnitude 5.00 N, and continues to
move a short distance on the horizontal floor after it leaves
the ramp. Use energy methods to determine the speed of
the crate at the bottom of the ramp.

Solution Because vi " 0, the initial kinetic energy of the
crate–Earth system when the crate is at the top of the ramp
is zero. If the y coordinate is measured from the bottom of
the ramp (the final position of the crate, for which the gravi-
tational potential energy of the system is zero) with the up-
ward direction being positive, then yi " 0.500 m. Therefore,
the total mechanical energy of the system when the crate is
at the top is all potential energy:

" (3.00 kg)(9.80 m/s2)(0.500 m) " 14.7 J

Ei " Ki % Ui " 0 % Ui " mgyi

When the crate reaches the bottom of the ramp, the po-
tential energy of the system is zero because the elevation of

30.0°

vf

d = 1.00 m

vi = 0

0.500 m

Figure 8.11 (Example 8.6) A crate slides down a ramp under
the influence of gravity. The potential energy decreases while
the kinetic energy increases. 
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Example 8.7 Motion on a Curved Track

A child of mass m rides on an irregularly curved slide of
height h " 2.00 m, as shown in Figure 8.12. The child starts
from rest at the top.

(A) Determine his speed at the bottom, assuming no friction
is present.

Solution Although you have no experience on totally 
frictionless surfaces, you can conceptualize that your 
speed at the bottom of a frictionless ramp would be 
greater than in the situation in which friction acts. If we
tried to solve this problem with Newton’s laws, we would
have a difficult time because the acceleration of the child
continuously varies in direction due to the irregular shape
of the slide. The child–Earth system is isolated and friction-
less, however, so we can categorize this as a conservation of
energy problem and search for a solution using the energy
approach. (Note that the normal force n does no work on
the child because this force is always perpendicu-
lar to each element of the displacement.) To analyze the 
situation, we measure the y coordinate in the upward di-
rection from the bottom of the slide so that yi " h, yf " 0,
and we obtain

Note that the result is the same as it would be had the child
fallen vertically through a distance h! In this example, 
h " 2.00 m, giving

6.26 m/s"vf " √2gh " √2(9.80 m/s2)(2.00 m)

vf " √2gh

 12 mvf
2 % 0 " 0 % mgh

Kf % Uf " Ki % Ui

the crate is yf " 0. Therefore, the total mechanical energy of
the system when the crate reaches the bottom is all kinetic
energy:

We cannot say that Ei " Ef because a nonconservative force
reduces the mechanical energy of the system. In this case,
Equation 8.14 gives !Emech " # fkd, where d is the distance
the crate moves along the ramp. (Remember that the forces
normal to the ramp do no work on the crate because they
are perpendicular to the displacement.) With fk " 5.00 N
and d " 1.00 m, we have

Applying Equation 8.14 gives

What If? A cautious worker decides that the speed of the
crate when it arrives at the bottom of the ramp may be so large

2.54 m/svf "

vf
2 "

19.4 J
3.00 kg

" 6.47 m2/s2

(2)   1
2 mvf

2 " 14.7 J # 5.00 J " 9.70 J

Ef # Ei " 1
2 mv 2

f # mgyi " #  fkd

(1)    #   fkd " (#  5.00 N)(1.00 m) "#5.00 J

Ef " Kf % Uf " 1
2 mv 2

f % 0

that its contents may be damaged. Therefore, he replaces the
ramp with a longer one such that the new ramp makes an an-
gle of 25° with the ground. Does this new ramp reduce the
speed of the crate as it reaches the ground?

Answer Because the ramp is longer, the friction force will
act over a longer distance and transform more of the me-
chanical energy into internal energy. This reduces the ki-
netic energy of the crate, and we expect a lower speed as it
reaches the ground.

We can find the length d of the new ramp as follows:

Now, Equation (1) becomes

and Equation (2) becomes

leading to

The final speed is indeed lower than in the higher-angle
case.

vf " 2.42 m/s

 12 mv 2
f " 14.7 J # 5.90 J " 8.80 J

# fkd " (#  5.00 N)(1.18 m) " #  5.90 J

sin  25( "
0.500 m

d
9: d "

0.500 m
sin 25(

" 1.18 m

2.00 m

n

Fg = m g

Figure 8.12 (Example 8.7) If the slide is frictionless, the
speed of the child at the bottom depends only on the height of
the slide.
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Example 8.8 Let’s Go Skiing!

(B) If a force of kinetic friction acts on the child, how 
much mechanical energy does the system lose? Assume that 
vf " 3.00 m/s and m " 20.0 kg.

Solution We categorize this case, with friction, as a prob-
lem in which a nonconservative force acts. Hence, mechani-
cal energy is not conserved, and we must use Equation 8.14
to find the loss of mechanical energy due to friction:

Again, !Emech is negative because friction is reducing the
mechanical energy of the system. (The final mechanical en-
ergy is less than the initial mechanical energy.)

What If? Suppose you were asked to find the coefficient of
friction "k for the child on the slide. Could you do this?

#  302 J"

# (20.0 kg)(9.80 m/s2)(2.00 m)

" 1
2 (20.0 kg)(3.00 m/s)2

" (1
2 mv 2

f % 0) # (0 % mgh) "  12 mvf
2 # mgh

!Emech " (Kf % Uf ) # (Ki % Ui)

Answer We can argue that the same final speed could be
obtained by having the child travel down a short slide with
large friction or a long slide with less friction. Thus, there
does not seem to be enough information in the problem to
determine the coefficient of friction.

The energy loss of 302 J must be equal to the product of
the friction force and the length of the slide:

We can also argue that the friction force can be expressed
as )kn, where n is the magnitude of the normal force.
Thus,

If we try to evaluate the coefficient of friction from this rela-
tionship, we run into two problems. First, there is no single
value of the normal force n unless the angle of the slide rela-
tive to the horizontal remains fixed. Even if the angle were
fixed, we do not know its value. The second problem is that
we do not have information about the length d of the slide.
Thus, we cannot find the coefficient of friction from the in-
formation given.

)knd " 302 J

#fkd " #   302 J

A skier starts from rest at the top of a frictionless incline of
height 20.0 m, as shown in Figure 8.13. At the bottom of the
incline, she encounters a horizontal surface where the coef-
ficient of kinetic friction between the skis and the snow is
0.210. How far does she travel on the horizontal surface be-
fore coming to rest, if she simply coasts to a stop?

Solution The system is the skier plus the Earth, and we
choose as our configuration of zero potential energy that in

which the skier is at the bottom of the incline. While the
skier is on the frictionless incline, the mechanical energy of
the system remains constant, and we find, as we did in
Example 8.7, that

Now we apply Equation 8.14 as the skier moves along
the rough horizontal surface from " to #. The change
in mechanical energy along the horizontal surface is

vB " √2gh " √2(9.80 m/s2)(20.0 m) " 19.8 m/s

d

20.0°

20.0 m

x

y

!

" #

Figure 8.13 (Example 8.8) The skier slides down the slope and onto a level surface,
stopping after a distance d from the bottom of the hill. 
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!E mech " # fkd, where d is the horizontal distance trav-
eled by the skier.

To find the distance the skier travels before coming to
rest, we take KC " 0. With vB " 19.8 m/s and the friction
force given by fk " )kn " )kmg, we obtain

!Emech " EC # EB " #  )kmgd

95.2 md "
v B 

2

2)k g
"

(19.8 m/s)2

2(0.210)(9.80 m/s2)
"

" #  )kmgd

(KC % UC) # (KB % UB) " (0 % 0) #  (1
2mv 2

B % 0)

Example 8.9 Block–Spring Collision

A block having a mass of 0.80 kg is given an initial velocity
vA " 1.2 m/s to the right and collides with a spring of negli-
gible mass and force constant k " 50 N/m, as shown in
Figure 8.14.

(A) Assuming the surface to be frictionless, calculate the
maximum compression of the spring after the collision.

Solution Our system in this example consists of the block
and spring. All motion takes place in a horizontal plane,
so we do not need to consider changes in gravitational po-
tential energy. Before the collision, when the block is at
!, it has kinetic energy and the spring is uncompressed,
so the elastic potential energy stored in the spring is zero.
Thus, the total mechanical energy of the system before
the collision is just . After the collision, when the
block is at #, the spring is fully compressed; now the
block is at rest and so has zero kinetic energy, while the
energy stored in the spring has its maximum value

1
2mvA

2

, where the origin of coordinates x " 0 is 
chosen to be the equilibrium position of the spring and
xmax is the maximum compression of the spring, which in
this case happens to be xC . The total mechanical energy of
the system is conserved because no nonconservative forces
act on objects within the system.

Because the mechanical energy of the system is con-
served, the kinetic energy of the block before the collision
equals the maximum potential energy stored in the fully
compressed spring:

"

(B) Suppose a constant force of kinetic friction acts be-
tween the block and the surface, with )k " 0.50. If the
speed of the block at the moment it collides with the spring
is vA " 1.2 m/s, what is the maximum compression xC in
the spring?

Solution In this case, the mechanical energy of the system
is not conserved because a friction force acts on the block.
The magnitude of the friction force is

Therefore, the change in the mechanical energy of the system
due to friction as the block is displaced from the equilibrium
position of the spring (where we have set our origin) to xC is

Substituting this into Equation 8.14 gives

Solving the quadratic equation for xC gives xC " 0.092 m
and xC " # 0.25 m. The physically meaningful root is 
xC " 0.092 m. The negative root does not apply to this sit-
uation because the block must be to the right of the origin
(positive value of x) when it comes to rest. Note that the
value of 0.092 m is less than the distance obtained in the
frictionless case of part (A). This result is what we expect
because friction retards the motion of the system.

25x 2
C % 3.92xC # 0.576 " 0

 12 (50)x 2
C # 1

2 (0.80)(1.2)2 " # 3.92xC

!Emech " Ef # Ei " (0 % 1
2 kx 2

C ) # (1
2 mv 2

A % 0) " #  fkxC

!Emech " #  fkxC " (#  3.92xC)

fk " )kn " )kmg " 0.50(0.80 kg)(9.80 m/s2) " 3.92 N

0.15 m

xmax " √ m
k

 vA " √ 0.80 kg
50 N/m

 (1.2 m/s)

0 % 1
2 kx2

max " 1
2 mv 2

A % 0

KC % UsC " KA % UsA

EC " EA

1
2kx2 " 1

2kx2
max

E = – mvA
21

2

x = 0

(a)

(b)

(c)

vC = 0

(d)

xmax

!

"

#

$

E = – mvB
2 + – kxB

21
2

1
2

E = – mvD
2 = – mvA

21
2

1
2

E = – kxmax
1
2

vA

vB

xB

vD = –vA

2

Figure 8.14 (Example 8.9) A block sliding on a smooth, hori-
zontal surface collides with a light spring. (a) Initially the me-
chanical energy is all kinetic energy. (b) The mechanical energy
is the sum of the kinetic energy of the block and the elastic po-
tential energy in the spring. (c) The energy is entirely potential
energy. (d) The energy is transformed back to the kinetic en-
ergy of the block. The total energy of the system remains con-
stant throughout the motion.
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8.5 Relationship Between Conservative Forces
and Potential Energy

In an earlier section we found that the work done on a member of a system by a conserv-
ative force between the members does not depend on the path taken by the moving
member. The work depends only on the initial and final coordinates. As a consequence,
we can define a potential energy function U such that the work done by a conservative
force equals the decrease in the potential energy of the system. Let us imagine a system
of particles in which the configuration changes due to the motion of one particle along
the x axis. The work done by a conservative force F as a particle moves along the x axis is2

Example 8.10 Connected Blocks in Motion

Two blocks are connected by a light string that passes over a
frictionless pulley, as shown in Figure 8.15. The block of
mass m1 lies on a horizontal surface and is connected to a
spring of force constant k. The system is released from rest
when the spring is unstretched. If the hanging block of mass
m2 falls a distance h before coming to rest, calculate the co-
efficient of kinetic friction between the block of mass m1
and the surface.

Solution The key word rest appears twice in the problem
statement. This suggests that the configurations associated
with rest are good candidates for the initial and final config-
urations because the kinetic energy of the system is zero for
these configurations. (Also note that because we are con-
cerned only with the beginning and ending points of the
motion, we do not need to label events with circled letters as
we did in the previous two examples. Simply using i and f is
sufficient to keep track of the situation.) In this situation,
the system consists of the two blocks, the spring, and the
Earth. We need to consider two forms of potential energy:
gravitational and elastic. Because the initial and final kinetic
energies of the system are zero, !K " 0, and we can write

where !Ug " Ug f # Ugi is the change in the system’s gravitati-
onal potential energy and !Us " Usf # Usi is the change in the
system’s elastic potential energy. As the hanging block falls a
distance h, the horizontally moving block moves the same dis-
tance h to the right. Therefore, using Equation 8.14, we find
that the loss in mechanical energy in the system due to friction
between the horizontally sliding block and the surface is

The change in the gravitational potential energy of the sys-
tem is associated with only the falling block because the ver-
tical coordinate of the horizontally sliding block does not
change. Therefore, we obtain

where the coordinates have been measured from the lowest
position of the falling block.

(3)      !Ug " Ug f # Ug i " 0 # m2gh

(2)      !Emech " # fkh " #  )km1gh  

(1)      !Emech " !Ug % !Us  

The change in the elastic potential energy of the system
is that stored in the spring:

Substituting Equations (2), (3), and (4) into Equation (1)
gives

This setup represents a way of measuring the coefficient
of kinetic friction between an object and some surface. As
you can see from the problem, sometimes it is easier to work
with the changes in the various types of energy rather than
the actual values. For example, if we wanted to calculate the
numerical value of the gravitational potential energy associ-
ated with the horizontally sliding block, we would need to
specify the height of the horizontal surface relative to the
lowest position of the falling block. Fortunately, this is not
necessary because the gravitational potential energy associ-
ated with the first block does not change.

)k "
m2g #

1
2 kh

m1g

# )km 1gh " #  m 2gh % 1
2 kh2

(4)      !Us " Usf # Usi " 1
2 kh2 # 0 

k

h

m1

m2

Figure 8.15 (Example 8.10) As the hanging block moves from
its highest elevation to its lowest, the system loses gravitational
potential energy but gains elastic potential energy in the spring.
Some mechanical energy is lost because of friction between the
sliding block and the surface.

2 For a general displacement, the work done in two or three dimensions also equals # !U,
where U " U(x, y, z). We write this formally as W " %f

i  F ! d r " Ui # Uf .
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(8.15)

where Fx is the component of F in the direction of the displacement. That is, the work
done by a conservative force acting between members of a system equals the negative
of the change in the potential energy associated with that force when the configuration
of the system changes, where the change in the potential energy is defined as 
!U " Uf # Ui. We can also express Equation 8.15 as

(8.16)

Therefore, !U is negative when Fx and dx are in the same direction, as when an object is
lowered in a gravitational field or when a spring pushes an object toward equilibrium.

The term potential energy implies that the system has the potential, or capability, of
either gaining kinetic energy or doing work when it is released under the influence of
a conservative force exerted on an object by some other member of the system. It is of-
ten convenient to establish some particular location xi of one member of a system as
representing a reference configuration and measure all potential energy differences
with respect to it. We can then define the potential energy function as

(8.17)

The value of Ui is often taken to be zero for the reference configuration. It really
does not matter what value we assign to Ui because any nonzero value merely shifts Uf (x)
by a constant amount and only the change in potential energy is physically meaningful.

If the conservative force is known as a function of position, we can use Equation
8.17 to calculate the change in potential energy of a system as an object within the sys-
tem moves from xi to xf .

If the point of application of the force undergoes an infinitesimal displacement
dx, we can express the infinitesimal change in the potential energy of the system dU as

Therefore, the conservative force is related to the potential energy function through
the relationship3

(8.18)

That is, the x component of a conservative force acting on an object within a sys-
tem equals the negative derivative of the potential energy of the system with re-
spect to x.

We can easily check this relationship for the two examples already discussed. In the
case of the deformed spring, , and therefore

which corresponds to the restoring force in the spring (Hooke’s law). Because the
gravitational potential energy function is Ug " mgy, it follows from Equation 8.18 that
Fg " # mg when we differentiate Ug with respect to y instead of x.

We now see that U is an important function because a conservative force can be de-
rived from it. Furthermore, Equation 8.18 should clarify the fact that adding a constant
to the potential energy is unimportant because the derivative of a constant is zero.

Fs " #
dUs

dx
" #

d
dx

 (1
2 kx 2) " #kx

Us " 1
2kx2

 Fx " #
dU
dx

dU " # Fx  dx

Uf  (x) " #%xf

xi

Fx  dx % Ui

!U " Uf # Ui " #  %xf

xi

Fx  dx

Wc " %xf

xi

Fx  dx " #  !U

3 In three dimensions, the expression is, where etc. are partial

derivatives. In the language of vector calculus, F equals the negative of the gradient of the scalar quan-
tity U(x, y, z).

*U
*x

F " #
*U
*x

 î  #
*U
*y

 ĵ  #
*U
*z

 k̂ 

Relation of force between mem-
bers of a system to the potential
energy of the system
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8.6 Energy Diagrams and Equilibrium of a System

The motion of a system can often be understood qualitatively through a graph of its po-
tential energy versus the position of a member of the system. Consider the potential en-
ergy function for a block–spring system, given by . This function is plotted ver-
sus x in Figure 8.16a. (A common mistake is to think that potential energy on the graph
represents height. This is clearly not the case here, where the block is only moving
horizontally.) The force Fs exerted by the spring on the block is related to Us through
Equation 8.18:

As we saw in Quick Quiz 8.11, the x component of the force is equal to the negative of
the slope of the U - versus -x curve. When the block is placed at rest at the equilibrium
position of the spring (x " 0), where Fs " 0, it will remain there unless some external
force Fext acts on it. If this external force stretches the spring from equilibrium, x is
positive and the slope dU/dx is positive; therefore, the force Fs exerted by the spring is
negative and the block accelerates back toward x " 0 when released. If the external
force compresses the spring, then x is negative and the slope is negative; therefore, Fs is
positive and again the mass accelerates toward x " 0 upon release.

From this analysis, we conclude that the x " 0 position for a block–spring system is
one of stable equilibrium. That is, any movement away from this position results in a
force directed back toward x " 0. In general, configurations of stable equilibrium
correspond to those for which U(x) is a minimum.

From Figure 8.16 we see that if the block is given an initial displacement xmax and is
released from rest, its total energy initially is the potential energy stored in the1

2kx 2
max

 Fs " #
dUs

dx
" #  kx

Us " 1
2kx2

Quick Quiz 8.11 What does the slope of a graph of U(x) versus x represent?
(a) the magnitude of the force on the object (b) the negative of the magnitude of the
force on the object (c) the x component of the force on the object (d) the negative of
the x component of the force on the object.

E

–xmax 0

Us

x

(a)

xmax

(b)

m

x = 0

= – kx21
2

Us

xmax

Fs
Active Figure 8.16 (a) Potential energy as
a function of x for the frictionless
block–spring system shown in (b). The
block oscillates between the turning points,
which have the coordinates x " + x max.
Note that the restoring force exerted by
the spring always acts toward x " 0, the
position of stable equilibrium.

Stable equilibrium

At the Active Figures
link at http://www.pse6.com,
you can observe the block
oscillate between its turning
points and trace the
corresponding points on the
potential energy curve for
varying values of k.
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spring. As the block starts to move, the system acquires kinetic energy and loses an
equal amount of potential energy. Because the total energy of the system must remain
constant, the block oscillates (moves back and forth) between the two points
x " #xmax and x " % xmax, called the turning points. In fact, because no energy is lost
(no friction), the block will oscillate between # xmax and % xmax forever. (We discuss
these oscillations further in Chapter 15.) From an energy viewpoint, the energy of the
system cannot exceed therefore, the block must stop at these points and, be-
cause of the spring force, must accelerate toward x " 0.

Another simple mechanical system that has a configuration of stable equilibrium is
a ball rolling about in the bottom of a bowl. Anytime the ball is displaced from its low-
est position, it tends to return to that position when released.

Now consider a particle moving along the x axis under the influence of a conserva-
tive force Fx , where the U -versus-x curve is as shown in Figure 8.17. Once again, Fx " 0 at
x " 0, and so the particle is in equilibrium at this point. However, this is a position of un-
stable equilibrium for the following reason: Suppose that the particle is displaced to
the right (x , 0). Because the slope is negative for x , 0, Fx " # dU/dx is positive, and
the particle accelerates away from x " 0. If instead the particle is at x " 0 and is dis-
placed to the left (x - 0), the force is negative because the slope is positive for x - 0,
and the particle again accelerates away from the equilibrium position. The position 
x " 0 in this situation is one of unstable equilibrium because for any displacement from
this point, the force pushes the particle farther away from equilibrium. The force pushes
the particle toward a position of lower potential energy. A pencil balanced on its point is
in a position of unstable equilibrium. If the pencil is displaced slightly from its absolutely
vertical position and is then released, it will surely fall over. In general, configurations
of unstable equilibrium correspond to those for which U(x) is a maximum.

Finally, a situation may arise where U is constant over some region. This is called a
configuration of neutral equilibrium. Small displacements from a position in this re-
gion produce neither restoring nor disrupting forces. A ball lying on a flat horizontal
surface is an example of an object in neutral equilibrium.

1
2kx 2

max ; 0
x

U

Negative slope
x > 0

Positive slope
x < 0

Figure 8.17 A plot of U versus x for
a particle that has a position of un-
stable equilibrium located at x " 0.
For any finite displacement of the
particle, the force on the particle is
directed away from x " 0.

Example 8.11 Force and Energy on an Atomic Scale

The potential energy associated with the force between two
neutral atoms in a molecule can be modeled by the
Lennard–Jones potential energy function:

where x is the separation of the atoms. The function U(x) con-
tains two parameters . and / that are determined from experi-
ments. Sample values for the interaction between two atoms in
a molecule are . " 0.263 nm and / " 1.51 0 10# 22 J.

(A) Using a spreadsheet or similar tool, graph this function
and find the most likely distance between the two atoms.

Solution We expect to find stable equilibrium when the
two atoms are separated by some equilibrium distance and
the potential energy of the system of two atoms (the mole-
cule) is a minimum. One can minimize the function U(x) by
taking its derivative and setting it equal to zero:

" 4/  & #  12.12

x13 #
#  6.6

x7 ' " 0

dU(x)
dx

" 4/  
d
dx

  &( .

x )
12

# ( .

x )
6' " 0

U(x) " 4/  &( .

x )
12

# ( .

x )
6'

Solving for x—the equilibrium separation of the two atoms
in the molecule—and inserting the given information yields

x "

We graph the Lennard–Jones function on both sides of
this critical value to create our energy diagram, as shown in
Figure 8.18a. Notice that U(x) is extremely large when the
atoms are very close together, is a minimum when the atoms
are at their critical separation, and then increases again as
the atoms move apart. When U(x) is a minimum, the atoms
are in stable equilibrium; this indicates that this is the most
likely separation between them.

(B) Determine Fx(x)—the force that one atom exerts on the
other in the molecule as a function of separation—and ar-
gue that the way this force behaves is physically plausible
when the atoms are close together and far apart.

Solution Because the atoms combine to form a molecule, the
force must be attractive when the atoms are far apart. On the
other hand, the force must be repulsive when the two atoms
are very close together. Otherwise, the molecule would collapse
in on itself. Thus, the force must change sign at the critical sep-
aration, similar to the way spring forces switch sign in the
change from extension to compression. Applying Equation
8.18 to the Lennard–Jones potential energy function gives

2.95 0 10#10 m.

Neutral equilibrium

Unstable equilibrium
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" 4/ & 12.12

x13 #
6.6

x7 '

Fx " #  
dU(x)

dx
"  # 4/  

d
dx &( .

x )
12

# ( .

x )
6' This result is graphed in Figure 8.18b. As expected, the force

is positive (repulsive) at small atomic separations, zero when
the atoms are at the position of stable equilibrium [recall how
we found the minimum of U(x)], and negative (attractive) at
greater separations. Note that the force approaches zero as
the separation between the atoms becomes very great.
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F(10–12 N)
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–6.0

(a)

(b)

Figure 8.18 (Example 8.11) (a) Potential energy curve associated with a molecule.
The distance x is the separation between the two atoms making up the molecule. 
(b) Force exerted on one atom by the other.

If a particle of mass m is at a distance y above the Earth’s surface, the gravitational po-
tential energy of the particle–Earth system is

(8.2)

The elastic potential energy stored in a spring of force constant k is

(8.11)

A reference configuration of the system should be chosen, and this configuration is of-
ten assigned a potential energy of zero.

A force is conservative if the work it does on a particle moving between two points
is independent of the path the particle takes between the two points. Furthermore, a
force is conservative if the work it does on a particle is zero when the particle moves
through an arbitrary closed path and returns to its initial position. A force that does
not meet these criteria is said to be nonconservative.

The total mechanical energy of a system is defined as the sum of the kinetic en-
ergy and the potential energy:

(8.8)Emech ! K % U

Us  !  
1
2 kx2

Ug   !  mgy

S U M M A RY

Take a Practice Test for
this chapter by clicking on
the Practice Test link at
http://www.pse6.com.



the car, and in what form is it after the car stops? Answer
the same question for the case in which the brakes do not
lock, but the wheels continue to turn.

You ride a bicycle. In what sense is your bicycle solar-
powered?

10. In an earthquake, a large amount of energy is “released”
and spreads outward, potentially causing severe damage.
In what form does this energy exist before the earthquake,
and by what energy transfer mechanism does it travel?

A bowling ball is suspended from the ceiling of a lecture
hall by a strong cord. The ball is drawn away from its equi-
librium position and released from rest at the tip of the
demonstrator’s nose as in Figure Q8.11. If the demonstrator
remains stationary, explain why she is not struck by the ball
on its return swing. Would this demonstrator be safe if the
ball were given a push from its starting position at her nose?

12. Roads going up mountains are formed into switchbacks,
with the road weaving back and forth along the face of the
slope such that there is only a gentle rise on any portion of
the roadway. Does this require any less work to be done by
an automobile climbing the mountain compared to dri-
ving on a roadway that is straight up the slope? Why are
switchbacks used?

13. As a sled moves across a flat snow-covered field at constant
velocity, is any work done? How does air resistance enter
into the picture?

14. You are working in a library, reshelving books. You lift a
book from the floor to the top shelf. The kinetic energy
of the book on the floor was zero, and the kinetic energy
of the book on the top shelf is zero, so there is no change

11.

9.

If a system is isolated and if no nonconservative forces are acting on objects inside the
system, then the total mechanical energy of the system is constant:

(8.9)

If nonconservative forces (such as friction) act on objects inside a system, then me-
chanical energy is not conserved. In these situations, the difference between the total
final mechanical energy and the total initial mechanical energy of the system equals
the energy transformed to internal energy by the nonconservative forces.

A potential energy function U can be associated only with a conservative force. If
a conservative force F acts between members of a system while one member moves
along the x axis from xi to xf , then the change in the potential energy of the system
equals the negative of the work done by that force:

(8.16)

Systems can be in three types of equilibrium configurations when the net force on a
member of the system is zero. Configurations of stable equilibrium correspond to
those for which U(x) is a minimum. Configurations of unstable equilibrium corre-
spond to those for which U(x) is a maximum. Neutral equilibrium arises where U is
constant as a member of the system moves over some region.

Uf # Ui " #%xf

xi

 Fx dx

Kf % Uf " K i % Ui
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1. If the height of a playground slide is kept constant, will the
length of the slide or the presence of bumps make any dif-
ference in the final speed of children playing on it? As-
sume the slide is slick enough to be considered friction-
less. Repeat this question assuming friction is present.

2. Explain why the total energy of a system can be either posi-
tive or negative, whereas the kinetic energy is always positive.

One person drops a ball from the top of a building while
another person at the bottom observes its motion. Will
these two people agree on the value of the gravitational
potential energy of the ball–Earth system? On the change
in potential energy? On the kinetic energy?

4. Discuss the changes in mechanical energy of an
object–Earth system in (a) lifting the object, (b) holding
the object at a fixed position, and (c) lowering the object
slowly. Include the muscles in your discussion.

5. In Chapter 7, the work–kinetic energy theorem, W " !K,
was introduced. This equation states that work done on a
system appears as a change in kinetic energy. This is a spe-
cial-case equation, valid if there are no changes in any
other type of energy such as potential or internal. Give
some examples in which work is done on a system, but the
change in energy of the system is not that of kinetic energy.

6. If three conservative forces and one nonconservative force
act within a system, how many potential-energy terms ap-
pear in the equation that describes the system?

7. If only one external force acts on a particle, does it neces-
sarily change the particle’s (a) kinetic energy? (b) velocity?

8. A driver brings an automobile to a stop. If the brakes lock
so that the car skids, where is the original kinetic energy of

3.

Q U E S T I O N S
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in kinetic energy. Yet you did some work in lifting the
book. Is the work–kinetic energy theorem violated?

15. A ball is thrown straight up into the air. At what position is
its kinetic energy a maximum? At what position is the
gravitational potential energy of the ball–Earth system a
maximum?

16. A pile driver is a device used to drive objects into the
Earth by repeatedly dropping a heavy weight on them. By
how much does the energy of the pile driver–Earth system
increase when the weight it drops is doubled? Assume the
weight is dropped from the same height each time.

17. Our body muscles exert forces when we lift, push, run,
jump, and so forth. Are these forces conservative?

18. A block is connected to a spring that is suspended from the
ceiling. If the block is set in motion and air resistance is ne-
glected, describe the energy transformations that occur
within the system consisting of the block, Earth, and spring.

19. Describe the energy transformations that occur during 
(a) the pole vault (b) the shot put (c) the high jump.
What is the source of energy in each case?

20. Discuss the energy transformations that occur during the
operation of an automobile.

21. What would the curve of U versus x look like if a particle
were in a region of neutral equilibrium?

22. A ball rolls on a horizontal surface. Is the ball in stable, un-
stable, or neutral equilibrium?

23. Consider a ball fixed to one end of a rigid rod whose other
end pivots on a horizontal axis so that the rod can rotate
in a vertical plane. What are the positions of stable and un-
stable equilibrium?

Figure Q8.11

Section 8.1 Potential Energy of a System
1. A 1 000-kg roller coaster train is initially at the top of a

rise, at point !. It then moves 135 ft, at an angle of 40.0°
below the horizontal, to a lower point ". (a) Choose point
" to be the zero level for gravitational potential energy.
Find the potential energy of the roller coaster–Earth sys-
tem at points ! and ", and the change in potential en-
ergy as the coaster moves. (b) Repeat part (a), setting the
zero reference level at point !.

2. A 400-N child is in a swing that is attached to ropes 2.00 m
long. Find the gravitational potential energy of the
child–Earth system relative to the child’s lowest position
when (a) the ropes are horizontal, (b) the ropes make a
30.0° angle with the vertical, and (c) the child is at the bot-
tom of the circular arc.

3. A person with a remote mountain cabin plans to install her
own hydroelectric plant. A nearby stream is 3.00 m wide
and 0.500 m deep. Water flows at 1.20 m/s over the brink
of a waterfall 5.00 m high. The manufacturer promises
only 25.0% efficiency in converting the potential energy of
the water–Earth system into electric energy. Find the
power she can generate. (Large-scale hydroelectric plants,
with a much larger drop, are more efficient.)

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide

= coached solution with hints available at http://www.pse6.com = computer useful in solving problem

= paired numerical and symbolic problems

P R O B L E M S

Section 8.2 The Isolated System—Conservation of
Mechanical Energy

4. At 11:00 A.M. on September 7, 2001, more than 1 million
British school children jumped up and down for one
minute. The curriculum focus of the “Giant Jump” was
on earthquakes, but it was integrated with many other
topics, such as exercise, geography, cooperation, testing
hypotheses, and setting world records. Children built
their own seismographs, which registered local effects.
(a) Find the mechanical energy released in the experi-
ment. Assume that 1 050 000 children of average mass
36.0 kg jump twelve times each, raising their centers of
mass by 25.0 cm each time and briefly resting between
one jump and the next. The free-fall acceleration in
Britain is 9.81 m/s2. (b) Most of the energy is converted
very rapidly into internal energy within the bodies of the
children and the floors of the school buildings. Of the
energy that propagates into the ground, most produces
high-frequency “microtremor” vibrations that are rapidly
damped and cannot travel far. Assume that 0.01% of
the energy is carried away by a long-range seismic wave.
The magnitude of an earthquake on the Richter scale is
given by
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where E is the seismic wave energy in joules. According to
this model, what is the magnitude of the demonstration
quake? (It did not register above background noise over-
seas or on the seismograph of the Wolverton Seismic Vault,
Hampshire.)

A bead slides without friction around a loop-the-loop
(Fig. P8.5). The bead is released from a height h " 3.50R.
(a) What is its speed at point !? (b) How large is the nor-
mal force on it if its mass is 5.00 g? 

5.

M "
log E # 4.8

1.5

6. Dave Johnson, the bronze medalist at the 1992 Olympic
decathlon in Barcelona, leaves the ground at the high
jump with vertical velocity component 6.00 m/s. How far
does his center of mass move up as he makes the jump?

7. A glider of mass 0.150 kg moves on a horizontal friction-
less air track. It is permanently attached to one end of a
massless horizontal spring, which has a force constant of
10.0 N/m both for extension and for compression. The
other end of the spring is fixed. The glider is moved to
compress the spring by 0.180 m and then released from
rest. Calculate the speed of the glider (a) at the point
where it has moved 0.180 m from its starting point, so that
the spring is momentarily exerting no force and (b) at the
point where it has moved 0.250 m from its starting point.

8. A loaded ore car has a mass of 950 kg and rolls on rails
with negligible friction. It starts from rest and is pulled up
a mine shaft by a cable connected to a winch. The shaft is
inclined at 30.0° above the horizontal. The car accelerates
uniformly to a speed of 2.20 m/s in 12.0 s and then con-
tinues at constant speed. (a) What power must the winch
motor provide when the car is moving at constant speed?
(b) What maximum power must the winch motor provide?
(c) What total energy transfers out of the motor by work
by the time the car moves off the end of the track, which
is of length 1 250 m?

9. A simple pendulum, which we will consider in detail in
Chapter 15, consists of an object suspended by a string.
The object is assumed to be a particle. The string, with its
top end fixed, has negligible mass and does not stretch. In
the absence of air friction, the system oscillates by swing-
ing back and forth in a vertical plane. If the string is
2.00 m long and makes an initial angle of 30.0° with the

vertical, calculate the speed of the particle (a) at the low-
est point in its trajectory and (b) when the angle is 15.0°.

10. An object of mass m starts from rest and slides a distance d
down a frictionless incline of angle &. While sliding, it con-
tacts an unstressed spring of negligible mass as shown in
Figure P8.10. The object slides an additional distance x as
it is brought momentarily to rest by compression of the
spring (of force constant k). Find the initial separation d
between object and spring.

A block of mass 0.250 kg is placed on top of a light vertical
spring of force constant 5 000 N/m and pushed downward
so that the spring is compressed by 0.100 m. After the
block is released from rest, it travels upward and then
leaves the spring. To what maximum height above the
point of release does it rise?

12. A circus trapeze consists of a bar suspended by two parallel
ropes, each of length !, allowing performers to swing in a
vertical circular arc (Figure P8.12). Suppose a performer
with mass m holds the bar and steps off an elevated plat-
form, starting from rest with the ropes at an angle &i with
respect to the vertical. Suppose the size of the performer’s
body is small compared to the length !, that she does not
pump the trapeze to swing higher, and that air resistance is
negligible. (a) Show that when the ropes make an angle &
with the vertical, the performer must exert a force

in order to hang on. (b) Determine the angle &i for which

mg(3 cos & # 2 cos &i)

11.

h

R

!

Figure P8.5

Figure P8.12

Figure P8.10
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the force needed to hang on at the bottom of the swing is
twice the performer’s weight.

Two objects are connected by a light string passing over a
light frictionless pulley as shown in Figure P8.13. The ob-
ject of mass 5.00 kg is released from rest. Using the princi-
ple of conservation of energy, (a) determine the speed of
the 3.00-kg object just as the 5.00-kg object hits the
ground. (b) Find the maximum height to which the 
3.00-kg object rises.

13.

14. Two objects are connected by a light string passing over a
light frictionless pulley as in Figure P8.13. The object of
mass m1 is released from rest at height h . Using the princi-
ple of conservation of energy, (a) determine the speed of
m2 just as m1 hits the ground. (b) Find the maximum
height to which m2 rises.

15. A light rigid rod is 77.0 cm long. Its top end is pivoted on a
low-friction horizontal axle. The rod hangs straight down
at rest with a small massive ball attached to its bottom end.
You strike the ball, suddenly giving it a horizontal velocity
so that it swings around in a full circle. What minimum
speed at the bottom is required to make the ball go over
the top of the circle?

16. Air moving at 11.0 m/s in a steady wind encounters a
windmill of diameter 2.30 m and having an efficiency of
27.5%. The energy generated by the windmill is used to
pump water from a well 35.0 m deep into a tank 2.30 m
above the ground. At what rate in liters per minute can wa-
ter be pumped into the tank? 

17. A 20.0-kg cannon ball is fired from a cannon with muzzle
speed of 1 000 m/s at an angle of 37.0° with the horizon-
tal. A second ball is fired at an angle of 90.0°. Use the con-
servation of energy principle to find (a) the maximum
height reached by each ball and (b) the total mechanical
energy at the maximum height for each ball. Let y " 0 at
the cannon.

18. A 2.00-kg ball is attached to the bottom end of a length of
fishline with a breaking strength of 10 lb (44.5 N). The top
end of the fishline is held stationary. The ball is released
from rest with the line taut and horizontal (& " 90.0°). At
what angle & (measured from the vertical) will the fishline
break?

19. A daredevil plans to bungee-jump from a balloon 65.0 m
above a carnival midway (Figure P8.19). He will use a uni-
form elastic cord, tied to a harness around his body, to
stop his fall at a point 10.0 m above the ground. Model his
body as a particle and the cord as having negligible mass
and obeying Hooke’s force law. In a preliminary test,
hanging at rest from a 5.00-m length of the cord, he finds
that his body weight stretches it by 1.50 m. He will drop
from rest at the point where the top end of a longer sec-
tion of the cord is attached to the stationary balloon.
(a) What length of cord should he use? (b) What maxi-
mum acceleration will he experience?

20. Review problem. The system shown in Figure P8.20 con-
sists of a light inextensible cord, light frictionless pulleys,
and blocks of equal mass. It is initially held at rest so that
the blocks are at the same height above the ground. The
blocks are then released. Find the speed of block A at the
moment when the vertical separation of the blocks is h. 

Section 8.3 Conservative and Nonconservative Forces

A 4.00-kg particle moves from the origin to position C, hav-
ing coordinates x " 5.00 m and y " 5.00 m. One force on
the particle is the gravitational force acting in the negative
y direction (Fig. P8.21). Using Equation 7.3, calculate the

21.

Figure P8.13 Problems 13 and 14.

h " 4.00 mm2 " 3.00 kg

m1 " 5.00 kg

Figure P8.19

Figure P8.20

A B

Ga
m

m
a
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22. (a) Suppose that a constant force acts on an object. The
force does not vary with time, nor with the position or the
velocity of the object. Start with the general definition for
work done by a force

and show that the force is conservative. (b) As a special
case, suppose that the force N acts on a par-
ticle that moves from O to C in Figure P8.21. Calculate the
work done by F if the particle moves along each one of the
three paths OAC, OBC, and OC. (Your three answers
should be identical.)

A force acting on a particle moving in the xy plane is given
by , where x and y are in meters. The
particle moves from the origin to a final position having
coordinates x " 5.00 m and y " 5.00 m, as in Figure P8.21.
Calculate the work done by F along (a) OAC, (b) OBC,
(c) OC. (d) Is F conservative or nonconservative? Explain.

24. A particle of mass m " 5.00 kg is released from point !
and slides on the frictionless track shown in Figure P8.24.
Determine (a) the particle’s speed at points " and # and
(b) the net work done by the gravitational force in moving
the particle from ! to #.

F " (2y î % x 
2

 ĵ) N
23.

F " (3 î % 4 ĵ)

W " %f

i
F ! dr

Section 8.4 Changes in Mechanical Energy for
Nonconservative Forces

26. At time ti, the kinetic energy of a particle is 30.0 J and the
potential energy of the system to which it belongs is 10.0 J.
At some later time tf, the kinetic energy of the particle is
18.0 J. (a) If only conservative forces act on the particle,
what are the potential energy and the total energy at time
tf ? (b) If the potential energy of the system at time tf is
5.00 J, are there any nonconservative forces acting on the
particle? Explain.

27. In her hand a softball pitcher swings a ball of mass
0.250 kg around a vertical circular path of radius 60.0 cm
before releasing it from her hand. The pitcher maintains a
component of force on the ball of constant magnitude
30.0 N in the direction of motion around the complete
path. The speed of the ball at the top of the circle is
15.0 m/s. If she releases the ball at the bottom of the cir-
cle, what is its speed upon release?

28. An electric scooter has a battery capable of supplying 
120 Wh of energy. If friction forces and other losses ac-
count for 60.0% of the energy usage, what altitude change
can a rider achieve when driving in hilly terrain, if the
rider and scooter have a combined weight of 890 N?

29. The world’s biggest locomotive is the MK5000C, a behe-
moth of mass 160 metric tons driven by the most powerful
engine ever used for rail transportation, a Caterpillar
diesel capable of 5 000 hp. Such a huge machine can pro-
vide a gain in efficiency, but its large mass presents chal-
lenges as well. The engineer finds that the locomotive han-
dles differently from conventional units, notably in
braking and climbing hills. Consider the locomotive
pulling no train, but traveling at 27.0 m/s on a level track
while operating with output power 1 000 hp. It comes to a
5.00% grade (a slope that rises 5.00 m for every 100 m
along the track). If the throttle is not advanced, so that the
power level is held steady, to what value will the speed
drop? Assume that friction forces do not depend on the
speed.

30. A 70.0-kg diver steps off a 10.0-m tower and drops straight
down into the water. If he comes to rest 5.00 m beneath
the surface of the water, determine the average resistance
force exerted by the water on the diver.

The coefficient of friction between the 3.00-kg block
and the surface in Figure P8.31 is 0.400. The system starts
from rest. What is the speed of the 5.00-kg ball when it has
fallen 1.50 m?

31.

Figure P8.21 Problems 21, 22 and 23.

(5.00, 5.00) m
C

B

y

x
AO

Figure P8.24

Figure P8.31

3.20 m

!

"

#

m

2.00 m

5.00 m

25. A single constant force acts on a 4.00-kg
particle. (a) Calculate the work done by this force if the
particle moves from the origin to the point having the vec-
tor position . Does this result depend on
the path? Explain. (b) What is the speed of the particle at
r if its speed at the origin is 4.00 m/s? (c) What is the
change in the potential energy?

r " (2 î # 3 ĵ) m

F " (3 î % 5 ĵ) N

3.00 kg

5.00 kg

work done by the gravitational force in going from O to C
along (a) OAC. (b) OBC. (c) OC. Your results should all be
identical. Why?
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32. A boy in a wheelchair (total mass 47.0 kg) wins a race with
a skateboarder. The boy has speed 1.40 m/s at the crest of
a slope 2.60 m high and 12.4 m long. At the bottom of the
slope his speed is 6.20 m/s. If air resistance and rolling re-
sistance can be modeled as a constant friction force of
41.0 N, find the work he did in pushing forward on his
wheels during the downhill ride.

A 5.00-kg block is set into motion up an inclined plane with
an initial speed of 8.00 m/s (Fig. P8.33). The block comes to
rest after traveling 3.00 m along the plane, which is inclined
at an angle of 30.0° to the horizontal. For this motion deter-
mine (a) the change in the block’s kinetic energy, (b) the
change in the potential energy of the block–Earth system,
and (c) the friction force exerted on the block (assumed to
be constant). (d) What is the coefficient of kinetic friction? 

33.

negligible mass. The coefficient of kinetic friction between
the 50.0 kg block and incline is 0.250. Determine the
change in the kinetic energy of the 50.0-kg block as it
moves from ! to ", a distance of 20.0 m.

37. A 1.50-kg object is held 1.20 m above a relaxed massless
vertical spring with a force constant of 320 N/m. The ob-
ject is dropped onto the spring. (a) How far does it com-
press the spring? (b) What If? How far does it compress
the spring if the same experiment is performed on the
Moon, where g " 1.63 m/s2? (c) What If? Repeat part (a),
but this time assume a constant air-resistance force of
0.700 N acts on the object during its motion.

38. A 75.0-kg skysurfer is falling straight down with terminal
speed 60.0 m/s. Determine the rate at which the
skysurfer–Earth system is losing mechanical energy.

39. A uniform board of length L is sliding along a smooth
(frictionless) horizontal plane as in Figure P8.39a. The
board then slides across the boundary with a rough hori-
zontal surface. The coefficient of kinetic friction between
the board and the second surface is )k. (a) Find the accel-
eration of the board at the moment its front end has trav-
eled a distance x beyond the boundary. (b) The board
stops at the moment its back end reaches the boundary, as
in Figure P8.39b. Find the initial speed v of the board.

Section 8.5 Relationship Between Conservative
Forces and Potential Energy

40. A single conservative force acting on a particle varies as
, where A and B are constants and x is

in meters. (a) Calculate the potential-energy function U(x)
associated with this force, taking U " 0 at x " 0. (b) Find
the change in potential energy and the change in kinetic
energy as the particle moves from x " 2.00 m to
x " 3.00 m.

A single conservative force acts on a 5.00-kg particle.41.

F " (#  Ax % Bx2)î N

34. An 80.0-kg skydiver jumps out of a balloon at an altitude of
1 000 m and opens the parachute at an altitude of 200 m.
(a) Assuming that the total retarding force on the diver is
constant at 50.0 N with the parachute closed and constant
at 3 600 N with the parachute open, what is the speed of
the diver when he lands on the ground? (b) Do you think
the skydiver will be injured? Explain. (c) At what height
should the parachute be opened so that the final speed of
the skydiver when he hits the ground is 5.00 m/s? (d) How
realistic is the assumption that the total retarding force is
constant? Explain.

35. A toy cannon uses a spring to project a 5.30-g soft rubber
ball. The spring is originally compressed by 5.00 cm and
has a force constant of 8.00 N/m. When the cannon is
fired, the ball moves 15.0 cm through the horizontal bar-
rel of the cannon, and there is a constant friction force of
0.032 0 N between the barrel and the ball. (a) With what
speed does the projectile leave the barrel of the cannon?
(b) At what point does the ball have maximum speed? 
(c) What is this maximum speed?

36. A 50.0-kg block and a 100-kg block are connected by a
string as in Figure P8.36. The pulley is frictionless and of

Figure P8.33

3.00 m
vi = 8.00 m/s

30.0°

50.0 kg 100 kg

37.0°
v

!

"

Figure P8.36

(a)

(b)

v Boundary

Figure P8.39

The equation Fx " (2x % 4) N describes the force, where x
is in meters. As the particle moves along the x axis from 
x " 1.00 m to x " 5.00 m, calculate (a) the work done by
this force, (b) the change in the potential energy of the
system, and (c) the kinetic energy of the particle at 
x " 5.00 m if its speed is 3.00 m/s at x " 1.00 m.

42. A potential-energy function for a two-dimensional force is
of the form U " 3x3y # 7x. Find the force that acts at the
point (x, y).

The potential energy of a system of two particles sep-43.
arated by a distance r is given by U(r) " A/r, where A is a
constant. Find the radial force Fr that each particle exerts
on the other.
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Section 8.6 Energy Diagrams and Equilibrium 
of a System 

44. A right circular cone can be balanced on a horizontal sur-
face in three different ways. Sketch these three equilib-
rium configurations, and identify them as positions of sta-
ble, unstable, or neutral equilibrium.

45. For the potential energy curve shown in Figure P8.45, 
(a) determine whether the force Fx is positive, negative, or
zero at the five points indicated. (b) Indicate points of sta-
ble, unstable, and neutral equilibrium. (c) Sketch the
curve for Fx versus x from x " 0 to x " 9.5 m.

have force constant k and each is initially unstressed. (a) If
the particle is pulled a distance x along a direction perpen-
dicular to the initial configuration of the springs, as in
Figure P8.47, show that the potential energy of the system is

(Hint: See Problem 58 in Chapter 7.) (b) Make a plot of
U(x) versus x and identify all equilibrium points. Assume
that L " 1.20 m and k " 40.0 N/m. (c) If the particle is
pulled 0.500 m to the right and then released, what is its
speed when it reaches the equilibrium point x " 0?

U(x) " kx2 % 2kL (L # √x2 % L2)

Additional Problems

48. A block slides down a curved frictionless track and then up
an inclined plane as in Figure P8.48. The coefficient of ki-
netic friction between block and incline is )k. Use energy
methods to show that the maximum height reached by the
block is

ymax "
h

1 % )k  cot &

49. Make an order-of-magnitude estimate of your power out-
put as you climb stairs. In your solution, state the physical
quantities you take as data and the values you measure or
estimate for them. Do you consider your peak power or
your sustainable power?

50. Review problem. The mass of a car is 1 500 kg. The shape
of the body is such that its aerodynamic drag coefficient is
D " 0.330 and the frontal area is 2.50 m2. Assuming that
the drag force is proportional to v2 and neglecting other
sources of friction, calculate the power required to main-
tain a speed of 100 km/h as the car climbs a long hill slop-
ing at 3.20°.

4

U ( J)

!

"
$

%

6

2

0

–2

–4

2 864
x(m)

#

Figure P8.45

46. A particle moves along a line where the potential energy of
its system depends on its position r as graphed in
Figure P8.46. In the limit as r increases without bound, U(r)
approaches %1 J. (a) Identify each equilibrium position for
this particle. Indicate whether each is a point of stable, un-
stable, or neutral equilibrium. (b) The particle will be
bound if the total energy of the system is in what range?
Now suppose that the system has energy #3 J. Determine
(c) the range of positions where the particle can be found,
(d) its maximum kinetic energy, (e) the location where it
has maximum kinetic energy, and (f) the binding energy of
the system—that is, the additional energy that it would have
to be given in order for the particle to move out to r : 1 .

0
r(mm)

+2

U( J)
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+6
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–4

–6

2 4 6

Figure P8.46

Figure P8.48

47. A particle of mass 1.18 kg is attached between two identical
springs on a horizontal frictionless tabletop. The springs

Top View

L

L

x m

k

k

x

Figure P8.47
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block moves 20.0 cm down the incline before coming to
rest. Find the coefficient of kinetic friction between block
and incline.

55. Review problem. Suppose the incline is frictionless for
the system described in Problem 54 (Fig. P8.54). The
block is released from rest with the spring initially un-
stretched. (a) How far does it move down the incline be-
fore coming to rest? (b) What is its acceleration at its
lowest point? Is the acceleration constant? (c) Describe
the energy transformations that occur during the
descent.

56. A child’s pogo stick (Fig. P8.56) stores energy in a spring
with a force constant of 2.50 0 104 N/m. At position !
(xA " # 0.100 m), the spring compression is a maximum
and the child is momentarily at rest. At position "
(xB " 0), the spring is relaxed and the child is moving up-
ward. At position #, the child is again momentarily at rest
at the top of the jump. The combined mass of child and
pogo stick is 25.0 kg. (a) Calculate the total energy of the
child–stick–Earth system if both gravitational and elastic
potential energies are zero for x " 0. (b) Determine xC .
(c) Calculate the speed of the child at x " 0. (d) Deter-
mine the value of x for which the kinetic energy of the
system is a maximum. (e) Calculate the child’s maximum
upward speed.

2R/3

R

!

"

#

37.0°

2.00 kg

k = 100 N/m

Figure P8.52 Problems 52 and 53.

Figure P8.54 Problems 54 and 55.

xA

xC

!

"

#

Figure P8.56

51. Assume that you attend a state university that started out
as an agricultural college. Close to the center of the cam-
pus is a tall silo topped with a hemispherical cap. The
cap is frictionless when wet. Someone has somehow bal-
anced a pumpkin at the highest point. The line from the
center of curvature of the cap to the pumpkin makes an
angle &i " 0° with the vertical. While you happen to be
standing nearby in the middle of a rainy night, a breath
of wind makes the pumpkin start sliding downward from
rest. It loses contact with the cap when the line from the
center of the hemisphere to the pumpkin makes a cer-
tain angle with the vertical. What is this angle?

52. A 200-g particle is released from rest at point ! along the
horizontal diameter on the inside of a frictionless, hemi-
spherical bowl of radius R " 30.0 cm (Fig. P8.52). Calcu-
late (a) the gravitational potential energy of the
particle–Earth system when the particle is at point ! rela-
tive to point ", (b) the kinetic energy of the particle at
point ", (c) its speed at point ", and (d) its kinetic
energy and the potential energy when the particle is at
point #.

What If? The particle described in Problem 52 (Fig.
P8.52) is released from rest at !, and the surface of the
bowl is rough. The speed of the particle at " is 1.50 m/s.
(a) What is its kinetic energy at "? (b) How much mechani-
cal energy is transformed into internal energy as the particle
moves from ! to "? (c) Is it possible to determine the coef-
ficient of friction from these results in any simple manner?
Explain.

54. A 2.00-kg block situated on a rough incline is connected to
a spring of negligible mass having a spring constant of 
100 N/m (Fig. P8.54). The pulley is frictionless. The block
is released from rest when the spring is unstretched. The

53.

A 10.0-kg block is released from point ! in Figure P8.57.
The track is frictionless except for the portion between
points " and # , which has a length of 6.00 m. The block
travels down the track, hits a spring of force constant 
2 250 N/m, and compresses the spring 0.300 m from its
equilibrium position before coming to rest momentarily.
Determine the coefficient of kinetic friction between the
block and the rough surface between " and #.

57.
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58. The potential energy function for a system is given by
U(x) " # x3 % 2x2 % 3x. (a) Determine the force Fx as a
function of x. (b) For what values of x is the force equal to
zero? (c) Plot U(x) versus x and Fx versus x, and indicate
points of stable and unstable equilibrium.

A 20.0-kg block is connected to a 30.0-kg block by a string
that passes over a light frictionless pulley. The 30.0-kg
block is connected to a spring that has negligible mass and
a force constant of 250 N/m, as shown in Figure P8.59.
The spring is unstretched when the system is as shown in
the figure, and the incline is frictionless. The 20.0-kg block
is pulled 20.0 cm down the incline (so that the 30.0-kg
block is 40.0 cm above the floor) and released from rest.
Find the speed of each block when the 30.0-kg block is
20.0 cm above the floor (that is, when the spring is un-
stretched).

59.

ences an average friction force of 7.00 N while sliding up
the track. (a) What is x? (b) What speed do you predict for
the block at the top of the track? (c) Does the block actu-
ally reach the top of the track, or does it fall off before
reaching the top?

20.0 kg

40.0°

30.0 kg

20.0 cm

Figure P8.59

60. A 1.00-kg object slides to the right on a surface having a
coefficient of kinetic friction 0.250 (Fig. P8.60). The object
has a speed of vi " 3.00 m/s when it makes contact with a
light spring that has a force constant of 50.0 N/m. The ob-
ject comes to rest after the spring has been compressed a
distance d. The object is then forced toward the left by the
spring and continues to move in that direction beyond the
spring’s unstretched position. Finally, the object comes to
rest a distance D to the left of the unstretched spring. Find
(a) the distance of compression d, (b) the speed v at the
unstretched position when the object is moving to the left,
and (c) the distance D where the object comes to rest.

A block of mass 0.500 kg is pushed against a horizon-
tal spring of negligible mass until the spring is compressed
a distance x (Fig. P8.61). The force constant of the spring
is 450 N/m. When it is released, the block travels along a
frictionless, horizontal surface to point B, the bottom of a
vertical circular track of radius R " 1.00 m, and continues
to move up the track. The speed of the block at the bot-
tom of the track is vB " 12.0 m/s, and the block experi-

61.

v

k

vi

d
vf = 0

v = 0

D

m

Figure P8.60

T

vT

vB

B

R

m
kx

Figure P8.61

62. A uniform chain of length 8.00 m initially lies stretched out
on a horizontal table. (a) If the coefficient of static friction
between chain and table is 0.600, show that the chain will
begin to slide off the table if at least 3.00 m of it hangs over
the edge of the table. (b) Determine the speed of the chain

3.00 m

6.00 m

!

" #
Figure P8.57
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as all of it leaves the table, given that the coefficient of ki-
netic friction between the chain and the table is 0.400.

63. A child slides without friction from a height h along a
curved water slide (Fig. P8.63). She is launched from a
height h/5 into the pool. Determine her maximum air-
borne height y in terms of h and &.

h
θ

h/5
y

Figure P8.63

Wind

 θ

L

F

D

φ

Tarzan

Jane

Figure P8.65

64. Refer to the situation described in Chapter 5, Problem 65.
A 1.00-kg glider on a horizontal air track is pulled by a
string at angle &. The taut string runs over a light pulley at
height h0 " 40.0 cm above the line of motion of the glider.
The other end of the string is attached to a hanging mass
of 0.500 kg as in Fig. P5.65. (a) Show that the speed of the
glider vx and the speed of the hanging mass vy are related
by vy " vx cos &. The glider is released from rest when 
& " 30.0°. Find (b) vx and (c) vy when & " 45.0°. (d) Ex-
plain why the answers to parts (b) and (c) to Chapter 5,
Problem 65 do not help to solve parts (b) and (c) of this
problem.

65. Jane, whose mass is 50.0 kg, needs to swing across a river
(having width D) filled with man-eating crocodiles to save
Tarzan from danger. She must swing into a wind exerting
constant horizontal force F, on a vine having length L and
initially making an angle & with the vertical (Fig. P8.65).
Taking D " 50.0 m, F " 110 N, L " 40.0 m, and & " 50.0°,
(a) with what minimum speed must Jane begin her swing

!

" #

$

Figure P8.67

in order to just make it to the other side? (b) Once the res-
cue is complete, Tarzan and Jane must swing back across
the river. With what minimum speed must they begin their
swing? Assume that Tarzan has a mass of 80.0 kg.

66. A 5.00-kg block free to move on a horizontal, frictionless
surface is attached to one end of a light horizontal spring.
The other end of the spring is held fixed. The spring is
compressed 0.100 m from equilibrium and released. The
speed of the block is 1.20 m/s when it passes the equilib-
rium position of the spring. The same experiment is now
repeated with the frictionless surface replaced by a surface
for which the coefficient of kinetic friction is 0.300. Deter-
mine the speed of the block at the equilibrium position of
the spring.

67. A skateboarder with his board can be modeled as a particle
of mass 76.0 kg, located at his center of mass (which we
will study in Chapter 9). As in Figure P8.67, the skate-
boarder starts from rest in a crouching position at one lip
of a half-pipe (point !). The half-pipe is a dry water chan-
nel, forming one half of a cylinder of radius 6.80 m with its
axis horizontal. On his descent, the skateboarder moves
without friction so that his center of mass moves through
one quarter of a circle of radius 6.30 m. (a) Find his speed
at the bottom of the half-pipe (point "). (b) Find his cen-
tripetal acceleration. (c) Find the normal force nB acting
on the skateboarder at point ". Immediately after passing
point ", he stands up and raises his arms, lifting his center
of mass from 0.500 m to 0.950 m above the concrete
(point #). To account for the conversion of chemical into
mechanical energy, model his legs as doing work by push-
ing him vertically up, with a constant force equal to the
normal force nB , over a distance of 0.450 m. (You will be
able to solve this problem with a more accurate model in
Chapter 11.) (d) What is the work done on the skate-
boarder’s body in this process? Next, the skateboarder
glides upward with his center of mass moving in a quarter
circle of radius 5.85 m. His body is horizontal when he
passes point $, the far lip of the half-pipe. (e) Find his
speed at this location. At last he goes ballistic, twisting
around while his center of mass moves vertically. (f) How
high above point $ does he rise? (g) Over what time inter-
val is he airborne before he touches down, 2.34 m below
the level of point $? [Caution: Do not try this yourself
without the required skill and protective equipment, or in
a drainage channel to which you do not have legal access.]
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72. A pendulum, comprising a string of length L and a small
sphere, swings in the vertical plane. The string hits a peg
located a distance d below the point of suspension (Fig.
P8.72). (a) Show that if the sphere is released from a
height below that of the peg, it will return to this height af-
ter striking the peg. (b) Show that if the pendulum is re-
leased from the horizontal position (& " 90°) and is to
swing in a complete circle centered on the peg, then the
minimum value of d must be 3L/5.

74. Review problem. In 1887 in Bridgeport, Connecticut, C. J.
Belknap built the water slide shown in Figure P8.74. A
rider on a small sled, of total mass 80.0 kg, pushed off to
start at the top of the slide (point !) with a speed of
2.50 m/s. The chute was 9.76 m high at the top, 54.3 m
long, and 0.51 m wide. Along its length, 725 wheels made

L

(a)

F

m

L

Pivot

(b)

F

Pivot

H
m

Figure P8.69

68. A block of mass M rests on a table. It is fastened to the
lower end of a light vertical spring. The upper end of the
spring is fastened to a block of mass m. The upper block is
pushed down by an additional force 3mg, so the spring
compression is 4mg/k. In this configuration the upper
block is released from rest. The spring lifts the lower block
off the table. In terms of m, what is the greatest possible
value for M ?

69. A ball having mass m is connected by a strong string of
length L to a pivot point and held in place in a vertical posi-
tion. A wind exerting constant force of magnitude F is blow-
ing from left to right as in Figure P8.69a. (a) If the ball is
released from rest, show that the maximum height H
reached by the ball, as measured from its initial height, is

Check that the above result is valid both for cases when 
0 2 H 2 L and for L 2 H 2 2L. (b) Compute the value of
H using the values m " 2.00 kg, L " 2.00 m, and F "
14.7 N. (c) Using these same values, determine the equilib-
rium height of the ball. (d) Could the equilibrium height
ever be larger than L? Explain.

H "
2L

1 % (mg/F )2

The path
after string
is cut

R

θ
C

m

vi =     Rg

Figure P8.70

dL

Peg

θ

Figure P8.72

73. A roller-coaster car is released from rest at the top of the
first rise and then moves freely with negligible friction.
The roller coaster shown in Figure P8.73 has a circular
loop of radius R in a vertical plane. (a) Suppose first that
the car barely makes it around the loop: at the top of the
loop the riders are upside down and feel weightless. Find
the required height of the release point above the bottom
of the loop in terms of R . (b) Now assume that the release
point is at or above the minimum required height. Show
that the normal force on the car at the bottom of the loop
exceeds the normal force at the top of the loop by six
times the weight of the car. The normal force on each
rider follows the same rule. Such a large normal force is
dangerous and very uncomfortable for the riders. Roller
coasters are therefore not built with circular loops in verti-
cal planes. Figure P6.20 and the photograph on page 157
show two actual designs.

70. A ball is tied to one end of a string. The other end of the
string is held fixed. The ball is set moving around a vertical
circle without friction, and with speed at the top
of the circle, as in Figure P8.70. At what angle & should the
string be cut so that the ball will then travel through the
center of the circle?

vi " √Rg

A ball whirls around in a vertical circle at the end of a
string. If the total energy of the ball–Earth system remains
constant, show that the tension in the string at the bottom
is greater than the tension at the top by six times the
weight of the ball.

71.

Figure P8.73
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friction negligible. Upon leaving the chute horizontally 
at its bottom end (point #), the rider skimmed across 
the water of Long Island Sound for as much as 50 m, 
“skipping along like a flat pebble,” before at last coming 
to rest and swimming ashore, pulling his sled after him.
According to Scientific American, “The facial expression of
novices taking their first adventurous slide is quite re-
markable, and the sensations felt are correspondingly
novel and peculiar.” (a) Find the speed of the sled and
rider at point #. (b) Model the force of water friction as 
a constant retarding force acting on a particle. Find the
work done by water friction in stopping the sled and 
rider. (c) Find the magnitude of the force the water ex-
erts on the sled. (d) Find the magnitude of the force the
chute exerts on the sled at point ". (e) At point # the
chute is horizontal but curving in the vertical plane. As-
sume its radius of curvature is 20.0 m. Find the force the
chute exerts on the sled at point #.

Figure P8.74

Answers to Quick Quizzes

8.1 (c). The sign of the gravitational potential energy de-
pends on your choice of zero configuration. If the two ob-
jects in the system are closer together than in the zero
configuration, the potential energy is negative. If they are
farther apart, the potential energy is positive.

8.2 (c). The reason that we can ignore the kinetic energy of
the massive Earth is that this kinetic energy is so small as
to be essentially zero.

8.3 (a). We must include the Earth if we are going to work
with gravitational potential energy.

8.4 (c). The total mechanical energy, kinetic plus potential, is
conserved.

8.5 (a). The more massive rock has twice as much gravitational
potential energy associated with it compared to the lighter
rock. Because mechanical energy of an isolated system is
conserved, the more massive rock will arrive at the ground
with twice as much kinetic energy as the lighter rock.

8.6 v1 " v2 " v3 . The first and third balls speed up after they
are thrown, while the second ball initially slows down but
then speeds up after reaching its peak. The paths of all
three balls are parabolas, and the balls take different
times to reach the ground because they have different ini-
tial velocities. However, all three balls have the same
speed at the moment they hit the ground because all start
with the same kinetic energy and the ball–Earth system
undergoes the same change in gravitational potential en-
ergy in all three cases.

8.7 (c). This system exhibits changes in kinetic energy as well
as in both types of potential energy.

8.8 (a). Because the Earth is not included in the system, there is
no gravitational potential energy associated with the system.

8.9 (c). The friction force must transform four times as much
mechanical energy into internal energy if the speed is dou-
bled, because kinetic energy depends on the square of the
speed. Thus, the force must act over four times the distance.

8.10(c). The decrease in mechanical energy of the system is 
fkd, where d is the distance the block moves along the in-
cline. While the force of kinetic friction remains the
same, the distance d is smaller because a component of
the gravitational force is pulling on the block in the direc-
tion opposite to its velocity.

8.11(d). The slope of a U(x)-versus-x graph is by definition
dU(x)/dx. From Equation 8.18, we see that this expression
is equal to the negative of the x component of the conser-
vative force acting on an object that is part of the system.
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Linear Momentum 
and Collisions

! A moving bowling ball carries momentum, the topic of this chapter. In the collision
between the ball and the pins, momentum is transferred to the pins. (Mark Cooper/Corbis
Stock Market)

Chapter 9

CHAPTE R OUTL I N E

9.1 Linear Momentum and Its
Conservation

9.2 Impulse and Momentum

9.3 Collisions in One Dimension

9.4 Two-Dimensional Collisions

9.5 The Center of Mass

9.6 Motion of a System of
Particles

9.7 Rocket Propulsion



Consider what happens when a bowling ball strikes a pin, as in the opening photo-
graph. The pin is given a large velocity as a result of the collision; consequently, it flies
away and hits other pins or is projected toward the backstop. Because the average force
exerted on the pin during the collision is large (resulting in a large acceleration), the
pin achieves the large velocity very rapidly and experiences the force for a very short
time interval. According to Newton’s third law, the pin exerts a reaction force on the
ball that is equal in magnitude and opposite in direction to the force exerted by the
ball on the pin. This reaction force causes the ball to accelerate, but because the ball is
so much more massive than the pin, the ball’s acceleration is much less than the pin’s
acceleration.

Although F and a are large for the pin, they vary in time—a complicated situation!
One of the main objectives of this chapter is to enable you to understand and analyze
such events in a simple way. First, we introduce the concept of momentum, which is use-
ful for describing objects in motion. Imagine that you have intercepted a football and
see two players from the opposing team approaching you as you run with the ball. One
of the players is the 180-lb quarterback who threw the ball; the other is a 300-lb line-
man. Both of the players are running toward you at 5 m/s. However, because the two
players have different masses, intuitively you know that you would rather collide with
the quarterback than with the lineman. The momentum of an object is related to both
its mass and its velocity. The concept of momentum leads us to a second conservation
law, that of conservation of momentum. This law is especially useful for treating prob-
lems that involve collisions between objects and for analyzing rocket propulsion. In this
chapter we also introduce the concept of the center of mass of a system of particles.
We find that the motion of a system of particles can be described by the motion of one
representative particle located at the center of mass.

9.1 Linear Momentum and Its Conservation

In the preceding two chapters we studied situations that are complex to analyze with
Newton’s laws. We were able to solve problems involving these situations by apply-
ing a conservation principle—conservation of energy. Consider another situation—a
60-kg archer stands on frictionless ice and fires a 0.50-kg arrow horizontally at 50 m/s.
From Newton’s third law, we know that the force that the bow exerts on the arrow will
be matched by a force in the opposite direction on the bow (and the archer). This will
cause the archer to begin to slide backward on the ice. But with what speed? We can-
not answer this question directly using either Newton’s second law or an energy
approach—there is not enough information.

Despite our inability to solve the archer problem using our techniques learned so far,
this is a very simple problem to solve if we introduce a new quantity that describes mo-
tion, linear momentum. Let us apply the General Problem-Solving Strategy and conceptual-
ize an isolated system of two particles (Fig. 9.1) with masses m1 and m2 and moving with
velocities v1 and v2 at an instant of time. Because the system is isolated, the only force on
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one particle is that from the other particle and we can categorize this as a situation in
which Newton’s laws will be useful. If a force from particle 1 (for example, a gravitational
force) acts on particle 2, then there must be a second force—equal in magnitude but op-
posite in direction—that particle 2 exerts on particle 1. That is, they form a Newton’s
third law action–reaction pair, so that F12 ! " F21. We can express this condition as

Let us further analyze this situation by incorporating Newton’s second law. Over
some time interval, the interacting particles in the system will accelerate. Thus, replac-
ing each force with ma gives

Now we replace the acceleration with its definition from Equation 4.5:

If the masses m1 and m2 are constant, we can bring them into the derivatives, which
gives

(9.1)

To finalize this discussion, note that the derivative of the sum m1v1 # m2v2 with respect
to time is zero. Consequently, this sum must be constant. We learn from this discussion
that the quantity m v for a particle is important, in that the sum of these quantities for
an isolated system is conserved. We call this quantity linear momentum:

d
dt

 (m1v1 # m 2v2) ! 0

d(m1v1)
dt

#
d(m2v2)

dt
! 0

m1 
d v1

dt
# m2 

d v2

dt
! 0

 m1a1 # m2a2 ! 0

F21 # F12 ! 0
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v2

m2

m1

F21

F12

v1

Figure 9.1 Two particles interact
with each other. According to
Newton’s third law, we must have
F12 ! " F21.

The linear momentum of a particle or an object that can be modeled as a particle of
mass m moving with a velocity v is defined to be the product of the mass and velocity:

(9.2)p ! m v

Linear momentum is a vector quantity because it equals the product of a scalar quan-
tity m and a vector quantity v. Its direction is along v, it has dimensions ML/T, and its
SI unit is kg · m/s.

If a particle is moving in an arbitrary direction, p must have three components, and
Equation 9.2 is equivalent to the component equations

As you can see from its definition, the concept of momentum1 provides a quantitative
distinction between heavy and light particles moving at the same velocity. For example,
the momentum of a bowling ball moving at 10 m/s is much greater than that of a ten-
nis ball moving at the same speed. Newton called the product m v quantity of motion;
this is perhaps a more graphic description than our present-day word momentum , which
comes from the Latin word for movement.

Using Newton’s second law of motion, we can relate the linear momentum of a par-
ticle to the resultant force acting on the particle. We start with Newton’s second law
and substitute the definition of acceleration:

"F ! ma ! m 
d v
dt

px ! mvx  py ! mvy  pz ! mvz

1 In this chapter, the terms momentum and linear momentum have the same meaning. Later, in Chapter 11,
we shall use the term angular momentum when dealing with rotational motion.

Definition of linear 
momentum of a particle



In Newton’s second law, the mass m is assumed to be constant. Thus, we can bring m
inside the derivative notation to give us

(9.3)

This shows that the time rate of change of the linear momentum of a particle is
equal to the net force acting on the particle.

This alternative form of Newton’s second law is the form in which Newton pre-
sented the law and is actually more general than the form we introduced in Chapter 5.
In addition to situations in which the velocity vector varies with time, we can use Equa-
tion 9.3 to study phenomena in which the mass changes. For example, the mass of a
rocket changes as fuel is burned and ejected from the rocket. We cannot use "F ! ma
to analyze rocket propulsion; we must use Equation 9.3, as we will show in Section 9.7.

The real value of Equation 9.3 as a tool for analysis, however, arises if we apply it to
a system of two or more particles. As we have seen, this leads to a law of conservation of
momentum for an isolated system. Just as the law of conservation of energy is useful in
solving complex motion problems, the law of conservation of momentum can greatly
simplify the analysis of other types of complicated motion.

"F !
d(mv)

dt
!

d p
dt
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Quick Quiz 9.1 Two objects have equal kinetic energies. How do the magni-
tudes of their momenta compare? (a) p1 $ p2 (b) p1 ! p2 (c) p1 % p2 (d) not enough
information to tell.

Quick Quiz 9.2 Your physical education teacher throws a baseball to you at a
certain speed, and you catch it. The teacher is next going to throw you a medicine ball
whose mass is ten times the mass of the baseball. You are given the following choices:
You can have the medicine ball thrown with (a) the same speed as the baseball (b) the
same momentum (c) the same kinetic energy. Rank these choices from easiest to hard-
est to catch.

Using the definition of momentum, Equation 9.1 can be written

Because the time derivative of the total momentum ptot ! p1 # p2 is zero, we conclude
that the total momentum of the system must remain constant:

(9.4)

or, equivalently,

(9.5)

where pli and p2i are the initial values and p1f and p2f the final values of the momenta
for the two particles for the time interval during which the particles interact. Equation
9.5 in component form demonstrates that the total momenta in the x, y, and z direc-
tions are all independently conserved:

(9.6)

This result, known as the law of conservation of linear momentum, can be extended
to any number of particles in an isolated system. It is considered one of the most im-
portant laws of mechanics. We can state it as follows:

pix ! pfx  piy ! pfy  piz ! pfz

p1i # p2i ! p1f # p2f

ptot ! p1 # p2 ! constant

d
dt

 (p1 # p2) ! 0

! PITFALL PREVENTION
9.1 Momentum of a

System is Conserved
Remember that the momentum
of an isolated system is conserved.
The momentum of one particle
within an isolated system is not
necessarily conserved, because
other particles in the system may
be interacting with it. Always ap-
ply conservation of momentum
to an isolated system.

Newton’s second law for a
particle



This law tells us that the total momentum of an isolated system at all times equals
its initial momentum.

Notice that we have made no statement concerning the nature of the forces acting
on the particles of the system. The only requirement is that the forces must be internal
to the system.
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Whenever two or more particles in an isolated system interact, the total momentum
of the system remains constant.

Quick Quiz 9.3 A ball is released and falls toward the ground with no air re-
sistance. The isolated system for which momentum is conserved is (a) the ball (b) the
Earth (c) the ball and the Earth (d) impossible to determine.

Quick Quiz 9.4 A car and a large truck traveling at the same speed make a
head-on collision and stick together. Which vehicle experiences the larger change in
the magnitude of momentum? (a) the car (b) the truck (c) The change in the magni-
tude of momentum is the same for both. (d) impossible to determine.

Example 9.1 The Archer

Let us consider the situation proposed at the beginning of
this section. A 60-kg archer stands at rest on frictionless ice
and fires a 0.50-kg arrow horizontally at 50 m/s (Fig. 9.2).
With what velocity does the archer move across the ice after
firing the arrow?

Solution We cannot solve this problem using Newton’s sec-
ond law, "F ! ma, because we have no information about
the force on the arrow or its acceleration. We cannot solve this
problem using an energy approach because we do not know
how much work is done in pulling the bow back or how much
potential energy is stored in the bow. However, we can solve
this problem very easily with conservation of momentum.

Let us take the system to consist of the archer (including
the bow) and the arrow. The system is not isolated because
the gravitational force and the normal force act on the sys-
tem. However, these forces are vertical and perpendicular to
the motion of the system. Therefore, there are no external
forces in the horizontal direction, and we can consider the
system to be isolated in terms of momentum components in
this direction.

The total horizontal momentum of the system before the
arrow is fired is zero (m1v1i # m2v2i ! 0), where the archer is
particle 1 and the arrow is particle 2. Therefore, the total hori-
zontal momentum after the arrow is fired must be zero; that is,

We choose the direction of firing of the arrow as the positive x
direction. With m1 ! 60 kg, m2 ! 0.50 kg, and v2f ! 50î m/s,
solving for v1f , we find the recoil velocity of the archer to be

The negative sign for v1f indicates that the archer is moving
to the left after the arrow is fired, in the direction opposite

"0.42î  m/sv1f ! "
m2

m1
  v2f ! "# 0.50 kg

60 kg $ (50î  m/s) !

 m1v1f # m2v2f ! 0

the direction of motion of the arrow, in accordance with
Newton’s third law. Because the archer is much more mas-
sive than the arrow, his acceleration and consequent velocity
are much smaller than the acceleration and velocity of the
arrow.

What If? What if the arrow were shot in a direction that
makes an angle & with the horizontal? How will this change
the recoil velocity of the archer?

Answer The recoil velocity should decrease in magnitude
because only a component of the velocity is in the x direction.

Figure 9.2 (Example 9.1) An archer fires an arrow horizontally
to the right. Because he is standing on frictionless ice, he will
begin to slide to the left across the ice.

Interactive

Conservation of momentum



9.2 Impulse and Momentum

According to Equation 9.3, the momentum of a particle changes if a net force acts on
the particle. Knowing the change in momentum caused by a force is useful in solving
some types of problems. To build a better understanding of this important concept, let
us assume that a single force F acts on a particle and that this force may vary with time.
According to Newton’s second law, F ! d p/dt , or

(9.7)

We can integrate2 this expression to find the change in the momentum of a particle
when the force acts over some time interval. If the momentum of the particle changes
from pi at time ti to pf at time tf , integrating Equation 9.7 gives

dp ! Fdt
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If the arrow were shot straight up, for example, there would
be no recoil at all—the archer would just be pressed down
into the ice because of the firing of the arrow.

Only the x component of the momentum of the arrow
should be used in a conservation of momentum statement,
because momentum is only conserved in the x direction. In
the y direction, the normal force from the ice and the gravi-
tational force are external influences on the system. Conser-
vation of momentum in the x direction gives us

m1v1f # m2v2f    cos & ! 0

leading to

For & ! 0, cos & ! 1 and this reduces to the value when the
arrow is fired horizontally. For nonzero values of &, the co-
sine function is less than 1 and the recoil velocity is less than
the value calculated for & ! 0. If & ! 90°, cos & ! 0, and
there is no recoil velocity v1f , as we argued conceptually.

v1f ! "
m 2

m1
 v2f  cos &

At the Interactive Worked Example link at http://www.pse6.com, you can change the mass of the archer and the mass and
speed of the arrow.

Example 9.2 Breakup of a Kaon at Rest

An important point to learn from this problem is that even
though it deals with objects that are very different from
those in the preceding example, the physics is identical: 
linear momentum is conserved in an isolated system.

p# ! "p"One type of nuclear particle, called the neutral kaon (K0),
breaks up into a pair of other particles called pions ('# and
'") that are oppositely charged but equal in mass, as illus-
trated in Figure 9.3. Assuming the kaon is initially at rest,
prove that the two pions must have momenta that are equal
in magnitude and opposite in direction.

Solution The breakup of the kaon can be written

If we let p# be the final momentum of the positive pion and
p" the final momentum of the negative pion, the final mo-
mentum of the system consisting of the two pions can be
written

Because the kaon is at rest before the breakup, we know that
pi ! 0. Because the momentum of the isolated system (the
kaon before the breakup, the two pions afterward) is 
conserved, pi ! pf ! 0, so that p# # p" ! 0, or

pf ! p# # p"

K0 9: '# # '"

Κ
Before
decay

(at rest)

p+p–

π– π+

After decay

π π

0

Figure 9.3 (Example 9.2) A kaon at rest breaks up sponta-
neously into a pair of oppositely charged pions. The pions move
apart with momenta that are equal in magnitude but opposite
in direction.

2 Note that here we are integrating force with respect to time. Compare this with our efforts in
Chapter 7, where we integrated force with respect to position to find the work done by the force.



(9.8)

To evaluate the integral, we need to know how the force varies with time. The quantity
on the right side of this equation is called the impulse of the force F acting on a parti-
cle over the time interval (t ! tf " ti . Impulse is a vector defined by

(9.9)

Equation 9.8 is an important statement known as the impulse–momentum
theorem:3

I ! %tf

ti
 F dt

(p ! pf " pi ! %tf

ti
 Fdt
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The impulse of the force F acting on a particle equals the change in the momen-
tum of the particle.

This statement is equivalent to Newton’s second law. From this definition, we see that im-
pulse is a vector quantity having a magnitude equal to the area under the force–time
curve, as described in Figure 9.4a. In this figure, it is assumed that the force varies in time
in the general manner shown and is nonzero in the time interval (t ! tf " ti . The direc-
tion of the impulse vector is the same as the direction of the change in momentum. Im-
pulse has the dimensions of momentum—that is, ML/T. Note that impulse is not a prop-
erty of a particle; rather, it is a measure of the degree to which an external force changes
the momentum of the particle. Therefore, when we say that an impulse is given to a parti-
cle, we mean that momentum is transferred from an external agent to that particle.

Because the force imparting an impulse can generally vary in time, it is convenient
to define a time-averaged force

(9.10)

where (t ! tf " ti. (This is an application of the mean value theorem of calculus.)
Therefore, we can express Equation 9.9 as

(9.11)I ! F (t

F ! 
1
(t

 %tf

ti
 F dt

t i t f

t i

F

(a)

t f
t

F

(b)

t

F

Area = F∆t

Figure 9.4 (a) A force acting on a
particle may vary in time. The im-
pulse imparted to the particle by
the force is the area under the
force-versus-time curve. (b) In the
time interval (t, the time-averaged
force (horizontal dashed line) gives
the same impulse to a particle as
does the time-varying force de-
scribed in part (a).

Airbags in automobiles have
saved countless lives in acci-
dents. The airbag increases the
time interval during which the
passenger is brought to rest,
thereby decreasing the force on
(and resultant injury to) the
passenger. Co
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sy
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b

3 Although we assumed that only a single force acts on the particle, the impulse–momentum theo-
rem is valid when several forces act; in this case, we replace F in Equation 9.8 with "F.

Impulse of a force

Impulse–momentum theorem



This time-averaged force, shown in Figure 9.4b, can be interpreted as the constant
force that would give to the particle in the time interval (t the same impulse that the
time-varying force gives over this same interval.

In principle, if F is known as a function of time, the impulse can be calculated
from Equation 9.9. The calculation becomes especially simple if the force acting on
the particle is constant. In this case, and Equation 9.11 becomes

(9.12)
In many physical situations, we shall use what is called the impulse approxima-

tion, in which we assume that one of the forces exerted on a particle acts for a
short time but is much greater than any other force present. This approximation
is especially useful in treating collisions in which the duration of the collision is very
short. When this approximation is made, we refer to the force as an impulsive force. For
example, when a baseball is struck with a bat, the time of the collision is about 0.01 s
and the average force that the bat exerts on the ball in this time is typically several
thousand newtons. Because this contact force is much greater than the magnitude of
the gravitational force, the impulse approximation justifies our ignoring the gravita-
tional forces exerted on the ball and bat. When we use this approximation, it is impor-
tant to remember that pi and pf represent the momenta immediately before and after
the collision, respectively. Therefore, in any situation in which it is proper to use the
impulse approximation, the particle moves very little during the collision.

I ! F (t

F ! F
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Quick Quiz 9.5 Two objects are at rest on a frictionless surface. Object 1 has a
greater mass than object 2. When a constant force is applied to object 1, it accelerates
through a distance d. The force is removed from object 1 and is applied to object 2. At
the moment when object 2 has accelerated through the same distance d , which state-
ments are true? (a) p1 $ p2 (b) p1 ! p2 (c) p1 % p2 (d) K1 $ K2 (e) K1 ! K2 (f ) K1 % K2 .

Quick Quiz 9.6 Two objects are at rest on a frictionless surface. Object 1 has
a greater mass than object 2. When a force is applied to object 1, it accelerates for
a time interval (t. The force is removed from object 1 and is applied to object 2.
After object 2 has accelerated for the same time interval (t, which statements are true?
(a) p1 $ p2 (b) p1 ! p2 (c) p1 % p2 (d) K1 $ K2 (e) K1 ! K2 (f ) K1 % K2 .

Quick Quiz 9.7 Rank an automobile dashboard, seatbelt, and airbag in
terms of (a) the impulse and (b) the average force they deliver to a front-seat passen-
ger during a collision, from greatest to least.

Example 9.3 Teeing Off

A golf ball of mass 50 g is struck with a club (Fig. 9.5). The
force exerted by the club on the ball varies from zero, at the
instant before contact, up to some maximum value and then
back to zero when the ball leaves the club. Thus, the
force–time curve is qualitatively described by Figure 9.4. As-
suming that the ball travels 200 m, estimate the magnitude
of the impulse caused by the collision.

Solution Let us use ! to denote the position of the ball
when the club first contacts it, " to denote the position of
the ball when the club loses contact with the ball, and # to
denote the position of the ball upon landing. Neglecting

air resistance, we can use Equation 4.14 for the range of a
projectile:

Let us assume that the launch angle &B is 45°, the angle that
provides the maximum range for any given launch velocity.
This assumption gives sin 2&B ! 1, and the launch velocity
of the ball is

vB ! √Rg & √(200 m)(9.80 m/s2) ! 44 m/s

R ! x C !
v 2

B

g
   sin 2&B
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Considering initial and final values of the ball’s velocity for
the time interval for the collision, vi ! vA ! 0 and vf ! vB.
Hence, the magnitude of the impulse imparted to the ball is

What If? What if you were asked to find the average force
on the ball during the collision with the club? Can you deter-
mine this value?

Answer With the information given in the problem, we
cannot find the average force. Considering Equation 9.11,
we would need to know the time interval of the collision in
order to calculate the average force. If we assume that the
time interval is 0.01 s as it was for the baseball in the discus-
sion after Equation 9.12, we can estimate the magnitude of
the average force:

where we have kept only one significant figure due to our
rough estimate of the time interval.

F !
I

(t
!

2.2 kg)m/s
0.01 s

! 2 * 102 N

2.2 kg)m/s!

I ! (p ! mvB " mvA ! (50 * 10"3 kg)(44 m/s) " 0

Figure 9.5 (Example 9.3) A golf ball being struck by a club. Note
the deformation of the ball due to the large force from the club. 
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In a particular crash test, a car of mass 1 500 kg collides with
a wall, as shown in Figure 9.6. The initial and final velocities
of the car are and , respec-
tively. If the collision lasts for 0.150 s, find the impulse
caused by the collision and the average force exerted on
the car.

Solution Let us assume that the force exerted by the wall
on the car is large compared with other forces on the car so
that we can apply the impulse approximation. Furthermore,
we note that the gravitational force and the normal force

vf ! 2.60 î  m/svi ! "15.0 î  m/s

exerted by the road on the car are perpendicular to the mo-
tion and therefore do not affect the horizontal momentum.

The initial and final momenta of the car are

Hence, the impulse is equal to

! 0.39 * 104 î  kg)m/s

pf ! m vf ! (1 500 kg)(2.60î  m/s)

! "  2.25 * 104 î  kg)m/s

pi ! mvi ! (1 500 kg)("15.0î   m/s)

Example 9.4 How Good Are the Bumpers?

Before

After

+2.60 m/s

–15.0 m/s

(a)

Figure 9.6 (Example 9.4) (a) This car’s momentum changes as a result of its collision
with the wall. (b) In a crash test, much of the car’s initial kinetic energy is trans-
formed into energy associated with the damage to the car. 

Tim
 W

rig
ht

/C
OR

BI
S

(b)



9.3 Collisions in One Dimension

In this section we use the law of conservation of linear momentum to describe what
happens when two particles collide. We use the term collision to represent an event
during which two particles come close to each other and interact by means of forces.
The time interval during which the velocities of the particles change from initial to fi-
nal values is assumed to be short. The interaction forces are assumed to be much
greater than any external forces present, so we can use the impulse approximation.

A collision may involve physical contact between two macroscopic objects, as de-
scribed in Figure 9.7a, but the notion of what we mean by collision must be generalized
because “physical contact” on a submicroscopic scale is ill-defined and hence meaning-
less. To understand this, consider a collision on an atomic scale (Fig. 9.7b), such as the
collision of a proton with an alpha particle (the nucleus of a helium atom). Because the
particles are both positively charged, they repel each other due to the strong electrosta-
tic force between them at close separations and never come into “physical contact.”

When two particles of masses m1 and m2 collide as shown in Figure 9.7, the impul-
sive forces may vary in time in complicated ways, such as that shown in Figure 9.4. Re-
gardless of the complexity of the time behavior of the force of interaction, however,
this force is internal to the system of two particles. Thus, the two particles form an iso-
lated system, and the momentum of the system must be conserved. Therefore, the total
momentum of an isolated system just before a collision equals the total momentum of
the system just after the collision.

In contrast, the total kinetic energy of the system of particles may or may not be
conserved, depending on the type of collision. In fact, whether or not kinetic energy is
conserved is used to classify collisions as either elastic or inelastic.

An elastic collision between two objects is one in which the total kinetic energy
(as well as total momentum) of the system is the same before and after the colli-
sion. Collisions between certain objects in the macroscopic world, such as billiard balls,
are only approximately elastic because some deformation and loss of kinetic energy take
place. For example, you can hear a billiard ball collision, so you know that some of the
energy is being transferred away from the system by sound. An elastic collision must be
perfectly silent! Truly elastic collisions occur between atomic and subatomic particles.

An inelastic collision is one in which the total kinetic energy of the system is
not the same before and after the collision (even though the momentum of the
system is conserved). Inelastic collisions are of two types. When the colliding objects
stick together after the collision, as happens when a meteorite collides with the Earth,
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p

+

+ +

He

(b)

m2
m1

(a)

F12F21

4

Figure 9.7 (a) The collision be-
tween two objects as the result of
direct contact. (b) The “collision”
between two charged particles.

The average force exerted by the wall on the car is

In this problem, note that the signs of the velocities indicate
the reversal of directions. What would the mathematics be
describing if both the initial and final velocities had the
same sign?

What If? What if the car did not rebound from the wall?
Suppose the final velocity of the car is zero and the time in-
terval of the collision remains at 0.150 s. Would this represent
a larger or a smaller force by the wall on the car?

 1.76 * 105 î NF !
(p
(t

!
2.64 * 104 î kg)m/s

0.150 s
!

2.64 * 104 î kg) m/sI !

" ("  2.25 * 104 î  kg)m/s)

I ! (p ! pf " pi ! 0.39 * 104 î  kg)  m/s Answer In the original situation in which the car re-
bounds, the force by the wall on the car does two things in
the time interval—it (1) stops the car and (2) causes it to
move away from the wall at 2.60 m/s after the collision. If
the car does not rebound, the force is only doing the first of
these, stopping the car. This will require a smaller force.

Mathematically, in the case of the car that does not re-
bound, the impulse is

The average force exerted by the wall on the car is

which is indeed smaller than the previously calculated value,
as we argued conceptually.

F !
(p
(t

!
2.25 * 104 î kg)m/s

0.150 s
! 1.50 * 105 î N

! 2.25 * 104 î  kg)m/s

I ! (p ! pf " pi ! 0 "("2.25 * 104 î  kg)m/s)

Elastic collision

Inelastic collision



the collision is called perfectly inelastic. When the colliding objects do not stick to-
gether, but some kinetic energy is lost, as in the case of a rubber ball colliding with a
hard surface, the collision is called inelastic (with no modifying adverb). When the
rubber ball collides with the hard surface, some of the kinetic energy of the ball is lost
when the ball is deformed while it is in contact with the surface.

In most collisions, the kinetic energy of the system is not conserved because some of
the energy is converted to internal energy and some of it is transferred away by means
of sound. Elastic and perfectly inelastic collisions are limiting cases; most collisions fall
somewhere between them.

In the remainder of this section, we treat collisions in one dimension and consider
the two extreme cases—perfectly inelastic and elastic collisions. The important distinc-
tion between these two types of collisions is that momentum of the system is con-
served in all collisions, but kinetic energy of the system is conserved only in
elastic collisions.

Perfectly Inelastic Collisions

Consider two particles of masses m1 and m2 moving with initial velocities v1i and v2i
along the same straight line, as shown in Figure 9.8. The two particles collide head-on,
stick together, and then move with some common velocity vf after the collision. Be-
cause the momentum of an isolated system is conserved in any collision, we can say
that the total momentum before the collision equals the total momentum of the com-
posite system after the collision:

(9.13)

Solving for the final velocity gives

(9.14)

Elastic Collisions

Consider two particles of masses m1 and m 2 moving with initial velocities v1i and v2i
along the same straight line, as shown in Figure 9.9. The two particles collide head-on
and then leave the collision site with different velocities, v1f and v2f . If the collision is
elastic, both the momentum and kinetic energy of the system are conserved. Therefore,
considering velocities along the horizontal direction in Figure 9.9, we have

(9.15)

(9.16)

Because all velocities in Figure 9.9 are either to the left or the right, they can be repre-
sented by the corresponding speeds along with algebraic signs indicating direction.
We shall indicate v as positive if a particle moves to the right and negative if it moves to
the left.

In a typical problem involving elastic collisions, there are two unknown quantities,
and Equations 9.15 and 9.16 can be solved simultaneously to find these. An alternative
approach, however—one that involves a little mathematical manipulation of Equation
9.16—often simplifies this process. To see how, let us cancel the factor in Equation
9.16 and rewrite it as

and then factor both sides:

(9.17)

Next, let us separate the terms containing m1 and m2 in Equation 9.15 to obtain

(9.18)m1(v1i " v1f ) ! m2(v2f " v2i)

 m1(v1i " v1f)(v1i # v1f) ! m 2(v2f " v2i)(v2f # v2i)

m1(v1i
2 " v1f

2) ! m2(v2f
2 " v2i

2)

1
2

1
2m1v1i

2 # 1
2m2v2i

2 ! 1
2m1v1f

2 # 1
2m2v2f

2

m1v1i # m2v2i ! m1v1f # m2v2f

vf !
m1v1i # m2v2i

m1 # m2

m1v1i # m 2v2i ! (m1 # m2)vf
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! PITFALL PREVENTION
9.2 Inelastic Collisions
Generally, inelastic collisions are
hard to analyze unless additional
information is provided. This ap-
pears in the mathematical repre-
sentation as having more un-
knowns than equations.

m1 m2
v1i

Before collision

v2i

v1f v2f

After collision

(a)

(b)

Active Figure 9.9 Schematic rep-
resentation of an elastic head-on
collision between two particles:
(a) before collision and (b) after
collision.

At the Active Figures link 
at http://www.pse6.com, you
can adjust the masses and
velocities of the colliding ob-
jects to see the effect on the
final velocities.

Before collision

(a)

m1 m2
v1i v2i

After collision

(b)

vf
m1 + m2

Active Figure 9.8 Schematic rep-
resentation of a perfectly inelastic
head-on collision between two
particles: (a) before collision and
(b) after collision.

At the Active Figures link 
at http://www.pse6.com, you
can adjust the masses and
velocities of the colliding ob-
jects to see the effect on the
final velocity.



To obtain our final result, we divide Equation 9.17 by Equation 9.18 and obtain

(9.19)

This equation, in combination with Equation 9.15, can be used to solve problems deal-
ing with elastic collisions. According to Equation 9.19, the relative velocity of the two
particles before the collision, v1i " v 2i , equals the negative of their relative velocity af-
ter the collision, "(v1f " v2f ).

Suppose that the masses and initial velocities of both particles are known. Equa-
tions 9.15 and 9.19 can be solved for the final velocities in terms of the initial velocities
because there are two equations and two unknowns:

(9.20)

(9.21)

It is important to use the appropriate signs for v1i and v2i in Equations 9.20 and 9.21.
For example, if particle 2 is moving to the left initially, then v2i is negative.

Let us consider some special cases. If m1 ! m2, then Equations 9.20 and 9.21 show
us that v1f ! v2i and v2f ! v1i . That is, the particles exchange velocities if they have
equal masses. This is approximately what one observes in head-on billiard ball colli-
sions—the cue ball stops, and the struck ball moves away from the collision with the
same velocity that the cue ball had.

If particle 2 is initially at rest, then v2i ! 0, and Equations 9.20 and 9.21 become

(9.22)

(9.23)

If m1 is much greater than m 2 and v2i ! 0, we see from Equations 9.22 and 9.23 that
v1f & v1i and v2f & 2v1i . That is, when a very heavy particle collides head-on with a very
light one that is initially at rest, the heavy particle continues its motion unaltered after
the collision and the light particle rebounds with a speed equal to about twice the ini-
tial speed of the heavy particle. An example of such a collision would be that of a mov-
ing heavy atom, such as uranium, striking a light atom, such as hydrogen.

If m2 is much greater than m1 and particle 2 is initially at rest, then v1f & " v1i and
v2f & 0. That is, when a very light particle collides head-on with a very heavy particle
that is initially at rest, the light particle has its velocity reversed and the heavy one re-
mains approximately at rest.

v2f ! # 2m1

m1 # m2
$v1i

v1f ! # m1 " m2

m1 # m2
$v1i

v2f ! # 2m1

m1 # m2
$v1i # # m2 " m1

m1 # m2
$v2i

v1f ! # m1 " m2

m1 # m2
$v1i # # 2m2

m1 # m2
$v2i

v1i " v2i ! "(v1f " v2f )

v1i # v1f ! v2f # v2i
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Quick Quiz 9.8 In a perfectly inelastic one-dimensional collision between
two objects, what condition alone is necessary so that all of the original kinetic energy
of the system is gone after the collision? (a) The objects must have momenta with
the same magnitude but opposite directions. (b) The objects must have the same mass.
(c) The objects must have the same velocity. (d) The objects must have the same speed,
with velocity vectors in opposite directions.

Quick Quiz 9.9 A table-tennis ball is thrown at a stationary bowling ball. The
table-tennis ball makes a one-dimensional elastic collision and bounces back along
the same line. After the collision, compared to the bowling ball, the table-tennis ball
has (a) a larger magnitude of momentum and more kinetic energy (b) a smaller

! PITFALL PREVENTION
9.3 Not a General

Equation
We have spent some effort on de-
riving Equation 9.19, but remem-
ber that it can only be used in a
very specific situation—a one-di-
mensional, elastic collision be-
tween two objects. The general
concept is conservation of mo-
mentum (and conservation of ki-
netic energy if the collision is
elastic) for an isolated system.

Elastic collision: particle 2
initially at rest

! PITFALL PREVENTION
9.4 Momentum and

Kinetic Energy in
Collisions

Momentum of an isolated system
is conserved in all collisions. Ki-
netic energy of an isolated system
is conserved only in elastic colli-
sions. Why? Because there are
several types of energy into which
kinetic energy can transform, or
be transferred out of the system
(so that the system may not be iso-
lated in terms of energy during
the collision). However, there is
only one type of momentum.
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magnitude of momentum and more kinetic energy (c) a larger magnitude of momen-
tum and less kinetic energy (d) a smaller magnitude of momentum and less kinetic
energy (e) the same magnitude of momentum and the same kinetic energy.

Example 9.5 The Executive Stress Reliever

What If? Consider what would happen if balls 4 and 5 are
glued together so that they must move together. Now what
happens when ball 1 is pulled out and released?

Answer We are now forcing balls 4 and 5 to come out to-
gether. We have argued that we cannot conserve both mo-
mentum and energy in this case. However, we assumed that
ball 1 stopped after striking ball 2. What if we do not make
this assumption? Consider the conservation equations with
the assumption that ball 1 moves after the collision. For con-
servation of momentum,

where v4,5f refers to the final speed of the ball 4–ball 5 com-
bination. Conservation of kinetic energy gives us

Combining these equations, we find

Thus, balls 4 and 5 come out together and ball 1 bounces
back from the collision with one third of its original speed.

v4,5f ! 2
3v1i  v1f ! "1

3v1i

1
2mv 2

1i ! 1
2mv 2

1f # 1
2(2m)v2

4,5f

Ki ! Kf

mv1i ! mv1f # 2mv4,5f

pi ! pf

An ingenious device that illustrates conservation of momen-
tum and kinetic energy is shown in Figure 9.10. It consists of
five identical hard balls supported by strings of equal
lengths. When ball 1 is pulled out and released, after the al-
most-elastic collision between it and ball 2, ball 5 moves out,
as shown in Figure 9.10b. If balls 1 and 2 are pulled out and
released, balls 4 and 5 swing out, and so forth. Is it ever pos-
sible that when ball 1 is released, balls 4 and 5 will swing out
on the opposite side and travel with half the speed of ball 1,
as in Figure 9.10c?

Solution No, such movement can never occur if we as-
sume the collisions are elastic. The momentum of the
system before the collision is mv, where m is the mass of
ball 1 and v is its speed just before the collision. After the
collision, we would have two balls, each of mass m moving
with speed v/2. The total momentum of the system after
the collision would be m(v/2) # m(v/2) ! mv. Thus, mo-
mentum of the system is conserved. However, the kinetic
energy just before the collision is and that 
after the collision is 
Thus, kinetic energy of the system is not conserved. The only
way to have both momentum and kinetic energy conserved
is for one ball to move out when one ball is released, two
balls to move out when two are released, and so on.

Kf ! 1
2m(v/2)2 # 1

2m(v/2)2 ! 1
4mv 2.

Ki ! 1
2mv 2

(a)

This can happen.
(b)

vv

4 5

2 3 4 5 1 2 3 4

1 5

2 3 4 5 1 2 3

1

v/2v
Can this happen?

(c)

Figure 9.10 (Example 9.5) An executive stress reliever.

At the Interactive Worked Example link at http://www.pse6.com, you can “glue” balls 4 and 5 together to see the situation
discussed above.

Interactive
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Example 9.7 The Ballistic Pendulum

The ballistic pendulum (Fig. 9.11) is an apparatus used to
measure the speed of a fast-moving projectile, such as a bul-
let. A bullet of mass m1 is fired into a large block of wood of
mass m2 suspended from some light wires. The bullet em-
beds in the block, and the entire system swings through a
height h. How can we determine the speed of the bullet
from a measurement of h?

Solution Figure 9.11a helps to conceptualize the situation.
Let configuration ! be the bullet and block before the
collision, and configuration " be the bullet and block im-
mediately after colliding. The bullet and the block form an
isolated system, so we can categorize the collision between
them as a conservation of momentum problem. The colli-
sion is perfectly inelastic. To analyze the collision, we note
that Equation 9.14 gives the speed of the system right after
the collision when we assume the impulse approximation.
Noting that v2A ! 0, Equation 9.14 becomes

For the process during which the bullet–block combina-
tion swings upward to height h (ending at configuration #),
we focus on a different system—the bullet, the block, and the
Earth. This is an isolated system for energy, so we categorize
this part of the motion as a conservation of mechanical en-
ergy problem:

We begin to analyze the problem by finding the total
kinetic energy of the system right after the collision:

(2)      KB ! 1
2(m1 # m2)v B

2

KB # UB ! KC # UC

(1)      vB !
m1v1A

m1 # m2

m1
v1A vB

m1 + m2

m2 h

(a)

! "

#

(b)

Figure 9.11 (Example 9.7) (a) Diagram of a ballistic pendu-
lum. Note that v1A is the velocity of the bullet just before the
collision and vB is the velocity of the bullet-block system just af-
ter the perfectly inelastic collision. (b) Multiflash photograph
of a ballistic pendulum used in the laboratory. 
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Example 9.6 Carry Collision Insurance!

Equating the initial and final momenta of the system and
solving for vf , the final velocity of the entangled cars, we have

Because the final velocity is positive, the direction of the final
velocity is the same as the velocity of the initially moving car.

What If? Suppose we reverse the masses of the cars—a
stationary 900-kg car is struck by a moving 1 800-kg car. Is
the final speed the same as before?

Answer Intuitively, we can guess that the final speed will be
higher, based on common experiences in driving. Mathe-
matically, this should be the case because the system has a
larger momentum if the initially moving car is the more
massive one. Solving for the new final velocity, we find

which is indeed higher than the previous final velocity.

vf !
pi

m1 # m 2
!

(1 800 kg)(20.0 m/s)
2 700 kg

! 13.3 m/s

6.67 m/svf !
pi

m1 # m2
!

1.80 * 104 kg)m/s
2 700 kg

!

An 1 800-kg car stopped at a traffic light is struck from the
rear by a 900-kg car, and the two become entangled, moving
along the same path as that of the originally moving car. 
If the smaller car were moving at 20.0 m/s before the 
collision, what is the velocity of the entangled cars after the
collision?

Solution The phrase “become entangled” tells us that this
is a perfectly inelastic collision. We can guess that the final
speed is less than 20.0 m/s, the initial speed of the smaller
car. The total momentum of the system (the two cars) be-
fore the collision must equal the total momentum immedi-
ately after the collision because momentum of an isolated
system is conserved in any type of collision. The magnitude
of the total momentum of the system before the collision
is equal to that of the smaller car because the larger car is
initially at rest:

After the collision, the magnitude of the momentum of
the entangled cars is

pf ! (m1 # m 2)vf ! (2 700 kg)vf

pi ! m1vi ! (900 kg)(20.0 m/s) ! 1.80 * 104 kg)m/s
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Solving for v1A, we obtain

To finalize this problem, note that we had to solve this
problem in two steps. Each step involved a different system
and a different conservation principle. Because the colli-
sion was assumed to be perfectly inelastic, some mechanical
energy was converted to internal energy. It would have
been incorrect to equate the initial kinetic energy of the in-
coming bullet to the final gravitational potential energy of
the bullet–block–Earth combination.

v1A ! # m1 # m2

m1
$ √2gh

Substituting the value of vB from Equation (1) into Equa-
tion (2) gives

This kinetic energy immediately after the collision is less
than the initial kinetic energy of the bullet, as expected in
an inelastic collision.

We define the gravitational potential energy of the
system for configuration " to be zero. Thus, UB ! 0 while
UC ! (m1 # m2)gh. Conservation of energy now leads to

m1
2v1A

2

2(m1 # m2)
# 0 ! 0 # (m1 # m2)gh

KB !
m1

2v1A
2

2(m1 # m 2)

Example 9.8 A Two-Body Collision with a Spring

Multiplying Equation (2) by 1.60 kg gives us

Adding Equations (1) and (3) allows us to find v2f :

Now, Equation (2) allows us to find v1f :

(B) During the collision, at the instant block 1 is moving to
the right with a velocity of #3.00 m/s, as in Figure 9.12b,
determine the velocity of block 2.

Solution Because the momentum of the system of two
blocks is conserved throughout the collision for the sys-
tem of two blocks, we have, for any instant during the
collision,

We choose the final instant to be that at which block 1 is
moving with a velocity of # 3.00 m/s:

m1v1i # m2v2i ! m1v1f # m2v2f

"  3.38 m/sv1f !

6.50 m/s ! "v1f # 3.12 m/s

3.12 m/sv2f !
11.55 kg)m/s

3.70 kg
!

11.55 kg)m/s ! (3.70 kg)v2f

(3)      10.4 kg)m/s ! "(1.60 kg)v1f # (1.60 kg)v2f

A block of mass m1 ! 1.60 kg initially moving to the right
with a speed of 4.00 m/s on a frictionless horizontal track
collides with a spring attached to a second block of mass
m 2 ! 2.10 kg initially moving to the left with a speed of
2.50 m/s, as shown in Figure 9.12a. The spring constant is
600 N/m.

(A) Find the velocities of the two blocks after the collision.

Solution Because the spring force is conservative, no ki-
netic energy is converted to internal energy during the com-
pression of the spring. Ignoring any sound made when the
block hits the spring, we can model the collision as being
elastic. Equation 9.15 gives us

Equation 9.19 gives us

(2)      6.50 m/s ! "  v1f # v2f

4.00 m/s " ("2.50 m/s) ! "v1f # v2f

v1i " v2i ! "(v1f " v2f)

(1)      1.15 kg)m/s ! (1.60 kg)v1f # (2.10 kg)v2f

! (1.60 kg)v1f # (2.10 kg)v2f

(1.60 kg)(4.00 m/s) # (2.10 kg)("2.50 m/s)

m1v1i # m2v2i ! m1v1f # m2v2f

Interactive

x

k

v1f = (3.00î) m/s v2f

m1
m2m1

m2

k

v1i = (4.00î) m/s v2i = (–2.50î) m/s

(a)

(b)

Figure 9.12 (Example 9.8) A moving block approaches a second moving block that is
attached to a spring.
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Example 9.9 Slowing Down Neutrons by Collisions

Equation 9.22:

Therefore, the fraction fn of the initial kinetic energy pos-
sessed by the neutron after the collision is

From this result, we see that the final kinetic energy of
the neutron is small when mm is close to mn and zero when
mn ! mm .

We can use Equation 9.23, which gives the final speed of
the particle that was initially at rest, to calculate the kinetic
energy of the moderator nucleus after the collision:

Hence, the fraction fm of the initial kinetic energy trans-
ferred to the moderator nucleus is

(2)     fm !    
Kmf

Kni
 !

4mnmm

(mn # mm)2

Kmf !  12mmvmf
2 !   

2mn
2mm

(mn # mm)2
   vni

2

(1)      fn !    
Knf

Kni
 ! # mn " mm

mn # mm
$2

Knf !  12mnvnf
2 !  

1
2mn  # mn " mm

mn # mm
$2

 vni
2

In a nuclear reactor, neutrons are produced when an atom
splits in a process called fission. These neutrons are moving
at about 107 m/s and must be slowed down to about 
103 m/s before they take part in another fission event. They
are slowed down by passing them through a solid or liquid
material called a moderator. The slowing-down process in-
volves elastic collisions. Show that a neutron can lose most
of its kinetic energy if it collides elastically with a moderator
containing light nuclei, such as deuterium (in “heavy water,”
D2O) or carbon (in graphite).

Solution Let us assume that the moderator nucleus of mass
mm is at rest initially and that a neutron of mass mn and ini-
tial speed vni collides with it head-on. Because these are elas-
tic collisions, both momentum and kinetic energy of the
neutron–nucleus system are conserved. Therefore, Equa-
tions 9.22 and 9.23 can be applied to the head-on collision
of a neutron with a moderator nucleus. We can represent
this process by a drawing such as Figure 9.9 with v2i ! 0.

The initial kinetic energy of the neutron is

After the collision, the neutron has kinetic energy ,
and we can substitute into this the value for vnf given by

 12mnvnf
2

Kni ! 1
2mnvni

2

At the Interactive Worked Example link at http://www.pse6.com, you can change the masses and speeds of the blocks and
freeze the motion at the maximum compression of the spring.

(D) What is the maximum compression of the spring during
the collision?

Solution The maximum compression would occur when the
two blocks are moving with the same velocity. The conserva-
tion of momentum equation for the system can be written

where the initial instant is just before the collision and the
final instant is when the blocks are moving with the same
velocity vf . Solving for vf ,

Now, we apply conservation of mechanical energy between
these two instants as in part (C):

Substituting the given values into this expression gives

x ! 0.253 m

1
2m1v 2

1i # 1
2m 2v 2

2i # 0 ! 1
2(m1 # m 2)vf

2 # 1
2kx 2

Ki # Ui ! Kf # Uf

! 0.311 m/s

!
(1.60 kg)(4.00 m/s) # (2.10 kg)("2.50 m/s)

1.60 kg # 2.10 kg

vf !
m1v1i # m2v2i

m1 # m2

m1v1i # m2v2i ! (m1 # m2)vf

The negative value for v2f means that block 2 is still moving
to the left at the instant we are considering.

(C) Determine the distance the spring is compressed at that
instant.

Solution To determine the distance that the spring is com-
pressed, shown as x in Figure 9.12b, we can use the principle
of conservation of mechanical energy for the system of the
spring and two blocks because no friction or other noncon-
servative forces are acting within the system. We choose the
initial configuration of the system to be that existing just be-
fore block 1 strikes the spring and the final configuration to
be that when block 1 is moving to the right at 3.00 m/s.
Thus, we have

Substituting the given values and the result to part (B) into
this expression gives

x ! 0.173 m

1
2m1v 2

1i # 1
2m2v 2

2i # 0 ! 1
2m1v1f

2 # 1
2m2v2f

2 # 1
2kx2

Ki # Ui ! Kf # Uf

"1.74 m/sv2f !

! (1.60 kg)(3.00 m/s) # (2.10 kg)v2f

(1.60 kg)(4.00 m/s) # (2.10 kg)("2.50 m/s)
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9.4 Two-Dimensional Collisions

In Section 9.1, we showed that the momentum of a system of two particles is conserved
when the system is isolated. For any collision of two particles, this result implies that
the momentum in each of the directions x, y, and z is conserved. An important subset
of collisions takes place in a plane. The game of billiards is a familiar example involv-
ing multiple collisions of objects moving on a two-dimensional surface. For such two-
dimensional collisions, we obtain two component equations for conservation of 
momentum:

where we use three subscripts in these equations to represent, respectively, (1)
the identification of the object, (2) initial and final values, and (3) the velocity
component.

Let us consider a two-dimensional problem in which particle 1 of mass m1 collides
with particle 2 of mass m2 , where particle 2 is initially at rest, as in Figure 9.13. After
the collision, particle 1 moves at an angle & with respect to the horizontal and parti-
cle 2 moves at an angle + with respect to the horizontal. This is called a glancing colli-
sion. Applying the law of conservation of momentum in component form and noting
that the initial y component of the momentum of the two-particle system is zero, we
obtain

(9.24)

(9.25)

where the minus sign in Equation 9.25 comes from the fact that after the collision, par-
ticle 2 has a y component of velocity that is downward. We now have two independent
equations. As long as no more than two of the seven quantities in Equations 9.24 and
9.25 are unknown, we can solve the problem.

If the collision is elastic, we can also use Equation 9.16 (conservation of kinetic en-
ergy) with v2i ! 0 to give

(9.26)1
2m1v 2

1i ! 1
2m1v 2

1f # 1
2m2v 2

2f

0 ! m1v1f  sin & " m2v2f  sin +

m1v1i ! m1v1f  cos & # m2v2f  cos +

m1v1iy # m2v2iy ! m1v1f y # m2v2f y

m1v1ix # m2v2ix ! m1v1f x # m2v2f x

neutron’s kinetic energy is transferred to the deuterium nu-
cleus. In practice, the moderator efficiency is reduced be-
cause head-on collisions are very unlikely.

How do the results differ when graphite (12C, as found
in pencil lead) is used as the moderator?

Because the total kinetic energy of the system is conserved,
Equation (2) can also be obtained from Equation (1) with
the condition that fn # fm ! 1, so that fm ! 1 " fn.

Suppose that heavy water is used for the moderator. For
collisions of the neutrons with deuterium nuclei in D2O
(mm ! 2mn), fn ! 1/9 and fm ! 8/9. That is, 89% of the

(a) Before the collision

v1i

(b) After the collision

θ
φ

v2f cos

v1f cos

v1f sin
v1f

v2f
–v2f sin

φ

φ

θ

θ

Active Figure 9.13 An elastic glancing collision between two particles. 

At the Active Figures link
at http://www.pse6.com, you
can adjust the speed and
position of the blue particle
and the masses of both
particles to see the effects.

! PITFALL PREVENTION
9.5 Don’t Use 

Equation 9.19
Equation 9.19, relating the initial
and final relative velocities of two
colliding objects, is only valid for
one-dimensional elastic colli-
sions. Do not use this equation
when analyzing two-dimensional
collisions.
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Example 9.10 Collision at an Intersection

A 1 500-kg car traveling east with a speed of 25.0 m/s col-
lides at an intersection with a 2 500-kg van traveling north at
a speed of 20.0 m/s, as shown in Figure 9.14. Find the direc-
tion and magnitude of the velocity of the wreckage after the
collision, assuming that the vehicles undergo a perfectly
inelastic collision (that is, they stick together).

Solution Let us choose east to be along the positive x di-
rection and north to be along the positive y direction. Be-
fore the collision, the only object having momentum in the
x direction is the car. Thus, the magnitude of the total ini-
tial momentum of the system (car plus van) in the x direc-
tion is

Let us assume that the wreckage moves at an angle & and
speed vf after the collision. The magnitude of the total mo-
mentum in the x direction after the collision is

"pxi ! (1 500 kg)(25.0 m/s) ! 3.75 * 104 kg)m/s

θ
(25.0î) m/s

y

x

vf

(20.0ĵ) m/s

Figure 9.14 (Example 9.10) An eastbound car colliding with
a northbound van.

Knowing the initial speed of particle 1 and both masses, we are left with four unknowns
(v1f , v2f , &, and +). Because we have only three equations, one of the four remaining
quantities must be given if we are to determine the motion after the collision from
conservation principles alone.

If the collision is inelastic, kinetic energy is not conserved and Equation 9.26 does
not apply.

P R O B L E M - S O LV I N G  H I N T S

Two-Dimensional Collisions
The following procedure is recommended when dealing with problems involving
two-dimensional collisions between two objects:

• Set up a coordinate system and define your velocities with respect to that
system. It is usually convenient to have the x axis coincide with one of the
initial velocities.

• In your sketch of the coordinate system, draw and label all velocity vectors and
include all the given information.

• Write expressions for the x and y components of the momentum of each
object before and after the collision. Remember to include the appropriate
signs for the components of the velocity vectors.

• Write expressions for the total momentum of the system in the x direction
before and after the collision and equate the two. Repeat this procedure for
the total momentum of the system in the y direction.

• If the collision is inelastic, kinetic energy of the system is not conserved, and
additional information is probably required. If the collision is perfectly
inelastic, the final velocities of the two objects are equal. Solve the momentum
equations for the unknown quantities.

• If the collision is elastic, kinetic energy of the system is conserved, and you can
equate the total kinetic energy before the collision to the total kinetic energy
after the collision to obtain an additional relationship between the velocities.
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Because the total momentum in the x direction is con-
served, we can equate these two equations to obtain

Similarly, the total initial momentum of the system in the y
direction is that of the van, and the magnitude of this momen-
tum is (2 500 kg)(20.0 m/s) ! 5.00 * 104 kg )m/s. Applying
conservation of momentum to the y direction, we have

If we divide Equation (2) by Equation (1), we obtain

(2)      5.00 * 104 kg)m/s ! (4 000 kg)vf  sin &

"pyi ! "pyf

(1)      3.75 * 104 kg)m/s ! (4 000 kg)vf  cos &

"pxf ! (4 000 kg)vf  cos &

Example 9.11 Proton–Proton Collision

A proton collides elastically with another proton that is ini-
tially at rest. The incoming proton has an initial speed of
3.50 * 105 m/s and makes a glancing collision with the sec-
ond proton, as in Figure 9.13. (At close separations, the
protons exert a repulsive electrostatic force on each other.)
After the collision, one proton moves off at an angle of 37.0°
to the original direction of motion, and the second deflects
at an angle of + to the same axis. Find the final speeds of
the two protons and the angle +.

Solution The pair of protons is an isolated system. Both
momentum and kinetic energy of the system are conserved
in this glancing elastic collision. Because m1 ! m2, & ! 37.0°,
and we are given that v1i ! 3.50 * 105 m/s, Equations 9.24,
9.25, and 9.26 become

(1)

(3)

We rewrite Equations (1) and (2) as follows:

Now we square these two equations and add them:

v2f
2 ! 1.23 * 1011 " (5.59 * 105 )v1f # v1f

2 

# v1f
2 cos2 37.0, #  v1f

2 sin2 37.0,

! 1.23 * 1011 m2/s2 " (7.00 * 105 m/s)v1f  cos 37.0,

v2f
2  cos2 + # v2f

2  sin 2 +

v2f  sin + ! v1f  sin 37.0,

v2f  cos + ! 3.50 * 105 m/s "  v1f  cos 37.0,

 ! 1.23 * 1011 m2/s2

 v1f
2 # v2f

2 ! (3.50 * 105 m/s)2

(2)      v1f  sin 37.0, " v2f  sin + ! 0

v1f  cos 37, # v2f  cos + ! 3.50 * 105 m/s

Substituting into Equation (3) gives

One possibility for the solution of this equation is v1f ! 0,
which corresponds to a head-on collision—the first proton
stops and the second continues with the same speed in
the same direction. This is not what we want. The other
possibility is

From Equation (3),

and from Equation (2),

It is interesting to note that & # + ! 90°. This result is not
accidental. Whenever two objects of equal mass collide elas-
tically in a glancing collision and one of them is initially at
rest, their final velocities are perpendicular to each other.
The next example illustrates this point in more detail.

53.0,!

+ ! sin"1# v1f  sin 37.0,

v2f
$ ! sin"1# (2.80 * 105) sin 37.0,

2.12 * 105 $

! 2.12 * 105 m/s

v2f ! √1.23 * 1011 " v1f
2 ! √1.23 * 1011 " (2.80 * 105)2

2.80 * 105 m/s2v1f " 5.59 * 105 ! 0   9:    v1f !

2v1f
2 " (5.59 * 105 )v1f ! (2v1f " 5.59 * 105)v1f ! 0

! 1.23 * 1011

v1f
2 # '1.23 * 1011 " (5.59 * 105 )v1f # v1f

2 (

& !

When this angle is substituted into Equation (2), the value
of vf is

It might be instructive for you to draw the momentum vec-
tors of each vehicle before the collision and the two vehicles
together after the collision.

15.6 m/s vf !
5.00 * 104 kg)m/s
(4 000 kg)sin 53.1,

!

53.1,

 
sin &
cos &

! tan & !
5.00 * 104

3.75 * 104 ! 1.33

Example 9.12 Billiard Ball Collision

In a game of billiards, a player wishes to sink a target ball in
the corner pocket, as shown in Figure 9.15. If the angle to
the corner pocket is 35°, at what angle & is the cue ball de-
flected? Assume that friction and rotational motion are
unimportant and that the collision is elastic. Also assume
that all billiard balls have the same mass m.

Solution Let ball 1 be the cue ball and ball 2 be the target
ball. Because the target ball is initially at rest, conservation
of kinetic energy (Eq. 9.16) for the two-ball system gives

But m1 ! m2 ! m, so that

1
2m1v1i

2 ! 1
2m1v1f

2 # 1
2m2v2f

2



9.5 The Center of Mass

In this section we describe the overall motion of a mechanical system in terms of a spe-
cial point called the center of mass of the system. The mechanical system can be ei-
ther a group of particles, such as a collection of atoms in a container, or an extended
object, such as a gymnast leaping through the air. We shall see that the center of mass
of the system moves as if all the mass of the system were concentrated at that point.
Furthermore, if the resultant external force on the system is "Fext and the total mass of
the system is M, the center of mass moves with an acceleration given by a ! "Fext/M.
That is, the system moves as if the resultant external force were applied to a single par-
ticle of mass M located at the center of mass. This behavior is independent of other
motion, such as rotation or vibration of the system. This is the particle model that was in-
troduced in Chapter 2.

Consider a mechanical system consisting of a pair of particles that have different
masses and are connected by a light, rigid rod (Fig. 9.16). The position of the center of
mass of a system can be described as being the average position of the system’s mass. The
center of mass of the system is located somewhere on the line joining the two particles
and is closer to the particle having the larger mass. If a single force is applied at a point
on the rod somewhere between the center of mass and the less massive particle, the sys-
tem rotates clockwise (see Fig. 9.16a). If the force is applied at a point on the rod
somewhere between the center of mass and the more massive particle, the system ro-
tates counterclockwise (see Fig. 9.16b). If the force is applied at the center of mass, the
system moves in the direction of F without rotating (see Fig. 9.16c). Thus, the center
of mass can be located with this procedure.

The center of mass of the pair of particles described in Figure 9.17 is located on
the x axis and lies somewhere between the particles. Its x coordinate is given by

(9.27)xCM  ! 
m1x1 # m2x2

m1 # m2
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Cue ball

v2f

v1f

v1i

θ

y

x
35°

Figure 9.15 (Example 9.12) The cue ball (white) strikes the
number 4 ball (blue) and sends it toward the corner
pocket.

Applying conservation of momentum to the two-dimen-
sional collision gives

(2)      m1v1i ! m1v1f # m 2v2f

(1)      v1i
2 ! v1f

2 # v 2f
2 Note that because m1 ! m 2 ! m, the masses also cancel in

Equation (2). If we square both sides of Equation (2) and
use the definition of the dot product of two vectors from
Section 7.3, we obtain

Because the angle between v1f and v2f is & # 35°, v1f ! v2f !
v1f v2f cos(& # 35°), and so

Subtracting Equation (1) from Equation (3) gives

or

This result shows that whenever two equal masses undergo
a glancing elastic collision and one of them is initially at
rest, they move in perpendicular directions after the colli-
sion. The same physics describes two very different situa-
tions, protons in Example 9.11 and billiard balls in this
example.

& ! 55,& # 35, ! 90,

0 ! cos(& # 35,)

0 ! 2v1f v2f  cos(& # 35,)

(3)      v1i
2 ! v1f

2 # v 2f
2 # 2v1f v2f  cos(& # 35,)

v1i
2 ! (v1f # v2f) ! (v1f # v2f) ! v1f

2 # v2f
2 # 2v1f ! v2f
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CM

(a)

(b)

(c)

CM

CM

Active Figure 9.16 Two particles
of unequal mass are connected by a
light, rigid rod. (a) The system
rotates clockwise when a force is ap-
plied between the less massive parti-
cle and the center of mass. (b) The
system rotates counterclockwise
when a force is applied between the
more massive particle and the cen-
ter of mass. (c) The system moves
in the direction of the force without
rotating when a force is applied at
the center of mass.

At the Active Figures link 
at http://www.pse6.com, you
can choose the point at which
to apply the force.

y

m1

x1

x 2

CM

m 2

x

x CM

For example, if x1 ! 0, x2 ! d, and m2 ! 2m1, we find that That is, the cen-
ter of mass lies closer to the more massive particle. If the two masses are equal, the cen-
ter of mass lies midway between the particles.

We can extend this concept to a system of many particles with masses mi in three di-
mensions. The x coordinate of the center of mass of n particles is defined to be

(9.28)

where xi is the x coordinate of the i th particle. For convenience, we express the total
mass as where the sum runs over all n particles. The y and z coordinates of

the center of mass are similarly defined by the equations

(9.29)

The center of mass can also be located by its position vector rCM. The Cartesian co-
ordinates of this vector are xCM, yCM, and zCM, defined in Equations 9.28 and 9.29.
Therefore,

(9.30)

where ri is the position vector of the ith particle, defined by

Although locating the center of mass for an extended object is somewhat more
cumbersome than locating the center of mass of a system of particles, the basic ideas
we have discussed still apply. We can think of an extended object as a system contain-
ing a large number of particles (Fig. 9.18). The particle separation is very small, and so
the object can be considered to have a continuous mass distribution. By dividing the
object into elements of mass (mi with coordinates xi , yi , zi , we see that the x coordinate
of the center of mass is approximately

with similar expressions for yCM and z CM. If we let the number of elements n approach
infinity, then xCM is given precisely. In this limit, we replace the sum by an integral and
(mi by the differential element dm:

(9.31)

Likewise, for yCM and z CM we obtain

(9.32)

We can express the vector position of the center of mass of an extended object in the
form

yCM !
1
M

 % y dm  and  z CM !
1
M

 % z dm

x CM ! lim
(mi : 0

  
"
i

x i  (mi

M
!

1
M

 % x dm

xCM   &  
"
i

xi (mi

M

ri  ! x i î # yi ĵ # z i k̂

rCM   ! 
"
i

mi ri

M

rCM ! x CM î # yCM ĵ # z CM k̂ !
"
i

mix i î # "
i

miyi ĵ # "
i

mi z i k̂

M

yCM   ! 
"
i

miyi

M
  and  z CM  ! 

"
i

mi z i

M

M  ! "
i

mi

xCM  ! 
m1x1 # m2x2 # m3x3 # … # mnxn

m1 # m2 # m3 # … # mn
!

"
i

mixi

"
i

mi
!

"
i

mixi

M

xCM ! 2
3d.

Active Figure 9.17 The center of
mass of two particles of unequal
mass on the x axis is located at xCM,
a point between the particles, closer
to the one having the larger mass.

At the Active Figures link 
at http://www.pse6.com, you
can adjust the masses and
positions of the particles to
see the effect on the location
of the center of mass.
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Example 9.13 The Center of Mass of Three Particles

A system consists of three particles located as shown in Fig-
ure 9.21a. Find the center of mass of the system.

Solution We set up the problem by labeling the masses of
the particles as shown in the figure, with m1 ! m2 ! 1.0 kg
and m3 ! 2.0 kg. Using the defining equations for the coor-
dinates of the center of mass and noting that zCM ! 0, we
obtain

Quick Quiz 9.10 A baseball bat is cut at the location of its center of mass
as shown in Figure 9.20. The piece with the smaller mass is (a) the piece on the
right (b) the piece on the left (c) Both pieces have the same mass. (d) impossible to
determine.

Figure 9.20 (Quick Quiz 9.10) A baseball bat cut at the location of its center of
mass.

4 This statement is valid only for objects that have a uniform mass per unit volume.

(9.33)

which is equivalent to the three expressions given by Equations 9.31 and 9.32.
The center of mass of any symmetric object lies on an axis of symmetry and

on any plane of symmetry.4 For example, the center of mass of a uniform rod lies in
the rod, midway between its ends. The center of mass of a sphere or a cube lies at its
geometric center.

The center of mass of an irregularly shaped object such as a wrench can be deter-
mined by suspending the object first from one point and then from another. In Figure
9.19, a wrench is hung from point A, and a vertical line AB (which can be established
with a plumb bob) is drawn when the wrench has stopped swinging. The wrench is
then hung from point C, and a second vertical line CD is drawn. The center of mass is
halfway through the thickness of the wrench, under the intersection of these two lines.
In general, if the wrench is hung freely from any point, the vertical line through this
point must pass through the center of mass.

Because an extended object is a continuous distribution of mass, each small mass
element is acted upon by the gravitational force. The net effect of all these forces is
equivalent to the effect of a single force Mg acting through a special point, called the
center of gravity. If g is constant over the mass distribution, then the center of gravity
coincides with the center of mass. If an extended object is pivoted at its center of grav-
ity, it balances in any orientation.

rCM !
1
M

 %r dm

!
3.0 kg)m

4.0 kg
! 0.75 m

!
(1.0 kg)(1.0 m) # (1.0 kg)(2.0 m) # (2.0 kg)(0)

1.0 kg # 1.0 kg # 2.0 kg

xCM !
"
i

mixi

M
!

m1x1 # m2x2 # m3x3

m1 # m2 # m3

y

x

z

ri

∆mi

rCM

CM

Figure 9.18 An extended object
can be considered to be a distribu-
tion of small elements of mass (mi .
The center of mass is located at the
vector position rCM, which has
coordinates xCM, yCM, and zCM.

A

B

C

A
B

C

D

Center of
mass

Figure 9.19 An experimental tech-
nique for determining the center
of mass of a wrench. The wrench is
hung freely first from point A and
then from point C. The intersec-
tion of the two lines AB and CD
locates the center of mass.
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2

0 21

1

3

y(m)

x(m)3

m1 m2

m3

(a)

rCMm3r3

MrCM

m1r1 m2r2

(b)

rCM

Figure 9.21 (Example 9.13) (a) Two 1.0-kg particles are 
located on the x axis and a single 2.0-kg particle is located on
the y axis as shown. The vector indicates the location of the 
system’s center of mass. (b) The vector sum of mi ri and the 
resulting vector for rCM.

The position vector to the center of mass measured from
the origin is therefore

We can verify this result graphically by adding together 
m1r1 # m2r2 # m3r3 and dividing the vector sum by M, the
total mass. This is shown in Figure 9.21b.

(0.75 î # 1.0 ĵ) mrCM  ! xCM î # yCM ĵ !

!
4.0 kg)m

4.0 kg
! 1.0 m

!
(1.0 kg)(0) # (1.0 kg)(0) # (2.0 kg)(2.0 m)

4.0 kg

yCM !
"
i

mi yi

M
!

m1y1 # m 2y2 # m 3y3

m1 # m 2 # m 3

Example 9.14 The Center of Mass of a Rod

- ! .x, where . is a constant. Find the x coordinate of the
center of mass as a fraction of L.

Solution In this case, we replace dm by - dx, where - is not
constant. Therefore, x CM is

!
.

M
 %L

0
  x 2 dx !

.L3

3M

x CM !
1
M

 % x dm !
1
M

 %L

0
  x- dx !

1
M

 %L

0
 x. x dx

(A) Show that the center of mass of a rod of mass M and
length L lies midway between its ends, assuming the rod has
a uniform mass per unit length.

Solution The rod is shown aligned along the x axis in Fig-
ure 9.22, so that yCM ! z CM ! 0. Furthermore, if we call
the mass per unit length - (this quantity is called the linear
mass density), then - ! M/L for the uniform rod we as-
sume here. If we divide the rod into elements of length dx,
then the mass of each element is dm ! - dx. Equation 9.31
gives

Because - ! M/L, this reduces to

One can also use symmetry arguments to obtain the same
result.

(B) Suppose a rod is nonuniform such that its mass per
unit length varies linearly with x according to the expression

L
2

x CM !
L2

2M
 # M

L $  !

x CM !
1
M

 % x dm !
1
M

 %L

0
 x- dx !

-

M
  

x2

2
 )L

0
!

-L2

2M

L

x

dm = ldx
y

dx

O
x

Figure 9.22 (Example 9.14) The geometry used to find the
center of mass of a uniform rod.



9.6 Motion of a System of Particles

We can begin to understand the physical significance and utility of the center of mass
concept by taking the time derivative of the position vector given by Equation 9.30.
From Section 4.1 we know that the time derivative of a position vector is by definition a
velocity. Assuming M remains constant for a system of particles, that is, no particles en-
ter or leave the system, we obtain the following expression for the velocity of the cen-
ter of mass of the system:

(9.34)

where vi is the velocity of the i th particle. Rearranging Equation 9.34 gives

(9.35)MvCM ! "
i

mivi ! "
i
pi ! ptot

vCM !
drCM

dt
!

1
M

 "
i

mi   
dri

dt
!

"
i

mi vi

M
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Example 9.15 The Center of Mass of a Right Triangle

To proceed further and evaluate the integral, we must ex-
press y in terms of x. The line representing the hypotenuse
of the triangle in Figure 9.23b has a slope of b/a and passes
through the origin, so the equation of this line is 
y ! (b/a)x. With this substitution for y in the integral, 
we have

!

Thus, the wire must be attached to the sign at a distance two
thirds of the length of the bottom edge from the left end.
We could also find the y coordinate of the center of mass of
the sign, but this is not needed in order to determine where
the wire should be attached.

2
3a

xCM !
2
ab

  %a

0
 x  # b

a
 x$ dx !

2
a2  %a

0
 x 2 dx !

2
a2  * x 3

3 +a

0

You have been asked to hang a metal sign from a single ver-
tical wire. The sign has the triangular shape shown in Figure
9.23a. The bottom of the sign is to be parallel to the ground.
At what distance from the left end of the sign should you at-
tach the support wire?

Solution The wire must be attached at a point directly
above the center of gravity of the sign, which is the same as
its center of mass because it is in a uniform gravitational
field. We assume that the triangular sign has a uniform
density and total mass M. Because the sign is a continuous
distribution of mass, we must use the integral expression in
Equation 9.31 to find the x coordinate of the center of
mass.

We divide the triangle into narrow strips of width dx and
height y as shown in Figure 9.23b, where y is the height of
the hypotenuse of the triangle above the x axis for a given
value of x. The mass of each strip is the product of the vol-
ume of the strip and the density / of the material from
which the sign is made: dm ! /yt dx, where t is the thickness
of the metal sign. The density of the material is the total
mass of the sign divided by its total volume (area of the tri-
angle times thickness), so

Using Equation 9.31 to find the x coordinate of the center
of mass gives

x CM !
1
M

 % x dm !
1
M

 %a

0
  x   

2My
ab

  dx !
2
ab

 %a

0
 xy dx

dm ! /yt dx ! # M
1
2abt $ yt dx !

2My
ab

  dx

a

x
xO

y

c b
y

dx

dm

(b)(a)

Figure 9.23 (Example 9.15) (a) A triangular sign to be hung
from a single wire. (b) Geometric construction for locating the
center of mass.

Substituting this into the expression for xCM gives

2
3Lx CM !

.L3

3.L2/2
!

We can eliminate . by noting that the total mass of the rod
is related to . through the relationship

M !  %dm !  %L

0
 - dx !  %L

0
. x dx !

.L2

2

Velocity of the center of mass

Total momentum of a system of
particles
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The center of mass of a system of particles of combined mass M moves like an equiv-
alent particle of mass M would move under the influence of the net external force
on the system.

Therefore, we conclude that the total linear momentum of the system equals the
total mass multiplied by the velocity of the center of mass. In other words, the
total linear momentum of the system is equal to that of a single particle of mass M
moving with a velocity vCM.

If we now differentiate Equation 9.34 with respect to time, we obtain the accelera-
tion of the center of mass of the system:

(9.36)

Rearranging this expression and using Newton’s second law, we obtain

(9.37)

where Fi is the net force on particle i.
The forces on any particle in the system may include both external forces

(from outside the system) and internal forces (from within the system). However, by
Newton’s third law, the internal force exerted by particle 1 on particle 2, for example,
is equal in magnitude and opposite in direction to the internal force exerted by parti-
cle 2 on particle 1. Thus, when we sum over all internal forces in Equation 9.37, they
cancel in pairs and we find that the net force on the system is caused only by external
forces. Thus, we can write Equation 9.37 in the form

(9.38)

That is, the net external force on a system of particles equals the total mass of
the system multiplied by the acceleration of the center of mass. If we compare
this with Newton’s second law for a single particle, we see that the particle model that
we have used for several chapters can be described in terms of the center of mass:

 "Fext ! MaCM

MaCM ! " miai ! "
i

 Fi

aCM !
dvCM

dt
!

1
M

 "
i

mi   
dvi

dt
!  

1
M

 "
i

 miai

Finally, we see that if the net external force is zero, then from Equation 9.38 it follows that

so that

(9.39)

That is, the total linear momentum of a system of particles is conserved if no net exter-
nal force is acting on the system. It follows that for an isolated system of particles, both
the total momentum and the velocity of the center of mass are constant in time, as
shown in Figure 9.24. This is a generalization to a many-particle system of the law of
conservation of momentum discussed in Section 9.1 for a two-particle system.

Suppose an isolated system consisting of two or more members is at rest. The cen-
ter of mass of such a system remains at rest unless acted upon by an external force. For
example, consider a system made up of a swimmer standing on a raft, with the system
initially at rest. When the swimmer dives horizontally off the raft, the raft moves in the
direction opposite to that of the swimmer and the center of mass of the system remains
at rest (if we neglect friction between raft and water). Furthermore, the linear momen-
tum of the diver is equal in magnitude to that of the raft, but opposite in direction.

As another example, suppose an unstable atom initially at rest suddenly breaks up into
two fragments of masses M1 and M2, with velocities v1 and v2, respectively. Because the to-
tal momentum of the system before the breakup is zero, the total momentum of the

 M vCM ! ptot ! constant  (when "Fext ! 0)

 MaCM ! M   
d vCM

dt
! 0

Acceleration of the center of
mass

Newton’s second law for a
system of particles
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Conceptual Example 9.16 The Sliding Bear

Solution Tie one end of the rope around the bear, and
then lay out the tape measure on the ice with one end at
the bear’s original position, as shown in Figure 9.25. Grab
hold of the free end of the rope and position yourself as

Suppose you tranquilize a polar bear on a smooth glacier as
part of a research effort. How might you estimate the bear’s
mass using a measuring tape, a rope, and knowledge of your
own mass?

xp xb

CM

Figure 9.25 (Conceptual Example 9.16) The center of mass of an isolated system re-
mains at rest unless acted on by an external force. How can you determine the mass of
the polar bear?

system after the breakup must also be zero. Therefore, M1v1 # M2v2 ! 0. If the velocity
of one of the fragments is known, the recoil velocity of the other fragment can be
calculated.

Figure 9.24 Multiflash pho-
tograph showing an overhead
view of a wrench moving on a
horizontal surface. The white
dots are located at the center
of mass of the wrench and
show that the center of mass
moves in a straight line as the
wrench rotates. Ri
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Quick Quiz 9.11 The vacationers on a cruise ship are eager to arrive at their
next destination. They decide to try to speed up the cruise ship by gathering at the bow
(the front) and running all at once toward the stern (the back) of the ship. While they
are running toward the stern, the speed of the ship is (a) higher than it was before
(b) unchanged (c) lower than it was before (d) impossible to determine.

Quick Quiz 9.12 The vacationers in Quick Quiz 9.11 stop running when
they reach the stern of the ship. After they have all stopped running, the speed of the
ship is (a) higher than it was before they started running (b) unchanged from what it
was before they started running (c) lower than it was before they started running
(d) impossible to determine.



S E C T I O N  9 . 7 •  Rocket Propulsion 277

Conceptual Example 9.17 Exploding Projectile

A projectile fired into the air suddenly explodes into several
fragments (Fig. 9.26). What can be said about the motion of
the center of mass of the system made up of all the frag-
ments after the explosion?

Solution Neglecting air resistance, the only external force
on the projectile is the gravitational force. Thus, if the pro-
jectile did not explode, it would continue to move along the
parabolic path indicated by the dashed line in Figure 9.26.
Because the forces caused by the explosion are internal,
they do not affect the motion of the center of mass of the
system (the fragments). Thus, after the explosion, the cen-
ter of mass of the fragments follows the same parabolic path
the projectile would have followed if there had been no ex-
plosion.

Figure 9.26 (Conceptual Example 9.17) When a projectile
explodes into several fragments, the center of mass of the system
made up of all the fragments follows the same parabolic path
the projectile would have taken had there been no explosion.

Example 9.18 The Exploding Rocket

After the explosion,

where vf is the unknown velocity of the third fragment.
Equating these two expressions (because pi ! pf) gives

vf !

What does the sum of the momentum vectors for all the
fragments look like?

("  240î # 450ĵ) m/s

! M(300 ĵ m/s)

M
3

 vf #
M
3

 (240 î m/s) #
M
3

 (450 ĵ m/s)

pf !
M
3

 (240 î  m/s) #
M
3

 (450 ĵ  m/s)#
M
3

 vf

A rocket is fired vertically upward. At the instant it reaches
an altitude of 1 000 m and a speed of 300 m/s, it explodes
into three fragments having equal mass. One fragment con-
tinues to move upward with a speed of 450 m/s following
the explosion. The second fragment has a speed of 240 m/s
and is moving east right after the explosion. What is the ve-
locity of the third fragment right after the explosion?

Solution Let us call the total mass of the rocket M; hence,
the mass of each fragment is M/3. Because the forces of the
explosion are internal to the system and cannot affect its to-
tal momentum, the total momentum pi of the rocket just be-
fore the explosion must equal the total momentum pf of the
fragments right after the explosion.

Before the explosion,

pi ! M vi ! M(300 ĵ m/s)

location of the center of mass of the system (bear plus
you), and so you can determine the mass of the bear from
mbxb ! mpxp . (Unfortunately, you cannot return to your
spiked shoes and so you are in big trouble if the bear
wakes up!)

shown, noting your location. Take off your spiked shoes,
and pull on the rope hand over hand. Both you and the
bear will slide over the ice until you meet. From the tape,
observe how far you slide, xp , and how far the bear
slides, xb . The point where you meet the bear is the fixed

9.7 Rocket Propulsion

When ordinary vehicles such as cars and locomotives are propelled, the driving force
for the motion is friction. In the case of the car, the driving force is the force exerted
by the road on the car. A locomotive “pushes” against the tracks; hence, the driving
force is the force exerted by the tracks on the locomotive. However, a rocket moving in
space has no road or tracks to push against. Therefore, the source of the propulsion of
a rocket must be something other than friction. Figure 9.27 is a dramatic photograph
of a spacecraft at liftoff. The operation of a rocket depends upon the law of
conservation of linear momentum as applied to a system of particles, where the
system is the rocket plus its ejected fuel.
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Figure 9.27 At liftoff, enormous thrust is generated by the space shuttle’s liquid-fuel
engines, aided by the two solid-fuel boosters. This photograph shows the liftoff of the
space shuttle Columbia, which was lost in a tragic accident during its landing attempt on
February 1, 2003 (shortly before this volume went to press).
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(a)

(b)

M + ∆m

pi = (M + ∆m)v

M
∆m

v

v + ∆v

Figure 9.28 Rocket propulsion.
(a) The initial mass of the rocket
plus all its fuel is M # (m at a time
t, and its speed is v. (b) At a time
t # (t, the rocket’s mass has been
reduced to M and an amount of
fuel (m has been ejected. The
rocket’s speed increases by an
amount (v.

Rocket propulsion can be understood by first considering a mechanical system con-
sisting of a machine gun mounted on a cart on wheels. As the gun is fired, each bullet
receives a momentum m v in some direction, where v is measured with respect to a sta-
tionary Earth frame. The momentum of the system made up of cart, gun, and bullets
must be conserved. Hence, for each bullet fired, the gun and cart must receive a com-
pensating momentum in the opposite direction. That is, the reaction force exerted by
the bullet on the gun accelerates the cart and gun, and the cart moves in the direction
opposite that of the bullets. If n is the number of bullets fired each second, then the av-
erage force exerted on the gun is ! nm v.

In a similar manner, as a rocket moves in free space, its linear momentum changes
when some of its mass is released in the form of ejected gases. Because the gases are
given momentum when they are ejected out of the engine, the rocket receives a
compensating momentum in the opposite direction. Therefore, the rocket is accel-
erated as a result of the “push,” or thrust, from the exhaust gases. In free space, the
center of mass of the system (rocket plus expelled gases) moves uniformly, indepen-
dent of the propulsion process.5

Suppose that at some time t, the magnitude of the momentum of a rocket plus its
fuel is (M # (m)v, where v is the speed of the rocket relative to the Earth (Fig. 9.28a).
Over a short time interval (t, the rocket ejects fuel of mass (m, and so at the end of
this interval the rocket’s speed is v # (v, where (v is the change in speed of the rocket
(Fig. 9.28b). If the fuel is ejected with a speed ve relative to the rocket (the subscript “e”
stands for exhaust, and ve is usually called the exhaust speed), the velocity of the fuel rela-
tive to a stationary frame of reference is v " ve . Thus, if we equate the total initial mo-

 F

5 It is interesting to note that the rocket and machine gun represent cases of the reverse of a per-
fectly inelastic collision: momentum is conserved, but the kinetic energy of the system increases (at the
expense of chemical potential energy in the fuel).
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The force from a nitrogen-
propelled hand-controlled device
allows an astronaut to move about
freely in space without restrictive
tethers, using the thrust force from
the expelled nitrogen. 
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mentum of the system to the total final momentum, we obtain

where M represents the mass of the rocket and its remaining fuel after an amount of
fuel having mass (m has been ejected. Simplifying this expression gives

We also could have arrived at this result by considering the system in the center-of-
mass frame of reference, which is a frame having the same velocity as the center of
mass of the system. In this frame, the total momentum of the system is zero; therefore,
if the rocket gains a momentum M (v by ejecting some fuel, the exhausted fuel obtains
a momentum ve (m in the opposite direction, so that M (v " ve (m ! 0. If we now take
the limit as (t goes to zero, we let (v : dv and (m : dm. Furthermore, the increase
in the exhaust mass dm corresponds to an equal decrease in the rocket mass, so that
dm ! " dM. Note that dM is negative because it represents a decrease in mass, so " dM
is a positive number. Using this fact, we obtain

(9.40)

We divide the equation by M and integrate, taking the initial mass of the rocket plus
fuel to be Mi and the final mass of the rocket plus its remaining fuel to be Mf . This gives

(9.41)

This is the basic expression for rocket propulsion. First, it tells us that the increase in
rocket speed is proportional to the exhaust speed ve of the ejected gases. Therefore,
the exhaust speed should be very high. Second, the increase in rocket speed is pro-
portional to the natural logarithm of the ratio Mi /Mf . Therefore, this ratio should be
as large as possible, which means that the mass of the rocket without its fuel should
be as small as possible and the rocket should carry as much fuel as possible.

The thrust on the rocket is the force exerted on it by the ejected exhaust gases. We
can obtain an expression for the thrust from Equation 9.40:

(9.42)

This expression shows us that the thrust increases as the exhaust speed increases and as
the rate of change of mass (called the burn rate) increases.

Thrust ! M  
dv
dt

! ) ve 
dM
dt )

vf " vi ! ve   ln # Mi

Mf
$

%vf

vi

 dv ! "  ve %Mf

Mi

 
dM
M

M  dv ! ve dm ! "  ve dM

M  (v ! ve (m

(M # (m)v ! M(v # (v) # (m(v " ve)

Expression for rocket propulsion

Example 9.19 A Rocket in Space

(B) What is the thrust on the rocket if it burns fuel at the
rate of 50 kg/s?

Solution Using Equation 9.42,

2.5 * 105 N!

Thrust ! ) ve 
dM
dt ) ! (5.0 * 103 m/s)(50 kg/s)

6.5 * 103 m/s!

! 3.0 * 103 m/s # (5.0 * 103 m/s)ln # Mi

0.5 Mi
$A rocket moving in free space has a speed of 3.0 * 103 m/s

relative to the Earth. Its engines are turned on, and fuel is
ejected in a direction opposite the rocket’s motion at a
speed of 5.0 * 103 m/s relative to the rocket.

(A) What is the speed of the rocket relative to the Earth
once the rocket’s mass is reduced to half its mass before
ignition?

Solution We can guess that the speed we are looking
for must be greater than the original speed because the rocket
is accelerating. Applying Equation 9.41, we obtain

vf ! vi # ve   ln# Mi

Mf
$
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The linear momentum p of a particle of mass m moving with a velocity v is

(9.2)

The law of conservation of linear momentum indicates that the total momentum
of an isolated system is conserved. If two particles form an isolated system, the momen-
tum of the system is conserved regardless of the nature of the force between them.
Therefore, the total momentum of the system at all times equals its initial total
momentum, or

(9.5)

The impulse imparted to a particle by a force F is equal to the change in the mo-
mentum of the particle:

(9.8, 9.9)

This is known as the impulse–momentum theorem.
Impulsive forces are often very strong compared with other forces on the system

and usually act for a very short time, as in the case of collisions.
When two particles collide, the total momentum of the isolated system before the

collision always equals the total momentum after the collision, regardless of the nature
of the collision. An inelastic collision is one for which the total kinetic energy of the
system is not conserved. A perfectly inelastic collision is one in which the colliding
bodies stick together after the collision. An elastic collision is one in which the ki-
netic energy of the system is conserved.

In a two- or three-dimensional collision, the components of momentum of
an isolated system in each of the directions (x, y, and z) are conserved indepen-
dently.

The position vector of the center of mass of a system of particles is defined as

(9.30)

where is the total mass of the system and ri is the position vector of the ith

particle.

M ! "
i

mi

rCM  ! 
"
i

mi ri

M

I ! %tf

ti
 
  
F dt ! (p

p1i # p2i ! p1f # p2f

p  ! mv

S U M M A RYTake a practice test for
this chapter by clicking on
the Practice Test link at
http://www.pse6.com.

Example 9.20 Fighting a Fire

Firefighting is dangerous work. If the nozzle should slip
from their hands, the movement of the hose due to the
thrust it receives from the rapidly exiting water could injure
the firefighters.

10 m/sve !

600 N ! ) ve (60 kg/s) )

Thrust ! ) ve 
dM
dt )Two firefighters must apply a total force of 600 N to steady a

hose that is discharging water at the rate of 3 600 L/min.
Estimate the speed of the water as it exits the nozzle.

Solution The water is exiting at 3 600 L/min, which is
60 L/s. Knowing that 1 L of water has a mass of 1 kg, we
estimate that about 60 kg of water leaves the nozzle every
second. As the water leaves the hose, it exerts on the hose
a thrust that must be counteracted by the 600-N force
exerted by the firefighters. So, applying Equation 9.42
gives
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1. Does a large force always produce a larger impulse on an
object than a smaller force does? Explain.

2. If the speed of a particle is doubled, by what factor is its
momentum changed? By what factor is its kinetic energy
changed?

If two particles have equal kinetic energies, are their mo-
menta necessarily equal? Explain.

4. While in motion, a pitched baseball carries kinetic energy
and momentum. (a) Can we say that it carries a force that
it can exert on any object it strikes? (b) Can the baseball
deliver more kinetic energy to the object it strikes than the
ball carries initially? (c) Can the baseball deliver to the ob-
ject it strikes more momentum than the ball carries ini-
tially? Explain your answers.

5. An isolated system is initially at rest. Is it possible for parts
of the system to be in motion at some later time? If so, ex-
plain how this might occur.

6. If two objects collide and one is initially at rest, is it possi-
ble for both to be at rest after the collision? Is it possible
for one to be at rest after the collision? Explain.

Explain how linear momentum is conserved when a ball
bounces from a floor.

8. A bomb, initially at rest, explodes into several pieces. (a) Is
linear momentum of the system conserved? (b) Is kinetic
energy of the system conserved? Explain.

9. A ball of clay is thrown against a brick wall. The clay stops
and sticks to the wall. Is the principle of conservation of
momentum violated in this example?

10. You are standing perfectly still, and then you take a step
forward. Before the step your momentum was zero, but af-
terward you have some momentum. Is the principle of
conservation of momentum violated in this case?

11. When a ball rolls down an incline, its linear momentum in-
creases. Is the principle of conservation of momentum vio-
lated in this process?

7.

3.

12. Consider a perfectly inelastic collision between a car and a
large truck. Which vehicle experiences a larger change in
kinetic energy as a result of the collision?

A sharpshooter fires a rifle while standing with the butt of
the gun against his shoulder. If the forward momentum of a
bullet is the same as the backward momentum of the gun,
why isn’t it as dangerous to be hit by the gun as by the bullet?

14. A pole-vaulter falls from a height of 6.0 m onto a foam rub-
ber pad. Can you calculate his speed just before he
reaches the pad? Can you calculate the force exerted on
him by the pad? Explain.

15. Firefighters must apply large forces to hold a fire hose
steady (Fig. Q9.15). What factors related to the projection
of the water determine the magnitude of the force needed
to keep the end of the fire hose stationary?

13.

Figure Q9.15
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The position vector of the center of mass of an extended object can be obtained
from the integral expression

(9.33)

The velocity of the center of mass for a system of particles is

(9.34)

The total momentum of a system of particles equals the total mass multiplied by the ve-
locity of the center of mass.

Newton’s second law applied to a system of particles is

(9.38)

where aCM is the acceleration of the center of mass and the sum is over all external
forces. The center of mass moves like an imaginary particle of mass M under the influ-
ence of the resultant external force on the system.

"Fext ! MaCM

vCM !
"
i

mivi

M

rCM !
1
M

 % r dm

16. A large bed sheet is held vertically by two students. A third
student, who happens to be the star pitcher on the base-
ball team, throws a raw egg at the sheet. Explain why the
egg does not break when it hits the sheet, regardless of its
initial speed. (If you try this demonstration, make sure the
pitcher hits the sheet near its center, and do not allow the
egg to fall on the floor after being caught.)
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Section 9.1 Linear Momentum and its Conservation
1. A 3.00-kg particle has a velocity of (3.00î " 4.00ĵ) m/s.

(a) Find its x and y components of momentum. (b) Find
the magnitude and direction of its momentum.

2. A 0.100-kg ball is thrown straight up into the air with an
initial speed of 15.0 m/s. Find the momentum of the ball
(a) at its maximum height and (b) halfway up to its maxi-
mum height.

3. How fast can you set the Earth moving? In particular, when
you jump straight up as high as you can, what is the order
of magnitude of the maximum recoil speed that you give
to the Earth? Model the Earth as a perfectly solid object.
In your solution, state the physical quantities you take as
data and the values you measure or estimate for them.

4. Two blocks of masses M and 3M are placed on a horizon-
tal, frictionless surface. A light spring is attached to one

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide

= coached solution with hints available at http://www.pse6.com = computer useful in solving problem

= paired numerical and symbolic problems

P R O B L E M S

Before

(a)

After

(b)

M

v 2.00 m/s

M 3M

3M

Figure P9.4

17. A skater is standing still on a frictionless ice rink. Her
friend throws a Frisbee straight at her. In which of the fol-
lowing cases is the largest momentum transferred to the
skater? (a) The skater catches the Frisbee and holds onto
it. (b) The skater catches the Frisbee momentarily, but
then drops it vertically downward. (c) The skater catches
the Frisbee, holds it momentarily, and throws it back to
her friend.

18. In an elastic collision between two particles, does the kinetic
energy of each particle change as a result of the collision?

19. Three balls are thrown into the air simultaneously. What is
the acceleration of their center of mass while they are in
motion?

20. A person balances a meter stick in a horizontal position on
the extended index fingers of her right and left hands. She
slowly brings the two fingers together. The stick remains bal-
anced and the two fingers always meet at the 50-cm mark re-
gardless of their original positions. (Try it!) Explain.

21. NASA often uses the gravity of a planet to “slingshot” a
probe on its way to a more distant planet. The interaction
of the planet and the spacecraft is a collision in which the
objects do not touch. How can the probe have its speed in-
creased in this manner?

22. The Moon revolves around the Earth. Model its orbit as
circular. Is the Moon’s linear momentum conserved? Is its
kinetic energy conserved?

23. A raw egg dropped to the floor breaks upon impact. How-
ever, a raw egg dropped onto a thick foam rubber cushion
from a height of about 1 m rebounds without breaking.
Why is this possible? If you try this experiment, be sure to
catch the egg after its first bounce.

24. Can the center of mass of an object be located at a posi-
tion at which there is no mass? If so, give examples.

25. A juggler juggles three balls in a continuous cycle. Any one
ball is in contact with his hands for one fifth of the time.
Describe the motion of the center of mass of the three
balls. What average force does the juggler exert on one
ball while he is touching it?

Does the center of mass of a rocket in free space acceler-
ate? Explain. Can the speed of a rocket exceed the exhaust
speed of the fuel? Explain.

27. Early in the twentieth century, Robert Goddard proposed
sending a rocket to the moon. Critics objected that in a
vacuum, such as exists between the Earth and the Moon,
the gases emitted by the rocket would have nothing to
push against to propel the rocket. According to Scientific
American (January 1975), Goddard placed a gun in a vac-
uum and fired a blank cartridge from it. (A blank car-
tridge contains no bullet and fires only the wadding and
the hot gases produced by the burning gunpowder.)
What happened when the gun was fired?

28. Explain how you could use a balloon to demonstrate the
mechanism responsible for rocket propulsion.

29. On the subject of the following positions, state your own
view and argue to support it. (a) The best theory of
motion is that force causes acceleration. (b) The true
measure of a force’s effectiveness is the work it does,
and the best theory of motion is that work done on
an object changes its energy. (c) The true measure of
a force’s effect is impulse, and the best theory of motion
is that impulse injected into an object changes its
momentum.

26.
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of them, and the blocks are pushed together with the
spring between them (Fig. P9.4). A cord initially holding
the blocks together is burned; after this, the block
of mass 3M moves to the right with a speed of 2.00 m/s.
(a) What is the speed of the block of mass M ? (b) Find
the original elastic potential energy in the spring if
M ! 0.350 kg.

5. (a) A particle of mass m moves with momentum p. Show
that the kinetic energy of the particle is K ! p2/2m.
(b) Express the magnitude of the particle’s momentum in
terms of its kinetic energy and mass.

Section 9.2 Impulse and Momentum
6. A friend claims that, as long as he has his seatbelt on, he

can hold on to a 12.0-kg child in a 60.0 mi/h head-on
collision with a brick wall in which the car passenger com-
partment comes to a stop in 0.050 0 s. Show that the vio-
lent force during the collision will tear the child from his
arms. A child should always be in a toddler seat secured
with a seat belt in the back seat of a car.

An estimated force–time curve for a baseball struck by a
bat is shown in Figure P9.7. From this curve, determine
(a) the impulse delivered to the ball, (b) the average
force exerted on the ball, and (c) the peak force exerted
on the ball.

7.

10. A tennis player receives a shot with the ball (0.060 0 kg)
traveling horizontally at 50.0 m/s and returns the shot with
the ball traveling horizontally at 40.0 m/s in the opposite
direction. (a) What is the impulse delivered to the ball by
the racquet? (b) What work does the racquet do on the ball?

11. In a slow-pitch softball game, a 0.200-kg softball crosses the
plate at 15.0 m/s at an angle of 45.0° below the horizontal.
The batter hits the ball toward center field, giving it a ve-
locity of 40.0 m/s at 30.0° above the horizontal. (a) Deter-
mine the impulse delivered to the ball. (b) If the force on
the ball increases linearly for 4.00 ms, holds constant for
20.0 ms, and then decreases to zero linearly in another
4.00 ms, what is the maximum force on the ball?

12. A professional diver performs a dive from a platform 10 m
above the water surface. Estimate the order of magnitude
of the average impact force she experiences in her colli-
sion with the water. State the quantities you take as data
and their values.

13. A garden hose is held as shown in Figure P9.13. The hose
is originally full of motionless water. What additional force
is necessary to hold the nozzle stationary after the water
flow is turned on, if the discharge rate is 0.600 kg/s with a
speed of 25.0 m/s?
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Figure P9.13

8. A ball of mass 0.150 kg is dropped from rest from a height
of 1.25 m. It rebounds from the floor to reach a height of
0.960 m. What impulse was given to the ball by the floor?

A 3.00-kg steel ball strikes a wall with a speed of
10.0 m/s at an angle of 60.0° with the surface. It bounces
off with the same speed and angle (Fig. P9.9). If the ball is
in contact with the wall for 0.200 s, what is the average
force exerted by the wall on the ball ?

9.

14. A glider of mass m is free to slide along a horizontal air
track. It is pushed against a launcher at one end of the
track. Model the launcher as a light spring of force con-
stant k compressed by a distance x. The glider is released
from rest. (a) Show that the glider attains a speed of
v ! x(k/m)1/2. (b) Does a glider of large or of small mass
attain a greater speed? (c) Show that the impulse imparted
to the glider is given by the expression x(km)1/2. (d) Is a
greater impulse injected into a large or a small mass? (e) Is
more work done on a large or a small mass?

Section 9.3 Collisions in One Dimension
15. High-speed stroboscopic photographs show that the head

of a golf club of mass 200 g is traveling at 55.0 m/s just
before it strikes a 46.0-g golf ball at rest on a tee. After the
collision, the club head travels (in the same direction) at
40.0 m/s. Find the speed of the golf ball just after impact.

16. An archer shoots an arrow toward a target that is sliding to-
ward her with a speed of 2.50 m/s on a smooth, slippery
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surface. The 22.5-g arrow is shot with a speed of 35.0 m/s
and passes through the 300-g target, which is stopped by
the impact. What is the speed of the arrow after passing
through the target?

A 10.0-g bullet is fired into a stationary block of wood (m !
5.00 kg). The relative motion of the bullet stops inside the
block. The speed of the bullet-plus-wood combination
immediately after the collision is 0.600 m/s. What was the
original speed of the bullet?

18. A railroad car of mass 2.50 * 104 kg is moving with a
speed of 4.00 m/s. It collides and couples with three other
coupled railroad cars, each of the same mass as the single
car and moving in the same direction with an initial speed
of 2.00 m/s. (a) What is the speed of the four cars after
the collision? (b) How much mechanical energy is lost in
the collision?

19. Four railroad cars, each of mass 2.50 * 104 kg, are cou-
pled together and coasting along horizontal tracks at
speed vi toward the south. A very strong but foolish movie
actor, riding on the second car, uncouples the front car
and gives it a big push, increasing its speed to 4.00 m/s
southward. The remaining three cars continue moving
south, now at 2.00 m/s. (a) Find the initial speed of the
cars. (b) How much work did the actor do? (c) State the
relationship between the process described here and the
process in Problem 18.

20. Two blocks are free to slide along the frictionless wooden
track ABC shown in Figure P9.20. The block of mass m1 !
5.00 kg is released from A. Protruding from its front end is
the north pole of a strong magnet, repelling the north
pole of an identical magnet embedded in the back end of
the block of mass m2 ! 10.0 kg, initially at rest. The two
blocks never touch. Calculate the maximum height to
which m1 rises after the elastic collision.

17.

forces, of course, is false. Newton’s third law tells us that both
objects experience forces of the same magnitude. The truck
suffers less damage because it is made of stronger metal. But
what about the two drivers? Do they experience the same
forces? To answer this question, suppose that each vehicle is
initially moving at 8.00 m/s and that they undergo a per-
fectly inelastic head-on collision. Each driver has mass 80.0
kg. Including the drivers, the total vehicle masses are 800 kg
for the car and 4 000 kg for the truck. If the collision time is
0.120 s, what force does the seatbelt exert on each driver?

A neutron in a nuclear reactor makes an elastic head-
on collision with the nucleus of a carbon atom initially at
rest. (a) What fraction of the neutron’s kinetic energy is
transferred to the carbon nucleus? (b) If the initial kinetic
energy of the neutron is 1.60 * 10"13 J, find its final ki-
netic energy and the kinetic energy of the carbon nucleus
after the collision. (The mass of the carbon nucleus is
nearly 12.0 times the mass of the neutron.)

24. As shown in Figure P9.24, a bullet of mass m and speed v
passes completely through a pendulum bob of mass M. The
bullet emerges with a speed of v/2. The pendulum bob is
suspended by a stiff rod of length ! and negligible mass.
What is the minimum value of v such that the pendulum
bob will barely swing through a complete vertical circle?

23.

A 45.0-kg girl is standing on a plank that has a mass of
150 kg. The plank, originally at rest, is free to slide on a
frozen lake, which is a flat, frictionless supporting surface.
The girl begins to walk along the plank at a constant speed
of 1.50 m/s relative to the plank. (a) What is her speed rel-
ative to the ice surface? (b) What is the speed of the plank
relative to the ice surface?

22. Most of us know intuitively that in a head-on collision be-
tween a large dump truck and a subcompact car, you are bet-
ter off being in the truck than in the car. Why is this? Many
people imagine that the collision force exerted on the car is
much greater than that experienced by the truck. To sub-
stantiate this view, they point out that the car is crushed,
whereas the truck is only dented. This idea of unequal

21.

A 12.0-g wad of sticky clay is hurled horizontally at a
100-g wooden block initially at rest on a horizontal surface.
The clay sticks to the block. After impact, the block slides
7.50 m before coming to rest. If the coefficient of friction
between the block and the surface is 0.650, what was the
speed of the clay immediately before impact?

26. A 7.00-g bullet, when fired from a gun into a 1.00-kg block
of wood held in a vise, penetrates the block to a depth of
8.00 cm. What If? This block of wood is placed on a fric-
tionless horizontal surface, and a second 7.00-g bullet is
fired from the gun into the block. To what depth will the
bullet penetrate the block in this case?

27. (a) Three carts of masses 4.00 kg, 10.0 kg, and 3.00 kg move
on a frictionless horizontal track with speeds of 5.00 m/s,
3.00 m/s, and 4.00 m/s, as shown in Figure P9.27. Velcro
couplers make the carts stick together after colliding. Find
the final velocity of the train of three carts. (b) What If?
Does your answer require that all the carts collide and stick
together at the same time? What if they collide in a different
order?

25.
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A billiard ball moving at 5.00 m/s strikes a stationary ball
of the same mass. After the collision, the first ball moves,
at 4.33 m/s, at an angle of 30.0° with respect to the origi-
nal line of motion. Assuming an elastic collision (and ig-
noring friction and rotational motion), find the struck
ball’s velocity after the collision.

34. A proton, moving with a velocity of vi î, collides elastically
with another proton that is initially at rest. If the two pro-
tons have equal speeds after the collision, find (a) the
speed of each proton after the collision in terms of vi and
(b) the direction of the velocity vectors after the collision.

An object of mass 3.00 kg, moving with an initial velocity of
5.00 î m/s, collides with and sticks to an object of mass
2.00 kg with an initial velocity of " 3.00 ĵ m/s. Find the fi-
nal velocity of the composite object.

36. Two particles with masses m and 3m are moving toward
each other along the x axis with the same initial speeds vi .
Particle m is traveling to the left, while particle 3m is travel-
ing to the right. They undergo an elastic glancing collision
such that particle m is moving downward after the collision
at right angles from its initial direction. (a) Find the final
speeds of the two particles. (b) What is the angle & at
which the particle 3m is scattered?

An unstable atomic nucleus of mass 17.0 * 10"27 kg
initially at rest disintegrates into three particles. One of
the particles, of mass 5.00 * 10"27 kg, moves along the y
axis with a speed of 6.00 * 106 m/s. Another particle, of
mass 8.40 * 10"27 kg, moves along the x axis with a
speed of 4.00 * 106 m/s. Find (a) the velocity of the
third particle and (b) the total kinetic energy increase in
the process.

Section 9.5 The Center of Mass
38. Four objects are situated along the y axis as follows: a

2.00 kg object is at # 3.00 m, a 3.00-kg object is at # 2.50 m,
a 2.50-kg object is at the origin, and a 4.00-kg object is
at " 0.500 m. Where is the center of mass of these objects?

39. A water molecule consists of an oxygen atom with two hy-
drogen atoms bound to it (Fig. P9.39). The angle between
the two bonds is 106°. If the bonds are 0.100 nm long,
where is the center of mass of the molecule?

37.

35.

33.

30.0˚

30.0˚

Figure P9.31

53°

53°

0.100 nm

0.100 nm

O

H

H

Figure P9.39

Section 9.4 Two-Dimensional Collisions
28. A 90.0-kg fullback running east with a speed of 5.00 m/s is

tackled by a 95.0-kg opponent running north with a speed
of 3.00 m/s. If the collision is perfectly inelastic, (a) calcu-
late the speed and direction of the players just after the
tackle and (b) determine the mechanical energy lost as a
result of the collision. Account for the missing energy.

29. Two shuffleboard disks of equal mass, one orange and the
other yellow, are involved in an elastic, glancing collision.
The yellow disk is initially at rest and is struck by the or-
ange disk moving with a speed of 5.00 m/s. After the colli-
sion, the orange disk moves along a direction that makes
an angle of 37.0° with its initial direction of motion. The
velocities of the two disks are perpendicular after the colli-
sion. Determine the final speed of each disk.

30. Two shuffleboard disks of equal mass, one orange and the
other yellow, are involved in an elastic, glancing collision.
The yellow disk is initially at rest and is struck by the or-
ange disk moving with a speed vi . After the collision, the
orange disk moves along a direction that makes an angle &
with its initial direction of motion. The velocities of the
two disks are perpendicular after the collision. Determine
the final speed of each disk.

31. The mass of the blue puck in Figure P9.31 is 20.0% greater
than the mass of the green one. Before colliding, the pucks
approach each other with momenta of equal magnitudes
and opposite directions, and the green puck has an initial
speed of 10.0 m/s. Find the speeds of the pucks after the col-
lision if half the kinetic energy is lost during the collision.

5.00 m/s 3.00 m/s –4.00 m/s

10.0 kg4.00 kg 3.00 kg

Figure P9.27

32. Two automobiles of equal mass approach an intersection.
One vehicle is traveling with velocity 13.0 m/s toward the
east, and the other is traveling north with speed v2i . Nei-
ther driver sees the other. The vehicles collide in the inter-
section and stick together, leaving parallel skid marks at an
angle of 55.0° north of east. The speed limit for both roads
is 35 mi/h, and the driver of the northward-moving vehi-
cle claims he was within the speed limit when the collision
occurred. Is he telling the truth?
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40. The mass of the Earth is 5.98 * 1024 kg, and the mass of
the Moon is 7.36 * 1022 kg. The distance of separation,
measured between their centers, is 3.84 * 108 m. Locate
the center of mass of the Earth–Moon system as measured
from the center of the Earth.

A uniform piece of sheet steel is shaped as in Figure P9.41.
Compute the x and y coordinates of the center of mass of
the piece.

41.

where x is the distance from one end, measured in meters.
(a) What is the mass of the rod? (b) How far from the 
x ! 0 end is its center of mass?

44. In the 1968 Olympic Games, University of Oregon jumper
Dick Fosbury introduced a new technique of high jumping
called the “Fosbury flop.” It contributed to raising the
world record by about 30 cm and is presently used by
nearly every world-class jumper. In this technique, the
jumper goes over the bar face up while arching his back as
much as possible, as in Figure P9.44a. This action places
his center of mass outside his body, below his back. As his
body goes over the bar, his center of mass passes below the
bar. Because a given energy input implies a certain eleva-
tion for his center of mass, the action of arching his back
means his body is higher than if his back were straight. As
a model, consider the jumper as a thin uniform rod of
length L . When the rod is straight, its center of mass is at
its center. Now bend the rod in a circular arc so that it sub-
tends an angle of 90.0° at the center of the arc, as shown
in Figure P9.44b. In this configuration, how far outside the
rod is the center of mass?

Section 9.6 Motion of a System of Particles
A 2.00-kg particle has a velocity (2.00 î " 3.00 ĵ) m/s, and
a 3.00-kg particle has a velocity (1.00 î # 6.00 ĵ) m/s. 
Find (a) the velocity of the center of mass and (b) the total
momentum of the system.

46. Consider a system of two particles in the xy plane: m1 ! 
2.00 kg is at the location r1 ! (1.00 î # 2.00 ĵ) m and has 
a velocity of (3.00 î # 0.500 ĵ) m/s; m 2 ! 3.00 kg is at r2 !
(" 4.00 î " 3.00 ĵ) m and has velocity (3.00 î " 2.00 ĵ) m/s.

45.

30

20

10

y(cm)

x(cm)
10 20 30

Figure P9.41

(a)

90°

(b)

Figure P9.44

©
Ey

e 
Ub

iq
ui

to
us

/C
OR

BI
S

42. (a) Consider an extended object whose different portions
have different elevations. Assume the free-fall accelera-
tion is uniform over the object. Prove that the gravita-
tional potential energy of the object–Earth system is
given by Ug ! MgyCM where M is the total mass of the ob-
ject and yCM is the elevation of its center of mass above
the chosen reference level. (b) Calculate the gravitational
potential energy associated with a ramp constructed on
level ground with stone with density 3 800 kg/m3 and
everywhere 3.60 m wide. In a side view, the ramp appears
as a right triangle with height 15.7 m at the top end and
base 64.8 m (Figure P9.42).

Figure P9.42

43. A rod of length 30.0 cm has linear density (mass-per-
length) given by

,- ! 50.0 g/m # 20.0x g/m2
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(a) Plot these particles on a grid or graph paper. Draw 
their position vectors and show their velocities. (b) Find
the position of the center of mass of the system and mark
it on the grid. (c) Determine the velocity of the center of
mass and also show it on the diagram. (d) What is the total
linear momentum of the system?

Romeo (77.0 kg) entertains Juliet (55.0 kg) by playing his
guitar from the rear of their boat at rest in still water, 2.70 m
away from Juliet, who is in the front of the boat. After the
serenade, Juliet carefully moves to the rear of the boat (away
from shore) to plant a kiss on Romeo’s cheek. How far does
the 80.0-kg boat move toward the shore it is facing?

48. A ball of mass 0.200 kg has a velocity of 150 î m/s; a ball of
mass 0.300 kg has a velocity of " 0.400 î m/s. They meet in
a head-on elastic collision. (a) Find their velocities after
the collision. (b) Find the velocity of their center of mass
before and after the collision.

Section 9.7 Rocket Propulsion

The first stage of a Saturn V space vehicle consumed
fuel and oxidizer at the rate of 1.50 * 104 kg/s, with an
exhaust speed of 2.60 * 103 m/s. (a) Calculate the thrust
produced by these engines. (b) Find the acceleration of
the vehicle just as it lifted off the launch pad on the Earth
if the vehicle’s initial mass was 3.00 * 106 kg. Note: You
must include the gravitational force to solve part (b).

50. Model rocket engines are sized by thrust, thrust duration,
and total impulse, among other characteristics. A size C5
model rocket engine has an average thrust of 5.26 N, a fuel
mass of 12.7 g, and an initial mass of 25.5 g. The duration of
its burn is 1.90 s. (a) What is the average exhaust speed of
the engine? (b) If this engine is placed in a rocket body of
mass 53.5 g, what is the final velocity of the rocket if it is fired
in outer space? Assume the fuel burns at a constant rate.

51. A rocket for use in deep space is to be capable of boosting
a total load (payload plus rocket frame and engine) of
3.00 metric tons to a speed of 10 000 m/s. (a) It has an en-
gine and fuel designed to produce an exhaust speed of
2 000 m/s. How much fuel plus oxidizer is required? (b) If
a different fuel and engine design could give an exhaust
speed of 5 000 m/s, what amount of fuel and oxidizer
would be required for the same task?

52. Rocket Science. A rocket has total mass Mi ! 360 kg,
including 330 kg of fuel and oxidizer. In interstellar
space it starts from rest, turns on its engine at time t ! 0,
and puts out exhaust with relative speed ve ! 1 500 m/s
at the constant rate k ! 2.50 kg/s. The fuel will last for
an actual burn time of 330 kg/(2.5 kg/s) ! 132 s, but
define a “projected depletion time” as Tp ! Mi /k !
144 s. (This would be the burn time if the rocket could
use its payload and fuel tanks as fuel, and even the walls
of the combustion chamber.) (a) Show that during the
burn the velocity of the rocket is given as a function of
time by

(b) Make a graph of the velocity of the rocket as a function
of time for times running from 0 to 132 s. (c) Show that

v(t) ! "  ve ln[1 " (t/Tp)]

49.

47.

the acceleration of the rocket is

(d) Graph the acceleration as a function of time. (e) Show
that the position of the rocket is

(f) Graph the position during the burn.

53. An orbiting spacecraft is described not as a “zero-g,” but
rather as a “microgravity” environment for its occupants and
for on-board experiments. Astronauts experience slight
lurches due to the motions of equipment and other astro-
nauts, and due to venting of materials from the craft. As-
sume that a 3 500-kg spacecraft undergoes an acceleration
of 2.50 0g ! 2.45 * 10"5 m/s2 due to a leak from one of its
hydraulic control systems. The fluid is known to escape with
a speed of 70.0 m/s into the vacuum of space. How much
fluid will be lost in 1 h if the leak is not stopped?

Additional Problems

54. Two gliders are set in motion on an air track. A spring of
force constant k is attached to the near side of one glider.
The first glider, of mass m1, has velocity v1, and the second
glider, of mass m2, moves more slowly, with velocity v2, as in
Figure P9.54. When m1 collides with the spring attached to
m2 and compresses the spring to its maximum compression
xmax, the velocity of the gliders is v. In terms of v1, v2, m1,
m2, and k, find (a) the velocity v at maximum compression,
(b) the maximum compression xmax, and (c) the velocity of
each glider after m1 has lost contact with the spring.

x(t) ! ve(Tp " t)ln [1 " (t/Tp)] # ve t

a(t) ! ve /(Tp " t)

v 1

v 2

m 1

m 2
k

Figure P9.54

55. Review problem. A 60.0-kg person running at an initial
speed of 4.00 m/s jumps onto a 120-kg cart initially at rest
(Figure P9.55). The person slides on the cart’s top surface
and finally comes to rest relative to the cart. The coefficient
of kinetic friction between the person and the cart is 0.400.
Friction between the cart and ground can be neglected.
(a) Find the final velocity of the person and cart relative to
the ground. (b) Find the friction force acting on the person
while he is sliding across the top surface of the cart. (c) How
long does the friction force act on the person? (d) Find the
change in momentum of the person and the change in mo-
mentum of the cart. (e) Determine the displacement of the
person relative to the ground while he is sliding on the cart.
(f) Determine the displacement of the cart relative to the
ground while the person is sliding. (g) Find the change in
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kinetic energy of the person. (h) Find the change in kinetic
energy of the cart. (i) Explain why the answers to (g) and
(h) differ. (What kind of collision is this, and what accounts
for the loss of mechanical energy?)

2.00k̂) m/s, find the final velocity of the 1.50-kg sphere and
identify the kind of collision. (c) What If? If the velocity of
the 0.500-kg sphere after the collision is (" 1.00 î # 3.00 ĵ #
ak̂) m/s, find the value of a and the velocity of the 1.50-kg
sphere after an elastic collision.

60. A small block of mass m1 ! 0.500 kg is released from rest
at the top of a curve-shaped frictionless wedge of mass
m2 ! 3.00 kg, which sits on a frictionless horizontal sur-
face as in Figure P9.60a. When the block leaves the wedge,
its velocity is measured to be 4.00 m/s to the right, as in
Figure P9.60b. (a) What is the velocity of the wedge after
the block reaches the horizontal surface? (b) What is the
height h of the wedge?

56. A golf ball (m ! 46.0 g) is struck with a force that makes
an angle of 45.0° with the horizontal. The ball lands 200 m
away on a flat fairway. If the golf club and ball are in con-
tact for 7.00 ms, what is the average force of impact?
(Neglect air resistance.)

An 80.0-kg astronaut is working on the engines of his ship,
which is drifting through space with a constant velocity. The
astronaut, wishing to get a better view of the Universe,
pushes against the ship and much later finds himself 30.0 m
behind the ship. Without a thruster, the only way to return to
the ship is to throw his 0.500-kg wrench directly away from
the ship. If he throws the wrench with a speed of 20.0 m/s
relative to the ship, how long does it take the astronaut to
reach the ship?

58. A bullet of mass m is fired into a block of mass M initially at
rest at the edge of a frictionless table of height h (Fig.
P9.58). The bullet remains in the block, and after impact
the block lands a distance d from the bottom of the table.
Determine the initial speed of the bullet.

57.
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Figure P9.55

59. A 0.500-kg sphere moving with a velocity (2.00î " 3.00ĵ #
1.00k̂) m/s strikes another sphere of mass 1.50 kg moving
with a velocity (" 1.00 î # 2.00 ĵ " 3.00k̂) m/s. (a) If the 
velocity of the 0.500-kg sphere after the collision is 
(" 1.00 î # 3.00 ĵ " 8.00k̂) m/s, find the final velocity of the
1.50-kg sphere and identify the kind of collision (elastic, 
inelastic, or perfectly inelastic). (b) If the velocity of the
0.500-kg sphere after the collision is (" 0.250 î # 0.750 ĵ "

61. A bucket of mass m and volume V is attached to a light
cart, completely covering its top surface. The cart is given
a quick push along a straight, horizontal, smooth road. It
is raining, so as the cart cruises along without friction, the
bucket gradually fills with water. By the time the bucket is
full, its speed is v. (a) What was the initial speed vi of the
cart? Let / represent the density of water. (b) What If? As-
sume that when the bucket is half full, it develops a slow
leak at the bottom, so that the level of the water remains
constant thereafter. Describe qualitatively what happens
to the speed of the cart after the leak develops.

62. A 75.0-kg firefighter slides down a pole while a constant
friction force of 300 N retards her motion. A horizontal
20.0-kg platform is supported by a spring at the bottom of
the pole to cushion the fall. The firefighter starts from
rest 4.00 m above the platform, and the spring constant is
4 000 N/m. Find (a) the firefighter’s speed just before she
collides with the platform and (b) the maximum distance
the spring is compressed. (Assume the friction force acts
during the entire motion.)

63. George of the Jungle, with mass m, swings on a light vine
hanging from a stationary tree branch. A second vine of
equal length hangs from the same point, and a gorilla of
larger mass M swings in the opposite direction on it. Both
vines are horizontal when the primates start from rest at
the same moment. George and the gorilla meet at the low-
est point of their swings. Each is afraid that one vine will
break, so they grab each other and hang on. They swing
upward together, reaching a point where the vines make an
angle of 35.0° with the vertical. (a) Find the value of the ra-
tio m/M. (b) What If? Try this at home. Tie a small magnet
and a steel screw to opposite ends of a string. Hold the cen-
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ter of the string fixed to represent the tree branch, and re-
produce a model of the motions of George and the gorilla.
What changes in your analysis will make it apply to this situ-
ation? What If? Assume the magnet is strong, so that it no-
ticeably attracts the screw over a distance of a few centime-
ters. Then the screw will be moving faster just before it
sticks to the magnet. Does this make a difference?

64. A cannon is rigidly attached to a carriage, which can move
along horizontal rails but is connected to a post by a large
spring, initially unstretched and with force constant k !
2.00 * 104 N/m, as in Figure P9.64. The cannon fires a
200-kg projectile at a velocity of 125 m/s directed 45.0°
above the horizontal. (a) If the mass of the cannon and its
carriage is 5 000 kg, find the recoil speed of the cannon.
(b) Determine the maximum extension of the spring.
(c) Find the maximum force the spring exerts on the car-
riage. (d) Consider the system consisting of the cannon,
carriage, and shell. Is the momentum of this system con-
served during the firing? Why or why not?

through the relation

What numerical value does she obtain for v1A based on
her measured values of x ! 257 cm and y ! 85.3 cm?
What factors might account for the difference in this
value compared to that obtained in part (a)?

66. Small ice cubes, each of mass 5.00 g, slide down a friction-
less track in a steady stream, as shown in Figure P9.66.
Starting from rest, each cube moves down through a net
vertical distance of 1.50 m and leaves the bottom end of
the track at an angle of 40.0° above the horizontal. At the
highest point of its subsequent trajectory, the cube strikes
a vertical wall and rebounds with half the speed it had
upon impact. If 10.0 cubes strike the wall per second, what
average force is exerted on the wall?

v1A !
x

√2y/g

y

v1A

x

Figure P9.65

40.0°

1.50 m

Figure P9.66

v5.00 cm

400 m/s

Figure P9.67

65. A student performs a ballistic pendulum experiment using
an apparatus similar to that shown in Figure 9.11b. She ob-
tains the following average data: h ! 8.68 cm, m1 ! 68.8 g,
and m2 ! 263 g. The symbols refer to the quantities in Fig-
ure 9.11a. (a) Determine the initial speed v1A of the pro-
jectile. (b) The second part of her experiment is to obtain
v1A by firing the same projectile horizontally (with the pen-
dulum removed from the path), by measuring its final hor-
izontal position x and distance of fall y (Fig. P9.65). Show
that the initial speed of the projectile is related to x and y

45.0°

Figure P9.64

A 5.00-g bullet moving with an initial speed of 400 m/s is
fired into and passes through a 1.00-kg block, as in Figure
P9.67. The block, initially at rest on a frictionless, horizon-
tal surface, is connected to a spring with force constant
900 N/m. If the block moves 5.00 cm to the right after im-
pact, find (a) the speed at which the bullet emerges from
the block and (b) the mechanical energy converted into
internal energy in the collision.

67.

68. Consider as a system the Sun with the Earth in a circular
orbit around it. Find the magnitude of the change in
the velocity of the Sun relative to the center of mass of the
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system over a period of 6 months. Neglect the influence of
other celestial objects. You may obtain the necessary astro-
nomical data from the endpapers of the book.

69. Review problem. There are (one can say) three coequal the-
ories of motion: Newton’s second law, stating that the total
force on an object causes its acceleration; the work–kinetic
energy theorem, stating that the total work on an object
causes its change in kinetic energy; and the impulse–mo-
mentum theorem, stating that the total impulse on an
object causes its change in momentum. In this problem, you
compare predictions of the three theories in one particular
case. A 3.00-kg object has velocity 7.00 ĵ m/s. Then, a total
force 12.0 î N acts on the object for 5.00 s. (a) Calculate the
object’s final velocity, using the impulse–momentum theo-
rem. (b) Calculate its acceleration from a ! (vf " vi)/(t.
(c) Calculate its acceleration from a ! "F/m. (d) Find 
the object’s vector displacement from . 
(e) Find the work done on the object from 
(f) Find the final kinetic energy from 
(g) Find the final kinetic energy from 

70. A rocket has total mass Mi ! 360 kg, including 330 kg
of fuel and oxidizer. In interstellar space it starts from rest.
Its engine is turned on at time t ! 0, and it puts out ex-
haust with relative speed ve ! 1 500 m/s at the constant
rate 2.50 kg/s. The burn lasts until the fuel runs out, at
time 330 kg/(2.5 kg/s) ! 132 s. Set up and carry out a
computer analysis of the motion according to Euler’s
method. Find (a) the final velocity of the rocket and 
(b) the distance it travels during the burn.

71. A chain of length L and total mass M is released from rest
with its lower end just touching the top of a table, as in Fig-
ure P9.71a. Find the force exerted by the table on the
chain after the chain has fallen through a distance x, as in
Figure P9.71b. (Assume each link comes to rest the instant
it reaches the table.)

1
2mvi 

2 # W.

1
2mvf 

2 ! 1
2mvf )vf .

W ! F)(r.
(r ! vi t # 1

2at2

72. Sand from a stationary hopper falls onto a moving con-
veyor belt at the rate of 5.00 kg/s as in Figure P9.72. The
conveyor belt is supported by frictionless rollers and moves
at a constant speed of 0.750 m/s under the action of a con-
stant horizontal external force Fext supplied by the motor
that drives the belt. Find (a) the sand’s rate of change of
momentum in the horizontal direction, (b) the force of
friction exerted by the belt on the sand, (c) the external
force Fext, (d) the work done by Fext in 1 s, and (e) the
kinetic energy acquired by the falling sand each second
due to the change in its horizontal motion. (f ) Why are
the answers to (d) and (e) different?

73. A golf club consists of a shaft connected to a club head.
The golf club can be modeled as a uniform rod of length !
and mass m1 extending radially from the surface of a
sphere of radius R and mass m2. Find the location of the
club’s center of mass, measured from the center of the
club head.

Answers to Quick Quizzes
9.1 (d). Two identical objects (m1 ! m2) traveling at the same

speed (v1 ! v2) have the same kinetic energies and the
same magnitudes of momentum. It also is possible, however,
for particular combinations of masses and velocities to sat-
isfy K1 ! K2 but not p1 ! p2. For example, a 1-kg object
moving at 2 m/s has the same kinetic energy as a 4-kg object
moving at 1 m/s, but the two clearly do not have the same
momenta. Because we have no information about masses
and speeds, we cannot choose among (a), (b), or (c).

9.2 (b), (c), (a). The slower the ball, the easier it is to catch. If
the momentum of the medicine ball is the same as the
momentum of the baseball, the speed of the medicine ball
must be 1/10 the speed of the baseball because the medi-
cine ball has 10 times the mass. If the kinetic energies are
the same, the speed of the medicine ball must be 
the speed of the baseball because of the squared speed
term in the equation for K. The medicine ball is hardest
to catch when it has the same speed as the baseball.

9.3 (c). The ball and the Earth exert forces on each other, so
neither is an isolated system. We must include both in the
system so that the interaction force is internal to the system.

9.4 (c). From Equation 9.4, if p1 # p2 ! constant, then it
follows that (p1 # (p2 ! 0 and (p1 ! " (p2 . While the
change in momentum is the same, the change in the
velocity is a lot larger for the car!

9.5 (c) and (e). Object 2 has a greater acceleration because
of its smaller mass. Therefore, it takes less time to travel
the distance d. Even though the force applied to objects 1
and 2 is the same, the change in momentum is less for ob-
ject 2 because (t is smaller. The work W ! Fd done on

1/√10

L – x

x

L

(a) (b)

Figure P9.71

0.750 m/s
Fext

Figure P9.72
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both objects is the same because both F and d are the
same in the two cases. Therefore, K1 ! K2 .

9.6 (b) and (d). The same impulse is applied to both objects,
so they experience the same change in momentum. Ob-
ject 2 has a larger acceleration due to its smaller mass.
Thus, the distance that object 2 covers in the time interval
(t is larger than that for object 1. As a result, more work
is done on object 2 and K2 % K1 .

9.7 (a) All three are the same. Because the passenger is
brought from the car’s initial speed to a full stop, the
change in momentum (equal to the impulse) is the same
regardless of what stops the passenger. (b) Dashboard,
seatbelt, airbag. The dashboard stops the passenger very
quickly in a front-end collision, resulting in a very large
force. The seatbelt takes somewhat more time, so the
force is smaller. Used along with the seatbelt, the airbag
can extend the passenger’s stopping time further, notably
for his head, which would otherwise snap forward.

9.8 (a). If all of the initial kinetic energy is transformed, then
nothing is moving after the collision. Consequently, the
final momentum of the system is necessarily zero and,
therefore, the initial momentum of the system must be
zero. While (b) and (d) together would satisfy the con-
ditions, neither one alone does.

9.9 (b). Because momentum of the two-ball system is con-
served, pTi # 0 ! pTf # pB. Because the table-tennis ball
bounces back from the much more massive bowling ball
with approximately the same speed, pTf ! " pTi. As a
consequence, pB ! 2pTi. Kinetic energy can be expressed
as K ! p2/2m. Because of the much larger mass of the

bowling ball, its kinetic energy is much smaller than that
of the table-tennis ball.

9.10 (b). The piece with the handle will have less mass than
the piece made up of the end of the bat. To see why this is
so, take the origin of coordinates as the center of mass be-
fore the bat was cut. Replace each cut piece by a small
sphere located at the center of mass for each piece. The
sphere representing the handle piece is farther from the
origin, but the product of less mass and greater distance
balances the product of greater mass and less distance for
the end piece:

9.11 (a). This is the same effect as the swimmer diving off the
raft that we just discussed. The vessel–passengers system is
isolated. If the passengers all start running one way, the
speed of the vessel increases (a small amount!) the other
way.

9.12 (b). Once they stop running, the momentum of the sys-
tem is the same as it was before they started running—
you cannot change the momentum of an isolated system
by means of internal forces. In case you are thinking that
the passengers could do this over and over to take advan-
tage of the speed increase while they are running, remem-
ber that they will slow the ship down every time they
return to the bow!
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Chapter 10

Rotation of a Rigid Object
About a Fixed Axis

CHAPTE R OUTL I N E

10.1 Angular Position, Velocity,
and Acceleration

10.2 Rotational Kinematics:
Rotational Motion with
Constant Angular Acceleration

10.3 Angular and Linear Quantities

10.4 Rotational Kinetic Energy

10.5 Calculation of Moments
of Inertia

10.6 Torque

10.7 Relationship Between Torque
and Angular Acceleration

10.8 Work, Power, and Energy in
Rotational Motion

10.9 Rolling Motion of a Rigid
Object

! The Malaysian pastime of gasing involves the spinning of tops that can have masses up
to 20 kg. Professional spinners can spin their tops so that they might rotate for hours before
stopping. We will study the rotational motion of objects such as these tops in this chapter.
(Courtesy Tourism Malaysia)
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When an extended object such as a wheel rotates about its axis, the motion cannot
be analyzed by treating the object as a particle because at any given time different parts
of the object have different linear velocities and linear accelerations. We can, however,
analyze the motion by considering an extended object to be composed of a collection
of particles, each of which has its own linear velocity and linear acceleration.

In dealing with a rotating object, analysis is greatly simplified by assuming that the
object is rigid. A rigid object is one that is nondeformable—that is, the relative loca-
tions of all particles of which the object is composed remain constant. All real objects
are deformable to some extent; however, our rigid-object model is useful in many situa-
tions in which deformation is negligible.

10.1 Angular Position, Velocity, and Acceleration

Figure 10.1 illustrates an overhead view of a rotating compact disc. The disc is rotating
about a fixed axis through O. The axis is perpendicular to the plane of the figure. Let
us investigate the motion of only one of the millions of “particles” making up the disc.
A particle at P is at a fixed distance r from the origin and rotates about it in a circle of
radius r. (In fact, every particle on the disc undergoes circular motion about O.) It is
convenient to represent the position of P with its polar coordinates (r, !), where r is
the distance from the origin to P and ! is measured counterclockwise from some
reference line as shown in Figure 10.1a. In this representation, the only coordinate
for the particle that changes in time is the angle !; r remains constant. As the particle
moves along the circle from the reference line (! " 0), it moves through an arc of
length s, as in Figure 10.1b. The arc length s is related to the angle ! through the 
relationship

(10.1a)

(10.1b)

Note the dimensions of ! in Equation 10.1b. Because ! is the ratio of an arc length
and the radius of the circle, it is a pure number. However, we commonly give ! the arti-
ficial unit radian (rad), where

Because the circumference of a circle is 2#r, it follows from Equation 10.1b that 360°
corresponds to an angle of (2#r/r) rad " 2# rad. (Also note that 2# rad corresponds

one radian is the angle subtended by an arc length equal to the radius of the arc.

! "
s
r

s " r !

Rigid object

Reference
line

(a)

O P
r

(b)

O

P

Reference
line

r s
u

Figure 10.1 A compact disc
rotating about a fixed axis through
O perpendicular to the plane of the
figure. (a) In order to define
angular position for the disc,
a fixed reference line is chosen.
A particle at P is located at a
distance r from the rotation axis
at O. (b) As the disc rotates, point
P moves through an arc length s on
a circular path of radius r.



to one complete revolution.) Hence, 1 rad " 360°/2# ! 57.3° . To convert an angle in
degrees to an angle in radians, we use the fact that # rad " 180°, or

For example, 60° equals #/3 rad and 45° equals #/4 rad.
Because the disc in Figure 10.1 is a rigid object, as the particle moves along the cir-

cle from the reference line, every other particle on the object rotates through the same
angle !. Thus, we can associate the angle ! with the entire rigid object as well as
with an individual particle. This allows us to define the angular position of a rigid ob-
ject in its rotational motion. We choose a reference line on the object, such as a line
connecting O and a chosen particle on the object. The angular position of the rigid
object is the angle ! between this reference line on the object and the fixed reference
line in space, which is often chosen as the x axis. This is similar to the way we identify
the position of an object in translational motion—the distance x between the object
and the reference position, which is the origin, x " 0.

As the particle in question on our rigid object travels from position ! to position
" in a time interval $t as in Figure 10.2, the reference line of length r sweeps out an
angle $! " !f % !i. This quantity $! is defined as the angular displacement of the
rigid object:

The rate at which this angular displacement occurs can vary. If the rigid object spins
rapidly, this displacement can occur in a short time interval. If it rotates slowly, this dis-
placement occurs in a longer time interval. These different rotation rates can be quan-
tified by introducing angular speed. We define the average angular speed (Greek
omega) as the ratio of the angular displacement of a rigid object to the time interval
$t during which the displacement occurs:

(10.2)

In analogy to linear speed, the instantaneous angular speed & is defined as the
limit of the ratio $!/$t as $t approaches zero:

(10.3)

Angular speed has units of radians per second (rad/s), which can be written as
second%1 (s%1) because radians are not dimensional. We take & to be positive when ! is
increasing (counterclockwise motion in Figure 10.2) and negative when ! is decreasing
(clockwise motion in Figure 10.2).

& " lim
$t : 0

 
$!

$t
"

d!

dt

& " 
!f % !i

tf % ti
"

$!

$t

&

$! " !f % !i

! (rad) "
#

180'
 ! (deg)
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x

y
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!, ti
r

i

O

θ

fθ

Figure 10.2 A particle on a
rotating rigid object moves from !
to " along the arc of a circle. In
the time interval $t " tf % ti , the
radius vector moves through an
angular displacement $! " !f % !i.

Average angular speed

Quick Quiz 10.1 A rigid object is rotating in a counterclockwise sense
around a fixed axis. Each of the following pairs of quantities represents an initial angu-
lar position and a final angular position of the rigid object. Which of the sets can only
occur if the rigid object rotates through more than 180°? (a) 3 rad, 6 rad (b) % 1 rad,
1 rad (c) 1 rad, 5 rad.

Quick Quiz 10.2 Suppose that the change in angular position for each of
the pairs of values in Quick Quiz 10.1 occurs in 1 s. Which choice represents the lowest
average angular speed?

Instantaneous angular speed

! PITFALL PREVENTION
10.1 Remember the

Radian
In rotational equations, we must
use angles expressed in radians.
Don’t fall into the trap of using
angles measured in degrees in ro-
tational equations.



ω

ω

Figure 10.3 The right-hand rule for determin-
ing the direction of the angular velocity vector.
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If the instantaneous angular speed of an object changes from &i to &f in the time 
interval $t, the object has an angular acceleration. The average angular acceleration
(Greek alpha) of a rotating rigid object is defined as the ratio of the change in the angu-
lar speed to the time interval $t during which the change in the angular speed occurs:

(10.4)

In analogy to linear acceleration, the instantaneous angular acceleration is 
defined as the limit of the ratio $&/$t as $t approaches zero:

(10.5)

Angular acceleration has units of radians per second squared (rad/s2), or just
second%2 (s%2). Note that ( is positive when a rigid object rotating counterclockwise is
speeding up or when a rigid object rotating clockwise is slowing down during some
time interval.

When a rigid object is rotating about a fixed axis, every particle on the object 
rotates through the same angle in a given time interval and has the same angular
speed and the same angular acceleration. That is, the quantities !, &, and ( charac-
terize the rotational motion of the entire rigid object as well as individual particles in the
object. Using these quantities, we can greatly simplify the analysis of rigid-object rotation.

Angular position (!), angular speed (&), and angular acceleration (() are analo-
gous to linear position (x), linear speed (v), and linear acceleration (a). The variables
!, &, and ( differ dimensionally from the variables x, v, and a only by a factor having
the unit of length. (See Section 10.3.)

We have not specified any direction for angular speed and angular acceleration.
Strictly speaking, & and ( are the magnitudes of the angular velocity and the angular
acceleration vectors1 " and #, respectively, and they should always be positive. Because
we are considering rotation about a fixed axis, however, we can use nonvector notation
and indicate the directions of the vectors by assigning a positive or negative sign to &
and (, as discussed earlier with regard to Equations 10.3 and 10.5. For rotation about a
fixed axis, the only direction that uniquely specifies the rotational motion is the direc-
tion along the axis of rotation. Therefore, the directions of " and # are along this axis.
If an object rotates in the xy plane as in Figure 10.1, the direction of " is out of the
plane of the diagram when the rotation is counterclockwise and into the plane of the
diagram when the rotation is clockwise. To illustrate this convention, it is convenient to
use the right-hand rule demonstrated in Figure 10.3. When the four fingers of the right

( " lim
$t:0

 
$&

$t
"

d&

dt

 ( " 
&f % &i

tf % ti
"

$&

$t

(

1 Although we do not verify it here, the instantaneous angular velocity and instantaneous angular ac-
celeration are vector quantities, but the corresponding average values are not. This is because angular
displacements do not add as vector quantities for finite rotations.

! PITFALL PREVENTION
10.2 Specify Your Axis
In solving rotation problems, you
must specify an axis of rotation.
This is a new feature not found in
our study of translational motion.
The choice is arbitrary, but once
you make it, you must maintain
that choice consistently through-
out the problem. In some
problems, the physical situation
suggests a natural axis, such as the
center of an automobile wheel. In
other problems, there may not be
an obvious choice, and you must
exercise judgement.

Average angular acceleration

Instantaneous angular
acceleration
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hand are wrapped in the direction of rotation, the extended right thumb points in the
direction of ". The direction of # follows from its definition # " d"/dt. It is in the
same direction as " if the angular speed is increasing in time, and it is antiparallel to "
if the angular speed is decreasing in time.

10.2 Rotational Kinematics: Rotational Motion 
with Constant Angular Acceleration

In our study of linear motion, we found that the simplest form of accelerated motion
to analyze is motion under constant linear acceleration. Likewise, for rotational mo-
tion about a fixed axis, the simplest accelerated motion to analyze is motion under
constant angular acceleration. Therefore, we next develop kinematic relationships for
this type of motion. If we write Equation 10.5 in the form d& " ( dt, and let ti " 0 and
tf " t, integrating this expression directly gives

(10.6)

where &i is the angular speed of the rigid object at time t " 0. Equation 10.6 allows us
to find the angular speed &f of the object at any later time t. Substituting Equation 10.6
into Equation 10.3 and integrating once more, we obtain

(10.7)

where !i is the angular position of the rigid object at time t " 0. Equation 10.7 allows
us to find the angular position !f of the object at any later time t. If we eliminate t from
Equations 10.6 and 10.7, we obtain

(10.8)

This equation allows us to find the angular speed &f of the rigid object for any value of
its angular position !f . If we eliminate ( between Equations 10.6 and 10.7, we obtain

(10.9)

Notice that these kinematic expressions for rotational motion under constant angu-
lar acceleration are of the same mathematical form as those for linear motion under
constant linear acceleration. They can be generated from the equations for linear mo-
tion by making the substitutions x : !, v : &, and a : (. Table 10.1 compares the
kinematic equations for rotational and linear motion.

!f " !i ) 1
2 (&i ) &f )t (for constant ()

&f
2 " &i

2 ) 2((!f % !i) (for constant ()

!f " !i ) &it ) 1
2(t 

2 (for constant ()

&f " &i ) (t (for constant ()

Quick Quiz 10.3 A rigid object is rotating with an angular speed & * 0.
The angular velocity vector " and the angular acceleration vector # are antiparallel.
The angular speed of the rigid object is (a) clockwise and increasing (b) clockwise
and decreasing (c) counterclockwise and increasing (d) counterclockwise and
decreasing.

Rotational kinematic equations

! PITFALL PREVENTION
10.3 Just Like

Translation?
Equations 10.6 to 10.9 and Table
10.1 suggest that rotational kine-
matics is just like translational
kinematics. That is almost true,
with two key differences: (1) in
rotational kinematics, you must
specify a rotation axis (per Pitfall
Prevention 10.2); (2) in rota-
tional motion, the object keeps
returning to its original orienta-
tion—thus, you may be asked for
the number of revolutions made
by a rigid object. This concept
has no meaning in translational
motion, but is related to $!,
which is analogous to $x.
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Rotational Motion  
About Fixed Axis Linear Motion

&f " &i ) (t vf " vi ) at
!f " !i ) &i t ) (t 2 xf " xi ) vit ) at2

&f
2 " &i

2 ) 2((!f % !i) vf
2 " vi

2 ) 2a(xf % xi)
!f " !i ) (&i ) &f)t xf " xi ) (vi ) vf)t1

2
1
2

1
2

1
2

Kinematic Equations for Rotational and Linear 
Motion Under Constant Acceleration

Table 10.1

10.3 Angular and Linear Quantities

In this section we derive some useful relationships between the angular speed and ac-
celeration of a rotating rigid object and the linear speed and acceleration of a point in
the object. To do so, we must keep in mind that when a rigid object rotates about a
fixed axis, as in Figure 10.4, every particle of the object moves in a circle whose
center is the axis of rotation.

Quick Quiz 10.4 Consider again the pairs of angular positions for the rigid
object in Quick Quiz 10.1. If the object starts from rest at the initial angular position,
moves counterclockwise with constant angular acceleration, and arrives at the final an-
gular position with the same angular speed in all three cases, for which choice is the
angular acceleration the highest?

Example 10.1 Rotating Wheel

A wheel rotates with a constant angular acceleration of
3.50 rad/s2.

(A) If the angular speed of the wheel is 2.00 rad/s at ti " 0,
through what angular displacement does the wheel rotate in
2.00 s?

Solution We can use Figure 10.2 to represent the wheel. We
arrange Equation 10.7 so that it gives us angular displacement:

"

(B) Through how many revolutions has the wheel turned
during this time interval?

Solution We multiply the angular displacement found in part
(A) by a conversion factor to find the number of revolutions:

(C) What is the angular speed of the wheel at t " 2.00 s?

Solution Because the angular acceleration and the angular
speed are both positive, our answer must be greater than
2.00 rad/s. Using Equation 10.6, we find

1.75 rev$! " 630' # 1 rev
360' $ "

630'" (11.0 rad)(57.3'/rad) "11.0 rad

"(2.00 rad/s)(2.00 s) ) 1
2 (3.50 rad/s2)(2.00 s)2

$! " !f % !i " &it ) 1
2 (t 

2

"

We could also obtain this result using Equation 10.8 and the
results of part (A). Try it! 

What If? Suppose a particle moves along a straight line
with a constant acceleration of 3.50 m/s2. If the velocity of
the particle is 2.00 m/s at ti $ 0, through what displacement
does the particle move in 2.00 s? What is the velocity of the
particle at t $ 2.00 s?

Answer Notice that these questions are translational
analogs to parts (A) and (C) of the original problem. The
mathematical solution follows exactly the same form. For
the displacement,

and for the velocity,

Note that there is no translational analog to part (B) because
translational motion is not repetitive like rotational motion.

vf " vi )at " 2.00 m/s ) (3.50 m/s2)(2.00 s) " 9.00 m/s

" 11.0 m

" (2.00 m/s)(2.00 s) ) 1
2(3.50 m/s2)(2.00 s)2

$x " xf % xi " vit ) 1
2at 

2

9.00 rad/s

&f " &i ) (t " 2.00 rad/s ) (3.50 rad/s2)(2.00 s)
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Quick Quiz 10.5 Andy and Charlie are riding on a merry-go-round. Andy
rides on a horse at the outer rim of the circular platform, twice as far from the center
of the circular platform as Charlie, who rides on an inner horse. When the merry-go-
round is rotating at a constant angular speed, Andy’s angular speed is (a) twice Char-
lie’s (b) the same as Charlie’s (c) half of Charlie’s (d) impossible to determine.

Quick Quiz 10.6 Consider again the merry-go-round situation in Quick Quiz
10.5. When the merry-go-round is rotating at a constant angular speed, Andy’s tangen-
tial speed is (a) twice Charlie’s (b) the same as Charlie’s (c) half of Charlie’s (d) impos-
sible to determine.

Relation between tangential
and angular acceleration

x

y

O

ar

at

P
a

Figure 10.5 As a rigid object
rotates about a fixed axis through
O, the point P experiences a
tangential component of linear
acceleration at and a radial
component of linear acceleration
ar . The total linear acceleration of
this point is a " at ) ar .

Because point P in Figure 10.4 moves in a circle, the linear velocity vector v is al-
ways tangent to the circular path and hence is called tangential velocity. The magnitude
of the tangential velocity of the point P is by definition the tangential speed v " ds/dt,
where s is the distance traveled by this point measured along the circular path. Recall-
ing that s " r! (Eq. 10.1a) and noting that r is constant, we obtain

Because d!/dt " & (see Eq. 10.3), we see that

(10.10)

That is, the tangential speed of a point on a rotating rigid object equals the perpendic-
ular distance of that point from the axis of rotation multiplied by the angular speed.
Therefore, although every point on the rigid object has the same angular speed, not
every point has the same tangential speed because r is not the same for all points on the
object. Equation 10.10 shows that the tangential speed of a point on the rotating object
increases as one moves outward from the center of rotation, as we would intuitively ex-
pect. The outer end of a swinging baseball bat moves much faster than the handle.

We can relate the angular acceleration of the rotating rigid object to the tangential
acceleration of the point P by taking the time derivative of v :

(10.11)

That is, the tangential component of the linear acceleration of a point on a rotating
rigid object equals the point’s distance from the axis of rotation multiplied by the an-
gular acceleration.

In Section 4.4 we found that a point moving in a circular path undergoes a radial
acceleration ar of magnitude v2/r directed toward the center of rotation (Fig. 10.5).
Because v " r& for a point P on a rotating object, we can express the centripetal accel-
eration at that point in terms of angular speed as

(10.12)

The total linear acceleration vector at the point is a " at ) ar , where the magni-
tude of ar is the centripetal acceleration ac . Because a is a vector having a radial and a
tangential component, the magnitude of a at the point P on the rotating rigid object is

(10.13)a " √at 
2 ) ar 

2 " √r 
2( 2 ) r  2&4 " r  √(2 ) &4

ac "
v 

2

r
" r&2

at " r(

at "
dv
dt

" r  
d&

dt

v " r&

v "
ds
dt

" r  
d!

dt

y

P

x
O

v

r
u

s

Active Figure 10.4 As a rigid object
rotates about the fixed axis through
O, the point P has a tangential
velocity v that is always tangent to
the circular path of radius r.

At the Active Figures link
at http://www.pse6.com, you
can move point P and observe
the tangential velocity as the
object rotates.
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Example 10.2 CD Player

On a compact disc (Fig. 10.6), audio information is stored
in a series of pits and flat areas on the surface of the disc.
The information is stored digitally, and the alternations be-
tween pits and flat areas on the surface represent binary
ones and zeroes to be read by the compact disc player and
converted back to sound waves. The pits and flat areas are
detected by a system consisting of a laser and lenses. The
length of a string of ones and zeroes representing one piece
of information is the same everywhere on the disc, whether
the information is near the center of the disc or near its
outer edge. In order that this length of ones and zeroes al-
ways passes by the laser–lens system in the same time period,
the tangential speed of the disc surface at the location of
the lens must be constant. This requires, according to Equa-
tion 10.10, that the angular speed vary as the laser–lens sys-
tem moves radially along the disc. In a typical compact disc
player, the constant speed of the surface at the point of the
laser–lens system is 1.3 m/s.

(A) Find the angular speed of the disc in revolutions per
minute when information is being read from the innermost
first track (r " 23 mm) and the outermost final track
(r " 58 mm).

Solution Using Equation 10.10, we can find the angular
speed that will give us the required tangential speed at the
position of the inner track,

"

For the outer track,

"

The player adjusts the angular speed & of the disc within
this range so that information moves past the objective lens
at a constant rate. 

(B) The maximum playing time of a standard music CD is
74 min and 33 s. How many revolutions does the disc make
during that time?

Solution We know that the angular speed is always decreas-
ing, and we assume that it is decreasing steadily, with ( con-
stant. If t " 0 is the instant that the disc begins, with angular
speed of 57 rad/s, then the final value of the time t is
(74 min)(60 s/min) ) 33 s " 4 473 s. We are looking for
the angular displacement $! during this time interval. We
use Equation 10.9:

2.1 + 102 rev/min

&f "
v
rf

"
1.3 m/s

5.8 + 10%2 m
" 22 rad/s

5.4 + 102 rev/min

" (57 rad/s)# 1 rev
2# rad $# 60 s

1 min $
&i "

v
ri

"
1.3 m/s

2.3 + 10%2 m
" 57 rad/s

23 mm

58 mm

Figure 10.6 (Example 10.2) A compact disc.
Ge

or
ge

 S
em

pl
e

We convert this angular displacement to revolutions:

(C) What total length of track moves past the objective lens
during this time?

Solution Because we know the (constant) linear velocity
and the time interval, this is a straightforward calculation:

More than 5.8 km of track spins past the objective lens!

(D) What is the angular acceleration of the CD over the
4 473-s time interval? Assume that ( is constant.

Solution The most direct approach to solving this problem
is to use Equation 10.6 and the results to part (A). We should
obtain a negative number for the angular acceleration be-
cause the disc spins more and more slowly in the positive di-
rection as time goes on. Our answer should also be relatively
small because it takes such a long time—more than an
hour—for the change in angular speed to be accomplished:

"

The disc experiences a very gradual decrease in its rotation
rate, as expected.

%7.8 + 10%3 rad/s2

( "
&f % &i

t
"

22 rad/s % 57 rad/s
4 473 s

5.8 + 103 mxf " vit " (1.3 m/s)(4 473 s) "

2.8 + 104 rev $! " 1.8 + 105 rad # 1 rev
2# rad $ "

" 1.8 + 105 rad

" 1
2(57 rad/s ) 22 rad/s)(4 473 s)

$! " !f % !i " 1
2(&i ) &f)t



! PITFALL PREVENTION
10.4 No Single Moment

of Inertia
There is one major difference be-
tween mass and moment of iner-
tia. Mass is an inherent property
of an object. The moment of
inertia of an object depends
on your choice of rotation axis.
Thus, there is no single value of
the moment of inertia for an
object. There is a minimum value
of the moment of inertia, which
is that calculated about an axis
passing through the center of
mass of the object.

10.4 Rotational Kinetic Energy

In Chapter 7, we defined the kinetic energy of an object as the energy associated with
its motion through space. An object rotating about a fixed axis remains stationary in
space, so there is no kinetic energy associated with translational motion. The individ-
ual particles making up the rotating object, however, are moving through space—they
follow circular paths. Consequently, there should be kinetic energy associated with ro-
tational motion.

Let us consider an object as a collection of particles and assume that it rotates
about a fixed z axis with an angular speed &. Figure 10.7 shows the rotating object and
identifies one particle on the object located at a distance ri from the rotation axis. Each
such particle has kinetic energy determined by its mass and tangential speed. If the
mass of the ith particle is mi and its tangential speed is vi , its kinetic energy is

To proceed further, recall that although every particle in the rigid object has the same
angular speed &, the individual tangential speeds depend on the distance ri from the
axis of rotation according to the expression vi " ri& (see Eq. 10.10). The total kinetic
energy of the rotating rigid object is the sum of the kinetic energies of the individual
particles:

We can write this expression in the form

(10.14)

where we have factored &2 from the sum because it is common to every particle. We sim-
plify this expression by defining the quantity in parentheses as the moment of inertia I:

(10.15)

From the definition of moment of inertia, we see that it has dimensions of ML2

(kg · m2 in SI units).2 With this notation, Equation 10.14 becomes

(10.16)

Although we commonly refer to the quantity as rotational kinetic energy, it is
not a new form of energy. It is ordinary kinetic energy because it is derived from a
sum over individual kinetic energies of the particles contained in the rigid object.
However, the mathematical form of the kinetic energy given by Equation 10.16 is
convenient when we are dealing with rotational motion, provided we know how to
calculate I. 

It is important that you recognize the analogy between kinetic energy associated
with linear motion and rotational kinetic energy  . The quantities I and & in
rotational motion are analogous to m and v in linear motion, respectively. (In fact, I
takes the place of m and & takes the place of v every time we compare a linear-motion
equation with its rotational counterpart.) The moment of inertia is a measure of the
resistance of an object to changes in its rotational motion, just as mass is a measure of
the tendency of an object to resist changes in its linear motion. 

1
2 I&21

2 mv 
2

1
2 I&2

KR " 1
2 I&2

I " %
i

 mi ri 
2

KR " 1
2 #%

i
 mi ri 

2$ 
&2

KR " %
i

 Ki " %
i

 12 
mi vi 

2 " 1
2  %

i
 mi ri 

2&2

Ki " 1
2 mivi 

2
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vi

mi

ri

z axis

O

v

Figure 10.7 A rigid object rotating
about the z axis with angular speed
&. The kinetic energy of the
particle of mass mi is . The
total kinetic energy of the object is
called its rotational kinetic energy.

1
2mivi 

2

2 Civil engineers use moment of inertia to characterize the elastic properties (rigidity) of such
structures as loaded beams. Hence, it is often useful even in a nonrotational context.

Moment of inertia

Rotational kinetic energy



S ECT I O N  10 . 4 •  Rotational Kinetic Energy 301

Quick Quiz 10.7 A section of hollow pipe and a solid cylinder have the
same radius, mass, and length. They both rotate about their long central axes with
the same angular speed. Which object has the higher rotational kinetic energy? (a) the
hollow pipe (b) the solid cylinder (c) they have the same rotational kinetic energy
(d) impossible to determine.

Example 10.3 The Oxygen Molecule

Consider an oxygen molecule (O2) rotating in the xy plane
about the z axis. The rotation axis passes through the center
of the molecule, perpendicular to its length. The mass of
each oxygen atom is 2.66 + 10%26 kg, and at room
temperature the average separation between the two atoms is
d " 1.21 + 10%10 m. (The atoms are modeled as particles.)

(A) Calculate the moment of inertia of the molecule about
the z axis.

Solution This is a straightforward application of the defini-
tion of I. Because each atom is a distance d/2 from the z
axis, the moment of inertia about the axis is

 "
(2.66 + 10%26 kg)(1.21 + 10%10 m)2

2

I " %
i

 mi ri 
2 " m # d

2 $
2

) m # d
2 $

2
"

md 
2

2

"

This is a very small number, consistent with the minuscule
masses and distances involved.

(B) If the angular speed of the molecule about the z
axis is 4.60 + 1012 rad/s, what is its rotational kinetic
energy?

Solution We apply the result we just calculated for the mo-
ment of inertia in the equation for KR:

" 2.06 + 10%21 J

 " 1
2(1.95 + 10%46 kg,m2)(4.60 + 1012 rad/s)2

KR " 1
2 I&2

1.95 + 10%46 kg,m2

Example 10.4 Four Rotating Objects

Four tiny spheres are fastened to the ends of two rods of
negligible mass lying in the xy plane (Fig. 10.8). We shall as-
sume that the radii of the spheres are small compared with
the dimensions of the rods.

(A) If the system rotates about the y axis (Fig. 10.8a) with an
angular speed &, find the moment of inertia and the rota-
tional kinetic energy about this axis.

Solution First, note that the two spheres of mass m, which
lie on the y axis, do not contribute to Iy (that is, ri " 0 for
these spheres about this axis). Applying Equation 10.15, we
obtain

Therefore, the rotational kinetic energy about the y axis is

The fact that the two spheres of mass m do not enter into
this result makes sense because they have no motion about
the axis of rotation; hence, they have no rotational kinetic
energy. By similar logic, we expect the moment of inertia
about the x axis to be Ix " 2mb2 with a rotational kinetic en-
ergy about that axis of KR " mb2&2.

Ma2&2KR " 1
2 Iy&

2 " 1
2(2Ma2)&2 "

2Ma2Iy " %
i

 mi ri 
2 " Ma2 ) Ma2 "

(B) Suppose the system rotates in the xy plane about an
axis (the z axis) through O (Fig. 10.8b). Calculate the mo-
ment of inertia and rotational kinetic energy about this
axis.

Solution Because ri in Equation 10.15 is the distance be-
tween a sphere and the axis of rotation, we obtain

"

Comparing the results for parts (A) and (B), we con-
clude that the moment of inertia and therefore the rota-
tional kinetic energy associated with a given angular speed
depend on the axis of rotation. In part (B), we expect the
result to include all four spheres and distances because all
four spheres are rotating in the xy plane. Furthermore,
the fact that the rotational kinetic energy in part (A) is
smaller than that in part (B) indicates, based on the
work–kinetic energy theorem, that it would require less
work to set the system into rotation about the y axis than
about the z axis.

(Ma2 ) mb2)&2KR " 1
2 Iz&

2 " 1
2(2Ma2 ) 2mb2)&2 "

2Ma2 ) 2mb2Iz " %
i

 mi ri 
2 " Ma2 ) Ma2 ) mb2 ) mb2
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m

m

M

M

O

a

a

b

b

(b)

Figure 10.8 (Example 10.4) Four spheres form an unusual baton. (a) The baton is
rotated about the y axis. (b) The baton is rotated about the z axis.

What If? What if the mass M is much larger than m? How
do the answers to parts (A) and (B) compare?

Answer If M -- m, then m can be neglected and the
moment of inertia and rotational kinetic energy in part
(B) become

Iz " 2Ma2 and KR " Ma2&2

which are the same as the answers in part (A). If the masses
m of the two red spheres in Figure 10.8 are negligible, then
these spheres can be removed from the figure and rotations
about the y and z axes are equivalent.

10.5 Calculation of Moments of Inertia

We can evaluate the moment of inertia of an extended rigid object by imagining the
object to be divided into many small volume elements, each of which has mass $mi. We 
use the definition and take the limit of this sum as $mi : 0. In this limit, 

the sum becomes an integral over the volume of the object:

(10.17)

It is usually easier to calculate moments of inertia in terms of the volume of the ele-
ments rather than their mass, and we can easily make that change by using Equation 1.1,
. " m/V, where . is the density of the object and V is its volume. From this equation, the
mass of a small element is dm " . dV. Substituting this result into Equation 10.17 gives

If the object is homogeneous, then . is constant and the integral can be evaluated for a
known geometry. If . is not constant, then its variation with position must be known to
complete the integration.

The density given by . " m/V sometimes is referred to as volumetric mass density be-
cause it represents mass per unit volume. Often we use other ways of expressing den-
sity. For instance, when dealing with a sheet of uniform thickness t, we can define a sur-
face mass density / " .t, which represents mass per unit area. Finally, when mass is
distributed along a rod of uniform cross-sectional area A, we sometimes use linear mass
density 0 " M/L " .A, which is the mass per unit length.

I " & .r 2 dV

I " lim
$mi:0

 %
i

 ri 
2$mi " & r 

2 dm

I " %
i

 ri 

2$mi

Moment of inertia of a rigid
object

y

m

m

M M
a a

b

b

x

(a)
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Example 10.5 Uniform Thin Hoop

Find the moment of inertia of a uniform thin hoop of mass
M and radius R about an axis perpendicular to the plane of
the hoop and passing through its center (Fig. 10.9).

Solution Because the hoop is thin, all mass elements dm
are the same distance r " R from the axis, and so, applying
Equation 10.17, we obtain for the moment of inertia about
the z axis through O :

Note that this moment of inertia is the same as that of a sin-
gle particle of mass M located a distance R from the axis of
rotation.

MR 
2Iz " & r 

2 dm " R 2 & dm "

y

x

R
O

dm

Figure 10.9 (Example 10.5) The mass elements dm of a
uniform hoop are all the same distance from O.

Example 10.6 Uniform Rigid Rod

Calculate the moment of inertia of a uniform rigid rod of
length L and mass M (Fig. 10.10) about an axis perpendicular
to the rod (the y axis) and passing through its center of mass.

Solution The shaded length element dx in Figure 10.10 has a
mass dm equal to the mass per unit length 0 multiplied by dx :

Substituting this expression for dm into Equation 10.17, with
r2 " x2, we obtain

1
12 ML2 "

M
L

  ' x 
3

3 (L/2

%L/2
"

Iy " & r  
 
2 dm " &L/2

%L/2
 x 

2 
M
L

 dx "
M
L

 &L/2

%L/2
 x 

2 dx

dm " 0 dx "
M
L

 dx

L

x

O
x

dx

y′ y

Figure 10.10 (Example 10.6) A uniform rigid rod of
length L. The moment of inertia about the y axis is less than
that about the y1 axis. The latter axis is examined in
Example 10.8.

Example 10.7 Uniform Solid Cylinder

A uniform solid cylinder has a radius R, mass M, and length
L. Calculate its moment of inertia about its central axis (the
z axis in Fig. 10.11).

Solution It is convenient to divide the cylinder into many
cylindrical shells, each of which has radius r, thickness dr,
and length L, as shown in Figure 10.11. The volume dV of
each shell is its cross-sectional area multiplied by its length:
dV " LdA " L(2#r)dr. If the mass per unit volume is ., then
the mass of this differential volume element is dm "
. dV " 2#.Lr dr. Substituting this expression for dm into
Equation 10.17, we obtain

Because the total volume of the cylinder is #R2L, we see that
. " M/V " M/#R2L. Substituting this value for . into the
above result gives

Iz " 1
2MR2

Iz " & r 
2 dm " & r 

2(2#.Lr dr) " 2#.L &R

0
 r 

3dr " 1
2#.LR 4

What If? What if the length of the cylinder in Figure 10.11 is
increased to 2L, while the mass M and radius R are held
fixed? How does this change the moment of inertia of the
cylinder?

L

dr

z

r

R

Figure 10.11 (Example 10.7) Calculating I about the z axis for
a uniform solid cylinder.
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Hoop or thin
cylindrical shell
I CM = MR2 R

Solid cylinder
or disk

R
I CM = 1

2
MR2

Long thin rod
with rotation axis
through center

I CM = 1
12

ML2 L

R

Solid sphere

I CM = 2
5

MR 2

Hollow cylinder

R2

Long thin
rod with
rotation axis
through end

L

Thin spherical
shell

I CM = 2
3

MR 
2

R1I CM = 1
2

M(R1
2 + R2

2)

R

Rectangular plate

I CM = 1
12

M(a2 + b2)

b

a

I = 1
3

ML2

Moments of Inertia of Homogeneous Rigid Objects 
with Different Geometries

Table 10.2

Answer Note that the result for the moment of inertia of a
cylinder does not depend on L, the length of the cylinder.
In other words, it applies equally well to a long cylinder and

a flat disk having the same mass M and radius R. Thus, the
moment of inertia of the cylinder would not be affected by
changing its length.

Table 10.2 gives the moments of inertia for a number of objects about specific axes.
The moments of inertia of rigid objects with simple geometry (high symmetry) are rel-
atively easy to calculate provided the rotation axis coincides with an axis of symmetry.
The calculation of moments of inertia about an arbitrary axis can be cumbersome,
however, even for a highly symmetric object. Fortunately, use of an important theorem,
called the parallel-axis theorem, often simplifies the calculation. Suppose the
moment of inertia about an axis through the center of mass of an object is ICM. The
parallel-axis theorem states that the moment of inertia about any axis parallel to and
a distance D away from this axis is

(10.18)

To prove the parallel-axis theorem, suppose that an object rotates in the xy plane
about the z axis, as shown in Figure 10.12, and that the coordinates of the center of
mass are xCM, yCM. Let the mass element dm have coordinates x, y. Because this

I " ICM ) MD2Parallel-axis theorem



element is a distance from the z axis, the moment of inertia about the
z axis is

However, we can relate the coordinates x, y of the mass element dm to the coordinates of
this same element located in a coordinate system having the object’s center of mass as its
origin. If the coordinates of the center of mass are xCM, yCM in the original coordinate
system centered on O, then from Figure 10.12a we see that the relationships between the
unprimed and primed coordinates are x " x1 ) xCM and y " y1 ) yCM. Therefore,

The first integral is, by definition, the moment of inertia about an axis that is parallel
to the z axis and passes through the center of mass. The second two integrals are zero
because, by definition of the center of mass, . The last integral is sim-
ply MD2 because and D2 " xCM

2 ) yCM
2. Therefore, we conclude that

I " ICM ) MD 2

&dm " M
&x1dm " &y1dm " 0

  " & [(x1)2 ) (y1) 
2]dm ) 2x CM & x 1dm ) 2yCM & y1dm ) (xCM 

2 ) yCM 
2) & dm

 I " & [(x1 ) x CM)2 ) (y1 ) yCM)2]dm

I " & r 
2 dm " & (x 

2 ) y2)dm

r " √x2 ) y2
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Example 10.8 Applying the Parallel-Axis Theorem

Consider once again the uniform rigid rod of mass M and
length L shown in Figure 10.10. Find the moment of inertia
of the rod about an axis perpendicular to the rod through
one end (the y1 axis in Fig. 10.10).

Solution Intuitively, we expect the moment of inertia to be
greater than because there is mass up to a dis-
tance of L away from the rotation axis, while the farthest dis-
tance in Example 10.6 was only L/2. Because the distance

I CM " 1
12 ML 

2

between the center-of-mass axis and the y1 axis is D " L/2,
the parallel-axis theorem gives

So, it is four times more difficult to change the rotation of a
rod spinning about its end than it is to change the motion
of one spinning about its center.

1
3 ML2I " ICM ) MD2 " 1

12 
ML2 ) M  # L

2 $
2

"

(a)

y

x, y
dm

y′

yCM

O

D

r

y

xCM

x

xCM, yCM

x′

x

CM

(b)

Axis
through
CM

x

y

z

Rotation
axis

O CM

Figure 10.12 (a) The parallel-axis theorem: if the moment of inertia about an axis
perpendicular to the figure through the center of mass is ICM, then the moment of
inertia about the z axis is Iz " ICM ) MD2. (b) Perspective drawing showing the z axis
(the axis of rotation) and the parallel axis through the CM.



10.6 Torque

Why are a door’s hinges and its doorknob placed near opposite edges of the door?
Imagine trying to rotate a door by applying a force of magnitude F perpendicular to
the door surface but at various distances from the hinges. You will achieve a more
rapid rate of rotation for the door by applying the force near the doorknob than by ap-
plying it near the hinges.

If you cannot loosen a stubborn bolt with a socket wrench, what would you do in an
effort to loosen the bolt? You may intuitively try using a wrench with a longer handle or
slip a pipe over the existing wrench to make it longer. This is similar to the situation
with the door. You are more successful at causing a change in rotational motion (of the
door or the bolt) by applying the force farther away from the rotation axis.

When a force is exerted on a rigid object pivoted about an axis, the object tends to
rotate about that axis. The tendency of a force to rotate an object about some axis is
measured by a vector quantity called torque 2 (Greek tau). Torque is a vector, but we
will consider only its magnitude here and explore its vector nature in Chapter 11.

Consider the wrench pivoted on the axis through O in Figure 10.13. The applied
force F acts at an angle 3 to the horizontal. We define the magnitude of the torque as-
sociated with the force F by the expression

(10.19)

where r is the distance between the pivot point and the point of application of F and d
is the perpendicular distance from the pivot point to the line of action of F. (The line
of action of a force is an imaginary line extending out both ends of the vector represent-
ing the force. The dashed line extending from the tail of F in Figure 10.13 is part of
the line of action of F.) From the right triangle in Figure 10.13 that has the wrench as
its hypotenuse, we see that d " r sin 3. The quantity d is called the moment arm (or
lever arm) of F.

In Figure 10.13, the only component of F that tends to cause rotation is F sin 3, the
component perpendicular to a line drawn from the rotation axis to the point of appli-
cation of the force. The horizontal component F cos 3, because its line of action passes
through O, has no tendency to produce rotation about an axis passing through O.
From the definition of torque, we see that the rotating tendency increases as F in-
creases and as d increases. This explains the observation that it is easier to rotate a
door if we push at the doorknob rather than at a point close to the hinge. We also want
to apply our push as closely perpendicular to the door as we can. Pushing sideways on
the doorknob will not cause the door to rotate.

If two or more forces are acting on a rigid object, as in Figure 10.14, each tends to
produce rotation about the axis at O. In this example, F2 tends to rotate the object
clockwise and F1 tends to rotate it counterclockwise. We use the convention that the
sign of the torque resulting from a force is positive if the turning tendency of the force
is counterclockwise and is negative if the turning tendency is clockwise. For example,
in Figure 10.14, the torque resulting from F1, which has a moment arm d1, is positive
and equal to ) F1d1; the torque from F2 is negative and equal to % F2d2. Hence, the net
torque about O is

Torque should not be confused with force. Forces can cause a change in linear
motion, as described by Newton’s second law. Forces can also cause a change in rota-
tional motion, but the effectiveness of the forces in causing this change depends on
both the forces and the moment arms of the forces, in the combination that we call
torque. Torque has units of force times length—newton · meters in SI units—and should
be reported in these units. Do not confuse torque and work, which have the same units
but are very different concepts.

% 2 " 21 ) 22 " F1d1 % F2d 2

2 " rF sin 3 " Fd
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r

F sin
F

F cos

d

O
Line of
action

φ

φ

φ

φr

Figure 10.13 The force F has a
greater rotating tendency about O
as F increases and as the moment
arm d increases. The component
F sin 3 tends to rotate the wrench
about O.

Moment arm

O

d2

d1

F2

F1

Active Figure 10.14 The force F1
tends to rotate the object
counterclockwise about O, and F2
tends to rotate it clockwise.

! PITFALL PREVENTION
10.5 Torque Depends on

Your Choice of Axis
Like moment of inertia, there is
no unique value of the torque—
its value depends on your choice
of rotation axis.

At the Active Figures link
at http://www.pse6.com, you
can change the magnitudes,
directions, and points of
application of forces F1 and F2
to see how the object
accelerates under the action of
the two forces.



Example 10.9 The Net Torque on a Cylinder

A one-piece cylinder is shaped as shown in Figure 10.15,
with a core section protruding from the larger drum. The
cylinder is free to rotate about the central axis shown in the
drawing. A rope wrapped around the drum, which has ra-
dius R1, exerts a force T1 to the right on the cylinder. A rope
wrapped around the core, which has radius R2, exerts a
force T2 downward on the cylinder.

(A) What is the net torque acting on the cylinder about the
rotation axis (which is the z axis in Figure 10.15)?

Solution The torque due to T1 is % R1T1. (The sign is
negative because the torque tends to produce clockwise ro-
tation.) The torque due to T2 is ) R2T2. (The sign is posi-
tive because the torque tends to produce counterclockwise
rotation.) Therefore, the net torque about the rotation
axis is

We can make a quick check by noting that if the two forces
are of equal magnitude, the net torque is negative because
R1 - R 2 . Starting from rest with both forces of equal magni-
tude acting on it, the cylinder would rotate clockwise be-
cause T1 would be more effective at turning it than would T2.

R 2T2 % R1T1% 2 " 21 ) 22 "

(B) Suppose T1 " 5.0 N, R1 " 1.0 m, T2 " 15.0 N, and
R2 " 0.50 m. What is the net torque about the rotation axis,
and which way does the cylinder rotate starting from rest?

Solution Evaluating the net torque,

Because this torque is positive, the cylinder will begin to ro-
tate in the counterclockwise direction.

2.5 N,m% 2 " (15 N)(0.50 m) % (5.0 N)(1.0 m) "

z

x

y

R 1

R 2

O

T1

T2

Figure 10.15 (Example 10.9) A solid cylinder pivoted about
the z axis through O. The moment arm of T1 is R1, and the
moment arm of T2 is R2 .
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10.7 Relationship Between Torque 
and Angular Acceleration

In Chapter 4, we learned that a net force on an object causes an acceleration of the
object and that the acceleration is proportional to the net force (Newton’s second
law). In this section we show the rotational analog of Newton’s second law—the
angular acceleration of a rigid object rotating about a fixed axis is proportional to
the net torque acting about that axis. Before discussing the more complex case of
rigid-object rotation, however, it is instructive first to discuss the case of a particle
moving in a circular path about some fixed point under the influence of an external
force.

Quick Quiz 10.8 If you are trying to loosen a stubborn screw from a piece
of wood with a screwdriver and fail, should you find a screwdriver for which the handle
is (a) longer or (b) fatter?

Quick Quiz 10.9 If you are trying to loosen a stubborn bolt from a piece
of metal with a wrench and fail, should you find a wrench for which the handle is
(a) longer (b) fatter?



y

x

d Ft

O

r

dm

Figure 10.17 A rigid object
rotating about an axis through O.
Each mass element dm rotates
about O with the same angular
acceleration (, and the net torque
on the object is proportional to (.

Consider a particle of mass m rotating in a circle of radius r under the influence of
a tangential force Ft and a radial force Fr , as shown in Figure 10.16. The tangential
force provides a tangential acceleration at, and

The magnitude of the torque about the center of the circle due to Ft is

Because the tangential acceleration is related to the angular acceleration through the
relationship at " r( (see Eq. 10.11), the torque can be expressed as

Recall from Equation 10.15 that mr 2 is the moment of inertia of the particle about the
z axis passing through the origin, so that

(10.20)

That is, the torque acting on the particle is proportional to its angular accelera-
tion, and the proportionality constant is the moment of inertia. Note that 2 " I( is the
rotational analog of Newton’s second law of motion, F " ma.

Now let us extend this discussion to a rigid object of arbitrary shape rotating about
a fixed axis, as in Figure 10.17. The object can be regarded as an infinite number of
mass elements dm of infinitesimal size. If we impose a Cartesian coordinate system on
the object, then each mass element rotates in a circle about the origin, and each has a
tangential acceleration at produced by an external tangential force d Ft . For any given
element, we know from Newton’s second law that

The torque d2 associated with the force dFt acts about the origin and is given by

Because at " r(, the expression for d2 becomes

Although each mass element of the rigid object may have a different linear accelera-
tion at , they all have the same angular acceleration (. With this in mind, we can integrate
the above expression to obtain the net torque 2 about O due to the external forces:

where ( can be taken outside the integral because it is common to all mass elements.
From Equation 10.17, we know that is the moment of inertia of the object
about the rotation axis through O, and so the expression for 2 becomes

(10.21)

Note that this is the same relationship we found for a particle moving in a circular path
(see Eq. 10.20). So, again we see that the net torque about the rotation axis is propor-
tional to the angular acceleration of the object, with the proportionality factor being I,
a quantity that depends upon the axis of rotation and upon the size and shape of the
object. In view of the complex nature of the system, the relationship 2 " I( is strik-
ingly simple and in complete agreement with experimental observations.

Finally, note that the result 2 " I( also applies when the forces acting on the mass
elements have radial components as well as tangential components. This is because the
line of action of all radial components must pass through the axis of rotation, and
hence all radial components produce zero torque about that axis.

%

%

% 2 " I(

%
&r  2 dm

% 2 " & (r 
2

 dm " ( & r 
2

 dm

%

d2 " (r 
2 dm

d2 " r d Ft " at r dm

d Ft " (dm)at

2 " I(

2 " (mr ()r " (mr 2)(

2 " Ftr " (mat)r

Ft " mat
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Torque is proportional to 
angular acceleration

r

Fr

m

Ft

Figure 10.16 A particle rotating in
a circle under the influence of a
tangential force Ft . A force Fr in the
radial direction also must be present
to maintain the circular motion.
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Quick Quiz 10.10 You turn off your electric drill and find that the time in-
terval for the rotating bit to come to rest due to frictional torque in the drill is $t. You
replace the bit with a larger one that results in a doubling of the moment of inertia of
the entire rotating mechanism of the drill. When this larger bit is rotated at the same
angular speed as the first and the drill is turned off, the frictional torque remains the
same as that for the previous situation. The time for this second bit to come to rest is
(a) 4$t (b) 2$t (c) $t (d) 0.5$t (e) 0.25$t (f) impossible to determine.

Example 10.10 Rotating Rod

A uniform rod of length L and mass M is attached at one
end to a frictionless pivot and is free to rotate about the
pivot in the vertical plane, as in Figure 10.18. The rod is re-
leased from rest in the horizontal position. What is the ini-
tial angular acceleration of the rod and the initial linear ac-
celeration of its right end?

Solution We cannot use our kinematic equations to find (
or a because the torque exerted on the rod varies with its
angular position and so neither acceleration is constant. We
have enough information to find the torque, however, which
we can then use in Equation 10.21 to find the initial ( and
then the initial a.

The only force contributing to the torque about an axis
through the pivot is the gravitational force Mg exerted on
the rod. (The force exerted by the pivot on the rod has zero
torque about the pivot because its moment arm is zero.) To
compute the torque on the rod, we assume that the gravita-
tional force acts at the center of mass of the rod, as shown in
Figure 10.18. The magnitude of the torque due to this force
about an axis through the pivot is

With 2 " I(, and for this axis of rotation (see
Table 10.2), we obtain

All points on the rod have this initial angular acceleration.
To find the initial linear acceleration of the right end of

the rod, we use the relationship at " r( (Eq. 10.11), with
r " L:

 32 gat " L( "

3g
2L

(1)      ( "
2

I
"

Mg(L/2)
1
3 ML2 "

I " 1
3 ML2%

2 " Mg  # L
2 $

What If? What if we were to place a penny on the end of
the rod and release the rod? Would the penny stay in contact
with the rod?

Answer The result for the initial acceleration of a point
on the end of the rod shows that at - g. A penny will fall at
acceleration g. This means that if we place a penny at the
end of the rod and then release the rod, the end of the rod
falls faster than the penny does! The penny does not stay
in contact with the rod. (Try this with a penny and a meter
stick!)

This raises the question as to the location on the rod at
which we can place a penny that will stay in contact as both
begin to fall. To find the linear acceleration of an arbitrary
point on the rod at a distance r * L from the pivot point, we
combine (1) with Equation 10.11:

For the penny to stay in contact with the rod, the limiting
case is that the linear acceleration must be equal to that due
to gravity:

Thus, a penny placed closer to the pivot than two thirds of
the length of the rod will stay in contact with the falling rod
while a penny farther out than this point will lose contact.

r " 2
3 L

at " g "
3g
2L

 r

at " r ( "
3g
2L

 r

L

Pivot

Mg

Figure 10.18 (Example 10.10) A rod is free to rotate around a
pivot at the left end.
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Example 10.12 Angular Acceleration of a Wheel

A wheel of radius R , mass M, and moment of inertia I is
mounted on a frictionless horizontal axle, as in Figure 10.20.
A light cord wrapped around the wheel supports an object of
mass m. Calculate the angular acceleration of the wheel, the
linear acceleration of the object, and the tension in the cord.

Solution The magnitude of the torque acting on the wheel
about its axis of rotation is 2 " TR , where T is the force ex-
erted by the cord on the rim of the wheel. (The gravita-
tional force exerted by the Earth on the wheel and the nor-
mal force exerted by the axle on the wheel both pass
through the axis of rotation and thus produce no torque.)
Because 2 " I(, we obtain

Now let us apply Newton’s second law to the motion of the
object, taking the downward direction to be positive:

Equations (1) and (2) have three unknowns: (, a, and T. 
Because the object and wheel are connected by a cord that
does not slip, the linear acceleration of the suspended 
object is equal to the tangential acceleration of a point on
the rim of the wheel. Therefore, the angular acceleration (
of the wheel and the linear acceleration of the object are 
related by a " R (. Using this fact together with Equations
(1) and (2), we obtain

(4) T "
mg

1 ) (mR2/I )

(3)      a " R( "
TR 2

I
"

mg % T
m

(2)      a "
mg % T

m

% Fy " mg % T " ma

(1)       ( "
TR
I

% 2 " I( " TR

%

Figure 10.19 (Conceptual Example 10.11) A falling
smokestack breaks at some point along its length.

Conceptual Example 10.11 Falling Smokestacks and Tumbling Blocks

When a tall smokestack falls over, it often breaks somewhere
along its length before it hits the ground, as shown in Figure
10.19. The same thing happens with a tall tower of chil-
dren’s toy blocks. Why does this happen?

Solution As the smokestack rotates around its base, each
higher portion of the smokestack falls with a larger tangen-
tial acceleration than the portion below it. (The tangential
acceleration of a given point on the smokestack is propor-
tional to the distance of that portion from the base.) As
the angular acceleration increases as the smokestack tips
farther, higher portions of the smokestack experience an
acceleration greater than that which could result from
gravity alone; this is similar to the situation described in
Example 10.10. This can happen only if these portions are
being pulled downward by a force in addition to the gravi-
tational force. The force that causes this to occur is the
shear force from lower portions of the smokestack. Eventu-
ally the shear force that provides this acceleration is
greater than the smokestack can withstand, and the smoke-
stack breaks.

Interactive

M

O

R

T

m g

m

T

Figure 10.20 (Example 10.12) An object hangs from a cord
wrapped around a wheel. 
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At the Interactive Worked Example link at http://www.pse6.com, you can change the masses of the object and the wheel
as well as the radius of the wheel to see the effect on how the system moves.

Substituting Equation (4) into Equation (2) and solving for
a and (, we find that

(5) a "

What If? What if the wheel were to become very massive
so that I becomes very large? What happens to the accelera-
tion a of the object and the tension T?

Answer If the wheel becomes infinitely massive, we can
imagine that the object of mass m will simply hang from the
cord without causing the wheel to rotate.

g
R ) (I/mR)

( "
a
R

"

 
g

1 ) (I/mR 2 )

We can show this mathematically by taking the limit
I : 4, so that Equation (5) becomes

This agrees with our conceptual conclusion that the object
will hang at rest. We also find that Equation (4) becomes

This is consistent with the fact that the object simply hangs
at rest in equilibrium between the gravitational force and
the tension in the string.

T "
mg

1 ) (mR 2/I )
   9:    

mg
1 ) 0

" mg

a "
g

1 ) (I/mR 2 )
   9:    0

Example 10.13 Atwood’s Machine Revisited

Two blocks having masses m1 and m2 are connected to each
other by a light cord that passes over two identical friction-
less pulleys, each having a moment of inertia I and radius R,
as shown in Figure 10.21a. Find the acceleration of each
block and the tensions T1, T2, and T3 in the cord. (Assume
no slipping between cord and pulleys.)

Solution Compare this situation with the Atwood machine
of Example 5.9 (p. 129). The motion of m1 and m2 is similar
to the motion of the two blocks in that example. The pri-
mary differences are that in the present example we have
two pulleys and each of the pulleys has mass. Despite these
differences, the apparatus in the present example is indeed
an Atwood machine.

We shall define the downward direction as positive for
m1 and upward as the positive direction for m2. This allows
us to represent the acceleration of both masses by a single
variable a and also enables us to relate a positive a to a posi-
tive (counterclockwise) angular acceleration ( of the pul-
leys. Let us write Newton’s second law of motion for each
block, using the free-body diagrams for the two blocks as
shown in Figure 10.21b:

(1) m1g % T1 " m1a

(2) T3 % m 2g " m2a

Next, we must include the effect of the pulleys on the
motion. Free-body diagrams for the pulleys are shown in Fig-
ure 10.21c. The net torque about the axle for the pulley on
the left is (T1 % T2)R, while the net torque for the pulley on
the right is (T2 % T3)R. Using the relation 52 " I( for each
pulley and noting that each pulley has the same angular ac-
celeration (, we obtain

(3) (T1 % T2)R " I(

(4) (T2 % T3)R " I(

We now have four equations with five unknowns: (, a, T1,
T2, and T3. We also have a fifth equation that relates the ac-
celerations, a " R(. These equations can be solved simulta-
neously. Adding Equations (3) and (4) gives

(5) (T1 % T3)R " 2I(

Adding Equations (1) and (2) gives

T3 % T1 ) m1g % m2g " (m1 ) m2)a

(6) T1 % T3 " (m1 % m2)g % (m1 ) m2)a

Substituting Equation (6) into Equation (5), we have

[(m1 % m2)g % (m1 ) m2)a]R " 2I(

T2 T2

T1 T3

T2

T1 T3

m1g

(a)

m2g

(b)

n1

T1 mpg

n2

T3
mpg

(c)

m1

m1

m2

m2

+

+

Figure 10.21 (Example 10.13) (a) Another look at Atwood’s
machine. (b) Free-body diagrams for the blocks. (c) Free-body
diagrams for the pulleys, where mpg represents the gravitational
force acting on each pulley.

Interactive
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Because ( " a/R, this expression can be simplified to

(7) a "

Note that if m1 - m2 , the acceleration is positive; this
means that the left block accelerates downward, the right
block accelerates upward, and both pulleys accelerate
counterclockwise. If m1 * m2 , the acceleration is negative
and the motions are reversed. If m1 " m2, no acceleration
occurs at all. You should compare these results with those
found in Example 5.9.

The expression for a can be substituted into Equations
(1) and (2) to give T1 and T3. From Equation (1),

Similarly, from Equation (2),

Finally, T2 can be found from Equation (3):

T3 " m 2g ) m 2a " 2m 2g  # 
m1 ) (I/R 2)

m1 ) m2 ) 2(I/R 2) $

 " 2m1g  # 
m2 ) (I/R2)

m1 ) m2 ) 2(I/R 2) $

 " m1#g %
(m1 % m2)g

m1 ) m2 ) 2(I/R 2) $
T1 " m1g % m1a " m1(g % a)

 
(m1 % m2)g

m1 ) m2 ) 2(I/R2)

(m1 % m2)g % (m1 ) m2)a " 2I 
a

R 2

What If? What if the pulleys become massless? Does this
reduce to a previously solved problem?

Answer If the pulleys become massless, the system
should behave in the same way as the massless-pulley
Atwood machine that we investigated in Example 5.9. The
only difference is the existence of two pulleys instead
of one.

Mathematically, if I : 0, Equation (7) becomes

which is the same result as Equation (3) in Example 5.9. Al-
though the expressions for the three tensions in the present
example are different from each other, all three expressions
become, in the limit I : 0,

which is the same as Equation (4) in Example 5.9.

T " # 2m1m2

m1 ) m2
$ g

a "
(m1 % m2)g

m1 ) m2 ) 2(I/R 2)
   9:    a " # m1 % m2

m1 ) m2
$ g

"
2m1m2 ) (m1 ) m2)(I/R 2)

m1 ) m2 ) 2(I/R 2)
  g

%
I

R 2   # (m1 % m2)g
m1 ) m2 ) 2(I/R 2)$

" 2m 1g  # m2 ) (I/R2)
m 1 ) m2 ) 2(I/R 2)$

T2 " T1 %
I(
R

" T1 %
Ia
R 2  

At the Interactive Worked Example link at http://www.pse6.com, you can change the masses of the blocks and the pul-
leys to see the effect on the motion of the system.

10.8 Work, Power, and Energy 
in Rotational Motion

Up to this point in our discussion of rotational motion in this chapter, we focused
on an approach involving force, leading to a description of torque on a rigid object.
We now see how an energy approach can be useful to us in solving rotational
problems.

We begin by considering the relationship between the torque acting on a rigid ob-
ject and its resulting rotational motion in order to generate expressions for power and
a rotational analog to the work–kinetic energy theorem. Consider the rigid object piv-
oted at O in Figure 10.22. Suppose a single external force F is applied at P, where F lies
in the plane of the page. The work done by F on the object as it rotates through an in-
finitesimal distance ds " r d! is

where F sin 3 is the tangential component of F, or, in other words, the component of
the force along the displacement. Note that the radial component of F does no work because
it is perpendicular to the displacement.

dW " F,ds " (F sin 3)r d!

φ

O

P

rd

ds

F

θ

Figure 10.22 A rigid object rotates
about an axis through O under the
action of an external force F
applied at P.



Because the magnitude of the torque due to F about O is defined as rF sin 3 by
Equation 10.19, we can write the work done for the infinitesimal rotation as

(10.22)

The rate at which work is being done by F as the object rotates about the fixed axis
through the angle d! in a time interval dt is

Because dW/dt is the instantaneous power ! (see Section 7.8) delivered by the force
and d!/dt " &, this expression reduces to

(10.23)

This expression is analogous to ! " Fv in the case of linear motion, and the expres-
sion dW " 2 d! is analogous to dW " Fx dx.

In studying linear motion, we found the energy approach extremely useful in de-
scribing the motion of a system. From what we learned of linear motion, we expect that
when a symmetric object rotates about a fixed axis, the work done by external forces
equals the change in the rotational energy.

To show that this is in fact the case, let us begin with 2 " I(. Using the chain rule
from calculus, we can express the resultant torque as

Rearranging this expression and noting that 2 d! " dW, we obtain

Integrating this expression, we obtain for the total work done by the net external force
acting on a rotating system

(10.24)

where the angular speed changes from &i to &f . That is, the work–kinetic energy
theorem for rotational motion states that

In general, then, combining this with the translational form of the work–kinetic en-
ergy theorem from Chapter 7, the net work done by external forces on an object is
the change in its total kinetic energy, which is the sum of the translational and rota-
tional kinetic energies. For example, when a pitcher throws a baseball, the work
done by the pitcher’s hands appears as kinetic energy associated with the ball mov-
ing through space as well as rotational kinetic energy associated with the spinning
of the ball.

In addition to the work–kinetic energy theorem, other energy principles can also
be applied to rotational situations. For example, if a system involving rotating objects is
isolated, the principle of conservation of energy can be used to analyze the system, as
in Example 10.14 below.

Table 10.3 lists the various equations we have discussed pertaining to rotational mo-
tion, together with the analogous expressions for linear motion. The last two equations
in Table 10.3, involving angular momentum L, are discussed in Chapter 11 and are in-
cluded here only for the sake of completeness.

the net work done by external forces in rotating a symmetric rigid object about a
fixed axis equals the change in the object’s rotational energy.

 % W "&&f

&i

 I& d& " 1
2I&f  

2 % 1
2I&i 

2

% 2 d! " dW " I& d&

%

% 2 " I( " I  
d&

dt
" I  

d&

d!
 
d!

dt
 " I  

d&

d!
 &

%

! "
dW
dt

" 2&

 
dW
dt

" 2  
d!

dt

dW " 2 d!
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Power delivered to a rotating
rigid object

Work–kinetic energy theorem
for rotational motion
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Rotational Motion About a Fixed Axis Linear Motion

Angular speed & " d!/dt Linear speed v " dx/dt
Angular acceleration ( " d&/dt Linear acceleration a " dv/dt
Net torque 2 " 6( Net force F " ma
If &f " &i ) (t If vf " vi ) at
( " constant !f " !i ) &it ) (t2 a " constant xf " xi ) vi t ) at2

&f
2 " &i

2 ) 2((!f % !i) vf
2 " vi

2 ) 2a(xf % xi)

Work W " Work W "

Rotational kinetic energy KR " 6&2 Kinetic energy K " mv2

Power Power 
Angular momentum L " 6& Linear momentum p " mv
Net torque 2 " dL/dt Net force F " dp/dt%%

! " Fv! " 2&

1
2

1
2

 &xf

xi

 Fx dx &!f

!i

 2 d!

1
2

1
2

%%

Useful Equations in Rotational and Linear Motion

Table 10.3

Quick Quiz 10.11 A rod is attached to the shaft of a motor at the center of
the rod so that the rod is perpendicular to the shaft, as in Figure 10.23a. The motor is
turned on and performs work W on the rod, accelerating it to an angular speed &. The
system is brought to rest, and the rod is attached to the shaft of the motor at one end
of the rod as in Figure 10.23b. The motor is turned on and performs work W on the
rod. The angular speed of the rod in the second situation is (a) 4& (b) 2& (c) &
(d) 0.5& (e) 0.25& (f) impossible to determine.

Example 10.14 Rotating Rod Revisited

A uniform rod of length L and mass M is free to rotate on a
frictionless pin passing through one end (Fig 10.24). The
rod is released from rest in the horizontal position.

(A) What is its angular speed when it reaches its lowest
position?

Solution To conceptualize this problem, consider Figure
10.24 and imagine the rod rotating downward through a

quarter turn about the pivot at the left end. In this situa-
tion, the angular acceleration of the rod is not constant.
Thus, the kinematic equations for rotation (Section 10.2)
cannot be used to solve this problem. As we found
with translational motion, however, an energy approach
can make such a seemingly insoluble problem relatively
easy. We categorize this as a conservation of energy
problem.

) )

(a) (b)

Figure 10.23 (Quick Quiz 10.11) (a) A rod is rotated about its midpoint by a motor.
(b) The rod is rotated about one of its ends.

Interactive
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Figure 10.25 (Example 10.15) An Atwood machine.
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At the Interactive Worked Example link at http://www.pse6.com, you can alter the mass and length of the rod and see the
effect on the velocity at the lowest point.

To analyze the problem, we consider the mechanical
energy of the system of the rod and the Earth. We choose
the configuration in which the rod is hanging straight down
as the reference configuration for gravitational potential
energy and assign a value of zero for this configuration.
When the rod is in the horizontal position, it has no rota-
tional kinetic energy. The potential energy of the system in
this configuration relative to the reference configuration is
MgL/2 because the center of mass of the rod is at a height
L/2 higher than its position in the reference configuration.
When the rod reaches its lowest position, the energy is en-
tirely rotational energy , where I is the moment of iner-
tia about the pivot, and the potential energy of the system is
zero. Because (see Table 10.2) and because the
system is isolated with no nonconservative forces acting, we
apply conservation of mechanical energy for the system:

Kf ) Uf " Ki ) Ui

I " 1
3 ML2

1
2 6&2

& "

(B) Determine the tangential speed of the center of mass
and the tangential speed of the lowest point on the rod
when it is in the vertical position.

Solution These two values can be determined from the re-
lationship between tangential and angular speeds. We know
& from part (A), and so the tangential speed of the center
of mass is

Because r for the lowest point on the rod is twice what it is
for the center of mass, the lowest point has a tangential
speed v equal to

v " 2vCM "

To finalize this problem, note that the initial configuration
in this example is the same as that in Example 10.10. In Ex-
ample 10.10, however, we could only find the initial angular
acceleration of the rod. We cannot use this and the kine-
matic equations to find the angular speed of the rod at its
lowest point because the angular acceleration is not con-
stant. Applying an energy approach in the current example
allows us to find something that we cannot in Example 10.10.

√3gL

 12  √3gLv CM " r& "
L
2

 & "

√ 3g
L

 

 12I&2 ) 0 " 1
2(1

3 
ML2)&2 " 0 ) 1

2 
MgL

Example 10.15 Energy and the Atwood Machine

Consider two cylinders having different masses m1 and m2,
connected by a string passing over a pulley, as shown in
Figure 10.25. The pulley has a radius R and moment of in-
ertia I about its axis of rotation. The string does not slip on
the pulley, and the system is released from rest. Find the
linear speeds of the cylinders after cylinder 2 descends
through a distance h, and the angular speed of the pulley
at this time.

Solution We will solve this problem by applying energy
methods to an Atwood machine with a massive pulley. Be-
cause the string does not slip, the pulley rotates about the
axle. We can neglect friction in the axle because the axle’s
radius is small relative to that of the pulley, so the frictional
torque is much smaller than the torque applied by the two
cylinders, provided that their masses are quite different.
Consequently, the system consisting of the two cylinders, the
pulley, and the Earth is isolated with no nonconservative
forces acting; thus, the mechanical energy of the system is
conserved.

We define the zero configuration for gravitational po-
tential energy as that which exists when the system is re-

O ′

L/2

Ef = KR = –1
2Iω2

Ei = U = MgL/2
O

ω

Figure 10.24 (Example 10.14) A uniform rigid rod pivoted at
O rotates in a vertical plane under the action of the
gravitational force.

leased. From Figure 10.25, we see that the descent of cylin-
der 2 is associated with a decrease in system potential en-
ergy and the rise of cylinder 1 represents an increase in 
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potential energy. Because Ki " 0 (the system is initially at
rest), we have

where vf is the same for both blocks. Because vf " R&f , this
expression becomes

1
2 #m1 ) m2 )  

I
R 2  $ vf  

2 " (m 2gh % m1gh)

#1
2m1vf 

2 ) 1
2m 2vf 

2 ) 1
2  

I
R 2  vf  

2$ " (m 2gh % m1gh)

(1
2m1vf 

2 ) 1
2m 2vf 

2 ) 1
2 I&f 

2) ) (m1gh % m2gh) " 0 ) 0

Kf ) Uf " Ki ) Ui

Solving for vf , we find

vf "

The angular speed of the pulley at this instant is

1
R

  ' 2(m2 % m1)gh
(m1 ) m2 ) (I/R 2)) (

1/2
 &f "

vf

R
"

 ' 2(m2 % m1)gh
[m1 ) m2 ) (I/R 2)] (

1/2

Figure 10.26 One light source at the center of a rolling cylinder and another at one
point on the rim illustrate the different paths these two points take. The center moves
in a straight line (green line), while the point on the rim moves in the path called a
cycloid (red curve).
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10.9 Rolling Motion of a Rigid Object

In this section we treat the motion of a rigid object rolling along a flat surface. In
general, such motion is very complex. Suppose, for example, that a cylinder is
rolling on a straight path such that the axis of rotation remains parallel to its initial
orientation in space. As Figure 10.26 shows, a point on the rim of the cylinder
moves in a complex path called a cycloid. However, we can simplify matters by focus-
ing on the center of mass rather than on a point on the rim of the rolling object. As
we see in Figure 10.26, the center of mass moves in a straight line. If an object such
as a cylinder rolls without slipping on the surface (we call this pure rolling motion), we
can show that a simple relationship exists between its rotational and translational
motions.

Consider a uniform cylinder of radius R rolling without slipping on a horizontal
surface (Fig. 10.27). As the cylinder rotates through an angle !, its center of mass
moves a linear distance s " R! (see Eq. 10.1a). Therefore, the linear speed of the cen-
ter of mass for pure rolling motion is given by

(10.25)

where & is the angular speed of the cylinder. Equation 10.25 holds whenever a cylin-
der or sphere rolls without slipping and is the condition for pure rolling motion.

vCM "
ds
dt

" R  
d!

dt
" R&! PITFALL PREVENTION

10.6 Equation 10.25 Looks
Familiar

Equation 10.25 looks very simi-
lar to Equation 10.10, so be sure
that you are clear on the differ-
ence. Equation 10.10 gives the
tangential speed of a point on a
rotating object located a distance
r from the rotation axis if the
object is rotating with angular
speed &. Equation 10.25 gives
the translational speed of the
center of mass of a rolling object
of radius R rotating with angular
speed &.



S ECT I O N  10 . 9 •  Rolling Motion of a Rigid Object 317

R s
θ

s = Rθ

Figure 10.27 For pure rolling motion, as
the cylinder rotates through an angle !, its center
moves a linear distance s " R!.

P

CM

Q

P ′
2vCM

vCM

Figure 10.28 All points on a
rolling object move in a direction
perpendicular to an axis through
the instantaneous point of contact
P. In other words, all points rotate
about P. The center of mass of the
object moves with a velocity vCM,
and the point P 1 moves with a
velocity 2vCM.

The magnitude of the linear acceleration of the center of mass for pure rolling
motion is

(10.26)

where ( is the angular acceleration of the cylinder.
The linear velocities of the center of mass and of various points on and within the

cylinder are illustrated in Figure 10.28. A short time after the moment shown in
the drawing, the rim point labeled P might rotate from the six o’clock position to, say,
the seven o’clock position, while the point Q would rotate from the ten o’clock posi-
tion to the eleven o’clock position, and so on. Note that the linear velocity of any point
is in a direction perpendicular to the line from that point to the contact point P. At
any instant, the part of the rim that is at point P is at rest relative to the surface because
slipping does not occur.

All points on the cylinder have the same angular speed. Therefore, because the dis-
tance from P1 to P is twice the distance from P to the center of mass, P1 has a speed
2vCM " 2R&. To see why this is so, let us model the rolling motion of the cylinder in Fig-
ure 10.29 as a combination of translational (linear) motion and rotational motion. For
the pure translational motion shown in Figure 10.29a, imagine that the cylinder does
not rotate, so that each point on it moves to the right with speed vCM. For the pure rota-
tional motion shown in Figure 10.29b, imagine that a rotation axis through the center
of mass is stationary, so that each point on the cylinder has the same angular speed &.
The combination of these two motions represents the rolling motion shown in Figure
10.29c. Note in Figure 10.29c that the top of the cylinder has linear speed
vCM ) R& " vCM ) vCM " 2vCM, which is greater than the linear speed of any other
point on the cylinder. As mentioned earlier, the center of mass moves with linear speed
vCM while the contact point between the surface and cylinder has a linear speed of zero.

We can express the total kinetic energy of the rolling cylinder as

(10.27)

where IP is the moment of inertia about a rotation axis through P. Applying the
parallel-axis theorem, we can substitute IP " ICM ) MR2 into Equation 10.27 to obtain

or, because vCM " R&,

(10.28)K " 1
2 ICM& 

2 ) 1
2MvCM 

2

K " 1
2 ICM& 

2 ) 1
2MR 

2&2

K " 1
2 IP & 

2

a CM "
dvCM

dt
" R  

d&

dt
" R(

Total kinetic energy of a rolling
object



The term represents the rotational kinetic energy of the cylinder about its center
of mass, and the term represents the kinetic energy the cylinder would have if it
were just translating through space without rotating. Thus, we can say that the total
kinetic energy of a rolling object is the sum of the rotational kinetic energy about
the center of mass and the translational kinetic energy of the center of mass.

We can use energy methods to treat a class of problems concerning the rolling mo-
tion of an object down a rough incline. For example, consider Figure 10.30, which
shows a sphere rolling without slipping after being released from rest at the top of the
incline. Note that accelerated rolling motion is possible only if a friction force is pre-
sent between the sphere and the incline to produce a net torque about the center of
mass. Despite the presence of friction, no loss of mechanical energy occurs because the
contact point is at rest relative to the surface at any instant. (On the other hand, if the
sphere were to slip, mechanical energy of the sphere–incline–Earth system would be
lost due to the nonconservative force of kinetic friction.)

Using the fact that vCM " R& for pure rolling motion, we can express Equation
10.28 as

(10.29)

For the system of the sphere and the Earth, we define the zero configuration of gravita-
tional potential energy to be when the sphere is at the bottom of the incline. Thus,
conservation of mechanical energy gives us

(10.30)vCM " # 2gh
1 ) (ICM/MR2) $

1/2

1
2 # ICM

R2 ) M$ vCM 
2 ) 0 " 0 ) Mgh

Kf ) Uf " Ki ) Ui

K " 1
2 # ICM

R 
2 ) M$ vCM 

2

K " 1
2 ICM # vCM

R $2
) 1

2MvCM 
2

1
2 
MvCM 

2

1
2 
ICM& 

2
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h
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vCM

ω
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θ

Active Figure 10.30 A sphere
rolling down an incline.
Mechanical energy of the
sphere–incline–Earth system is
conserved if no slipping occurs.

At the Active Figures link
at http://www.pse6.com, you
can roll several objects down
the hill and see how the final
speed depends on the type of
object.

P ′
vCM

CM vCM

vCM
P

P ′

CM v = 0

P

v = Rω

v = Rω

(a) Pure translation (b) Pure rotation

P ′

CM

P
v = 0

v = vCM

v = vCM + Rω = 2vCM

(c) Combination of translation and rotation

ω

ω

ω

Figure 10.29 The motion of a rolling object can be modeled as a combination of pure
translation and pure rotation.
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Quick Quiz 10.12 A ball rolls without slipping down incline A, starting
from rest. At the same time, a box starts from rest and slides down incline B, which is
identical to incline A except that it is frictionless. Which arrives at the bottom first?  
(a) the ball (b) the box (c) Both arrive at the same time. (d) impossible to determine

Quick Quiz 10.13 Two solid spheres roll down an incline, starting from rest.
Sphere A has twice the mass and twice the radius of sphere B. Which arrives at the bot-
tom first? (a) sphere A (b) sphere B (c) Both arrive at the same time. (d) impossible to
determine

Quick Quiz 10.14 Two spheres roll down an incline, starting from rest.
Sphere A has the same mass and radius as sphere B, but sphere A is solid while sphere
B is hollow. Which arrives at the bottom first? (a) sphere A (b) sphere B (c) Both arrive
at the same time. (d) impossible to determine

Example 10.16 Sphere Rolling Down an Incline

For the solid sphere shown in Figure 10.30, calculate the lin-
ear speed of the center of mass at the bottom of the incline
and the magnitude of the linear acceleration of the center
of mass.

Solution For a uniform solid sphere, (see
Table 10.2), and therefore Equation 10.30 gives

"

Notice that this is less than , which is the speed an ob-
ject would have if it simply slid down the incline without ro-
tating (see Example 8.7).

To calculate the linear acceleration of the center of
mass, we note that the vertical displacement is related to the
displacement x along the incline through the relationship
h " x sin !. Hence, after squaring both sides, we can express
the equation above as

v CM 
2 " 10

7  gx sin !

√2gh

(10
7  gh)1/2v CM " # 2gh

1 ) (2
5 MR2/MR2) $

1/2

ICM " 2
5 MR 

2

Comparing this with the expression from kinematics,
vCM

2 " 2aCMx (see Eq. 2.13), we see that the acceleration of
the center of mass is

These results are interesting because both the speed and
the acceleration of the center of mass are independent of the
mass and the radius of the sphere! That is, all homoge-
neous solid spheres experience the same speed and ac-
celeration on a given incline, as we argued in the answer to
Quick Quiz 10.13.

If we were to repeat the acceleration calculation for a
hollow sphere, a solid cylinder, or a hoop, we would ob-
tain similar results in which only the factor in front of 
g sin ! would differ. The constant factors that appear in
the expressions for vCM and a CM depend only on the mo-
ment of inertia about the center of mass for the specific
object. In all cases, the acceleration of the center of mass
is less than g sin !, the value the acceleration would have if
the incline were frictionless and no rolling occurred.

aCM " 5
7 g sin !

If a particle moves in a circular path of radius r through an angle ! (measured in radi-
ans), the arc length it moves through is s " r!.

The angular position of a rigid object is defined as the angle ! between a refer-
ence line attached to the object and a reference line fixed in space. The angular dis-
placement of a particle moving in a circular path or a rigid object rotating about a
fixed axis is $! " !f % !i.

S U M M A RY

Take a practice test for
this chapter by clicking on
the Practice Test link at
http://www.pse6.com.



The instantaneous angular speed of a particle moving in a circular path or of a
rigid object rotating about a fixed axis is

(10.3)

The instantaneous angular acceleration of a particle moving in a circular path
or a rotating rigid object is

(10.5)

When a rigid object rotates about a fixed axis, every part of the object has the same an-
gular speed and the same angular acceleration.

If an object rotates about a fixed axis under constant angular acceleration, one can
apply equations of kinematics that are analogous to those for linear motion under con-
stant linear acceleration:

(10.6)

(10.7)

(10.8)

(10.9)

A useful technique in solving problems dealing with rotation is to visualize a linear ver-
sion of the same problem.

When a rigid object rotates about a fixed axis, the angular position, angular speed,
and angular acceleration are related to the linear position, linear speed, and linear ac-
celeration through the relationships

(10.1a)

(10.10)

(10.11)

The moment of inertia of a system of particles is defined as

(10.15)

If a rigid object rotates about a fixed axis with angular speed &, its rotational ki-
netic energy can be written

(10.16)

where I is the moment of inertia about the axis of rotation.
The moment of inertia of a rigid object is

(10.17)

where r is the distance from the mass element dm to the axis of rotation.
The magnitude of the torque associated with a force F acting on an object is

(10.19)

where d is the moment arm of the force, which is the perpendicular distance from the
rotation axis to the line of action of the force. Torque is a measure of the tendency of
the force to change the rotation of the object about some axis.

If a rigid object free to rotate about a fixed axis has a net external torque acting
on it, the object undergoes an angular acceleration (, where

(10.21)% 2 " I(

2 " Fd

I " & r 
2 dm

KR " 1
2 I& 2

I " %
i

 miri 
2

at " r (

v " r &

s " r !

!f " !i ) 1
2(&i ) &f)t

&f 
2

 " &i 
2 ) 2((!f % !i)

!f " !i ) &it ) 1
2 (t 

2

&f " &i ) (t

( " 
d&

dt

& " 
d!

dt
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The rate at which work is done by an external force in rotating a rigid object about
a fixed axis, or the power delivered, is

(10.23)

If work is done on a rigid object and the only result of the work is rotation about a
fixed axis, the net work done by external forces in rotating the object equals the
change in the rotational kinetic energy of the object:

(10.24)

The total kinetic energy of a rigid object rolling on a rough surface without slip-
ping equals the rotational kinetic energy about its center of mass, , plus the
translational kinetic energy of the center of mass, :

(10.28)K " 1
2 ICM& 

2 ) 1
2 MvCM 

2

1
2 MvCM 

2

1
2 I CM& 

2

% W " 1
2 I&f 

2 % 1
2 I&i 

2

! " 2&

Questions 321

What is the angular speed of the second hand of a clock?
What is the direction of " as you view a clock hanging on a
vertical wall? What is the magnitude of the angular acceler-
ation vector # of the second hand?

2. One blade of a pair of scissors rotates counterclockwise in
the xy plane. What is the direction of "? What is the direc-
tion of # if the magnitude of the angular velocity is de-
creasing in time?

3. Are the kinematic expressions for !, &, and ( valid when
the angular position is measured in degrees instead of in
radians?

4. If a car’s standard tires are replaced with tires of larger out-
side diameter, will the reading of the speedometer
change? Explain.

5. Suppose a " b and M - m for the system of particles de-
scribed in Figure 10.8. About which axis (x, y, or z) does the
moment of inertia have the smallest value? the largest value?

6. Suppose that the rod in Figure 10.10 has a nonuniform
mass distribution. In general, would the moment of inertia
about the y axis still be equal to ML2/12? If not, could the
moment of inertia be calculated without knowledge of the
manner in which the mass is distributed?

7. Suppose that just two external forces act on a stationary
rigid object and the two forces are equal in magnitude and
opposite in direction. Under what condition does the ob-
ject start to rotate?

8. Suppose a pencil is balanced on a perfectly frictionless
table. If it falls over, what is the path followed by the center
of mass of the pencil?

9. Explain how you might use the apparatus described in Ex-
ample 10.12 to determine the moment of inertia of the
wheel. (If the wheel does not have a uniform mass density,
the moment of inertia is not necessarily equal to .)

10. Using the results from Example 10.12, how would you cal-
culate the angular speed of the wheel and the linear speed
of the suspended counterweight at t " 2 s, if the system is
released from rest at t " 0? Is the expression v " R& valid
in this situation?

1
2 MR 2

1. 11. If a small sphere of mass M were placed at the end of the
rod in Figure 10.24, would the result for & be greater than,
less than, or equal to the value obtained in Example 10.14?

12. Explain why changing the axis of rotation of an object
changes its moment of inertia.

13. The moment of inertia of an object depends on the choice
of rotation axis, as suggested by the parallel-axis theorem.
Argue that an axis passing through the center of mass of
an object must be the axis with the smallest moment of
inertia.

14. Suppose you remove two eggs from the refrigerator, one
hard-boiled and the other uncooked. You wish to deter-
mine which is the hard-boiled egg without breaking the
eggs. This can be done by spinning the two eggs on the
floor and comparing the rotational motions. Which egg
spins faster? Which rotates more uniformly? Explain.

15. Which of the entries in Table 10.2 applies to finding the
moment of inertia of a long straight sewer pipe rotating
about its axis of symmetry? Of an embroidery hoop rotat-
ing about an axis through its center and perpendicular to
its plane? Of a uniform door turning on its hinges? Of a
coin turning about an axis through its center and perpen-
dicular to its faces?

16. Is it possible to change the translational kinetic energy of
an object without changing its rotational energy?

17. Must an object be rotating to have a nonzero moment of
inertia?

If you see an object rotating, is there necessarily a net
torque acting on it?

19. Can a (momentarily) stationary object have a nonzero an-
gular acceleration?

In a tape recorder, the tape is pulled past the read-and-
write heads at a constant speed by the drive mechanism.
Consider the reel from which the tape is pulled. As the
tape is pulled from it, the radius of the roll of remaining
tape decreases. How does the torque on the reel change
with time? How does the angular speed of the reel change
in time? If the drive mechanism is switched on so that the

20.

18.

Q U E S T I O N S



Section 10.1 Angular Position, Velocity, 
and Acceleration

1. During a certain period of time, the angular position of a
swinging door is described by ! " 5.00 ) 10.0t ) 2.00t2,
where ! is in radians and t is in seconds. Determine the an-
gular position, angular speed, and angular acceleration of
the door (a) at t " 0 (b) at t " 3.00 s.

Section 10.2 Rotational Kinematics: Rotational
Motion with Constant Angular
Acceleration

2. A dentist’s drill starts from rest. After 3.20 s of constant an-
gular acceleration, it turns at a rate of 2.51 + 104 rev/min.
(a) Find the drill’s angular acceleration. (b) Determine
the angle (in radians) through which the drill rotates dur-
ing this period.

A wheel starts from rest and rotates with constant angular
acceleration to reach an angular speed of 12.0 rad/s in
3.00 s. Find (a) the magnitude of the angular acceleration
of the wheel and (b) the angle in radians through which it
rotates in this time.

4. An airliner arrives at the terminal, and the engines are
shut off. The rotor of one of the engines has an initial
clockwise angular speed of 2 000 rad/s. The engine’s rota-
tion slows with an angular acceleration of magnitude
80.0 rad/s2. (a) Determine the angular speed after 10.0 s.
(b) How long does it take the rotor to come to rest?

3.

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide

= coached solution with hints available at http://www.pse6.com = computer useful in solving problem

= paired numerical and symbolic problems

P R O B L E M S

An electric motor rotating a grinding wheel at
100 rev/min is switched off. With constant negative angu-
lar acceleration of magnitude 2.00 rad/s2, (a) how long
does it take the wheel to stop? (b) Through how many ra-
dians does it turn while it is slowing down?

6. A centrifuge in a medical laboratory rotates at an angular
speed of 3 600 rev/min. When switched off, it rotates 50.0
times before coming to rest. Find the constant angular ac-
celeration of the centrifuge.

7. The tub of a washer goes into its spin cycle, starting from
rest and gaining angular speed steadily for 8.00 s, at which
time it is turning at 5.00 rev/s. At this point the person do-
ing the laundry opens the lid, and a safety switch turns off
the washer. The tub smoothly slows to rest in 12.0 s.
Through how many revolutions does the tub turn while it
is in motion?

8. A rotating wheel requires 3.00 s to rotate through 37.0
revolutions. Its angular speed at the end of the 3.00-s
interval is 98.0 rad/s. What is the constant angular acceler-
ation of the wheel?

9. (a) Find the angular speed of the Earth’s rotation on its
axis. As the Earth turns toward the east, we see the sky
turning toward the west at this same rate.
(b) The rainy Pleiads wester

And seek beyond the sea
The head that I shall dream of

That shall not dream of me.
–A. E. Housman (© Robert E. Symons)

5.
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tape is suddenly jerked with a large force, is the tape more
likely to break when it is being pulled from a nearly full
reel or from a nearly empty reel?

21. The polar diameter of the Earth is slightly less than the
equatorial diameter. How would the moment of inertia of
the Earth about its axis of rotation change if some mass
from near the equator were removed and transferred to
the polar regions to make the Earth a perfect sphere?

22. Suppose you set your textbook sliding across a gymnasium
floor with a certain initial speed. It quickly stops moving
because of a friction force exerted on it by the floor. Next,
you start a basketball rolling with the same initial speed. It
keeps rolling from one end of the gym to the other. Why
does the basketball roll so far? Does friction significantly
affect its motion?

23. When a cylinder rolls on a horizontal surface as in Figure
10.28, do any points on the cylinder have only a vertical com-
ponent of velocity at some instant? If so, where are they?

24. Three objects of uniform density—a solid sphere, a solid
cylinder, and a hollow cylinder—are placed at the top of

an incline (Fig. Q10.24). They are all released from rest at
the same elevation and roll without slipping. Which object
reaches the bottom first? Which reaches it last? Try this at
home and note that the result is independent of the
masses and the radii of the objects.

25. In a soap-box derby race, the cars have no engines; they
simply coast down a hill to race with one another. Suppose
you are designing a car for a coasting race. Do you want to
use large wheels or small wheels? Do you want to use solid
disk-like wheels or hoop-like wheels? Should the wheels be
heavy or light?

Figure Q10.24 Which object wins the race?
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Cambridge, England, is at longitude 0°, and Saskatoon,
Saskatchewan, is at longitude 107° west. How much time
elapses after the Pleiades set in Cambridge until these stars
fall below the western horizon in Saskatoon?

10. A merry-go-round is stationary. A dog is running on the
ground just outside its circumference, moving with a con-
stant angular speed of 0.750 rad/s. The dog does not
change his pace when he sees what he has been looking
for: a bone resting on the edge of the merry-go-round one
third of a revolution in front of him. At the instant the dog
sees the bone (t " 0), the merry-go-round begins to move
in the direction the dog is running, with a constant angu-
lar acceleration of 0.015 0 rad/s2. (a) At what time will the
dog reach the bone? (b) The confused dog keeps running
and passes the bone. How long after the merry-go-round
starts to turn do the dog and the bone draw even with each
other for the second time?

Section 10.3 Angular and Linear Quantities
11. Make an order-of-magnitude estimate of the number of

revolutions through which a typical automobile tire turns
in 1 yr. State the quantities you measure or estimate and
their values.

12. A racing car travels on a circular track of radius 250 m. If
the car moves with a constant linear speed of 45.0 m/s,
find (a) its angular speed and (b) the magnitude and di-
rection of its acceleration.

A wheel 2.00 m in diameter lies in a vertical plane and ro-
tates with a constant angular acceleration of 4.00 rad/s2.
The wheel starts at rest at t " 0, and the radius vector of a
certain point P on the rim makes an angle of 57.3° with
the horizontal at this time. At t " 2.00 s, find (a) the angu-
lar speed of the wheel, (b) the tangential speed and the to-
tal acceleration of the point P, and (c) the angular posi-
tion of the point P.

14. Figure P10.14 shows the drive train of a bicycle that has
wheels 67.3 cm in diameter and pedal cranks 17.5 cm
long. The cyclist pedals at a steady angular rate of

13.

76.0 rev/min. The chain engages with a front sprocket
15.2 cm in diameter and a rear sprocket 7.00 cm in diame-
ter. (a) Calculate the speed of a link of the chain relative
to the bicycle frame. (b) Calculate the angular speed of
the bicycle wheels. (c) Calculate the speed of the bicycle
relative to the road. (d) What pieces of data, if any, are not
necessary for the calculations?

15. A discus thrower (Fig. P10.15) accelerates a discus from
rest to a speed of 25.0 m/s by whirling it through 1.25 rev.
Assume the discus moves on the arc of a circle 1.00 m in
radius. (a) Calculate the final angular speed of the discus.
(b) Determine the magnitude of the angular acceleration
of the discus, assuming it to be constant. (c) Calculate the
time interval required for the discus to accelerate from
rest to 25.0 m/s.

16. A car accelerates uniformly from rest and reaches a speed
of 22.0 m/s in 9.00 s. If the diameter of a tire is 58.0 cm,
find (a) the number of revolutions the tire makes during
this motion, assuming that no slipping occurs. (b) What is
the final angular speed of a tire in revolutions per second?

A disk 8.00 cm in radius rotates at a constant rate of
1 200 rev/min about its central axis. Determine (a) its an-
gular speed, (b) the tangential speed at a point 3.00 cm
from its center, (c) the radial acceleration of a point on
the rim, and (d) the total distance a point on the rim
moves in 2.00 s.

18. A car traveling on a flat (unbanked) circular track acceler-
ates uniformly from rest with a tangential acceleration of
1.70 m/s2. The car makes it one quarter of the way around
the circle before it skids off the track. Determine the coef-
ficient of static friction between the car and track from
these data.

19. Consider a tall building located on the Earth’s equator. As
the Earth rotates, a person on the top floor of the building
moves faster than someone on the ground with respect to
an inertial reference frame, because the latter person is
closer to the Earth’s axis. Consequently, if an object is
dropped from the top floor to the ground a distance h be-
low, it lands east of the point vertically below where it was
dropped. (a) How far to the east will the object land? Ex-
press your answer in terms of h, g, and the angular speed &
of the Earth. Neglect air resistance, and assume that the
free-fall acceleration is constant over this range of heights.
(b) Evaluate the eastward displacement for h " 50.0 m. 
(c) In your judgment, were we justified in ignoring this as-
pect of the Coriolis effect in our previous study of free fall?

17.

Figure P10.15
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Section 10.4 Rotational Kinetic Energy
20. Rigid rods of negligible mass lying along the y axis connect

three particles (Fig. P10.20). If the system rotates about
the x axis with an angular speed of 2.00 rad/s, find (a) the
moment of inertia about the x axis and the total rotational
kinetic energy evaluated from and (b) the tangential
speed of each particle and the total kinetic energy evalu-
ated from .% 

1
2mivi 

2

1
2 I& 

2

The four particles in Figure P10.21 are connected by
rigid rods of negligible mass. The origin is at the center of
the rectangle. If the system rotates in the xy plane about
the z axis with an angular speed of 6.00 rad/s, calculate
(a) the moment of inertia of the system about the z axis
and (b) the rotational kinetic energy of the system.

21.

22. Two balls with masses M and m are connected by a rigid
rod of length L and negligible mass as in Figure P10.22.
For an axis perpendicular to the rod, show that the system
has the minimum moment of inertia when the axis passes

through the center of mass. Show that this moment of in-
ertia is I " 7L2, where 7 " mM/(m ) M ).

Section 10.5 Calculation of Moments of Inertia
23. Three identical thin rods, each of length L and mass m,

are welded perpendicular to one another as shown in
Figure P10.23. The assembly is rotated about an axis
that passes through the end of one rod and is parallel
to another. Determine the moment of inertia of this
structure.

24. Figure P10.24 shows a side view of a car tire. Model it as
having two sidewalls of uniform thickness 0.635 cm and a
tread wall of uniform thickness 2.50 cm and width
20.0 cm. Assume the rubber has uniform density
1.10 + 103 kg/m3. Find its moment of inertia about an
axis through its center.

x
O

y  =  3.00 m4.00 kg

3.00 kg

2.00 kg

y

y  =  –2.00 m

y  =  –4.00 m

Figure P10.20

3.00 kg 2.00 kg

4.00 kg2.00 kg

6.00 m

4.00 m

y(m)

x(m)
O

Figure P10.21

L

L – xx
M m

Figure P10.22

Axis of
rotation

x

y

z

Figure P10.23

Sidewall

Tread

33.0 cm

30.5 cm

16.5 cm

Figure P10.24
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25. A uniform thin solid door has height 2.20 m, width
0.870 m, and mass 23.0 kg. Find its moment of inertia for
rotation on its hinges. Is any piece of data unnecessary?

26. Attention! About face! Compute an order-of-magnitude esti-
mate for the moment of inertia of your body as you stand
tall and turn about a vertical axis through the top of your
head and the point halfway between your ankles. In your
solution state the quantities you measure or estimate and
their values.

27. The density of the Earth, at any distance r from its center,
is approximately

. " [14.2 % 11.6(r/R)] + 103 kg/m3

where R is the radius of the Earth. Show that this density
leads to a moment of inertia I " 0.330MR2 about an axis
through the center, where M is the mass of the Earth.

28. Calculate the moment of inertia of a thin plate, in the
shape of a right triangle, about an axis that passes through
one end of the hypotenuse and is parallel to the opposite
leg of the triangle, as in Figure P10.28a. Let M represent
the mass of the triangle and L the length of the base of the
triangle perpendicular to the axis of rotation. Let h repre-
sent the height of the triangle and w the thickness of the
plate, much smaller than L or h. Do the calculation in
either or both of the following ways, as your instructor
assigns:

(a) Use Equation 10.17. Let an element of mass con-
sist of a vertical ribbon within the triangle, of width dx,
height y, and thickness w. With x representing the loca-
tion of the ribbon, show that y " hx/L. Show that the
density of the material is given by . " 2M/Lwh. Show
that the mass of the ribbon is dm " .yw dx " 2Mx dx/L2.
Proceed to use Equation 10.17 to calculate the moment
of inertia.

(b) Let I represent the unknown moment of inertia
about an axis through the corner of the triangle. Note
that Example 9.15 demonstrates that the center of mass
of the triangle is two thirds of the way along the length L,
from the corner toward the side of height h. Let ICM rep-
resent the moment of inertia of the triangle about an axis
through the center of mass and parallel to side h.
Demonstrate that I " ICM ) 4ML2/9. Figure P10.28b
shows the same object in a different orientation.

Demonstrate that the moment of inertia of the triangular
plate, about the y axis is Ih " ICM ) ML2/9. Demonstrate
that the sum of the moments of inertia of the triangles
shown in parts (a) and (b) of the figure must be the mo-
ment of inertia of a rectangular sheet of mass 2M and
length L, rotating like a door about an axis along its edge
of height h. Use information in Table 10.2 to write down
the moment of inertia of the rectangle, and set it equal to
the sum of the moments of inertia of the two triangles.
Solve the equation to find the moment of inertia of a tri-
angle about an axis through its center of mass, in terms
of M and L. Proceed to find the original unknown I.

29. Many machines employ cams for various purposes, such as
opening and closing valves. In Figure P10.29, the cam is a
circular disk rotating on a shaft that does not pass
through the center of the disk. In the manufacture of the
cam, a uniform solid cylinder of radius R is first ma-
chined. Then an off-center hole of radius R/2 is drilled,
parallel to the axis of the cylinder, and centered at a point
a distance R/2 from the center of the cylinder. The cam,
of mass M, is then slipped onto the circular shaft and
welded into place. What is the kinetic energy of the cam
when it is rotating with angular speed & about the axis of
the shaft?

Section 10.6 Torque
30. The fishing pole in Figure P10.30 makes an angle of 20.0'

with the horizontal. What is the torque exerted by the fish
about an axis perpendicular to the page and passing
through the fisher’s hand?

(a)

h

xx
L

y

(b)

h

y

CM

Figure P10.28

2R

R

Figure P10.29

100 N

20.0°

20.0°
37.0°

2.00 m

Figure P10.30
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Find the net torque on the wheel in Figure P10.31
about the axle through O if a " 10.0 cm and b " 25.0 cm.

31.

32. The tires of a 1 500-kg car are 0.600 m in diameter, and
the coefficients of friction with the road surface are
7s " 0.800 and 7k " 0.600. Assuming that the weight is
evenly distributed on the four wheels, calculate the maxi-
mum torque that can be exerted by the engine on a
driving wheel without spinning the wheel. If you wish, you
may assume the car is at rest.

33. Suppose the car in Problem 32 has a disk brake system.
Each wheel is slowed by the friction force between a single
brake pad and the disk-shaped rotor. On this particular
car, the brake pad contacts the rotor at an average distance
of 22.0 cm from the axis. The coefficients of friction be-
tween the brake pad and the disk are 7s " 0.600 and
7k " 0.500. Calculate the normal force that the pad must
apply to the rotor in order to slow the car as quickly as
possible.

Section 10.7 Relationship between Torque 
and Angular Acceleration

34. A grinding wheel is in the form of a uniform solid disk of
radius 7.00 cm and mass 2.00 kg. It starts from rest and ac-
celerates uniformly under the action of the constant
torque of 0.600 N , m that the motor exerts on the wheel.
(a) How long does the wheel take to reach its final operat-
ing speed of 1 200 rev/min? (b) Through how many revo-
lutions does it turn while accelerating?

A model airplane with mass 0.750 kg is tethered by a
wire so that it flies in a circle 30.0 m in radius. The air-
plane engine provides a net thrust of 0.800 N perpendicu-
lar to the tethering wire. (a) Find the torque the net thrust
produces about the center of the circle. (b) Find the angu-
lar acceleration of the airplane when it is in level flight. 
(c) Find the linear acceleration of the airplane tangent to
its flight path.

36. The combination of an applied force and a friction force
produces a constant total torque of 36.0 N , m on a wheel
rotating about a fixed axis. The applied force acts for
6.00 s. During this time the angular speed of the wheel in-
creases from 0 to 10.0 rad/s. The applied force is then re-
moved, and the wheel comes to rest in 60.0 s. Find (a) the
moment of inertia of the wheel, (b) the magnitude of the
frictional torque, and (c) the total number of revolutions
of the wheel.

35.

37. A block of mass m1 " 2.00 kg and a block of mass
m 2 " 6.00 kg are connected by a massless string over a pul-
ley in the shape of a solid disk having radius R " 0.250 m
and mass M " 10.0 kg. These blocks are allowed to move
on a fixed block-wedge of angle ! " 30.0° as in Figure
P10.37. The coefficient of kinetic friction is 0.360 for both
blocks. Draw free-body diagrams of both blocks and of the
pulley. Determine (a) the acceleration of the two blocks
and (b) the tensions in the string on both sides of the
pulley.

38. A potter’s wheel—a thick stone disk of radius 0.500 m and
mass 100 kg—is freely rotating at 50.0 rev/min. The potter
can stop the wheel in 6.00 s by pressing a wet rag against
the rim and exerting a radially inward force of 70.0 N.
Find the effective coefficient of kinetic friction between
wheel and rag.

39. An electric motor turns a flywheel through a drive belt
that joins a pulley on the motor and a pulley that is rigidly
attached to the flywheel, as shown in Figure P10.39. The
flywheel is a solid disk with a mass of 80.0 kg and a diame-
ter of 1.25 m. It turns on a frictionless axle. Its pulley has
much smaller mass and a radius of 0.230 m. If the tension
in the upper (taut) segment of the belt is 135 N and the
flywheel has a clockwise angular acceleration of
1.67 rad/s2, find the tension in the lower (slack) segment
of the belt.

10.0 N

30.0° a

O

b
12.0 N

9.00 N

Figure P10.31

m1

m2

M, R

θ

Figure P10.37

Figure P10.39

Section 10.8 Work, Power, and Energy 
in Rotational Motion

40. Big Ben, the Parliament tower clock in London, has an
hour hand 2.70 m long with a mass of 60.0 kg, and



Problems 327

a minute hand 4.50 m long with a mass of 100 kg (Fig.
P10.40). Calculate the total rotational kinetic energy of the
two hands about the axis of rotation. (You may model the
hands as long, thin rods.)

41. In a city with an air-pollution problem, a bus has no com-
bustion engine. It runs on energy drawn from a large,
rapidly rotating flywheel under the floor of the bus. The
flywheel is spun up to its maximum rotation rate of
4 000 rev/min by an electric motor at the bus terminal.
Every time the bus speeds up, the flywheel slows down
slightly. The bus is equipped with regenerative braking so
that the flywheel can speed up when the bus slows down.
The flywheel is a uniform solid cylinder with mass 1 600 kg
and radius 0.650 m. The bus body does work against air re-
sistance and rolling resistance at the average rate of 
18.0 hp as it travels with an average speed of 40.0 km/h.
How far can the bus travel before the flywheel has to be
spun up to speed again?

42. The top in Figure P10.42 has a moment of inertia of
4.00 + 10%4 kg · m2 and is initially at rest. It is free to
rotate about the stationary axis AA1. A string, wrapped
around a peg along the axis of the top, is pulled in such a
manner as to maintain a constant tension of 5.57 N. If the
string does not slip while it is unwound from the peg, what
is the angular speed of the top after 80.0 cm of string has
been pulled off the peg?

43. In Figure P10.43 the sliding block has a mass of 0.850 kg,
the counterweight has a mass of 0.420 kg, and the pulley
is a hollow cylinder with a mass of 0.350 kg, an inner
radius of 0.020 0 m, and an outer radius of 0.030 0 m.
The coefficient of kinetic friction between the block and
the horizontal surface is 0.250. The pulley turns without
friction on its axle. The light cord does not stretch and
does not slip on the pulley. The block has a velocity of
0.820 m/s toward the pulley when it passes through a
photogate. (a) Use energy methods to predict its speed
after it has moved to a second photogate, 0.700 m away.
(b) Find the angular speed of the pulley at the same
moment.

44. A cylindrical rod 24.0 cm long with mass 1.20 kg and ra-
dius 1.50 cm has a ball of diameter 8.00 cm and mass
2.00 kg attached to one end. The arrangement is originally
vertical and stationary, with the ball at the top. The system
is free to pivot about the bottom end of the rod after being
given a slight nudge. (a) After the rod rotates through
ninety degrees, what is its rotational kinetic energy?
(b) What is the angular speed of the rod and ball?
(c) What is the linear speed of the ball? (d) How does this
compare to the speed if the ball had fallen freely through
the same distance of 28 cm?

An object with a weight of 50.0 N is attached to the free
end of a light string wrapped around a reel of radius
0.250 m and mass 3.00 kg. The reel is a solid disk, free to
rotate in a vertical plane about the horizontal axis passing
through its center. The suspended object is released
6.00 m above the floor. (a) Determine the tension in the
string, the acceleration of the object, and the speed with
which the object hits the floor. (b) Verify your last answer
by using the principle of conservation of energy to find the
speed with which the object hits the floor.

46. A 15.0-kg object and a 10.0-kg object are suspended,
joined by a cord that passes over a pulley with a radius of
10.0 cm and a mass of 3.00 kg (Fig. P10.46). The cord has
a negligible mass and does not slip on the pulley. The pul-
ley rotates on its axis without friction. The objects start
from rest 3.00 m apart. Treat the pulley as a uniform disk,
and determine the speeds of the two objects as they pass
each other.

45.

Figure P10.40 Problems 40 and 74.
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This problem describes one experimental method for de-
termining the moment of inertia of an irregularly shaped
object such as the payload for a satellite. Figure P10.47
shows a counterweight of mass m suspended by a cord
wound around a spool of radius r, forming part of a
turntable supporting the object. The turntable can rotate
without friction. When the counterweight is released from
rest, it descends through a distance h, acquiring a speed v.
Show that the moment of inertia I of the rotating appara-
tus (including the turntable) is mr 2(2gh/v 2 % 1).

47.

48. A horizontal 800-N merry-go-round is a solid disk of radius
1.50 m, started from rest by a constant horizontal force of
50.0 N applied tangentially to the edge of the disk. Find
the kinetic energy of the disk after 3.00 s.

(a) A uniform solid disk of radius R and mass M is free to
rotate on a frictionless pivot through a point on its rim
(Fig. P10.49). If the disk is released from rest in the posi-
tion shown by the blue circle, what is the speed of its cen-
ter of mass when the disk reaches the position indicated by
the dashed circle? (b) What is the speed of the lowest
point on the disk in the dashed position? (c) What If?
Repeat part (a) using a uniform hoop.

49.

50. The head of a grass string trimmer has 100 g of cord
wound in a light cylindrical spool with inside diameter
3.00 cm and outside diameter 18.0 cm, as in Figure
P10.50. The cord has a linear density of 10.0 g/m. A single
strand of the cord extends 16.0 cm from the outer edge of
the spool. (a) When switched on, the trimmer speeds up
from 0 to 2 500 rev/min in 0.215 s. (a) What average
power is delivered to the head by the trimmer motor while
it is accelerating? (b) When the trimmer is cutting grass, it
spins at 2 000 rev/min and the grass exerts an average tan-
gential force of 7.65 N on the outer end of the cord, which
is still at a radial distance of 16.0 cm from the outer edge
of the spool. What is the power delivered to the head un-
der load?

Section 10.9 Rolling Motion of a Rigid Object

A cylinder of mass 10.0 kg rolls without slipping on a
horizontal surface. At the instant its center of mass has a
speed of 10.0 m/s, determine (a) the translational kinetic
energy of its center of mass, (b) the rotational kinetic en-
ergy about its center of mass, and (c) its total energy.

52. A bowling ball has mass M, radius R, and a moment of in-
ertia of . If it starts from rest, how much work must
be done on it to set it rolling without slipping at a linear
speed v? Express the work in terms of M and v.

(a) Determine the acceleration of the center of mass of a
uniform solid disk rolling down an incline making angle !
with the horizontal. Compare this acceleration with that of
a uniform hoop. (b) What is the minimum coefficient of

53.

2
5 MR 2

51.

M = 3.00 kg
R = 10.0 cm
m1 = 15.0 kg
m2 = 10.0 kg

3.00 m

m1

M
R

m2

Figure P10.46

m

Figure P10.47

Pivot R

g

Figure P10.49

3.0 cm

18.0 cm

16.0 cm

Figure P10.50
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friction required to maintain pure rolling motion for the
disk? 

54. A uniform solid disk and a uniform hoop are placed side
by side at the top of an incline of height h. If they are re-
leased from rest and roll without slipping, which object
reaches the bottom first? Verify your answer by calculating
their speeds when they reach the bottom in terms of h.

55. A metal can containing condensed mushroom soup has
mass 215 g, height 10.8 cm, and diameter 6.38 cm. It is
placed at rest on its side at the top of a 3.00-m-long incline
that is at 25.0° to the horizontal, and it is then released to
roll straight down. Assuming mechanical energy conserva-
tion, calculate the moment of inertia of the can if it takes
1.50 s to reach the bottom of the incline. Which pieces of
data, if any, are unnecessary for calculating the solution?

56. A tennis ball is a hollow sphere with a thin wall. It is set
rolling without slipping at 4.03 m/s on a horizontal sec-
tion of a track, as shown in Figure P10.56. It rolls around
the inside of a vertical circular loop 90.0 cm in diameter
and finally leaves the track at a point 20.0 cm below the
horizontal section. (a) Find the speed of the ball at the top
of the loop. Demonstrate that it will not fall from the
track. (b) Find its speed as it leaves the track. What If?
(c) Suppose that static friction between ball and track were
negligible, so that the ball slid instead of rolling. Would its
speed then be higher, lower, or the same at the top of the
loop? Explain. 

Additional Problems

57. As in Figure P10.57, toppling chimneys often break apart
in mid-fall because the mortar between the bricks cannot
withstand much shear stress. As the chimney begins to fall,
shear forces must act on the topmost sections to accelerate
them tangentially so that they can keep up with the rota-
tion of the lower part of the stack. For simplicity, let us
model the chimney as a uniform rod of length " pivoted at
the lower end. The rod starts at rest in a vertical position
(with the frictionless pivot at the bottom) and falls over
under the influence of gravity. What fraction of the length
of the rod has a tangential acceleration greater than 
g sin !, where ! is the angle the chimney makes with the
vertical axis? 

58. Review problem. A mixing beater consists of three thin
rods, each 10.0 cm long. The rods diverge from a central
hub, separated from each other by 120°, and all turn in the
same plane. A ball is attached to the end of each rod. Each
ball has cross-sectional area 4.00 cm2 and is so shaped that
it has a drag coefficient of 0.600. Calculate the power in-
put required to spin the beater at 1 000 rev/min (a) in air
and (b) in water.

A 4.00-m length of light nylon cord is wound around a
uniform cylindrical spool of radius 0.500 m and mass
1.00 kg. The spool is mounted on a frictionless axle and is
initially at rest. The cord is pulled from the spool with a
constant acceleration of magnitude 2.50 m/s2. (a) How
much work has been done on the spool when it reaches
an angular speed of 8.00 rad/s? (b) Assuming there is
enough cord on the spool, how long does it take the spool
to reach this angular speed? (c) Is there enough cord on
the spool?

60. A videotape cassette contains two spools, each of radius rs,
on which the tape is wound. As the tape unwinds from the
first spool, it winds around the second spool. The tape
moves at constant linear speed v past the heads between
the spools. When all the tape is on the first spool, the tape
has an outer radius rt . Let r represent the outer radius of
the tape on the first spool at any instant while the tape is
being played. (a) Show that at any instant the angular
speeds of the two spools are

(b) Show that these expressions predict the correct maxi-
mum and minimum values for the angular speeds of the
two spools.

&1 " v/r and & 2 " v/(rs 
2 ) rt 

2 % r 
2)1/2

59.

Figure P10.56

Figure P10.57 A building demolition site in Baltimore, MD. At
the left is a chimney, mostly concealed by the building, that has
broken apart on its way down. Compare with Figure 10.19.

Je
rry

 W
ac

ht
er

 / 
Ph

ot
o 

Re
se

ar
ch

er
s, 

In
c.



330 CHAPTE R  10 •  Rotation of a Rigid Object About a Fixed Axis

A long uniform rod of length L and mass M is pivoted
about a horizontal, frictionless pin through one end. The
rod is released from rest in a vertical position, as shown in
Figure P10.61. At the instant the rod is horizontal, find
(a) its angular speed, (b) the magnitude of its angular ac-
celeration, (c) the x and y components of the acceleration
of its center of mass, and (d) the components of the reac-
tion force at the pivot.

61.

62. A shaft is turning at 65.0 rad/s at time t " 0. Thereafter, its
angular acceleration is given by

where t is the elapsed time. (a) Find its angular speed at
t " 3.00 s. (b) How far does it turn in these 3 s?

63. A bicycle is turned upside down while its owner repairs a
flat tire. A friend spins the other wheel, of radius 0.381 m,
and observes that drops of water fly off tangentially. She
measures the height reached by drops moving vertically
(Fig. P10.63). A drop that breaks loose from the tire on
one turn rises h " 54.0 cm above the tangent point. A
drop that breaks loose on the next turn rises 51.0 cm
above the tangent point. The height to which the drops
rise decreases because the angular speed of the wheel de-
creases. From this information, determine the magnitude
of the average angular acceleration of the wheel.

( " %10.0 rad/s 2 % 5.00t rad/s3,

xPivot

L

y

Figure P10.61

h

Figure P10.63 Problems 63 and 64.

64. A bicycle is turned upside down while its owner repairs a
flat tire. A friend spins the other wheel, of radius R, and
observes that drops of water fly off tangentially. She mea-
sures the height reached by drops moving vertically (Fig.
P10.63). A drop that breaks loose from the tire on one
turn rises a distance h1 above the tangent point. A drop
that breaks loose on the next turn rises a distance h2 * h1
above the tangent point. The height to which the drops
rise decreases because the angular speed of the wheel de-
creases. From this information, determine the magnitude
of the average angular acceleration of the wheel.

65. A cord is wrapped around a pulley of mass m and radius r.
The free end of the cord is connected to a block of mass
M. The block starts from rest and then slides down an in-
cline that makes an angle ! with the horizontal. The coeffi-
cient of kinetic friction between block and incline is 7. 
(a) Use energy methods to show that the block’s speed as a
function of position d down the incline is

(b) Find the magnitude of the acceleration of the block in
terms of 7, m, M, g, and !.

66. (a) What is the rotational kinetic energy of the Earth
about its spin axis? Model the Earth as a uniform sphere
and use data from the endpapers. (b) The rotational ki-
netic energy of the Earth is decreasing steadily because of
tidal friction. Find the change in one day, assuming that
the rotational period decreases by 10.0 7s each year.

67. Due to a gravitational torque exerted by the Moon on the
Earth, our planet’s rotation period slows at a rate on the
order of 1 ms/century. (a) Determine the order of magni-
tude of the Earth’s angular acceleration. (b) Find the 
order of magnitude of the torque. (c) Find the order of
magnitude of the size of the wrench an ordinary person
would need to exert such a torque, as in Figure P10.67.
Assume the person can brace his feet against a solid 
firmament.

v " √ 4gdM(sin ! % 7 cos !)
m ) 2M

Figure P10.67
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68. The speed of a moving bullet can be determined by allow-
ing the bullet to pass through two rotating paper disks
mounted a distance d apart on the same axle (Fig. P10.68).
From the angular displacement $! of the two bullet holes
in the disks and the rotational speed of the disks, we can
determine the speed v of the bullet. Find the bullet speed
for the following data: d " 80 cm, & " 900 rev/min, and
$! " 31.0°.

69. A uniform, hollow, cylindrical spool has inside radius R/2,
outside radius R, and mass M (Fig. P10.69). It is mounted
so that it rotates on a fixed horizontal axle. A counter-
weight of mass m is connected to the end of a string wound
around the spool. The counterweight falls from rest at
t " 0 to a position y at time t. Show that the torque due to
the friction forces between spool and axle is

2f " R 'm  #g %
2y
t  2 $ % M 

5y
4t 

2 (

70. The reel shown in Figure P10.70 has radius R and mo-
ment of inertia I. One end of the block of mass m is con-
nected to a spring of force constant k, and the other end

is fastened to a cord wrapped around the reel. The reel
axle and the incline are frictionless. The reel is wound
counterclockwise so that the spring stretches a distance d
from its unstretched position and is then released from
rest. (a) Find the angular speed of the reel when the
spring is again unstretched. (b) Evaluate the angular
speed numerically at this point if I " 1.00 kg · m2,
R " 0.300 m, k " 50.0 N/m, m " 0.500 kg, d " 0.200 m,
and ! " 37.0°.

Two blocks, as shown in Figure P10.71, are connected by a
string of negligible mass passing over a pulley of radius
0.250 m and moment of inertia I. The block on the fric-
tionless incline is moving up with a constant acceleration
of 2.00 m/s2. (a) Determine T1 and T2, the tensions in the
two parts of the string. (b) Find the moment of inertia of
the pulley.

71.

72. A common demonstration, illustrated in Figure P10.72,
consists of a ball resting at one end of a uniform board of
length ", hinged at the other end, and elevated at an angle
!. A light cup is attached to the board at rc so that it will
catch the ball when the support stick is suddenly removed.
(a) Show that the ball will lag behind the falling board
when ! is less than 35.3°. (b) If the board is 1.00 m long
and is supported at this limiting angle, show that the cup
must be 18.4 cm from the moving end.

= 31.0°
v

d

ω

θ∆

Figure P10.68
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As a result of friction, the angular speed of a wheel
changes with time according to

where &0 and / are constants. The angular speed changes
from 3.50 rad/s at t " 0 to 2.00 rad/s at t " 9.30 s. Use
this information to determine / and &0. Then determine
(a) the magnitude of the angular acceleration at
t " 3.00 s, (b) the number of revolutions the wheel makes
in the first 2.50 s, and (c) the number of revolutions it
makes before coming to rest.

74. The hour hand and the minute hand of Big Ben, the
Parliament tower clock in London, are 2.70 m and 4.50 m
long and have masses of 60.0 kg and 100 kg, respectively
(see Figure P10.40). (a) Determine the total torque due to
the weight of these hands about the axis of rotation when
the time reads (i) 3:00 (ii) 5:15 (iii) 6:00 (iv) 8:20 (v) 9:45.
(You may model the hands as long, thin uniform rods.)
(b) Determine all times when the total torque about the
axis of rotation is zero. Determine the times to the nearest
second, solving a transcendental equation numerically.

75. (a) Without the wheels, a bicycle frame has a mass of
8.44 kg. Each of the wheels can be roughly modeled as a
uniform solid disk with a mass of 0.820 kg and a radius of
0.343 m. Find the kinetic energy of the whole bicycle when
it is moving forward at 3.35 m/s. (b) Before the invention
of a wheel turning on an axle, ancient people moved heavy
loads by placing rollers under them. (Modern people use
rollers too. Any hardware store will sell you a roller bear-
ing for a lazy susan.) A stone block of mass 844 kg moves
forward at 0.335 m/s, supported by two uniform cylindri-
cal tree trunks, each of mass 82.0 kg and radius 0.343 m.
No slipping occurs between the block and the rollers or
between the rollers and the ground. Find the total kinetic
energy of the moving objects. 

76. A uniform solid sphere of radius r is placed on the inside
surface of a hemispherical bowl with much larger radius R.
The sphere is released from rest at an angle ! to the verti-
cal and rolls without slipping (Fig. P10.76). Determine the
angular speed of the sphere when it reaches the bottom of
the bowl. 

d!

dt
" &0e%/t

73.

A string is wound around a uniform disk of radius R and
mass M. The disk is released from rest with the string verti-
cal and its top end tied to a fixed bar (Fig. P10.77). Show
that (a) the tension in the string is one third of the weight

77.

of the disk, (b) the magnitude of the acceleration of the
center of mass is 2g/3, and (c) the speed of the center of
mass is (4gh/3)1/2 after the disk has descended through
distance h. Verify your answer to (c) using the energy
approach.

78. A constant horizontal force F is applied to a lawn roller in
the form of a uniform solid cylinder of radius R and mass
M (Fig. P10.78). If the roller rolls without slipping on the
horizontal surface, show that (a) the acceleration of the
center of mass is 2F/3M and (b) the minimum coefficient
of friction necessary to prevent slipping is F/3Mg. (Hint:
Take the torque with respect to the center of mass.)

79. A solid sphere of mass m and radius r rolls without slipping
along the track shown in Figure P10.79. It starts from rest
with the lowest point of the sphere at height h above the
bottom of the loop of radius R , much larger than r. 
(a) What is the minimum value of h (in terms of R) such
that the sphere completes the loop? (b) What are the
force components on the sphere at the point P if h " 3R?
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80. A thin rod of mass 0.630 kg and length 1.24 m is at rest,
hanging vertically from a strong fixed hinge at its top 
end. Suddenly a horizontal impulsive force (14.7 î) N is 
applied to it. (a) Suppose the force acts at the bottom 
end of the rod. Find the acceleration of its center of mass
and the horizontal force the hinge exerts. (b) Suppose 
the force acts at the midpoint of the rod. Find the accel-
eration of this point and the horizontal hinge reaction. 
(c) Where can the impulse be applied so that the hinge
will exert no horizontal force? This point is called the 
center of percussion.

81. A bowler releases a bowling ball with no spin, sending it
sliding straight down the alley toward the pins. The ball
continues to slide for a distance of what order of magni-
tude, before its motion becomes rolling without slipping?
State the quantities you take as data, the values you mea-
sure or estimate for them, and your reasoning.

82. Following Thanksgiving dinner your uncle falls into a deep
sleep, sitting straight up facing the television set. A
naughty grandchild balances a small spherical grape at the
top of his bald head, which itself has the shape of a sphere.
After all the children have had time to giggle, the grape
starts from rest and rolls down without slipping. It will
leave contact with your uncle’s scalp when the radial line
joining it to the center of curvature makes what angle with
the vertical?

83. (a) A thin rod of length h and mass M is held vertically
with its lower end resting on a frictionless horizontal sur-
face. The rod is then released to fall freely. Determine the
speed of its center of mass just before it hits the horizontal
surface. (b) What If? Now suppose the rod has a fixed
pivot at its lower end. Determine the speed of the rod’s
center of mass just before it hits the surface.

84. A large, cylindrical roll of tissue paper of initial radius R
lies on a long, horizontal surface with the outside end of
the paper nailed to the surface. The roll is given a slight
shove (vi ! 0) and commences to unroll. Assume the roll
has a uniform density and that mechanical energy is con-
served in the process. (a) Determine the speed of the cen-
ter of mass of the roll when its radius has diminished to r.
(b) Calculate a numerical value for this speed at
r " 1.00 mm, assuming R " 6.00 m. (c) What If? What
happens to the energy of the system when the paper is
completely unrolled? 

A spool of wire of mass M and radius R is unwound under
a constant force F (Fig. P10.85). Assuming the spool is a

85.

uniform solid cylinder that doesn’t slip, show that (a) the
acceleration of the center of mass is 4F/3M and (b) the
force of friction is to the right and equal in magnitude to
F/3. (c) If the cylinder starts from rest and rolls without
slipping, what is the speed of its center of mass after it has
rolled through a distance d ? 

86. A plank with a mass M " 6.00 kg rides on top of two
identical solid cylindrical rollers that have R " 5.00 cm
and m " 2.00 kg (Fig. P10.86). The plank is pulled by a
constant horizontal force F of magnitude 6.00 N applied
to the end of the plank and perpendicular to the axes of
the cylinders (which are parallel). The cylinders roll with-
out slipping on a flat surface. There is also no slipping
between the cylinders and the plank. (a) Find the accel-
eration of the plank and of the rollers. (b) What friction
forces are acting?

87. A spool of wire rests on a horizontal surface as in Figure
P10.87. As the wire is pulled, the spool does not slip at
the contact point P. On separate trials, each one of
the forces F1, F2, F3, and F4 is applied to the spool. For
each one of these forces, determine the direction the
spool will roll. Note that the line of action of F2 passes
through P.

88. Refer to Problem 87 and Figure P10.87. The spool of wire
has an inner radius r and an outer radius R. The angle !
between the applied force and the horizontal can be var-
ied. Show that the critical angle for which the spool does
not roll is given by

If the wire is held at this angle and the force increased, the
spool will remain stationary until it slips along the floor.

cos !c "
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R

Figure P10.85
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89. In a demonstration known as the ballistics cart, a ball
is projected vertically upward from a cart moving with
constant velocity along the horizontal direction. The ball
lands in the catching cup of the cart because both the cart
a ball have the same horizontal component of velocity.
What If? Now consider a ballistics cart on an incline mak-
ing an angle ! with the horizontal as in Figure P10.89.
The cart (including wheels) has a mass M and the mo-
ment of inertia of each of the two wheels is mR2/2. (a) Us-
ing conservation of energy (assuming no friction between
cart and axles) and assuming pure rolling motion (no
slipping), show that the acceleration of the cart along the
incline is 

(b) Note that the x component of acceleration of the ball
released by the cart is g sin !. Thus, the x component of
the cart’s acceleration is smaller than that of the ball by the
factor M/(M ) 2m). Use this fact and kinematic equations
to show that the ball overshoots the cart by an amount $x,
where

and vyi is the initial speed of the ball imparted to it by the
spring in the cart. (c) Show that the distance d that the
ball travels measured along the incline is

d "
2vyi 

2

g
 

sin !
cos2 !

$x " # 4m
M ) 2m $  # sin !

cos2 ! $ 
vyi 

2

g

ax " # M
M ) 2m $  g sin !

90. A spool of thread consists of a cylinder of radius R1 with
end caps of radius R2 as in the end view shown in Figure
P10.90. The mass of the spool, including the thread, is m
and its moment of inertia about an axis through its center
is I. The spool is placed on a rough horizontal surface so
that it rolls without slipping when a force T acting to the
right is applied to the free end of the thread. Show that
the magnitude of the friction force exerted by the surface
on the spool is given by

Determine the direction of the force of friction.

f " # I ) mR1R2

I ) mR2 
2 $ T

Answers to Quick Quizzes
10.1 (c). For a rotation of more than 180°, the angular dis-

placement must be larger than # " 3.14 rad. The 
angular displacements in the three choices are 
(a) 6 rad % 3 rad " 3 rad (b) 1 rad % (% 1) rad " 2 rad
(c) 5 rad % 1 rad " 4 rad.

10.2 (b). Because all angular displacements occur in the
same time interval, the displacement with the lowest
value will be associated with the lowest average angular
speed.

10.3 (b). The fact that & is negative indicates that we are
dealing with an object that is rotating in the clockwise
direction. We also know that when " and # are antipar-
allel, & must be decreasing—the object is slowing down.
Therefore, the object is spinning more and more slowly
(with less and less angular speed) in the clockwise, or
negative, direction.

10.4 (b). In Equation 10.8, both the initial and final angu-
lar speeds are the same in all three cases. As a result,
the angular acceleration is inversely proportional to
the angular displacement. Thus, the highest angular
acceleration is associated with the lowest angular 
displacement.

10.5 (b). The system of the platform, Andy, and Charlie is a
rigid object, so all points on the rigid object have the
same angular speed.

10.6 (a). The tangential speed is proportional to the radial
distance from the rotation axis.

10.7 (a). Almost all of the mass of the pipe is at the same dis-
tance from the rotation axis, so it has a larger moment
of inertia than the solid cylinder.

10.8 (b). The fatter handle of the screwdriver gives you a
larger moment arm and increases the torque that you
can apply with a given force from your hand.

10.9 (a). The longer handle of the wrench gives you a larger
moment arm and increases the torque that you can ap-
ply with a given force from your hand.

10.10 (b). With twice the moment of inertia and the same fric-
tional torque, there is half the angular acceleration.
With half the angular acceleration, it will require twice
as long to change the speed to zero.

10.11 (d). When the rod is attached at its end, it offers four
times as much moment of inertia as when attached in
the center (see Table 10.2). Because the rotational

∆x

θ

x

y

Figure P10.89
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Figure P10.90
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kinetic energy of the rod depends on the square of the
angular speed, the same work will result in half of the
angular speed.

10.12 (b). All of the gravitational potential energy of the
box–Earth system is transformed to kinetic energy
of translation. For the ball, some of the gravitational
potential energy of the ball–Earth system is transformed
to rotational kinetic energy, leaving less for translational
kinetic energy, so the ball moves downhill more slowly
than the box does.

10.13 (c). In Equation 10.30, ICM for a sphere is . Thus,
MR 2 will cancel and the remaining expression on the
right-hand side of the equation is independent of mass
and radius.

10.14 (a). The moment of inertia of the hollow sphere B is
larger than that of sphere A. As a result, Equation 10.30
tells us that the center of mass of sphere B will have a
smaller speed, so sphere A should arrive first.

2
5 MR2
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! Mark Ruiz undergoes a rotation during a dive at the U.S. Olympic trials in June 2000. He
spins at a higher rate when he curls up and grabs his ankles due to the principle of conser-
vation of angular momentum, as discussed in this chapter. (Otto Greule/Allsport/Getty)



The central topic of this chapter is angular momentum, a quantity that plays a key
role in rotational dynamics. In analogy to the principle of conservation of linear mo-
mentum, we find that the angular momentum of a system is conserved if no external
torques act on the system. Like the law of conservation of linear momentum, the law of
conservation of angular momentum is a fundamental law of physics, equally valid for
relativistic and quantum systems.

11.1 The Vector Product and Torque

An important consideration in defining angular momentum is the process of multiply-
ing two vectors by means of the operation called the vector product. We will introduce
the vector product by considering torque as introduced in the preceding chapter.

Consider a force F acting on a rigid object at the vector position r (Fig. 11.1). As we
saw in Section 10.6, the magnitude of the torque due to this force relative to the origin
is r F sin !, where ! is the angle between r and F. The axis about which F tends to pro-
duce rotation is perpendicular to the plane formed by r and F.

The torque vector ! is related to the two vectors r and F. We can establish a mathe-
matical relationship between !, r, and F using a mathematical operation called the
vector product, or cross product:

! ! r " F (11.1)

We now give a formal definition of the vector product. Given any two vectors A and
B, the vector product A " B is defined as a third vector C, which has a magnitude of
AB sin ", where " is the angle between A and B. That is, if C is given by

C # A " B (11.2)

then its magnitude is

C ! AB sin " (11.3)

The quantity AB sin " is equal to the area of the parallelogram formed by A and B, as
shown in Figure 11.2. The direction of C is perpendicular to the plane formed by A and
B, and the best way to determine this direction is to use the right-hand rule illustrated
in Figure 11.2. The four fingers of the right hand are pointed along A and then
“wrapped” into B through the angle ". The direction of the upright thumb is the direc-
tion of A " B # C. Because of the notation, A " B is often read “A cross B”; hence,
the term cross product.

Some properties of the vector product that follow from its definition are as follows:

1. Unlike the scalar product, the vector product is not commutative. Instead, the or-
der in which the two vectors are multiplied in a cross product is important:

A " B # $ B " A (11.4)
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Active Figure 11.1 The torque
vector ! lies in a direction perpen-
dicular to the plane formed by the
position vector r and the applied
force vector F.

At the Active Figures link
at http://www.pse6.com, you
can move point P and change
the force vector F to see the
effect on the torque vector.

! PITFALL PREVENTION
11.1 The Cross Product is

a Vector
Remember that the result of tak-
ing a cross product between two
vectors is a third vector. Equation
11.3 gives only the magnitude of
this vector.



Therefore, if you change the order of the vectors in a cross product, you must
change the sign. You can easily verify this relationship with the right-hand rule.

2. If A is parallel to B (" # 0° or 180°), then A " B # 0; therefore, it follows that
A " A # 0.

3. If A is perpendicular to B, then "A " B " # AB.

4. The vector product obeys the distributive law:

A " (B % C) # A " B % A " C (11.5)

5. The derivative of the cross product with respect to some variable such as t is

(11.6)

where it is important to preserve the multiplicative order of A and B, in view of
Equation 11.4.

It is left as an exercise (Problem 10) to show from Equations 11.3 and 11.4 and
from the definition of unit vectors that the cross products of the rectangular unit vec-
tors î , ĵ, and k̂ obey the following rules:

î " î # ĵ " ĵ # k̂ " k̂ # 0 (11.7a)

î " ĵ # $ ĵ " î # k̂ (11.7b)

ĵ " k̂ # $ k̂ " ĵ # î (11.7c)

k̂ " î # $ î " k̂ # ĵ (11.7d)

Signs are interchangeable in cross products. For example, A " ($B) # $ A " B
and î " ($ ĵ) # $ î " ĵ.

The cross product of any two vectors A and B can be expressed in the following de-
terminant form:

Expanding these determinants gives the result

A " B # (AyBz $ AzBy) î $ (AxBz $ AzBx) ĵ % (AxBy $ AyBx)k̂ (11.8)

Given the definition of the cross product, we can now assign a direction to the torque
vector. If the force lies in the xy plane, as in Figure 11.1, the torque ! is represented by
a vector parallel to the z axis. The force in Figure 11.1 creates a torque that tends to ro-
tate the object counterclockwise about the z axis; thus the direction of ! is toward in-
creasing z, and ! is therefore in the positive z direction. If we reversed the direction of
F in Figure 11.1, then ! would be in the negative z direction.

A "  B # " î
Ax

Bx

ĵ
Ay

By

k̂
Az

Bz
" # "Ay

By

Az

Bz
" î $ "Ax

Bx

Az

Bz
" ĵ % "Ax

Bx

Ay

By
" k̂

d
dt

 (A " B) #  
d A
dt

" B % A "
d B
dt
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Right-hand rule

– C  =  B  ×  A

C  =  A  ×  B

A

B

θ
Figure 11.2 The vector product
A " B is a third vector C having a mag-
nitude AB sin " equal to the area of
the parallelogram shown. The direc-
tion of C is perpendicular to the plane
formed by A and B, and this direction
is determined by the right-hand rule. 

Cross products of unit vectors

Properties of the vector product
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Two vectors lying in the xy plane are given by the equations
A # 2 î % 3 ĵ and B # $ î % 2 ĵ. Find A " B and verify 
that A " B # $B " A.

Solution Using Equations 11.7a through 11.7d, we obtain

(We have omitted the terms containing î " î and ĵ " ĵ
because, as Equation 11.7a shows, they are equal to zero.)

7 k̂# 2 î " 2 ĵ % 3 ĵ " ($ î) # 4 k̂ % 3k̂ #

A " B # (2 î  % 3ĵ ) " ($ î % 2 ĵ)

We can show that A " B # $B " A, because

Therefore, A " B # $B " A.
As an alternative method for finding A " B, we could

use Equation 11.8, with Ax # 2, Ay # 3, Az # 0 and Bx # $1,
By # 2, Bz # 0:

A " B # (0) î $ (0) ĵ % [(2)(2) $ (3)($ 1)]k̂ # 7k̂

$ 7 k̂# $ î " 3 ĵ % 2 ĵ " 2 î # $3 k̂ $ 4 k̂ #

B " A # ($ î % 2 ĵ) " (2 î % 3 ĵ)

A force of F # (2.00 î % 3.00 ĵ) N is applied to an object
that is pivoted about a fixed axis aligned along the z coordi-
nate axis. If the force is applied at a point located at
r # (4.00 î % 5.00 ĵ) m, find the torque vector !.

Solution The torque vector is defined by means of a cross
product in Equation 11.1:

% (5.00)(3.00) ĵ " ĵ] N&m
% (5.00)(2.00) ĵ  " î  

# [(4.00)(2.00) î   "  î  % (4.00)(3.00)î " ĵ

' [(2.00 î  % 3.00 ĵ) N] 
! # r " F # [(4.00 î  % 5.00 ĵ) m]

Notice that both r and F are in the xy plane. As expected,
the torque vector is perpendicular to this plane, having only
a z component.

2.0k̂ N&m#

# [12.0k̂ $ 10.0k̂) N&m 

# [12.0 î  "  ĵ  % 10.0 ĵ  " î]  N&m

11.2 Angular Momentum

Imagine a rigid pole sticking up through the ice on a frozen pond (Fig. 11.3). A
skater glides rapidly toward the pole, aiming a little to the side so that she does not
hit it. As she approaches the pole, she reaches out and grabs it, an action that causes
her to move in a circular path around the pole. Just as the idea of linear momentum
helps us analyze translational motion, a rotational analog—angular momentum—
helps us analyze the motion of this skater and other objects undergoing rotational
motion.

Quick Quiz 11.1 Which of the following is equivalent to the following scalar
product: (A " B) #(B " A)? (a) A #B % B #A (b) (A " A) #(B " B) (c) (A " B) #(A " B)
(d) $ (A " B) #(A " B)

Quick Quiz 11.2 Which of the following statements is true about the rela-
tionship between the magnitude of the cross product of two vectors and the product of
the magnitudes of the vectors? (a) "A " B" is larger than AB; (b) "A " B" is smaller
than AB ; (c) "A " B" could be larger or smaller than AB, depending on the angle be-
tween the vectors; (d) "A " B" could be equal to AB.

Example 11.2 The Torque Vector 

Example 11.1 The Vector Product



In Chapter 9, we began by developing the mathematical form of linear momentum
and then proceeded to show how this new quantity was valuable in problem-solving.
We will follow a similar procedure for angular momentum.

Consider a particle of mass m located at the vector position r and moving with linear
momentum p as in Figure 11.4. In describing linear motion, we found that the net force
on the particle equals the time rate of change of its linear momentum, F # dp/dt
(see Eq. 9.3). Let us take the cross product of each side of Equation 9.3 with r, which
gives us the net torque on the particle on the left side of the equation:

Now let us add to the right-hand side the term , which is zero because dr/dt #

v and v and p are parallel. Thus,

We recognize the right-hand side of this equation as the derivative of r " p (see Equa-
tion 11.6). Therefore,

(11.9)

This looks very similar in form to Equation 9.3, F # dp/dt. This suggests that the
combination r " p should play the same role in rotational motion that p plays in trans-
lational motion. We call this combination the angular momentum of the particle:

#

# ! # 
d(r " p)

dt

# ! # r "
dp
dt

%
d r
dt

" p

d r
dt

" p

r " #  F # # ! # r "
dp
dt

#
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This allows us to write Equation 11.9 as

(11.11)

which is the rotational analog of Newton’s second law, F # dp/dt. Note that torque
causes the angular momentum L to change just as force causes linear momentum p to
change. Equation 11.11 states that the torque acting on a particle is equal to the
time rate of change of the particle’s angular momentum.

Note that Equation 11.11 is valid only if ! and L are measured about the same ori-
gin. (Of course, the same origin must be used in calculating all of the torques.) Fur-
thermore, the expression is valid for any origin fixed in an inertial frame.

The SI unit of angular momentum is kg · m2/s. Note also that both the magnitude
and the direction of L depend on the choice of origin. Following the right-hand rule,
we see that the direction of L is perpendicular to the plane formed by r and p. In
Figure 11.4, r and p are in the xy plane, and so L points in the z direction. Because
p # mv, the magnitude of L is

L # mvr sin ! (11.12)

where ! is the angle between r and p. It follows that L is zero when r is parallel to
p (! # 0 or 180°). In other words, when the linear velocity of the particle is along a
line that passes through the origin, the particle has zero angular momentum with
respect to the origin. On the other hand, if r is perpendicular to p (! # 90°), then
L # mvr. At that instant, the particle moves exactly as if it were on the rim of a wheel
rotating about the origin in a plane defined by r and p.

#

#

# ! # 
dL
dt

The instantaneous angular momentum L of a particle relative to the origin O is 
defined by the cross product of the particle’s instantaneous position vector r and its
instantaneous linear momentum p:

L ! r " p (11.10)

Active Figure 11.3 As the skater
passes the pole, she grabs hold of
it. This causes her to swing around
the pole rapidly in a circular path.

Active Figure 11.4 The angular
momentum L of a particle of mass
m and linear momentum p located
at the vector position r is a vector
given by L # r " p. The value of L
depends on the origin about which
it is measured and is a vector per-
pendicular to both r and p.

At the Active Figures link
at http://www.pse6.com, you
can change the speed of the
skater and her distance to the
pole and watch her spin when
she grabs the pole.

At the Active Figures link
at http://www.pse6.com, you
can change the position vector
r and the momentum vector p
to see the effect on the angular
momentum vector.

O

z

L  =  r  ×  p

r m p

φ

y

x

Angular momentum of a particle
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Angular Momentum of a System of Particles

In Section 9.6, we showed that Newton’s second law for a particle could be extended to
a system of particles, resulting in:

This equation states that the net external force on a system of particles is equal to the
time rate of change of the total linear momentum of the system. Let us see if there is a
similar statement that can be made in rotational motion. The total angular momentum
of a system of particles about some point is defined as the vector sum of the angular
momenta of the individual particles:

where the vector sum is over all n particles in the system.
Let us differentiate this equation with respect to time:

dLtot

dt
# #

i
 
dLi

dt
# #

i
 !i

Ltot # L1 % L2 % & & & % Ln # #
i

  Li

# Fext #
d p tot

dt

Quick Quiz 11.3 Recall the skater described at the beginning of this sec-
tion. Let her mass be m. What would be her angular momentum relative to the pole at
the instant she is a distance d from the pole if she were skating directly toward it at
speed v? (a) zero (b) mvd (c) impossible to determine

Quick Quiz 11.4 Consider again the skater in Quick Quiz 11.3. What would
be her angular momentum relative to the pole at the instant she is a distance d from
the pole if she were skating at speed v along a straight line that would pass within a dis-
tance a from the pole? (a) zero (b) mvd (c) mva (d) impossible to determine

A particle moves in the xy plane in a circular path of radius
r, as shown in Figure 11.5. Find the magnitude and direc-
tion of its angular momentum relative to O when its linear
velocity is v.

Solution The linear momentum of the particle is always
changing (in direction, not magnitude). You might be
tempted, therefore, to conclude that the angular momen-
tum of the particle is always changing. In this situation, how-
ever, this is not the case—let us see why. From Equation
11.12, the magnitude of L is given by

where we have used ! # 90° because v is perpendicular to r.
This value of L is constant because all three factors on the
right are constant.

The direction of L also is constant, even though the di-
rection of p # mv keeps changing. You can visualize this by
applying the right-hand rule to find the direction of L #
r " p # mr " v in Figure 11.5. Your thumb points upward
and away from the page; this is the direction of L Hence, we
can write the vector expression L # (mvr)k̂. If the particle
were to move clockwise, L would point downward and into
the page. A particle in uniform circular motion has a
constant angular momentum about an axis through the
center of its path.

mvrL # mvr sin 90( #

Example 11.3 Angular Momentum of a Particle in Circular Motion

x

y

m

v

O

r

Figure 11.5 (Example 11.3) A particle moving in a circle of ra-
dius r has an angular momentum about O that has magnitude
mvr. The vector L # r " p points out of the diagram.

! PITFALL PREVENTION
11.2 Is Rotation

Necessary for
Angular Momentum?

Notice that we can define angu-
lar momentum even if the parti-
cle is not moving in a circular
path. Even a particle moving in a
straight line has angular momen-
tum about any axis displaced
from the path of the particle.



where we have used Equation 11.11 to replace the time rate of change of the angular
momentum of each particle with the net torque on the particle.

The torques acting on the particles of the system are those associated with internal
forces between particles and those associated with external forces. However, the net
torque associated with all internal forces is zero. To understand this, recall that New-
ton’s third law tells us that internal forces between particles of the system are equal in
magnitude and opposite in direction. If we assume that these forces lie along the line
of separation of each pair of particles, then the total torque around some axis passing
through an origin O due to each action–reaction force pair is zero. That is, the mo-
ment arm d from O to the line of action of the forces is equal for both particles and the
forces are in opposite directions. In the summation, therefore, we see that the net in-
ternal torque vanishes. We conclude that the total angular momentum of a system can
vary with time only if a net external torque is acting on the system, so that we have

(11.13)

That is

# !ext #
dLtot

dt

342 C H A P T E R  1 1   •   Angular Momentum

the net external torque acting on a system about some axis passing through an ori-
gin in an inertial frame equals the time rate of change of the total angular momen-
tum of the system about that origin.

The resultant torque acting on a system about an axis through the center of mass
equals the time rate of change of angular momentum of the system regardless of
the motion of the center of mass.

Note that Equation 11.13 is indeed the rotational analog of Fext # dptot/dt, for a
system of particles.

Although we do not prove it here, the following statement is an important theorem
concerning the angular momentum of a system relative to the system’s center of mass:

#

A sphere of mass m1 and a block of mass m2 are connected
by a light cord that passes over a pulley, as shown in
Figure 11.6. The radius of the pulley is R, and the mass of
the rim is M . The spokes of the pulley have negligible mass.
The block slides on a frictionless, horizontal surface. Find
an expression for the linear acceleration of the two objects,
using the concepts of angular momentum and torque.

Solution We need to determine the angular momentum of
the system, which consists of the two objects and the pulley.

Let us calculate the angular momentum about an axis
that coincides with the axle of the pulley. The angular mo-
mentum of the system includes that of two objects moving
translationally (the sphere and the block) and one object
undergoing pure rotation (the pulley).

At any instant of time, the sphere and the block have a
common speed v, so the angular momentum of the sphere
is m1vR, and that of the block is m2vR. At the same instant,
all points on the rim of the pulley also move with speed v, so
the angular momentum of the pulley is MvR. Hence, the
total angular momentum of the system is

(1) L # m1vR % m2vR % MvR # (m1 % m2 % M)vR

Now let us evaluate the total external torque acting on
the system about the pulley axle. Because it has a moment
arm of zero, the force exerted by the axle on the pulley does
not contribute to the torque. Furthermore, the normal
force acting on the block is balanced by the gravitational
force m2g, and so these forces do not contribute to the
torque. The gravitational force m1g acting on the sphere
produces a torque about the axle equal in magnitude to
m1gR, where R is the moment arm of the force about the
axle. This is the total external torque about the pulley axle;

Example 11.4 Two Connected Objects

Figure 11.6 (Example 11.4) When the system is released, the
sphere moves downward and the block moves to the left.

m2

v

v m1

R

The net external torque on a
system equals the time rate of
change of angular momentum
of the system

This theorem applies even if the center of mass is accelerating, provided ! and L are
evaluated relative to the center of mass.



11.3 Angular Momentum of a 
Rotating Rigid Object

In Example 11.4, we considered the angular momentum of a deformable system. Let
us now restrict our attention to a nondeformable system—a rigid object. Consider a
rigid object rotating about a fixed axis that coincides with the z axis of a coordinate sys-
tem, as shown in Figure 11.7. Let us determine the angular momentum of this object.
Each particle of the object rotates in the xy plane about the z axis with an angular speed
). The magnitude of the angular momentum of a particle of mass mi about the z axis is
miviri. Because vi # ri), we can express the magnitude of the angular momentum of
this particle as

Li # miri
2)

The vector Li is directed along the z axis, as is the vector $.
We can now find the angular momentum (which in this situation has only a z com-

ponent) of the whole object by taking the sum of Li over all particles:

(11.14)

where we have recognized as the moment of inertia I of the object about the

z axis (Equation 10.15).
Now let us differentiate Equation 11.14 with respect to time, noting that I is con-

stant for a rigid object:

(11.15)

where * is the angular acceleration relative to the axis of rotation. Because dLz/dt is
equal to the net external torque (see Eq. 11.13), we can express Equation 11.15 as

(11.16)

That is, the net external torque acting on a rigid object rotating about a fixed axis equals
the moment of inertia about the rotation axis multiplied by the object’s angular accelera-
tion relative to that axis. This result is the same as Equation 10.21, which was derived using
a force approach, but we derived Equation 11.16 using the concept of angular momen-
tum. This equation is also valid for a rigid object rotating about a moving axis provided
the moving axis (1) passes through the center of mass and (2) is a symmetry axis.

If a symmetrical object rotates about a fixed axis passing through its center of mass,
you can write Equation 11.14 in vector form as L # I$, where L is the total angular

# +ext # I*

dLz

dt
# I  

d)

dt
# I*

#
i

 mir i
2

Lz # I)

Lz # #
i

 Li # #
i

 mir i
2) # $#

i
 mir i

2%)
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Figure 11.7 When a rigid object
rotates about an axis, the angular
momentum L is in the same direc-
tion as the angular velocity $, ac-
cording to the expression L # I$. 

that is, +ext # m1gR. Using this result, together with Equa-
tion (1) and Equation 11.13, we find

(2)   m1gR # (m1 % m2 % M)R   
dv
dt

m1gR #
d
dt

 [(m1 % m2 % M)vR]

# +ext #
dL
dt

# Because dv/dt # a, we can solve this for a to obtain

You may wonder why we did not include the forces that the
cord exerts on the objects in evaluating the net torque
about the axle. The reason is that these forces are internal
to the system under consideration, and we analyzed the sys-
tem as a whole. Only external torques contribute to the
change in the system’s angular momentum.

m1g
m1 % m2 % M

a #

y

z

L

ω

r

x

vi
mi

Rotational form of Newton’s
second law



momentum of the object measured with respect to the axis of rotation. Furthermore,
the expression is valid for any object, regardless of its symmetry, if L stands for the
component of angular momentum along the axis of rotation.1
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Quick Quiz 11.5 A solid sphere and a hollow sphere have the same mass
and radius. They are rotating with the same angular speed. The one with the higher
angular momentum is (a) the solid sphere (b) the hollow sphere (c) they both have
the same angular momentum (d) impossible to determine.

Example 11.5 Bowling Ball

Example 11.6 The Seesaw

1 In general, the expression L # I$ is not always valid. If a rigid object rotates about an arbitrary axis,
L and $ may point in different directions. In this case, the moment of inertia cannot be treated as a
scalar. Strictly speaking, L # I$ applies only to rigid objects of any shape that rotate about one of three
mutually perpendicular axes (called principal axes) through the center of mass. This is discussed in
more advanced texts on mechanics.

A father of mass mf and his daughter of mass md sit on oppo-
site ends of a seesaw at equal distances from the pivot at the
center (Fig. 11.9). The seesaw is modeled as a rigid rod of
mass M and length ! and is pivoted without friction. At a
given moment, the combination rotates in a vertical plane
with an angular speed ).

(A) Find an expression for the magnitude of the system’s
angular momentum.

Solution The moment of inertia of the system equals the
sum of the moments of inertia of the three components: the
seesaw and the two individuals, whom we will model as parti-
cles. Referring to Table 10.2 to obtain the expression for the
moment of inertia of the rod, and using the expression
I # mr 2 for each person, we find that the total moment of
inertia about the z axis through O is

I # 1
12M"2 % mf  $ "

2 %
2

% md  $ "

2 %
2

#
"2

4
  $ M

3
% mf % md%

Therefore, the magnitude of the angular momentum is

(B) Find an expression for the magnitude of the angular ac-
celeration of the system when the seesaw makes an angle "
with the horizontal.

Solution To find the angular acceleration of the system at
any angle ", we first calculate the net torque on the system
and then use +ext # I* to obtain an expression for *.

The torque due to the force mfg about the pivot is

The torque due to the force mdg about the pivot is

+d # $md g  
"

2
  cos "  (!d  into page)

+f # mf g  
"

2
  cos "  (!f  out of page)

#

"2

4
  $ M

3
% mf % md%

 

)L # I) #

Estimate the magnitude of the angular momentum of a
bowling ball spinning at 10 rev/s, as shown in Figure 11.8.

Solution We start by making some estimates of the rele-
vant physical parameters and model the ball as a uniform
solid sphere. A typical bowling ball might have a mass of
6.0 kg and a radius of 12 cm. The moment of inertia of a
solid sphere about an axis through its center is, from
Table 10.2,

Therefore, the magnitude of the angular momentum is

Lz # I) # (0.035 kg & m2)(10 rev/s)(2, rad/rev)

# 2.2 kg & m2/s

Because of the roughness of our estimates, we probably want 

to keep only one significant figure, and so Lz & 2 kg&m2/s.

I # 2
5MR2 # 2

5(6.0 kg)(0.12 m)2 # 0.035 kg&m2

Figure 11.8 (Example 11.5) A bowling ball that rotates about
the z axis in the direction shown has an angular momentum L
in the positive z direction. If the direction of rotation is re-
versed, L points in the negative z direction.

z

y

L

x

Interactive
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Hence, the net torque exerted on the system about O is

To find *, we use +ext # I*, where I was obtained in
part (A):

Generally, fathers are more massive than daughters, so the
angular acceleration is positive. If the seesaw begins in a
horizontal orientation (" # 0) and is released, the rotation
will be counterclockwise in Figure 11.9 and the father’s end
of the seesaw drops. This is consistent with everyday
experience.

2(mf $ md)g cos "

" $ M
3

% mf % md%
* # # +ext

I
#

#

# +ext # +f % +d # 1
2(mf $ md)g " cos "

What If? After several complaints from the daughter that
she simply rises into the air rather than moving up and down
as planned, the father moves inward on the seesaw to try to
balance the two sides. He moves in to a position that is a dis-
tance d from the pivot. What is the angular acceleration of the
system in this case when it is released from an arbitrary
angle "?

Answer The angular acceleration of the system should de-
crease if the system is more balanced. As the father contin-
ues to slide inward, he should reach a point at which the
seesaw is balanced and there is no angular acceleration of
the system when released.

The total moment of inertia about the z axis through O
for the modified system is

The net torque exerted on the system about O is

Now, the angular acceleration of the system is

The seesaw will be balanced when the angular acceleration
is zero. In this situation, both father and daughter can push
off the ground and rise to the highest possible point. We
find the required position of the father by setting * # 0:

In the rare case that the father and daughter have the same
mass, the father is located at the end of the seesaw, d # !/2.

d # $ md

mf
% 1

2 "

mf gd cos " $ 1
2mdg " cos " # 0

* #
mf gd cos " $ 1

2mdg " cos "

("2/4)[(M/3) % md] % mf d2 # 0

* #
+net

I
#

mf gd cos " $ 1
2mdg " cos "

"2

4
 [(M/3) % md] % mf d2

+net # +f % +d # mf gd cos " $ 1
2mdg " cos "

#
"2

4
 $ M

3
% md% % mf d 2

I # 1
12M"2 % mf d 2 % md  $ "

2 %
2

Figure 11.9 (Example 11.6) A father and daughter demon-
strate angular momentum on a seesaw.

At the Interactive Worked Example link at http://www.pse6.com, you can move the father and daughter to see the effect on
the motion of the system.

"

O θ

y

x

mdg

mf g

11.4 Conservation of Angular Momentum

In Chapter 9 we found that the total linear momentum of a system of particles remains
constant if the system is isolated, that is, if the resultant external force acting on the sys-
tem is zero. We have an analogous conservation law in rotational motion:

The total angular momentum of a system is constant in both magnitude and direc-
tion if the resultant external torque acting on the system is zero, that is, if the system
is isolated.

Conservation of angular
momentum



This follows directly from Equation 11.13, which indicates that if

(11.17)

then

(11.18)

For an isolated system consisting of a number of particles, we write this conservation
law as Ltot # Ln # constant, where the index n denotes the nth particle in the
system.

If the mass of an isolated rotating system undergoes redistribution in some way, the
system’s moment of inertia changes. Because the magnitude of the angular momen-
tum of the system is L # I) (Eq. 11.14), conservation of angular momentum requires
that the product of I and ) must remain constant. Thus, a change in I for an isolated
system requires a change in ). In this case, we can express the principle of conserva-
tion of angular momentum as

Ii)i # If )f # constant (11.19)

This expression is valid both for rotation about a fixed axis and for rotation about an
axis through the center of mass of a moving system as long as that axis remains fixed in
direction. We require only that the net external torque be zero.

There are many examples that demonstrate conservation of angular momentum
for a deformable system. You may have observed a figure skater spinning in the finale
of a program (Fig. 11.10). The angular speed of the skater increases when the skater
pulls his hands and feet close to his body, thereby decreasing I. Neglecting friction be-
tween skates and ice, no external torques act on the skater. Because the angular mo-
mentum of the skater is conserved, the product I) remains constant, and a decrease in
the moment of inertia of the skater causes an increase in the angular speed. Similarly,
when divers or acrobats wish to make several somersaults, they pull their hands and
feet close to their bodies to rotate at a higher rate, as in the opening photograph of
this chapter. In these cases, the external force due to gravity acts through the center of
mass and hence exerts no torque about this point. Therefore, the angular momentum
about the center of mass must be conserved—that is, Ii)i # If )f . For example, when
divers wish to double their angular speed, they must reduce their moment of inertia to
half its initial value.

In Equation 11.18 we have a third conservation law to add to our list. We can now
state that the energy, linear momentum, and angular momentum of an isolated system
all remain constant:

Ei # Ef

pi # pf

Li # Lf

 '    For an isolated system

#

Ltot # constant  or  Li # Lf

# !ext #
d Ltot

dt
# 0
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Figure 11.10 Figure skater Todd
Eldridge is demonstrating angular
momentum conservation. When he
pulls his arms toward his body, he
spins faster.

Quick Quiz 11.6 A competitive diver leaves the diving board and falls to-
ward the water with her body straight and rotating slowly. She pulls her arms and legs
into a tight tuck position. Her angular speed (a) increases (b) decreases (c) stays the
same (d) is impossible to determine.

Quick Quiz 11.7 Consider the competitive diver in Quick Quiz 11.6 again.
When she goes into the tuck position, the rotational kinetic energy of her body (a) in-
creases (b) decreases (c) stays the same (d) is impossible to determine.
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A star rotates with a period of 30 days about an axis through
its center. After the star undergoes a supernova explosion,
the stellar core, which had a radius of 1.0 ' 104 km, col-
lapses into a neutron star of radius 3.0 km. Determine the
period of rotation of the neutron star.

Solution The same physics that makes a skater spin faster
with his arms pulled in describes the motion of the neutron
star. Let us assume that during the collapse of the stellar core,
(1) no external torque acts on it, (2) it remains spherical with
the same relative mass distribution, and (3) its mass remains
constant. Also, let us use the symbol T for the period, with Ti
being the initial period of the star and Tf being the period of
the neutron star. The period is the length of time a point on
the star’s equator takes to make one complete circle around
the axis of rotation. The angular speed of the star is given by
) # 2,/T. Therefore, Equation 11.19 gives

Ii  $ 2,

Ti
% # If  $ 2,

Tf
%

Ii)i # If )f

We don’t know the mass distribution of the star, but we
have assumed that the distribution is symmetric, so that
the moment of inertia can be expressed as kMR 2, where k
is some numerical constant. (From Table 10.2, for exam-
ple, we see that k # 2/5 for a solid sphere and k # 2/3 for
a spherical shell.) Thus, we can rewrite the preceding
equation as

Substituting numerical values gives

Thus, the neutron star rotates about four times each second.

0.23 s#

Tf # (30 days)$ 3.0 km
1.0 ' 104 km %2

# 2.7 ' 10$6 days

Tf # $ Rf
2

Ri
2 % Ti

kMRi
2 $ 2,

Ti
% # kMRf

2 $ 2,

Tf
%

A horizontal platform in the shape of a circular disk rotates
freely in a horizontal plane about a frictionless vertical axle
(Fig. 11.11). The platform has a mass M # 100 kg and a ra-
dius R # 2.0 m. A student whose mass is m # 60 kg walks
slowly from the rim of the disk toward its center. If the angu-
lar speed of the system is 2.0 rad/s when the student is at
the rim, what is the angular speed when he reaches a point
r # 0.50 m from the center?

Solution The speed change here is similar to the increase
in angular speed of the spinning skater when he pulls his
arms inward. Let us denote the moment of inertia of the

platform as Ip and that of the student as Is. Modeling the
student as a particle, we can write the initial moment of
inertia Ii of the system (student plus platform) about the
axis of rotation:

When the student walks to the position r - R, the moment
of inertia of the system reduces to

Note that we still use the greater radius R when calculating
Ipf because the radius of the platform does not change. Be-
cause no external torques act on the system about the axis
of rotation, we can apply the law of conservation of angular
momentum:

As expected, the angular speed increases.

What If? What if we were to measure the kinetic energy of
the system before and after the student walks inward? Are
they the same?

4.1 rad/s # $ 440 kg&m2

215 kg&m2 %(2.0 rad/s) #

# $
1
2(100 kg)(2.0 m)2 % (60 kg)(2.0 m)2

1
2(100 kg)(2.0 m)2 % (60 kg)(0.50 m)2 %(2.0 rad/s)

)f # $
1
2MR2 % mR2

1
2MR2 % mr2 %  )i

(1
2MR2 % mR2))i # (1

2MR2 % mr 2))f

Ii)i # If )f

If # Ipf % Isf # 1
2MR2 % mr 2

Ii # Ipi % Isi # 1
2MR2 % mR2

Example 11.7 Formation of a Neutron Star

Example 11.8 The Merry-Go-Round

Figure 11.11 (Example 11.8) As the student walks toward the
center of the rotating platform, the angular speed of the system
increases because the angular momentum of the system
remains constant.

M

m

R



Answer You may be tempted to say yes because the system
is isolated. But remember that energy comes in several
forms, so we have to handle an energy question carefully.
The initial kinetic energy is

Ki # 1
2Ii)i

2 # 1
2(440 kg&m2)(2.0 rad/s)2 # 880 J

The final kinetic energy is

Thus, the kinetic energy of the system increases. The student
must do work to move himself closer to the center of rota-
tion, so this extra kinetic energy comes from chemical po-
tential energy in the body of the student.

Kf # 1
2If )f

2 # 1
2(215 kg&m2)(4.1 rad/s)2 # 1.81 ' 103 J
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In a favorite classroom demonstration, a student holds the
axle of a spinning bicycle wheel while seated on a stool
that is free to rotate (Fig. 11.12). The student and stool
are initially at rest while the wheel is spinning in a hori-
zontal plane with an initial angular momentum Li that
points upward. When the wheel is inverted about its cen-

ter by 180°, the student and stool start rotating. In terms
of Li, what are the magnitude and the direction of L for
the student plus stool?

Solution The system consists of the student, the wheel, and
the stool. Initially, the total angular momentum of the sys-
tem Li comes entirely from the spinning wheel. As the wheel
is inverted, the student applies a torque to the wheel, but
this torque is internal to the system. No external torque is
acting on the system about the vertical axis. Therefore, the
angular momentum of the system is conserved. Initially, we
have

Lsystem # Li # Lwheel (upward)

After the wheel is inverted, we have Linverted wheel # $ Li .
For angular momentum to be conserved, some other part of
the system has to start rotating so that the total final angular
momentum equals the initial angular momentum Li . That
other part of the system is the student plus the stool she is
sitting on. So, we can now state that

2LiLstudent%stool #

Lf # Li # Lstudent%stool $ Li

Example 11.9 The Spinning Bicycle Wheel

L i

Figure 11.12 (Example 11.9) The wheel is initially spinning
when the student is at rest. What happens when the wheel is
inverted?

A 2.0-kg disk traveling at 3.0 m/s strikes a 1.0-kg stick of
length 4.0 m that is lying flat on nearly frictionless ice, as
shown in Figure 11.13. Assume that the collision is elastic
and that the disk does not deviate from its original line of
motion. Find the translational speed of the disk, the transla-
tional speed of the stick, and the angular speed of the stick
after the collision. The moment of inertia of the stick about
its center of mass is 1.33 kg · m2.

Solution Conceptualize the situation by considering Figure
11.13 and imagining what happens after the disk hits the

stick. Because the disk and stick form an isolated system, we
can assume that total energy, linear momentum, and angu-
lar momentum are all conserved. Thus, we can categorize
this as a problem in which all three conservation laws might
play a part. To analyze the problem, first note that we have
three unknowns, and so we need three equations to solve si-
multaneously. The first comes from the law of the conserva-
tion of linear momentum:

(1)

Now we apply the law of conservation of angular mo-
mentum, using the initial position of the center of the stick
as our reference point. We know that the component of an-
gular momentum of the disk along the axis perpendicular
to the plane of the ice is negative. (The right-hand rule
shows that Ld points into the ice.) Applying conservation of
angular momentum to the system gives

$  rmdvdi # $rmdvdf % I)

Li # Lf

6.0 kg&m/s $ (2.0 kg)vdf # (1.0 kg)vs

(2.0 kg)(3.0 m/s) # (2.0 kg)vdf % (1.0 kg)vs

mdvdi # mdvdf % msvs

pi # pf

Example 11.10 Disk and Stick

Before After

2.0 m

vdi = 3.0 m/s

ω

vs

vdf

Figure 11.13 (Example 11.10) Overhead view of a disk striking
a stick in an elastic collision, which causes the stick to rotate
and move to the right.

Interactive
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We use the fact that radians are dimensionless to ensure
consistent units for each term.

Finally, the elastic nature of the collision tells us that ki-
netic energy is conserved; in this case, the kinetic energy
consists of translational and rotational forms:

In solving Equations (1), (2), and (3) simultaneously,

we find that vdf # vs # and ) #

To finalize the problem, note that these values seem rea-
sonable. The disk is moving more slowly after the collision
than it was before the collision, and the stick has a small
translational speed. Table 11.1 summarizes the initial and fi-
nal values of variables for the disk and the stick, and verifies
the conservation of linear momentum, angular momentum,
and kinetic energy.

What If? What if the collision between the disk and the stick
is perfectly inelastic? How does this change the analysis?

Answer In this case, the disk adheres to the end of the
stick upon collision. The conservation of linear momentum
principle leading to Equation (1) would be altered to

$2.0 rad/s.

1.3 m/s,2.3 m/s,

(3)   18 m2/s2 # 2.0 vdf
2 % vs

2 % (1.33 m2))2

% 1
2(1.33 kg&m2))2

1
2(2.0 kg)(3.0 m/s)2 # 1

2(2.0 kg)vdf
2 % 1

2(1.0 kg)vs
2

1
2mdvdi

2 # 1
2mdvdf

2 % 1
2msvs

2 % 1
2I)2

Ki # Kf

(2) $9.0 rad/s % (3.0 rad/m)vdf # )

% (1.33 kg&m2))

$12 kg&m2/s # $(4.0 kg&m)vdf

% (1.33 kg&m2))

$(2.0 m)(2.0 kg)(3.0 m/s) # $(2.0 m)(2.0 kg)vdf

For the rotational part of this question, we need to find the
center of mass of the system of the disk and the stick. Choos-
ing the center of the stick as the origin, the y position of the
center of mass along the vertical stick is

Thus, the center of mass of the system is 2.0 m $ 1.33 m
# 0.67 m from the upper end of the stick.

The conservation of angular momentum principle leading
to Equation (2) would be altered to the following, evaluating
angular momenta around the center of mass of the system:

The moment of inertia of the stick around the center of
mass of the system is found from the parallel-axis theorem:

Thus, Equation (4) becomes

Evaluating the total kinetic energy of the system after the colli-
sion shows that it is less than that before the collision because
kinetic energy is not conserved in an inelastic collision.

) #
$4.0 kg&m2/s

4.0 kg&m2 # $1.0 rad/s

$4.0 kg&m2/s # (4.0 kg&m2))

% (3.1 kg&m2))

$(0.67 m)(2.0 kg)(3.0 m/s) # [(2.0 kg)(0.67 m)2])

# 1.33 kg&m2 % (1.0 kg)(1.33 m)2 # 3.1 kg&m2

Is # ICM % MD2

(4)   $(0.67 m)mdvdi # [md(0.67 m)2]) % Is )

$rmdvdi # Id) % Is)

Li # Lf

yCM #
(2.0 kg)(2.0 m) % (1.0 kg)(0)

(2.0 kg % 1.0 kg)
# 1.33 m

vCM # 2.0 m/s

(2.0 kg)(3.0 m/s) # (2.0 kg % 1.0 kg)vCM

mdvdi # (md % ms)vCM

pi # pf

v (m/s) $(rad/s) p (kg · m/s) L (kg · m2/s) Ktrans( J) Krot( J)

Before
Disk 3.0 — 6.0 $ 12 9.0 —
Stick 0 0 0 0 0 0
Total for — — 6.0 $ 12 9.0 0
System

After
Disk 2.3 — 4.7 $ 9.3 5.4 —
Stick 1.3 $ 2.0 1.3 $ 2.7 0.9 2.7
Total for — — 6.0 $ 12 6.3 2.7
System

Comparison of Values in Example 11.10 Before and After the Collisiona

Table 11.1

a Notice that linear momentum, angular momentum, and total kinetic energy are conserved.

At the Interactive Worked Example link at http://www.pse6.com, you can adjust the speed and position of the disk and 
observe the collision. 



11.5 The Motion of Gyroscopes and Tops

A very unusual and fascinating type of motion you probably have observed is that of a
top spinning about its axis of symmetry, as shown in Figure 11.14a. If the top spins very
rapidly, the symmetry axis rotates about the z axis, sweeping out a cone (see Fig.
11.14b). The motion of the symmetry axis about the vertical—known as precessional
motion—is usually slow relative to the spinning motion of the top.

It is quite natural to wonder why the top does not fall over. Because the center of
mass is not directly above the pivot point O, a net torque is clearly acting on the top
about O—a torque resulting from the gravitational force Mg. The top would certainly
fall over if it were not spinning. Because it is spinning, however, it has an angular mo-
mentum L directed along its symmetry axis. We shall show that this symmetry axis
moves about the z axis (precessional motion occurs) because the torque produces a
change in the direction of the symmetry axis. This is an excellent example of the impor-
tance of the directional nature of angular momentum.

The essential features of precessional motion can be illustrated by considering the
simple gyroscope shown in Figure 11.15a. The two forces acting on the top are the
downward gravitational force Mg and the normal force n acting upward at the pivot
point O. The normal force produces no torque about the pivot because its moment
arm through that point is zero. However, the gravitational force produces a torque
! # r " Mg about O, where the direction of ! is perpendicular to the plane formed
by r and Mg. By necessity, the vector ! lies in a horizontal xy plane perpendicular to
the angular momentum vector. The net torque and angular momentum of the gyro-
scope are related through Equation 11.13:

From this expression, we see that the nonzero torque produces a change in angular
momentum d L—a change that is in the same direction as !. Therefore, like the torque
vector, d L must also be perpendicular to L. Figure 11.15b illustrates the resulting pre-
cessional motion of the symmetry axis of the gyroscope. In a time interval dt, the
change in angular momentum is d L # Lf $ Li # ! dt. Because d L is perpendicular to
L, the magnitude of L does not change ("Li " # "Lf "). Rather, what is changing is the
direction of L. Because the change in angular momentum d L is in the direction of !,
which lies in the xy plane, the gyroscope undergoes precessional motion.

! #
dL
dt
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Figure 11.15 (a) The motion of a simple gyroscope pivoted a distance h from its center
of mass. The gravitational force Mg produces a torque about the pivot, and this torque
is perpendicular to the axle. (b) Overhead view of the initial and final angular momen-
tum vectors. The torque results in a change in angular momentum d L in a direction
perpendicular to the axle. The axle sweeps out an angle d! in a time interval dt.

Figure 11.14 Precessional motion
of a top spinning about its symme-
try axis. (a) The only external
forces acting on the top are the
normal force n and the gravita-
tional force Mg. The direction of
the angular momentum L is along
the axis of symmetry. The right-
hand rule indicates that
! # r " F # r " Mg is in the xy
plane. (b). The direction of .L is
parallel to that of ! in part (a). The
fact that Lf # .L % Li indicates
that the top precesses about the z
axis.

Li

Lf

τ

n
h

O

Mg

(a) (b)
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LfdL

dφφ

Precessional motion



To simplify the description of the system, we must make an assumption: The total
angular momentum of the precessing wheel is the sum of the angular momentum I$
due to the spinning and the angular momentum due to the motion of the center of
mass about the pivot. In our treatment, we shall neglect the contribution from the
center-of-mass motion and take the total angular momentum to be just I$. In practice,
this is a good approximation if $ is made very large.

The vector diagram in Figure 11.15b shows that in the time interval dt, the angular
momentum vector rotates through an angle d!, which is also the angle through which
the axle rotates. From the vector triangle formed by the vectors Li , Lf , and d L, we see
that

where we have used the fact that, for small values of any angle ", sin " & ". Dividing
through by dt and using the relationship L # I), we find that the rate at which the axle
rotates about the vertical axis is

(11.20)

The angular speed )p is called the precessional frequency. This result is valid only
when )p -- ). Otherwise, a much more complicated motion is involved. As you can
see from Equation 11.20, the condition )p -- ) is met when ) is large, that is, the
wheel spins rapidly. Furthermore, note that the precessional frequency decreases as )
increases—that is, as the wheel spins faster about its axis of symmetry.

As an example of the usefulness of gyroscopes, suppose you are in a spacecraft in
deep space and you need to alter your trajectory. You need to turn the spacecraft
around in order to fire the engines in the correct direction. But how do you turn a
spacecraft around in empty space? One way is to have small rocket engines that fire
perpendicularly out the side of the spacecraft, providing a torque around its center of
mass. This is desirable, and many spacecraft have such rockets.

Let us consider another method, however, that is related to angular momentum
and does not require the consumption of rocket fuel. Suppose that the spacecraft car-
ries a gyroscope that is not rotating, as in Figure 11.16a. In this case, the angular mo-
mentum of the spacecraft about its center of mass is zero. Suppose the gyroscope is set
into rotation, giving the gyroscope a nonzero angular momentum. There is no exter-
nal torque on the isolated system (spacecraft % gyroscope), so the angular momentum
of this system must remain zero according to the principle of conservation of angular
momentum. This principle can be satisfied if the spacecraft rotates in the direction op-
posite to that of the gyroscope, so that the angular momentum vectors of the gyro-
scope and the spacecraft cancel, resulting in no angular momentum of the system. The
result of rotating the gyroscope, as in Figure 11.16b, is that the spacecraft turns
around! By including three gyroscopes with mutually perpendicular axles, any desired
rotation in space can be achieved.

This effect created an undesirable situation with the Voyager 2 spacecraft during its
flight. The spacecraft carried a tape recorder whose reels rotated at high speeds. Each
time the tape recorder was turned on, the reels acted as gyroscopes, and the spacecraft
started an undesirable rotation in the opposite direction. This had to be counteracted
by Mission Control by using the sideward-firing jets to stop the rotation!

11.6 Angular Momentum as a
Fundamental Quantity

We have seen that the concept of angular momentum is very useful for describing
the motion of macroscopic systems. However, the concept also is valid on a submi-
croscopic scale and has been used extensively in the development of modern

)p #
d!

dt
#

Mgh
I)

sin(d!) & d! #
dL
L

#
+ dt
L

 #
(Mgh)dt

L
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Figure 11.16 (a) A spacecraft car-
ries a gyroscope that is not spin-
ning. (b) When the gyroscope is set
into rotation, the spacecraft turns
the other way so that the angular
momentum of the system is
conserved.

(a)

(b)

Gyroscope rotates
counterclockwise

Spacecraft
rotates
clockwise



theories of atomic, molecular, and nuclear physics. In these developments, it has
been found that the angular momentum of a system is a fundamental quantity. The
word fundamental in this context implies that angular momentum is an intrinsic
property of atoms, molecules, and their constituents, a property that is a part of
their very nature.

To explain the results of a variety of experiments on atomic and molecular systems,
we rely on the fact that the angular momentum has discrete values. These discrete val-
ues are multiples of the fundamental unit of angular momentum # h/2,, where h is
called Planck’s constant:

Fundamental unit of angular momentum # # 1.054 ' 10$ 34 kg · m2/s

Let us accept this postulate without proof for the time being and show how it can
be used to estimate the angular speed of a diatomic molecule. Consider the O2 mole-
cule as a rigid rotor, that is, two atoms separated by a fixed distance d and rotating
about the center of mass (Fig. 11.17). Equating the angular momentum to the funda-
mental unit , we can find the order of magnitude of the lowest angular speed:

In Example 10.3, we found that the moment of inertia of the O2 molecule about this
axis of rotation is 1.95 ' 10$46 kg · m2. Therefore,

Actual angular speeds are found to be multiples of a number with this order of
magnitude.

This simple example shows that certain classical concepts and models, when prop-
erly modified, are useful in describing some features of atomic and molecular systems.
A wide variety of phenomena on the submicroscopic scale can be explained only if we
assume discrete values of the angular momentum associated with a particular type of
motion.

The Danish physicist Niels Bohr (1885–1962) accepted and adopted this radical
idea of discrete angular momentum values in developing his theory of the hydrogen
atom. Strictly classical models were unsuccessful in describing many of the hydrogen
atom’s properties. Bohr postulated that the electron could occupy only those circular
orbits about the proton for which the orbital angular momentum was equal to n ,
where n is an integer. That is, he made the bold claim that orbital angular momentum
is quantized. One can use this simple model to estimate the rotational frequencies of
the electron in the various orbits (see Problem 42).

/

) &
/

0CM
#

1.054 ' 10$34 kg&m2/s
1.95 ' 10$46 kg&m2   ( 1012 rad/s
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/
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Figure 11.17 The rigid-rotor
model of a diatomic molecule. The
rotation occurs about the center of
mass in the plane of the page.

The torque ! due to a force F about an origin in an inertial frame is defined to be

! ! r " F (11.1)

Given two vectors A and B, the cross product A " B is a vector C having a magnitude

C ! AB sin " (11.3)

where " is the angle between A and B. The direction of the vector C # A " B is per-
pendicular to the plane formed by A and B, and this direction is determined by the
right-hand rule.

The angular momentum L of a particle having linear momentum p # mv is

L ! r " p (11.10)

where r is the vector position of the particle relative to an origin in an inertial frame.

S U M M A RY

Take a practice test for
this chapter by clicking on
the Practice Test link at
http://www.pse6.com.
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1. Is it possible to calculate the torque acting on a rigid ob-
ject without specifying an axis of rotation? Is the torque in-
dependent of the location of the axis of rotation?

2. Is the triple product defined by A # (B " C) a scalar or a
vector quantity? Explain why the operation (A # B) " C has
no meaning.

3. Vector A is in the negative y direction, and vector B is
in the negative x direction. What are the directions of
(a) A " B (b) B " A?

4. If a single force acts on an object and the torque caused by
the force is nonzero about some point, is there any other
point about which the torque is zero?

5. Suppose that the vector velocity of a particle is completely
specified. What can you conclude about the direction of its
angular momentum vector with respect to the direction of
motion?

6. If a system of particles is in motion, is it possible for the total
angular momentum to be zero about some origin? Explain.

7. If the torque acting on a particle about a certain origin is
zero, what can you say about its angular momentum about
that origin?

8. A ball is thrown in such a way that it does not spin about its
own axis. Does this mean that the angular momentum is
zero about an arbitrary origin? Explain.

9. For a helicopter to be stable as it flies, it must have at least
two propellers. Why?

10. A particle is moving in a circle with constant speed.
Locate one point about which the particle’s angular
momentum is constant and another point about which it
changes in time.

Why does a long pole help a tightrope walker stay
balanced?

12. Often when a high diver wants to turn a flip in midair, she
draws her legs up against her chest. Why does this make
her rotate faster? What should she do when she wants to
come out of her flip?

13. In some motorcycle races, the riders drive over small hills,
and the motorcycle becomes airborne for a short time. If
the motorcycle racer keeps the throttle open while leaving
the hill and going into the air, the motorcycle tends to
nose upward. Why does this happen?

14. Stars originate as large bodies of slowly rotating gas. Be-
cause of gravitation, these clumps of gas slowly decrease in
size. What happens to the angular speed of a star as it
shrinks? Explain.

If global warming occurs over the next century, it is likely
that some polar ice will melt and the water will be distrib-
uted closer to the Equator. How would this change the mo-
ment of inertia of the Earth? Would the length of the day
(one revolution) increase or decrease?

16. A mouse is initially at rest on a horizontal turntable
mounted on a frictionless vertical axle. If the mouse

15.

11.

Q U E S T I O N S

The net external torque acting on a system is equal to the time rate of change of
its angular momentum:

(11.13)

The z component of angular momentum of a rigid object rotating about a fixed
z axis is

Lz # I) (11.14)

where I is the moment of inertia of the object about the axis of rotation and ) is its an-
gular speed.

The net external torque acting on a rigid object equals the product of its moment
of inertia about the axis of rotation and its angular acceleration:

(11.16)

If the net external torque acting on a system is zero, then the total angular momen-
tum of the system is constant:

Li # Lf (11.18)

Applying this law of conservation of angular momentum to a system whose moment
of inertia changes gives

Ii)i # If )f # constant (11.19)

# !ext # I*

# !ext #
d Ltot

dt
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begins to walk clockwise around the perimeter, what hap-
pens to the turntable? Explain.

17. A cat usually lands on its feet regardless of the position
from which it is dropped. A slow-motion film of a cat
falling shows that the upper half of its body twists in one
direction while the lower half twists in the opposite direc-
tion. (See Figure Q11.17.) Why does this type of rotation
occur?

18. As the cord holding a tether ball winds around a thin
pole, what happens to the angular speed of the ball? 
Explain.

19. If you toss a textbook into the air, rotating it each time
about one of the three axes perpendicular to the textbook,
you will find that it will not rotate smoothly about one of
these axis. (Try placing a strong rubber band around the
book before the toss so it will stay closed.) Its rotation is
stable about those axes having the largest and smallest mo-
ment of inertia but unstable about the axis of intermediate
moment. Try this on your own to find the axis that has this
intermediate moment.

20. A scientist arriving at a hotel asks a bellhop to carry a
heavy suitcase. When the bellhop rounds a corner, the suit-
case suddenly swings away from him for some unknown
reason. The alarmed bellhop drops the suitcase and runs
away. What might be in the suitcase?

Section 11.1 The Vector Product and Torque
1. Given M # 6 î % 2 ĵ $ k̂ and N # 2 î $ ĵ $ 3k̂, calculate

the vector product M " N.

2. The vectors 42.0 cm at 15.0° and 23.0 cm at 65.0° both
start from the origin. Both angles are measured counter-
clockwise from the x axis. The vectors form two sides of a
parallelogram. (a) Find the area of the parallelogram.
(b) Find the length of its longer diagonal.

Two vectors are given by A # $ 3î % 4ĵ and
B # 2î % 3ĵ. Find (a) A " B and (b) the angle between
A and B.

4. Two vectors are given by A # $ 3 î % 7 ĵ $ 4 k̂ and
B # 6 î $ 10 ĵ % 9k̂. Evaluate the quantities (a)
cos$1[A # B/AB] and (b) sin$1["A " B "/AB]. (c) Which
give(s) the angle between the vectors?

5. The wind exerts on a flower the force 0.785 N horizontally
to the east. The stem of the flower is 0.450 m long and tilts
toward the east, making an angle of 14.0° with the vertical.
Find the vector torque of the wind force about the base of
the stem.

6. A student claims that she has found a vector A such that
(2 î $ 3 ĵ % 4 k̂) " A = (4 î % 3 ĵ $ k̂). Do you believe this
claim? Explain.

3.

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide

= coached solution with hints available at http://www.pse6.com = computer useful in solving problem

= paired numerical and symbolic problems

P R O B L E M S

If "A " B " # A # B, what is the angle between A and B?

8. A particle is located at the vector position r # ( î % 3 ĵ) m,
and the force acting on it is F # (3 î % 2 ĵ) N. What is the
torque about (a) the origin and (b) the point having coor-
dinates (0, 6) m?

9. Two forces F1 and F2 act along the two sides of an equilateral
triangle as shown in Figure P11.9. Point O is the intersection
of the altitudes of the triangle. Find a third force F3 to be
applied at B and along BC that will make the total torque

7.
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zero about the point O. What If? Will the total torque
change if F3 is applied not at B but at any other point along
BC ?

10. Use the definition of the vector product and the definitions
of the unit vectors î, ĵ, and k̂ to prove Equations 11.7. You
may assume that the x axis points to the right, the y axis up,
and the z axis toward you (not away from you). This choice
is said to make the coordinate system right-handed.

Section 11.2 Angular Momentum
A light rigid rod 1.00 m in length joins two particles, with
masses 4.00 kg and 3.00 kg, at its ends. The combination
rotates in the xy plane about a pivot through the center of
the rod (Fig. P11.11). Determine the angular momentum
of the system about the origin when the speed of each par-
ticle is 5.00 m/s.

11.

P11.14. During the motion, the supporting wire of length
" maintains the constant angle " with the vertical. Show
that the magnitude of the angular momentum of the bob
about the center of the circle is

15. A particle of mass m moves in a circle of radius R at a con-
stant speed v, as shown in Figure P11.15. If the motion
begins at point Q at time t # 0, determine the angular
momentum of the particle about point P as a function of
time.

L # $ m2g "3 sin4 "

cos " %1/2

12. A 1.50-kg particle moves in the xy plane with a velocity
of v # (4.20 î $ 3.60 ĵ) m/s. Determine the angular mo-
mentum of the particle when its position vector is
r # (1.50 î % 2.20 ĵ) m.

The position vector of a particle of mass 2.00 kg is given
as a function of time by r # (6.00î % 5.00t ĵ) m. Determine
the angular momentum of the particle about the origin, as a
function of time.

14. A conical pendulum consists of a bob of mass m in motion
in a circular path in a horizontal plane as shown in Figure

13.

x

1.0
0 m

3.00
kg

4.00
kg

v

v

y

Figure P11.11

Figure P11.14

16. A 4.00-kg counterweight is attached to a light cord,
which is wound around a spool (refer to Fig. 10.20). The
spool is a uniform solid cylinder of radius 8.00 cm and
mass 2.00 kg. (a) What is the net torque on the system
about the point O? (b) When the counterweight has a
speed v, the pulley has an angular speed ) # v/R. Deter-
mine the total angular momentum of the system about
O. (c) Using the fact that ! # d L/dt and your result
from (b), calculate the acceleration of the counter-
weight.

A particle of mass m is shot with an initial velocity vi mak-
ing an angle " with the horizontal as shown in Figure
P11.17. The particle moves in the gravitational field of the
Earth. Find the angular momentum of the particle about
the origin when the particle is (a) at the origin, (b) at the
highest point of its trajectory, and (c) just before it hits the
ground. (d) What torque causes its angular momentum to
change?

17.
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18. Heading straight toward the summit of Pike’s Peak, an air-
plane of mass 12 000 kg flies over the plains of Kansas at
nearly constant altitude 4.30 km, with a constant velocity
of 175 m/s west. (a) What is the airplane’s vector angular
momentum relative to a wheat farmer on the ground di-
rectly below the airplane? (b) Does this value change as
the airplane continues its motion along a straight line?
(c) What If? What is its angular momentum relative to the
summit of Pike’s Peak?

19. A ball having mass m is fastened at the end of a flagpole
that is connected to the side of a tall building at point P
shown in Figure P11.19. The length of the flagpole is "
and it makes an angle " with the horizontal. If the ball
becomes loose and starts to fall, determine the angular
momentum (as a function of time) of the ball about point
P. Neglect air resistance.

24. Big Ben (Figure P10.40), the Parliament Building tower
clock in London, has hour and minute hands with lengths
of 2.70 m and 4.50 m and masses of 60.0 kg and 100 kg,
respectively. Calculate the total angular momentum of
these hands about the center point. Treat the hands as
long, thin uniform rods.

A particle of mass 0.400 kg is attached to the 100-cm
mark of a meter stick of mass 0.100 kg. The meter stick
rotates on a horizontal, frictionless table with an angular
speed of 4.00 rad/s. Calculate the angular momentum of
the system when the stick is pivoted about an axis
(a) perpendicular to the table through the 50.0-cm mark
and (b) perpendicular to the table through the 0-cm
mark.

26. The distance between the centers of the wheels of a motor-
cycle is 155 cm. The center of mass of the motorcycle, in-
cluding the biker, is 88.0 cm above the ground and
halfway between the wheels. Assume the mass of each
wheel is small compared to the body of the motorcycle.
The engine drives the rear wheel only. What horizontal ac-
celeration of the motorcycle will make the front wheel rise
off the ground?

27. A space station is constructed in the shape of a hollow ring
of mass 5.00 ' 104 kg. Members of the crew walk on a
deck formed by the inner surface of the outer cylindrical
wall of the ring, with radius 100 m. At rest when con-
structed, the ring is set rotating about its axis so that the
people inside experience an effective free-fall acceleration
equal to g. (Figure P11.27 shows the ring together with
some other parts that make a negligible contribution to
the total moment of inertia.) The rotation is achieved by
firing two small rockets attached tangentially to opposite
points on the outside of the ring. (a) What angular mo-
mentum does the space station acquire? (b) How long
must the rockets be fired if each exerts a thrust of 125 N?
(c) Prove that the total torque on the ring, multiplied by
the time interval found in part (b), is equal to the change
in angular momentum, found in part (a). This equality
represents the angular impulse–angular momentum theorem.

25.

Figure P11.27 Problems 27 and 36.

Figure P11.19

20. A fireman clings to a vertical ladder and directs the noz-
zle of a hose horizontally toward a burning building.
The rate of water flow is 6.31 kg/s, and the nozzle speed
is 12.5 m/s. The hose passes vertically between the fire-
man’s feet, which are 1.30 m below the nozzle. Choose
the origin to be inside the hose between the fireman’s
feet. What torque must the fireman exert on the hose?
That is, what is the rate of change of the angular
momentum of the water?

Section 11.3 Angular Momentum of a Rotating 
Rigid Object

21. Show that the kinetic energy of an object rotating about a
fixed axis with angular momentum L # I) can be written
as K # L2/2I.

22. A uniform solid sphere of radius 0.500 m and mass 15.0 kg
turns counterclockwise about a vertical axis through its
center. Find its vector angular momentum when its angu-
lar speed is 3.00 rad/s.

23. A uniform solid disk of mass 3.00 kg and radius 0.200 m
rotates about a fixed axis perpendicular to its face. If
the angular frequency of rotation is 6.00 rad/s, calculate
the angular momentum of the disk when the axis of
rotation (a) passes through its center of mass and 
(b) passes through a point midway between the center and
the rim.

m

"

θ

P
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Section 11.4 Conservation of Angular Momentum
28. A cylinder with moment of inertia I1 rotates about a verti-

cal, frictionless axle with angular speed )i. A second cylin-
der, this one having moment of inertia I2 and initially not
rotating, drops onto the first cylinder (Fig. P11.28). Be-
cause of friction between the surfaces, the two eventually
reach the same angular speed )f . (a) Calculate )f .
(b) Show that the kinetic energy of the system decreases in
this interaction, and calculate the ratio of the final to the
initial rotational energy.

stant. The student pulls the weights inward horizontally to
a position 0.300 m from the rotation axis. (a) Find the new
angular speed of the student. (b) Find the kinetic energy
of the rotating system before and after he pulls the weights
inward.

31. A uniform rod of mass 100 g and length 50.0 cm rotates in
a horizontal plane about a fixed, vertical, frictionless pin
through its center. Two small beads, each of mass 
30.0 g, are mounted on the rod so that they are able to
slide without friction along its length. Initially the beads
are held by catches at positions 10.0 cm on each side of
center, at which time the system rotates at an angular speed
of 20.0 rad/s. Suddenly, the catches are released and the
small beads slide outward along the rod. (a) Find the angu-
lar speed of the system at the instant the beads reach the
ends of the rod. (b) What if the beads fly off the ends?
What is the angular speed of the rod after this occurs?

32. An umbrella consists of a circle of cloth, a thin rod with
the handle at one end and the center of the cloth at the
other end, and several straight uniform ribs hinged to the
top end of the rod and holding the cloth taut. With the
ribs perpendicular to the rod, the umbrella is set rotating
about the rod with an angular speed of 1.25 rad/s. The
cloth is so light and the rod is so thin that they make negli-
gible contributions to the moment of inertia, in compari-
son to the ribs. The spinning umbrella is balanced on its
handle and keeps rotating without friction. Suddenly its
latch breaks and the umbrella partly folds up, until each
rib makes an angle of 22.5° with the rod. What is the final
angular speed of the umbrella?

A 60.0-kg woman stands at the rim of a horizontal
turntable having a moment of inertia of 500 kg · m2 and a
radius of 2.00 m. The turntable is initially at rest and is
free to rotate about a frictionless, vertical axle through its
center. The woman then starts walking around the rim
clockwise (as viewed from above the system) at a constant
speed of 1.50 m/s relative to the Earth. (a) In what direc-
tion and with what angular speed does the turntable
rotate? (b) How much work does the woman do to set her-
self and the turntable into motion?

34. A puck of mass 80.0 g and radius 4.00 cm slides along an
air table at a speed of 1.50 m/s as shown in Figure
P11.34a. It makes a glancing collision with a second puck
of radius 6.00 cm and mass 120 g (initially at rest) such
that their rims just touch. Because their rims are coated
with instant-acting glue, the pucks stick together and spin
after the collision (Fig. P11.34b). (a) What is the angular
momentum of the system relative to the center of mass?
(b) What is the angular speed about the center of mass?

33.

Figure P11.28

Figure P11.30

I2

ωi
ωf

I1

Before After

ω
ω

(a) (b)

ω iω ω fω

29. A playground merry-go-round of radius R # 2.00 m has a
moment of inertia I # 250 kg · m2 and is rotating at
10.0 rev/min about a frictionless vertical axle. Facing the
axle, a 25.0-kg child hops onto the merry-go-round and
manages to sit down on the edge. What is the new angular
speed of the merry-go-round?

30. A student sits on a freely rotating stool holding two
weights, each of mass 3.00 kg (Figure P11.30). When his
arms are extended horizontally, the weights are 1.00 m
from the axis of rotation and he rotates with an angular
speed of 0.750 rad/s. The moment of inertia of the stu-
dent plus stool is 3.00 kg · m2 and is assumed to be con-

Figure P11.34
(b)(a)

1.50 m/s
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Figure P11.37

Figure P11.35

moment when the sign is vertical and moving to the left, a
snowball of mass 400 g, traveling horizontally with a veloc-
ity of 160 cm/s to the right, strikes perpendicularly the
lower edge of the sign and sticks there. (a) Calculate the 
angular speed of the sign immediately before the impact.
(b) Calculate its angular speed immediately after the im-
pact. (c) The spattered sign will swing up through what
maximum angle?

39. Suppose a meteor of mass 3.00 ' 1013 kg, moving at
30.0 km/s relative to the center of the Earth, strikes the
Earth. What is the order of magnitude of the maximum
possible decrease in the angular speed of the Earth due to
this collision? Explain your answer.

Section 11.5 The Motion of Gyroscopes and Tops
40. A spacecraft is in empty space. It carries on board a gyro-

scope with a moment of inertia of Ig # 20.0 kg & m2 about
the axis of the gyroscope. The moment of inertia of the
spacecraft around the same axis is Is # 5.00 ' 105 kg & m2.
Neither the spacecraft nor the gyroscope is originally ro-
tating. The gyroscope can be powered up in a negligible
period of time to an angular speed of 100 s$1. If the orien-
tation of the spacecraft is to be changed by 30.0°, for how
long should the gyroscope be operated?

41. The angular momentum vector of a precessing gyroscope
sweeps out a cone, as in Figure 11.14b. Its angular speed,
called its precessional frequency, is given by )p # +/L,
where + is the magnitude of the torque on the gyroscope
and L is the magnitude of its angular momentum. In the
motion called precession of the equinoxes, the Earth’s axis of
rotation precesses about the perpendicular to its orbital
plane with a period of 2.58 ' 104 yr. Model the Earth as a
uniform sphere and calculate the torque on the Earth that
is causing this precession.

Section 11.6 Angular Momentum as a Fundamental
Quantity

42. In the Bohr model of the hydrogen atom, the electron
moves in a circular orbit of radius 0.529 ' 10$10 m around
the proton. Assuming the orbital angular momentum of the
electron is equal to h/2,, calculate (a) the orbital speed of
the electron, (b) the kinetic energy of the electron, and
(c) the angular frequency of the electron’s motion.

Additional Problems

43. We have all complained that there aren’t enough hours in
a day. In an attempt to change that, suppose that all the
people in the world line up at the equator, and all start
running east at 2.50 m/s relative to the surface of the
Earth. By how much does the length of a day increase? As-
sume that the world population is 5.50 ' 109 people with
an average mass of 70.0 kg each, and that the Earth is a
solid homogeneous sphere. In addition, you may use the
approximation 1/(1 $ x) & 1 % x for small x.

44. A skateboarder with his board can be modeled as a particle
of mass 76.0 kg, located at his center of mass. As shown in
Figure P8.67 on page 248, the skateboarder starts from rest
in a crouching position at one lip of a half-pipe (point !).
The half-pipe forms one half of a cylinder of radius 6.80 m

A wooden block of mass M resting on a frictionless horizon-
tal surface is attached to a rigid rod of length " and of neg-
ligible mass (Fig. P11.35). The rod is pivoted at the other
end. A bullet of mass m traveling parallel to the horizontal
surface and perpendicular to the rod with speed v hits the
block and becomes embedded in it. (a) What is the angular
momentum of the bullet–block system? (b) What fraction
of the original kinetic energy is lost in the collision?

35.

36. A space station shaped like a giant wheel has a radius of
100 m and a moment of inertia of 5.00 ' 108 kg · m2. A
crew of 150 is living on the rim, and the station’s rotation
causes the crew to experience an apparent free-fall accel-
eration of g (Fig. P11.27). When 100 people move to the
center of the station for a union meeting, the angular
speed changes. What apparent free-fall acceleration is
experienced by the managers remaining at the rim? As-
sume that the average mass for each inhabitant is 65.0 kg.

37. A wad of sticky clay with mass m and velocity vi is fired at a
solid cylinder of mass M and radius R (Figure P11.37).
The cylinder is initially at rest and is mounted on a fixed
horizontal axle that runs through its center of mass. The
line of motion of the projectile is perpendicular to the
axle and at a distance d - R from the center. (a) Find the
angular speed of the system just after the clay strikes and
sticks to the surface of the cylinder. (b) Is mechanical
energy of the clay–cylinder system conserved in this
process? Explain your answer.

M

"

v

MR

vim

d

38. A thin uniform rectangular sign hangs vertically above the
door of a shop. The sign is hinged to a stationary horizon-
tal rod along its top edge. The mass of the sign is 2.40 kg
and its vertical dimension is 50.0 cm. The sign is swinging
without friction, becoming a tempting target for children
armed with snowballs. The maximum angular displace-
ment of the sign is 25.0° on both sides of the vertical. At a
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with its axis horizontal. On his descent, the skateboarder
moves without friction and maintains his crouch, so that
his center of mass moves through one quarter of a circle of
radius 6.30 m. (a) Find his speed at the bottom of the half-
pipe (point "). (b) Find his angular momentum about the
center of curvature. (c) Immediately after passing point ",
he stands up and raises his arms, lifting his center of gravity
from 0.500 m to 0.950 m above the concrete (point #).
Explain why his angular momentum is constant in this ma-
neuver, while his linear momentum and his mechanical en-
ergy are not constant. (d) Find his speed immediately after
he stands up, when his center of mass is moving in a quar-
ter circle of radius 5.85 m. (e) What work did the skate-
boarder’s legs do on his body as he stood up? Next, the
skateboarder glides upward with his center of mass moving
in a quarter circle of radius 5.85 m. His body is horizontal
when he passes point $, the far lip of the half-pipe. 
(f) Find his speed at this location. At last he goes ballistic,
twisting around while his center of mass moves vertically.
(g) How high above point $ does he rise? (h) Over what
time interval is he airborne before he touches down, facing
downward and again in a crouch, 2.34 m below the level of
point $? (i) Compare the solution to this problem with
the solution to Problem 8.67. Which is more accurate?
Why? (Caution: Do not try this yourself without the re-
quired skill and protective equipment, or in a drainage
channel to which you do not have legal access.)

45. A rigid, massless rod has three particles with equal masses
attached to it as shown in Figure P11.45. The rod is free to
rotate in a vertical plane about a frictionless axle perpendic-
ular to the rod through the point P, and is released from
rest in the horizontal position at t # 0. Assuming m and d
are known, find (a) the moment of inertia of the system
(rod plus particles) about the pivot, (b) the torque acting
on the system at t # 0, (c) the angular acceleration of the
system at t # 0, (d) the linear acceleration of the particle la-
beled 3 at t # 0, (e) the maximum kinetic energy of the sys-
tem, (f) the maximum angular speed reached by the rod,
(g) the maximum angular momentum of the system, and
(h) the maximum speed reached by the particle labeled 2.

d

2d
3 mmm

P

d
1 2 3

Figure P11.45

block. (a) Find the torque that the drive motor must 
provide as a function of time, while the block is sliding.
(b) Find the value of this torque at t # 440 s, just before
the sliding block finishes its motion. (c) Find the power
that the drive motor must deliver as a function of time.
(d) Find the value of the power when the sliding block is
just reaching the end of the slot. (e) Find the string ten-
sion as a function of time. (f) Find the work done by the
drive motor during the 440-s motion. (g) Find the work
done by the string brake on the sliding block. (h) Find
the total work on the system consisting of the disk and
the sliding block.

Figure P11.46

A

B

47. Comet Halley moves about the Sun in an elliptical orbit, with
its closest approach to the Sun being about 0.590 AU and
its greatest distance 35.0 AU (1 AU # the Earth–Sun dis-
tance). If the comet’s speed at closest approach is 54.0 km/s,
what is its speed when it is farthest from the Sun? The angu-
lar momentum of the comet about the Sun is conserved, be-
cause no torque acts on the comet. The gravitational force
exerted by the Sun has zero moment arm.

48. A light rope passes over a light, frictionless pulley. One end
is fastened to a bunch of bananas of mass M, and a monkey
of mass M clings to the other end (Fig. P11.48). The mon-

Figure P11.48

M

M

46. A 100-kg uniform horizontal disk of radius 5.50 m turns
without friction at 2.50 rev/s on a vertical axis through 
its center, as in Figure P11.46. A feedback mechanism
senses the angular speed of the disk, and a drive motor 
at A maintains the angular speed constant while a 
1.20 kg block on top of the disk slides outward in a ra-
dial slot. The 1.20-kg block starts at the center of the 
disk at time t # 0 and moves outward with constant 
speed 1.25 cm/s relative to the disk until it reaches the
edge at t # 440 s. The sliding block feels no friction. Its
motion is constrained to have constant radial speed by a
brake at B, producing tension in a light string tied to the
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key climbs the rope in an attempt to reach the bananas.
(a) Treating the system as consisting of the monkey, ba-
nanas, rope, and pulley, evaluate the net torque about the
pulley axis. (b) Using the results of (a), determine the total
angular momentum about the pulley axis and describe the
motion of the system. Will the monkey reach the bananas?

A puck of mass m is attached to a cord passing through a
small hole in a frictionless, horizontal surface (Fig. P11.49).
The puck is initially orbiting with speed vi in a circle of ra-
dius ri. The cord is then slowly pulled from below, decreas-
ing the radius of the circle to r. (a) What is the speed of the
puck when the radius is r? (b) Find the tension in the cord
as a function of r. (c) How much work W is done in moving
m from ri to r ? (Note: The tension depends on r.) (d) Ob-
tain numerical values for v, T, and W when r # 0.100 m,
m # 50.0 g, ri # 0.300 m, and vi # 1.50 m/s.

49.

Two astronauts (Fig. P11.51), each having a mass of
75.0 kg, are connected by a 10.0-m rope of negligible mass.

51.

50. A projectile of mass m moves to the right with a speed vi
(Fig. P11.50a). The projectile strikes and sticks to the end
of a stationary rod of mass M, length d, pivoted about a
frictionless axle through its center (Fig. P11.50b). (a) Find
the angular speed of the system right after the collision.
(b) Determine the fractional loss in mechanical energy
due to the collision. 

ri

vi

m

Figure P11.49

Figure P11.51 Problems 51 and 52.

Figure P11.50

They are isolated in space, orbiting their center of mass at
speeds of 5.00 m/s. Treating the astronauts as particles,
calculate (a) the magnitude of the angular momentum of
the system and (b) the rotational energy of the system. By
pulling on the rope, one of the astronauts shortens the dis-
tance between them to 5.00 m. (c) What is the new angu-
lar momentum of the system? (d) What are the astronauts’
new speeds? (e) What is the new rotational energy of the
system? (f) How much work does the astronaut do in
shortening the rope?

vi

(a)

O

(b)

d

m

O

ω

d

CM

Figure P11.54
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52. Two astronauts (Fig. P11.51), each having a mass M, are con-
nected by a rope of length d having negligible mass. They
are isolated in space, orbiting their center of mass at speeds
v. Treating the astronauts as particles, calculate (a) the mag-
nitude of the angular momentum of the system and
(b) the rotational energy of the system. By pulling on the
rope, one of the astronauts shortens the distance between
them to d/2. (c) What is the new angular momentum of the
system? (d) What are the astronauts’ new speeds? (e) What
is the new rotational energy of the system? (f) How much
work does the astronaut do in shortening the rope?

53. Global warming is a cause for concern because even small
changes in the Earth’s temperature can have significant
consequences. For example, if the Earth’s polar ice caps
were to melt entirely, the resulting additional water in the
oceans would flood many coastal cities. Would it apprecia-
bly change the length of a day? Calculate the resulting
change in the duration of one day. Model the polar ice as
having mass 2.30 ' 1019 kg and forming two flat disks of
radius 6.00 ' 105 m. Assume the water spreads into an un-
broken thin spherical shell after it melts.

54. A solid cube of wood of side 2a and mass M is resting on a
horizontal surface. The cube is constrained to rotate about
an axis AB (Fig. P11.54). A bullet of mass m and speed v is
shot at the face opposite ABCD at a height of 4a/3. The
bullet becomes embedded in the cube. Find the minimum
value of v required to tip the cube so that it falls on face
ABCD. Assume m -- M.
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Figure P11.56 Problems 56 and 57.

55. A solid cube of side 2a and mass M is sliding on a friction-
less surface with uniform velocity v as in Figure P11.55a. It
hits a small obstacle at the end of the table, which causes
the cube to tilt as in Figure P11.55b. Find the minimum
value of v such that the cube falls off the table. Note that
the moment of inertia of the cube about an axis along one
of its edges is 8Ma2/3. (Hint: The cube undergoes an in-
elastic collision at the edge.)

Figure P11.55

56. A uniform solid disk is set into rotation with an an-
gular speed )i about an axis through its center. While still

2a

ω

Mg
M

v

(a)

(b)

rotating at this speed, the disk is placed into contact with
a horizontal surface and released as in Figure P11.56.
(a) What is the angular speed of the disk once pure
rolling takes place? (b) Find the fractional loss in kinetic
energy from the time the disk is released until pure
rolling occurs. (Hint: Consider torques about the center
of mass.)

Suppose a solid disk of radius R is given an angular speed
)i about an axis through its center and then lowered to a
horizontal surface and released, as in Problem 56 (Fig.
P11.56). Furthermore, assume that the coefficient of fric-
tion between disk and surface is 1. (a) Show that the time
interval before pure rolling motion occurs is R)i/31g.
(b) Show that the distance the disk travels before pure
rolling occurs is R2)i

2/181g.

Answers to Quick Quizzes
11.1 (d). This result can be obtained by replacing B " A with

$ (A " B), according to Equation 11.4.

11.2 (d). Because of the sin " function, " A " B " is either
equal to or smaller than AB, depending on the angle ".

11.3 (a). If p and r are parallel or antiparallel, the angular
momentum is zero. For a nonzero angular momentum,
the linear momentum vector must be offset from the rota-
tion axis.

11.4 (c). The angular momentum is the product of the linear
momentum and the perpendicular distance from the ro-
tation axis to the line along which the linear momentum
vector lies.

11.5 (b). The hollow sphere has a larger moment of inertia
than the solid sphere.

11.6 (a). The diver is an isolated system, so the product I) re-
mains constant. Because her moment of inertia decreases,
her angular speed increases.

11.7 (a). As the moment of inertia of the diver decreases, the
angular speed increases by the same factor. For example,
if I goes down by a factor of 2, ) goes up by a factor of 2.
The rotational kinetic energy varies as the square of ). If
I is halved, )2 increases by a factor of 4 and the energy in-
creases by a factor of 2.

57.
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! Balanced Rock in Arches National Park, Utah, is a 3 000 000-kg boulder that has been
in stable equilibrium for several millennia. It had a smaller companion nearby, called “Chip
Off the Old Block,” which fell during the winter of 1975. Balanced Rock appeared in an early
scene of the movie Indiana Jones and the Last Crusade. We will study the conditions under
which an object is in equilibrium in this chapter. (John W. Jewett, Jr.)

Static Equilibrium and Elasticity

Chapter 12

362

CHAPTE R OUTL I N E

12.1 The Conditions for Equilibrium

12.2 More on the Center of Gravity

12.3 Examples of Rigid Objects in
Static Equilibrium

12.4 Elastic Properties of Solids
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In Chapters 10 and 11 we studied the dynamics of rigid objects. Part of this current
chapter addresses the conditions under which a rigid object is in equilibrium. The
term equilibrium implies either that the object is at rest or that its center of mass
moves with constant velocity relative to the observer. We deal here only with the for-
mer case, in which the object is in static equilibrium. Static equilibrium represents a
common situation in engineering practice, and the principles it involves are of
special interest to civil engineers, architects, and mechanical engineers. If you are an
engineering student, you will undoubtedly take an advanced course in statics in the
future.

The last section of this chapter deals with how objects deform under load condi-
tions. An elastic object returns to its original shape when the deforming forces are re-
moved. Several elastic constants are defined, each corresponding to a different type of
deformation.

12.1 The Conditions for Equilibrium

In Chapter 5 we found that one necessary condition for equilibrium is that the net
force acting on an object must be zero. If the object is modeled as a particle, then this
is the only condition that must be satisfied for equilibrium. The situation with real (ex-
tended) objects is more complex, however, because these objects often cannot be mod-
eled as particles. For an extended object to be in static equilibrium, a second condition
must be satisfied. This second condition involves the net torque acting on the ex-
tended object.

Consider a single force F acting on a rigid object, as shown in Figure 12.1. The
effect of the force depends on the location of its point of application P. If r is the
position vector of this point relative to O, the torque associated with the force F about
O is given by Equation 11.1:

! ! r " F

Recall from the discussion of the vector product in Section 11.1 that the vector ! is per-
pendicular to the plane formed by r and F. You can use the right-hand rule to deter-
mine the direction of ! as shown in Figure 11.2. Hence, in Figure 12.1 ! is directed
toward you out of the page.

As you can see from Figure 12.1, the tendency of F to rotate the object about an
axis through O depends on the moment arm d, as well as on the magnitude of F.
Recall that the magnitude of ! is Fd (see Eq. 10.19). According to Equation 10.21, the
net torque on a rigid object will cause it to undergo an angular acceleration.

In the current discussion, we want to look at those rotational situations in which
the angular acceleration of a rigid object is zero. Such an object is in rotational equi-
librium. Because !! ! I" for rotation about a fixed axis, the necessary condition for
rotational equilibrium is that the net torque about any axis must be zero. We now

F θ P

r d

O

Figure 12.1 A single force F acts
on a rigid object at the point P.
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have two necessary conditions for equilibrium of an object:

1. The resultant external force must equal zero:

(12.1)

2. The resultant external torque about any axis must be zero:

(12.2)

The first condition is a statement of translational equilibrium; it tells us that the linear
acceleration of the center of mass of the object must be zero when viewed from an iner-
tial reference frame. The second condition is a statement of rotational equilibrium and
tells us that the angular acceleration about any axis must be zero. In the special case of
static equilibrium, which is the main subject of this chapter, the object is at rest rela-
tive to the observer and so has no linear or angular speed (that is, vCM ! 0 and # ! 0).

! ! ! 0

! F ! 0

The two vector expressions given by Equations 12.1 and 12.2 are equivalent, in gen-
eral, to six scalar equations: three from the first condition for equilibrium, and three
from the second (corresponding to x, y, and z components). Hence, in a complex sys-
tem involving several forces acting in various directions, you could be faced with solv-
ing a set of equations with many unknowns. Here, we restrict our discussion to situa-
tions in which all the forces lie in the xy plane. (Forces whose vector representations
are in the same plane are said to be coplanar.) With this restriction, we must deal with
only three scalar equations. Two of these come from balancing the forces in the x and
y directions. The third comes from the torque equation—namely, that the net torque
about a perpendicular axis through any point in the xy plane must be zero. Hence, the
two conditions of equilibrium provide the equations

(12.3)

where the location of the axis of the torque equation is arbitrary, as we now show.
Regardless of the number of forces that are acting, if an object is in translational

equilibrium and if the net torque is zero about one axis, then the net torque must also
be zero about any other axis. The axis can pass through a point that is inside or outside
the boundaries of the object. Consider an object being acted on by several forces such
that the resultant force F ! F1 $ F2 $ F3 $ % % % ! 0. Figure 12.4 describes this situa-
tion (for clarity, only four forces are shown). The point of application of F1 relative to O
is specified by the position vector r1. Similarly, the points of application of F2, F3, . . .
are specified by r2, r3, . . . (not shown). The net torque about an axis through O is

Now consider another arbitrary point O& having a position vector r& relative to O.
The point of application of F1 relative to O& is identified by the vector r1 ' r&. Like-

! !O ! r1 " F1 $ r2 " F2 $ r3 " F3 $  % % %

!

! Fx ! 0  ! Fy ! 0  ! (z ! 0

! PITFALL PREVENTION
12.1 Zero Torque
Zero net torque does not mean
an absence of rotational motion.
An object which is rotating at a
constant angular speed can be
under the influence of a net
torque of zero. This is analogous
to the translational situation—
zero net force does not mean an
absence of translational motion.

Quick Quiz 12.1 Consider the object subject to the two forces in Figure
12.2. Choose the correct statement with regard to this situation. (a) The object is in
force equilibrium but not torque equilibrium. (b) The object is in torque equilibrium
but not force equilibrium. (c) The object is in both force and torque equilibrium.
(d) The object is in neither force nor torque equilibrium.

Quick Quiz 12.2 Consider the object subject to the three forces in Figure
12.3. Choose the correct statement with regard to this situation. (a) The object is in
force equilibrium but not torque equilibrium. (b) The object is in torque equilibrium
but not force equilibrium. (c) The object is in both force and torque equilibrium.
(d) The object is in neither force nor torque equilibrium.

F
d

d

CM

– F

Figure 12.2 (Quick Quiz 12.1)
Two forces of equal magnitude are
applied at equal distances from the
center of mass of a rigid object.

Figure 12.3 (Quick Quiz 12.2)
Three forces act on an object. No-
tice that the lines of action of all
three forces pass through a com-
mon point.

F1

F2

F3
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wise, the point of application of F2 relative to O& is r2 ' r&, and so forth. Therefore, the
torque about an axis through O& is

Because the net force is assumed to be zero (given that the object is in translational
equilibrium), the last term vanishes, and we see that the torque about an axis through
O& is equal to the torque about an axis through O. Hence, if an object is in transla-
tional equilibrium and the net torque is zero about one axis, then the net torque
must be zero about any other axis.

12.2 More on the Center of Gravity

We have seen that the point at which a force is applied can be critical in determining
how an object responds to that force. For example, two equal-magnitude but oppo-
sitely directed forces result in equilibrium if they are applied at the same point on an
object. However, if the point of application of one of the forces is moved, so that the
two forces no longer act along the same line of action, then the object undergoes an
angular acceleration.

Whenever we deal with a rigid object, one of the forces we must consider is the
gravitational force acting on it, and we must know the point of application of this
force. As we learned in Section 9.5, associated with every object is a special point called
its center of gravity. All the various gravitational forces acting on all the various mass el-
ements of the object are equivalent to a single gravitational force acting through this
point. Thus, to compute the torque due to the gravitational force on an object of mass
M, we need only consider the force Mg acting at the center of gravity of the object.

How do we find this special point? As we mentioned in Section 9.5, if we assume
that g is uniform over the object, then the center of gravity of the object coincides with
its center of mass. To see that this is so, consider an object of arbitrary shape lying in
the xy plane, as illustrated in Figure 12.5. Suppose the object is divided into a large
number of particles of masses m1, m2, m3, . . . having coordinates (x1, y1), (x2, y2),
(x3, y3), . . . . In Equation 9.28 we defined the x coordinate of the center of mass of
such an object to be

We use a similar equation to define the y coordinate of the center of mass, replacing
each x with its y counterpart.

Let us now examine the situation from another point of view by considering the
gravitational force exerted on each particle, as shown in Figure 12.6. Each particle con-
tributes a torque about the origin equal in magnitude to the particle’s weight mg multi-
plied by its moment arm. For example, the magnitude of the torque due to the force
m1g1 is m1g1x1, where g1 is the value of the gravitational acceleration at the position of
the particle of mass m1. We wish to locate the center of gravity, the point at which appli-
cation of the single gravitational force Mg (where M ! m1 $ m2 $ m3 $ % % % is the total
mass of the object) has the same effect on rotation as does the combined effect of all
the individual gravitational forces migi. Equating the torque resulting from Mg acting at
the center of gravity to the sum of the torques acting on the individual particles gives

This expression accounts for the fact that the value of g can in general vary over the
object. If we assume uniform g over the object (as is usually the case), then the

(m1g1 $ m2g2 $ m3g3 $ % % %)xCG ! m1g1x1 $ m2g2x2 $ m3g3x3 $ % % %

xCM !
m1x1 $ m2x2 $ m3x3 $ % % %

m1 $ m2 $ m3 $ % % %
!

!
i

 mixi

!
i

 mi

! r1 " F1 $ r2 " F2 $ r3 " F3 $ % % % ' r& " (F1 $ F2 $ F3 $ % % %)
! !O& ! (r1 ' r&) " F1 $ (r2 ' r&) " F2 $ (r3 ' r&) " (F3 $ % % %

Figure 12.4 Construction showing
that if the net torque is zero about
origin O, it is also zero about any
other origin, such as O&.

Figure 12.6 The center of gravity
of an object is located at the center
of mass if g is constant over the
object.

Figure 12.5 An object can be di-
vided into many small particles
each having a specific mass and
specific coordinates. These parti-
cles can be used to locate the cen-
ter of mass.
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g terms cancel and we obtain

(12.4)

Comparing this result with Equation 9.28, we see that the center of gravity is located
at the center of mass as long as g is uniform over the entire object. In several ex-
amples presented in the next section, we will deal with homogeneous, symmetric ob-
jects. The center of gravity for any such object coincides with its geometric center.

xCG !
m1x1 $ m2x2 $ m3x3 $ % % %

m1 $ m2 $ m3 $ % % %

12.3 Examples of Rigid Objects 
in Static Equilibrium

The photograph of the one-bottle wine holder in Figure 12.7 shows one example of a
balanced mechanical system that seems to defy gravity. For the system (wine holder
plus bottle) to be in equilibrium, the net external force must be zero (see Eq. 12.1)
and the net external torque must be zero (see Eq. 12.2). The second condition can be
satisfied only when the center of gravity of the system is directly over the support point.

When working static equilibrium problems, you must recognize all the external
forces acting on the object. Failure to do so results in an incorrect analysis. When ana-
lyzing an object in equilibrium under the action of several external forces, use the fol-
lowing procedure.
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Quick Quiz 12.3 A meter stick is supported on a fulcrum at the 25-cm mark.
A 0.50-kg object is hung from the zero end of the meter stick, and the stick is balanced
horizontally. The mass of the meter stick is (a) 0.25 kg (b) 0.50 kg (c) 0.75 kg (d) 1.0 kg
(e) 2.0 kg (f) impossible to determine.

Figure 12.7 This one-bottle wine
holder is a surprising display of sta-
tic equilibrium. The center of grav-
ity of the system (bottle plus
holder) is directly over the support
point. 

P R O B L E M - S O LV I N G  S T R AT E GY

OBJECTS IN STATIC EQUILIBRIUM
• Draw a simple, neat diagram of the system.

• Isolate the object being analyzed. Draw a free-body diagram. Then show and
label all external forces acting on the object, indicating where those forces are
applied. Do not include forces exerted by the object on its surroundings. (For
systems that contain more than one object, draw a separate free-body diagram
for each one.) Try to guess the correct direction for each force.

• Establish a convenient coordinate system and find the components of the forces
on the object along the two axes. Then apply the first condition for equilibrium.
Remember to keep track of the signs of the various force components.

• Choose a convenient axis for calculating the net torque on the object.
Remember that the choice of origin for the torque equation is arbitrary;
therefore choose an origin that simplifies your calculation as much as possible.
Note that a force that acts along a line passing through the point chosen as the
origin gives zero contribution to the torque and so can be ignored.

• The first and second conditions for equilibrium give a set of linear equations
containing several unknowns, and these equations can be solved
simultaneously. If the direction you selected for a force leads to a negative
value, do not be alarmed; this merely means that the direction of the force is
the opposite of what you guessed.
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Example 12.1 The Seesaw Revisited

A seesaw consisting of a uniform board of mass M and
length ! supports a father and daughter with masses mf and
md, respectively, as shown in Figure 12.8. The support
(called the fulcrum) is under the center of gravity of the
board, the father is a distance d from the center, and the
daughter is a distance !/2 from the center.

(A) Determine the magnitude of the upward force n ex-
erted by the support on the board.

Solution First note that, in addition to n, the external
forces acting on the board are the downward forces exerted
by each person and the gravitational force acting on the
board. We know that the board’s center of gravity is at its
geometric center because we are told that the board is uni-
form. Because the system is in static equilibrium, the net
force on the board is zero. Thus, the upward force n must
balance all the downward forces. From !Fy ! 0, and defin-
ing upward as the positive y direction, we have

(The equation !Fx ! 0 also applies, but we do not need to
consider it because no forces act horizontally on the
board.)

(B) Determine where the father should sit to balance the
system.

Solution To find this position, we must invoke the second
condition for equilibrium. If we take an axis perpendicular

mf g $ mdg $ Mgn !

n ' mf g ' mdg ' Mg ! 0

to the page through the center of gravity of the board as the
axis for our torque equation, the torques produced by n and
the gravitational force acting on the board are zero. We see
from !( ! 0 that

This is the same result that we obtained in Example 11.6 by
evaluating the angular acceleration of the system and setting
the angular acceleration equal to zero.

What If? Suppose we had chosen another point through
which the rotation axis were to pass. For example, suppose
the axis is perpendicular to the page and passes through the
location of the father. Does this change the results to parts
(A) and (B)?

Answer Part (A) is unaffected because the calculation of
the net force does not involve a rotation axis. In part (B), we
would conceptually expect there to be no change if a differ-
ent rotation axis is chosen because the second condition of
equilibrium claims that the torque is zero about any rotation
axis.

Let us verify this mathematically. Recall that the sign of
the torque associated with a force is positive if that force
tends to rotate the system counterclockwise, while the sign
of the torque is negative if the force tends to rotate the sys-
tem clockwise. In the case of a rotation axis passing through
the location of the father, !( ! 0 yields

From part (A) we know that n ! mf g $ mdg $ Mg. Thus, we
can substitute this expression for n and solve for d:

This result is in agreement with the one we obtained in
part (B).

d ! " md

mf
# 

1
2 !

(mfg)(d) ' (mdg)" 
!

2 # ! 0

(mfg $ mdg $ Mg)(d) ' (Mg)(d) ' (mdg)"d $  
!

2
# ! 0

n(d) ' (Mg)(d) ' (mdg)(d $ !/2) ! 0

" md

mf
# 12 

!d !

(mf g)(d) ' (mdg) 
!

2
! 0

Example 12.2 A Weighted Hand

A person holds a 50.0-N sphere in his hand. The forearm is
horizontal, as shown in Figure 12.9a. The biceps muscle is
attached 3.00 cm from the joint, and the sphere is 35.0 cm
from the joint. Find the upward force exerted by the biceps
on the forearm and the downward force exerted by the
upper arm on the forearm and acting at the joint. Neglect
the weight of the forearm.

Solution We simplify the situation by modeling the forearm
as a bar as shown in Figure 12.9b, where F is the upward force
exerted by the biceps and R is the downward force exerted by
the upper arm at the joint. From the first condition for equi-
librium, we have, with upward as the positive y direction,

(1)   ! Fy ! F ' R ' 50.0 N ! 0

!/2

n

d

Mg
mf g md g

Figure 12.8 (Example 12.1) A balanced system.
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From the second condition for equilibrium, we know
that the sum of the torques about any point must be zero.
With the joint O as the axis, we have

F(3.00 cm) ' (50.0 N)(35.0 cm) ! 0
! ( ! Fd ' mg ! ! 0

F !

This value for F can be substituted into Equation (1) to give
R ! 533 N. As this example shows, the forces at joints and in
muscles can be extremely large.

583 N

!
d

Biceps

(a)

O

mg = 50.0 N
d = 3.00 cm
! = 35.0 cm

Figure 12.9 (Example 12.2) (a) The biceps muscle pulls upward with a force F that is
essentially at a right angle to the forearm. (b) The mechanical model for the system de-
scribed in part (a). 

Example 12.3 Standing on a Horizontal Beam

A uniform horizontal beam with a length of 8.00 m and a
weight of 200 N is attached to a wall by a pin connection. Its
far end is supported by a cable that makes an angle of 53.0°
with the beam (Fig. 12.10a). If a 600-N person stands 2.00 m
from the wall, find the tension in the cable as well as the
magnitude and direction of the force exerted by the wall on
the beam.

Solution Conceptualize this problem by imagining that the
person in Figure 12.10 moves outward on the beam. It seems
reasonable that the farther he moves outward, the larger the
torque that he applies about the pivot and the larger the ten-
sion in the cable must be to balance this torque. Because the
system is at rest, we categorize this as a static equilibrium
problem. We begin to analyze the problem by identifying all
the external forces acting on the beam: the 200-N gravita-
tional force, the force T exerted by the cable, the force R ex-
erted by the wall at the pivot, and the 600-N force that the
person exerts on the beam. These forces are all indicated in
the free-body diagram for the beam shown in Figure 12.10b.
When we assign directions for forces, it is sometimes helpful
to imagine what would happen if a force were suddenly re-
moved. For example, if the wall were to vanish suddenly, the
left end of the beam would move to the left as it begins to fall.
This tells us that the wall is not only holding the beam up but
is also pressing outward against it. Thus, we draw the vector R
as shown in Figure 12.10b. If we resolve T and R into horizon-
tal and vertical components, as shown in Figure 12.10c, and
apply the first condition for equilibrium, we obtain

(2)   ! Fy ! R  sin ) $ T sin 53.0* ' 600 N ' 200 N ! 0

(1)           ! Fx ! R cos ) ' T cos 53.0* ! 0

where we have chosen rightward and upward as our posi-
tive directions. Because R, T, and ) are all unknown, we
cannot obtain a solution from these expressions alone.
(The number of simultaneous equations must equal the
number of unknowns for us to be able to solve for the un-
knowns.)

Now let us invoke the condition for rotational equilib-
rium. A convenient axis to choose for our torque equation
is the one that passes through the pin connection. The
feature that makes this point so convenient is that the
force R and the horizontal component of T both have a
moment arm of zero; hence, these forces provide no
torque about this point. Recalling our counterclockwise-
equals-positive convention for the sign of the torque about
an axis and noting that the moment arms of the 600-N,
200-N, and T sin 53.0° forces are 2.00 m, 4.00 m, and
8.00 m, respectively, we obtain

Thus, the torque equation with this axis gives us one of the
unknowns directly! We now substitute this value into Equa-
tions (1) and (2) and find that

R cos ) ! 188 N

R sin ) ! 550 N

We divide the second equation by the first and, recalling the
trigonometric identity sin )/cos ) ! tan ), we obtain

tan ) !
550 N
188 N

! 2.93

 313 NT !

' (200 N)(4.00 m) ! 0

(3)   !( ! (T  sin  53.0*)(8.00 m) ' (600 N)(2.00 m)

O

!

d

R
mg

F

(b)

Interactive
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This positive value indicates that our estimate of the direc-
tion of R was accurate. 

Finally,

To finalize this problem, note that if we had selected
some other axis for the torque equation, the solution might
differ in the details, but the answers would be the same. For
example, if we had chosen an axis through the center of
gravity of the beam, the torque equation would involve both
T and R. However, this equation, coupled with Equations
(1) and (2), could still be solved for the unknowns. Try it!

When many forces are involved in a problem of this na-
ture, it is convenient in your analysis to set up a table. For in-
stance, for the example just given, we could construct the
following table. Setting the sum of the terms in the last col-
umn equal to zero represents the condition of rotational
equilibrium.

580 NR !
188 N
cos )

!
188 N

cos 71.1*
!

71.1*) !

What If? What if the person walks farther out on the beam?
Does T change? Does R change? Does # change?

Answer T must increase because the weight of the person ex-
erts a larger torque about the pin connection, which must be
countered by a larger torque in the opposite direction due to
an increased value of T. If T increases, the vertical component
of R decreases to maintain force equilibrium in the vertical di-
rection. But force equilibrium in the horizontal direction re-
quires an increased horizontal component of R to balance the
horizontal component of the increased T. This suggests that )
will become smaller, but it is hard to predict what will happen
to R. Problem 26 allows you to explore the behavior of R.

Example 12.4 The Leaning Ladder

A uniform ladder of length ! rests against a smooth, vertical
wall (Fig. 12.11a). If the mass of the ladder is m and the co-
efficient of static friction between the ladder and the
ground is +s ! 0.40, find the minimum angle )min at which
the ladder does not slip.

Solution The free-body diagram showing all the external
forces acting on the ladder is illustrated in Figure 12.11b.
The force exerted by the ground on the ladder is the vector
sum of a normal force n and the force of static friction fs.

The reaction force P exerted by the wall on the ladder
is horizontal because the wall is frictionless. Notice how we
have included only forces that act on the ladder. For
example, the forces exerted by the ladder on the ground
and on the wall are not part of the problem and thus do not
appear in the free-body diagram. Applying the first condi-
tion for equilibrium to the ladder, we have

(2)   ! Fy ! n ' mg ! 0

(1)   ! Fx ! fs ' P ! 0

At the Interactive Worked Example link at http://www.pse6.com, you can adjust the position of the person and observe
the effect on the forces.

53.0°

8.00 m

(a)

Figure 12.10 (Example 12.3) (a) A uniform beam supported
by a cable. A person walks outward on the beam. (b) The free-
body diagram for the beam. (c) The free-body diagram for the
beam showing the components of R and T.

(c)

200 N

600 N

(b)

TR

53.0°

200 N

600 N

4.00 m

2.00 m

R cos θ

R sin θ

T cos 53.0°

T sin 53.0°

θ

θ

θ

Force Moment arm 
component relative to O (m) Torque about O (N $ m)

T sin 53.0° 8.00 (8.00)T sin 53.0°
T cos 53.0° 0 0
200 N 4.00 ' (4.00)(200)
600 N 2.00 ' (2.00)(600)
R sin ) 0 0
R cos ) 0 0

Interactive
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The first equation tells us that P ! fs. From the second
equation we see that n ! mg. Furthermore, when the lad-
der is on the verge of slipping, the force of friction must be
a maximum, which is given by fs, max ! +sn. (Recall Eq. 5.8:
fs , +sn.) Thus, we must have P ! fs ! +sn ! +smg.

To find )min, we must use the second condition for equi-
librium. When we take the torques about an axis through
the origin O at the bottom of the ladder, we have

This expression gives

What If? What if a person begins to climb the ladder when
the angle is 51°? Will the presence of a person on the ladder
make it more or less likely to slip?

Answer The presence of the additional weight of a person
on the ladder will increase the clockwise torque about its
base in Figure 12.11b. To maintain static equilibrium, the
counterclockwise torque must increase, which can occur if P
increases. Because equilibrium in the horizontal direction
tells us that P ! fs, this would suggest that the friction force
rises above the maximum value fs, max and the ladder slips.
However, the increased weight of the person also causes n to
increase, which increases the maximum friction force fs, max!
Thus, it is not clear conceptually whether the ladder is more
or less likely to slip.

Imagine that the person of mass M is at a position d that
is measured along the ladder from its base (Fig. 12.11c).
Equations (1) and (2) can be rewritten

51*)min !

tan )min !
mg
2P

!
mg

2+smg
!

1
2+s

! 1.25  

(3)   ! (O ! P ! sin ) ' mg  
!

2
 cos ) ! 0

Equation (3) can be rewritten

Solving this equation for tan ), we find

Incorporating Equations (4) and (5), and imposing the con-
dition that the ladder is about to slip, this becomes

When the person is at the bottom of the ladder, d ! 0. In
this case, there is no additional torque about the bottom of
the ladder and the increased normal force causes the max-
imum static friction force to increase. Thus, the ladder is
less likely to slip than in the absence of the person. As the
person climbs and d becomes larger, however, the numera-
tor in Equation (6) becomes larger. Thus, the minimum 
angle at which the ladder does not slip increases. Eventu-
ally, as the person climbs higher, the minimum angle be-
comes larger than 51° and the ladder slips. The particular
value of d at which the ladder slips depends on the coeffi-
cient of friction and the masses of the person and the 
ladder.

(6)   tan )min !
m(!/2) $ Md 
+s!(m $ M)

tan ) !
mg(!/2) $ Mgd

P!

 ! (O ! P ! sin ) ' mg  
!

2
 cos ) ' Mgd cos ) ! 0

(5)   ! Fy ! n ' (m $ M )g ! 0

(4)   ! Fx ! fs ' P ! 0

(a)

θ

!

(b)

θ

mgO fs

n

P

Figure 12.11 (Example 12.4) (a) A uniform ladder at rest, leaning against a smooth
wall. The ground is rough. (b) The free-body diagram for the ladder. (c) A person of
mass M begins to climb the ladder when it is at the minimum angle found in part (a) of
the example. Will the ladder slip?

At the Interactive Worked Example link at http://www.pse6.com, you can adjust the angle of the ladder and watch what
happens when it is released.

M

m

d

θ

(c)
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Example 12.5 Negotiating a Curb

(A) Estimate the magnitude of the force F a person must ap-
ply to a wheelchair’s main wheel to roll up over a sidewalk
curb (Fig. 12.12a). This main wheel that comes in contact
with the curb has a radius r, and the height of the curb is h.

Solution Normally, the person’s hands supply the required
force to a slightly smaller wheel that is concentric with the
main wheel. For simplicity, we assume that the radius of the
smaller wheel is the same as the radius of the main wheel.
Let us estimate a combined weight of mg ! 1 400 N for the
person and the wheelchair and choose a wheel radius of r !
30 cm. We also pick a curb height of h ! 10 cm. We assume
that the wheelchair and occupant are symmetric, and that
each wheel supports a weight of 700 N. We then proceed to
analyze only one of the wheels. Figure 12.12b shows the
geometry for a single wheel.

When the wheel is just about to be raised from the street,
the reaction force exerted by the ground on the wheel at
point B goes to zero. Hence, at this time only three forces act
on the wheel, as shown in the free-body diagram in Figure
12.12c. However, the force R, which is the force exerted by the
curb on the wheel, acts at point A, and so if we choose to have
our axis of rotation pass through point A, we do not need to
include R in our torque equation. From the triangle OAC
shown in Figure 12.12b, we see that the moment arm d of the
gravitational force mg acting on the wheel relative to point A is

The moment arm of F relative to point A is 2r ' h (see Fig-
ure 12.12c). Therefore, the net torque acting on the wheel
about point A is

(Notice that we have kept only one digit as significant.) This
result indicates that the force that must be applied to each
wheel is substantial. You may want to estimate the force re-
quired to roll a wheelchair up a typical sidewalk accessibility
ramp for comparison.

(B) Determine the magnitude and direction of R.

Solution We use the first condition for equilibrium to de-
termine the direction:

Dividing the second equation by the first gives

tan ) !
mg
F

!
700 N
300 N

! Fy ! R sin ) ' mg ! 0
! Fx ! F ' R cos ) ! 0

3 - 102 N!

!
(700 N) √2(0.3 m)(0.1 m)'(0.1 m)2

2(0.3 m) ' 0.1 m

F !
mg √2rh ' h2

2r ' h

mg √2rh 'h2 'F(2r 'h) ! 0

mgd ' F(2r ' h) ! 0

d ! √r2 ' (r ' h)2 ! √2rh ' h2

Figure 12.12 (Example 12.5) (a) A person in a wheelchair at-
tempts to roll up over a curb. (b) Details of the wheel and curb.
The person applies a force F to the top of the wheel. (c) The
free-body diagram for the wheel when it is just about to be
raised. Three forces act on the wheel at this instant: F, which is
exerted by the hand; R, which is exerted by the curb; and the
gravitational force m g. (d) The vector sum of the three external
forces acting on the wheel is zero.

(a)

(d)

R

F

θ

mg

(c)

F

O
2r – h

A

θ

R

mg

F

r – h

d

r
A

B

h

(b)

O

R

C

We can use the right triangle shown in Figure 12.12d to obtain
R :

800 NR ! √(mg)2 $ F 2 ! √(700 N)2 $ (300 N)2 !

) ! 70*
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Application Analysis of a Truss

Roofs, bridges, and other structures that must be both
strong and lightweight often are made of trusses similar to
the one shown in Figure 12.13a. Imagine that this truss
structure represents part of a bridge. To approach this prob-
lem, we assume that the structural components are con-
nected by pin joints. We also assume that the entire struc-
ture is free to slide horizontally because it rests on “rockers”
on each end, which allow it to move back and forth as it un-
dergoes thermal expansion and contraction. We assume the
mass of the bridge structure is negligible compared with the
load. In this situation, the force exerted by each of the bars
(struts) on the hinge pins is a force of tension or of com-
pression and must be along the length of the bar. Let us cal-
culate the force in each strut when the bridge is supporting
a 7 200-N load at its center. We will do this by determining
the forces that act at the pins.

The force notation that we use here is not of our usual
format. Until now, we have used the notation FAB to mean
“the force exerted by A on B.” For this application, however,
the first letter in a double-letter subscript on F indicates the
location of the pin on which the force is exerted. The combi-
nation of two letters identifies the strut exerting the force on
the pin. For example, in Figure 12.13b, FAB is the force ex-
erted by strut AB on the pin at A. The subscripts are symmet-
ric in that strut AB is the same as strut BA and FAB ! FBA.

First, we apply Newton’s second law to the truss as a
whole in the vertical direction. Internal forces do not enter
into this accounting. We balance the weight of the load with
the normal forces exerted at the two ends by the supports
on which the bridge rests:

nA $ nE ! 7 200 N

! Fy ! nA $ nE ' Fg ! 0

Next, we calculate the torque about A, noting that the over-
all length of the bridge structure is L ! 50 m:

Although we could repeat the torque calculation for the
right end (point E), it should be clear from symmetry argu-
ments that nA ! 3 600 N.

Now let us balance the vertical forces acting on the pin
at point A. If we assume that strut AB is in compression,
then the force FAB that the strut exerts on the pin at point A
has a negative y component. (If the strut is actually in ten-
sion, our calculations will result in a negative value for the
magnitude of the force, still of the correct size):

The positive result shows that our assumption of compres-
sion was correct.

We can now find the force FAC by considering the hori-
zontal forces acting on the pin at point A. Because point A is
not accelerating, we can safely assume that FAC must point
toward the right (Fig. 12.13b); this indicates that the bar be-
tween points A and C is under tension:

Now consider the vertical forces acting on the pin at point
C. We shall assume that strut CB is in tension. (Imagine the
subsequent motion of the pin at point C if strut CB were to

FAC ! (7 200 N) cos 30* ! 6 200 N

! Fx ! FAC ' FAB cos 30* ! 0

FAB ! 7 200 N

!Fy ! nA ' FAB sin 30* ! 0

nE ! Fg/2 ! 3 600 N

!! ! LnE ' (L/2) Fg ! 0

50 m

30° 30° 30° 30°A E

B D

C

(a)

A E

B D

C30°
FACFAB

nA

FCA FCE

Fg

FBC
FCD

FEC

nE

FED

30° 30°

(b)

30°

Load: 7 200 N

FBD

FBA

FCB

Figure 12.13 (a) Truss structure for a bridge. (b) The forces acting on
the pins at points A, B, C, and E. Force vectors are not to scale.
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12.4 Elastic Properties of Solids

Except for our discussion about springs in earlier chapters, we have assumed that ob-
jects remain rigid when external forces act on them. In reality, all objects are de-
formable. That is, it is possible to change the shape or the size (or both) of an object
by applying external forces. As these changes take place, however, internal forces in
the object resist the deformation.

We shall discuss the deformation of solids in terms of the concepts of stress and
strain. Stress is a quantity that is proportional to the force causing a deformation;
more specifically, stress is the external force acting on an object per unit cross-sec-
tional area. The result of a stress is strain, which is a measure of the degree of defor-
mation. It is found that, for sufficiently small stresses, strain is proportional to
stress; the constant of proportionality depends on the material being deformed and
on the nature of the deformation. We call this proportionality constant the elastic
modulus. The elastic modulus is therefore defined as the ratio of the stress to the re-
sulting strain:

(12.5)

The elastic modulus in general relates what is done to a solid object (a force is ap-
plied) to how that object responds (it deforms to some extent).

We consider three types of deformation and define an elastic modulus for each:

Elastic modulus $ 
stress
strain

Young’s Modulus: Elasticity in Length

Consider a long bar of cross-sectional area A and initial length Li that is clamped at
one end, as in Figure 12.14. When an external force is applied perpendicular to the
cross section, internal forces in the bar resist distortion (“stretching”), but the bar
reaches an equilibrium situation in which its final length Lf is greater than Li and in
which the external force is exactly balanced by internal forces. In such a situation, the
bar is said to be stressed. We define the tensile stress as the ratio of the magnitude of
the external force F to the cross-sectional area A. The tensile strain in this case is de-
fined as the ratio of the change in length .L to the original length Li. We define
Young’s modulus by a combination of these two ratios:

(12.6)Y $ 
tensile stress
tensile strain

!
F/A

∆L/Li

1. Young’s modulus, which measures the resistance of a solid to a change in its
length

2. Shear modulus, which measures the resistance to motion of the planes within a
solid parallel to each other

3. Bulk modulus, which measures the resistance of solids or liquids to changes in
their volume

F
A

Li ∆L

Active Figure 12.14 A long bar
clamped at one end is stretched by
an amount .L under the action of
a force F.

At the Active Figures link
at http://www.pse6.com, you
can adjust the values of the
applied force and Young’s
modulus to observe the
change in length of the bar.

break suddenly.) On the basis of symmetry, we assert that
FCB ! FCD and FCA ! FCE:

Finally, we balance the horizontal forces on B, assuming that
strut BD is in compression:

FCB ! 7 200 N

! Fy ! 2 FCB sin 30* ' 7 200 N ! 0

Thus, the top bar in a bridge of this design must be very
strong.

FBD ! 12 000 N

(7 200 N) cos 30* $ (7 200 N) cos 30* ' FBD ! 0

!Fx ! FBA cos 30* $ FBC cos 30* ' FBD ! 0

Young’s modulus
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Young’s modulus is typically used to characterize a rod or wire stressed under either
tension or compression. Note that because strain is a dimensionless quantity, Y has
units of force per unit area. Typical values are given in Table 12.1. Experiments show
(a) that for a fixed applied force, the change in length is proportional to the original
length and (b) that the force necessary to produce a given strain is proportional to
the cross-sectional area. Both of these observations are in accord with Equation 12.6.

For relatively small stresses, the bar will return to its initial length when the force is
removed. The elastic limit of a substance is defined as the maximum stress that can
be applied to the substance before it becomes permanently deformed and does not re-
turn to its initial length. It is possible to exceed the elastic limit of a substance by apply-
ing a sufficiently large stress, as seen in Figure 12.15. Initially, a stress-versus-strain
curve is a straight line. As the stress increases, however, the curve is no longer a
straight line. When the stress exceeds the elastic limit, the object is permanently dis-
torted and does not return to its original shape after the stress is removed. As the stress
is increased even further, the material ultimately breaks.

Shear Modulus: Elasticity of Shape

Another type of deformation occurs when an object is subjected to a force parallel to one
of its faces while the opposite face is held fixed by another force (Fig. 12.16a). The stress
in this case is called a shear stress. If the object is originally a rectangular block, a shear
stress results in a shape whose cross section is a parallelogram. A book pushed sideways, as
shown in Figure 12.16b, is an example of an object subjected to a shear stress. To a first
approximation (for small distortions), no change in volume occurs with this deformation.

We define the shear stress as F/A, the ratio of the tangential force to the area A of
the face being sheared. The shear strain is defined as the ratio .x/h, where .x is the
horizontal distance that the sheared face moves and h is the height of the object. In
terms of these quantities, the shear modulus is

(12.7)

Values of the shear modulus for some representative materials are given in Table
12.1. Like Young’s modulus, the unit of shear modulus is the ratio of that for force to
that for area.

Bulk Modulus: Volume Elasticity

Bulk modulus characterizes the response of an object to changes in a force of uni-
form magnitude applied perpendicularly over the entire surface of the object, as

S $ 
shear stress
shear strain

!
F/A
∆x/h

Young’s Modulus Shear Modulus Bulk Modulus
Substance (N/m2) (N/m2) (N/m2)

Tungsten 35 - 1010 14 - 1010 20 - 1010

Steel 20 - 1010 8.4 - 1010 6 - 1010

Copper 11 - 1010 4.2 - 1010 14 - 1010

Brass 9.1 - 1010 3.5 - 1010 6.1 - 1010

Aluminum 7.0 - 1010 2.5 - 1010 7.0 - 1010

Glass 6.5–7.8 - 1010 2.6–3.2 - 1010 5.0–5.5 - 1010

Quartz 5.6 - 1010 2.6 - 1010 2.7 - 1010

Water — — 0.21 - 1010

Mercury — — 2.8 - 1010

Typical Values for Elastic Moduli

Table 12.1

Elastic
limit Breaking

point

Elastic
behavior

0.002 0.004 0.006 0.008 0.010

100

200

300

400

Stress
(MN/m2)

Strain

Figure 12.15 Stress-versus-strain
curve for an elastic solid.

–F

∆x
A F

Fixed face

h

(a)

(b)

fs

F

At the Active Figures link
at http://www.pse6.com, you
can adjust the values of the
applied force and the shear
modulus to observe the
change in shape of the block in
part (a).

Shear modulus

Active Figure 12.16 (a) A shear
deformation in which a rectangular
block is distorted by two forces of
equal magnitude but opposite
directions applied to two parallel
faces. (b) A book under shear stress.
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shown in Figure 12.17. (We assume here that the object is made of a single sub-
stance.) As we shall see in Chapter 14, such a uniform distribution of forces occurs
when an object is immersed in a fluid. An object subject to this type of deformation
undergoes a change in volume but no change in shape. The volume stress is defined
as the ratio of the magnitude of the total force F exerted on a surface to the area A of
the surface. The quantity P ! F/A is called pressure, which we will study in more de-
tail in Chapter 14. If the pressure on an object changes by an amount .P ! .F/A,
then the object will experience a volume change .V. The volume strain is equal to
the change in volume .V divided by the initial volume Vi. Thus, from Equation 12.5,
we can characterize a volume (“bulk”) compression in terms of the bulk modulus,
which is defined as

(12.8)

A negative sign is inserted in this defining equation so that B is a positive number. This
maneuver is necessary because an increase in pressure (positive .P) causes a decrease
in volume (negative .V ) and vice versa.

Table 12.1 lists bulk moduli for some materials. If you look up such values in a dif-
ferent source, you often find that the reciprocal of the bulk modulus is listed. The reci-
procal of the bulk modulus is called the compressibility of the material.

Note from Table 12.1 that both solids and liquids have a bulk modulus. However,
no shear modulus and no Young’s modulus are given for liquids because a liquid does
not sustain a shearing stress or a tensile stress. If a shearing force or a tensile force is
applied to a liquid, the liquid simply flows in response.

B $ 
volume stress
volume strain

! '
∆F/A
∆V/Vi

!'
∆P

∆V/Vi

Quick Quiz 12.4 A block of iron is sliding across a horizontal floor. The fric-
tion force between the block and the floor causes the block to deform. To describe the
relationship between stress and strain for the block, you would use (a) Young’s modu-
lus (b) shear modulus (c) bulk modulus (d) none of these.

Quick Quiz 12.5 A trapeze artist swings through a circular arc. At the bot-
tom of the swing, the wires supporting the trapeze are longer than when the trapeze
artist simply hangs from the trapeze, due to the increased tension in them. To describe
the relationship between stress and strain for the wires, you would use (a) Young’s
modulus (b) shear modulus (c) bulk modulus (d) none of these.

Quick Quiz 12.6 A spacecraft carries a steel sphere to a planet on which at-
mospheric pressure is much higher than on the Earth. The higher pressure causes the
radius of the sphere to decrease. To describe the relationship between stress and strain
for the sphere, you would use (a) Young’s modulus (b) shear modulus (c) bulk modu-
lus (d) none of these.

Vi

F

Vi + ∆V

Active Figure 12.17 When a solid
is under uniform pressure, it un-
dergoes a change in volume but no
change in shape. This cube is com-
pressed on all sides by forces nor-
mal to its six faces.

Bulk modulus

Prestressed Concrete

If the stress on a solid object exceeds a certain value, the object fractures. The maxi-
mum stress that can be applied before fracture occurs depends on the nature of the
material and on the type of applied stress. For example, concrete has a tensile
strength of about 2 - 106 N/m2, a compressive strength of 20 - 106 N/m2, and a
shear strength of 2 - 106 N/m2. If the applied stress exceeds these values, the con-
crete fractures. It is common practice to use large safety factors to prevent failure in
concrete structures.

At the Active Figures link
at http://www.pse6.com, you
can adjust the values of the
applied force and the bulk
modulus to observe the
change in volume of the cube.
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Concrete is normally very brittle when it is cast in thin sections. Thus, concrete
slabs tend to sag and crack at unsupported areas, as shown in Figure 12.18a. The slab
can be strengthened by the use of steel rods to reinforce the concrete, as illustrated
in Figure 12.18b. Because concrete is much stronger under compression (squeezing)
than under tension (stretching) or shear, vertical columns of concrete can support
very heavy loads, whereas horizontal beams of concrete tend to sag and crack. How-
ever, a significant increase in shear strength is achieved if the reinforced concrete is
prestressed, as shown in Figure 12.18c. As the concrete is being poured, the steel
rods are held under tension by external forces. The external forces are released after
the concrete cures; this results in a permanent tension in the steel and hence a com-
pressive stress on the concrete. This enables the concrete slab to support a much
heavier load.

Load force

Concrete
Cracks

(a)

Steel
reinforcing

rod

(b) (c)

Steel
rod

under
tension

Active Figure 12.18 (a) A concrete slab with no reinforcement tends to crack under
a heavy load. (b) The strength of the concrete is increased by using steel reinforce-
ment rods. (c) The concrete is further strengthened by prestressing it with steel rods
under tension.

Example 12.6 Stage Design

Recall Example 8.4, in which we analyzed a cable used to
support an actor as he swung onto the stage. Suppose that
the tension in the cable is 940 N as the actor reaches the
lowest point. What diameter should a 10-m-long steel wire
have if we do not want it to stretch more than 0.5 cm under
these conditions?

Solution From the definition of Young’s modulus, we can
solve for the required cross-sectional area. Assuming that
the cross section is circular, we can determine the diameter
of the wire. From Equation 12.6, we have

Y !
F/A

∆L/Li

Because A ! /r 2, the radius of the wire can be found from

d ! 2r ! 2(1.7 mm) =

To provide a large margin of safety, we would probably use a
flexible cable made up of many smaller wires having a total
cross-sectional area substantially greater than our calculated
value.

3.4 mm

r ! √ A
/

! √ 9.4 - 10'6 m2

/
! 1.7 - 10'3 m ! 1.7 mm

 ! 9.4 - 10'
 
6 m2

!
(940 N)(10 m)

(20 - 1010 N/m2)(0.005 m)
A !

FLi

Y ∆L

Example 12.7 Squeezing a Brass Sphere

A solid brass sphere is initially surrounded by air, and the air
pressure exerted on it is 1.0 - 105 N/m2 (normal atmos-
pheric pressure). The sphere is lowered into the ocean to a
depth where the pressure is 2.0 - 107 N/m2. The volume of
the sphere in air is 0.50 m3. By how much does this volume
change once the sphere is submerged?

Solution From the definition of bulk modulus, we have

 B ! '
∆P

∆V/Vi

Substituting the numerical values, we obtain

The negative sign indicates that the volume of the sphere
decreases.

'1.6 - 10'4 m3!

∆V ! '
(0.50 m3)(2.0 - 107 N/m2 ' 1.0 - 105 N/m2)

6.1 - 1010 N/m2

 ∆V ! '
Vi  ∆P

B
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1. Stand with your back against a wall. Why can’t you put
your heels firmly against the wall and then bend forward
without falling?

2. Can an object be in equilibrium if it is in motion?
Explain.

3. Can an object be in equilibrium when only one force acts
upon it? If you believe the answer is yes, give an example
to support your conclusion.

4. (a) Give an example in which the net force acting on an
object is zero and yet the net torque is nonzero. (b) Give
an example in which the net torque acting on an object is
zero and yet the net force is nonzero.

5. Can an object be in equilibrium if the only torques acting
on it produce clockwise rotation?

6. If you measure the net force and the net torque on a system
to be zero, (a) could the system still be rotating with respect
to you? (b) Could it be translating with respect to you?

7. The center of gravity of an object may be located outside
the object. Give a few examples for which this is the case.

8. Assume you are given an arbitrarily shaped piece of plywood,
together with a hammer, nail, and plumb bob. How could
you use these items to locate the center of gravity of the ply-
wood? Suggestion: Use the nail to suspend the plywood.

9. For a chair to be balanced on one leg, where must the cen-
ter of gravity of the chair be located?

10. A girl has a large, docile dog she wishes to weigh on a small
bathroom scale. She reasons that she can determine her
dog’s weight with the following method: First she puts the
dog’s two front feet on the scale and records the scale read-
ing. Then she places the dog’s two back feet on the scale
and records the reading. She thinks that the sum of the
readings will be the dog’s weight. Is she correct? Explain
your answer.

11. A tall crate and a short crate of equal mass are placed side
by side on an incline, without touching each other. As the
incline angle is increased, which crate will topple first?
Explain.

A ladder stands on the ground, leaning against a wall.
Would you feel safer climbing up the ladder if you were
told that the ground is frictionless but the wall is rough, or
that the wall is frictionless but the ground is rough? Justify
your answer.

13. When you are lifting a heavy object, it is recommended
that you keep your back as nearly vertical as possible, lift-
ing from your knees. Why is this better than bending over
and lifting from your waist?

14. What kind of deformation does a cube of Jell-O exhibit
when it jiggles?

15. Ruins of ancient Greek temples often have intact vertical
columns, but few horizontal slabs of stone are still in place.
Can you think of a reason why this is so?

12.

Q U E S T I O N S

A rigid object is in equilibrium if and only if the resultant external force acting on it is
zero and the resultant external torque on it is zero about any axis:

(12.1)

(12.2)

The first condition is the condition for translational equilibrium, and the second is the con-
dition for rotational equilibrium. These two equations allow you to analyze a great variety of
problems. Make sure you can identify forces unambiguously, create a free-body diagram,
and then apply Equations 12.1 and 12.2 and solve for the unknowns.

The gravitational force exerted on an object can be considered as acting at a single
point called the center of gravity. The center of gravity of an object coincides with its cen-
ter of mass if the object is in a uniform gravitational field.

We can describe the elastic properties of a substance using the concepts of stress and
strain. Stress is a quantity proportional to the force producing a deformation; strain is a
measure of the degree of deformation. Strain is proportional to stress, and the constant of
proportionality is the elastic modulus:

(12.5)

Three common types of deformation are represented by (1) the resistance of a solid to
elongation under a load, characterized by Young’s modulus Y; (2) the resistance of a solid
to the motion of internal planes sliding past each other, characterized by the shear modu-
lus S; and (3) the resistance of a solid or fluid to a volume change, characterized by the
bulk modulus B.

Elastic modulus $ 
stress
strain

! ! ! 0

! F ! 0

S U M M A RY Take a practice test for
this chapter by clicking on
the Practice Test link at
http://www.pse6.com.
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Section 12.1 The Conditions for Equilibrium 
of a Rigid Body

1. A baseball player holds a 36-oz bat (weight ! 10.0 N) with
one hand at the point O (Fig. P12.1). The bat is in equilib-
rium. The weight of the bat acts along a line 60.0 cm to
the right of O. Determine the force and the torque ex-
erted by the player on the bat around an axis through O.

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide

= coached solution with hints available at http://www.pse6.com = computer useful in solving problem

= paired numerical and symbolic problems

P R O B L E M S

2. Write the necessary conditions for equilibrium of the ob-
ject shown in Figure P12.2. Take the origin of the torque
equation at the point O.

60.0 cm

O

mg

Figure P12.1

Fg

Fx

Fy

Rx O

θ

Ry

!

Figure P12.2

A uniform beam of mass mb and length ! supports
blocks with masses m1 and m2 at two positions, as in Figure
P12.3. The beam rests on two knife edges. For what value
of x will the beam be balanced at P such that the normal
force at O is zero?

3.

4. A circular pizza of radius R has a circular piece of radius
R/2 removed from one side as shown in Figure P12.4. The
center of gravity has moved from C to C& along the x axis.
Show that the distance from C to C& is R/6. Assume the
thickness and density of the pizza are uniform throughout.

5. A carpenter’s square has the shape of an L, as in Figure
P12.5. Locate its center of gravity.

6. Pat builds a track for his model car out of wood, as in Figure
P12.6. The track is 5.00 cm wide, 1.00 m high, and 3.00 m

d

P

x

O

!
2

!

m2m1

CG

Figure P12.3

C ′
C

Figure P12.4

12.0 cm

18.0 cm

4.0 cm

4.0 cm

Figure P12.5

Section 12.2 More on the Center of Gravity

Problems 38, 39, 41, 43, and 44 in Chapter 9 can also be
assigned with this section.

Figure P12.6

y

1.00 m

3.00 m

5.00 cm x

y = (x – 3)2/9
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r

3r

θ = 45°

1500 kg
m

θ

Figure P12.9

Figure P12.12

m1

12.0 g

m2

m33.00 cm 4.00 cm

5.00 cm2.00 cm

4.00 cm 6.00 cm

Figure P12.10

Section 12.3 Examples of Rigid Objects 
in Static Equilibrium

Problems 17, 18, 19, 20, 21, 27, 40, 46, 57, 59, and 73 in
Chapter 5 can also be assigned with this section.

9. Find the mass m of the counterweight needed to balance
the 1 500-kg truck on the incline shown in Figure P12.9.
Assume all pulleys are frictionless and massless.

10. A mobile is constructed of light rods, light strings, and
beach souvenirs, as shown in Figure P12.10. Determine
the masses of the objects (a) m1, (b) m2, and (c) m3.

(4,1)

(2,7)
(8,5)

(9,7)
6.00 kg

5.00 kg 3.00 kg

(–2,2)

(–5,5)

y(m)

x(m)

Figure P12.8

long, and is solid. The runway is cut such that it forms a
parabola with the equation y ! (x ' 3)2/9. Locate the hori-
zontal coordinate of the center of gravity of this track.

Consider the following mass distribution: 5.00 kg at
(0, 0) m, 3.00 kg at (0, 4.00) m, and 4.00 kg at (3.00, 0) m.
Where should a fourth object of mass 8.00 kg be placed so
that the center of gravity of the four-object arrangement
will be at (0, 0)?

8. Figure P12.8 shows three uniform objects: a rod, a right
triangle, and a square. Their masses and their coordinates
in meters are given. Determine the center of gravity for
the three-object system.

7.

11. Two pans of a balance are 50.0 cm apart. The fulcrum of
the balance has been shifted 1.00 cm away from the center
by a dishonest shopkeeper. By what percentage is the true
weight of the goods being marked up by the shopkeeper?
(Assume the balance has negligible mass.)

12. A 20.0-kg floodlight in a park is supported at the end of a
horizontal beam of negligible mass that is hinged to a
pole, as shown in Figure P12.12. A cable at an angle of
30.0° with the beam helps to support the light. Find
(a) the tension in the cable and (b) the horizontal and
vertical forces exerted on the beam by the pole.

30.0°

A 15.0-m uniform ladder weighing 500 N rests against a 
frictionless wall. The ladder makes a 60.0° angle with the
horizontal. (a) Find the horizontal and vertical forces the
ground exerts on the base of the ladder when an 800-N 
firefighter is 4.00 m from the bottom. (b) If the ladder is just
on the verge of slipping when the firefighter is 9.00 m up,
what is the coefficient of static friction between ladder and
ground?

13.
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Single point
of contact

5.00 cm

30.0°

30.0 cm

F

Figure P12.15

14. A uniform ladder of length L and mass m1 rests against a
frictionless wall. The ladder makes an angle ) with the hor-
izontal. (a) Find the horizontal and vertical forces the
ground exerts on the base of the ladder when a firefighter
of mass m2 is a distance x from the bottom. (b) If the lad-
der is just on the verge of slipping when the firefighter is a
distance d from the bottom, what is the coefficient of static
friction between ladder and ground?

15. Figure P12.15 shows a claw hammer as it is being used to
pull a nail out of a horizontal board. If a force of 150 N is
exerted horizontally as shown, find (a) the force exerted
by the hammer claws on the nail and (b) the force exerted
by the surface on the point of contact with the hammer
head. Assume that the force the hammer exerts on the
nail is parallel to the nail.

the horizontal. Find (a) the magnitude of the force each
hook exerts on the chain and (b) the tension in the chain
at its midpoint. (Suggestion: for part (b), make a free-body
diagram for half of the chain.)

20. Sir Lost-a-Lot dons his armor and sets out from the castle
on his trusty steed in his quest to improve communication
between damsels and dragons (Fig. P12.20). Unfortunately
his squire lowered the drawbridge too far and finally
stopped it 20.0° below the horizontal. Lost-a-Lot and his
horse stop when their combined center of mass is 1.00 m
from the end of the bridge. The uniform bridge is 8.00 m
long and has mass 2 000 kg. The lift cable is attached to
the bridge 5.00 m from the hinge at the castle end, and to
a point on the castle wall 12.0 m above the bridge. Lost-a-
Lot’s mass combined with his armor and steed is 1 000 kg.
Determine (a) the tension in the cable and the (b) hori-
zontal and (c) vertical force components acting on the
bridge at the hinge.

θ

Figure P12.19

Figure P12.20 Problems 20 and 21.

16. A uniform plank of length 6.00 m and mass 30.0 kg rests
horizontally across two horizontal bars of a scaffold. The
bars are 4.50 m apart, and 1.50 m of the plank hangs over
one side of the scaffold. Draw a free-body diagram of the
plank. How far can a painter of mass 70.0 kg walk on the
overhanging part of the plank before it tips?

A 1 500-kg automobile has a wheel base (the distance be-
tween the axles) of 3.00 m. The center of mass of the auto-
mobile is on the center line at a point 1.20 m behind the
front axle. Find the force exerted by the ground on each
wheel.

18. A vertical post with a square cross section is 10.0 m tall.
Its bottom end is encased in a base 1.50 m tall, which is
precisely square but slightly loose. A force 5.50 N to the
right acts on the top of the post. The base maintains the
post in equilibrium. Find the force that the top of
the right side wall of the base exerts on the post. Find the
force that the bottom of the left side wall of the base
exerts on the post.

19. A flexible chain weighing 40.0 N hangs between two hooks
located at the same height (Fig. P12.19). At each hook,
the tangent to the chain makes an angle ) ! 42.0° with

17.

21. Review problem. In the situation described in Problem 20
and illustrated in Figure P12.20, the lift cable suddenly
breaks! The hinge between the castle wall and the bridge
is frictionless, and the bridge swings freely until it is verti-
cal. (a) Find the angular acceleration of the bridge once it
starts to move. (b) Find the angular speed of the bridge
when it strikes the vertical castle wall below the hinge.
(c) Find the force exerted by the hinge on the bridge im-
mediately after the cable breaks. (d) Find the force ex-
erted by the hinge on the bridge immediately before it
strikes the castle wall.

22. Stephen is pushing his sister Joyce in a wheelbarrow
when it is stopped by a brick 8.00 cm high (Fig. P12.22).
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23. One end of a uniform 4.00-m-long rod of weight Fg is sup-
ported by a cable. The other end rests against the wall,
where it is held by friction, as in Figure P12.23. The coeffi-
cient of static friction between the wall and the rod is +s !
0.500. Determine the minimum distance x from point A at
which an additional weight Fg (the same as the weight of
the rod) can be hung without causing the rod to slip at
point A.

24. Two identical uniform bricks of length L are placed in a
stack over the edge of a horizontal surface with the maxi-

mum overhang possible without falling, as in Figure
P12.24. Find the distance x.

25. A vaulter holds a 29.4-N pole in equilibrium by exerting an
upward force U with her leading hand and a downward
force D with her trailing hand, as shown in Figure P12.25.
Point C is the center of gravity of the pole. What are the
magnitudes of U and D?

x

L

Figure P12.24

2.25 m
0.750 m

A

1.50 m

U

D

B

C

Fg

Figure P12.25

The handles make an angle of 15.0° below the horizon-
tal. A downward force of 400 N is exerted on the wheel,
which has a radius of 20.0 cm. (a) What force must
Stephen apply along the handles in order to just start the
wheel over the brick? (b) What is the force (magnitude
and direction) that the brick exerts on the wheel just as
the wheel begins to lift over the brick? Assume in both
parts that the brick remains fixed and does not slide
along the ground.

B
x

A
37.0°

Fg

Figure P12.23

Figure P12.22

15.0°

26. In the What If? section of Example 12.3, let x represent
the distance in meters between the person and the hinge
at the left end of the beam. (a) Show that the cable ten-
sion in newtons is given by T ! 93.9x $ 125. Argue that T
increases as x increases. (b) Show that the direction angle
) of the hinge force is described by

How does ) change as x increases? (c) Show that the mag-
nitude of the hinge force is given by

How does R change as x increases?

Section 12.4 Elastic Properties of Solids
A 200-kg load is hung on a wire having a length of 4.00 m,
cross-sectional area 0.200 - 10'4 m2, and Young’s modu-
lus 8.00 - 1010 N/m2. What is its increase in length?

28. Assume that Young’s modulus is 1.50 - 1010 N/m2 for
bone and that the bone will fracture if stress greater than
1.50 - 108 N/m2 is imposed on it. (a) What is the maxi-
mum force that can be exerted on the femur bone in the
leg if it has a minimum effective diameter of 2.50 cm?
(b) If this much force is applied compressively, by how
much does the 25.0-cm-long bone shorten?

29. Evaluate Young’s modulus for the material whose stress-
versus-strain curve is shown in Figure 12.15.

30. A steel wire of diameter 1 mm can support a tension of
0.2 kN. A cable to support a tension of 20 kN should have
diameter of what order of magnitude?

31. A child slides across a floor in a pair of rubber-soled
shoes. The friction force acting on each foot is 20.0 N.

27.

R ! √8.82 - 103x2 ' 9.65 - 104x $ 4.96 - 105

tan ) ! " 32
3x $ 4

' 1 # tan 53.0*
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The footprint area of each shoe sole is 14.0 cm2, and
the thickness of each sole is 5.00 mm. Find the horizontal
distance by which the upper and lower surfaces of each
sole are offset. The shear modulus of the rubber is
3.00 MN/m2.

32. Review problem. A 30.0-kg hammer strikes a steel spike
2.30 cm in diameter while moving with speed 20.0 m/s.
The hammer rebounds with speed 10.0 m/s after
0.110 s. What is the average strain in the spike during
the impact?

If the shear stress in steel exceeds 4.00 - 108 N/m2,
the steel ruptures. Determine the shearing force necessary
to (a) shear a steel bolt 1.00 cm in diameter and
(b) punch a 1.00-cm-diameter hole in a steel plate
0.500 cm thick.

34. Review problem. A 2.00-m-long cylindrical steel wire with a
cross-sectional diameter of 4.00 mm is placed over a light
frictionless pulley, with one end of the wire connected to a
5.00-kg object and the other end connected to a 3.00-kg
object. By how much does the wire stretch while the ob-
jects are in motion?

When water freezes, it expands by about 9.00%. What
pressure increase would occur inside your automobile en-
gine block if the water in it froze? (The bulk modulus of
ice is 2.00 - 109 N/m2.)

36. The deepest point in the ocean is in the Mariana Trench,
about 11 km deep. The pressure at this depth is huge,
about 1.13 - 108 N/m2. (a) Calculate the change in vol-
ume of 1.00 m3 of seawater carried from the surface to this
deepest point in the Pacific ocean. (b) The density of sea-
water at the surface is 1.03 - 103 kg/m3. Find its density
at the bottom. (c) Is it a good approximation to think of
water as incompressible?

37. A walkway suspended across a hotel lobby is supported at
numerous points along its edges by a vertical cable above
each point and a vertical column underneath. The steel
cable is 1.27 cm in diameter and is 5.75 m long before
loading. The aluminum column is a hollow cylinder with
an inside diameter of 16.14 cm, an outside diameter of
16.24 cm, and unloaded length of 3.25 m. When the walk-
way exerts a load force of 8 500 N on one of the support
points, how much does the point move down?

Additional Problems

38. A lightweight, rigid beam 10.0 m long is supported by a ca-
ble attached to a spring of force constant k ! 8.25 kN/m
as shown in Figure P12.38. When no load is hung on the
beam (Fg ! 0), the length L is equal to 5.00 m. (a) Find
the angle ) in this situation. (b) Now a load of Fg ! 250 N
is hung on the end of the beam. Temporarily ignore the
extension of the spring and the change in the angle ). Cal-
culate the tension in the cable with this approximation.
(c) Use the answer to part (b) to calculate the spring elon-
gation and a new value for the angle ). (d) With the value
of ) from part (c), find a second approximation for the
tension in the cable. (e) Use the answer to part (d) to cal-
culate more precise values for the spring elongation and

35.

33.

40. Refer to Figure 12.18(c). A lintel of prestressed reinforced
concrete is 1.50 m long. The cross-sectional area of the
concrete is 50.0 cm2. The concrete encloses one steel rein-
forcing rod with cross-sectional area 1.50 cm2. The rod
joins two strong end plates. Young’s modulus for the con-
crete is 30.0 - 109 N/m2. After the concrete cures and the
original tension T1 in the rod is released, the concrete is to
be under compressive stress 8.00 - 106 N/m2. (a) By what
distance will the rod compress the concrete when the orig-
inal tension in the rod is released? (b) The rod will still be
under what tension T2? (c) The rod will then be how
much longer than its unstressed length? (d) When the
concrete was poured, the rod should have been stretched
by what extension distance from its unstressed length?
(e) Find the required original tension T1 in the rod.

3.00 m 7.00 m

4.00 m
L

θ

Fg

Figure P12.38

A B

15.0 m
50.0 m

Figure P12.39

A bridge of length 50.0 m and mass 8.00 - 104 kg is sup-
ported on a smooth pier at each end as in Figure P12.39. A
truck of mass 3.00 - 104 kg is located 15.0 m from one
end. What are the forces on the bridge at the points of
support? 

39.

the angle ). (f) To three-digit precision, what is the actual
value of ) under load?
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41. A uniform pole is propped between the floor and the ceil-
ing of a room. The height of the room is 7.80 ft, and the
coefficient of static friction between the pole and the ceil-
ing is 0.576. The coefficient of static friction between the
pole and the floor is greater than that. What is the length
of the longest pole that can be propped between the floor
and the ceiling?

42. A solid sphere of radius R and mass M is placed in a
trough as shown in Figure P12.42. The inner surfaces of
the trough are frictionless. Determine the forces exerted
by the trough on the sphere at the two contact points.

43. A hungry bear weighing 700 N walks out on a beam in an
attempt to retrieve a basket of food hanging at the end of
the beam (Fig. P12.43). The beam is uniform, weighs
200 N, and is 6.00 m long; the basket weighs 80.0 N.
(a) Draw a free-body diagram for the beam. (b) When
the bear is at x ! 1.00 m, find the tension in the wire and
the components of the force exerted by the wall on the
left end of the beam. (c) What If? If the wire can with-
stand a maximum tension of 900 N, what is the maxi-
mum distance the bear can walk before the wire breaks?

44. A farm gate (Fig. P12.44) is 3.00 m wide and 1.80 m high,
with hinges attached to the top and bottom. The guy wire
makes an angle of 30.0° with the top of the gate and is
tightened by a turnbuckle to a tension of 200 N. The mass
of the gate is 40.0 kg. (a) Determine the horizontal force
exerted by the bottom hinge on the gate. (b) Find the hori-
zontal force exerted by the upper hinge. (c) Determine the
combined vertical force exerted by both hinges. (d) What
If? What must be the tension in the guy wire so that the
horizontal force exerted by the upper hinge is zero?

d

θ

2L

Figure P12.45

Figure P12.46

Figure P12.44

30.0°

3.00 m

1.80 m

25°

65°

2000 N

!3
4 !

A uniform sign of weight Fg and width 2L hangs
from a light, horizontal beam, hinged at the wall and sup-
ported by a cable (Fig. P12.45). Determine (a) the ten-
sion in the cable and (b) the components of the reaction
force exerted by the wall on the beam, in terms of Fg, d,
L, and ).

45.α β

Figure P12.42

Figure P12.43

60.0°

x

Goodies

46. A 1 200-N uniform boom is supported by a cable as in
Figure P12.46. The boom is pivoted at the bottom, and a
2 000-N object hangs from its top. Find the tension in the
cable and the components of the reaction force exerted by
the floor on the boom.
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10 000 kg

(3 000 kg)g
B

A

2.00 m

6.00 m

1.00 m

Figure P12.47

60.0°

10 000 N

20.0°

Figure P12.49

Figure P12.50

and R is the force exerted by the tibia on the foot. Find
the values of T, R, and ) when Fg ! 700 N.

15.0° R

T

90.0°

25.0 cm

(b)

 θ

18.0 cm

n

Achilles
tendon

Tibia

(a)

Ry

Rx

T 12.0°

200 N

350 N

Pivot

Back muscle

(a) (b)

Figure P12.51

47. A crane of mass 3 000 kg supports a load of 10 000 kg as in
Figure P12.47. The crane is pivoted with a frictionless pin
at A and rests against a smooth support at B. Find the reac-
tion forces at A and B.

48. A ladder of uniform density and mass m rests against a fric-
tionless vertical wall, making an angle of 60.0° with the
horizontal. The lower end rests on a flat surface where the
coefficient of static friction is +s ! 0.400. A window
cleaner with mass M ! 2m attempts to climb the ladder.
What fraction of the length L of the ladder will the worker
have reached when the ladder begins to slip?

A 10 000-N shark is supported by a cable attached to
a 4.00-m rod that can pivot at the base. Calculate the
tension in the tie-rope between the rod and the wall if it is
holding the system in the position shown in Figure P12.49.
Find the horizontal and vertical forces exerted on the base
of the rod. (Neglect the weight of the rod.)

49.

50. When a person stands on tiptoe (a strenuous position),
the position of the foot is as shown in Figure P12.50a. The
gravitational force on the body Fg is supported by the
force n exerted by the floor on the toe. A mechanical
model for the situation is shown in Figure P12.50b, where
T is the force exerted by the Achilles tendon on the foot

51. A person bending forward to lift a load “with his back”
(Fig. P12.51a) rather than “with his knees” can be injured
by large forces exerted on the muscles and vertebrae. The
spine pivots mainly at the fifth lumbar vertebra, with the
principal supporting force provided by the erector spinalis
muscle in the back. To see the magnitude of the forces in-
volved, and to understand why back problems are com-
mon among humans, consider the model shown in Figure
P12.51b for a person bending forward to lift a 200-N ob-
ject. The spine and upper body are represented as a uni-
form horizontal rod of weight 350 N, pivoted at the base
of the spine. The erector spinalis muscle, attached at a
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54. Consider the rectangular cabinet of Problem 53, but with
a force F applied horizontally at the upper edge. (a) What
is the minimum force required to start to tip the cabinet?
(b) What is the minimum coefficient of static friction re-
quired for the cabinet not to slide with the application of a
force of this magnitude? (c) Find the magnitude and di-
rection of the minimum force required to tip the cabinet
if the point of application can be chosen anywhere on the
cabinet.

A uniform beam of mass m is inclined at an angle )
to the horizontal. Its upper end produces a ninety-
degree bend in a very rough rope tied to a wall, and
its lower end rests on a rough floor (Fig. P12.55). (a) If
the coefficient of static friction between beam and
floor is +s, determine an expression for the maximum
mass M that can be suspended from the top before the
beam slips. (b) Determine the magnitude of the reaction
force at the floor and the magnitude of the force
exerted by the beam on the rope at P in terms of m, M,
and +s.

55.

56. Figure P12.56 shows a truss that supports a downward force
of 1 000 N applied at the point B. The truss has negligible
weight. The piers at A and C are smooth. (a) Apply the con-
ditions of equilibrium to prove that nA ! 366 N and
nC ! 634 N. (b) Show that, because forces act on the light
truss only at the hinge joints, each bar of the truss must ex-
ert on each hinge pin only a force along the length of that
bar—a force of tension or compression. (c) Find the force
of tension or of compression in each of the three bars.

A stepladder of negligible weight is constructed as shown
in Figure P12.57. A painter of mass 70.0 kg stands on the
ladder 3.00 m from the bottom. Assuming the floor is fric-
tionless, find (a) the tension in the horizontal bar connect-
ing the two halves of the ladder, (b) the normal forces at A

57.

Figure P12.55

Figure P12.56

1000 N

B

CA

10.0 m
nCnA

30.0° 45.0°

Figure P12.57

2.00 m

2.00 m

3.00 m

A 2.00 m B

C

Figure P12.52

point two thirds of the way up the spine, maintains the po-
sition of the back. The angle between the spine and this
muscle is 12.0°. Find the tension in the back muscle and
the compressional force in the spine.

52. A uniform rod of weight Fg and length L is supported at its
ends by a frictionless trough as shown in Figure P12.52.
(a) Show that the center of gravity of the rod must be
vertically over point O when the rod is in equilibrium.
(b) Determine the equilibrium value of the angle ).

O

60.0°30.0°

θ

A force acts on a rectangular cabinet weighing 400 N, as 
in Figure P12.53. (a) If the cabinet slides with constant
speed when F ! 200 N and h ! 0.400 m, find the coeffi-
cient of kinetic friction and the position of the resultant
normal force. (b) If F ! 300 N, find the value of h for
which the cabinet just begins to tip.

53.

Figure P12.53 Problems 53 and 54.

h

37.0°

w = 60.0 cm

! = 100 cm

F

P

m

θ

M
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and B, and (c) the components of the reaction force at the
single hinge C that the left half of the ladder exerts on the
right half. (Suggestion: Treat the ladder as a single object,
but also each half of the ladder separately.)

58. A flat dance floor of dimensions 20.0 m by 20.0 m has a
mass of 1 000 kg. Three dance couples, each of mass
125 kg, start in the top left, top right, and bottom left cor-
ners. (a) Where is the initial center of gravity? (b) The
couple in the bottom left corner moves 10.0 m to the
right. Where is the new center of gravity? (c) What was the
average velocity of the center of gravity if it took that cou-
ple 8.00 s to change positions?

59. A shelf bracket is mounted on a vertical wall by a single
screw, as shown in Figure P12.59. Neglecting the weight of
the bracket, find the horizontal component of the force
that the screw exerts on the bracket when an 80.0 N verti-
cal force is applied as shown. (Hint: Imagine that the
bracket is slightly loose.)

Review problem. A wire of length L, Young’s modulus
Y, and cross-sectional area A is stretched elastically by an
amount .L. By Hooke’s law (Section 7.4), the restoring
force is ' k .L. (a) Show that k ! YA/L. (b) Show that the

61.

60. Figure P12.60 shows a vertical force applied tangentially to
a uniform cylinder of weight Fg . The coefficient of static
friction between the cylinder and all surfaces is 0.500. In
terms of Fg , find the maximum force P that can be applied
that does not cause the cylinder to rotate. (Hint: When the
cylinder is on the verge of slipping, both friction forces are
at their maximum values. Why?)

62. Two racquetballs are placed in a glass jar, as shown in Fig-
ure P12.62. Their centers and the point A lie on a straight
line. (a) Assume that the walls are frictionless, and deter-
mine P1, P2, and P3. (b) Determine the magnitude of the
force exerted by the left ball on the right ball. Assume
each ball has a mass of 170 g.

Figure P12.59

80.0 N 5.00 cm

3.00 cm

6.00 cm

Figure P12.60

P

Figure P12.62

P3

P2

P1

A

Figure P12.63

Fg1 Fg 2

2.00 m

work done in stretching the wire by an amount .L is

W !  12 
YA(∆L)2/L  

63. In exercise physiology studies it is sometimes important to
determine the location of a person’s center of mass. This
can be done with the arrangement shown in Figure
P12.63. A light plank rests on two scales, which give read-
ings of Fg1 ! 380 N and Fg 2 ! 320 N. The scales are sepa-
rated by a distance of 2.00 m. How far from the woman’s
feet is her center of mass?

64. A steel cable 3.00 cm2 in cross-sectional area has a mass of
2.40 kg per meter of length. If 500 m of the cable is hung
over a vertical cliff, how much does the cable stretch 
under its own weight? Ysteel ! 2.00 - 1011 N/m2.

(a) Estimate the force with which a karate master strikes a
board if the hand’s speed at time of impact is 10.0 m/s, de-
creasing to 1.00 m/s during a 0.002 00-s time-of-contact
with the board. The mass of his hand and arm is 1.00 kg.
(b) Estimate the shear stress if this force is exerted on a
1.00-cm-thick pine board that is 10.0 cm wide. (c) If the
maximum shear stress a pine board can support before
breaking is 3.60 - 106 N/m2, will the board break?

65.
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66. A bucket is made from thin sheet metal. The bottom and
top of the bucket have radii of 25.0 cm and 35.0 cm, 
respectively. The bucket is 30.0 cm high and filled with 
water. Where is the center of gravity? (Ignore the weight 
of the bucket itself.)

67. Review problem. An aluminum wire is 0.850 m long and
has a circular cross section of diameter 0.780 mm. Fixed at
the top end, the wire supports a 1.20-kg object that swings
in a horizontal circle. Determine the angular velocity re-
quired to produce a strain of 1.00 - 10'3.

68. A bridge truss extends 200 m across a river (Fig. P12.68).
The structure is free to slide horizontally to permit ther-
mal expansion. The structural components are connected
by pin joints, and the masses of the bars are small com-
pared with the mass of a 1 360-kg car at the center. Calcu-
late the force of tension or compression in each structural
component.

whether each structural component is under tension or
compression and find the force in each.

70. Review problem. A cue strikes a cue ball and delivers a
horizontal impulse in such a way that the ball rolls without
slipping as it starts to move. At what height above the ball’s
center (in terms of the radius of the ball) was the blow
struck?

71. Review problem. A trailer with loaded weight Fg is being
pulled by a vehicle with a force P, as in Figure P12.71.
The trailer is loaded such that its center of mass is
located as shown. Neglect the force of rolling friction
and let a represent the x component of the acceleration
of the trailer. (a) Find the vertical component of P in
terms of the given parameters. (b) If a ! 2.00 m/s2 and
h ! 1.50 m, what must be the value of d in order that
Py ! 0 (no vertical load on the vehicle)? (c) Find the
values of Px and Py given that Fg ! 1 500 N, d ! 0.800 m,
L ! 3.00 m, h ! 1.50 m, and a ! ' 2.00 m/s2.

69. A bridge truss extends 100 m across a river (Fig. P12.69).
The structure is free to slide horizontally to permit ther-
mal expansion. The structural components are connected
by pin joints, and the masses of the bars are small com-
pared with the mass of a 1 500-kg car halfway between
points A and C. Show that the weight of the car is in effect
equally distributed between points A and C. Specify

Figure P12.71

d

L

×

n

h P

CM

Fg

Figure P12.73

d
R

CM
h

Figure P12.69
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C

100 m

60°

Figure P12.68

40° 40° 40°A E

B D

C

200 m

40°

72. Review problem. A bicycle is traveling downhill at a high
speed. Suddenly, the cyclist sees that a bridge ahead has
collapsed, so she has to stop. What is the maximum magni-
tude of acceleration the bicycle can have if it is not to flip
over its front wheel—in particular, if its rear wheel is not
to leave the ground? The slope makes an angle of 20.0°
with the horizontal. On level ground, the center of mass of
the woman–bicycle system is at a point 1.05 m above the
ground, 65.0 cm horizontally behind the axle of the front
wheel, and 35.0 cm in front of the rear axle. Assume that
the tires do not skid.

73. Review problem. A car moves with speed v on a horizontal
circular track of radius R. A head-on view of the car is
shown in Figure P12.73. The height of the car’s center of
mass above the ground is h, and the separation between its
inner and outer wheels is d. The road is dry, and the car
does not skid. Show that the maximum speed the car can



388 C H A P T E R  1 2 •  Static Equilibrium and Elasticity

have without overturning is given by

To reduce the risk of rollover, should one increase or 
decrease h? Should one increase or decrease the width d
of the wheel base?

Answers to Quick Quizzes
12.1 (a). The unbalanced torques due to the forces in Figure

12.2 cause an angular acceleration even though the lin-
ear acceleration is zero.

12.2 (b). Notice that the lines of action of all the forces in Fig-
ure 12.3 intersect at a common point. Thus, the
net torque about this point is zero. This zero value of the

vmax ! √ gRd
2h

net torque is independent of the values of the forces. Be-
cause no force has a downward component, there is a net
force and the object is not in force equilibrium.

12.3 (b). Both the object and the center of gravity of the me-
ter stick are 25 cm from the pivot point. Thus, the meter
stick and the object must have the same mass if the sys-
tem is balanced.

12.4 (b). The friction force on the block as it slides along the
surface is parallel to the lower surface and will cause the
block to undergo a shear deformation.

12.5 (a). The stretching of the wire due to the increased ten-
sion is described by Young’s modulus.

12.6 (c). The pressure of the atmosphere results in a force of
uniform magnitude perpendicular at all points on the
surface of the sphere.
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Before 1687, a large amount of data had been collected on the motions of the Moon
and the planets, but a clear understanding of the forces related to these motions was
not available. In that year, Isaac Newton provided the key that unlocked the secrets of
the heavens. He knew, from his first law, that a net force had to be acting on the Moon
because without such a force the Moon would move in a straight-line path rather than
in its almost circular orbit. Newton reasoned that this force was the gravitational attrac-
tion exerted by the Earth on the Moon. He realized that the forces involved in the
Earth–Moon attraction and in the Sun–planet attraction were not something special to
those systems, but rather were particular cases of a general and universal attraction be-
tween objects. In other words, Newton saw that the same force of attraction that causes
the Moon to follow its path around the Earth also causes an apple to fall from a tree.
As he put it, “I deduced that the forces which keep the planets in their orbs must be
reciprocally as the squares of their distances from the centers about which they revolve;
and thereby compared the force requisite to keep the Moon in her orb with the force
of gravity at the surface of the Earth; and found them answer pretty nearly.”

In this chapter we study the law of universal gravitation. We emphasize a descrip-
tion of planetary motion because astronomical data provide an important test of this
law’s validity. We then show that the laws of planetary motion developed by Johannes
Kepler follow from the law of universal gravitation and the concept of conservation of
angular momentum. We conclude by deriving a general expression for gravitational
potential energy and examining the energetics of planetary and satellite motion. 

13.1 Newton’s Law of Universal Gravitation

You may have heard the legend that Newton was struck on the head by a falling apple
while napping under a tree. This alleged accident supposedly prompted him to imag-
ine that perhaps all objects in the Universe were attracted to each other in the same
way the apple was attracted to the Earth. Newton analyzed astronomical data on the
motion of the Moon around the Earth. From that analysis, he made the bold assertion
that the force law governing the motion of planets was the same as the force law that at-
tracted a falling apple to the Earth. This was the first time that “earthly” and “heavenly”
motions were unified. We shall look at the mathematical details of Newton’s analysis in
this section.

In 1687 Newton published his work on the law of gravity in his treatise Mathematical
Principles of Natural Philosophy. Newton’s law of universal gravitation states that

The law of universal gravitation every particle in the Universe attracts every other particle with a force that is directly
proportional to the product of their masses and inversely proportional to the square
of the distance between them.
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If the particles have masses m1 and m2 and are separated by a distance r, the magnitude
of this gravitational force is

(13.1)

where G is a constant, called the universal gravitational constant, that has been measured
experimentally. Its value in SI units is

(13.2)

The form of the force law given by Equation 13.1 is often referred to as an inverse-
square law because the magnitude of the force varies as the inverse square of the sepa-
ration of the particles.1 We shall see other examples of this type of force law in subse-
quent chapters. We can express this force in vector form by defining a unit vector r̂12
(Fig. 13.1). Because this unit vector is directed from particle 1 toward particle 2, the
force exerted by particle 1 on particle 2 is

(13.3)

where the negative sign indicates that particle 2 is attracted to particle 1, and hence the
force on particle 2 must be directed toward particle 1. By Newton’s third law, the force ex-
erted by particle 2 on particle 1, designated F21, is equal in magnitude to F12 and in the
opposite direction. That is, these forces form an action–reaction pair, and F21 ! " F12.

Several features of Equation 13.3 deserve mention. The gravitational force is a field
force that always exists between two particles, regardless of the medium that separates
them. Because the force varies as the inverse square of the distance between the parti-
cles, it decreases rapidly with increasing separation. 

Another important point that we can show from Equation 13.3 is that the gravita-
tional force exerted by a finite-size, spherically symmetric mass distribution on
a particle outside the distribution is the same as if the entire mass of the distri-
bution were concentrated at the center. For example, the magnitude of the force
exerted by the Earth on a particle of mass m near the Earth’s surface is

(13.4)

where ME is the Earth’s mass and RE its radius. This force is directed toward the center
of the Earth.

In formulating his law of universal gravitation, Newton used the following reason-
ing, which supports the assumption that the gravitational force is proportional to the in-
verse square of the separation between the two interacting objects. He compared the
acceleration of the Moon in its orbit with the acceleration of an object falling near the
Earth’s surface, such as the legendary apple (Fig. 13.2). Assuming that both accelera-
tions had the same cause—namely, the gravitational attraction of the Earth—Newton
used the inverse-square law to reason that the acceleration of the Moon toward the
Earth (centripetal acceleration) should be proportional to 1/rM

2, where rM is the dis-
tance between the centers of the Earth and the Moon. Furthermore, the acceleration of
the apple toward the Earth should be proportional to 1/Ra

2, where Ra is the distance
between the centers of the Earth and the apple. Because the apple is located at the sur-
face of the earth, Ra ! RE , the radius of the Earth. Using the values rM ! 3.84 # 108 m
and RE ! 6.37 # 106 m, Newton predicted that the ratio of the Moon’s acceleration aM
to the apple’s acceleration g would be

aM

g
!

(1/rM)2

(1/RE)2 ! ! RE

rM
"2

! ! 6.37 # 106 m
3.84 # 108 m "2

! 2.75 # 10"4

Fg ! G  
MEm
RE 

2

F12 ! "G  
m1m 2

r  2   r̂12

G ! 6.673 # 10"11 N$m2/kg2

Fg ! G  
m1m2

r 
2

1 An inverse proportionality between two quantities x and y is one in which y ! k/x, where k is a
constant. A direct proportion between x and y exists when y ! kx.

m1

m2
r

r̂

F21

F12

12

Active Figure 13.1 The
gravitational force between two
particles is attractive. The unit vector
r̂12 is directed from particle 1 toward
particle 2. Note that F21 ! " F12.

At the Active Figures link
at http://www/pse6.com, you
can change the masses of the
particles and the separation
distance between the particles
to see the effect on the
gravitational force.

! PITFALL PREVENTION
13.1 Be Clear on g and G
The symbol g represents the mag-
nitude of the free-fall accelera-
tion near a planet. At the surface
of the Earth, g has the value
9.80 m/s2. On the other hand, G
is a universal constant that has
the same value everywhere in the
Universe.
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Therefore, the centripetal acceleration of the Moon is

Newton also calculated the centripetal acceleration of the Moon from a knowledge
of its mean distance from the Earth and the known value of its orbital period,
T ! 27.32 days ! 2.36 # 106 s. In a time interval T, the Moon travels a distance 2%rM ,
which equals the circumference of its orbit. Therefore, its orbital speed is 2%rM/T and
its centripetal acceleration is

The nearly perfect agreement between this value and the value Newton obtained using
g provides strong evidence of the inverse-square nature of the gravitational force law.

Although these results must have been very encouraging to Newton, he was deeply
troubled by an assumption he made in the analysis. To evaluate the acceleration of an
object at the Earth’s surface, Newton treated the Earth as if its mass were all concen-
trated at its center. That is, he assumed that the Earth acted as a particle as far as its
influence on an exterior object was concerned. Several years later, in 1687, on the ba-
sis of his pioneering work in the development of calculus, Newton proved that this as-
sumption was valid and was a natural consequence of the law of universal gravitation.

We have evidence that the gravitational force acting on an object is directly propor-
tional to its mass from our observations of falling objects, discussed in Chapter 2. All
objects, regardless of mass, fall in the absence of air resistance at the same acceleration
g near the surface of the Earth. According to Newton’s second law, this acceleration is
given by g ! Fg/m, where m is the mass of the falling object. If this ratio is to be the
same for all falling objects, then Fg must be directly proportional to m, so that the mass
cancels in the ratio. If we consider the more general situation of a gravitational force
between any two objects with mass, such as two planets, this same argument can be ap-
plied to show that the gravitational force is proportional to one of the masses. We can
choose either of the masses in the argument, however; thus, the gravitational force must
be directly proportional to both masses, as can be seen in Equation 13.3.

 ! 2.72 # 10"3 m/s2

aM !
v 2

rM
!

(2%rM/T)2

rM
!

4%2rM

T  
2 !

4%2(3.84 # 108 m)
(2.36 # 106 s)2

aM ! (2.75 # 10"4)(9.80 m/s2) ! 2.70 # 10"3 m/s2

Figure 13.2 As it revolves around the
Earth, the Moon experiences a
centripetal acceleration aM directed
toward the Earth. An object near the
Earth’s surface, such as the apple shown
here, experiences an acceleration g.
(Dimensions are not to scale.) 

RE

Moon

v

aM

rM

Earth

g

Quick Quiz 13.1 The Moon remains in its orbit around the Earth rather
than falling to the Earth because (a) it is outside of the gravitational influence of the
Earth (b) it is in balance with the gravitational forces from the Sun and other planets
(c) the net force on the Moon is zero (d) none of these (e) all of these.
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13.2 Measuring the Gravitational Constant

The universal gravitational constant G was measured in an important experiment by
Henry Cavendish (1731–1810) in 1798. The Cavendish apparatus consists of two small
spheres, each of mass m, fixed to the ends of a light horizontal rod suspended by a fine
fiber or thin metal wire, as illustrated in Figure 13.4. When two large spheres, each of
mass M, are placed near the smaller ones, the attractive force between smaller and
larger spheres causes the rod to rotate and twist the wire suspension to a new equilib-
rium orientation. The angle of rotation is measured by the deflection of a light beam
reflected from a mirror attached to the vertical suspension. The deflection of the light
beam is an effective technique for amplifying the motion. The experiment is carefully
repeated with different masses at various separations. In addition to providing a value

Example 13.1 Billiards, Anyone?

Three 0.300-kg billiard balls are placed on a table at the cor-
ners of a right triangle, as shown in Figure 13.3. Calculate
the gravitational force on the cue ball (designated m1) re-
sulting from the other two balls.

Solution First we calculate separately the individual forces
on the cue ball due to the other two balls, and then we find
the vector sum to obtain the resultant force. We can see
graphically that this force should point upward and toward
the right. We locate our coordinate axes as shown in Figure
13.3, placing our origin at the position of the cue ball.

At the Interactive Worked Example link at http://www.pse6.com, you can move balls 2 and 3 to see the effect on the
net gravitational force on ball 1.

Quick Quiz 13.2 A planet has two moons of equal mass. Moon 1 is in a circu-
lar orbit of radius r. Moon 2 is in a circular orbit of radius 2r. The magnitude of the
gravitational force exerted by the planet on moon 2 is (a) four times as large as that on
moon 1 (b) twice as large as that on moon 1 (c) equal to that on moon 1 (d) half as
large as that on moon 1 (e) one fourth as large as that on moon 1.

Interactive

0.400 m

m2

0.500 m

m1 0.300 m m3

F21
F

F31x

y

θ

Figure 13.3 (Example 13.1) The resultant gravitational force
acting on the cue ball is the vector sum F21 & F31.

The force exerted by m2 on the cue ball is directed 
upward and is given by

This result shows that the gravitational forces between
everyday objects have extremely small magnitudes. The
force exerted by m3 on the cue ball is directed to the right:

Therefore, the net gravitational force on the cue ball is

and the magnitude of this force is

From tan ' ! 3.75/6.67 ! 0.562, the direction of the net grav-
itational force is ' ! 29.3° counterclockwise from the x axis.

 ! 7.65 # 10"11 N

F ! √F21 
2 & F31 

2 ! √(3.75)2 & (6.67)2 # 10"11 N

(6.67 î & 3.75 ĵ) # 10"11 NF ! F21 & F31 !

 ! 6.67 # 10"11 î  N

 ! (6.67 # 10"11 N$m2/kg2) 
(0.300 kg)(0.300 kg)

(0.300 m)2  î

F31 ! G  
m 3m 1

r31 
2 

  î

 ! 3.75 # 10"11 ĵ  N

 ! (6.67 # 10"11 N$m2/kg 2) 
(0.300 kg)(0.300 kg)

(0.400 m)2  ĵ

F21 ! G 
m 2m 1

r21 
2

 
 ĵ

Mirror

r
m

M

Light
source

Figure 13.4 Cavendish apparatus
for measuring G. The dashed line
represents the original position of
the rod.
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for G, the results show experimentally that the force is attractive, proportional to the
product mM, and inversely proportional to the square of the distance r.

13.3 Free-Fall Acceleration and 
the Gravitational Force

In Chapter 5, when defining mg as the weight of an object of mass m, we referred to g as
the magnitude of the free-fall acceleration. Now we are in a position to obtain a more fun-
damental description of g. Because the magnitude of the force acting on a freely falling
object of mass m near the Earth’s surface is given by Equation 13.4, we can equate mg to
this force to obtain

(13.5)

Now consider an object of mass m located a distance h above the Earth’s surface or
a distance r from the Earth’s center, where r ! RE & h. The magnitude of the gravita-
tional force acting on this object is

The magnitude of the gravitational force acting on the object at this position is also
Fg ! mg, where g is the value of the free-fall acceleration at the altitude h. Substituting
this expression for Fg into the last equation shows that g is

(13.6)

Thus, it follows that g decreases with increasing altitude. Because the weight of an object is
mg, we see that as r : (, its weight approaches zero.

g !
GME

r 2 !
GME

(RE & h)2

Fg ! G 
MEm

r 
2 ! G 

MEm
(RE & h)2

 g ! G 
ME

RE 
2

m g ! G 
MEm
RE 

2

Variation of g with altitude

Astronauts F. Story Musgrave and Jeffrey A. Hoffman, along with the Hubble Space
Telescope and the space shuttle Endeavor, are all in free fall while orbiting the Earth.
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Example 13.2 Variation of g with Altitude h

The International Space Station operates at an altitude of
350 km. When final construction is completed, it will have a
weight (measured at the Earth’s surface) of 4.22 # 106 N.
What is its weight when in orbit?

Solution We first find the mass of the space station from its
weight at the surface of the Earth:

This mass is fixed—it is independent of the location of the
space station. Because the station is above the surface of 
the Earth, however, we expect its weight in orbit to be less 
than its weight on the Earth. Using Equation 13.6 with
h ! 350 km, we obtain

Because this value is about 90% of the value of g at the Earth
surface, we expect that the weight of the station at an alti-
tude of 350 km is 90% of the value at the Earth’s surface.

  ! 8.83 m/s2

  !
(6.67 # 10"11 N$m2/kg2)(5.98 # 1024 kg)

(6.37 # 106 m & 0.350 # 106 m)2

g !
GME

(RE & h)2

m !
Fg

g !
4.22 # 106 N

9.80 m/s2 ! 4.31 # 105 kg

Quick Quiz 13.3 Superman stands on top of a very tall mountain and
throws a baseball horizontally with a speed such that the baseball goes into a circular
orbit around the Earth. While the baseball is in orbit, the acceleration of the ball
(a) depends on how fast the baseball is thrown (b) is zero because the ball does not fall
to the ground (c) is slightly less than 9.80 m/s2 (d) is equal to 9.80 m/s2.

Example 13.3 The Density of the Earth

Using the known radius of the Earth and the fact that
g ! 9.80 m/s2 at the Earth’s surface, find the average den-
sity of the Earth.

Solution From Eq. 1.1, we know that the average density is

where ME is the mass of the Earth and VE is its volume.
From Equation 13.5, we can relate the mass of the Earth

to the value of g :

Substituting this into the definition of density, we obtain

)E !
ME

VE
!

(gRE
 

 
2/G)

4
3 %RE 

3 ! 3
4  

g
%GRE

g ! G 
ME

RE 
2  9:  ME !

gRE 
2

G

) !
ME

VE

!

What If? What if you were told that a typical density of
granite at the Earth’s surface were 2.75 # 103 kg/m3—what
would you conclude about the density of the material in the
Earth’s interior?

Answer Because this value is about half the density that we
calculated as an average for the entire Earth, we conclude
that the inner core of the Earth has a density much higher
than the average value. It is most amazing that the Cavendish
experiment, which determines G and can be done on a table-
top, combined with simple free-fall measurements of g pro-
vides information about the core of the Earth! 

5.51 # 103 kg/m3

! 3
4  

9.80 m/s2

%(6.67 # 10"11 N$m2/kg2)(6.37 # 106 m)

Altitude h (km) g (m/s2)

1 000 7.33
2 000 5.68
3 000 4.53
4 000 3.70
5 000 3.08
6 000 2.60
7 000 2.23
8 000 1.93
9 000 1.69

10 000 1.49
50 000 0.13
( 0

Free-Fall Acceleration g at 
Various Altitudes 
Above the Earth’s Surface

Table 13.1

Using the value of g at the location of the station, the sta-
tion’s weight in orbit is 

Values of g at other altitudes are listed in Table 13.1.

3.80 # 106 N mg ! (4.31 # 105 kg)(8.83 m/s2) !
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13.4 Kepler’s Laws and the Motion of Planets

People have observed the movements of the planets, stars, and other celestial objects
for thousands of years. In early history, scientists regarded the Earth as the center of
the Universe. This so-called geocentric model was elaborated and formalized by the Greek
astronomer Claudius Ptolemy (c. 100–c. 170) in the second century A.D. and was ac-
cepted for the next 1 400 years. In 1543 the Polish astronomer Nicolaus Copernicus
(1473–1543) suggested that the Earth and the other planets revolved in circular orbits
around the Sun (the heliocentric model ).

The Danish astronomer Tycho Brahe (1546–1601) wanted to determine how the
heavens were constructed, and thus he developed a program to determine the posi-
tions of both stars and planets. It is interesting to note that those observations of the
planets and 777 stars visible to the naked eye were carried out with only a large sextant
and a compass. (The telescope had not yet been invented.)

The German astronomer Johannes Kepler was Brahe’s assistant for a short while
before Brahe’s death, whereupon he acquired his mentor’s astronomical data and
spent 16 years trying to deduce a mathematical model for the motion of the planets.
Such data are difficult to sort out because the Earth is also in motion around the Sun.
After many laborious calculations, Kepler found that Brahe’s data on the revolution of
Mars around the Sun provided the answer.

Kepler’s complete analysis of planetary motion is summarized in three statements
known as Kepler’s laws:

We discuss each of these laws below.

Kepler’s First Law

We are familiar with circular orbits of objects around gravitational force centers from
our discussions in this chapter. Kepler’s first law indicates that the circular orbit is a
very special case and elliptical orbits are the general situation. This was a difficult no-
tion for scientists of the time to accept, because they felt that perfect circular orbits of
the planets reflected the perfection of heaven.

Figure 13.5 shows the geometry of an ellipse, which serves as our model for the el-
liptical orbit of a planet. An ellipse is mathematically defined by choosing two points F1
and F2, each of which is a called a focus, and then drawing a curve through points for
which the sum of the distances r1 and r2 from F1 and F2, respectively, is a constant. The
longest distance through the center between points on the ellipse (and passing
through both foci) is called the major axis, and this distance is 2a. In Figure 13.5, the
major axis is drawn along the x direction. The distance a is called the semimajor axis.
Similarly, the shortest distance through the center between points on the ellipse is
called the minor axis of length 2b, where the distance b is the semiminor axis. Either
focus of the ellipse is located at a distance c from the center of the ellipse, where
a2 ! b2 & c2. In the elliptical orbit of a planet around the Sun, the Sun is at one focus
of the ellipse. There is nothing at the other focus.

The eccentricity of an ellipse is defined as e ! c/a and describes the general shape
of the ellipse. For a circle, c ! 0, and the eccentricity is therefore zero. The smaller b is
than a, the shorter the ellipse is along the y direction compared to its extent in the x
direction in Figure 13.5. As b decreases, c increases, and the eccentricity e increases.

Johannes Kepler
German astronomer
(1571–1630)

The German astronomer Kepler
is best known for developing the
laws of planetary motion based
on the careful observations of
Tycho Brahe. (Art Resource)

Kepler’s laws 1. All planets move in elliptical orbits with the Sun at one focus.

2. The radius vector drawn from the Sun to a planet sweeps out equal areas in
equal time intervals.

3. The square of the orbital period of any planet is proportional to the cube of the
semimajor axis of the elliptical orbit.

a

c b

F2F1

r1

r2

y

x

Active Figure 13.5 Plot of an
ellipse. The semimajor axis has
length a, and the semiminor axis
has length b. Each focus is located
at a distance c from the center on
each side of the center.

At the Active Figures link
at http://www.pse6.com, you
can move the focal points or
enter values for a, b, c, and e to
see the resulting elliptical
shape.
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Thus, higher values of eccentricity correspond to longer and thinner ellipses. The
range of values of the eccentricity for an ellipse is 0 * e * 1. 

Eccentricities for planetary orbits vary widely in the solar system. The eccentricity
of the Earth’s orbit is 0.017, which makes it nearly circular. On the other hand, the ec-
centricity of Pluto’s orbit is 0.25, the highest of all the nine planets. Figure 13.6a shows
an ellipse with the eccentricity of that of Pluto’s orbit. Notice that even this highest-
eccentricity orbit is difficult to distinguish from a circle. This is why Kepler’s first law is
an admirable accomplishment. The eccentricity of the orbit of Comet Halley is 0.97,
describing an orbit whose major axis is much longer than its minor axis, as shown in
Figure 13.6b. As a result, Comet Halley spends much of its 76-year period far from the
Sun and invisible from the Earth. It is only visible to the naked eye during a small part
of its orbit when it is near the Sun.

Now imagine a planet in an elliptical orbit such as that shown in Figure 13.5, with
the Sun at focus F2. When the planet is at the far left in the diagram, the distance
between the planet and the Sun is a & c. This point is called the aphelion, where the
planet is the farthest away from the Sun that it can be in the orbit. (For an object in or-
bit around the Earth, this point is called the apogee). Conversely, when the planet is at
the right end of the ellipse, the point is called the perihelion (for an Earth orbit, the
perigee), and the distance between the planet and the Sun is a " c. 

Kepler’s first law is a direct result of the inverse square nature of the gravitational
force. We have discussed circular and elliptical orbits. These are the allowed shapes of
orbits for objects that are bound to the gravitational force center. These objects include
planets, asteroids, and comets that move repeatedly around the Sun, as well as moons
orbiting a planet. There could also be unbound objects, such as a meteoroid from deep
space that might pass by the Sun once and then never return. The gravitational force
between the Sun and these objects also varies as the inverse square of the separation
distance, and the allowed paths for these objects include parabolas (e ! 1) and hyper-
bolas (e + 1).

Kepler’s Second Law

Kepler’s second law can be shown to be a consequence of angular momentum conser-
vation as follows. Consider a planet of mass MP moving about the Sun in an elliptical
orbit (Fig. 13.7a). Let us consider the planet as a system. We will model the Sun to be

Sun

Center

Sun

Center

(a)

(b)

Orbit
of Pluto

Orbit of
Comet Halley

Figure 13.6 (a) The shape of the orbit of Pluto,
which has the highest eccentricity (e ! 0.25) among
the planets in the solar system. The Sun is located at
the large yellow dot, which is a focus of the ellipse.
There is nothing physical located at the center (the
small dot) or the other focus (the blue dot). (b) The
shape of the orbit of Comet Halley.

! PITFALL PREVENTION
13.2 Where is the Sun?
The Sun is located at one focus
of the elliptical orbit of a planet.
It is not located at the center of
the ellipse.
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Figure 13.8 A planet of mass MP
moving in a circular orbit around
the Sun. The orbits of all planets
except Mercury and Pluto are
nearly circular.

r

MS

MP

v

so much more massive than the planet that the Sun does not move. The gravitational
force acting on the planet is a central force, always along the radius vector, directed 
toward the Sun (Fig. 13.7a). The torque on the planet due to this central force is
clearly zero, because F is parallel to r. That is

Recall that the external net torque on a system equals the time rate of change of
angular momentum of the system; that is, ! ! dL/dt. Therefore, because ! ! 0, the
angular momentum L of the planet is a constant of the motion:

We can relate this result to the following geometric consideration. In a time in-
terval dt, the radius vector r in Figure 13.7b sweeps out the area dA, which equals
half the area of the parallelogram formed by the vectors r and dr.
Because the displacement of the planet in the time interval dt is given by dr ! v dt,
we have

(13.7)

where L and MP are both constants. Thus, we conclude that the radius vector from
the Sun to any planet sweeps out equal areas in equal times.

It is important to recognize that this result is a consequence of the fact that the
gravitational force is a central force, which in turn implies that angular momentum of
the planet is constant. Therefore, the law applies to any situation that involves a central
force, whether inverse-square or not.

Kepler’s Third Law

It is informative to show that Kepler’s third law can be predicted from the inverse-
square law for circular orbits.2 Consider a planet of mass MP that is assumed to be mov-
ing about the Sun (mass MS) in a circular orbit, as in Figure 13.8. Because the gravita-
tional force provides the centripetal acceleration of the planet as it moves in a circle,
we use Newton’s second law for a particle in uniform circular motion,

The orbital speed of the planet is 2%r/T, where T is the period; therefore, the preced-
ing expression becomes

where KS is a constant given by

KS !
4%  2

GMS
! 2.97 # 10"19 s2/m3

T  2 ! ! 4% 2

GMS
" r  3 ! KSr 3

GMS

r  2 !
(2%r/T )2

r

GMSMP

r  2 !
MP v  2

r

dA
dt

!
L

2MP
! constant

dA ! 1
2 # r " d r # ! 1

2# r " v dt # !
L

2MP
 dt

# r " d r #

L ! r " p ! MP r " v ! constant

! ! r " F ! r " F(r)r̂ ! 0

2 The orbits of all planets except Mercury and Pluto are very close to being circular; hence, we do
not introduce much error with this assumption. For example, the ratio of the semiminor axis to the
semimajor axis for the Earth’s orbit is b/a ! 0.999 86.

Sun
r

MS

Fg

MP

v

(a)

Sun

(b)

r

dA

dr = vdt

Active Figure 13.7 (a) The
gravitational force acting on a planet
is directed toward the Sun. (b) As a
planet orbits the Sun, the area swept
out by the radius vector in a time
interval dt is equal to half the area of
the parallelogram formed by the
vectors r and dr ! v dt.

At the Active Figures link
at http://www.pse6.com, you
can assign a value of the
eccentricity and see the
resulting motion of the planet
around the Sun.
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This equation is also valid for elliptical orbits if we replace r with the length a of the
semimajor axis (Fig. 13.5): 

(13.8)

Equation 13.8 is Kepler’s third law. Because the semimajor axis of a circular orbit is its
radius, Equation 13.8 is valid for both circular and elliptical orbits. Note that the con-
stant of proportionality KS is independent of the mass of the planet. Equation 13.8 is
therefore valid for any planet.3 If we were to consider the orbit of a satellite such as the
Moon about the Earth, then the constant would have a different value, with the Sun’s
mass replaced by the Earth’s mass, that is, KE ! 4%2/GME.

Table 13.2 is a collection of useful planetary data. The last column verifies that the
ratio T 2/r 3 is constant. The small variations in the values in this column are due to un-
certainties in the data measured for the periods and semimajor axes of the planets.

Recent astronomical work has revealed the existence of a large number of solar sys-
tem objects beyond the orbit of Neptune. In general, these lie in the Kuiper belt, a re-
gion that extends from about 30 AU (the orbital radius of Neptune) to 50 AU. (An AU
is an astronomical unit—the radius of the Earth’s orbit.) Current estimates identify at
least 70 000 objects in this region with diameters larger than 100 km. The first KBO
(Kuiper Belt Object) was discovered in 1992. Since then, many more have been de-
tected and some have been given names, such as Varuna (diameter about 
900–1 000 km, discovered in 2000), Ixion (diameter about 900–1 000 km, discovered 
in 2001), and Quaoar (diameter about 800 km, discovered in 2002). 

A subset of about 1 400 KBOs are called “Plutinos” because, like Pluto, they exhibit
a resonance phenomenon, orbiting the Sun two times in the same time interval as
Neptune revolves three times. Some astronomers even claim that Pluto should not be
considered a planet but should be identified as a KBO. The contemporary application
of Kepler’s laws and such exotic proposals as planetary angular momentum exchange
and migrating planets4 suggest the excitement of this active area of current research.

T  2 ! ! 4%  2

GMS
" a 3 ! KSa3

Period of Mean Distance
Body Mass (kg) Mean Radius (m) Revolution (s) from Sun (m)

Mercury 3.18 # 1023 2.43 # 106 7.60 # 106 5.79 # 1010 2.97 # 10"19

Venus 4.88 # 1024 6.06 # 106 1.94 # 107 1.08 # 1011 2.99 # 10"19

Earth 5.98 # 1024 6.37 # 106 3.156 # 107 1.496 # 1011 2.97 # 10"19

Mars 6.42 # 1023 3.37 # 106 5.94 # 107 2.28 # 1011 2.98 # 10"19

Jupiter 1.90 # 1027 6.99 # 107 3.74 # 108 7.78 # 1011 2.97 # 10"19

Saturn 5.68 # 1026 5.85 # 107 9.35 # 108 1.43 # 1012 2.99 # 10"19

Uranus 8.68 # 1025 2.33 # 107 2.64 # 109 2.87 # 1012 2.95 # 10"19

Neptune 1.03 # 1026 2.21 # 107 5.22 # 109 4.50 # 1012 2.99 # 10"19

Pluto $ 1.4 # 1022 $ 1.5 # 106 7.82 # 109 5.91 # 1012 2.96 # 10"19

Moon 7.36 # 1022 1.74 # 106 — — —
Sun 1.991 # 1030 6.96 # 108 — — —

Useful Planetary Data

Table 13.2

T 2

r 3   (s2/m3)

3 Equation 13.8 is indeed a proportion because the ratio of the two quantities T 2 and a3 is a
constant. The variables in a proportion are not required to be limited to the first power only.
4 Malhotra, R., “Migrating Planets,” Scientific American, September 1999, volume 281, number 3.

Quick Quiz 13.4 Pluto, the farthest planet from the Sun, has an orbital pe-
riod that is (a) greater than a year (b) less than a year (c) equal to a year. 

Kepler’s third law
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Example 13.4 The Mass of the Sun

Calculate the mass of the Sun using the fact that the period
of the Earth’s orbit around the Sun is 3.156 # 107 s and its
distance from the Sun is 1.496 # 1011 m.

Solution Using Equation 13.8, we find that

!

In Example 13.3, an understanding of gravitational forces
enabled us to find out something about the density of the
Earth’s core, and now we have used this understanding to
determine the mass of the Sun!

What If? Suppose you were asked for the mass of Mars.
How could you determine this value?

Answer Kepler’s third law is valid for any system of objects
in orbit around an object with a large mass. Mars has two
moons, Phobos and Deimos. If we rewrite Equation 13.8 for
these moons of Mars, we have

T 
2 ! ! 4% 2

GMM
" a3

1.99 # 1030 kg

MS !
4%  2r 3

GT 2 !
4%  2(1.496 # 1011 m)3

(6.67 # 10"11 N$m2/kg2)(3.156 # 107 s)2

where MM is the mass of Mars. Solving for this mass,

Phobos has an orbital period of 0.32 days and an almost cir-
cular orbit of radius 9 380 km. The orbit of Deimos is even
more circular, with a radius of 23 460 km and an orbital pe-
riod of 1.26 days. Let us calculate the mass of Mars using
each of these sets of data:

Phobos:

Deimos:

These two calculations are within 1% of each other and
both are within 0.5% of the value of the mass of Mars given
in Table 13.2.

#
(2.346 # 107 m)3

(1.26 d)2   ! 1 d
86 400 s "

2
! 6.45 # 1023 kg

MM ! (5.92 # 1011 kg$s2/m3)

#
(9.380 # 106 m)3

(0.32 d)2  ! 1 d
86 400 s "

2
! 6.39 # 1023 kg

MM ! (5.92 # 1011 kg$s2/m3)

 ! (5.92 # 1011 kg$s2/m3) 
a 3

T 2

MM ! ! 4%  2

G " 
a 3

T 
2 ! ! 4% 

2

6.67 # 10"11 N$m2/kg2 " 
a3

T 2

Quick Quiz 13.5 An asteroid is in a highly eccentric elliptical orbit around
the Sun. The period of the asteroid’s orbit is 90 days. Which of the following statements
is true about the possibility of a collision between this asteroid and the Earth? (a) There
is no possible danger of a collision. (b) There is a possibility of a collision. (c) There is
not enough information to determine whether there is danger of a collision.

Quick Quiz 13.6 A satellite moves in an elliptical orbit about the Earth
such that, at perigee and apogee positions, its distances from the Earth’s center are
respectively D and 4D. The relationship between the speeds at these two positions is
(a) vp ! va (b) vp ! 4va (c) va ! 4vp (d) vp ! 2va (e) va ! 2vp.

Example 13.5 A Geosynchronous Satellite

Consider a satellite of mass m moving in a circular orbit
around the Earth at a constant speed v and at an altitude h
above the Earth’s surface, as illustrated in Figure 13.9.

(A) Determine the speed of the satellite in terms of G, h, RE
(the radius of the Earth), and ME (the mass of the Earth).

Solution Conceptualize by imagining the satellite moving
around the Earth in a circular orbit under the influence
of the gravitational force. The satellite must have a cen-
tripetal acceleration. Thus, we categorize this problem as
one involving Newton’s second law, the law of universal
gravitation, and circular motion. To analyze the problem,

note that the only external force acting on the satellite
is the gravitational force, which acts toward the center of
the Earth and keeps the satellite in its circular orbit.
Therefore, the net force on the satellite is the gravita-
tional force

From Newton’s second law and the fact that the acceleration
of the satellite is centripetal, we obtain

G 
MEm

r  2 ! m 
v 

2

r

Fr ! Fg ! G 
MEm

r  2

Interactive
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Figure 13.9 (Example 13.5) A satellite of mass m moving
around the Earth in a circular orbit of radius r with constant
speed v. The only force acting on the satellite is the
gravitational force Fg . (Not drawn to scale.)

h

RE

m

v

Fg

r

13.5 The Gravitational Field

When Newton published his theory of universal gravitation, it was considered a success
because it satisfactorily explained the motion of the planets. Since 1687 the same the-
ory has been used to account for the motions of comets, the deflection of a Cavendish
balance, the orbits of binary stars, and the rotation of galaxies. Nevertheless, both
Newton’s contemporaries and his successors found it difficult to accept the concept of
a force that acts at a distance, as mentioned in Section 5.1. They asked how it was possi-
ble for two objects to interact when they were not in contact with each other. Newton
himself could not answer that question.

An approach to describing interactions between objects that are not in contact
came well after Newton’s death, and it enables us to look at the gravitational interac-
tion in a different way, using the concept of a gravitational field that exists at every
point in space. When a particle of mass m is placed at a point where the gravitational

Solving for v and remembering that the distance r from the
center of the Earth to the satellite is r ! RE & h, we obtain

(1)

(B) If the satellite is to be geosynchronous (that is, appearing
to remain over a fixed position on the Earth), how fast is it
moving through space?

Solution In order to appear to remain over a fixed position
on the Earth, the period of the satellite must be 24 h and 
the satellite must be in orbit directly over the equator. From
Kepler’s third law (Equation 13.8) with a ! r and MS : ME ,
we find the radius of the orbit:

Substituting numerical values and noting that the period is
T ! 24 h ! 86 400 s, we find

To find the speed of the satellite, we use Equation (1):

!

To finalize this problem, it is interesting to note that the
value of r calculated here translates to a height of the satel-

3.07 # 103 m/s

 ! √ (6.67 # 10"11 N$m2/kg2)(5.98 # 1024 kg)
4.23 # 107 m

v ! √ GME

r

! 4.23 # 107 m

r ! √3 (6.67 # 10"11 N$m2/kg2)(5.98 # 1024 kg)(86 400 s)2

4%2

r ! √3 GMET  2

4% 2

T 2 ! ! 4% 2

GME
" r  3

√ GME

RE & h
v ! √ GME

r
!

lite above the surface of the Earth of almost 36 000 km.
Thus, geosynchronous satellites have the advantage of allow-
ing an earthbound antenna to be aimed in a fixed direction,
but there is a disadvantage in that the signals between Earth
and the satellite must travel a long distance. It is difficult to
use geosynchronous satellites for optical observation of the
Earth’s surface because of their high altitude.

What If? What if the satellite motion in part (A) were taking
place at height h above the surface of another planet more
massive than the Earth but of the same radius? Would the
satellite be moving at a higher or a lower speed than it does
around the Earth?

Answer If the planet pulls downward on the satellite with
more gravitational force due to its larger mass, the satellite
would have to move with a higher speed to avoid moving to-
ward the surface. This is consistent with the predictions of
Equation (1), which shows that because the speed v is pro-
portional to the square root of the mass of the planet, as the
mass increases, the speed also increases.

You can adjust the altitude of the satellite at the Interactive Worked Example link at http://www.pse6.com.
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field is g, the particle experiences a force Fg ! mg. In other words, the field exerts a
force on the particle. The gravitational field g is defined as

(13.9)

That is, the gravitational field at a point in space equals the gravitational force experi-
enced by a test particle placed at that point divided by the mass of the test particle. No-
tice that the presence of the test particle is not necessary for the field to exist—the
Earth creates the gravitational field. We call the object creating the field the source par-
ticle. (Although the Earth is clearly not a particle, it is possible to show that we can ap-
proximate the Earth as a particle for the purpose of finding the gravitational field that
it creates.) We can detect the presence of the field and measure its strength by placing
a test particle in the field and noting the force exerted on it.

Although the gravitational force is inherently an interaction between two objects,
the concept of a gravitational field allows us to “factor out” the mass of one of the ob-
jects. In essence, we are describing the “effect” that any object (in this case, the Earth)
has on the empty space around itself in terms of the force that would be present if a sec-
ond object were somewhere in that space.5

As an example of how the field concept works, consider an object of mass m near
the Earth’s surface. Because the gravitational force acting on the object has a magni-
tude GMEm/r2 (see Eq. 13.4), the field g at a distance r from the center of the Earth is

(13.10)

where r̂ is a unit vector pointing radially outward from the Earth and the negative sign
indicates that the field points toward the center of the Earth, as illustrated in Figure
13.10a. Note that the field vectors at different points surrounding the Earth vary in
both direction and magnitude. In a small region near the Earth’s surface, the down-
ward field g is approximately constant and uniform, as indicated in Figure 13.10b.
Equation 13.10 is valid at all points outside the Earth’s surface, assuming that the Earth
is spherical. At the Earth’s surface, where r ! RE , g has a magnitude of 9.80 N/kg.
(The unit N/kg is the same as m/s2.)

g !
Fg

m
! " 

GME

r  
2   r̂

g % 
Fg

m

5 We shall return to this idea of mass affecting the space around it when we discuss Einstein’s theory
of gravitation in Chapter 39.

Figure 13.10 (a) The gravitational field vectors in the vicinity of a uniform spherical
mass such as the Earth vary in both direction and magnitude. The vectors point in the
direction of the acceleration a particle would experience if it were placed in the field.
The magnitude of the field vector at any location is the magnitude of the free-fall
acceleration at that location. (b) The gravitational field vectors in a small region near
the Earth’s surface are uniform in both direction and magnitude.

(a) (b)

Gravitational field
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13.6 Gravitational Potential Energy

In Chapter 8 we introduced the concept of gravitational potential energy, which is the
energy associated with the configuration of a system of objects interacting via the gravi-
tational force. We emphasized that the gravitational potential-energy function mgy for a
particle–Earth system is valid only when the particle is near the Earth’s surface, where
the gravitational force is constant. Because the gravitational force between two particles
varies as 1/r 2, we expect that a more general potential-energy function—one that is
valid without the restriction of having to be near the Earth’s surface—will be signifi-
cantly different from U ! mgy.

Before we calculate this general form for the gravitational potential energy func-
tion, let us first verify that the gravitational force is conservative. (Recall from Section 8.3
that a force is conservative if the work it does on an object moving between any two
points is independent of the path taken by the object.) To do this, we first note that the
gravitational force is a central force. By definition, a central force is any force that is di-
rected along a radial line to a fixed center and has a magnitude that depends only on
the radial coordinate r. Hence, a central force can be represented by F(r)r̂ where r̂ is a
unit vector directed from the origin toward the particle, as shown in Figure 13.11.

Consider a central force acting on a particle moving along the general path ! to " in
Figure 13.11. The path from ! to " can be approximated by a series of steps according
to the following procedure. In Figure 13.11, we draw several thin wedges, which are
shown as dashed lines. The outer boundary of our set of wedges is a path consisting of
short radial line segments and arcs (gray in the figure). We select the length of the radial
dimension of each wedge such that the short arc at the wedge’s wide end intersects the ac-
tual path of the particle. Then we can approximate the actual path with a series of zigzag
movements that alternate between moving along an arc and moving along a radial line.

By definition, a central force is always directed along one of the radial segments;
therefore, the work done by F along any radial segment is

By definition, the work done by a force that is perpendicular to the displacement is
zero. Hence, the work done in moving along any arc is zero because F is perpendicular
to the displacement along these segments. Therefore, the total work done by F is the
sum of the contributions along the radial segments:

where the subscripts i and f refer to the initial and final positions. Because the inte-
grand is a function only of the radial position, this integral depends only on the initial
and final values of r. Thus, the work done is the same over any path from ! to ". Be-
cause the work done is independent of the path and depends only on the end points,
we conclude that any central force is conservative. We are now assured that a potential en-
ergy function can be obtained once the form of the central force is specified.

Recall from Equation 8.15 that the change in the gravitational potential energy of a
system associated with a given displacement of a member of the system is defined as
the negative of the work done by the gravitational force on that member during the
displacement:

(13.11)

We can use this result to evaluate the gravitational potential energy function. Consider
a particle of mass m moving between two points ! and " above the Earth’s surface
(Fig. 13.12). The particle is subject to the gravitational force given by Equation 13.1.
We can express this force as

F(r) ! "
GMEm

r2

,U ! Uf " Ui ! "&rf

ri
 F(r) dr

W ! &rf

ri
 F(r) dr

dW ! F # d r ! F(r) dr

Figure 13.11 A particle moves
from ! to " while acted on by a
central force F, which is directed
radially. The path is broken into a
series of radial segments and arcs.
Because the work done along the
arcs is zero, the work done is
independent of the path and
depends only on rf and ri.

O

r i

!

"

r f

F

r̂

r̂

Radial segment

Arc

Work done by a central force

Figure 13.12 As a particle of mass
m moves from ! to " above the
Earth’s surface, the gravitational
potential energy changes according
to Equation 13.11.

!

Fg

Fg "

m

rf

ri

ME

RE
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where the negative sign indicates that the force is attractive. Substituting this expres-
sion for F(r) into Equation 13.11, we can compute the change in the gravitational po-
tential energy function:

(13.12)

As always, the choice of a reference configuration for the potential energy is com-
pletely arbitrary. It is customary to choose the reference configuration for zero poten-
tial energy to be the same as that for which the force is zero. Taking Ui ! 0 at ri ! (,
we obtain the important result

(13.13)

This expression applies to the Earth–particle system where the particle is separated
from the center of the Earth by a distance r, provided that r - RE . The result is not
valid for particles inside the Earth, where r * RE . Because of our choice of Ui , the
function U is always negative (Fig. 13.13).

Although Equation 13.13 was derived for the particle–Earth system, it can be ap-
plied to any two particles. That is, the gravitational potential energy associated with any
pair of particles of masses m1 and m2 separated by a distance r is

(13.14)

This expression shows that the gravitational potential energy for any pair of particles
varies as 1/r, whereas the force between them varies as 1/r 2. Furthermore, the poten-
tial energy is negative because the force is attractive and we have taken the potential
energy as zero when the particle separation is infinite. Because the force between the
particles is attractive, we know that an external agent must do positive work to increase
the separation between them. The work done by the external agent produces an in-
crease in the potential energy as the two particles are separated. That is, U becomes
less negative as r increases.

When two particles are at rest and separated by a distance r, an external agent 
has to supply an energy at least equal to &Gm1m 2/r in order to separate the parti-
cles to an infinite distance. It is therefore convenient to think of the absolute value 
of the potential energy as the binding energy of the system. If the external agent sup-
plies an energy greater than the binding energy, the excess energy of the system will be
in the form of kinetic energy of the particles when the particles are at an infinite 
separation.

We can extend this concept to three or more particles. In this case, the total poten-
tial energy of the system is the sum over all pairs of particles.6 Each pair contributes a
term of the form given by Equation 13.14. For example, if the system contains three
particles, as in Figure 13.14, we find that

(13.15)

The absolute value of Utotal represents the work needed to separate the particles by an
infinite distance.

Utotal ! U12 & U13 & U23 ! "G ! m1m2

r12
&

m1m3

r13
&

m2m3

r23
"

U ! "
Gm1m2

r

U(r) ! "
GMEm

r

Uf " Ui ! "GMEm ! 1
rf

"
1
ri
"

Uf " Ui ! GMEm &rf

ri

 
dr
r  2 ! GME m '" 1

r (
rf

ri

Gravitational potential energy
of the Earth–particle system for
r ! RE

6 The fact that potential energy terms can be added for all pairs of particles stems from the
experimental fact that gravitational forces obey the superposition principle.

Figure 13.13 Graph of the
gravitational potential energy U
versus r for an object above the
Earth’s surface. The potential
energy goes to zero as r approaches
infinity.

Earth
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O
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–

Figure 13.14 Three interacting
particles.
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Example 13.6 The Change in Potential Energy

A particle of mass m is displaced through a small vertical dis-
tance ,y near the Earth’s surface. Show that in this situation
the general expression for the change in gravitational po-
tential energy given by Equation 13.12 reduces to the famil-
iar relationship ,U ! mg ,y.

Solution We can express Equation 13.12 in the form

If both the initial and final positions of the particle are 
close to the Earth’s surface, then rf " ri ! ,y and 
ri rf $ RE

2. (Recall that r is measured from the center 
of the Earth.) Therefore, the change in potential energy 
becomes

where we have used the fact that g !GME /RE
2 (Eq. 13.5).

Keep in mind that the reference configuration is arbitrary
because it is the change in potential energy that is
meaningful. 

What If? Suppose you are performing upper-atmosphere
studies and are asked by your supervisor to find the height
in the Earth’s atmosphere at which the “surface equation”

,U $
GMEm

RE 
2  ,y ! mg  ,y

,U ! "GMEm  ! 1
rf

"
1
ri
" ! GMEm ! rf " ri

ri rf
"

$U ! mg $y gives a 1.0% error in the change in the potential
energy. What is this height?

Answer Because the surface equation assumes a constant
value for g, it will give a ,U value that is larger than the
value given by the general equation, Equation 13.12. Thus, a
1.0% error would be described by the ratio

Substituting the expressions for each of these changes ,U,
we have

where ri ! RE and rf ! RE & ,y. Substituting for g from
Equation 13.5, we find

Thus,

! 6.37 # 104 m ! 63.7 km

,y ! 0.010RE ! 0.010(6.37 # 106 m)

(GME/RE 
2)RE(RE & ,y)
GME

!
RE & ,y

RE
! 1 &

,y
RE

! 1.010

mg  ,y
GMEm(,y/ri rf)

!
gri rf

GME
! 1.010

 
,Usurface

,Ugeneral
! 1.010

7 You might recognize that we have ignored the kinetic energy of the larger body. To see that this
simplification is reasonable, consider an object of mass m falling toward the Earth. Because the
center of mass of the object–Earth system is effectively stationary, it follows from conservation of
momentum that mv ! MEvE. Thus, the Earth acquires a kinetic energy equal to

where K is the kinetic energy of the object. Because ME ++ m, this result shows that the kinetic energy
of the Earth is negligible.

1
2 MEvE 

2 ! 1
2  

m2

ME
  v 

2 !
m

ME
 K

13.7 Energy Considerations in Planetary 
and Satellite Motion

Consider an object of mass m moving with a speed v in the vicinity of a massive object
of mass M, where M ++ m. The system might be a planet moving around the Sun, a
satellite in orbit around the Earth, or a comet making a one-time flyby of the Sun. If we
assume that the object of mass M is at rest in an inertial reference frame, then the total
mechanical energy E of the two-object system when the objects are separated by a dis-
tance r is the sum of the kinetic energy of the object of mass m and the potential en-
ergy of the system, given by Equation 13.14:7

(13.16)E ! 1
2 mv  2 "

GMm
r

E ! K & U
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This equation shows that E may be positive, negative, or zero, depending on the value
of v. However, for a bound system,8 such as the Earth–Sun system, E is necessarily less
than zero because we have chosen the convention that U : 0 as r : (.

We can easily establish that E * 0 for the system consisting of an object of mass m
moving in a circular orbit about an object of mass M ++ m (Fig. 13.15). Newton’s sec-
ond law applied to the object of mass m gives

Multiplying both sides by r and dividing by 2 gives

(13.17)

Substituting this into Equation 13.16, we obtain

(circular orbits) (13.18)

This result clearly shows that the total mechanical energy is negative in the case of
circular orbits. Note that the kinetic energy is positive and equal to half the ab-
solute value of the potential energy. The absolute value of E is also equal to the
binding energy of the system, because this amount of energy must be provided to the
system to move the two objects infinitely far apart.

The total mechanical energy is also negative in the case of elliptical orbits. The ex-
pression for E for elliptical orbits is the same as Equation 13.18 with r replaced by the
semimajor axis length a:

(elliptical orbits) (13.19)

Furthermore, the total energy is constant if we assume that the system is isolated.
Therefore, as the object of mass m moves from ! to " in Figure 13.12, the total en-
ergy remains constant and Equation 13.16 gives

(13.20)

Combining this statement of energy conservation with our earlier discussion of conser-
vation of angular momentum, we see that both the total energy and the total angu-
lar momentum of a gravitationally bound, two-object system are constants of
the motion.

E ! 1
2 mvi 

2 "
GMm

ri
! 1

2 mvf 
2 "

GMm
rf

E ! "
GMm

2a

E ! "
GMm

2r

E !
GMm

2r
"

GMm
r

1
2 mv 2 !

GMm
2r

GMm
r  2 ! ma !

mv  2

r

Total energy for circular orbits

Total energy for elliptical orbits

8 Of the three examples provided at the beginning of this section, the planet moving around the
Sun and a satellite in orbit around the Earth are bound systems—the Earth will always stay near the
Sun, and the satellite will always stay near the Earth. The one-time comet flyby represents an unbound
system—the comet interacts once with the Sun but is not bound to it. Thus, in theory the comet can
move infinitely far away from the Sun.

Figure 13.15 An object of mass m
moving in a circular orbit about a
much larger object of mass M.

r

M

m

v

Quick Quiz 13.7 A comet moves in an elliptical orbit around the Sun.
Which point in its orbit (perihelion or aphelion) represents the highest value of 
(a) the speed of the comet (b) the potential energy of the comet–Sun system (c) the 
kinetic energy of the comet (d) the total energy of the comet–Sun system?
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Example 13.7 Changing the Orbit of a Satellite

The space shuttle releases a 470-kg communications satellite
while in an orbit 280 km above the surface of the Earth.
A rocket engine on the satellite boosts it into a geosynchro-
nous orbit, which is an orbit in which the satellite stays
directly over a single location on the Earth. How much en-
ergy does the engine have to provide?

Solution We first determine the initial radius (not the alti-
tude above the Earth’s surface) of the satellite’s orbit when
it is still in the shuttle’s cargo bay. This is simply

In Example 13.5, we found that the radius of the orbit of a
geosynchronous satellite is rf ! 4.23 # 107 m. Applying Equa-
tion 13.18, we obtain, for the total initial and final energies,

The energy required from the engine to boost the satellite is

! 1.19 # 1010 J

# ! 1
4.23 # 107 m

"
1

6.65 # 106 m "
!"

(6.67 # 10"11 N$m2/kg2)(5.98 # 1024
 kg)(470 kg)

2

,E ! Ef " Ei ! "
GMEm

2
 ! 1

rf
"

1
r i
"

Ei !"
GMEm

2ri
  Ef ! "

GMEm
2rf

RE & 280 km ! 6.65 # 106 m ! ri

This is the energy equivalent of 89 gal of gasoline. NASA en-
gineers must account for the changing mass of the space-
craft as it ejects burned fuel, something we have not done
here. Would you expect the calculation that includes the ef-
fect of this changing mass to yield a greater or lesser amount
of energy required from the engine?

If we wish to determine how the energy is distributed af-
ter the engine is fired, we find from Equation 13.17 that the
change in kinetic energy is ,K ! (GMEm/2)(1/rf " 1/ri) !
" 1.19 # 1010 J (a decrease), and the corresponding
change in potential energy is ,U ! " GMEm(1/rf " 1/ri) !
2.38 # 1010 J (an increase). Thus, the change in orbital
energy of the system is ,E ! ,K & ,U ! 1.19 # 1010 J, as
we already calculated. The firing of the engine results in a
transformation of chemical potential energy in the fuel to
orbital energy of the system. Because an increase in gravita-
tional potential energy is accompanied by a decrease in
kinetic energy, we conclude that the speed of an orbiting
satellite decreases as its altitude increases.

Escape Speed

Suppose an object of mass m is projected vertically upward from the Earth’s surface
with an initial speed vi , as illustrated in Figure 13.16. We can use energy considerations
to find the minimum value of the initial speed needed to allow the object to move infi-
nitely far away from the Earth. Equation 13.16 gives the total energy of the system at
any point. At the surface of the Earth, v ! vi and r ! ri ! RE . When the object reaches
its maximum altitude, v ! vf ! 0 and r ! rf ! rmax. Because the total energy of the sys-
tem is constant, substituting these conditions into Equation 13.20 gives

Solving for vi
2 gives

(13.21)

Therefore, if the initial speed is known, this expression can be used to calculate the
maximum altitude h because we know that

h ! rmax " RE

We are now in a position to calculate escape speed, which is the minimum speed
the object must have at the Earth’s surface in order to approach an infinite separation
distance from the Earth. Traveling at this minimum speed, the object continues to

vi 
2 ! 2GME ! 1

RE
"

1
rmax

"

1
2 mvi 

2 "
GMEm

RE
! "

GMEm
rmax

Figure 13.16 An object of mass m
projected upward from the Earth’s
surface with an initial speed vi
reaches a maximum altitude h.

h

m

v i

rmax

vf = 0

M E

R E
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Planet vesc (km/s)

Mercury 4.3
Venus 10.3
Earth 11.2
Mars 5.0
Jupiter 60
Saturn 36
Uranus 22
Neptune 24
Pluto 1.1
Moon 2.3
Sun 618

Escape Speeds from the 
Surfaces of the Planets, 
Moon, and Sun

Table 13.3

move farther and farther away from the Earth as its speed asymptotically approaches
zero. Letting rmax : ( in Equation 13.21 and taking vi ! vesc, we obtain

(13.22)

Note that this expression for vesc is independent of the mass of the object. In other
words, a spacecraft has the same escape speed as a molecule. Furthermore, the result is
independent of the direction of the velocity and ignores air resistance.

If the object is given an initial speed equal to vesc, the total energy of the system is
equal to zero. This can be seen by noting that when r : (, the object’s kinetic energy
and the potential energy of the system are both zero. If vi is greater than vesc, the total
energy of the system is greater than zero and the object has some residual kinetic 
energy as r : (.

vesc ! √ 2GME

RE

Equations 13.21 and 13.22 can be applied to objects projected from any planet. That
is, in general, the escape speed from the surface of any planet of mass M and radius R is

(13.23)

Escape speeds for the planets, the Moon, and the Sun are provided in Table 13.3.
Note that the values vary from 1.1 km/s for Pluto to about 618 km/s for the Sun.
These results, together with some ideas from the kinetic theory of gases (see Chapter
21), explain why some planets have atmospheres and others do not. As we shall see
later, at a given temperature the average kinetic energy of a gas molecule depends only
on the mass of the molecule. Lighter molecules, such as hydrogen and helium, have a
higher average speed than heavier molecules at the same temperature. When the aver-
age speed of the lighter molecules is not much less than the escape speed of a planet, a
significant fraction of them have a chance to escape.

This mechanism also explains why the Earth does not retain hydrogen molecules
and helium atoms in its atmosphere but does retain heavier molecules, such as oxygen
and nitrogen. On the other hand, the very large escape speed for Jupiter enables that
planet to retain hydrogen, the primary constituent of its atmosphere.

vesc ! √ 2GM
R

Example 13.8 Escape Speed of a Rocket

Calculate the escape speed from the Earth for a 5 000-kg
spacecraft, and determine the kinetic energy it must have at
the Earth’s surface in order to move infinitely far away from
the Earth.

Solution Using Equation 13.22 gives

!

This corresponds to about 25 000 mi/h.
The kinetic energy of the spacecraft is

! 3.14 # 1011 J

K ! 1
2 mvesc

2 ! 1
2(5.00 # 103 kg)(1.12 # 104 m/s)2

1.12 # 104 m/s

 ! √ 2(6.67 # 10"11 N$m2/kg2)(5.98 # 1024 kg)
6.37 # 106 m

vesc ! √ 2GME

RE

This is equivalent to about 2 300 gal of gasoline. 

What If? What if we wish to launch a 1 000-kg space-
craft at the escape speed? How much energy does this
require?

Answer In Equation 13.22, the mass of the object moving
with the escape speed does not appear. Thus, the escape
speed for the 1 000-kg spacecraft is the same as that for the
5 000-kg spacecraft. The only change in the kinetic energy is
due to the mass, so the 1 000-kg spacecraft will require one
fifth of the energy of the 5 000-kg spacecraft:

K ! 1
5 (3.14 # 1011 J) ! 6.28 # 1010 J

! PITFALL PREVENTION
13.3 You Can’t Really

Escape
Although Equation 13.22 pro-
vides the “escape speed” from the
Earth, complete escape from the
Earth’s gravitational influence is
impossible because the gravita-
tional force is of infinite range.
No matter how far away you are,
you will always feel some gravita-
tional force due to the Earth.
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Figure 13.18 A binary star system consisting of an ordinary star on the left and a black
hole on the right. Matter pulled from the ordinary star forms an accretion disk around
the black hole, in which matter is raised to very high temperatures, resulting in the
emission of x-rays.

Figure 13.17 A black hole. 
The distance RS equals the
Schwarzschild radius. Any event
occurring within the boundary of
radius RS, called the event horizon,
is invisible to an outside observer.

Black
hole

RS

Event
horizon

Black Holes

In Example 11.7 we briefly described a rare event called a supernova—the catastrophic
explosion of a very massive star. The material that remains in the central core of such
an object continues to collapse, and the core’s ultimate fate depends on its mass. If the
core has a mass less than 1.4 times the mass of our Sun, it gradually cools down and
ends its life as a white dwarf star. However, if the core’s mass is greater than this, it may
collapse further due to gravitational forces. What remains is a neutron star, discussed
in Example 11.7, in which the mass of a star is compressed to a radius of about 10 km.
(On Earth, a teaspoon of this material would weigh about 5 billion tons!)

An even more unusual star death may occur when the core has a mass greater than
about three solar masses. The collapse may continue until the star becomes a very
small object in space, commonly referred to as a black hole. In effect, black holes are
remains of stars that have collapsed under their own gravitational force. If an object
such as a spacecraft comes close to a black hole, it experiences an extremely strong
gravitational force and is trapped forever.

The escape speed for a black hole is very high, due to the concentration of the
mass of the star into a sphere of very small radius (see Eq. 13.23). If the escape speed
exceeds the speed of light c, radiation from the object (such as visible light) cannot es-
cape, and the object appears to be black; hence the origin of the terminology “black
hole.” The critical radius RS at which the escape speed is c is called the Schwarzschild
radius (Fig. 13.17). The imaginary surface of a sphere of this radius surrounding the
black hole is called the event horizon. This is the limit of how close you can approach
the black hole and hope to escape.

Although light from a black hole cannot escape, light from events taking place near
the black hole should be visible. For example, it is possible for a binary star system to con-
sist of one normal star and one black hole. Material surrounding the ordinary star can be
pulled into the black hole, forming an accretion disk around the black hole, as sug-
gested in Figure 13.18. Friction among particles in the accretion disk results in transfor-
mation of mechanical energy into internal energy. As a result, the orbital height of the
material above the event horizon decreases and the temperature rises. This high-
temperature material emits a large amount of radiation, extending well into the x-ray 
region of the electromagnetic spectrum. These x-rays are characteristic of a black hole.
Several possible candidates for black holes have been identified by observation of these 
x-rays.
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Figure 13.19 Hubble Space Telescope images of the galaxy M87. The inset shows the
center of the galaxy. The wider view shows a jet of material moving away from the
center of the galaxy toward the upper right of the figure at about one tenth of the
speed of light. Such jets are believed to be evidence of a supermassive black hole at the
galaxy center.
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There is also evidence that supermassive black holes exist at the centers of galaxies,
with masses very much larger than the Sun. (There is strong evidence of a supermas-
sive black hole of mass 2–3 million solar masses at the center of our galaxy.) Theoreti-
cal models for these bizarre objects predict that jets of material should be evident
along the rotation axis of the black hole. Figure 13.19 shows a Hubble Space Telescope
photograph of galaxy M87. The jet of material coming from this galaxy is believed to
be evidence for a supermassive black hole at the center of the galaxy.

Newton’s law of universal gravitation states that the gravitational force of attrac-
tion between any two particles of masses m1 and m2 separated by a distance r has the
magnitude

(13.1)

where G ! 6.673 # 10" 11 N $ m2/kg2 is the universal gravitational constant. This
equation enables us to calculate the force of attraction between masses under a wide
variety of circumstances.

An object at a distance h above the Earth’s surface experiences a gravitational force
of magnitude mg, where g is the free-fall acceleration at that elevation:

(13.6)

In this expression, ME is the mass of the Earth and RE is its radius. Thus, the weight of
an object decreases as the object moves away from the Earth’s surface.

g !
GME

r 
2 !

GME

(RE & h)2

Fg ! G  
m  1m  2

r 
2

S U M M A RY

Take a practice test for
this chapter by clicking on
the Practice Test link at
http://www.pse6.com.
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Kepler’s laws of planetary motion state that

1. All planets move in elliptical orbits with the Sun at one focus.

2. The radius vector drawn from the Sun to a planet sweeps out equal areas in equal
time intervals.

3. The square of the orbital period of any planet is proportional to the cube of the
semimajor axis of the elliptical orbit.

Kepler’s third law can be expressed as

(13.8)

where MS is the mass of the Sun and a is the semimajor axis. For a circular orbit, a can
be replaced in Equation 13.8 by the radius r. Most planets have nearly circular orbits
around the Sun. 

The gravitational field at a point in space is defined as the gravitational force expe-
rienced by any test particle located at that point divided by the mass of the test particle:

(13.9)

The gravitational force is conservative, and therefore a potential energy function
can be defined for a system of two objects interacting gravitationally. The gravita-
tional potential energy associated with two particles separated by a distance r is

(13.14)

where U is taken to be zero as r : (. The total potential energy for a system of parti-
cles is the sum of energies for all pairs of particles, with each pair represented by a
term of the form given by Equation 13.14.

If an isolated system consists of an object of mass m moving with a speed v in the
vicinity of a massive object of mass M, the total energy E of the system is the sum of the
kinetic and potential energies:

(13.16)

The total energy is a constant of the motion. If the object moves in an elliptical orbit
of semimajor axis a around the massive object and if M ++ m, the total energy of the
system is

(13.19)

For a circular orbit, this same equation applies with a ! r. The total energy is negative
for any bound system.

The escape speed for an object projected from the surface of a planet of mass M
and radius R is

(13.23)v esc ! √ 2GM
R

E ! "
GMm

2a

E ! 1
2 mv  2 "

GMm
r

U ! "
Gm 1m 2

r

g % 
Fg

m

T  2 ! ! 4%2

GMS
" a 

3

1. If the gravitational force on an object is directly propor-
tional to its mass, why don’t objects with large masses fall
with greater acceleration than small ones? 

2. The gravitational force exerted by the Sun on you is down-
ward into the Earth at night, and upward into the sky dur-
ing the day. If you had a sensitive enough bathroom scale,

Q U E S T I O N S
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would you expect to weigh more at night than during the
day? Note also that you are farther away from the Sun at
night than during the day. Would you expect to weigh less?

3. Use Kepler’s second law to convince yourself that the
Earth must move faster in its orbit during December, when
it is closest to the Sun, than during June, when it is farthest
from the Sun.

4. The gravitational force that the Sun exerts on the Moon is
about twice as great as the gravitational force that the Earth
exerts on the Moon. Why doesn’t the Sun pull the Moon
away from the Earth during a total eclipse of the Sun?

5. A satellite in orbit is not truly traveling through a vacuum.
It is moving through very, very thin air. Does the resulting
air friction cause the satellite to slow down?

6. How would you explain the fact that Jupiter and Saturn
have periods much greater than one year?

7. If a system consists of five particles, how many terms ap-
pear in the expression for the total potential energy? How
many terms appear if the system consists of N particles?

8. Does the escape speed of a rocket depend on its mass?
Explain.

9. Compare the energies required to reach the Moon for a
105-kg spacecraft and a 103-kg satellite.

Explain why it takes more fuel for a spacecraft to travel
from the Earth to the Moon than for the return trip. Esti-
mate the difference.

11. A particular set of directions forms the celestial equator. If
you live at 40° north latitude, these directions lie in an arc
across your southern sky, including horizontally east, hori-
zontally west, and south at 50° above the horizontal. In or-
der to enjoy satellite TV, you need to install a dish with an
unobstructed view to a particular point on the celestial
equator. Why is this requirement so specific? 

Why don’t we put a geosynchronous weather satellite
in orbit around the 45th parallel? Wouldn’t this be more

12.

10.

useful in the United States than one in orbit around the
equator?

13. Is the absolute value of the potential energy associated
with the Earth–Moon system greater than, less than, or
equal to the kinetic energy of the Moon relative to the
Earth?

14. Explain why no work is done on a planet as it moves in a
circular orbit around the Sun, even though a gravitational
force is acting on the planet. What is the net work done on
a planet during each revolution as it moves around the
Sun in an elliptical orbit?

15. Explain why the force exerted on a particle by a uniform
sphere must be directed toward the center of the sphere.
Would this be the case if the mass distribution of the
sphere were not spherically symmetric?

At what position in its elliptical orbit is the speed of a
planet a maximum? At what position is the speed a
minimum?

17. If you are given the mass and radius of planet X, how
would you calculate the free-fall acceleration on the sur-
face of this planet?

18. If a hole could be dug to the center of the Earth, would
the force on an object of mass m still obey Equation 13.1
there? What do you think the force on m would be at the
center of the Earth?

In his 1798 experiment, Cavendish was said to have
“weighed the Earth.” Explain this statement. 

20. The Voyager spacecraft was accelerated toward escape
speed from the Sun by Jupiter’s gravitational force exerted
on the spacecraft. How is this possible? 

21. How would you find the mass of the Moon?

22. The Apollo 13 spacecraft developed trouble in the oxygen
system about halfway to the Moon. Why did the mission
continue on around the Moon, and then return home,
rather than immediately turn back to Earth?

19.

16.

Section 13.1 Newton’s Law of Universal Gravitation

1. Determine the order of magnitude of the gravitational
force that you exert on another person 2 m away. In your
solution state the quantities you measure or estimate and
their values.

2. Two ocean liners, each with a mass of 40 000 metric tons,
are moving on parallel courses, 100 m apart. What is the
magnitude of the acceleration of one of the liners toward

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide

= coached solution with hints available at http://www.pse6.com = computer useful in solving problem

= paired numerical and symbolic problems

P R O B L E M S

the other due to their mutual gravitational attraction?
Treat the ships as particles.

3. A 200-kg object and a 500-kg object are separated by
0.400 m. (a) Find the net gravitational force exerted by
these objects on a 50.0-kg object placed midway between
them. (b) At what position (other than an infinitely re-
mote one) can the 50.0-kg object be placed so as to experi-
ence a net force of zero?

4. Two objects attract each other with a gravitational force of
magnitude 1.00 # 10" 8 N when separated by 20.0 cm. If
the total mass of the two objects is 5.00 kg, what is the mass
of each?

Problem 17 in Chapter 1 can also be assigned with this
section.
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5. Three uniform spheres of mass 2.00 kg, 4.00 kg, and
6.00 kg are placed at the corners of a right triangle as in
Figure P13.5. Calculate the resultant gravitational force on
the 4.00-kg object, assuming the spheres are isolated from
the rest of the Universe.

6. During a solar eclipse, the Moon, Earth, and Sun all lie on
the same line, with the Moon between the Earth and the
Sun. (a) What force is exerted by the Sun on the Moon?
(b) What force is exerted by the Earth on the Moon? 
(c) What force is exerted by the Sun on the Earth?

Section 13.2 Measuring the Gravitational Constant
In introductory physics laboratories, a typical

Cavendish balance for measuring the gravitational con-
stant G uses lead spheres with masses of 1.50 kg and 15.0 g
whose centers are separated by about 4.50 cm. Calculate
the gravitational force between these spheres, treating
each as a particle located at the center of the sphere.

8. A student proposes to measure the gravitational constant
G by suspending two spherical objects from the ceiling of a
tall cathedral and measuring the deflection of the cables
from the vertical. Draw a free-body diagram of one of the
objects. If two 100.0-kg objects are suspended at the lower
ends of cables 45.00 m long and the cables are attached to
the ceiling 1.000 m apart, what is the separation of the 
objects?

Section 13.3 Free-Fall Acceleration and 
the Gravitational Force

When a falling meteoroid is at a distance above the
Earth’s surface of 3.00 times the Earth’s radius, what is its
acceleration due to the Earth’s gravitation?

The free-fall acceleration on the surface of the Moon is
about one sixth of that on the surface of the Earth. If the
radius of the Moon is about 0.250RE, find the ratio of their
average densities, )Moon/)Earth.

11. On the way to the Moon the Apollo astronauts reached a
point where the Moon’s gravitational pull became stronger
than the Earth’s. (a) Determine the distance of this point
from the center of the Earth. (b) What is the acceleration
due to the Earth’s gravitation at this point?

10.

9.

7.

Section 13.4 Kepler’s Laws and the Motion 
of Planets

12. The center-to-center distance between Earth and Moon is
384 400 km. The Moon completes an orbit in 27.3 days.
(a) Determine the Moon’s orbital speed. (b) If gravity
were switched off, the Moon would move along a straight
line tangent to its orbit, as described by Newton’s first law.
In its actual orbit in 1.00 s, how far does the Moon fall be-
low the tangent line and toward the Earth?

Plaskett’s binary system consists of two stars that revolve in
a circular orbit about a center of mass midway between
them. This means that the masses of the two stars are
equal (Fig. P13.13). Assume the orbital speed of each star
is 220 km/s and the orbital period of each is 14.4 days.
Find the mass M of each star. (For comparison, the mass of
our Sun is 1.99 # 1030 kg.)

13.

14. A particle of mass m moves along a straight line with con-
stant speed in the x direction, a distance b from the x axis
(Fig. P13.14). Show that Kepler’s second law is satisfied by
showing that the two shaded triangles in the figure have
the same area when t4 " t3 ! t2 " t1 .

Io, a moon of Jupiter, has an orbital period of 1.77 days
and an orbital radius of 4.22 # 105 km. From these data,
determine the mass of Jupiter.

16. The Explorer VIII satellite, placed into orbit November 3,
1960, to investigate the ionosphere, had the following or-
bit parameters: perigee, 459 km; apogee, 2 289 km (both
distances above the Earth’s surface); period, 112.7 min.
Find the ratio vp/va of the speed at perigee to that at
apogee.

15.
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17. Comet Halley (Figure P13.17) approaches the Sun
to within 0.570 AU, and its orbital period is 75.6 years.
(AU is the symbol for astronomical unit, where
1 AU ! 1.50 # 1011 m is the mean Earth–Sun distance.)
How far from the Sun will Halley’s comet travel before it
starts its return journey? 

18. Two planets X and Y travel counterclockwise in circular or-
bits about a star as in Figure P13.18. The radii of their or-
bits are in the ratio 3 :1. At some time, they are aligned as
in Figure P13.18a, making a straight line with the star. Dur-
ing the next five years, the angular displacement of planet
X is 90.0°, as in Figure P13.18b. Where is planet Y at this
time?

A synchronous satellite, which always remains above the
same point on a planet’s equator, is put in orbit around
Jupiter to study the famous red spot. Jupiter rotates about
its axis once every 9.84 h. Use the data of Table 13.2 to
find the altitude of the satellite.

20. Neutron stars are extremely dense objects that are formed
from the remnants of supernova explosions. Many rotate
very rapidly. Suppose that the mass of a certain spherical
neutron star is twice the mass of the Sun and its radius is
10.0 km. Determine the greatest possible angular speed it
can have so that the matter at the surface of the star on its
equator is just held in orbit by the gravitational force.

19.

21. Suppose the Sun’s gravity were switched off. The planets
would leave their nearly circular orbits and fly away in
straight lines, as described by Newton’s first law. Would
Mercury ever be farther from the Sun than Pluto? If so,
find how long it would take for Mercury to achieve this
passage. If not, give a convincing argument that Pluto is al-
ways farther from the Sun. 

22. As thermonuclear fusion proceeds in its core, the Sun
loses mass at a rate of 3.64 # 109 kg/s. During the 5 000-yr
period of recorded history, by how much has the length of
the year changed due to the loss of mass from the Sun?
Suggestions: Assume the Earth’s orbit is circular. No exter-
nal torque acts on the Earth–Sun system, so its angular
momentum is conserved. If x is small compared to 1, then
(1 & x)n is nearly equal to 1 & nx.

Section 13.5 The Gravitational Field
23. Three objects of equal mass are located at three corners of

a square of edge length ! as in Figure P13.23. Find the
gravitational field at the fourth corner due to these objects.

24. A spacecraft in the shape of a long cylinder has a length of
100 m, and its mass with occupants is 1 000 kg. It has
strayed too close to a black hole having a mass 100 times
that of the Sun (Fig. P13.24). The nose of the spacecraft
points toward the black hole, and the distance between the
nose and the center of the black hole is 10.0 km. (a) De-
termine the total force on the spacecraft. (b) What is the
difference in the gravitational fields acting on the occu-
pants in the nose of the ship and on those in the rear of
the ship, farthest from the black hole? This difference in
accelerations grows rapidly as the ship approaches the
black hole. It puts the body of the ship under extreme ten-
sion and eventually tears it apart. 

Compute the magnitude and direction of the gravitational
field at a point P on the perpendicular bisector of the line
joining two objects of equal mass separated by a distance
2a as shown in Figure P13.25.

25.
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x
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Section 13.6 Gravitational Potential Energy

26. A satellite of the Earth has a mass of 100 kg and is at an alti-
tude of 2.00 # 106 m. (a) What is the potential energy of the
satellite"Earth system? (b) What is the magnitude of the
gravitational force exerted by the Earth on the satellite? 
(c) What If? What force does the satellite exert on the Earth?

27. How much energy is required to move a 1 000-kg object
from the Earth’s surface to an altitude twice the Earth’s
radius?

28. At the Earth’s surface a projectile is launched straight up
at a speed of 10.0 km/s. To what height will it rise? Ignore
air resistance and the rotation of the Earth.

After our Sun exhausts its nuclear fuel, its ultimate fate may
be to collapse to a white dwarf state, in which it has approxi-
mately the same mass as it has now, but a radius equal to the
radius of the Earth. Calculate (a) the average density of the

29.

Assume U ! 0 at r ! (.

white dwarf, (b) the free-fall acceleration, and (c) the gravi-
tational potential energy of a 1.00-kg object at its surface. 

30. How much work is done by the Moon’s gravitational field
as a 1 000-kg meteor comes in from outer space and im-
pacts on the Moon’s surface?

31. A system consists of three particles, each of mass 5.00 g, lo-
cated at the corners of an equilateral triangle with sides of
30.0 cm. (a) Calculate the potential energy of the system.
(b) If the particles are released simultaneously, where will
they collide?

32. An object is released from rest at an altitude h above
the surface of the Earth. (a) Show that its speed at a dis-
tance r from the Earth’s center, where RE . r . RE & h, is
given by

(b) Assume the release altitude is 500 km. Perform the in-
tegral

to find the time of fall as the object moves from the release
point to the Earth’s surface. The negative sign appears be-
cause the object is moving opposite to the radial direction,
so its speed is v ! " dr/dt. Perform the integral numeri-
cally.

Section 13.7 Energy Considerations in Planetary 
and Satellite Motion

A space probe is fired as a projectile from the Earth’s
surface with an initial speed of 2.00 # 104 m/s . What will
its speed be when it is very far from the Earth? Ignore fric-
tion and the rotation of the Earth.

33.

,t ! &f
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 dt ! "&f
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Figure P13.35
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34. (a) What is the minimum speed, relative to the Sun, neces-
sary for a spacecraft to escape the solar system if it starts at
the Earth’s orbit? (b) Voyager 1 achieved a maximum speed
of 125 000 km/h on its way to photograph Jupiter. Beyond
what distance from the Sun is this speed sufficient to es-
cape the solar system?

A “treetop satellite” (Fig. P13.35) moves in a circular orbit
just above the surface of a planet, assumed to offer no air
resistance. Show that its orbital speed v and the escape
speed from the planet are related by the expression

.

36. A 500-kg satellite is in a circular orbit at an altitude of
500 km above the Earth’s surface. Because of air friction, the
satellite eventually falls to the Earth’s surface, where it hits
the ground with a speed of 2.00 km/s. How much energy
was transformed into internal energy by means of friction?

37. A satellite of mass 200 kg is placed in Earth orbit at a
height of 200 km above the surface. (a) With a circular
orbit, how long does the satellite take to complete one
orbit? (b) What is the satellite’s speed? (c) What is the
minimum energy input necessary to place this satellite in
orbit? Ignore air resistance but include the effect of the
planet’s daily rotation.

38. A satellite of mass m, originally on the surface of the Earth,
is placed into Earth orbit at an altitude h. (a) With a circu-
lar orbit, how long does the satellite take to complete one
orbit? (b) What is the satellite’s speed? (c) What is the
minimum energy input necessary to place this satellite in
orbit? Ignore air resistance but include the effect of the
planet’s daily rotation. At what location on the Earth’s sur-
face and in what direction should the satellite be launched
to minimize the required energy investment? Represent
the mass and radius of the Earth as ME and RE. 

39. A 1 000-kg satellite orbits the Earth at a constant altitude of
100 km. How much energy must be added to the system to
move the satellite into a circular orbit with altitude 200 km?

40. The planet Uranus has a mass about 14 times the Earth’s
mass, and its radius is equal to about 3.7 Earth radii. (a) By
setting up ratios with the corresponding Earth values, find
the free-fall acceleration at the cloud tops of Uranus. 
(b) Ignoring the rotation of the planet, find the minimum
escape speed from Uranus.

41. Determine the escape speed for a rocket on the far side of
Ganymede, the largest of Jupiter’s moons (Figure P13.41).
The radius of Ganymede is 2.64 # 106 m, and its mass is

vesc ! √2 v

35.

1.495 # 1023 kg. The mass of Jupiter is 1.90 # 1027 kg,
and the distance between Jupiter and Ganymede is
1.071 # 109 m. Be sure to include the gravitational effect
due to Jupiter, but you may ignore the motion of Jupiter
and Ganymede as they revolve about their center of mass. 

42. In Robert Heinlein’s “The Moon is a Harsh Mistress,” the
colonial inhabitants of the Moon threaten to launch rocks
down onto the Earth if they are not given independence
(or at least representation). Assuming that a rail gun could
launch a rock of mass m at twice the lunar escape speed,
calculate the speed of the rock as it enters the Earth’s at-
mosphere. (By lunar escape speed we mean the speed re-
quired to move infinitely far away from a stationary Moon
alone in the Universe. Problem 61 in Chapter 30 describes
a rail gun.)

43. An object is fired vertically upward from the surface of the
Earth (of radius RE) with an initial speed vi that is compa-
rable to but less than the escape speed vesc. (a) Show that
the object attains a maximum height h given by 

(b) A space vehicle is launched vertically upward from the
Earth’s surface with an initial speed of 8.76 km/s, which is
less than the escape speed of 11.2 km/s. What maximum
height does it attain? (c) A meteorite falls toward the
Earth. It is essentially at rest with respect to the Earth
when it is at a height of 2.51 # 107 m. With what speed
does the meteorite strike the Earth? (d) What If? Assume
that a baseball is tossed up with an initial speed that is very
small compared to the escape speed. Show that the equa-
tion from part (a) is consistent with Equation 4.13. 

44. Derive an expression for the work required to move an
Earth satellite of mass m from a circular orbit of radius 2RE
to one of radius 3RE.

45. A comet of mass 1.20 # 1010 kg moves in an elliptical orbit
around the Sun. Its distance from the Sun ranges between
0.500 AU and 50.0 AU. (a) What is the eccentricity of its
orbit? (b) What is its period? (c) At aphelion what is the
potential energy of the comet–Sun system? Note: 1 AU !
one astronomical unit ! the average distance from Sun to
Earth ! 1.496 # 1011 m.

46. A satellite moves around the Earth in a circular orbit of ra-
dius r. (a) What is the speed v0 of the satellite? Suddenly,
an explosion breaks the satellite into two pieces, with
masses m and 4m. Immediately after the explosion the
smaller piece of mass m is stationary with respect to the
Earth and falls directly toward the Earth. (b) What is the
speed vi of the larger piece immediately after the explo-
sion? (c) Because of the increase in its speed, this larger
piece now moves in a new elliptical orbit. Find its distance
away from the center of the Earth when it reaches the
other end of the ellipse.

Additional Problems

47. The Solar and Heliospheric Observatory (SOHO) spacecraft
has a special orbit, chosen so that its view of the Sun is never
eclipsed and it is always close enough to the Earth to

h !
RE  vi 

2

vesc
2 " vi 

2

Ganymede

v

Jupiter

Figure P13.41
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transmit data easily. It moves in a near-circle around the Sun
that is smaller than the Earth’s circular orbit. Its period,
however, is just equal to 1 yr. It is always located between the
Earth and the Sun along the line joining them. Both objects
exert gravitational forces on the observatory. Show that its
distance from the Earth must be between 1.47 # 109 m and
1.48 # 109 m. In 1772 Joseph Louis Lagrange determined
theoretically the special location allowing this orbit. The
SOHO spacecraft took this position on February 14, 1996.
Suggestion: Use data that are precise to four digits. The mass
of the Earth is 5.983 # 1024 kg.

48. Let ,gM represent the difference in the gravitational fields
produced by the Moon at the points on the Earth’s surface
nearest to and farthest from the Moon. Find the fraction
,gM/g, where g is the Earth’s gravitational field. (This dif-
ference is responsible for the occurrence of the lunar tides
on the Earth.)

49. Review problem. Two identical hard spheres, each of mass
m and radius r, are released from rest in otherwise empty
space with their centers separated by the distance R. They
are allowed to collide under the influence of their gravita-
tional attraction. (a) Show that the magnitude of the im-
pulse received by each sphere before they make contact is
given by [Gm3(1/2r " 1/R)]1/2. (b) What If? Find the
magnitude of the impulse each receives if they collide elas-
tically. 

50. Two spheres having masses M and 2M and radii R and 3R,
respectively, are released from rest when the distance be-
tween their centers is 12R. How fast will each sphere be
moving when they collide? Assume that the two spheres in-
teract only with each other.

51. In Larry Niven’s science-fiction novel Ringworld, a rigid
ring of material rotates about a star (Fig. P13.51). The tan-
gential speed of the ring is 1.25 # 106 m/s, and its radius
is 1.53 # 1011 m. (a) Show that the centripetal accelera-
tion of the inhabitants is 10.2 m/s2. (b) The inhabitants of
this ring world live on the starlit inner surface of the ring.
Each person experiences a normal contact force n. Acting
alone, this normal force would produce an inward acceler-
ation of 9.90 m/s2. Additionally, the star at the center of
the ring exerts a gravitational force on the ring and its in-
habitants. The difference between the total acceleration
and the acceleration provided by the normal force is due
to the gravitational attraction of the central star. Show that
the mass of the star is approximately 1032 kg.

54. Voyagers 1 and 2 surveyed the surface of Jupiter’s moon Io
and photographed active volcanoes spewing liquid sulfur
to heights of 70 km above the surface of this moon. Find

n
Fg

Star

Figure P13.51

A

B

Figure P13.53

NA
SA

52. (a) Show that the rate of change of the free-fall accelera-
tion with distance above the Earth’s surface is 

This rate of change over distance is called a gradient. (b) If
h is small in comparison to the radius of the Earth, show
that the difference in free-fall acceleration between two
points separated by vertical distance h is

(c) Evaluate this difference for h ! 6.00 m, a typical height
for a two-story building.

53. A ring of matter is a familiar structure in planetary and stel-
lar astronomy. Examples include Saturn’s rings and a ring
nebula. Consider a uniform ring of mass 2.36 # 1020 kg and
radius 1.00 # 108 m. An object of mass 1 000 kg is placed at
a point A on the axis of the ring, 2.00 # 108 m from the cen-
ter of the ring (Figure P13.53). When the object is released,
the attraction of the ring makes the object move along the
axis toward the center of the ring (point B). (a) Calculate
the gravitational potential energy of the object–ring system
when the object is at A. (b) Calculate the gravitational poten-
tial energy of the system when the object is at B. (c) Calcu-
late the speed of the object as it passes through B.

# ,g # !
2GMEh

RE 

3

dg
dr

! "
2GME

RE 
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the speed with which the liquid sulfur left the volcano. Io’s
mass is 8.9 # 1022 kg, and its radius is 1 820 km.

55. As an astronaut, you observe a small planet to be spherical.
After landing on the planet, you set off, walking always
straight ahead, and find yourself returning to your space-
craft from the opposite side after completing a lap of
25.0 km. You hold a hammer and a falcon feather at a
height of 1.40 m, release them, and observe that they fall
together to the surface in 29.2 s. Determine the mass of
the planet.

56. A certain quaternary star system consists of three stars,
each of mass m, moving in the same circular orbit of radius
r about a central star of mass M. The stars orbit in the
same sense, and are positioned one third of a revolution
apart from each other. Show that the period of each of the
three stars is given by

57. Review problem. A cylindrical habitat in space 6.00 km in
diameter and 30 km long has been proposed (by G. K.
O’Neill, 1974). Such a habitat would have cities, land, and
lakes on the inside surface and air and clouds in the cen-
ter. This would all be held in place by rotation of the cylin-
der about its long axis. How fast would the cylinder have to
rotate to imitate the Earth’s gravitational field at the walls
of the cylinder?

58. Newton’s law of universal gravitation is valid for distances
covering an enormous range, but it is thought to fail for
very small distances, where the structure of space itself is
uncertain. Far smaller than an atomic nucleus, this
crossover distance is called the Planck length. It is deter-
mined by a combination of the constants G, c, and h,
where c is the speed of light in vacuum and h is Planck’s
constant (introduced in Chapter 11) with units of angular
momentum. (a) Use dimensional analysis to find a combi-
nation of these three universal constants that has units of
length. (b) Determine the order of magnitude of the
Planck length. You will need to consider noninteger pow-
ers of the constants.

59. Show that the escape speed from the surface of a planet of
uniform density is directly proportional to the radius of
the planet.

60. Many people assume that air resistance acting on a moving
object will always make the object slow down. It can actu-
ally be responsible for making the object speed up. Con-
sider a 100-kg Earth satellite in a circular orbit at an alti-
tude of 200 km. A small force of air resistance makes the
satellite drop into a circular orbit with an altitude of
100 km. (a) Calculate its initial speed. (b) Calculate its fi-
nal speed in this process. (c) Calculate the initial energy of
the satellite–Earth system. (d) Calculate the final energy of
the system. (e) Show that the system has lost mechanical
energy and find the amount of the loss due to friction.
(f) What force makes the satellite’s speed increase? You
will find a free-body diagram useful in explaining your
answer.

Two hypothetical planets of masses m1 and m2 and radii
r1 and r2 , respectively, are nearly at rest when they are an 

61.

T ! 2% √ r3

g !M & m/√3"
 

infinite distance apart. Because of their gravitational attrac-
tion, they head toward each other on a collision course. 
(a) When their center-to-center separation is d, find expres-
sions for the speed of each planet and for their relative
speed. (b) Find the kinetic energy of each planet just before
they collide, if m1 ! 2.00 # 1024 kg, m2 ! 8.00 # 1024 kg, 
r1 ! 3.00 # 106 m, and r 2 ! 5.00 # 106 m. (Note: Both en-
ergy and momentum of the system are conserved.)

62. The maximum distance from the Earth to the Sun (at our
aphelion) is 1.521 # 1011 m, and the distance of closest
approach (at perihelion) is 1.471 # 1011 m. If the Earth’s
orbital speed at perihelion is 3.027 # 104 m/s, determine
(a) the Earth’s orbital speed at aphelion, (b) the kinetic
and potential energies of the Earth–Sun system at perihe-
lion, and (c) the kinetic and potential energies at aphe-
lion. Is the total energy constant? (Ignore the effect of the
Moon and other planets.)

63. (a) Determine the amount of work (in joules) that must
be done on a 100-kg payload to elevate it to a height of
1 000 km above the Earth’s surface. (b) Determine the
amount of additional work that is required to put the pay-
load into circular orbit at this elevation.

64. X-ray pulses from Cygnus X-1, a celestial x-ray source, have
been recorded during high-altitude rocket flights. The sig-
nals can be interpreted as originating when a blob of ion-
ized matter orbits a black hole with a period of 5.0 ms. If
the blob were in a circular orbit about a black hole whose
mass is 20MSun, what is the orbit radius?

65. Studies of the relationship of the Sun to its galaxy—the
Milky Way—have revealed that the Sun is located near the
outer edge of the galactic disk, about 30 000 lightyears
from the center. The Sun has an orbital speed of approxi-
mately 250 km/s around the galactic center. (a) What is
the period of the Sun’s galactic motion? (b) What is the or-
der of magnitude of the mass of the Milky Way galaxy?
Suppose that the galaxy is made mostly of stars of which
the Sun is typical. What is the order of magnitude of the
number of stars in the Milky Way?

66. The oldest artificial satellite in orbit is Vanguard I, launched
March 3, 1958. Its mass is 1.60 kg. In its initial orbit, its min-
imum distance from the center of the Earth was 7.02 Mm,
and its speed at this perigee point was 8.23 km/s. (a) Find
the total energy of the satellite–Earth system. (b) Find the
magnitude of the angular momentum of the satellite. 
(c) Find its speed at apogee and its maximum (apogee) dis-
tance from the center of the Earth. (d) Find the semimajor
axis of its orbit. (e) Determine its period.

67. Astronomers detect a distant meteoroid moving along a
straight line that, if extended, would pass at a distance 3RE
from the center of the Earth, where RE is the radius of the
Earth. What minimum speed must the meteoroid have if
the Earth’s gravitation is not to deflect the meteoroid to
make it strike the Earth?

68. A spherical planet has uniform density ). Show that the
minimum period for a satellite in orbit around it is

independent of the radius of the planet.

Tmin ! √ 3%

G)
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70. (a) A 5.00-kg object is released 1.20 # 107 m from the cen-
ter of the Earth. It moves with what acceleration relative to
the Earth? (b) What If? A 2.00 # 1024 kg object is released
1.20 # 107 m from the center of the Earth. It moves with
what acceleration relative to the Earth? Assume that the
objects behave as pairs of particles, isolated from the rest
of the Universe.

71. The acceleration of an object moving in the gravita-
tional field of the Earth is

where r is the position vector directed from the center of
the Earth toward the object. Choosing the origin at the
center of the Earth and assuming that the small object is
moving in the xy plane, we find that the rectangular
(Cartesian) components of its acceleration are

Use a computer to set up and carry out a numerical pre-
diction of the motion of the object, according to Euler’s

ax ! "
GMEx

(x2 & y2)3/2     ay ! "
GMEy

(x2 & y2)3/2

a ! "
GMEr

r3

method. Assume the initial position of the object is x ! 0
and y ! 2RE , where RE is the radius of the Earth. Give the
object an initial velocity of 5 000 m/s in the x direction.
The time increment should be made as small as practical.
Try 5 s. Plot the x and y coordinates of the object as time
goes on. Does the object hit the Earth? Vary the initial ve-
locity until you find a circular orbit.

Answers to Quick Quizzes
13.1 (d). The gravitational force exerted by the Earth on the

Moon provides a net force that causes the Moon’s cen-
tripetal acceleration.

13.2 (e). The gravitational force follows an inverse-square be-
havior, so doubling the distance causes the force to be
one fourth as large.

13.3 (c). An object in orbit is simply falling while it moves
around the Earth. The acceleration of the object is that
due to gravity. Because the object was launched from a
very tall mountain, the value for g is slightly less than that
at the surface.

13.4 (a). Kepler’s third law (Eq. 13.8), which applies to all the
planets, tells us that the period of a planet is proportional
to a3/2. Because Pluto is farther from the Sun than the
Earth, it has a longer period. The Sun’s gravitational field
is much weaker at Pluto than it is at the Earth. Thus, this
planet experiences much less centripetal acceleration
than the Earth does, and it has a correspondingly longer
period.

13.5 (a). From Kepler’s third law and the given period, the
major axis of the asteroid can be calculated. It is found to
be 1.2 # 1011 m. Because this is smaller than the
Earth–Sun distance, the asteroid cannot possibly collide
with the Earth.

13.6 (b). From conservation of angular momentum, mvprp !
mvara, so that vp ! (ra/rp)va ! (4D/D)va ! 4va.

13.7 (a) Perihelion. Because of conservation of angular mo-
mentum, the speed of the comet is highest at its closest
position to the Sun. (b) Aphelion. The potential energy
of the comet–Sun system is highest when the comet is at
its farthest distance from the Sun. (c) Perihelion. The ki-
netic energy is highest at the point at which the speed of
the comet is highest. (d) All points. The total energy of
the system is the same regardless of where the comet is in
its orbit.

CM v2

M

v1

r1

r2
d

m

Figure P13.69

Two stars of masses M and m, separated by a distance d, re-
volve in circular orbits about their center of mass (Fig.
P13.69). Show that each star has a period given by

Proceed as follows: Apply Newton’s second law to each
star. Note that the center-of-mass condition requires that
Mr2 ! mr1, where r1 & r2 ! d.

T 2 !
4% 2d 3

G(M & m)

69.
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! These hot-air balloons float because they are filled with air at high temperature and are
surrounded by denser air at a lower temperature. In this chapter, we will explore the buoyant
force that supports these balloons and other floating objects. (Richard Megna/Fundamental
Photographs)
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Matter is normally classified as being in one of three states: solid, liquid, or gas. From
everyday experience, we know that a solid has a definite volume and shape. A brick
maintains its familiar shape and size day in and day out. We also know that a liquid has
a definite volume but no definite shape. Finally, we know that an unconfined gas has
neither a definite volume nor a definite shape. These descriptions help us picture the
states of matter, but they are somewhat artificial. For example, asphalt and plastics are
normally considered solids, but over long periods of time they tend to flow like liquids.
Likewise, most substances can be a solid, a liquid, or a gas (or a combination of any of
these), depending on the temperature and pressure. In general, the time it takes a par-
ticular substance to change its shape in response to an external force determines
whether we treat the substance as a solid, a liquid, or a gas.

A fluid is a collection of molecules that are randomly arranged and held together
by weak cohesive forces and by forces exerted by the walls of a container. Both liquids
and gases are fluids.

In our treatment of the mechanics of fluids, we do not need to learn any new physi-
cal principles to explain such effects as the buoyant force acting on a submerged ob-
ject and the dynamic lift acting on an airplane wing. First, we consider the mechanics
of a fluid at rest—that is, fluid statics. We then treat the mechanics of fluids in motion—
that is, fluid dynamics. We can describe a fluid in motion by using a model that is based
upon certain simplifying assumptions.

14.1 Pressure

Fluids do not sustain shearing stresses or tensile stresses; thus, the only stress that can
be exerted on an object submerged in a static fluid is one that tends to compress the
object from all sides. In other words, the force exerted by a static fluid on an object is
always perpendicular to the surfaces of the object, as shown in Figure 14.1.

The pressure in a fluid can be measured with the device pictured in Figure 14.2.
The device consists of an evacuated cylinder that encloses a light piston connected to a
spring. As the device is submerged in a fluid, the fluid presses on the top of the piston
and compresses the spring until the inward force exerted by the fluid is balanced by
the outward force exerted by the spring. The fluid pressure can be measured directly if
the spring is calibrated in advance. If F is the magnitude of the force exerted on the
piston and A is the surface area of the piston, then the pressure P of the fluid at the
level to which the device has been submerged is defined as the ratio F/A:

(14.1)

Note that pressure is a scalar quantity because it is proportional to the magnitude of
the force on the piston.

If the pressure varies over an area, we can evaluate the infinitesimal force dF on an
infinitesimal surface element of area dA as

P ! 
F
A

Figure 14.1 At any point on the
surface of a submerged object, the
force exerted by the fluid is per-
pendicular to the surface of the ob-
ject. The force exerted by the fluid
on the walls of the container is per-
pendicular to the walls at all points.

Definition of pressure

F

Vacuum

A

Figure 14.2 A simple device for
measuring the pressure exerted by
a fluid.



(14.2)

where P is the pressure at the location of the area dA. The pressure exerted by a fluid
varies with depth. Therefore, to calculate the total force exerted on a flat vertical wall
of a container, we must integrate Equation 14.2 over the surface area of the wall.

Because pressure is force per unit area, it has units of newtons per square meter
(N/m2) in the SI system. Another name for the SI unit of pressure is pascal (Pa):

(14.3)1 Pa ! 1 N/m2

dF ! P dA
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! PITFALL PREVENTION
14.1 Force and Pressure
Equations 14.1 and 14.2 make a
clear distinction between force
and pressure. Another important
distinction is that force is a vector
and pressure is a scalar. There is no
direction associated with pres-
sure, but the direction of the
force associated with the pressure
is perpendicular to the surface of
interest.

Snowshoes keep you from sinking into soft snow
because they spread the downward force you exert
on the snow over a large area, reducing the pres-
sure on the snow surface.Ea
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Quick Quiz 14.1 Suppose you are standing directly behind someone who
steps back and accidentally stomps on your foot with the heel of one shoe. Would you
be better off if that person were (a) a large professional basketball player wearing
sneakers (b) a petite woman wearing spike-heeled shoes?

Example 14.1 The Water Bed

14.1, we find that

What If? What if the water bed is replaced by a 300-lb ordi-
nary bed that is supported by four legs? Each leg has a circu-
lar cross section of radius 2.00 cm. What pressure does this
bed exert on the floor?

Answer The weight of the bed is distributed over four cir-
cular cross sections at the bottom of the legs. Thus, the pres-
sure is

Note that this is almost 100 times larger than the pressure
due to the water bed! This is because the weight of the ordi-
nary bed, even though it is much less than the weight of the
water bed, is applied over the very small area of the four
legs. The high pressure on the floor at the feet of an ordi-
nary bed could cause denting of wood floors or perma-
nently crush carpet pile. In contrast, a water bed requires a
sturdy floor to support the very large weight.

 ! 2.65 " 105 Pa

P !
F
A

!
mg

4(#r 2)
!

300 lb
4#(0.0200 m)2  " 1 N

0.225 lb #

2.95 " 103 PaP !
1.18 " 104 N

4.00 m2 !

The mattress of a water bed is 2.00 m long by 2.00 m wide
and 30.0 cm deep.

(A) Find the weight of the water in the mattress.

Solution The density of fresh water is 1 000 kg/m3 (see
Table 14.1 on page 423), and the volume of the water filling
the mattress is V ! (2.00 m)(2.00 m)(0.300 m) ! 1.20 m3.
Hence, using Equation 1.1, the mass of the water in the bed is

and its weight is

This is approximately 2 650 lb. (A regular bed weighs ap-
proximately 300 lb.) Because this load is so great, such a wa-
ter bed is best placed in the basement or on a sturdy, well-
supported floor.

(B) Find the pressure exerted by the water on the floor
when the bed rests in its normal position. Assume that the
entire lower surface of the bed makes contact with the
floor.

Solution When the bed is in its normal position, the area
in contact with the floor is 4.00 m2; thus, from Equation

1.18 " 104 NMg ! (1.20 " 103 kg)(9.80 m/s2) !

M ! $V ! (1 000 kg/m3)(1.20 m3) ! 1.20 " 103 kg



14.2 Variation of Pressure with Depth

As divers well know, water pressure increases with depth. Likewise, atmospheric pres-
sure decreases with increasing altitude; for this reason, aircraft flying at high altitudes
must have pressurized cabins.

We now show how the pressure in a liquid increases with depth. As Equation 1.1 de-
scribes, the density of a substance is defined as its mass per unit volume; Table 14.1 lists
the densities of various substances. These values vary slightly with temperature because
the volume of a substance is temperature-dependent (as shown in Chapter 19). Under
standard conditions (at 0°C and at atmospheric pressure) the densities of gases are
about 1/1 000 the densities of solids and liquids. This difference in densities implies
that the average molecular spacing in a gas under these conditions is about ten times
greater than that in a solid or liquid.

Now consider a liquid of density $ at rest as shown in Figure 14.3. We assume that $
is uniform throughout the liquid; this means that the liquid is incompressible. Let us
select a sample of the liquid contained within an imaginary cylinder of cross-sectional
area A extending from depth d to depth d % h. The liquid external to our sample ex-
erts forces at all points on the surface of the sample, perpendicular to the surface. The
pressure exerted by the liquid on the bottom face of the sample is P, and the pressure
on the top face is P0. Therefore, the upward force exerted by the outside fluid on the
bottom of the cylinder has a magnitude PA, and the downward force exerted on the
top has a magnitude P0A. The mass of liquid in the cylinder is M ! $V ! $Ah; there-
fore, the weight of the liquid in the cylinder is Mg ! $Ahg. Because the cylinder is in
equilibrium, the net force acting on it must be zero. Choosing upward to be the posi-
tive y direction, we see that

or

(14.4)

That is, the pressure P at a depth h below a point in the liquid at which the pres-
sure is P0 is greater by an amount !gh. If the liquid is open to the atmosphere and P0

P ! P0 % $gh

PA & P0A ! $Ahg

PA & P0A & $Ahg ! 0

$ F ! PA ĵ & P0A ĵ & M g ĵ ! 0
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Mg

PA j

–P0A j

d

d + h

ˆ

ˆ

Figure 14.3 A parcel of fluid
(darker region) in a larger volume
of fluid is singled out. The net
force exerted on the parcel of
fluid must be zero because it is in
equilibrium.

Variation of pressure with depth

Substance !(kg/m3) Substance !(kg/m3)

Air 1.29 Ice 0.917 " 103

Aluminum 2.70 " 103 Iron 7.86 " 103

Benzene 0.879 " 103 Lead 11.3 " 103

Copper 8.92 " 103 Mercury 13.6 " 103

Ethyl alcohol 0.806 " 103 Oak 0.710 " 103

Fresh water 1.00 " 103 Oxygen gas 1.43
Glycerin 1.26 " 103 Pine 0.373 " 103

Gold 19.3 " 103 Platinum 21.4 " 103

Helium gas 1.79 " 10&1 Seawater 1.03 " 103

Hydrogen gas 8.99 " 10&2 Silver 10.5 " 103

Densities of Some Common Substances at Standard
Temperature (0°C) and Pressure (Atmospheric)

Table 14.1



is the pressure at the surface of the liquid, then P0 is atmospheric pressure. In our calcula-
tions and working of end-of-chapter problems, we usually take atmospheric pressure
to be

Equation 14.4 implies that the pressure is the same at all points having the same depth,
independent of the shape of the container.

In view of the fact that the pressure in a fluid depends on depth and on the value
of P0, any increase in pressure at the surface must be transmitted to every other point
in the fluid. This concept was first recognized by the French scientist Blaise Pascal
(1623–1662) and is called Pascal’s law: a change in the pressure applied to a fluid
is transmitted undiminished to every point of the fluid and to the walls of the
container.

An important application of Pascal’s law is the hydraulic press illustrated in Figure
14.4a. A force of magnitude F1 is applied to a small piston of surface area A1. The pres-
sure is transmitted through an incompressible liquid to a larger piston of surface area
A2. Because the pressure must be the same on both sides, P ! F1/A1 ! F2/A2. There-
fore, the force F2 is greater than the force F1 by a factor A2/A1. By designing a hy-
draulic press with appropriate areas A1 and A2, a large output force can be applied by
means of a small input force. Hydraulic brakes, car lifts, hydraulic jacks, and forklifts
all make use of this principle (Fig. 14.4b).

Because liquid is neither added nor removed from the system, the volume of liquid
pushed down on the left in Figure 14.4a as the piston moves downward through a dis-
placement 'x1 equals the volume of liquid pushed up on the right as the right piston
moves upward through a displacement 'x2. That is, A1 'x1 ! A2 'x2; thus, A2/A1 !
'x1/'x2 . We have already shown that A2/A1 ! F2/F1 . Thus, F2/F1 ! 'x1/'x 2 , so 
F1 'x1 ! F2 'x2. Each side of this equation is the work done by the force. Thus, the
work done by F1 on the input piston equals the work done by F2 on the output piston,
as it must in order to conserve energy.

P0 ! 1.00 atm ! 1.013 " 105 Pa
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F1

F2

A2A1
∆x1 ∆x2

(a) (b)

Figure 14.4 (a) Diagram of a hydraulic press. Because the increase in pressure is the
same on the two sides, a small force Fl at the left produces a much greater force F2 at
the right. (b) A vehicle undergoing repair is supported by a hydraulic lift in a garage. 
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Quick Quiz 14.2 The pressure at the bottom of a filled glass of water ($ !

1 000 kg/m3) is P. The water is poured out and the glass is filled with ethyl alcohol
($ ! 806 kg/m3). The pressure at the bottom of the glass is (a) smaller than P
(b) equal to P (c) larger than P (d) indeterminate.

Example 14.2 The Car Lift

The air pressure that produces this force is

This pressure is approximately twice atmospheric pressure.

1.88 " 105 Pa!

P !
F1

A1
!

1.48 " 103 N
#(5.00 " 10&2 m)2  

1.48 " 103 N!
In a car lift used in a service station, compressed air exerts a
force on a small piston that has a circular cross section and a
radius of 5.00 cm. This pressure is transmitted by a liquid to
a piston that has a radius of 15.0 cm. What force must the
compressed air exert to lift a car weighing 13 300 N? What
air pressure produces this force?

Solution Because the pressure exerted by the compressed air
is transmitted undiminished throughout the liquid, we have

F1 ! " A1

A2
# F2 !

#(5.00 " 10&2 m)2

#(15.0 " 10&2 m)2  (1.33 " 104 N)

Example 14.3 A Pain in Your Ear

We estimate the surface area of the eardrum to be approxi-
mately 1 cm2 ! 1 " 10&4 m2. This means that the force on
it is F ! (Pbot& P0)A % 5 N. Because a force on the eardrum
of this magnitude is extremely uncomfortable, swimmers of-
ten “pop their ears” while under water, an action that pushes
air from the lungs into the middle ear. Using this technique
equalizes the pressure on the two sides of the eardrum and
relieves the discomfort.

 ! 4.9 " 104 Pa
 ! (1.00 " 103 kg/m3)(9.80 m/s2)(5.0 m)

Pbot & P0 ! $ghEstimate the force exerted on your eardrum due to the wa-
ter above when you are swimming at the bottom of a pool
that is 5.0 m deep.

Solution First, we must find the unbalanced pressure
on the eardrum; then, after estimating the eardrum’s sur-
face area, we can determine the force that the water exerts
on it.

The air inside the middle ear is normally at atmospheric
pressure P0. Therefore, to find the net force on the eardrum,
we must consider the difference between the total pressure
at the bottom of the pool and atmospheric pressure:

Example 14.4 The Force on a Dam

Water is filled to a height H behind a dam of width w (Fig.
14.5). Determine the resultant force exerted by the water on
the dam.

Solution Because pressure varies with depth, we cannot
calculate the force simply by multiplying the area by the
pressure. We can solve the problem by using Equation
14.2 to find the force dF exerted on a narrow horizontal
strip at depth h and then integrating the expression to
find the total force. Let us imagine a vertical y axis, with
y ! 0 at the bottom of the dam and our strip a distance y
above the bottom.

We can use Equation 14.4 to calculate the pressure at
the depth h; we omit atmospheric pressure because it acts
on both sides of the dam:

P ! $gh ! $g(H & y)

H

dy

O

h

y
w

Figure 14.5 (Example 14.4)

Interactive

You can adjust the weight of the truck in Figure 14.4a at the Interactive Worked Example link at http://www.pse6.com.



14.3 Pressure Measurements

During the weather report on a television news program, the barometric pressure is
often provided. This is the current pressure of the atmosphere, which varies over
a small range from the standard value provided earlier. How is this pressure
measured?

One instrument used to measure atmospheric pressure is the common barometer,
invented by Evangelista Torricelli (1608–1647). A long tube closed at one end is filled
with mercury and then inverted into a dish of mercury (Fig. 14.6a). The closed end of
the tube is nearly a vacuum, so the pressure at the top of the mercury column can be
taken as zero. In Figure 14.6a, the pressure at point A, due to the column of mercury,
must equal the pressure at point B, due to the atmosphere. If this were not the case,
there would be a net force that would move mercury from one point to the other until
equilibrium is established. Therefore, it follows that P0 ! $Hggh, where $Hg is the den-
sity of the mercury and h is the height of the mercury column. As atmospheric pressure
varies, the height of the mercury column varies, so the height can be calibrated to mea-
sure atmospheric pressure. Let us determine the height of a mercury column for one
atmosphere of pressure, P0 ! 1 atm ! 1.013 " 105 Pa:

Based on a calculation such as this, one atmosphere of pressure is defined to be the
pressure equivalent of a column of mercury that is exactly 0.760 0 m in height
at 0°C.

A device for measuring the pressure of a gas contained in a vessel is the open-tube
manometer illustrated in Figure 14.6b. One end of a U-shaped tube containing a liq-
uid is open to the atmosphere, and the other end is connected to a system of unknown
pressure P. The pressures at points A and B must be the same (otherwise, the curved
portion of the liquid would experience a net force and would accelerate), and the
pressure at A is the unknown pressure of the gas. Therefore, equating the unknown
pressure P to the pressure at point B, we see that P ! P0 % $gh. The difference in pres-
sure P & P0 is equal to $gh. The pressure P is called the absolute pressure, while the
difference P & P0 is called the gauge pressure. For example, the pressure you mea-
sure in your bicycle tire is gauge pressure.

P0 ! $Hggh 9:  h !
P0

$Hgg
!

1.013 " 105 Pa
(13.6 " 103 kg/m3)(9.80 m/s2)

! 0.760 m

426 C H A P T E R  1 4 •  Fluid Mechanics

P = 0

P0

h

(a)

P0

(b)

P

A B

h

A B

Figure 14.6 Two devices for mea-
suring pressure: (a) a mercury
barometer and (b) an open-tube
manometer.

Answer We know from Equation 14.4 that the pressure
varies linearly with depth. Thus, the average pressure due to
the water over the face of the dam is the average of the pres-
sure at the top and the pressure at the bottom:

Now, the total force is equal to the average pressure times
the area of the face of the dam:

which is the same result we obtained using calculus.

F ! PavA ! (1
2 $gH )(Hw) ! 1

2 $gwH 2

Pav !
Ptop % Pbottom

2
!

0 % $gH
2

! 1
2 $gH

Using Equation 14.2, we find that the force exerted on the
shaded strip of area dA ! w dy is

Therefore, the total force on the dam is

Note that the thickness of the dam shown in Figure 14.5 in-
creases with depth. This design accounts for the greater and
greater pressure that the water exerts on the dam at greater
depths.

What If? What if you were asked to find this force without
using calculus? How could you determine its value?

1
2 $gwH 2F ! & P dA ! &H

0
 $g(H & y)w dy !

dF ! P dA ! $g(H & y)w dy



14.4 Buoyant Forces and Archimedes’s Principle

Have you ever tried to push a beach ball under water (Fig. 14.7a)? This is extremely
difficult to do because of the large upward force exerted by the water on the ball. The
upward force exerted by a fluid on any immersed object is called a buoyant force. We
can determine the magnitude of a buoyant force by applying some logic. Imagine a
beach ball&sized parcel of water beneath the water surface, as in Figure 14.7b. Because
this parcel is in equilibrium, there must be an upward force that balances the down-
ward gravitational force on the parcel. This upward force is the buoyant force, and its
magnitude is equal to the weight of the water in the parcel. The buoyant force is the
resultant force due to all forces applied by the fluid surrounding the parcel.

Now imagine replacing the beach ball&sized parcel of water with a beach ball of the
same size. The resultant force applied by the fluid surrounding the beach ball is the same,
regardless of whether it is applied to a beach ball or to a parcel of water. Consequently, we
can claim that the magnitude of the buoyant force always equals the weight of the
fluid displaced by the object. This statement is known as Archimedes’s principle.

With the beach ball under water, the buoyant force, equal to the weight of a beach
ball-sized parcel of water, is much larger than the weight of the beach ball. Thus, there
is a net upward force of large magnitude—this is why it is so hard to hold the beach ball
under the water. Note that Archimedes’s principle does not refer to the makeup of the
object experiencing the buoyant force. The object’s composition is not a factor in the
buoyant force because the buoyant force is exerted by the fluid.
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Quick Quiz 14.3 Several common barometers are built, with a variety of
fluids. For which of the following fluids will the column of fluid in the barometer be
the highest? (a) mercury (b) water (c) ethyl alcohol (d) benzene

Quick Quiz 14.4 You have invented a spacesuit with a straw passing through
the faceplate so that you can drink from a glass while on the surface of a planet. Out
on the surface of the Moon, you attempt to drink through the straw from an open glass
of water. The value of g on the Moon is about one sixth of that on Earth. Compared to
the difficulty in drinking through a straw on Earth, you find drinking through a straw
on the Moon to be (a) easier (b) equally difficult (c) harder (d) impossible.

(a)

B

Fg

(b)

Figure 14.7. (a) A swimmer attempts to push a beach ball underwater. (b) The forces
on a beach ball–sized parcel of water. The buoyant force B on a beach ball that replaces
this parcel is exactly the same as the buoyant force on the parcel.

Archimedes
Greek Mathematician, 
Physicist, and Engineer
(287–212 B.C.) 

Archimedes was perhaps the
greatest scientist of antiquity. He
was the first to compute
accurately the ratio of a circle’s
circumference to its diameter,
and he also showed how to
calculate the volume and surface
area of spheres, cylinders, and
other geometric shapes. He is
well known for discovering the
nature of the buoyant force and
was also a gifted inventor. One
of his practical inventions, still in
use today, is Archimedes’s
screw, an inclined, rotating,
coiled tube used originally to lift
water from the holds of ships. He
also invented the catapult and
devised systems of levers,
pulleys, and weights for raising
heavy loads. Such inventions
were successfully used to
defend his native city, Syracuse,
during a two-year siege by
Romans.



To understand the origin of the buoyant force, consider a cube immersed in a liquid
as in Figure 14.8. The pressure Pb at the bottom of the cube is greater than the pressure
Pt at the top by an amount $ fluidgh, where h is the height of the cube and $fluid is the den-
sity of the fluid. The pressure at the bottom of the cube causes an upward force equal to
Pb A, where A is the area of the bottom face. The pressure at the top of the cube causes a
downward force equal to Pt A. The resultant of these two forces is the buoyant force B:

(14.5)

where V is the volume of the fluid displaced by the cube. Because the product $fluidV is
equal to the mass of fluid displaced by the object, we see that

where Mg is the weight of the fluid displaced by the cube. This is consistent with our
initial statement about Archimedes’s principle above, based on the discussion of the
beach ball.

Before we proceed with a few examples, it is instructive for us to discuss two com-
mon situations—a totally submerged object and a floating (partly submerged) object.

Case 1: Totally Submerged Object When an object is totally submerged in a fluid of den-
sity $fluid, the magnitude of the upward buoyant force is B ! $fluid gV ! $ fluidgVobj,
where Vobj is the volume of the object. If the object has a mass M and density $obj,
its weight is equal to Fg ! Mg ! $objgVobj, and the net force on it is B & Fg !
($fluid & $obj)gVobj. Hence, if the density of the object is less than the density of the
fluid, then the downward gravitational force is less than the buoyant force, and the un-
supported object accelerates upward (Fig. 14.9a). If the density of the object is greater
than the density of the fluid, then the upward buoyant force is less than the downward
gravitational force, and the unsupported object sinks (Fig. 14.9b). If the density of the
submerged object equals the density of the fluid, the net force on the object is zero and
it remains in equilibrium. Thus, the direction of motion of an object submerged in
a fluid is determined only by the densities of the object and the fluid.

Case 2: Floating Object Now consider an object of volume Vobj and density $obj ( $fluid in
static equilibrium floating on the surface of a fluid—that is, an object that is only partially
submerged (Fig. 14.10). In this case, the upward buoyant force is balanced by the down-
ward gravitational force acting on the object. If Vfluid is the volume of the fluid displaced
by the object (this volume is the same as the volume of that part of the object that is
beneath the surface of the fluid), the buoyant force has a magnitude B ! $ fluidgVfluid.
Because the weight of the object is Fg ! Mg ! $objgVobj, and because Fg ! B, we see that
$fluidgVfluid ! $objgVobj, or

(14.6)
Vfluid

Vobj
!

$obj

$ fluid

B ! Mg

B ! (Pb & Pt)A ! ($ fluidgh)A ! $ fluidgV
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B

Fg

(a)

B

(b)

Fg

a
a

Active Figure 14.9 (a) A totally submerged object that is less dense than the fluid in
which it is submerged experiences a net upward force. (b) A totally submerged object
that is denser than the fluid experiences a net downward force and sinks. 

! PITFALL PREVENTION
14.2 Buoyant Force is

Exerted by the Fluid
Remember that the buoyant
force is exerted by the fluid. It
is not determined by properties
of the object, except for the
amount of fluid displaced by the
object. Thus, if several objects of
different densities but the same
volume are immersed in a fluid,
they will all experience the same
buoyant force. Whether they sink
or float will be determined by the
relationship between the buoyant
force and the weight.

Fg

B

h

Figure 14.8 The external forces
acting on the cube of liquid are the
gravitational force Fg and the buoy-
ant force B. Under equilibrium
conditions, B ! Fg .

At the Active Figures link
at http://www.pse6.com, you
can move the object to new po-
sitions as well as change the
density of the object to see the
results.
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B

Fg
Active Figure 14.10 An object
floating on the surface of a fluid
experiences two forces, the gravita-
tional force Fg and the buoyant
force B. Because the object floats
in equilibrium, B ! Fg . 

At the Active Figures link
at http://www.pse6.com, you
can change the densities of the
object and the fluid.

Quick Quiz 14.5 An apple is held completely submerged just below the sur-
face of a container of water. The apple is then moved to a deeper point in the water. Com-
pared to the force needed to hold the apple just below the surface, the force needed to
hold it at a deeper point is (a) larger (b) the same (c) smaller (d) impossible to deter-
mine.

Quick Quiz 14.6 A glass of water contains a single floating ice cube (Fig.
14.11). When the ice melts, does the water level (a) go up (b) go down (c) remain the
same?

Figure 14.11 (Quick Quiz 14.6) An ice cube floats on the surface of water. What hap-
pens to the water level as the ice cube melts?

Quick Quiz 14.7 You are shipwrecked and floating in the middle of the
ocean on a raft. Your cargo on the raft includes a treasure chest full of gold that you
found before your ship sank, and the raft is just barely afloat. To keep you floating as
high as possible in the water, should you (a) leave the treasure chest on top of the raft
(b) secure the treasure chest to the underside of the raft (c) hang the treasure chest in
the water with a rope attached to the raft? (Assume that throwing the treasure chest
overboard is not an option you wish to consider!)

Example 14.5 Eureka!

suspended in air, the scale reads the true weight T1 ! Fg (ne-
glecting the buoyancy of air). When it is immersed in water,
the buoyant force B reduces the scale reading to an apparent
weight of T2 ! Fg & B. Because the crown is in equilibrium,
the net force on it is zero. When the crown is in water,

so that

Because this buoyant force is equal in magnitude to the
weight of the displaced water, we have $wgVw ! 1.00 N,
where Vw is the volume of the displaced water and $w is its

B ! Fg & T2 ! 7.84 N & 6.84 N ! 1.00 N

$ F ! B % T2 & Fg ! 0

Archimedes supposedly was asked to determine whether a
crown made for the king consisted of pure gold. Legend has
it that he solved this problem by weighing the crown first in
air and then in water, as shown in Figure 14.12. Suppose the
scale read 7.84 N in air and 6.84 N in water. What should
Archimedes have told the king?

Solution Figure 14.12 helps us to conceptualize the prob-
lem. Because of our understanding of the buoyant force, we
realize that the scale reading will be smaller in Figure 14.12b
than in Figure 14.12a. The scale reading is a measure of one
of the forces on the crown, and we recognize that the crown is
stationary. Thus, we can categorize this as a force equilibrium
problem. To analyze the problem, note that when the crown is

This equation tells us that the fraction of the volume of a floating object that is be-
low the fluid surface is equal to the ratio of the density of the object to that of
the fluid.

Under normal conditions, the weight of a fish is slightly greater than the buoyant
force due to water. It follows that the fish would sink if it did not have some mechanism
for adjusting the buoyant force. The fish accomplishes this by internally regulating the
size of its air-filled swim bladder to increase its volume and the magnitude of the buoy-
ant force acting on it. In this manner, fish are able to swim to various depths.
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Example 14.6 A Titanic Surprise

ward buoyant force equals the weight of the displaced water:
B ! $wVwg, where Vw , the volume of the displaced water, is
equal to the volume of the ice beneath the water (the
shaded region in Fig. 14.13b) and $w is the density of seawa-
ter, $w ! 1 030 kg/m3. Because $iVig ! $wVw g, the fraction
of ice beneath the water’s surface is

or 89.0%0.890f !
Vw

Vi
!

$i

$w
!

917 kg/m3

1 030 kg/m3 !

An iceberg floating in seawater, as shown in Figure 14.13a, is
extremely dangerous because most of the ice is below the
surface. This hidden ice can damage a ship that is still a con-
siderable distance from the visible ice. What fraction of the
iceberg lies below the water level?

Solution This problem corresponds to Case 2. The weight
of the iceberg is Fg ! $iVi g, where $i ! 917 kg/m3 and Vi is
the volume of the whole iceberg. The magnitude of the up-

(a) (b)

Figure 14.13 (Example 14.6) (a) Much of the volume of this iceberg is beneath the
water.  (b) A ship can be damaged even when it is not near the visible ice.
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Figure 14.12 (Example 14.5) (a) When the crown is sus-
pended in air, the scale reads its true weight because T1 ! Fg
(the buoyancy of air is negligible). (b) When the crown is im-
mersed in water, the buoyant force B changes the scale reading
to a lower value T2 ! Fg& B.

Finally, the density of the crown is

To finalize the problem, from Table 14.1 we see that the
density of gold is 19.3 " 103 kg/m3. Thus, Archimedes
should have told the king that he had been cheated.
Either the crown was hollow, or it was not made of pure
gold.

What If? Suppose the crown has the same weight but were
indeed pure gold and not hollow. What would the scale read-
ing be when the crown is immersed in water?

Answer We first find the volume of the solid gold crown:

Now, the buoyant force on the crown will be

and the tension in the string hanging from the scale is

T2 ! Fg & B ! 7.84 N & 0.406 N ! 7.43 N

 ! 0.406 N

 ! (1.00 " 103 kg/m3)(9.80 m/s2)(4.15 " 10&5 m3)

B ! $w gVw ! $w gVc

 ! 4.15 " 10&5 m3

Vc !
mc

$c
!

mc g
$c g

!
7.84 N

(19.3 " 103 kg/m3)(9.80 m/s2)

 ! 7.84 " 103 kg/m3

$c !
mc

Vc
!

mc g
Vcg

!
7.84 N

(1.02 " 10&4 m3)(9.80 m/s2)

density. Also, the volume of the crown Vc is equal to the vol-
ume of the displaced water because the crown is completely
submerged. Therefore,

 ! 1.02 " 10&4 m3

Vc ! Vw !
1.00 N

$wg
!

1.00 N
(1 000 kg/m3)(9.80 m/s2)



14.5 Fluid Dynamics

Thus far, our study of fluids has been restricted to fluids at rest. We now turn our atten-
tion to fluids in motion. When fluid is in motion, its flow can be characterized as being
one of two main types. The flow is said to be steady, or laminar, if each particle of the
fluid follows a smooth path, such that the paths of different particles never cross each
other, as shown in Figure 14.14. In steady flow, the velocity of fluid particles passing
any point remains constant in time.

Above a certain critical speed, fluid flow becomes turbulent; turbulent flow
is irregular flow characterized by small whirlpool-like regions, as shown in
Figure 14.15.

The term viscosity is commonly used in the description of fluid flow to character-
ize the degree of internal friction in the fluid. This internal friction, or viscous force, is
associated with the resistance that two adjacent layers of fluid have to moving relative
to each other. Viscosity causes part of the kinetic energy of a fluid to be converted to
internal energy. This mechanism is similar to the one by which an object sliding on a
rough horizontal surface loses kinetic energy.

Because the motion of real fluids is very complex and not fully understood, we
make some simplifying assumptions in our approach. In our model of ideal fluid flow,
we make the following four assumptions:

1. The fluid is nonviscous. In a nonviscous fluid, internal friction is neglected. An
object moving through the fluid experiences no viscous force.

2. The flow is steady. In steady (laminar) flow, the velocity of the fluid at each point
remains constant.

3. The fluid is incompressible. The density of an incompressible fluid is constant.

4. The flow is irrotational. In irrotational flow, the fluid has no angular momentum
about any point. If a small paddle wheel placed anywhere in the fluid does not ro-
tate about the wheel’s center of mass, then the flow is irrotational.

The path taken by a fluid particle under steady flow is called a streamline. The ve-
locity of the particle is always tangent to the streamline, as shown in Figure 14.16. A set
of streamlines like the ones shown in Figure 14.16 form a tube of flow. Note that fluid
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Figure 14.14 Laminar flow around an automobile in a test wind tunnel.
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Figure 14.15 Hot gases from a cig-
arette made visible by smoke parti-
cles. The smoke first moves in lami-
nar flow at the bottom and then in
turbulent flow above. 
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Figure 14.16 A particle in laminar
flow follows a streamline, and at
each point along its path the parti-
cle’s velocity is tangent to the
streamline.



particles cannot flow into or out of the sides of this tube; if they could, then the stream-
lines would cross each other.

Consider an ideal fluid flowing through a pipe of nonuniform size, as illustrated in
Figure 14.17. The particles in the fluid move along streamlines in steady flow. In a time
interval 't, the fluid at the bottom end of the pipe moves a distance 'x1 ! v1't. If A1 is
the cross-sectional area in this region, then the mass of fluid contained in the left
shaded region in Figure 14.17 is m1 ! $A1'x1 ! $A1v1't, where $ is the (unchanging)
density of the ideal fluid. Similarly, the fluid that moves through the upper end of the
pipe in the time interval 't has a mass m2 ! $A2v2't. However, because the fluid is in-
compressible and because the flow is steady, the mass that crosses A1 in a time interval
't must equal the mass that crosses A2 in the same time interval. That is, m1 ! m2, or
$A1v1 ! $A2v2; this means that

(14.7)

This expression is called the equation of continuity for fluids. It states that

A1v1 ! A2v2 ! constant
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Figure 14.18 The speed of water spraying
from the end of a garden hose increases as
the size of the opening is decreased with the
thumb.Ge

or
ge
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Quick Quiz 14.8 You tape two different soda straws together end-to-end to
make a longer straw with no leaks. The two straws have radii of 3 mm and 5 mm. You
drink a soda through your combination straw. In which straw is the speed of the liquid
the highest? (a) whichever one is nearest your mouth (b) the one of radius 3 mm
(c) the one of radius 5 mm (d) Neither—the speed is the same in both straws.

v1
∆x1

∆x2

Point 2

Point 1

A1

A2

v2

Figure 14.17 A fluid moving with
steady flow through a pipe of vary-
ing cross-sectional area. The vol-
ume of fluid flowing through area
A1 in a time interval 't must equal
the volume flowing through area
A2 in the same time interval. 
Therefore, A1v1 ! A2v2.

the product of the area and the fluid speed at all points along a pipe is constant for
an incompressible fluid.

Equation 14.7 tells us that the speed is high where the tube is constricted (small A) and
low where the tube is wide (large A). The product Av, which has the dimensions of vol-
ume per unit time, is called either the volume flux or the flow rate. The condition Av !
constant is equivalent to the statement that the volume of fluid that enters one end of
a tube in a given time interval equals the volume leaving the other end of the tube in
the same time interval if no leaks are present.

You demonstrate the equation of continuity each time you water your garden with
your thumb over the end of a garden hose as in Figure 14.18. By partially blocking the
opening with your thumb, you reduce the cross-sectional area through which the water
passes. As a result, the speed of the water increases as it exits the hose, and it can be
sprayed over a long distance.



14.6 Bernoulli’s Equation

You have probably had the experience of driving on a highway and having a large
truck pass you at high speed. In this situation, you may have had the frightening feel-
ing that your car was being pulled in toward the truck as it passed. We will investigate
the origin of this effect in this section.

As a fluid moves through a region where its speed and/or elevation above the Earth’s
surface changes, the pressure in the fluid varies with these changes. The relationship be-
tween fluid speed, pressure, and elevation was first derived in 1738 by the Swiss physicist
Daniel Bernoulli. Consider the flow of a segment of an ideal fluid through a nonuniform
pipe in a time interval 't, as illustrated in Figure 14.19. At the beginning of the time in-
terval, the segment of fluid consists of the blue shaded portion (portion 1) at the left and
the unshaded portion. During the time interval, the left end of the segment moves to the
right by a distance 'x1, which is the length of the blue shaded portion at the left. Mean-
while, the right end of the segment moves to the right through a distance 'x2 , which is
the length of the blue shaded portion (portion 2) at the upper right of Figure 14.19.
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Example 14.7 Niagara Falls

The flow rate of 5 525 m3/s is equal to Av. This gives

Note that we have kept only one significant figure because
our value for the depth has only one significant figure.

4 m/sv !
5 525 m3/s

A
!

5 525 m3/s
1 340 m2 !

Each second, 5 525 m3 of water flows over the 670-m-wide
cliff of the Horseshoe Falls portion of Niagara Falls. The wa-
ter is approximately 2 m deep as it reaches the cliff. What is
its speed at that instant?

Solution The cross-sectional area of the water as it reaches
the edge of the cliff is A ! (670 m)(2 m) ! 1 340 m2.

Example 14.8 Watering a Garden

component of the water projected from the hose, and the
subscript x recognizes that the initial velocity vector of the
projected water is in the horizontal direction.

We now shift our thinking away from fluids and to projectile
motion because the water is in free fall once it exits the noz-
zle. A particle of the water falls through a vertical distance of
1.00 m starting from rest, and lands on the ground at a time
that we find from Equation 2.12:

In the horizontal direction, we apply Equation 2.12 with
ax ! 0 to a particle of water to find the horizontal distance:

4.52 mxf ! xi % vxit ! 0 % (10.0 m/s)(0.452 s) !

 t ! √ 2(1.00 m)
9.80 m/s2 ! 0.452 s

&1.00 m ! 0 % 0 & 1
2(9.80 m/s2)t2

yf ! yi % vyit & 1
2gt 2

 ! 10.0 m/s

vxi !
4.91 cm2

0.500 cm2  (1.02 m/s)

A1v1 ! A2v 2 ! A2vxi 9:  vxi !
A1

A2
  v1

A water hose 2.50 cm in diameter is used by a gardener
to fill a 30.0-L bucket. The gardener notes that it takes
1.00 min to fill the bucket. A nozzle with an opening of
cross-sectional area 0.500 cm2 is then attached to the hose.
The nozzle is held so that water is projected horizontally
from a point 1.00 m above the ground. Over what horizon-
tal distance can the water be projected?

Solution We identify point 1 within the hose and point 2 at
the exit of the nozzle. We first find the speed of the water
in the hose from the bucket-filling information. The cross-
sectional area of the hose is

According to the data given, the volume flow rate is equal to
30.0 L/min:

Now we use the continuity equation for fluids to find the
speed v2 ! vxi with which the water exits the nozzle. The
subscript i anticipates that this will be the initial velocity

 v1 !
500 cm3/s

A1
!

500 cm3/s
4.91 cm2 ! 102 cm/s ! 1.02 m/s

A1v1 ! 30.0 L/min !
30.0 " 103 cm3

60.0 s
! 500 cm3/s

A1 ! #r 2 ! #  
d2

4
! #  " (2.50 cm)2

4 # ! 4.91 cm2

∆x1

∆x2

v2
y2

y1

P1A1i

v1

–P2A2i

Point 2

Point 1

ˆ

ˆ

Figure 14.19 A fluid in laminar
flow through a constricted pipe.
The volume of the shaded portion
on the left is equal to the volume of
the shaded portion on the right.



Thus, at the end of the time interval, the segment of fluid consists of the unshaded por-
tion and the blue shaded portion at the upper right.

Now consider forces exerted on this segment by fluid to the left and the right of the
segment. The force exerted by the fluid on the left end has a magnitude P1A1. The work
done by this force on the segment in a time interval 't is W1 ! F1 'x1 ! P1A1 'x1 ! P1V,
where V is the volume of portion 1. In a similar manner, the work done by the fluid to
the right of the segment in the same time interval 't is W2 ! & P2A2 'x2 ! & P2V. (The
volume of portion 1 equals the volume of portion 2.) This work is negative because the
force on the segment of fluid is to the left and the displacement is to the right. Thus,
the net work done on the segment by these forces in the time interval 't is

Part of this work goes into changing the kinetic energy of the segment of fluid, and
part goes into changing the gravitational potential energy of the segment–Earth sys-
tem. Because we are assuming streamline flow, the kinetic energy of the unshaded por-
tion of the segment in Figure 14.19 is unchanged during the time interval. The only
change is as follows: before the time interval we have portion 1 traveling at v1, whereas
after the time interval, we have portion 2 traveling at v2 . Thus, the change in the ki-
netic energy of the segment of fluid is

where m is the mass of both portion 1 and portion 2. (Because the volumes of both
portions are the same, they also have the same mass.)

Considering the gravitational potential energy of the segment–Earth system, once
again there is no change during the time interval for the unshaded portion of the fluid.
The net change is that the mass of the fluid in portion 1 has effectively been moved to the
location of portion 2. Consequently, the change in gravitational potential energy is

The total work done on the system by the fluid outside the segment is equal to the
change in mechanical energy of the system: W ! 'K % 'U. Substituting for each of
these terms, we obtain

If we divide each term by the portion volume V and recall that $ ! m/V, this expres-
sion reduces to

Rearranging terms, we obtain

(14.8)

This is Bernoulli’s equation as applied to an ideal fluid. It is often expressed as

(14.9)

This expression shows that the pressure of a fluid decreases as the speed of the fluid in-
creases. In addition, the pressure decreases as the elevation increases. This explains
why water pressure from faucets on the upper floors of a tall building is weak unless
measures are taken to provide higher pressure for these upper floors.

When the fluid is at rest, v1 ! v2 ! 0 and Equation 14.8 becomes

This is in agreement with Equation 14.4.
While Equation 14.9 was derived for an incompressible fluid, the general behavior

of pressure with speed is true even for gases—as the speed increases, the pressure

P1 & P2 ! $g(y2 & y1) ! $gh

P % 1
2$v2 % $g y ! constant

P1 % 1
2$v 2

1 % $gy1 ! P2 % 1
2$v 2

2 % $gy2

P1 & P2 ! 1
2$v 2

2 & 1
2$v1

2 % $gy2 & $gy1

(P1 & P2)V ! 1
2mv 2

2 & 1
2mv 2

1 % mgy2 & mgy1

'U ! mgy2 & mg y1

'K ! 1
2mv 2

2 & 1
2mv1

2

W ! (P1 & P2)V
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Bernoulli’s equation

Daniel Bernoulli
Swiss physicist 
(1700–1782)

Daniel Bernoulli made
important discoveries in fluid
dynamics. Born into a family of
mathematicians, he was the only
member of the family to make a
mark in physics.

Bernoulli’s most famous work,
Hydrodynamica, was published
in 1738; it is both a theoretical
and a practical study of
equilibrium, pressure, and speed
in fluids. He showed that as the
speed of a fluid increases, its
pressure decreases. Referred to
as “Bernoulli’s principle,” his
work is used to produce a partial
vacuum in chemical laboratories
by connecting a vessel to a tube
through which water is running
rapidly.

In Hydrodynamica, Bernoulli
also attempted the first
explanation of the behavior of
gases with changing pressure
and temperature; this was the
beginning of the kinetic theory of
gases, a topic we study in
Chapter 21. (Corbis–Bettmann)
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Quick Quiz 14.9 You observe two helium balloons floating next to each
other at the ends of strings secured to a table. The facing surfaces of the balloons are
separated by 1–2 cm. You blow through the small space between the balloons. What
happens to the balloons? (a) They move toward each other. (b) They move away from
each other. (c) They are unaffected.

Example 14.9 The Venturi Tube

Solution Because the pipe is horizontal, y1 ! y2, and apply-
ing Equation 14.8 to points 1 and 2 gives

From the equation of continuity, A1v1 ! A2v2 , we find that

Substituting this expression into Equation (1) gives

We can use this result and the continuity equation to obtain
an expression for v1. Because A2 ( A1, Equation (2) shows
us that v2 ) v 1 . This result, together with Equation (1), in-
dicates that P1 ) P 2 . In other words, the pressure is re-
duced in the constricted part of the pipe.

A1√ 2(P1 & P2)
$(A1

2 & A2
2)

v2 !

P1 % 1
2$" A2

A1
#2

v2
2 ! P2 % 1

2 $v2
2

(2)   v1 !
A2

A1
v2

(1)   P1 % 1
2$v 2

1 ! P2 % 1
2 $v 2

2

The horizontal constricted pipe illustrated in Figure 14.20,
known as a Venturi tube, can be used to measure the flow
speed of an incompressible fluid. Determine the flow speed
at point 2 if the pressure difference P1 & P2 is known.

P1 P2

A2

A1

!

(a)

v1 v2
"

(b)

Figure 14.20 (Example 14.9) (a) Pressure P1 is greater than
pressure P2 because v1 ( v2. This device can be used to mea-
sure the speed of fluid flow. (b) A Venturi tube, located at the
top of the photograph. The higher level of fluid in the middle
column shows that the pressure at the top of the column, which
is in the constricted region of the Venturi tube, is lower.
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Example 14.10 Torricelli’s Law

An enclosed tank containing a liquid of density $ has a hole
in its side at a distance y1 from the tank’s bottom (Fig.
14.21). The hole is open to the atmosphere, and its diame-
ter is much smaller than the diameter of the tank. The air
above the liquid is maintained at a pressure P. Determine
the speed of the liquid as it leaves the hole when the liquid’s
level is a distance h above the hole.

Solution Because A2 )) A1, the liquid is approximately 
at rest at the top of the tank, where the pressure is P.
Applying Bernoulli’s equation to points 1 and 2 and not-
ing that at the hole P1 is equal to atmospheric pressure P0,
we find that

P0 % 1
2$v1

2 % $gy1 ! P % $gy2

decreases. This Bernoulli effect explains the experience with the truck on the highway at
the opening of this section. As air passes between you and the truck, it must pass
through a relatively narrow channel. According to the continuity equation, the speed
of the air is higher. According to the Bernoulli effect, this higher speed air exerts less
pressure on your car than the slower moving air on the other side of your car. Thus,
there is a net force pushing you toward the truck!

A2

A1

v 1
P0

h

P

y2

y1

"

!

Figure 14.21 (Example 14.10) A liquid leaves a hole in a tank
at speed v1. 

But y2 & y1 ! h; thus, this expression reduces to

v1 ! √ 2(P & P0)
$

% 2gh

Interactive



14.7 Other Applications of Fluid Dynamics

Consider the streamlines that flow around an airplane wing as shown in Figure 14.22. Let
us assume that the airstream approaches the wing horizontally from the right with a ve-
locity v1. The tilt of the wing causes the airstream to be deflected downward with a veloc-
ity v2. Because the airstream is deflected by the wing, the wing must exert a force on the
airstream. According to Newton’s third law, the airstream exerts a force F on the wing
that is equal in magnitude and opposite in direction. This force has a vertical component
called the lift (or aerodynamic lift) and a horizontal component called drag. The lift de-
pends on several factors, such as the speed of the airplane, the area of the wing, its curva-
ture, and the angle between the wing and the horizontal. The curvature of the wing sur-
faces causes the pressure above the wing to be lower than that below the wing, due to the
Bernoulli effect. This assists with the lift on the wing. As the angle between the wing and
the horizontal increases, turbulent flow can set in above the wing to reduce the lift.

In general, an object moving through a fluid experiences lift as the result of any ef-
fect that causes the fluid to change its direction as it flows past the object. Some factors
that influence lift are the shape of the object, its orientation with respect to the fluid
flow, any spinning motion it might have, and the texture of its surface. For example, a
golf ball struck with a club is given a rapid backspin due to the slant of the club. The
dimples on the ball increase the friction force between the ball and the air so that air
adheres to the ball’s surface. This effect is most pronounced on the top half of the ball,
where the ball’s surface is moving in the same direction as the air flow. Figure 14.23
shows air adhering to the ball and being deflected downward as a result. Because the
ball pushes the air down, the air must push up on the ball. Without the dimples, the
friction force is lower, and the golf ball does not travel as far. It may seem counterintu-
itive to increase the range by increasing the friction force, but the lift gained by spin-
ning the ball more than compensates for the loss of range due to the effect of friction
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F

Drag

Lift

Figure 14.22 Streamline flow
around a moving airplane wing.
The air approaching from the right
is deflected downward by the wing.
By Newton’s third law, this must co-
incide with an upward force on the
wing from the air—lift. Because of
air resistance, there is also a force
opposite the velocity of the wing—
drag.

When P is much greater than P0 (so that the term 2gh
can be neglected), the exit speed of the water is mainly
a function of P. If the tank is open to the atmosphere, then
P ! P0 and In other words, for an open tank,
the speed of liquid coming out through a hole a distance h
below the surface is equal to that acquired by an object
falling freely through a vertical distance h. This phenome-
non is known as Torricelli’s law.

What If? What if the position of the hole in Figure 14.21
could be adjusted vertically? If the tank is open to the atmos-
phere and sitting on a table, what position of the hole would
cause the water to land on the table at the farthest distance
from the tank?

Answer We model a parcel of water exiting the hole as a
projectile. We find the time at which the parcel strikes the
table from a hole at an arbitrary position:

t ! √ 2y1

g

0 ! y1 % 0 & 1
2 gt2

yf ! yi % vyit & 1
2 gt2

v1 ! √2gh .

Thus, the horizontal position of the parcel at the time it
strikes the table is

Now we maximize the horizontal position by taking the de-
rivative of xf with respect to y1 (because y1, the height of the
hole, is the variable that can be adjusted) and setting it
equal to zero:

This is satisfied if

Thus, the hole should be halfway between the bottom of the
tank and the upper surface of the water to maximize the
horizontal distance. Below this location, the water is pro-
jected at a higher speed, but falls for a short time interval,
reducing the horizontal range. Above this point, the water is
in the air for a longer time interval, but is projected with a
smaller horizontal speed.

y1 ! 1
2 y2

dxf

dy1
! 1

2(2)(y2y1 & y1
2)&1/2(y2 & 2y1) ! 0

 ! 2√(y2y1 & y1
2)

xf ! xi % vxit ! 0 % √2g(y2 & y1) √ 2y1

g

At the Interactive Worked Example link at http://www.pse6.com, you can move the hole vertically to see where the water lands.



on the translational motion of the ball! For the same reason, a baseball’s cover helps
the spinning ball “grab” the air rushing by and helps to deflect it when a “curve ball” is
thrown.

A number of devices operate by means of the pressure differentials that result from
differences in a fluid’s speed. For example, a stream of air passing over one end of an
open tube, the other end of which is immersed in a liquid, reduces the pressure above the
tube, as illustrated in Figure 14.24. This reduction in pressure causes the liquid to rise into
the air stream. The liquid is then dispersed into a fine spray of droplets. You might recog-
nize that this so-called atomizer is used in perfume bottles and paint sprayers.

Summary 437

Figure 14.23 Because of the deflection of air, a spinning golf ball experiences a lifting
force that allows it to travel much farther than it would if it were not spinning.

Figure 14.24 A stream of air pass-
ing over a tube dipped into a liquid
causes the liquid to rise in the tube.

The pressure P in a fluid is the force per unit area exerted by the fluid on a
surface:

(14.1)

In the SI system, pressure has units of newtons per square meter (N/m2), and 1 N/m2 !
1 pascal (Pa).

The pressure in a fluid at rest varies with depth h in the fluid according to the
expression

(14.4)

where P0 is the pressure at h ! 0 and $ is the density of the fluid, assumed uniform.
Pascal’s law states that when pressure is applied to an enclosed fluid, the pressure

is transmitted undiminished to every point in the fluid and to every point on the walls
of the container.

When an object is partially or fully submerged in a fluid, the fluid exerts on the object
an upward force called the buoyant force. According to Archimedes’s principle, the
magnitude of the buoyant force is equal to the weight of the fluid displaced by the object:

(14.5)

You can understand various aspects of a fluid’s dynamics by assuming that the fluid
is nonviscous and incompressible, and that the fluid’s motion is a steady flow with no
rotation.

Two important concepts regarding ideal fluid flow through a pipe of nonuniform
size are as follows:

1. The flow rate (volume flux) through the pipe is constant; this is equivalent to stat-
ing that the product of the cross-sectional area A and the speed v at any point is a
constant. This result is expressed in the equation of continuity for fluids:

(14.7)A1v1 ! A2v2 ! constant

B ! $ fluid gV

P ! P0 % $gh

P  ! 
F
A

S U M M A RY

Take a practice test for
this chapter by clicking on
the Practice Test link at
http://www.pse6.com.



438 C H A P T E R  1 4 •  Fluid Mechanics

2. The sum of the pressure, kinetic energy per unit volume, and gravitational poten-
tial energy per unit volume has the same value at all points along a streamline. This
result is summarized in Bernoulli’s equation:

(14.9)P % 1
2$v2 % $gy ! constant

Two drinking glasses having equal weights but different
shapes and different cross-sectional areas are filled to
the same level with water. According to the expression
P ! P0% $gh, the pressure is the same at the bottom of
both glasses. In view of this, why does one weigh more
than the other?

2. Figure Q14.2 shows aerial views from directly above two
dams. Both dams are equally wide (the vertical dimension
in the diagram) and equally high (into the page in the dia-
gram). The dam on the left holds back a very large lake,
while the dam on the right holds back a narrow river.
Which dam has to be built stronger?

1. 8. Suppose a damaged ship can just barely keep afloat in the
ocean. It is towed toward shore and into a river, heading
toward a dry dock for repair. As it is pulled up the river, it
sinks. Why?

9. Lead has a greater density than iron, and both are denser
than water. Is the buoyant force on a lead object greater
than, less than, or equal to the buoyant force on an iron
object of the same volume?

The water supply for a city is often provided from reser-
voirs built on high ground. Water flows from the reservoir,
through pipes, and into your home when you turn the tap
on your faucet. Why is the water flow more rapid out of a
faucet on the first floor of a building than in an apartment
on a higher floor?

11. Smoke rises in a chimney faster when a breeze is blowing.
Use the Bernoulli effect to explain this phenomenon.

12. If the air stream from a hair dryer is directed over a Ping-
Pong ball, the ball can be levitated. Explain.

13. When ski jumpers are airborne (Fig. Q14.13), why do they
bend their bodies forward and keep their hands at their
sides?

10.

Q U E S T I O N S

DamDam

Figure Q14.2

3. Some physics students attach a long tube to the opening of
a hot water bottle made of strong rubber. Leaving the hot
water bottle on the ground, they hoist the other end of the
tube to the roof of a multistory campus building. Students
at the top of the building pour water into the tube. The
students on the ground watch the bottle fill with water. On
the roof, the students are surprised to see that the tube
never seems to fill up—they can continue to pour more
and more water down the tube. On the ground, the hot
water bottle swells up like a balloon and bursts, drenching
the students. Explain these observations.

4. If the top of your head has a surface area of 100 cm2, what
is the weight of the air above your head?

5. A helium-filled balloon rises until its density becomes the
same as that of the surrounding air. If a sealed submarine
begins to sink, will it go all the way to the bottom of the
ocean or will it stop when its density becomes the same as
that of the surrounding water?

A fish rests on the bottom of a bucket of water while the
bucket is being weighed on a scale. When the fish begins
to swim around, does the scale reading change?

7. Will a ship ride higher in the water of an inland lake or in
the ocean? Why?

6.

Figure Q14.13

14. When an object is immersed in a liquid at rest, why is the net
force on the object in the horizontal direction equal to zero?

15. Explain why a sealed bottle partially filled with a liquid can
float in a basin of the same liquid.

16. When is the buoyant force on a swimmer greater—after
exhaling or after inhaling?

A barge is carrying a load of gravel along a river. It ap-
proaches a low bridge and the captain realizes that the
top of the pile of gravel is not going to make it under
the bridge. The captain orders the crew to quickly
shovel gravel from the pile into the water. Is this a good
decision?

17.
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18. A person in a boat floating in a small pond throws an an-
chor overboard. Does the level of the pond rise, fall, or
remain the same?

19. An empty metal soap dish barely floats in water. A bar of
Ivory soap floats in water. When the soap is stuck in the
soap dish, the combination sinks. Explain why.

20. A piece of unpainted porous wood barely floats in a con-
tainer partly filled with water. If the container is sealed and
pressurized above atmospheric pressure, does the wood
rise, fall, or remain at the same level?

21. A flat plate is immersed in a liquid at rest. For what orienta-
tion of the plate is the pressure on its flat surface uniform?

22. Because atmospheric pressure is about 105 N/m2 and
the area of a person’s chest is about 0.13 m2, the force
of the atmosphere on one’s chest is around 13 000 N.
In view of this enormous force, why don’t our bodies
collapse?

23. How would you determine the density of an irregularly
shaped rock?

24. Why do airplane pilots prefer to take off into the
wind?

25. If you release a ball while inside a freely falling elevator,
the ball remains in front of you rather than falling to the
floor, because the ball, the elevator, and you all experience
the same downward acceleration g. What happens if you
repeat this experiment with a helium-filled balloon? (This
one is tricky.)

26. Two identical ships set out to sea. One is loaded with a
cargo of Styrofoam, and the other is empty. Which ship is
more submerged?

27. A small piece of steel is tied to a block of wood. When the
wood is placed in a tub of water with the steel on top, half of
the block is submerged. If the block is inverted so that the
steel is under water, does the amount of the block sub-
merged increase, decrease, or remain the same? What hap-
pens to the water level in the tub when the block is inverted?

28. Prairie dogs (Fig. Q14.28) ventilate their burrows by build-
ing a mound around one entrance, which is open to a
stream of air when wind blows from any direction. A sec-

ond entrance at ground level is open to almost stagnant
air. How does this construction create an air flow through
the burrow?

An unopened can of diet cola floats when placed in a tank
of water, whereas a can of regular cola of the same brand
sinks in the tank. What do you suppose could explain this
behavior?

30. Figure Q14.30 shows a glass cylinder containing four liq-
uids of different densities. From top to bottom, the liquids
are oil (orange), water (yellow), salt water (green), and
mercury (silver). The cylinder also contains, from top to
bottom, a Ping-Pong ball, a piece of wood, an egg, and a
steel ball. (a) Which of these liquids has the lowest density,
and which has the greatest? (b) What can you conclude
about the density of each object?

29.

Figure Q14.28

Figure Q14.30

31. In Figure Q14.31, an air stream moves from right to left
through a tube that is constricted at the middle. Three
Ping-Pong balls are levitated in equilibrium above the ver-
tical columns through which the air escapes. (a) Why is
the ball at the right higher than the one in the middle?
(b) Why is the ball at the left lower than the ball at the
right even though the horizontal tube has the same dimen-
sions at these two points?

Figure Q14.31
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32. You are a passenger on a spacecraft. For your survival and
comfort, the interior contains air just like that at the sur-
face of the Earth. The craft is coasting through a very
empty region of space. That is, a nearly perfect vacuum

Section 14.1 Pressure
Calculate the mass of a solid iron sphere that has a diame-

ter of 3.00 cm.

2. Find the order of magnitude of the density of the nucleus of
an atom. What does this result suggest concerning the struc-
ture of matter? Model a nucleus as protons and neutrons
closely packed together. Each has mass 1.67 " 10&27 kg and
radius on the order of 10&15 m.

A 50.0-kg woman balances on one heel of a pair of high-
heeled shoes. If the heel is circular and has a radius of
0.500 cm, what pressure does she exert on the floor?

4. The four tires of an automobile are inflated to a gauge
pressure of 200 kPa. Each tire has an area of 0.024 0 m2 in
contact with the ground. Determine the weight of the au-
tomobile.

5. What is the total mass of the Earth’s atmosphere? (The ra-
dius of the Earth is 6.37 " 106 m, and atmospheric pres-
sure at the surface is 1.013 " 105 N/m2.)

Section 14.2 Variation of Pressure with Depth
6. (a) Calculate the absolute pressure at an ocean depth of 

1 000 m. Assume the density of seawater is 1 024 kg/m3

and that the air above exerts a pressure of 101.3 kPa.
(b) At this depth, what force must the frame around a cir-
cular submarine porthole having a diameter of 30.0 cm ex-
ert to counterbalance the force exerted by the water?

3.

1.
The spring of the pressure gauge shown in Figure 14.2
has a force constant of 1 000 N/m, and the piston has a
diameter of 2.00 cm. As the gauge is lowered into water,
what change in depth causes the piston to move in by
0.500 cm?

8. The small piston of a hydraulic lift has a cross-sectional
area of 3.00 cm2, and its large piston has a cross-sectional
area of 200 cm2 (Figure 14.4). What force must be applied
to the small piston for the lift to raise a load of 15.0 kN?
(In service stations, this force is usually exerted by com-
pressed air.)

What must be the contact area between a suction cup
(completely exhausted) and a ceiling if the cup is to sup-
port the weight of an 80.0-kg student?

10. (a) A very powerful vacuum cleaner has a hose 2.86 cm in
diameter. With no nozzle on the hose, what is the weight
of the heaviest brick that the cleaner can lift? (Fig.
P14.10a) (b) What If? A very powerful octopus uses one
sucker of diameter 2.86 cm on each of the two shells of a
clam in an attempt to pull the shells apart (Fig. P14.10b).
Find the greatest force the octopus can exert in salt water
32.3 m deep. Caution: Experimental verification can be in-
teresting, but do not drop a brick on your foot. Do not
overheat the motor of a vacuum cleaner. Do not get an oc-
topus mad at you.

11. For the cellar of a new house, a hole is dug in the ground,
with vertical sides going down 2.40 m. A concrete founda-
tion wall is built all the way across the 9.60-m width of the

9.

7.

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide

= coached solution with hints available at http://www.pse6.com = computer useful in solving problem

= paired numerical and symbolic problems

P R O B L E M S

(a) (b)

Figure P14.10

exists just outside the wall. Suddenly, a meteoroid pokes a
hole, about the size of a large coin, right through the wall
next to your seat. What will happen? Is there anything you
can or should do about it?
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excavation. This foundation wall is 0.183 m away from the
front of the cellar hole. During a rainstorm, drainage from
the street fills up the space in front of the concrete wall,
but not the cellar behind the wall. The water does not soak
into the clay soil. Find the force the water causes on the
foundation wall. For comparison, the weight of the water is
given by 2.40 m " 9.60 m " 0.183 m " 1 000 kg/m3 "
9.80 m/s2 ! 41.3 kN.

12. A swimming pool has dimensions 30.0 m " 10.0 m and a
flat bottom. When the pool is filled to a depth of 2.00 m
with fresh water, what is the force caused by the water on
the bottom? On each end? On each side?

13. A sealed spherical shell of diameter d is rigidly attached to
a cart, which is moving horizontally with an acceleration a
as in Figure P14.13. The sphere is nearly filled with a fluid
having density $ and also contains one small bubble of air
at atmospheric pressure. Determine the pressure P at the
center of the sphere.

Section 14.3 Pressure Measurements
16. Figure P14.16 shows Superman attempting to drink water

through a very long straw. With his great strength he
achieves maximum possible suction. The walls of the tubu-
lar straw do not collapse. (a) Find the maximum height
through which he can lift the water. (b) What If? Still
thirsty, the Man of Steel repeats his attempt on the Moon,
which has no atmosphere. Find the difference between the
water levels inside and outside the straw.

a

Figure P14.13

Figure P14.16

Figure P14.14

2.00 m

2.00 m

1.00 m

h

P0

Figure P14.17

14. The tank in Figure P14.14 is filled with water 2.00 m deep.
At the bottom of one side wall is a rectangular hatch
1.00 m high and 2.00 m wide, which is hinged at the top of
the hatch. (a) Determine the force the water exerts on the
hatch. (b) Find the torque exerted by the water about the
hinges.

15. Review problem. The Abbott of Aberbrothock paid to
have a bell moored to the Inchcape Rock to warn seamen
of the hazard. Assume the bell was 3.00 m in diameter, cast
from brass with a bulk modulus of 14.0 " 1010 N/m2. The
pirate Ralph the Rover cut loose the warning bell and
threw it into the ocean. By how much did the diameter of
the bell decrease as it sank to a depth of 10.0 km? Years
later, Ralph drowned when his ship collided with the rock.
Note : The brass is compressed uniformly, so you may
model the bell as a sphere of diameter 3.00 m.

Blaise Pascal duplicated Torricelli’s barometer using
a red Bordeaux wine, of density 984 kg/m3, as the working
liquid (Fig. P14.17). What was the height h of the wine

17.
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column for normal atmospheric pressure? Would you ex-
pect the vacuum above the column to be as good as for
mercury?

18. Mercury is poured into a U-tube as in Figure P14.18a.
The left arm of the tube has cross-sectional area A1 of
10.0 cm2, and the right arm has a cross-sectional area
A2 of 5.00 cm2. One hundred grams of water are then
poured into the right arm as in Figure P14.18b. (a) De-
termine the length of the water column in the right arm
of the U-tube. (b) Given that the density of mercury is
13.6 g/cm3, what distance h does the mercury rise in the
left arm?

pressure of 100 to 200 mm of H2O above the prevailing at-
mospheric pressure. In medical work pressures are often
measured in units of millimeters of H2O because body flu-
ids, including the cerebrospinal fluid, typically have the
same density as water. The pressure of the cerebrospinal
fluid can be measured by means of a spinal tap, as illus-
trated in Figure P14.21. A hollow tube is inserted into the
spinal column, and the height to which the fluid rises is
observed. If the fluid rises to a height of 160 mm, we write
its gauge pressure as 160 mm H2O. (a) Express this pres-
sure in pascals, in atmospheres, and in millimeters of mer-
cury. (b) Sometimes it is necessary to determine if an acci-
dent victim has suffered a crushed vertebra that is blocking
flow of the cerebrospinal fluid in the spinal column. In
other cases a physician may suspect a tumor or other
growth is blocking the spinal column and inhibiting flow
of cerebrospinal fluid. Such conditions can be investigated
by means of the Queckensted test. In this procedure, the
veins in the patient’s neck are compressed, to make the
blood pressure rise in the brain. The increase in pressure
in the blood vessels is transmitted to the cerebrospinal
fluid. What should be the normal effect on the height of
the fluid in the spinal tap? (c) Suppose that compressing
the veins had no effect on the fluid level. What might ac-
count for this?

A1

(a)

A2

Mercury

A1 A2

h

Water

(b)

Figure P14.18

19. Normal atmospheric pressure is 1.013 " 105 Pa. The ap-
proach of a storm causes the height of a mercury barome-
ter to drop by 20.0 mm from the normal height. What is
the atmospheric pressure? (The density of mercury is
13.59 g/cm3.)

20. A U-tube of uniform cross-sectional area, open to the at-
mosphere, is partially filled with mercury. Water is then
poured into both arms. If the equilibrium configuration of
the tube is as shown in Figure P14.20, with h2 ! 1.00 cm,
determine the value of h1.

h2

h1

Water
Mercury

Figure P14.20

21. The human brain and spinal cord are immersed in the
cerebrospinal fluid. The fluid is normally continuous be-
tween the cranial and spinal cavities. It normally exerts a

Figure P14.21

Section 14.4 Buoyant Forces and Archimedes’s
Principle

22. (a) A light balloon is filled with 400 m3 of helium. At 0°C,
the balloon can lift a payload of what mass? (b) What If?
In Table 14.1, observe that the density of hydrogen is
nearly half the density of helium. What load can the bal-
loon lift if filled with hydrogen?

A Ping-Pong ball has a diameter of 3.80 cm and average
density of 0.084 0 g/cm3. What force is required to hold it
completely submerged under water?

24. A Styrofoam slab has thickness h and density $s . When a
swimmer of mass m is resting on it, the slab floats in fresh
water with its top at the same level as the water surface.
Find the area of the slab.

25. A piece of aluminum with mass 1.00 kg and density 
2 700 kg/m3 is suspended from a string and then com-
pletely immersed in a container of water (Figure P14.25).
Calculate the tension in the string (a) before and (b) after
the metal is immersed.

23.
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26. The weight of a rectangular block of low-density material is
15.0 N. With a thin string, the center of the horizontal bot-
tom face of the block is tied to the bottom of a beaker
partly filled with water. When 25.0% of the block’s volume
is submerged, the tension in the string is 10.0 N.
(a) Sketch a free-body diagram for the block, showing all
forces acting on it. (b) Find the buoyant force on the
block. (c) Oil of density 800 kg/m3 is now steadily added
to the beaker, forming a layer above the water and sur-
rounding the block. The oil exerts forces on each of the
four side walls of the block that the oil touches. What are
the directions of these forces? (d) What happens to the
string tension as the oil is added? Explain how the oil has
this effect on the string tension. (e) The string breaks
when its tension reaches 60.0 N. At this moment, 25.0% of
the block’s volume is still below the water line; what addi-
tional fraction of the block’s volume is below the top sur-
face of the oil? (f) After the string breaks, the block comes
to a new equilibrium position in the beaker. It is now in
contact only with the oil. What fraction of the block’s vol-
ume is submerged? 

27. A 10.0-kg block of metal measuring 12.0 cm " 10.0 cm "
10.0 cm is suspended from a scale and immersed in water
as in Figure P14.25b. The 12.0-cm dimension is vertical,
and the top of the block is 5.00 cm below the surface of
the water. (a) What are the forces acting on the top and on
the bottom of the block? (Take P0 ! 1.013 0 " 105 N/m2.)
(b) What is the reading of the spring scale? (c) Show that
the buoyant force equals the difference between the forces
at the top and bottom of the block.

28. To an order of magnitude, how many helium-filled toy bal-
loons would be required to lift you? Because helium is an
irreplaceable resource, develop a theoretical answer rather
than an experimental answer. In your solution state what
physical quantities you take as data and the values you
measure or estimate for them.

A cube of wood having an edge dimension of 20.0 cm
and a density of 650 kg/m3 floats on water. (a) What is the
distance from the horizontal top surface of the cube to the
water level? (b) How much lead weight has to be placed on
top of the cube so that its top is just level with the water?

29.

30. A spherical aluminum ball of mass 1.26 kg contains an
empty spherical cavity that is concentric with the ball. The
ball just barely floats in water. Calculate (a) the outer ra-
dius of the ball and (b) the radius of the cavity.

31. Determination of the density of a fluid has many important
applications. A car battery contains sulfuric acid, for which
density is a measure of concentration. For the battery to
function properly, the density must be inside a range speci-
fied by the manufacturer. Similarly, the effectiveness of an-
tifreeze in your car’s engine coolant depends on the density
of the mixture (usually ethylene glycol and water). When
you donate blood to a blood bank, its screening includes de-
termination of the density of the blood, since higher density
correlates with higher hemoglobin content. A hydrometer is
an instrument used to determine liquid density. A simple
one is sketched in Figure P14.31. The bulb of a syringe is
squeezed and released to let the atmosphere lift a sample of
the liquid of interest into a tube containing a calibrated rod
of known density. The rod, of length L and average density
$0, floats partially immersed in the liquid of density $. A
length h of the rod protrudes above the surface of the liq-
uid. Show that the density of the liquid is given by

$ !
$0L

L & h

(a)

T2

B

(b)

Mg

T1

Mg

Scale

Figure P14.25 Problems 25 and 27

L

96

98

102
104

100

96

98

100
102
104

h

Figure P14.31 Problems 31 and 32

32. Refer to Problem 31 and Figure P14.31. A hydrometer is
to be constructed with a cylindrical floating rod. Nine
fiduciary marks are to be placed along the rod to indi-
cate densities of 0.98 g/cm3, 1.00 g/cm3, 1.02 g/cm3,
1.04 g/cm3, . . . 1.14 g/cm3. The row of marks is to start
0.200 cm from the top end of the rod and end 1.80 cm
from the top end. (a) What is the required length of the
rod? (b) What must be its average density? (c) Should
the marks be equally spaced? Explain your answer.

How many cubic meters of helium are required to lift a bal-
loon with a 400-kg payload to a height of 8 000 m? (Take
$He ! 0.180 kg/m3.) Assume that the balloon maintains a

33.
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constant volume and that the density of air decreases with
the altitude z according to the expression $air ! $0e&z/8 000,
where z is in meters and $0 ! 1.25 kg/m3 is the density of
air at sea level.

34. A frog in a hemispherical pod (Fig. P14.34) just floats
without sinking into a sea of blue-green ooze with density
1.35 g/cm3. If the pod has radius 6.00 cm and negligible
mass, what is the mass of the frog?

with a nozzle of diameter 2.20 cm. A rubber stopper is in-
serted into the nozzle. The water level in the tank is kept
7.50 m above the nozzle. (a) Calculate the friction force
exerted by the nozzle on the stopper. (b) The stopper
is removed. What mass of water flows from the nozzle in
2.00 h? (c) Calculate the gauge pressure of the flowing
water in the hose just behind the nozzle.

Water flows through a fire hose of diameter 6.35 cm at a
rate of 0.0120 m3/s. The fire hose ends in a nozzle of in-
ner diameter 2.20 cm. What is the speed with which the
water exits the nozzle?

42. Water falls over a dam of height h with a mass flow rate of
R, in units of kg/s. (a) Show that the power available from
the water is

where g is the free-fall acceleration. (b) Each hydroelectric
unit at the Grand Coulee Dam takes in water at a rate of
8.50 " 105 kg/s from a height of 87.0 m. The power devel-
oped by the falling water is converted to electric power
with an efficiency of 85.0%. How much electric power is
produced by each hydroelectric unit?

43. Figure P14.43 shows a stream of water in steady flow from
a kitchen faucet. At the faucet the diameter of the stream
is 0.960 cm. The stream fills a 125-cm3 container in 16.3 s.
Find the diameter of the stream 13.0 cm below the open-
ing of the faucet.

! ! Rgh

41.

Figure P14.34

A plastic sphere floats in water with 50.0 percent of its vol-
ume submerged. This same sphere floats in glycerin with
40.0 percent of its volume submerged. Determine the den-
sities of the glycerin and the sphere.

36. A bathysphere used for deep-sea exploration has a radius
of 1.50 m and a mass of 1.20 " 104 kg. To dive, this subma-
rine takes on mass in the form of seawater. Determine the
amount of mass the submarine must take on if it is to de-
scend at a constant speed of 1.20 m/s, when the resistive
force on it is 1 100 N in the upward direction. The density
of seawater is 1.03 " 103 kg/m3.

37. The United States possesses the eight largest warships in
the world—aircraft carriers of the Nimitz class—and is
building two more. Suppose one of the ships bobs up to
float 11.0 cm higher in the water when 50 fighters take off
from it in 25 min, at a location where the free-fall accelera-
tion is 9.78 m/s2. Bristling with bombs and missiles, the
planes have average mass 29 000 kg. Find the horizontal
area enclosed by the waterline of the $4-billion ship. By
comparison, its flight deck has area 18 000 m2. Below
decks are passageways hundreds of meters long, so narrow
that two large men cannot pass each other. 

Section 14.5 Fluid Dynamics
Section 14.6 Bernoulli’s Equation
38. A horizontal pipe 10.0 cm in diameter has a smooth reduc-

tion to a pipe 5.00 cm in diameter. If the pressure of the
water in the larger pipe is 8.00 " 104 Pa and the pressure
in the smaller pipe is 6.00 " 104 Pa, at what rate does
water flow through the pipes?

A large storage tank, open at the top and filled with water,
develops a small hole in its side at a point 16.0 m below
the water level. If the rate of flow from the leak is equal to
2.50 " 10&3 m3/min, determine (a) the speed at which
the water leaves the hole and (b) the diameter of the hole.

40. A village maintains a large tank with an open top, contain-
ing water for emergencies. The water can drain from the
tank through a hose of diameter 6.60 cm. The hose ends

39.

35.

Figure P14.43

44. A legendary Dutch boy saved Holland by plugging a hole in
a dike with his finger, which is 1.20 cm in diameter. If the
hole was 2.00 m below the surface of the North Sea (density
1 030 kg/m3), (a) what was the force on his finger? (b) If he
pulled his finger out of the hole, how long would it take the
released water to fill 1 acre of land to a depth of 1 ft, assum-
ing the hole remained constant in size? (A typical U.S. family
of four uses 1 acre-foot of water, 1 234 m3, in 1 year.)

45. Through a pipe 15.0 cm in diameter, water is pumped
from the Colorado River up to Grand Canyon Village, lo-
cated on the rim of the canyon. The river is at an elevation
of 564 m, and the village is at an elevation of 2 096 m.
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(a) What is the minimum pressure at which the water must
be pumped if it is to arrive at the village? (b) If 4 500 m3

are pumped per day, what is the speed of the water in the
pipe? (c) What additional pressure is necessary to deliver
this flow? Note : Assume that the free-fall acceleration and
the density of air are constant over this range of elevations.

46. Old Faithful Geyser in Yellowstone Park (Fig. P14.46) erupts
at approximately 1-h intervals, and the height of the water
column reaches 40.0 m. (a) Model the rising stream as a se-
ries of separate drops. Analyze the free-fall motion of one of
the drops to determine the speed at which the water leaves
the ground. (b) What If? Model the rising stream as an ideal
fluid in streamline flow. Use Bernoulli’s equation to deter-
mine the speed of the water as it leaves ground level.
(c) What is the pressure (above atmospheric) in the heated
underground chamber if its depth is 175 m? You may assume
that the chamber is large compared with the geyser’s vent.

50. An airplane is cruising at an altitude of 10 km. The pressure
outside the craft is 0.287 atm; within the passenger compart-
ment the pressure is 1.00 atm and the temperature is 20°C.
A small leak occurs in one of the window seals in the passen-
ger compartment. Model the air as an ideal fluid to find the
speed of the stream of air flowing through the leak.

51. A siphon is used to drain water from a tank, as illustrated in
Figure P14.51. The siphon has a uniform diameter. Assume
steady flow without friction. (a) If the distance h ! 1.00 m,
find the speed of outflow at the end of the siphon.
(b) What If? What is the limitation on the height of the top
of the siphon above the water surface? (For the flow of the
liquid to be continuous, the pressure must not drop below
the vapor pressure of the liquid.)

Figure P14.46

Mercury

vair

A

∆h

Figure P14.49

vh

y

ρ

Figure P14.51

47. A Venturi tube may be used as a fluid flow meter (see Fig.
14.20). If the difference in pressure is P1 & P2 ! 21.0 kPa,
find the fluid flow rate in cubic meters per second,
given that the radius of the outlet tube is 1.00 cm, the
radius of the inlet tube is 2.00 cm, and the fluid is gasoline
($ ! 700 kg/m3).

Section 14.7 Other Applications of Fluid Dynamics
48. An airplane has a mass of 1.60 " 104 kg, and each wing

has an area of 40.0 m2. During level flight, the pressure on
the lower wing surface is 7.00 " 104 Pa. Determine the
pressure on the upper wing surface.

49. A Pitot tube can be used to determine the velocity of air
flow by measuring the difference between the total pres-
sure and the static pressure (Fig. P14.49). If the fluid
in the tube is mercury, density $Hg ! 13 600 kg/m3, and
'h ! 5.00 cm, find the speed of air flow. (Assume that the
air is stagnant at point A, and take $air ! 1.25 kg/m3.)

52. The Bernoulli effect can have important consequences for
the design of buildings. For example, wind can blow
around a skyscraper at remarkably high speed, creating
low pressure. The higher atmospheric pressure in the still
air inside the buildings can cause windows to pop out. As
originally constructed, the John Hancock building in
Boston popped window panes, which fell many stories to
the sidewalk below. (a) Suppose that a horizontal wind
blows in streamline flow with a speed of 11.2 m/s outside a
large pane of plate glass with dimensions 4.00 m " 1.50 m.
Assume the density of the air to be uniform at 1.30 kg/m3.
The air inside the building is at atmospheric pressure.
What is the total force exerted by air on the window pane?
(b) What If? If a second skyscraper is built nearby, the air
speed can be especially high where wind passes through
the narrow separation between the buildings. Solve part
(a) again if the wind speed is 22.4 m/s, twice as high.

53. A hypodermic syringe contains a medicine with the density
of water (Figure P14.53). The barrel of the syringe has a
cross-sectional area A ! 2.50 " 10&5 m2, and the needle has
a cross-sectional area a ! 1.00 " 10&8 m2. In the absence of
a force on the plunger, the pressure everywhere is 1 atm. A
force F of magnitude 2.00 N acts on the plunger, making
medicine squirt horizontally from the needle. Determine the
speed of the medicine as it leaves the needle’s tip.
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Additional Problems

54. Figure P14.54 shows a water tank with a valve at the bot-
tom. If this valve is opened, what is the maximum height
attained by the water stream coming out of the right side
of the tank? Assume that h ! 10.0 m, L ! 2.00 m, and * !
30.0°, and that the cross-sectional area at A is very large
compared with that at B.

The true weight of an object can be measured in a vac-
uum, where buoyant forces are absent. An object of vol-
ume V is weighed in air on a balance with the use of
weights of density $. If the density of air is $air and the bal-
ance reads Fg+, show that the true weight Fg is

58. A wooden dowel has a diameter of 1.20 cm. It floats in wa-
ter with 0.400 cm of its diameter above water (Fig. P14.58).
Determine the density of the dowel.

Fg ! Fg+ % "V &
Fg+

$g #$airg

57.

 θ

A

h

Valve L B

Figure P14.54

He

h

Figure P14.55

0.500 m

v

Figure P14.56

0.400 cm

0.800 cm

k k

(a) (b)

L

Figure P14.59

55. A helium-filled balloon is tied to a 2.00-m-long, 0.050 0-kg
uniform string. The balloon is spherical with a radius of
0.400 m. When released, it lifts a length h of string and
then remains in equilibrium, as in Figure P14.55. Deter-
mine the value of h. The envelope of the balloon has mass
0.250 kg.

Figure P14.58

59. A light spring of constant k ! 90.0 N/m is attached
vertically to a table (Fig. P14.59a). A 2.00-g balloon is
filled with helium (density ! 0.180 kg/m3) to a volume of
5.00 m3 and is then connected to the spring, causing it to
stretch as in Figure P14.59b. Determine the extension dis-
tance L when the balloon is in equilibrium.

56. Water is forced out of a fire extinguisher by air pressure,
as shown in Figure P14.56. How much gauge air pressure
in the tank (above atmospheric) is required for the water
jet to have a speed of 30.0 m/s when the water level in the
tank is 0.500 m below the nozzle?

60. Evangelista Torricelli was the first person to realize that we
live at the bottom of an ocean of air. He correctly surmised
that the pressure of our atmosphere is attributable to the
weight of the air. The density of air at 0°C at the Earth’s
surface is 1.29 kg/m3. The density decreases with increas-
ing altitude (as the atmosphere thins). On the other hand,
if we assume that the density is constant at 1.29 kg/m3 up
to some altitude h, and zero above that altitude, then h
would represent the depth of the ocean of air. Use this
model to determine the value of h that gives a pressure of
1.00 atm at the surface of the Earth. Would the peak of
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Mount Everest rise above the surface of such an atmos-
phere?

Review problem. With reference to Figure 14.5, show
that the total torque exerted by the water behind the dam
about a horizontal axis through O is . Show that
the effective line of action of the total force exerted by the
water is at a distance above O.

62. In about 1657 Otto von Guericke, inventor of the air
pump, evacuated a sphere made of two brass hemi-
spheres. Two teams of eight horses each could pull the
hemispheres apart only on some trials, and then “with
greatest difficulty,” with the resulting sound likened to a
cannon firing (Fig. P14.62). (a) Show that the force F re-
quired to pull the evacuated hemispheres apart is
#R2(P0& P), where R is the radius of the hemispheres and
P is the pressure inside the hemispheres, which is much
less than P0. (b) Determine the force if P ! 0.100P0 and
R ! 0.300 m.

1
3H

1
6  

$gwH3

61.

63. A 1.00-kg beaker containing 2.00 kg of oil (density !
916.0 kg/m3) rests on a scale. A 2.00-kg block of iron is
suspended from a spring scale and completely sub-
merged in the oil as in Figure P14.63. Determine the
equilibrium readings of both scales.

64. A beaker of mass mbeaker containing oil of mass moil
(density ! $oil) rests on a scale. A block of iron of mass

RF

P

F

P0

Figure P14.62 The colored engraving, dated 1672, illustrates
Otto von Guericke’s demonstration of the force due to air pres-
sure as performed before Emperor Ferdinand III in 1657.

Figure P14.63 Problems 63 and 64

m iron is suspended from a spring scale and completely
submerged in the oil as in Figure P14.63. Determine the
equilibrium readings of both scales.

In 1983, the United States began coining the cent piece out
of copper-clad zinc rather than pure copper. The mass of
the old copper penny is 3.083 g, while that of the new cent
is 2.517 g. Calculate the percentage of zinc (by volume) in
the new cent. The density of copper is 8.960 g/cm3 and
that of zinc is 7.133 g/cm3. The new and old coins have the
same volume.

66. A thin spherical shell of mass 4.00 kg and diameter 0.200 m
is filled with helium (density ! 0.180 kg/m3). It is then
released from rest on the bottom of a pool of water that
is 4.00 m deep. (a) Neglecting frictional effects, show that
the shell rises with constant acceleration and determine the
value of that acceleration. (b) How long will it take for the
top of the shell to reach the water surface?

67. Review problem. A uniform disk of mass 10.0 kg and ra-
dius 0.250 m spins at 300 rev/min on a low-friction axle. It
must be brought to a stop in 1.00 min by a brake pad that
makes contact with the disk at average distance 0.220 m
from the axis. The coefficient of friction between pad and
disk is 0.500. A piston in a cylinder of diameter 5.00 cm
presses the brake pad against the disk. Find the pressure
required for the brake fluid in the cylinder.

68. Show that the variation of atmospheric pressure with alti-
tude is given by P ! P0e&,y, where , ! $0g/P0, P0 is atmos-
pheric pressure at some reference level y ! 0, and $0 is the
atmospheric density at this level. Assume that the decrease
in atmospheric pressure over an infinitesimal change in al-
titude (so that the density is approximately uniform) is
given by dP ! &$g dy, and that the density of air is propor-
tional to the pressure.

69. An incompressible, nonviscous fluid is initially at rest in
the vertical portion of the pipe shown in Figure P14.69a,
where L ! 2.00 m. When the valve is opened, the fluid
flows into the horizontal section of the pipe. What is the
speed of the fluid when all of it is in the horizontal section,
as in Figure P14.69b? Assume the cross-sectional area of
the entire pipe is constant.

65.
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ent masses (Fig. P14.73). At sufficiently low temperatures all
the spheres float, but as the temperature rises, the spheres
sink one after another. The device is a crude but interesting
tool for measuring temperature. Suppose that the tube is
filled with ethyl alcohol, whose density is 0.789 45 g/cm3 at
20.0°C and decreases to 0.780 97 g/cm3 at 30.0°C. (a) If one
of the spheres has a radius of 1.000 cm and is in equilibrium
halfway up the tube at 20.0°C, determine its mass. (b) When
the temperature increases to 30.0°C, what mass must a sec-
ond sphere of the same radius have in order to be in equilib-
rium at the halfway point? (c) At 30.0°C the first sphere has
fallen to the bottom of the tube. What upward force does the
bottom of the tube exert on this sphere?

Valve
closed

L

(a)

Valve
opened

L

v

(b)

Figure P14.69

P0

Water

(a) (b) (c)

h
L

Oil

L

v Shield

Figure P14.71

Figure P14.73

70. A cube of ice whose edges measure 20.0 mm is floating in a
glass of ice-cold water with one of its faces parallel to the wa-
ter’s surface. (a) How far below the water surface is the bot-
tom face of the block? (b) Ice-cold ethyl alcohol is gently
poured onto the water surface to form a layer 5.00 mm thick
above the water. The alcohol does not mix with the water.
When the ice cube again attains hydrostatic equilibrium,
what will be the distance from the top of the water to the bot-
tom face of the block? (c) Additional cold ethyl alcohol is
poured onto the water’s surface until the top surface of the
alcohol coincides with the top surface of the ice cube (in hy-
drostatic equilibrium). How thick is the required layer of
ethyl alcohol?

71. A U-tube open at both ends is partially filled with
water (Fig. P14.71a). Oil having a density of 750 kg/m3 is
then poured into the right arm and forms a column
L ! 5.00 cm high (Fig. P14.71b). (a) Determine the differ-
ence h in the heights of the two liquid surfaces. (b) The
right arm is then shielded from any air motion while air is
blown across the top of the left arm until the surfaces of
the two liquids are at the same height (Fig. P14.71c).
Determine the speed of the air being blown across the left
arm. Take the density of air as 1.29 kg/m3.

72. The water supply of a building is fed through a main pipe
6.00 cm in diameter. A 2.00-cm-diameter faucet tap, located
2.00 m above the main pipe, is observed to fill a 25.0-L
container in 30.0 s. (a) What is the speed at which the wa-
ter leaves the faucet? (b) What is the gauge pressure in the
6-cm main pipe? (Assume the faucet is the only “leak” in
the building.)

73. The spirit-in-glass thermometer, invented in Florence, Italy,
around 1654, consists of a tube of liquid (the spirit) contain-
ing a number of submerged glass spheres with slightly differ-

74. A woman is draining her fish tank by siphoning the water
into an outdoor drain, as shown in Figure P14.74. The rec-
tangular tank has footprint area A and depth h. The drain is
located a distance d below the surface of the water in the
tank, where d )) h. The cross-sectional area of the siphon
tube is A+. Model the water as flowing without friction.
(a) Show that the time interval required to empty the tank is
given by

(b) Evaluate the time interval required to empty the tank
if it is a cube 0.500 m on each edge, if A+ ! 2.00 cm2, and
d ! 10.0 m.
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Problems 449

h

d

Figure P14.74

Figure P14.75

75. The hull of an experimental boat is to be lifted above the
water by a hydrofoil mounted below its keel, as shown in
Figure P14.75. The hydrofoil has a shape like that of an
airplane wing. Its area projected onto a horizontal surface
is A. When the boat is towed at sufficiently high speed, wa-
ter of density $ moves in streamline flow so that its average
speed at the top of the hydrofoil is n times larger than its
speed vb below the hydrofoil. (a) Neglecting the buoyant
force, show that the upward lift force exerted by the water
on the hydrofoil has a magnitude given by

(b) The boat has mass M. Show that the liftoff speed is
given by

(c) Assume that an 800-kg boat is to lift off at 9.50 m/s.
Evaluate the area A required for the hydrofoil if its design
yields n ! 1.05.

v % √ 2Mg
(n2 & 1)A$

F % 1
2(n2 & 1)$vb

2A

Answer to Quick Quizzes
14.1 (a). Because the basketball player’s weight is distributed

over the larger surface area of the shoe, the pressure
(F/A) that he applies is relatively small. The woman’s
lesser weight is distributed over the very small cross-
sectional area of the spiked heel, so the pressure is high. 

14.2 (a). Because both fluids have the same depth, the one with
the smaller density (alcohol) will exert the smaller pressure.

14.3 (c). All barometers will have the same pressure at the bot-
tom of the column of fluid—atmospheric pressure. Thus,
the barometer with the highest column will be the one
with the fluid of lowest density.

14.4 (d). Because there is no atmosphere on the Moon, there
is no atmospheric pressure to provide a force to push the
water up the straw.

14.5 (b). For a totally submerged object, the buoyant force
does not depend on the depth in an incompressible fluid.

14.6 (c). The ice cube displaces a volume of water that has a
weight equal to that of the ice cube. When the ice cube
melts, it becomes a parcel of water with the same weight
and exactly the volume that was displaced by the ice cube
before.

14.7 (b) or (c). In all three cases, the weight of the treasure chest
causes a downward force on the raft that makes it sink into
the water. In (b) and (c), however, the treasure chest also
displaces water, which provides a buoyant force in the up-
ward direction, reducing the effect of the chest’s weight.

14.8 (b). The liquid moves at the highest speed in the straw
with the smaller cross sectional area.

14.9 (a). The high-speed air between the balloons results in low
pressure in this region. The higher pressure on the outer
surfaces of the balloons pushes them toward each other.

Calvin and Hobbes © 1992 Watterson. Reprinted with permission of Universal Press
Syndicate. All rights reserved.
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! Drops of water fall from a leaf into a pond. The disturbance caused by the falling water
causes the water surface to oscillate. These oscillations are associated with waves moving
away from the point at which the water fell. In Part 2 of the text, we will explore the principles
related to oscillations and waves. (Don Bonsey/Getty Images)
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e begin this new part of the text by studying a special type of motion called
periodic motion. This is a repeating motion of an object in which the object
continues to return to a given position after a fixed time interval. Familiar ob-

jects that exhibit periodic motion include a pendulum and a beach ball floating on the
waves at a beach. The back and forth movements of such an object are called oscil-
lations. We will focus our attention on a special case of periodic motion called sim-
ple harmonic motion. We shall find that all periodic motions can be modeled as
combinations of simple harmonic motions. Thus, simple harmonic motion forms a ba-
sic building block for more complicated periodic motion.

Simple harmonic motion also forms the basis for our understanding of mechani-
cal waves. Sound waves, seismic waves, waves on stretched strings, and water
waves are all produced by some source of oscillation. As a sound wave travels
through the air, elements of the air oscillate back and forth; as a water wave travels
across a pond, elements of the water oscillate up and down and backward and for-
ward. In general, as waves travel through any medium, the elements of the medium
move in repetitive cycles. Therefore, the motion of the elements of the medium bears
a strong resemblance to the periodic motion of an oscillating pendulum or an object
attached to a spring.

To explain many other phenomena in nature, we must understand the concepts of
oscillations and waves. For instance, although skyscrapers and bridges appear to be
rigid, they actually oscillate, a fact that the architects and engineers who design and
build them must take into account. To understand how radio and television work, we
must understand the origin and nature of electromagnetic waves and how they prop-
agate through space. Finally, much of what scientists have learned about atomic
structure has come from information carried by waves. Therefore, we must first study
oscillations and waves if we are to understand the concepts and theories of atomic
physics. !

W

Oscillations and
Mechanical Waves
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" In the Bay of Fundy, Nova Scotia, the tides undergo oscillations with very large
amplitudes, such that boats often end up sitting on dry ground for part of the day. In this
chapter, we will investigate the physics of oscillatory motion. (www.comstock.com)



Periodic motion is motion of an object that regularly repeats—the object returns to a
given position after a fixed time interval. With a little thought, we can identify several
types of periodic motion in everyday life. Your car returns to the driveway each after-
noon. You return to the dinner table each night to eat. A bumped chandelier swings
back and forth, returning to the same position at a regular rate. The Earth returns to
the same position in its orbit around the Sun each year, resulting in the variation
among the four seasons. The Moon returns to the same relationship with the Earth
and the Sun, resulting in a full Moon approximately once a month.

In addition to these everyday examples, numerous other systems exhibit periodic
motion. For example, the molecules in a solid oscillate about their equilibrium posi-
tions; electromagnetic waves, such as light waves, radar, and radio waves, are character-
ized by oscillating electric and magnetic field vectors; and in alternating-current elec-
trical circuits, voltage, current, and electric charge vary periodically with time.

A special kind of periodic motion occurs in mechanical systems when the force act-
ing on an object is proportional to the position of the object relative to some equilib-
rium position. If this force is always directed toward the equilibrium position, the mo-
tion is called simple harmonic motion, which is the primary focus of this chapter.

15.1 Motion of an Object Attached to a Spring

As a model for simple harmonic motion, consider a block of mass m attached to the
end of a spring, with the block free to move on a horizontal, frictionless surface
(Fig. 15.1). When the spring is neither stretched nor compressed, the block is at the
position called the equilibrium position of the system, which we identify as x ! 0. We
know from experience that such a system oscillates back and forth if disturbed from its
equilibrium position.

We can understand the motion in Figure 15.1 qualitatively by first recalling that
when the block is displaced to a position x, the spring exerts on the block a force that
is proportional to the position and given by Hooke’s law (see Section 7.4):

Fs ! " kx (15.1)

We call this a restoring force because it is always directed toward the equilibrium posi-
tion and therefore opposite the displacement from equilibrium. That is, when the block
is displaced to the right of x ! 0 in Figure 15.1, then the position is positive and the
restoring force is directed to the left. When the block is displaced to the left of x ! 0,
then the position is negative and the restoring force is directed to the right.

Applying Newton’s second law Fx ! max to the motion of the block, with Equation
15.1 providing the net force in the x direction, we obtain

" kx ! max

(15.2)ax ! "
k
m

 x

!
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Hooke’s law

Fs

Fs

m

(a)
x

x = 0
x

(b)
x

x = 0

Fs = 0

(c)
x

x = 0
x

m

m

Active Figure 15.1 A block
attached to a spring moving on a
frictionless surface. (a) When the
block is displaced to the right of
equilibrium (x # 0), the force
exerted by the spring acts to the
left. (b) When the block is at its
equilibrium position (x ! 0), the
force exerted by the spring is zero.
(c) When the block is displaced to
the left of equilibrium (x $ 0), the
force exerted by the spring acts to
the right. 

At the Active Figures link,
at http://www.pse6.com, you
can choose the spring constant
and the initial position and
velocities of the block to see
the resulting simple harmonic
motion.



That is, the acceleration is proportional to the position of the block, and its direction is
opposite the direction of the displacement from equilibrium. Systems that behave in
this way are said to exhibit simple harmonic motion. An object moves with simple
harmonic motion whenever its acceleration is proportional to its position and is
oppositely directed to the displacement from equilibrium.

If the block in Figure 15.1 is displaced to a position x ! A and released from rest,
its initial acceleration is " kA/m. When the block passes through the equilibrium posi-
tion x ! 0, its acceleration is zero. At this instant, its speed is a maximum because the
acceleration changes sign. The block then continues to travel to the left of equilibrium
with a positive acceleration and finally reaches x ! " A, at which time its acceleration
is % kA/m and its speed is again zero, as discussed in Sections 7.4 and 8.6. The block
completes a full cycle of its motion by returning to the original position, again passing
through x ! 0 with maximum speed. Thus, we see that the block oscillates between the
turning points x ! &A. In the absence of friction, because the force exerted by the
spring is conservative, this idealized motion will continue forever. Real systems are gen-
erally subject to friction, so they do not oscillate forever. We explore the details of the
situation with friction in Section 15.6.

As Pitfall Prevention 15.1 points out, the principles that we develop in this chapter
are also valid for an object hanging from a vertical spring, as long as we recognize that
the weight of the object will stretch the spring to a new equilibrium position x ! 0. To
prove this statement, let xs represent the total extension of the spring from its equilib-
rium position without the hanging object. Then, xs ! " (mg/k) % x, where " (mg/k) is
the extension of the spring due to the weight of the hanging object and x is the instan-
taneous extension of the spring due to the simple harmonic motion. The magnitude
of the net force on the object is then Fs " Fg ! " k(" (mg/k) % x) " mg ! " kx. The
net force on the object is the same as that on a block connected to a horizontal spring
as in Equation 15.1, so the same simple harmonic motion results.
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Quick Quiz 15.1 A block on the end of a spring is pulled to position x ! A
and released. In one full cycle of its motion, through what total distance does it travel?
(a) A/2 (b) A (c) 2A (d) 4A

15.2 Mathematical Representation 
of Simple Harmonic Motion

Let us now develop a mathematical representation of the motion we described in the
preceding section. We model the block as a particle subject to the force in Equation
15.1. We will generally choose x as the axis along which the oscillation occurs; hence,
we will drop the subscript-x notation in this discussion. Recall that, by definition,
a ! dv/dt ! d2x/dt2, and so we can express Equation 15.2 as

(15.3)

If we denote the ratio k/m with the symbol '2 (we choose '2 rather than ' in order to
make the solution that we develop below simpler in form), then

(15.4)

and Equation 15.3 can be written in the form

(15.5)
d 

2x
dt 

2 ! "  ' 2x

' 2 !
k
m

d 
2x

dt 
2 ! "

k
m

 x

" PITFALL PREVENTION
15.1 The Orientation of

the Spring
Figure 15.1 shows a horizontal
spring, with an attached block
sliding on a frictionless surface.
Another possibility is a block
hanging from a vertical spring. All
of the results that we discuss for
the horizontal spring will be the
same for the vertical spring, ex-
cept that when the block is
placed on the vertical spring, its
weight will cause the spring to ex-
tend. If the resting position of
the block is defined as x ! 0, the
results of this chapter will apply
to this vertical system also. 

" PITFALL PREVENTION
15.2 A Nonconstant

Acceleration
Notice that the acceleration of
the particle in simple harmonic
motion is not constant. Equation
15.3 shows that it varies with posi-
tion x. Thus, we cannot apply the
kinematic equations of Chapter 2
in this situation. 



What we now require is a mathematical solution to Equation 15.5—that is, a func-
tion x(t) that satisfies this second-order differential equation. This is a mathematical
representation of the position of the particle as a function of time. We seek a function
x(t) whose second derivative is the same as the original function with a negative sign
and multiplied by '2. The trigonometric functions sine and cosine exhibit this behav-
ior, so we can build a solution around one or both of these. The following cosine func-
tion is a solution to the differential equation:

(15.6)

where A, ', and ( are constants. To see explicitly that this equation satisfies Equation
15.5, note that

(15.7)

(15.8)

Comparing Equations 15.6 and 15.8, we see that d 2x/dt 2 ! "'2x and Equation 15.5 is
satisfied.

The parameters A, ', and ( are constants of the motion. In order to give physical
significance to these constants, it is convenient to form a graphical representation of
the motion by plotting x as a function of t, as in Figure 15.2a. First, note that A, called
the amplitude of the motion, is simply the maximum value of the position of the
particle in either the positive or negative x direction. The constant ' is called the
angular frequency, and has units of rad/s.1 It is a measure of how rapidly the oscilla-
tions are occurring—the more oscillations per unit time, the higher is the value of '.
From Equation 15.4, the angular frequency is

(15.9)

The constant angle ( is called the phase constant (or initial phase angle) and,
along with the amplitude A, is determined uniquely by the position and velocity of
the particle at t ! 0. If the particle is at its maximum position x ! A at t ! 0, the
phase constant is ( ! 0 and the graphical representation of the motion is shown in
Figure 15.2b. The quantity ('t % () is called the phase of the motion. Note that
the function x(t) is periodic and its value is the same each time 't increases by 2)
radians.

Equations 15.1, 15.5, and 15.6 form the basis of the mathematical representation
of simple harmonic motion. If we are analyzing a situation and find that the force
on a particle is of the mathematical form of Equation 15.1, we know that the motion
will be that of a simple harmonic oscillator and that the position of the particle is
described by Equation 15.6. If we analyze a system and find that it is described by a
differential equation of the form of Equation 15.5, the motion will be that of a sim-
ple harmonic oscillator. If we analyze a situation and find that the position of a
particle is described by Equation 15.6, we know the particle is undergoing simple
harmonic motion.

' ! √ k
m

 

d  2x
dt 

2 ! "'A  
d
dt

 sin('t % () ! "  '2A cos('t % ()

dx
dt

! A  
d
dt

 cos('t % () ! "'A sin('t % ()

x(t) ! A cos('t % ()
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1 We have seen many examples in earlier chapters in which we evaluate a trigonometric function of
an angle. The argument of a trigonometric function, such as sine or cosine, must be a pure number.
The radian is a pure number because it is a ratio of lengths. Angles in degrees are pure numbers simply
because the degree is a completely artificial “unit”—it is not related to measurements of lengths. The
notion of requiring a pure number for a trigonometric function is important in Equation 15.6, where
the angle is expressed in terms of other measurements. Thus, ' must be expressed in rad/s (and not,
for example, in revolutions per second) if t is expressed in seconds. Furthermore, other types of func-
tions such as logarithms and exponential functions require arguments that are pure numbers.

" PITFALL PREVENTION
15.3 Where’s the Triangle?
Equation 15.6 includes a trigono-
metric function, a mathematical
function that can be used whether
it refers to a triangle or not. In
this case, the cosine function
happens to have the correct be-
havior for representing the posi-
tion of a particle in simple har-
monic motion.

Position versus time for an
object in simple harmonic
motion

x

A

–A

t

(b)

x

A

–A

t

T

(a)

Active Figure 15.2 (a) An x -vs.-t
graph for an object undergoing
simple harmonic motion. The
amplitude of the motion is A, the
period (page 456) is T, and the
phase constant is (. (b) The x -vs.-t
graph in the special case in which 
x ! A at t ! 0 and hence ( ! 0.

At the Active Figures link
at http://www.pse6.com, you
can adjust the graphical repre-
sentation and see the resulting
simple harmonic motion of the
block in Figure 15.1.



An experimental arrangement that exhibits simple harmonic motion is illustrated
in Figure 15.3. An object oscillating vertically on a spring has a pen attached to it.
While the object is oscillating, a sheet of paper is moved perpendicular to the direction
of motion of the spring, and the pen traces out the cosine curve in Equation 15.6.

Let us investigate further the mathematical description of simple harmonic motion.
The period T of the motion is the time interval required for the particle to go through
one full cycle of its motion (Fig. 15.2a). That is, the values of x and v for the particle at
time t equal the values of x and v at time t % T. We can relate the period to the angular
frequency by using the fact that the phase increases by 2) radians in a time interval of T:

Simplifying this expression, we see that 'T ! 2), or

(15.10)T !
2)

'

['(t % T ) % (] " ('t % () ! 2)
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Quick Quiz 15.2 Consider a graphical representation (Fig. 15.4) of simple
harmonic motion, as described mathematically in Equation 15.6. When the object is at
point ! on the graph, its (a) position and velocity are both positive (b) position and ve-
locity are both negative (c) position is positive and its velocity is zero (d) position is neg-
ative and its velocity is zero (e) position is positive and its velocity is negative (f ) position
is negative and its velocity is positive.

Quick Quiz 15.3 Figure 15.5 shows two curves representing objects undergo-
ing simple harmonic motion. The correct description of these two motions is that the
simple harmonic motion of object B is (a) of larger angular frequency and larger ampli-
tude than that of object A (b) of larger angular frequency and smaller amplitude than
that of object A (c) of smaller angular frequency and larger amplitude than that of
object A (d) of smaller angular frequency and smaller amplitude than that of object A.

Motion
of paper

m

Figure 15.3 An experimental
apparatus for demonstrating
simple harmonic motion. A pen
attached to the oscillating object
traces out a sinusoidal pattern on
the moving chart paper. 

t

x

!

Figure 15.4 (Quick Quiz 15.2) An x -t graph for an object undergoing simple harmonic
motion. At a particular time, the object’s position is indicated by ! in the graph.

t

x

t

x

Object A

Object B

Figure 15.5 (Quick Quiz 15.3) Two x -t graphs for objects undergoing simple harmonic
motion. The amplitudes and frequencies are different for the two objects.



The inverse of the period is called the frequency f of the motion. Whereas the pe-
riod is the time interval per oscillation, the frequency represents the number of oscil-
lations that the particle undergoes per unit time interval:

(15.11)

The units of f are cycles per second, or hertz (Hz). Rearranging Equation 15.11 gives

(15.12)

We can use Equations 15.9, 15.10, and 15.11 to express the period and frequency of
the motion for the particle–spring system in terms of the characteristics m and k of the
system as

(15.13)

(15.14)

That is, the period and frequency depend only on the mass of the particle and the
force constant of the spring, and not on the parameters of the motion, such as A or (.
As we might expect, the frequency is larger for a stiffer spring (larger value of k) and
decreases with increasing mass of the particle.

We can obtain the velocity and acceleration2 of a particle undergoing simple har-
monic motion from Equations 15.7 and 15.8:

(15.15)

(15.16)

From Equation 15.15 we see that, because the sine and cosine functions oscillate
between & 1, the extreme values of the velocity v are & 'A. Likewise, Equation 15.16
tells us that the extreme values of the acceleration a are & '2A. Therefore, the maxi-
mum values of the magnitudes of the velocity and acceleration are

(15.17)

(15.18)

Figure 15.6a plots position versus time for an arbitrary value of the phase constant.
The associated velocity–time and acceleration–time curves are illustrated in Figures
15.6b and 15.6c. They show that the phase of the velocity differs from the phase of the
position by )/2 rad, or 90°. That is, when x is a maximum or a minimum, the velocity
is zero. Likewise, when x is zero, the speed is a maximum. Furthermore, note that the

a max ! '2A !
k
m

  A

vmax ! 'A ! √ k
m

  A

a !
d 

2x
dt 

2 ! "'2A cos('t % ()

v !
dx
dt

! "'A sin('t % ()

f !
1
T

!
1

2)
  √ k

m

T !
2)

'
! 2)  √ m

k

' ! 2)f !
2)

T

f !
1
T

!
'

2)
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2 Because the motion of a simple harmonic oscillator takes place in one dimension, we will denote
velocity as v and acceleration as a, with the direction indicated by a positive or negative sign, as in
Chapter 2.

Maximum magnitudes of speed
and acceleration in simple
harmonic motion

Acceleration of an object in
simple harmonic motion

Velocity of an object in simple
harmonic motion

Period

Frequency

" PITFALL PREVENTION
15.4 Two Kinds of

Frequency
We identify two kinds of fre-
quency for a simple harmonic os-
cillator—f, called simply the fre-
quency, is measured in hertz, and
', the angular frequency, is mea-
sured in radians per second. Be
sure that you are clear about
which frequency is being dis-
cussed or requested in a given
problem. Equations 15.11 and
15.12 show the relationship be-
tween the two frequencies.



phase of the acceleration differs from the phase of the position by ) radians, or 180°.
For example, when x is a maximum, a has a maximum magnitude in the opposite
direction.

Equation 15.6 describes simple harmonic motion of a particle in general. Let us
now see how to evaluate the constants of the motion. The angular frequency ' is evalu-
ated using Equation 15.9. The constants A and ( are evaluated from the initial condi-
tions, that is, the state of the oscillator at t ! 0.

Suppose we initiate the motion by pulling the particle from equilibrium by a dis-
tance A and releasing it from rest at t ! 0, as in Figure 15.7. We must then require that
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Quick Quiz 15.4 Consider a graphical representation (Fig. 15.4) of simple
harmonic motion, as described mathematically in Equation 15.6. When the object is at
position ! on the graph, its (a) velocity and acceleration are both positive (b) velocity
and acceleration are both negative (c) velocity is positive and its acceleration is zero
(d) velocity is negative and its acceleration is zero (e) velocity is positive and its acceler-
ation is negative (f) velocity is negative and its acceleration is positive.

Quick Quiz 15.5 An object of mass m is hung from a spring and set into
oscillation. The period of the oscillation is measured and recorded as T. The object
of mass m is removed and replaced with an object of mass 2m. When this object is set
into oscillation, the period of the motion is (a) 2T (b) (c) T (d) (e) T/2.T/√2√2T

T

A
tO

x

xi

tO

v

vi

tO

a

vmax = ωA

amax= ω2A

(a)

(b)

(c)

ω

ω

Figure 15.6 Graphical representation of
simple harmonic motion. (a) Position versus
time. (b) Velocity versus time. (c) Acceleration
versus time. Note that at any specified time the
velocity is 90° out of phase with the position
and the acceleration is 180° out of phase with
the position. 

A
x = 0

t = 0
xi = A
vi = 0

m

Active Figure 15.7 A block–spring system
that begins its motion from rest with the
block at x ! A at t ! 0. In this case, ( ! 0
and thus x ! A cos 't.

At the Active Figures link at
http://www.pse6.com, you can compare
the oscillations of two blocks starting
from different initial positions to see that
the frequency is independent of the
amplitude.
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our solutions for x(t) and v(t) (Eqs. 15.6 and 15.15) obey the initial conditions that
x(0) ! A and v(0) ! 0:

These conditions are met if we choose ( ! 0, giving x ! A cos 't as our solution. To
check this solution, note that it satisfies the condition that x(0) ! A, because
cos 0 ! 1.

The position, velocity, and acceleration versus time are plotted in Figure 15.8a for
this special case. The acceleration reaches extreme values of *'2A when the position
has extreme values of & A. Furthermore, the velocity has extreme values of & 'A,
which both occur at x ! 0. Hence, the quantitative solution agrees with our qualitative
description of this system.

Let us consider another possibility. Suppose that the system is oscillating and we
define t ! 0 as the instant that the particle passes through the unstretched position
of the spring while moving to the right (Fig. 15.9). In this case we must require that
our solutions for x(t) and v(t) obey the initial conditions that x(0) ! 0 and
v(0) ! vi :

The first of these conditions tells us that ( ! & )/2. With these choices for (,
the second condition tells us that A ! * vi/'. Because the initial velocity is positive
and the amplitude must be positive, we must have ( ! " )/2. Hence, the solution is
given by

The graphs of position, velocity, and acceleration versus time for this choice of
t ! 0 are shown in Figure 15.8b. Note that these curves are the same as those
in Figure 15.8a, but shifted to the right by one fourth of a cycle. This is described
mathematically by the phase constant ( ! " )/2, which is one fourth of a full cycle
of 2).

x !
vi

'
  cos "'t "  

)

2 #

v(0) ! "'A sin ( ! vi

x(0) ! A cos ( ! 0

v(0) ! "'A sin ( ! 0

x(0) ! A cos ( ! A

xi = 0
t = 0

v = vi

x = 0

vi
m

Active Figure 15.9 The
block–spring system is undergoing
oscillation, and t ! 0 is defined at
an instant when the block passes
through the equilibrium position
x ! 0 and is moving to the right
with speed vi.

At the Active Figures link
at http://www.pse6.com, you
can compare the oscillations of
two blocks with different
velocities at t ! 0 to see that
the frequency is independent of
the amplitude.
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Figure 15.8 (a) Position, velocity, and acceleration versus time for a block undergoing
simple harmonic motion under the initial conditions that at t ! 0, x(0) ! A and v(0) ! 0.
(b) Position, velocity, and acceleration versus time for a block undergoing simple har-
monic motion under the initial conditions that at t ! 0, x(0) ! 0 and v(0) ! vi.
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Example 15.1 An Oscillating Object

An object oscillates with simple harmonic motion along the
x axis. Its position varies with time according to the equation

where t is in seconds and the angles in the parentheses are
in radians.

(A) Determine the amplitude, frequency, and period of the
motion.

Solution By comparing this equation with Equation 15.6, 

x ! A cos ('t % (), we see that A ! and

' ! ) rad/s. Therefore, f ! '/2) ! )/2) !

and T ! 1/f !

(B) Calculate the velocity and acceleration of the object at
any time t.

Solution Differentiating x to find v, and v to find a, we obtain

!

!

(C) Using the results of part (B), determine the position,
velocity, and acceleration of the object at t ! 1.00 s.

Solution Noting that the angles in the trigonometric func-
tions are in radians, we obtain, at t ! 1.00 s,

"2.83 m ! (4.00 m)("0.707) !

x ! (4.00 m) cos ") %
)

4 # ! (4.00 m) cos " 5)

4 #

"(4.00) 2  m/s2) cos ")t %
)

4 #

a !
dv
dt

! "(4.00) m/s) cos ")t %
)

4 # 
d
dt

 ()t)

"(4.00)  m/s) sin ")t %
)

4 #

v !
dx
dt

! "(4.00 m/s) sin ")t %
)

4 # 
d
dt

 ()t)

2.00 s.

0.500 Hz

4.00 m

x ! (4.00 m) cos ")t %
)

4 #

(D) Determine the maximum speed and maximum acceler-
ation of the object.

Solution In the general expressions for v and a found in
part (B), we use the fact that the maximum values of the
sine and cosine functions are unity. Therefore, v varies be-
tween & 4.00) m/s, and a varies between & 4.00 )2 m/s2.
Thus,

We obtain the same results using the relations vmax ! 'A
and amax ! '2A, where A ! 4.00 m and ' ! ) rad/s.

(E) Find the displacement of the object between t ! 0 and
t ! 1.00 s.

Solution The position at t ! 0 is

In part (C), we found that the position at t ! 1.00 s is
" 2.83 m; therefore, the displacement between t ! 0 and
t ! 1.00 s is

Because the object’s velocity changes sign during the first sec-
ond, the magnitude of +x is not the same as the distance trav-
eled in the first second. (By the time the first second is over,
the object has been through the point x ! " 2.83 m once,
traveled to x ! " 4.00 m, and come back to x ! " 2.83 m.)

"5.66 m+x ! xf " xi ! "2.83 m " 2.83 m !

xi ! (4.00 m) cos "0 %
)

4 # ! (4.00 m)(0.707) ! 2.83 m

39.5 m/s2a max ! 4.00)2 m/s2 !

12.6 m/svmax ! 4.00) m/s !

27.9 m/s2! "(4.00)2 m/s2)("0.707) !

a ! "(4.00)2 m/s2) cos " 5)

4 #

8.89 m/s ! "(4.00)  m/s)("0.707) !

v ! "(4.00) m/s) sin " 5)

4 #

Example 15.2 Watch Out for Potholes!

A car with a mass of 1 300 kg is constructed so that its frame
is supported by four springs. Each spring has a force con-
stant of 20 000 N/m. If two people riding in the car have a
combined mass of 160 kg, find the frequency of vibration of
the car after it is driven over a pothole in the road.

Solution To conceptualize this problem, think about your
experiences with automobiles. When you sit in a car, it
moves downward a small distance because your weight is
compressing the springs further. If you push down on the
front bumper and release, the front of the car oscillates a

couple of times. We can model the car as being supported
by a single spring and categorize this as an oscillation prob-
lem based on our simple spring model. To analyze the prob-
lem, we first need to consider the effective spring constant
of the four springs combined. For a given extension x of the
springs, the combined force on the car is the sum of the
forces from the individual springs:

where x has been factored from the sum because it is the

Ftotal ! !("kx) ! ""! k# x
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same for all four springs. We see that the effective spring
constant for the combined springs is the sum of the individ-
ual spring constants:

Hence, the frequency of vibration is, from Equation 15.14,

To finalize the problem, note that the mass we used here is
that of the car plus the people, because this is the total mass
that is oscillating. Also note that we have explored only up-
and-down motion of the car. If an oscillation is established
in which the car rocks back and forth such that the front

1.18 Hzf !
1

2)
 √ keff

m
!

1
2)

 √ 80 000 N/m
1 460 kg

!

k eff ! ! k ! 4 , 20 000 N/m ! 80 000 N/m

end goes up when the back end goes down, the frequency
will be different.

What If? Suppose the two people exit the car on the side
of the road. One of them pushes downward on the car and
releases it so that it oscillates vertically. Is the frequency of
the oscillation the same as the value we just calculated?

Answer The suspension system of the car is the same, but
the mass that is oscillating is smaller—it no longer includes
the mass of the two people. Thus, the frequency should be
higher. Let us calculate the new frequency:

As we predicted conceptually, the frequency is a bit higher.

f !
1

2)
  √ keff

m
!

1
2)

  √ 80 000 N/m
1 300 kg

! 1.25 Hz

Example 15.3 A Block–Spring System

A 200-g block connected to a light spring for which the
force constant is 5.00 N/m is free to oscillate on a horizon-
tal, frictionless surface. The block is displaced 5.00 cm  from
equilibrium and released from rest, as in Figure 15.7.

(A) Find the period of its motion.

Solution From Equations 15.9 and 15.10, we know that the
angular frequency of a block–spring system is

and the period is

(B) Determine the maximum speed of the block.

Solution We use Equation 15.17:

(C) What is the maximum acceleration of the block?

Solution We use Equation 15.18:

(D) Express the position, speed, and acceleration as func-
tions of time.

Solution We find the phase constant from the initial condi-
tion that x ! A at t ! 0:

which tells us that ( ! 0. Thus, our solution is x ! A cos 't.
Using this expression and the results from (A), (B), and
(C), we find that

"(1.25 m/s2)cos 5.00ta !"' 2A cos 't !

"(0.250 m/s)sin 5.00tv !'A sin 't !

(0.050 0 m)cos 5.00tx !A cos 't !

x(0) ! A cos ( ! A

1.25 m/s2a max ! '2A ! (5.00 rad/s)2(5.00 , 10"2 m) !

0.250 m/svmax ! 'A ! (5.00 rad/s)(5.00 , 10"2 m) !

1.26 s- !
2)

'
!

2)

5.00 rad/s
!

' ! √ k
m

! √ 5.00 N/m
200 , 10"3 kg

! 5.00 rad/s

What If? What if the block is released from the same initial
position, xi ! 5.00 cm, but with an initial velocity of
vi ! " 0.100 m/s? Which parts of the solution change and
what are the new answers for those that do change?

Answers Part (A) does not change—the period is indepen-
dent of how the oscillator is set into motion. Parts (B), (C),
and (D) will change. We begin by considering position and
velocity expressions for the initial conditions:

Dividing Equation (2) by Equation (1) gives us the phase
constant:

Now, Equation (1) allows us to find A:

The new maximum speed is

The new magnitude of the maximum acceleration is

The new expressions for position, velocity, and acceleration
are

As we saw in Chapters 7 and 8, many problems are easier to
solve with an energy approach rather than one based on vari-
ables of motion. This particular What If? is easier to solve
from an energy approach. Therefore, in the next section we
shall investigate the energy of the simple harmonic oscillator.

a ! "(1.35 m/s2)cos(5.00t % 0.12))

v ! "(0.269 m/s)sin(5.00t % 0.12))

x ! (0.053 9 m)cos(5.00t % 0.12))

amax ! '2A ! (5.00 rad/s)2(5.39 , 10"2 m) ! 1.35 m/s2

vmax ! 'A ! (5.00 rad/s)(5.39 , 10"2 m) ! 0.269 m/s

A !
xi

cos (
!

0.050 0 m
cos(0.12))

! 0.053 9 m

 ( ! 0.12)

 tan ( ! "
vi

'xi
! "

"0.100 m
(5.00 rad/s)(0.050 0 m)

! 0.400

 
"'A sin (

A cos (
!

vi

x i

(2)   v(0) ! "'A sin ( ! vi

(1)   x(0) ! A cos ( ! xi



15.3 Energy of the Simple Harmonic Oscillator

Let us examine the mechanical energy of the block–spring system illustrated in Figure
15.1. Because the surface is frictionless, we expect the total mechanical energy of the
system to be constant, as was shown in Chapter 8. We assume a massless spring, so the
kinetic energy of the system corresponds only to that of the block. We can use Equa-
tion 15.15 to express the kinetic energy of the block as

(15.19)

The elastic potential energy stored in the spring for any elongation x is given by
(see Eq. 8.11). Using Equation 15.6, we obtain

(15.20)

We see that K and U are always positive quantities. Because '2 ! k/m, we can express
the total mechanical energy of the simple harmonic oscillator as

From the identity sin2 . % cos2 . ! 1, we see that the quantity in square brackets is
unity. Therefore, this equation reduces to

(15.21)

That is, the total mechanical energy of a simple harmonic oscillator is a constant
of the motion and is proportional to the square of the amplitude. Note that U is
small when K is large, and vice versa, because the sum must be constant. In fact, the to-
tal mechanical energy is equal to the maximum potential energy stored in the spring
when x ! & A because v ! 0 at these points and thus there is no kinetic energy. At the
equilibrium position, where U ! 0 because x ! 0, the total energy, all in the form of
kinetic energy, is again . That is,

Plots of the kinetic and potential energies versus time appear in Figure 15.10a,
where we have taken ( ! 0. As already mentioned, both K and U are always positive,
and at all times their sum is a constant equal to , the total energy of the system.
The variations of K and U with the position x of the block are plotted in Figure 15.10b.

1
2 kA2

E ! 1
2 mvmax

2 ! 1
2 m'2 A2

 ! 1
2 m  

k
m

  A2 ! 1
2 kA2  (at x ! 0)

1
2 kA2

E ! 1
2 kA2

E ! K % U ! 1
2 kA2[sin2('t % () % cos2('t % ()]

U ! 1
2 kx 

 2 ! 1
2 kA2 cos2('t % ()

1
2 kx  

2

K ! 1
2 mv  2 ! 1

2 m '2 A2 sin2('t % ()
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Kinetic energy of a simple
harmonic oscillator

Potential energy of a simple
harmonic oscillator

Total energy of a simple
harmonic oscillator

K , U

1
2 kA2

U

K

U =    kx2

K =    mv2

1
2
1
2

φ = 0

(a)

T
t

T
2

K , U

(b)

A
x

–A O

φ

Active Figure 15.10 (a) Kinetic energy and potential energy versus time for a simple
harmonic oscillator with ( ! 0. (b) Kinetic energy and potential energy versus position
for a simple harmonic oscillator. In either plot, note that K % U ! constant.

At the Active Figures link at http://www.pse6.com, you can compare the
physical oscillation of a block with energy graphs in this figure as well as with
energy bar graphs.



Energy is continuously being transformed between potential energy stored in the
spring and kinetic energy of the block.

Figure 15.11 illustrates the position, velocity, acceleration, kinetic energy, and po-
tential energy of the block–spring system for one full period of the motion. Most of the
ideas discussed so far are incorporated in this important figure. Study it carefully.

Finally, we can use the principle of conservation of energy to obtain the velocity for
an arbitrary position by expressing the total energy at some arbitrary position x as

(15.22)

When we check Equation 15.22 to see whether it agrees with known cases, we find that
it verifies the fact that the speed is a maximum at x ! 0 and is zero at the turning
points x ! & A.

You may wonder why we are spending so much time studying simple harmonic os-
cillators. We do so because they are good models of a wide variety of physical phenom-
ena. For example, recall the Lennard–Jones potential discussed in Example 8.11. This
complicated function describes the forces holding atoms together. Figure 15.12a shows
that, for small displacements from the equilibrium position, the potential energy curve

v  ! &√ k
m

 (A2 " x 
2) ! &'√A2 " x2

E ! K % U ! 1
2 mv  2 % 1

2 kx  2 ! 1
2 kA2
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Velocity as a function of
position for a simple harmonic
oscillator

–A 0 A
x

amax

vmax

amax

vmax

amax

t x v a K U

0 A 0 –ω2A 0

T/4 0 –ωA 0 0

T/2 –A 0 ω2A 0

3T/4 0 ωA 0 0

T A 0 –ω2A 0 1
2 kA2

1
2 kA2

1
2 kA2

1
2 kA2

1
2 kA2

θmaxθ

θmaxθ

θmaxθ

ω

ω

ω

ω

ω

Active Figure 15.11 Simple harmonic motion for a block–spring system and its analogy
to the motion of a simple pendulum (Section 15.5). The parameters in the table at the
right refer to the block–spring system, assuming that at t ! 0, x ! A so that x ! A cos 't.

At the Active Figures link at http://www.pse6.com, you can set the initial
position of the block and see the block–spring system and the analogous
pendulum in motion.
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(a) (b)

r

U

Figure 15.12 (a) If the atoms in a molecule do not move too far from their equilib-
rium positions, a graph of potential energy versus separation distance between atoms is
similar to the graph of potential energy versus position for a simple harmonic oscillator
(blue curve). (b) The forces between atoms in a solid can be modeled by imagining
springs between neighboring atoms.

for this function approximates a parabola, which represents the potential energy
function for a simple harmonic oscillator. Thus, we can model the complex atomic
binding forces as being due to tiny springs, as depicted in Figure 15.12b.

The ideas presented in this chapter apply not only to block–spring systems and
atoms, but also to a wide range of situations that include bungee jumping, tuning in a
television station, and viewing the light emitted by a laser. You will see more examples
of simple harmonic oscillators as you work through this book.

Example 15.4 Oscillations on a Horizontal Surface

A 0.500-kg cart connected to a light spring for which the
force constant is 20.0 N/m oscillates on a horizontal, fric-
tionless air track.

(A) Calculate the total energy of the system and the maxi-
mum speed of the cart if the amplitude of the motion is
3.00 cm.

Solution Using Equation 15.21, we obtain

!

When the cart is located at x ! 0, we know that U ! 0 and
E ! ; therefore,

(B) What is the velocity of the cart when the position is
2.00 cm?

Solution We can apply Equation 15.22 directly:

! &0.141 m/s

 ! & √ 20.0 N/m
0.500 kg

 [(0.030 0 m)2 " (0.020 0 m)2]

v ! & √ k
m

 (A2 " x 2)

0.190 m/svmax ! √ 2(9.00 , 10"3 J)
0.500 kg

!

1
2 mvmax

2 ! 9.00 , 10"3 J

1
2 mvmax

2

9.00 , 10"3 J

E ! 1
2 kA2 ! 1

2 (20.0 N/m)(3.00 , 10"2 m)2

The positive and negative signs indicate that the cart could
be moving to either the right or the left at this instant.

(C) Compute the kinetic and potential energies of the sys-
tem when the position is 2.00 cm.

Solution Using the result of (B), we find that

Note that K % U ! E.

What If? The motion of the cart in this example could
have been initiated by releasing the cart from rest at
x ! 3.00 cm. What if the cart were released from the same
position, but with an initial velocity of v ! "0.100 m/s?
What are the new amplitude and maximum speed of
the cart?

Answer This is the same type of question as we asked at the
end of Example 15.3, but here we apply an energy ap-
proach. First let us calculate the total energy of the system at
t ! 0, which consists of both kinetic energy and potential
energy:

  ! 1.15 , 10"2 J

 ! 1
2 (0.500 kg)("0.100 m/s)2 % 1

2 (20.0 N/m)(0.030 0 m)2

E ! 1
2 mv  2 % 1

2 kx  

   

2

4.00 , 10"3 JU ! 1
2 kx  2 ! 1

2 (20.0 N/m)(0.020 0 m)2 !

5.00 , 10"3 JK ! 1
2 mv  2 ! 1

2 (0.500 kg)(0.141 m/s)2 !
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15.4 Comparing Simple Harmonic Motion 
with Uniform Circular Motion

Some common devices in our everyday life exhibit a relationship between oscillatory
motion and circular motion. For example, the pistons in an automobile engine (Figure
15.13a) go up and down—oscillatory motion—yet the net result of this motion is circu-
lar motion of the wheels. In an old-fashioned locomotive (Figure 15.13b), the drive
shaft goes back and forth in oscillatory motion, causing a circular motion of the
wheels. In this section, we explore this interesting relationship between these two types
of motion. We shall use this relationship again when we study electromagnetism and
when we explore optics.

Figure 15.14 is an overhead view of an experimental arrangement that shows this
relationship. A ball is attached to the rim of a turntable of radius A, which is illumi-
nated from the side by a lamp. The ball casts a shadow on a screen. We find that as the
turntable rotates with constant angular speed, the shadow of the ball moves
back and forth in simple harmonic motion.

To find the new amplitude, we equate this total energy to
the potential energy when the cart is at the end point of the
motion:

Note that this is larger than the previous amplitude of
0.030 0 m. To find the new maximum speed, we equate this

 A ! √ 2E
k

! √ 2(1.15 , 10"2 J)
20.0 N/m

! 0.033 9 m

 E  ! 1
2 kA 2

total energy to the kinetic energy when the cart is at the
equilibrium position:

This is larger than the value found in part (a) as expected
because the cart has an initial velocity at t ! 0.

 vmax ! √ 2E
m

! √ 2(1.15 , 10"2 J)
0.500 kg

! 0.214 m/s

E ! 1
2 mvmax

2

Figure 15.13 (a) The pistons of an
automobile engine move in periodic motion
along a single dimension. This photograph
shows a cutaway view of two of these pistons.
This motion is converted to circular motion of
the crankshaft, at the lower right, and
ultimately of the wheels of the automobile.
(b) The back-and-forth motion of pistons (in
the curved housing at the left) in an old-
fashioned locomotive is converted to circular
motion of the wheels.

©
Lin

k /
 V

isu
al

s U
nl

im
ite

d

Lamp

Ball

Q

PA

A

Screen

Turntable

Shadow
of ball

Active Figure 15.14 An
experimental setup for
demonstrating the connection
between simple harmonic motion
and uniform circular motion. As
the ball rotates on the turntable
with constant angular speed, its
shadow on the screen moves back
and forth in simple harmonic
motion.

At the Active Figures link
at http://www.pse6.com, you
can adjust the frequency and
radial position of the ball and
see the resulting simple
harmonic motion of the
shadow.
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Consider a particle located at point P on the circumference of a circle of radius A, as
in Figure 15.15a, with the line OP making an angle ( with the x axis at t ! 0. We call this
circle a reference circle for comparing simple harmonic motion with uniform circular mo-
tion, and we take the position of P at t ! 0 as our reference position. If the particle
moves along the circle with constant angular speed ' until OP makes an angle . with the
x axis, as in Figure 15.15b, then at some time t # 0, the angle between OP and the x axis
is . ! 't % (. As the particle moves along the circle, the projection of P on the x axis,
labeled point Q , moves back and forth along the x axis between the limits x ! & A.

Note that points P and Q always have the same x coordinate. From the right trian-
gle OPQ, we see that this x coordinate is

(15.23)

This expression is the same as Equation 15.6 and shows that the point Q moves with
simple harmonic motion along the x axis. Therefore, we conclude that

x(t) ! A cos('t % ()

We can make a similar argument by noting from Figure 15.15b that the projec-
tion of P along the y axis also exhibits simple harmonic motion. Therefore, uniform
circular motion can be considered a combination of two simple harmonic mo-
tions, one along the x axis and one along the y axis, with the two differing in
phase by 90°.

This geometric interpretation shows that the time interval for one complete revolu-
tion of the point P on the reference circle is equal to the period of motion T for simple
harmonic motion between x ! & A. That is, the angular speed ' of P is the same as the
angular frequency ' of simple harmonic motion along the x axis. (This is why we use
the same symbol.) The phase constant ( for simple harmonic motion corresponds to
the initial angle that OP makes with the x axis. The radius A of the reference circle
equals the amplitude of the simple harmonic motion.

Because the relationship between linear and angular speed for circular motion is
v ! r' (see Eq. 10.10), the particle moving on the reference circle of radius A has a ve-
locity of magnitude 'A. From the geometry in Figure 15.15c, we see that the x compo-
nent of this velocity is " 'A sin('t % (). By definition, point Q has a velocity given by
dx/dt. Differentiating Equation 15.23 with respect to time, we find that the velocity of
Q is the same as the x component of the velocity of P.
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Figure 15.15 Relationship between the uniform circular motion of a point P and the
simple harmonic motion of a point Q. A particle at P moves in a circle of radius A with
constant angular speed '. (a) A reference circle showing the position of P at t ! 0.
(b) The x coordinates of points P and Q are equal and vary in time according to the
expression x ! A cos('t % (). (c) The x component of the velocity of P equals the
velocity of Q. (d) The x component of the acceleration of P equals the acceleration of Q. 

simple harmonic motion along a straight line can be represented by the projection
of uniform circular motion along a diameter of a reference circle.



The acceleration of P on the reference circle is directed radially inward toward O
and has a magnitude v2/A ! '2A. From the geometry in Figure 15.15d, we see that the
x component of this acceleration is " '2A cos('t % (). This value is also the accelera-
tion of the projected point Q along the x axis, as you can verify by taking the second
derivative of Equation 15.23.
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Quick Quiz 15.6 Figure 15.16 shows the position of an object in uniform
circular motion at t ! 0. A light shines from above and projects a shadow of the object
on a screen below the circular motion. The correct values for the amplitude and phase
constant (relative to an x axis to the right) of the simple harmonic motion of the
shadow are (a) 0.50 m and 0 (b) 1.00 m and 0 (c) 0.50 m and ) (d) 1.00 m and ).

Lamp

Ball

0.50 m

Screen

Turntable

Figure 15.16 (Quick Quiz 15.6) An object moves in circular motion, casting a shadow
on the screen below. Its position at an instant of time is shown.

Example 15.5 Circular Motion with Constant Angular Speed

A particle rotates counterclockwise in a circle of radius 3.00 m
with a constant angular speed of 8.00 rad/s. At t ! 0, the par-
ticle has an x coordinate of 2.00 m and is moving to the right.

(A) Determine the x coordinate as a function of time.

Solution Because the amplitude of the particle’s motion
equals the radius of the circle and ' ! 8.00 rad/s, we have

We can evaluate ( by using the initial condition that
x ! 2.00 m at t ! 0:

If we were to take our answer as ( ! 48.2° ! 0.841 rad, 
then the coordinate x ! (3.00 m)cos(8.00t % 0.841) would
be decreasing at time t ! 0 (that is, moving to the left). Be-
cause our particle is first moving to the right, we must
choose ( ! " 0.841 rad. The x coordinate as a function of
time is then

 ( ! cos"1
 " 2.00 m

3.00 m #
2.00 m ! (3.00 m)cos(0 % ()

x ! A cos('t % () ! (3.00 m)cos(8.00t % ()

x !

Note that the angle ( in the cosine function must be in
radians.

(B) Find the x components of the particle’s velocity and ac-
celeration at any time t.

Solution

!

!

From these results, we conclude that vmax ! 24.0 m/s and
that amax ! 192 m/s2.

"(192 m/s2)cos(8.00t " 0.841)

ax !  
dv
dt

 ! ("24.0 m/s)(8.00 rad/s)cos(8.00t " 0.841)

"(24.0 m/s)sin(8.00t " 0.841)

vx !  
dx
dt

 ! ("3.00 m)(8.00 rad/s)sin(8.00t " 0.841)

(3.00 m)cos(8.00t " 0.841)
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15.5 The Pendulum

The simple pendulum is another mechanical system that exhibits periodic motion. It
consists of a particle-like bob of mass m suspended by a light string of length L that is
fixed at the upper end, as shown in Figure 15.17. The motion occurs in the vertical
plane and is driven by the gravitational force. We shall show that, provided the angle
. is small (less than about 10°), the motion is very close to that of a simple harmonic
oscillator.

The forces acting on the bob are the force T exerted by the string and the gravita-
tional force mg. The tangential component mg sin . of the gravitational force always
acts toward . ! 0, opposite the displacement of the bob from the lowest position.
Therefore, the tangential component is a restoring force, and we can apply Newton’s
second law for motion in the tangential direction:

where s is the bob’s position measured along the arc and the negative sign indicates
that the tangential force acts toward the equilibrium (vertical) position. Because
s ! L. (Eq. 10.1a) and L is constant, this equation reduces to

Considering . as the position, let us compare this equation to Equation 15.3—does it
have the same mathematical form? The right side is proportional to sin . rather than
to . ; hence, we would not expect simple harmonic motion because this expression is
not of the form of Equation 15.3. However, if we assume that . is small, we can use the
approximation sin . $ . ; thus, in this approximation, the equation of motion for the
simple pendulum becomes

(for small values of .) (15.24)

Now we have an expression that has the same form as Equation 15.3, and we conclude
that the motion for small amplitudes of oscillation is simple harmonic motion. There-
fore, the function . can be written as . ! .max cos('t % (), where .max is the maximum
angular position and the angular frequency ' is

(15.25)

The period of the motion is

(15.26)

In other words, the period and frequency of a simple pendulum depend only on
the length of the string and the acceleration due to gravity. Because the period is
independent of the mass, we conclude that all simple pendula that are of equal length
and are at the same location (so that g is constant) oscillate with the same period. The
analogy between the motion of a simple pendulum and that of a block–spring system is
illustrated in Figure 15.11.

The simple pendulum can be used as a timekeeper because its period depends only
on its length and the local value of g. It is also a convenient device for making precise
measurements of the free-fall acceleration. Such measurements are important because
variations in local values of g can provide information on the location of oil and of
other valuable underground resources.

T !
2)

'
! 2) √ L

g

' ! √ g
L

d  2
 .

dt  2 ! "
g
L

 .

d  2
 .

dt  2 ! "
g
L

  sin .

Ft ! "mg sin . ! m  
d  2s
dt  2

Period of a simple pendulum

Angular frequency for a simple
pendulum

" PITFALL PREVENTION
15.5 Not True Simple

Harmonic Motion
Remember that the pendulum
does not exhibit true simple har-
monic motion for any angle. If
the angle is less than about 10°,
the motion is close to and can be
modeled as simple harmonic.

θ

TL

s

m g sin

m

m g cos

m g

θ
θ

θ

Active Figure 15.17 When . is
small, a simple pendulum oscillates
in simple harmonic motion about
the equilibrium position . ! 0.
The restoring force is " mg sin .,
the component of the gravitational
force tangent to the arc.

At the Active Figures link
at http://www.pse6.com, you
can adjust the mass of the bob,
the length of the string, and the
initial angle and see the
resulting oscillation of the
pendulum.
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Physical Pendulum

Suppose you balance a wire coat hanger so that the hook is supported by your ex-
tended index finger. When you give the hanger a small angular displacement (with
your other hand) and then release it, it oscillates. If a hanging object oscillates about a
fixed axis that does not pass through its center of mass and the object cannot be ap-
proximated as a point mass, we cannot treat the system as a simple pendulum. In this
case the system is called a physical pendulum.

Consider a rigid object pivoted at a point O that is a distance d from the center of
mass (Fig. 15.18). The gravitational force provides a torque about an axis through O,
and the magnitude of that torque is mgd sin ., where . is as shown in Figure 15.18.
Using the rotational form of Newton’s second law, /0 ! I1, where I is the moment of
inertia about the axis through O, we obtain

The negative sign indicates that the torque about O tends to decrease .. That is, the
gravitational force produces a restoring torque. If we again assume that . is small, the
approximation sin . $ . is valid, and the equation of motion reduces to

(15.27)

Because this equation is of the same form as Equation 15.3, the motion is simple har-
monic motion. That is, the solution of Equation 15.27 is . ! .max cos('t % (), where
.max is the maximum angular position and

' ! √ mgd
I

d  2
 .

dt2 ! "" mgd
I # . ! "'2

 .

"mgd  sin . ! 2  
d  2

 .

dt  2

Quick Quiz 15.7 A grandfather clock depends on the period of a pendulum
to keep correct time. Suppose a grandfather clock is calibrated correctly and then a
mischievous child slides the bob of the pendulum downward on the oscillating rod.
Does the grandfather clock run (a) slow (b) fast (c) correctly?

Quick Quiz 15.8 Suppose a grandfather clock is calibrated correctly at sea
level and is then taken to the top of a very tall mountain. Does the grandfather clock
run (a) slow (b) fast (c) correctly?

Example 15.6 A Connection Between Length and Time

Christian Huygens (1629–1695), the greatest clockmaker in
history, suggested that an international unit of length could
be defined as the length of a simple pendulum having a pe-
riod of exactly 1 s. How much shorter would our length unit
be had his suggestion been followed?

Solution Solving Equation 15.26 for the length gives

Thus, the meter’s length would be slightly less than one
fourth of its current length. Note that the number of signifi-
cant digits depends only on how precisely we know g
because the time has been defined to be exactly 1 s. 

0.248 mL !
T 2g
4)2 !

(1.00 s)2(9.80 m/s2)
4)2 !

What If? What if Huygens had been born on another
planet? What would the value for g have to be on that planet
such that the meter based on Huygens’s pendulum would
have the same value as our meter?

Answer We solve Equation 15.26 for g :

No planet in our solar system has an acceleration due to
gravity that is this large.

g !
4)2L

T 2 !
4)2(1.00 m)

(1.00 s)2 ! 4)2 m/s2 ! 39.5 m/s2

Pivot O

θ

θ

d

d sin
CM

m g

Figure 15.18 A physical pendu-
lum pivoted at O.
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The period is

(15.28)

One can use this result to measure the moment of inertia of a flat rigid object. If
the location of the center of mass—and hence the value of d—is known, the moment
of inertia can be obtained by measuring the period. Finally, note that Equation 15.28
reduces to the period of a simple pendulum (Eq. 15.26) when I ! md2—that is, when
all the mass is concentrated at the center of mass.

T !
2)

'
 ! 2)  √ I

mgd

Torsional Pendulum

Figure 15.20 shows a rigid object suspended by a wire attached at the top to a fixed
support. When the object is twisted through some angle ., the twisted wire exerts on
the object a restoring torque that is proportional to the angular position. That is,

where 3 (kappa) is called the torsion constant of the support wire. The value of 3 can be
obtained by applying a known torque to twist the wire through a measurable angle ..
Applying Newton’s second law for rotational motion, we find

(15.29)

Again, this is the equation of motion for a simple harmonic oscillator, with 
and a period

(15.30)

This system is called a torsional pendulum. There is no small-angle restriction in this
situation as long as the elastic limit of the wire is not exceeded.

T ! 2)  √ I
3

' ! √3/I

d  2
 .

dt  2 ! "
3

I
 .

 0 ! "3. ! I  
d  2

 .

dt  2

0 ! "3.

Period of a physical pendulum

Period of a torsional pendulum

Example 15.7 A Swinging Rod

A uniform rod of mass M and length L is pivoted about
one end and oscillates in a vertical plane (Fig. 15.19). Find
the period of oscillation if the amplitude of the motion is
small.

Solution In Chapter 10 we found that the moment of
inertia of a uniform rod about an axis through one end is
ML2. The distance d from the pivot to the center of mass

is L/2. Substituting these quantities into Equation 15.28
gives

Comment In one of the Moon landings, an astronaut walk-
ing on the Moon’s surface had a belt hanging from his
space suit, and the belt oscillated as a physical pendulum. A
scientist on the Earth observed this motion on television

2)  √ 2L
3g

T ! 2)  √ 1
3 ML2

Mg(L/2)
!

1
3

and used it to estimate the free-fall acceleration on the
Moon. How did the scientist make this calculation?

Figure 15.19 A rigid rod oscillating about a pivot through
one end is a physical pendulum with d ! L/2 and, from
Table 10.2, . I ! 1

3 ML2

Pivot

O

L

CM

Mg

O

P
maxθ

Figure 15.20 A torsional pendulum
consists of a rigid object suspended
by a wire attached to a rigid support.
The object oscillates about the line
OP with an amplitude .max. 
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15.6 Damped Oscillations

The oscillatory motions we have considered so far have been for ideal systems—that is,
systems that oscillate indefinitely under the action of only one force—a linear restoring
force. In many real systems, nonconservative forces, such as friction, retard the motion.
Consequently, the mechanical energy of the system diminishes in time, and the motion
is said to be damped. Figure 15.21 depicts one such system: an object attached to a
spring and submersed in a viscous liquid.

One common type of retarding force is the one discussed in Section 6.4, where the
force is proportional to the speed of the moving object and acts in the direction oppo-
site the motion. This retarding force is often observed when an object moves through
air, for instance. Because the retarding force can be expressed as R ! " b v (where b is
a constant called the damping coefficient) and the restoring force of the system is " kx,
we can write Newton’s second law as

(15.31)

The solution of this equation requires mathematics that may not be familiar to you;
we simply state it here without proof. When the retarding force is small compared
with the maximum restoring force—that is, when b is small—the solution to Equa-
tion 15.31 is

(15.32)

where the angular frequency of oscillation is

(15.33)

This result can be verified by substituting Equation 15.32 into Equation 15.31.
Figure 15.22 shows the position as a function of time for an object oscillating in the

presence of a retarding force. We see that when the retarding force is small, the os-
cillatory character of the motion is preserved but the amplitude decreases in
time, with the result that the motion ultimately ceases. Any system that behaves in
this way is known as a damped oscillator. The dashed blue lines in Figure 15.22,
which define the envelope of the oscillatory curve, represent the exponential factor in
Equation 15.32. This envelope shows that the amplitude decays exponentially with
time. For motion with a given spring constant and object mass, the oscillations
dampen more rapidly as the maximum value of the retarding force approaches the
maximum value of the restoring force.

It is convenient to express the angular frequency (Eq. 15.33) of a damped oscillator
in the form

where represents the angular frequency in the absence of a retarding force
(the undamped oscillator) and is called the natural frequency of the system.

When the magnitude of the maximum retarding force Rmax ! bvmax $ kA, the sys-
tem is said to be underdamped. The resulting motion is represented by the blue curve
in Figure 15.23. As the value of b increases, the amplitude of the oscillations decreases
more and more rapidly. When b reaches a critical value bc such that bc/2m ! ' 0, the
system does not oscillate and is said to be critically damped. In this case the system,
once released from rest at some nonequilibrium position, approaches but does not
pass through the equilibrium position. The graph of position versus time for this case
is the red curve in Figure 15.23.

'0 ! √k/m

' ! √'0 

2 " " b
2m #2

' ! √ k
m

" " b
2m #2

x ! Ae  "
b

2mt cos('t % ()

"kx " b  
dx
dt

! m  
d  2x
dt  2

 ! Fx ! "kx " bvx ! max

m

Figure 15.21 One example of a
damped oscillator is an object
attached to a spring and submersed
in a viscous liquid. 

A

x

0 t

A e
b

2m
– t

Active Figure 15.22 Graph of
position versus time for a damped
oscillator. Note the decrease in
amplitude with time.

At the Active Figures link
at http://www.pse6.com, you
can adjust the spring constant,
the mass of the object, and the
damping constant and see the
resulting damped oscillation of
the object.

x

a
b

c

t

Figure 15.23 Graphs of position
versus time for (a) an
underdamped oscillator, (b) a
critically damped oscillator, and
(c) an overdamped oscillator. 



If the medium is so viscous that the retarding force is greater than the restoring
force—that is, if Rmax ! bvmax # kA and b/2m # ' 0—the system is overdamped.
Again, the displaced system, when free to move, does not oscillate but simply returns to
its equilibrium position. As the damping increases, the time interval required for the
system to approach equilibrium also increases, as indicated by the black curve in Fig-
ure 15.23. For critically damped and overdamped systems, there is no angular fre-
quency ' and the solution in Equation 15.32 is not valid.

Whenever friction is present in a system, whether the system is overdamped or
underdamped, the energy of the oscillator eventually falls to zero. The lost mechan-
ical energy is transformed into internal energy in the object and the retarding
medium.

15.7 Forced Oscillations

We have seen that the mechanical energy of a damped oscillator decreases in time as a
result of the resistive force. It is possible to compensate for this energy decrease by ap-
plying an external force that does positive work on the system. At any instant, energy
can be transferred into the system by an applied force that acts in the direction of mo-
tion of the oscillator. For example, a child on a swing can be kept in motion by appro-
priately timed “pushes.” The amplitude of motion remains constant if the energy input
per cycle of motion exactly equals the decrease in mechanical energy in each cycle that
results from resistive forces.

A common example of a forced oscillator is a damped oscillator driven by an exter-
nal force that varies periodically, such as F(t) ! F0 sin 't, where ' is the angular
frequency of the driving force and F0 is a constant. In general, the frequency ' of the
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Quick Quiz 15.9 An automotive suspension system consists of a combina-
tion of springs and shock absorbers, as shown in Figure 15.24. If you were an automo-
tive engineer, would you design a suspension system that was (a) underdamped
(b) critically damped (c) overdamped?

Oil or
other viscous
fluid

Piston
with holes

(a)

Figure 15.24 (a) A shock absorber consists of a piston oscillating in a chamber filled
with oil. As the piston oscillates, the oil is squeezed through holes between the piston
and the chamber, causing a damping of the piston’s oscillations. (b) One type of
automotive suspension system, in which a shock absorber is placed inside a coil spring
at each wheel.

Shock absorber
Coil spring

(b)



driving force is variable while the natural frequency '0 of the oscillator is fixed by the
values of k and m. Newton’s second law in this situation gives

(15.34)

Again, the solution of this equation is rather lengthy and will not be presented. After the
driving force on an initially stationary object begins to act, the amplitude of the oscilla-
tion will increase. After a sufficiently long period of time, when the energy input per cy-
cle from the driving force equals the amount of mechanical energy transformed to inter-
nal energy for each cycle, a steady-state condition is reached in which the oscillations
proceed with constant amplitude. In this situation, Equation 15.34 has the solution

(15.35)

where

(15.36)

and where is the natural frequency of the undamped oscillator (b ! 0).
Equations 15.35 and 15.36 show that the forced oscillator vibrates at the frequency

of the driving force and that the amplitude of the oscillator is constant for a given 
driving force because it is being driven in steady-state by an external force. For small
damping, the amplitude is large when the frequency of the driving force is near the
natural frequency of oscillation, or when ' $ '0. The dramatic increase in amplitude
near the natural frequency is called resonance, and the natural frequency '0 is also
called the resonance frequency of the system.

The reason for large-amplitude oscillations at the resonance frequency is that en-
ergy is being transferred to the system under the most favorable conditions. We can
better understand this by taking the first time derivative of x in Equation 15.35, which
gives an expression for the velocity of the oscillator. We find that v is proportional to
sin('t % (), which is the same trigonometric function as that describing the driving
force. Thus, the applied force F is in phase with the velocity. The rate at which work is
done on the oscillator by F equals the dot product F # v ; this rate is the power delivered
to the oscillator. Because the product F # v is a maximum when F and v are in phase,
we conclude that at resonance the applied force is in phase with the velocity and
the power transferred to the oscillator is a maximum.

Figure 15.25 is a graph of amplitude as a function of frequency for a forced oscillator
with and without damping. Note that the amplitude increases with decreasing damping
(b : 0) and that the resonance curve broadens as the damping increases. Under steady-
state conditions and at any driving frequency, the energy transferred into the system
equals the energy lost because of the damping force; hence, the average total energy of
the oscillator remains constant. In the absence of a damping force (b ! 0), we see from
Equation 15.36 that the steady-state amplitude approaches infinity as ' approaches '0.
In other words, if there are no losses in the system and if we continue to drive an initially
motionless oscillator with a periodic force that is in phase with the velocity, the amplitude
of motion builds without limit (see the brown curve in Fig. 15.25). This limitless building
does not occur in practice because some damping is always present in reality.

Later in this book we shall see that resonance appears in other areas of physics. For ex-
ample, certain electric circuits have natural frequencies. A bridge has natural frequencies
that can be set into resonance by an appropriate driving force. A dramatic example of
such resonance occurred in 1940, when the Tacoma Narrows Bridge in the state of Wash-
ington was destroyed by resonant vibrations. Although the winds were not particularly
strong on that occasion, the “flapping” of the wind across the roadway (think of the “flap-
ping” of a flag in a strong wind) provided a periodic driving force whose frequency
matched that of the bridge. The resulting oscillations of the bridge caused it to ultimately
collapse (Fig. 15.26) because the bridge design had inadequate built-in safety features.

'0 ! √k/m

A !
F0/m

√('2 " '0 

2)2 % " b'

m #2

x ! A cos('t % ()

! F ! ma 9:  F0 sin 't " b  
dx
dt

" kx ! m  
d2x
dt2
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Amplitude of a driven oscillator

A
b = 0
Undamped

Small b

Large b

ω00
ω

ω
Figure 15.25 Graph of amplitude
versus frequency for a damped
oscillator when a periodic driving
force is present. When the
frequency ' of the driving force
equals the natural frequency '0 of
the oscillator, resonance occurs.
Note that the shape of the
resonance curve depends on the
size of the damping coefficient b. 



Many other examples of resonant vibrations can be cited. A resonant vibration that
you may have experienced is the “singing” of telephone wires in the wind. Machines of-
ten break if one vibrating part is in resonance with some other moving part. Soldiers
marching in cadence across a bridge have been known to set up resonant vibrations in
the structure and thereby cause it to collapse. Whenever any real physical system is 
driven near its resonance frequency, you can expect oscillations of very large amplitudes.
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(a) (b)

Figure 15.26 (a) In 1940 turbulent winds set up torsional vibrations in the Tacoma
Narrows Bridge, causing it to oscillate at a frequency near one of the natural
frequencies of the bridge structure. (b) Once established, this resonance condition led
to the bridge’s collapse.
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When the acceleration of an object is proportional to its position and is in the direc-
tion opposite the displacement from equilibrium, the object moves with simple har-
monic motion. The position x of a simple harmonic oscillator varies periodically in
time according to the expression

(15.6)

where A is the amplitude of the motion, ' is the angular frequency, and ( is the
phase constant. The value of ( depends on the initial position and initial velocity of
the oscillator.

The time interval T needed for one complete oscillation is defined as the period of
the motion:

(15.10)

A block–spring system moves in simple harmonic motion on a frictionless surface with
a period

(15.13)

The inverse of the period is the frequency of the motion, which equals the number of
oscillations per second.

The velocity and acceleration of a simple harmonic oscillator are

(15.15)

(15.16)

(15.22)

Thus, the maximum speed is 'A, and the maximum acceleration is '2A. The speed is
zero when the oscillator is at its turning points x ! &A and is a maximum when the

v ! &'√A2 " x    

2

a !
d  2x
dt  2 ! "' 

2A cos('t % ()

v !
dx
dt

! "'A sin('t % ()

T !
2)

'
! 2) √ m

k

T !
2)

'

x(t) ! A cos('t % ()

S U M M A RY

Take a practice test for
this chapter by clicking on
the Practice Test link at
http://www.pse6.com.



Questions 475

oscillator is at the equilibrium position x ! 0. The magnitude of the acceleration is a
maximum at the turning points and zero at the equilibrium position.

The kinetic energy and potential energy for a simple harmonic oscillator vary with
time and are given by

(15.19)

(15.20)

The total energy of a simple harmonic oscillator is a constant of the motion and is
given by

(15.21)

The potential energy of the oscillator is a maximum when the oscillator is at its turning
points and is zero when the oscillator is at the equilibrium position. The kinetic energy
is zero at the turning points and a maximum at the equilibrium position.

A simple pendulum of length L moves in simple harmonic motion for small angu-
lar displacements from the vertical. Its period is

(15.26)

For small angular displacements from the vertical, a physical pendulum moves in
simple harmonic motion about a pivot that does not go through the center of mass.
The period of this motion is

(15.28)

where I is the moment of inertia about an axis through the pivot and d is the distance
from the pivot to the center of mass.

If an oscillator experiences a damping force R ! "b v, its position for small damp-
ing is described by

(15.32)

where

(15.33)

If an oscillator is subject to a sinusoidal driving force F(t) ! F0 sin 't, it exhibits
resonance, in which the amplitude is largest when the driving frequency matches the
natural frequency of the oscillator.

' ! √ k
m

" " b
2m #2

x ! Ae"
b

2m t cos('t % ()

T ! 2)  √ I
mgd

T ! 2)  √ L
g

E ! 1
2kA2

U ! 1
2 kx  

 
2 ! 1

2 kA 
2 cos2('t % ()

K ! 1
2 mv  

 
2 ! 1

2 m' 
2A2

 
 sin2

 ('t % ()

1. Is a bouncing ball an example of simple harmonic motion?
Is the daily movement of a student from home to school
and back simple harmonic motion? Why or why not?

If the coordinate of a particle varies as x ! " A cos 't,
what is the phase constant in Equation 15.6? At what posi-
tion is the particle at t ! 0?

3. Does the displacement of an oscillating particle between
t ! 0 and a later time t necessarily equal the position of
the particle at time t ? Explain.

Determine whether or not the following quantities can be
in the same direction for a simple harmonic oscillator: 
(a) position and velocity, (b) velocity and acceleration, 
(c) position and acceleration.

4.

2.

5. Can the amplitude A and phase constant ( be determined
for an oscillator if only the position is specified at t ! 0?
Explain.

6. Describe qualitatively the motion of a block–spring system
when the mass of the spring is not neglected. 

7. A block is hung on a spring, and the frequency f of the os-
cillation of the system is measured. The block, a second
identical block, and the spring are carried in the Space
Shuttle to space. The two blocks are attached to the ends
of the spring, and the system is taken out into space on a
space walk. The spring is extended, and the system is re-
leased to oscillate while floating in space. What is the fre-
quency of oscillation for this system, in terms of f ?

Q U E S T I O N S



Section 15.1 Motion of an Object Attached 
to a Spring

1. A ball dropped from a height of 4.00 m makes a perfectly
elastic collision with the ground. Assuming no mechanical
energy is lost due to air resistance, (a) show that the ensu-
ing motion is periodic and (b) determine the period of
the motion. (c) Is the motion simple harmonic? Explain.
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Section 15.2 Mathematical Representation 
of Simple Harmonic Motion

2. In an engine, a piston oscillates with simple harmonic mo-
tion so that its position varies according to the expression 

where x is in centimeters and t is in seconds. At t ! 0, 
find (a) the position of the piston, (b) its velocity, and
(c) its acceleration. (d) Find the period and amplitude of
the motion.

The position of a particle is given by the expression
x ! (4.00 m)cos(3.00 )t % )), where x is in meters and t is
in seconds. Determine (a) the frequency and period of the
motion, (b) the amplitude of the motion, (c) the phase
constant, and (d) the position of the particle at t ! 0.250 s. 

3.

x ! (5.00 cm)cos(2t % )/6)

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide

= coached solution with hints available at http://www.pse6.com = computer useful in solving problem

= paired numerical and symbolic problems

P R O B L E M S

Note: Neglect the mass of every spring, except in problems
66 and 68.

Problems 15, 16, 19, 23, 56, and 62 in Chapter 7 can also
be assigned with this section.

8. A block–spring system undergoes simple harmonic motion
with amplitude A. Does the total energy change if the mass
is doubled but the amplitude is not changed? Do the ki-
netic and potential energies depend on the mass? Explain.

9. The equations listed in Table 2.2 give position as a function
of time, velocity as a function of time, and velocity as func-
tion of position for an object moving in a straight line with
constant acceleration. The quantity vxi appears in every
equation. Do any of these equations apply to an object mov-
ing in a straight line with simple harmonic motion? Using a
similar format, make a table of equations describing simple
harmonic motion. Include equations giving acceleration as a
function of time and acceleration as a function of position.
State the equations in such a form that they apply equally to
a block–spring system, to a pendulum, and to other vibrating
systems. What quantity appears in every equation?

10. What happens to the period of a simple pendulum if the
pendulum’s length is doubled? What happens to the pe-
riod if the mass of the suspended bob is doubled?

11. A simple pendulum is suspended from the ceiling of a
stationary elevator, and the period is determined. Des-
cribe the changes, if any, in the period when the elevator
(a) accelerates upward, (b) accelerates downward, and 
(c) moves with constant velocity.

12. Imagine that a pendulum is hanging from the ceiling of a
car. As the car coasts freely down a hill, is the equilibrium
position of the pendulum vertical? Does the period of os-
cillation differ from that in a stationary car?

13. A simple pendulum undergoes simple harmonic motion
when . is small. Is the motion periodic when . is large?
How does the period of motion change as . increases?

14. If a grandfather clock were running slow, how could we ad-
just the length of the pendulum to correct the time?

15. Will damped oscillations occur for any values of b and k?
Explain.

Is it possible to have damped oscillations when a system is
at resonance? Explain.

17. At resonance, what does the phase constant ( equal in
Equation 15.35? (Suggestion: Compare this equation with
the expression for the driving force, which must be in
phase with the velocity at resonance.)

18. You stand on the end of a diving board and bounce to set
it into oscillation. You find a maximum response, in terms
of the amplitude of oscillation of the end of the board,
when you bounce at frequency f. You now move to the
middle of the board and repeat the experiment. Is the res-
onance frequency for forced oscillations at this point
higher, lower, or the same as f ? Why?

19. Some parachutes have holes in them to allow air to move
smoothly through the chute. Without the holes, the air
gathered under the chute as the parachutist falls is
sometimes released from under the edges of the chute
alternately and periodically from one side and then the
other. Why might this periodic release of air cause a
problem?

20. You are looking at a small tree. You do not notice any
breeze, and most of the leaves on the tree are motionless.
However, one leaf is fluttering back and forth wildly. After
you wait for a while, that leaf stops moving and you notice
a different leaf moving much more than all the others.
Explain what could cause the large motion of one particu-
lar leaf.

21. A pendulum bob is made with a sphere filled with water.
What would happen to the frequency of vibration of this
pendulum if there were a hole in the sphere that allowed
the water to leak out slowly?

16.



4. (a) A hanging spring stretches by 35.0 cm when an object
of mass 450 g is hung on it at rest. In this situation, we de-
fine its position as x ! 0. The object is pulled down an ad-
ditional 18.0 cm and released from rest to oscillate without
friction. What is its position x at a time 84.4 s later?
(b) What If? A hanging spring stretches by 35.5 cm when
an object of mass 440 g is hung on it at rest. We define this
new position as x ! 0. This object is also pulled down an
additional 18.0 cm and released from rest to oscillate with-
out friction. Find its position 84.4 s later. (c) Why are the
answers to (a) and (b) different by such a large percentage
when the data are so similar? Does this circumstance reveal
a fundamental difficulty in calculating the future? (d) Find
the distance traveled by the vibrating object in part (a). 
(e) Find the distance traveled by the object in part (b).

A particle moving along the x axis in simple har-
monic motion starts from its equilibrium position, the ori-
gin, at t ! 0 and moves to the right. The amplitude of its
motion is 2.00 cm, and the frequency is 1.50 Hz. (a) Show
that the position of the particle is given by 

Determine (b) the maximum speed and the earliest time
(t # 0) at which the particle has this speed, (c) the maxi-
mum acceleration and the earliest time (t # 0) at which
the particle has this acceleration, and (d) the total dis-
tance traveled between t ! 0 and t ! 1.00 s.

6. The initial position, velocity, and acceleration of an object
moving in simple harmonic motion are xi, vi, and ai ; the
angular frequency of oscillation is '. (a) Show that the
position and velocity of the object for all time can be
written as

(b) If the amplitude of the motion is A, show that

7. A simple harmonic oscillator takes 12.0 s to undergo five
complete vibrations. Find (a) the period of its motion, 
(b) the frequency in hertz, and (c) the angular frequency
in radians per second.

8. A vibration sensor, used in testing a washing machine, con-
sists of a cube of aluminum 1.50 cm on edge mounted on
one end of a strip of spring steel (like a hacksaw blade)
that lies in a vertical plane. The mass of the strip is small
compared to that of the cube, but the length of the strip is
large compared to the size of the cube. The other end of
the strip is clamped to the frame of the washing machine,
which is not operating. A horizontal force of 1.43 N ap-
plied to the cube is required to hold it 2.75 cm away from
its equilibrium position. If the cube is released, what is its
frequency of vibration?

A 7.00-kg object is hung from the bottom end of a vertical
spring fastened to an overhead beam. The object is set into
vertical oscillations having a period of 2.60 s. Find the
force constant of the spring.

9.

v2 " ax ! vi 
2 " aix i ! '2A2

v(t) ! "xi' sin 't % vi cos 't

x(t) ! xi cos 't % " vi

' # sin 't

x ! (2.00 cm)sin(3.00)t)

5.
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10. A piston in a gasoline engine is in simple harmonic
motion. If the extremes of its position relative to its center
point are & 5.00 cm, find the maximum velocity and
acceleration of the piston when the engine is running at
the rate of 3 600 rev/min.

A 0.500-kg object attached to a spring with a force constant
of 8.00 N/m vibrates in simple harmonic motion with an
amplitude of 10.0 cm. Calculate (a) the maximum value of
its speed and acceleration, (b) the speed and acceleration
when the object is 6.00 cm from the equilibrium position,
and (c) the time interval required for the object to move
from x ! 0 to x ! 8.00 cm. 

12. A 1.00-kg glider attached to a spring with a force constant
of 25.0 N/m oscillates on a horizontal, frictionless air
track. At t ! 0 the glider is released from rest at
x ! " 3.00 cm. (That is, the spring is compressed by
3.00 cm.) Find (a) the period of its motion, (b) the maxi-
mum values of its speed and acceleration, and (c) the posi-
tion, velocity, and acceleration as functions of time.

13. A 1.00-kg object is attached to a horizontal spring. The
spring is initially stretched by 0.100 m, and the object is re-
leased from rest there. It proceeds to move without fric-
tion. The next time the speed of the object is zero is
0.500 s later. What is the maximum speed of the object?

14. A particle that hangs from a spring oscillates with an angu-
lar frequency '. The spring is suspended from the ceiling
of an elevator car and hangs motionless (relative to the
elevator car) as the car descends at a constant speed v. The
car then stops suddenly. (a) With what amplitude does the
particle oscillate? (b) What is the equation of motion for
the particle? (Choose the upward direction to be positive.)

Section 15.3 Energy of the Simple Harmonic
Oscillator

15. A block of unknown mass is attached to a spring with a
spring constant of 6.50 N/m and undergoes simple har-
monic motion with an amplitude of 10.0 cm. When the
block is halfway between its equilibrium position and the
end point, its speed is measured to be 30.0 cm/s. Calculate
(a) the mass of the block, (b) the period of the motion,
and (c) the maximum acceleration of the block.

16. A 200-g block is attached to a horizontal spring and executes
simple harmonic motion with a period of 0.250 s. If the total
energy of the system is 2.00 J, find (a) the force constant of
the spring and (b) the amplitude of the motion.

An automobile having a mass of 1 000 kg is driven
into a brick wall in a safety test. The bumper behaves like a
spring of force constant 5.00 , 106 N/m and compresses
3.16 cm as the car is brought to rest. What was the speed
of the car before impact, assuming that no mechanical
energy is lost during impact with the wall?

18. A block–spring system oscillates with an amplitude of
3.50 cm. If the spring constant is 250 N/m and the mass of
the block is 0.500 kg, determine (a) the mechanical en-
ergy of the system, (b) the maximum speed of the block,
and (c) the maximum acceleration.

19. A 50.0-g object connected to a spring with a force constant
of 35.0 N/m oscillates on a horizontal, frictionless surface

17.

11.



with an amplitude of 4.00 cm. Find (a) the total energy of
the system  and (b) the speed of the object when the posi-
tion is 1.00 cm. Find (c) the kinetic energy and (d) the po-
tential energy when the position is 3.00 cm. 

20. A 2.00-kg object is attached to a spring and placed on a
horizontal, smooth surface. A horizontal force of 20.0 N is
required to hold the object at rest when it is pulled
0.200 m from its equilibrium position (the origin of the x
axis). The object is now released from rest with an initial
position of xi ! 0.200 m, and it subsequently undergoes
simple harmonic oscillations. Find (a) the force constant
of the spring, (b) the frequency of the oscillations, and
(c) the maximum speed of the object. Where does this
maximum speed occur? (d) Find the maximum accelera-
tion of the object. Where does it occur? (e) Find the total
energy of the oscillating system. Find (f) the speed and
(g) the acceleration of the object when its position is equal
to one third of the maximum value.

21. The amplitude of a system moving in simple harmonic mo-
tion is doubled. Determine the change in (a) the total
energy, (b) the maximum speed, (c) the maximum accel-
eration, and (d) the period.

22. A 65.0-kg bungee jumper steps off a bridge with a light
bungee cord tied to herself and to the bridge (Figure
P15.22). The unstretched length of the cord is 11.0 m. She
reaches the bottom of her motion 36.0 m below the bridge
before bouncing back. Her motion can be separated into
an 11.0-m free fall and a 25.0-m section of simple har-
monic oscillation. (a) For what time interval is she in free
fall? (b) Use the principle of conservation of energy to
find the spring constant of the bungee cord. (c) What is
the location of the equilibrium point where the spring
force balances the gravitational force acting on the
jumper? Note that this point is taken as the origin in our
mathematical description of simple harmonic oscillation.
(d) What is the angular frequency of the oscillation?
(e) What time interval is required for the cord to stretch
by 25.0 m? (f ) What is the total time interval for the entire
36.0-m drop? 
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A particle executes simple harmonic motion with an am-
plitude of 3.00 cm. At what position does its speed equal
half its maximum speed?

24. A cart attached to a spring with constant 3.24 N/m vibrates
with position given by x ! (5.00 cm) cos(3.60t rad/s). 
(a) During the first cycle, for 0 $ t $ 1.75 s, just when is
the system’s potential energy changing most rapidly into
kinetic energy? (b) What is the maximum rate of energy
transformation?

Section 15.4 Comparing Simple Harmonic Motion
with Uniform Circular Motion

25. While riding behind a car traveling at 3.00 m/s, you notice
that one of the car’s tires has a small hemispherical bump
on its rim, as in Figure P15.25. (a) Explain why the bump,
from your viewpoint behind the car, executes simple har-
monic motion. (b) If the radii of the car’s tires are
0.300 m, what is the bump’s period of oscillation?

23.

26. Consider the simplified single-piston engine in Figure
P15.26. If the wheel rotates with constant angular speed,
explain why the piston rod oscillates in simple harmonic
motion.

Section 15.5 The Pendulum

Figure P15.22 Problems 22 and 58.
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Problem 60 in Chapter 1 can also be assigned with this
section.



27. A man enters a tall tower, needing to know its height. He
notes that a long pendulum extends from the ceiling
almost to the floor and that its period is 12.0 s. (a) How
tall is the tower? (b) What If? If this pendulum is taken to
the Moon, where the free-fall acceleration is 1.67 m/s2,
what is its period there?

28. A “seconds pendulum” is one that moves through its
equilibrium position once each second. (The period of
the pendulum is precisely 2 s.) The length of a seconds
pendulum is 0.992 7 m at Tokyo, Japan and 0.994 2 m at
Cambridge, England. What is the ratio of the free-fall ac-
celerations at these two locations?

29. A rigid steel frame above a street intersection supports
standard traffic lights, each of which is hinged to hang im-
mediately below the frame. A gust of wind sets a light
swinging in a vertical plane. Find the order of magnitude
of its period. State the quantities you take as data and their
values.

30. The angular position of a pendulum is represented by the
equation . ! (0.320 rad)cos 't, where . is in radians and
' ! 4.43 rad/s. Determine the period and length of the
pendulum.

A simple pendulum has a mass of 0.250 kg and a
length of 1.00 m. It is displaced through an angle of 15.0°
and then released. What are (a) the maximum speed, 
(b) the maximum angular acceleration, and (c) the maxi-
mum restoring force? What If? Solve this problem by us-
ing the simple harmonic motion model for the motion of
the pendulum, and then solve the problem more precisely
by using more general principles. 

32. Review problem. A simple pendulum is 5.00 m long. 
(a) What is the period of small oscillations for this pendu-
lum if it is located in an elevator accelerating upward at
5.00 m/s2? (b) What is its period if the elevator is acceler-
ating downward at 5.00 m/s2? (c) What is the period of
this pendulum if it is placed in a truck that is accelerating
horizontally at 5.00 m/s2?

A particle of mass m slides without friction inside a hemi-
spherical bowl of radius R. Show that, if it starts from rest
with a small displacement from equilibrium, the particle
moves in simple harmonic motion with an angular fre-
quency equal to that of a simple pendulum of length R.
That is, .

34. A small object is attached to the end of a string to
form a simple pendulum. The period of its harmonic mo-
tion is measured for small angular displacements and
three lengths, each time clocking the motion with a stop-
watch for 50 oscillations. For lengths of 1.000 m, 0.750 m,
and 0.500 m, total times of 99.8 s, 86.6 s, and 71.1 s are
measured for 50 oscillations. (a) Determine the period of
motion for each length. (b) Determine the mean value of
g obtained from these three independent measurements,
and compare it with the accepted value. (c) Plot T 2 versus
L, and obtain a value for g from the slope of your best-fit
straight-line graph. Compare this value with that obtained
in part (b).

' ! √g/R

33.

31.

Problems 479

A physical pendulum in the form of a planar body moves
in simple harmonic motion with a frequency of 0.450 Hz.
If the pendulum has a mass of 2.20 kg and the pivot is
located 0.350 m from the center of mass, determine the
moment of inertia of the pendulum about the pivot point.

36. A very light rigid rod with a length of 0.500 m extends
straight out from one end of a meter stick. The stick is
suspended from a pivot at the far end of the rod and is set
into oscillation. (a) Determine the period of oscillation.
Suggestion: Use the parallel-axis theorem from Section 10.5.
(b) By what percentage does the period differ from the
period of a simple pendulum 1.00 m long?

37. Consider the physical pendulum of Figure 15.18. (a) If its
moment of inertia about an axis passing through its center
of mass and parallel to the axis passing through its pivot
point is ICM, show that its period is

where d is the distance between the pivot point and center
of mass. (b) Show that the period has a minimum value
when d satisfies md2 ! ICM.

38. A torsional pendulum is formed by taking a meter stick of
mass 2.00 kg, and attaching to its center a wire. With its
upper end clamped, the vertical wire supports the stick as
the stick turns in a horizontal plane. If the resulting
period is 3.00 minutes, what is the torsion constant for
the wire?

39. A clock balance wheel (Fig. P15.39) has a period of oscilla-
tion of 0.250 s. The wheel is constructed so that its mass of
20.0 g is concentrated around a rim of radius 0.500 cm.
What are (a) the wheel’s moment of inertia and (b) the
torsion constant of the attached spring?

T ! 2) √ ICM % md  2

mgd

35.

Figure P15.39
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Section 15.6 Damped Oscillations
40. Show that the time rate of change of mechanical energy

for a damped, undriven oscillator is given by dE/dt ! " bv2

and hence is always negative. Proceed as follows: Differen-
tiate the expression for the mechanical energy of an oscil-
lator, , and use Equation 15.31.

41. A pendulum with a length of 1.00 m is released from an
initial angle of 15.0°. After 1 000 s, its amplitude has been
reduced by friction to 5.50°. What is the value of b/2m?

42. Show that Equation 15.32 is a solution of Equation 15.31
provided that b2 $ 4mk.

43. A 10.6-kg object oscillates at the end of a vertical spring
that has a spring constant of 2.05 , 104 N/m. The effect
of air resistance is represented by the damping coefficient
b ! 3.00 N 4 s/m. (a) Calculate the frequency of the
damped oscillation. (b) By what percentage does the am-
plitude of the oscillation decrease in each cycle? (c) Find
the time interval that elapses while the energy of the sys-
tem drops to 5.00% of its initial value.

Section 15.7 Forced Oscillations
44. The front of her sleeper wet from teething, a baby rejoices

in the day by crowing and bouncing up and down in her
crib. Her mass is 12.5 kg, and the crib mattress can be
modeled as a light spring with force constant 4.30 kN/m.
(a) The baby soon learns to bounce with maximum ampli-
tude and minimum effort by bending her knees at what
frequency? (b) She learns to use the mattress as a trampo-
line—losing contact with it for part of each cycle—when
her amplitude exceeds what value?

45. A 2.00-kg object attached to a spring moves without 
friction and is driven by an external force given by F !
(3.00 N)sin(2)t). If the force constant of the spring is
20.0 N/m, determine (a) the period and (b) the ampli-
tude of the motion. 

46. Considering an undamped, forced oscillator (b ! 0), show
that Equation 15.35 is a solution of Equation 15.34, with
an amplitude given by Equation 15.36.

47. A weight of 40.0 N is suspended from a spring that has a
force constant of 200 N/m. The system is undamped and is
subjected to a harmonic driving force of frequency 10.0 Hz,
resulting in a forced-motion amplitude of 2.00 cm.
Determine the maximum value of the driving force.

48. Damping is negligible for a 0.150-kg object hanging from a
light 6.30-N/m spring. A sinusoidal force with an ampli-
tude of 1.70 N drives the system. At what frequency will the
force make the object vibrate with an amplitude of
0.440 m?

49. You are a research biologist. You take your emergency
pager along to a fine restaurant. You switch the small
pager to vibrate instead of beep, and you put it into a
side pocket of your suit coat. The arm of your chair
presses the light cloth against your body at one spot. Fab-
ric with a length of 8.21 cm hangs freely below that spot,
with the pager at the bottom. A coworker urgently needs

E ! 1
2 mv  2 % 1

2 kx  2
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instructions and calls you from your laboratory. The mo-
tion of the pager makes the hanging part of your coat
swing back and forth with remarkably large amplitude.
The waiter and nearby diners notice immediately and fall
silent. Your daughter pipes up and says, “Daddy, look!
Your cockroaches must have gotten out again!” Find the
frequency at which your pager vibrates.

50. Four people, each with a mass of 72.4 kg, are in a car with
a mass of 1 130 kg. An earthquake strikes. The driver man-
ages to pull off the road and stop, as the vertical oscilla-
tions of the ground surface make the car bounce up and
down on its suspension springs. When the frequency of the
shaking is 1.80 Hz, the car exhibits a maximum amplitude
of vibration. The earthquake ends, and the four people
leave the car as fast as they can. By what distance does the
car’s undamaged suspension lift the car body as the people
get out?

Additional Problems

A small ball of mass M is attached to the end of a uniform
rod of equal mass M and length L that is pivoted at the top
(Fig. P15.51). (a) Determine the tensions in the rod at the
pivot and at the point P when the system is stationary.
(b) Calculate the period of oscillation for small displace-
ments from equilibrium, and determine this period for
L ! 2.00 m. (Suggestions: Model the object at the end of
the rod as a particle and use Eq. 15.28.)

51.

L

P

y

Pivot

y = 0M

Figure P15.51

52. An object of mass m1 ! 9.00 kg is in equilibrium while
connected to a light spring of constant k ! 100 N/m that
is fastened to a wall as shown in Figure P15.52a. A second
object, m2 ! 7.00 kg, is slowly pushed up against m1, com-
pressing the spring by the amount A ! 0.200 m, (see Fig-
ure P15.52b). The system is then released, and both ob-
jects start moving to the right on the frictionless surface.
(a) When m1 reaches the equilibrium point, m2 loses con-
tact with m1 (see Fig. P15.5c) and moves to the right with
speed v. Determine the value of v. (b) How far apart are
the objects when the spring is fully stretched for the first
time (D in Fig. P15.52d)? (Suggestion: First determine the
period of oscillation and the amplitude of the m1–spring
system after m2 loses contact with m1.)
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A large block P executes horizontal simple harmonic
motion as it slides across a frictionless surface with a fre-
quency f ! 1.50 Hz. Block B rests on it, as shown in Figure
P15.53, and the coefficient of static friction between the
two is 5s ! 0.600. What maximum amplitude of oscillation
can the system have if block B is not to slip?

53.

56. A solid sphere (radius ! R) rolls without slipping in a
cylindrical trough (radius ! 5R) as shown in Figure
P15.56. Show that, for small displacements from equilib-
rium perpendicular to the length of the trough, the
sphere executes simple harmonic motion with a period

.T ! 2) √28R/5g

57. A light, cubical container of volume a3 is initially filled
with a liquid of mass density 6. The cube is initially sup-
ported by a light string to form a simple pendulum of
length Li , measured from the center of mass of the filled
container, where Li ## a. The liquid is allowed to flow
from the bottom of the container at a constant rate
(dM/dt). At any time t , the level of the fluid in the con-
tainer is h and the length of the pendulum is L (measured
relative to the instantaneous center of mass). (a) Sketch
the apparatus and label the dimensions a, h, Li , and L . 
(b) Find the time rate of change of the period as a func-
tion of time t. (c) Find the period as a function of time.

58. After a thrilling plunge, bungee-jumpers bounce freely on
the bungee cord through many cycles (Fig. P15.22). After
the first few cycles, the cord does not go slack. Your little
brother can make a pest of himself by figuring out the
mass of each person, using a proportion which you set up
by solving this problem: An object of mass m is oscillating
freely on a vertical spring with a period T. An object of un-
known mass m7 on the same spring oscillates with a period
T7. Determine (a) the spring constant and (b) the un-
known mass. 

A pendulum of length L and mass M has a spring of force
constant k connected to it at a distance h below its point of
suspension (Fig. P15.59). Find the frequency of vibration

59.
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Figure P15.53 Problems 53 and 54.
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R

Figure P15.56

54. A large block P executes horizontal simple harmonic mo-
tion as it slides across a frictionless surface with a fre-
quency f. Block B rests on it, as shown in Figure P15.53,
and the coefficient of static friction between the two is 5s .
What maximum amplitude of oscillation can the system
have if the upper block is not to slip?

55. The mass of the deuterium molecule (D2) is twice that of
the hydrogen molecule (H2). If the vibrational frequency
of H2 is 1.30 , 1014 Hz, what is the vibrational frequency
of D2? Assume that the “spring constant” of attracting
forces is the same for the two molecules.

h
θ

L

k

M

Figure P15.59
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of the system for small values of the amplitude (small .).
Assume the vertical suspension of length L is rigid, but ig-
nore its mass.

60. A particle with a mass of 0.500 kg is attached to a spring
with a force constant of 50.0 N/m. At time t ! 0 the
particle has its maximum speed of 20.0 m/s and is moving
to the left. (a) Determine the particle’s equation of 
motion, specifying its position as a function of time. 
(b) Where in the motion is the potential energy three
times the kinetic energy? (c) Find the length of a simple
pendulum with the same period. (d) Find the minimum
time interval required for the particle to move from x ! 0
to x ! 1.00 m.

61. A horizontal plank of mass m and length L is pivoted at one
end. The plank’s other end is supported by a spring of force
constant k (Fig P15.61). The moment of inertia of the plank
about the pivot is mL2. The plank is displaced by a small an-
gle . from its horizontal equilibrium position and released.
(a) Show that it moves with simple harmonic motion with an
angular frequency . (b) Evaluate the frequency if
the mass is 5.00 kg and the spring has a force constant of
100 N/m.

' ! √3k/m

1
3 

62. Review problem. A particle of mass 4.00 kg is attached to
a spring with a force constant of 100 N/m. It is oscillating
on a horizontal frictionless surface with an amplitude of
2.00 m. A 6.00-kg object is dropped vertically on top of the
4.00-kg object as it passes through its equilibrium point.
The two objects stick together. (a) By how much does the
amplitude of the vibrating system change as a result of the
collision? (b) By how much does the period change?
(c) By how much does the energy change? (d) Account for
the change in energy.

A simple pendulum with a length of 2.23 m and a mass of
6.74 kg is given an initial speed of 2.06 m/s at its equilib-
rium position. Assume it undergoes simple harmonic
motion, and determine its (a) period, (b) total energy, and
(c) maximum angular displacement.

64. Review problem. One end of a light spring with force con-
stant 100 N/m is attached to a vertical wall. A light string is
tied to the other end of the horizontal spring. The string
changes from horizontal to vertical as it passes over a solid
pulley of diameter 4.00 cm. The pulley is free to turn on a
fixed smooth axle. The vertical section of the string sup-
ports a 200-g object. The string does not slip at its contact
with the pulley. Find the frequency of oscillation of the
object if the mass of the pulley is (a) negligible, (b) 250 g,
and (c) 750 g.

63.

65. People who ride motorcycles and bicycles learn to look out
for bumps in the road, and especially for washboarding, a
condition in which many equally spaced ridges are worn
into the road. What is so bad about washboarding? A mo-
torcycle has several springs and shock absorbers in its sus-
pension, but you can model it as a single spring supporting
a block. You can estimate the force constant by thinking
about how far the spring compresses when a big biker sits
down on the seat. A motorcyclist traveling at highway
speed must be particularly careful of washboard bumps
that are a certain distance apart. What is the order of mag-
nitude of their separation distance? State the quantities
you take as data and the values you measure or estimate
for them.

66. A block of mass M is connected to a spring of mass m
and oscillates in simple harmonic motion on a horizon-
tal, frictionless track (Fig. P15.66). The force constant of
the spring is k and the equilibrium length is !. Assume
that all portions of the spring oscillate in phase and that
the velocity of a segment dx is proportional to the dis-
tance x from the fixed end; that is, vx ! (x/!)v. Also,
note that the mass of a segment of the spring
is dm ! (m/!)dx. Find (a) the kinetic energy of the
system when the block has a speed v and (b) the period
of oscillation.

Pivot

θ

k

Figure P15.61

x

dx

M

v

Figure P15.66

A ball of mass m is connected to two rubber bands of
length L, each under tension T, as in Figure P15.67. The
ball is displaced by a small distance y perpendicular to the
length of the rubber bands. Assuming that the tension
does not change, show that (a) the restoring force
is " (2T/L)y and (b) the system exhibits simple harmonic 
motion with an angular frequency .' ! √2T/mL

67.

y

L L

Figure P15.67

68. When a block of mass M, connected to the end of a
spring of mass ms ! 7.40 g and force constant k, is set into
simple harmonic motion, the period of its motion is 

A two-part experiment is conducted with the use of
blocks of various masses suspended vertically from the

- ! 2) √ M % (ms/3)
k



m

(a)

k1 k2

(b)

k1 k2

m

Figure P15.71
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spring, as shown in Figure P15.68. (a) Static extensions
of 17.0, 29.3, 35.3, 41.3, 47.1, and 49.3 cm are measured
for M values of 20.0, 40.0, 50.0, 60.0, 70.0, and 80.0 g, re-
spectively. Construct a graph of Mg versus x, and per-
form a linear least-squares fit to the data. From the slope
of your graph, determine a value for k for this spring.
(b) The system is now set into simple harmonic motion,
and periods are measured with a stopwatch. With
M ! 80.0 g, the total time for 10 oscillations is measured
to be 13.41 s. The experiment is repeated with M values
of 70.0, 60.0, 50.0, 40.0, and 20.0 g, with corresponding
times for 10 oscillations of 12.52, 11.67, 10.67, 9.62, and
7.03 s. Compute the experimental value for T from each
of these measurements. Plot a graph of T 2 versus M, and
determine a value for k from the slope of the linear least-
squares fit through the data points. Compare this value
of k with that obtained in part (a). (c) Obtain a value for
ms from your graph and compare it with the given value
of 7.40 g.

A smaller disk of radius r and mass m is attached rigidly to
the face of a second larger disk of radius R and mass M as
shown in Figure P15.69. The center of the small disk is
located at the edge of the large disk. The large disk is
mounted at its center on a frictionless axle. The assembly is
rotated through a small angle . from its equilibrium position
and released. (a) Show that the speed of the center of the
small disk as it passes through the equilibrium position is

(b) Show that the period of the motion is

T ! 2) % (M % 2m)R  2 % mr  2

2mgR &1/2

v ! 2 % Rg(1 " cos .)
(M/m) % (r/R)2 % 2 &

1/2

69.

70. Consider a damped oscillator as illustrated in Figures
15.21 and 15.22. Assume the mass is 375 g, the spring
constant is 100 N/m, and b ! 0.100 N 4 s/m. (a) How
long does it takes for the amplitude to drop to half its
initial value? (b) What If? How long does it take for the
mechanical energy to drop to half its initial value? 
(c) Show that, in general, the fractional rate at which the
amplitude decreases in a damped harmonic oscillator is
half the fractional rate at which the mechanical energy
decreases.

71. A block of mass m is connected to two springs of force con-
stants k1 and k2 as shown in Figures P15.71a and P15.71b.
In each case, the block moves on a frictionless table after it
is displaced from equilibrium and released. Show that in
the two cases the block exhibits simple harmonic motion
with periods

(b)      T ! 2) √ m
k1 % k2

(a)      T ! 2) √ m(k1 % k2)
k1k2

72. A lobsterman’s buoy is a solid wooden cylinder of radius r
and mass M. It is weighted at one end so that it floats up-
right in calm sea water, having density 6. A passing shark
tugs on the slack rope mooring the buoy to a lobster trap,
pulling the buoy down a distance x from its equilibrium
position and releasing it. Show that the buoy will execute
simple harmonic motion if the resistive effects of the
water are neglected, and determine the period of the
oscillations.

73. Consider a bob on a light stiff rod, forming a simple
pendulum of length L ! 1.20 m. It is displaced from the
vertical by an angle .max and then released. Predict the
subsequent angular positions if .max is small or if it is large.
Proceed as follows: Set up and carry out a numerical
method to integrate the equation of motion for the simple
pendulum:

d  2.

dt2 ! "
g
L

 sin .

R

M

θθ

mv

Figure P15.69

m

Figure P15.68



Take the initial conditions to be . ! .max and d./dt ! 0 at
t ! 0. On one trial choose .max ! 5.00°, and on another
trial take .max ! 100°. In each case find the position . as a
function of time. Using the same values of .max, compare
your results for . with those obtained from .(t) !
.max cos 't. How does the period for the large value of
.max compare with that for the small value of .max? Note:
Using the Euler method to solve this differential equation,
you may find that the amplitude tends to increase with
time. The fourth-order Runge–Kutta method would be a
better choice to solve the differential equation. However, if
you choose +t small enough, the solution using Euler’s
method can still be good.

74. Your thumb squeaks on a plate you have just washed. Your
sneakers often squeak on the gym floor. Car tires squeal
when you start or stop abruptly. You can make a goblet
sing by wiping your moistened finger around its rim. As
you slide it across the table, a Styrofoam cup may not make
much sound, but it makes the surface of some water inside
it dance in a complicated resonance vibration. When chalk
squeaks on a blackboard, you can see that it makes a row
of regularly spaced dashes. As these examples suggest, vi-
bration commonly results when friction acts on a moving
elastic object. The oscillation is not simple harmonic mo-
tion, but is called stick-and-slip. This problem models stick-
and-slip motion. 

A block of mass m is attached to a fixed support by a
horizontal spring with force constant k and negligible mass
(Fig. P15.74). Hooke’s law describes the spring both in
extension and in compression. The block sits on a long
horizontal board, with which it has coefficient of static
friction 5s and a smaller coefficient of kinetic friction 5k .
The board moves to the right at constant speed v. Assume
that the block spends most of its time sticking to the board
and moving to the right, so that the speed v is small in com-
parison to the average speed the block has as it slips back
toward the left. (a) Show that the maximum extension of
the spring from its unstressed position is very nearly given
by 5smg/k. (b) Show that the block oscillates around an
equilibrium position at which the spring is stretched by
5kmg/k. (c) Graph the block’s position versus time.
(d) Show that the amplitude of the block’s motion is 

(e) Show that the period of the block’s motion is 

(f ) Evaluate the frequency of the motion if 5s ! 0.400,
5k ! 0.250, m ! 0.300 kg, k ! 12.0 N/m, and v !
2.40 cm/s. (g) What If? What happens to the frequency if
the mass increases? (h) If the spring constant increases? 
(i) If the speed of the board increases? ( j) If the coefficient
of static friction increases relative to the coefficient of ki-
netic friction? Note that it is the excess of static over kinetic
friction that is important for the vibration. “The squeaky
wheel gets the grease” because even a viscous fluid cannot
exert a force of static friction.

T !
2(5s " 5k)mg

vk
% ) √ m

k

A !
(5s " 5k)mg

k

75. Review problem. Imagine that a hole is drilled through
the center of the Earth to the other side. An object of mass
m at a distance r from the center of the Earth is pulled to-
ward the center of the Earth only by the mass within the
sphere of radius r (the reddish region in Fig. P15.75). 
(a) Write Newton’s law of gravitation for an object at the
distance r from the center of the Earth, and show that the
force on it is of Hooke’s law form, F ! " kr, where the ef-
fective force constant is k ! (4/3))6Gm. Here 6 is the
density of the Earth, assumed uniform, and G is the
gravitational constant. (b) Show that a sack of mail
dropped into the hole will execute simple harmonic mo-
tion if it moves without friction. When will it arrive at the
other side of the Earth? 
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Figure P15.74

Earth

m
r

Figure P15.75

Answers to Quick Quizzes
15.1 (d). From its maximum positive position to the equilib-

rium position, the block travels a distance A. It then goes
an equal distance past the equilibrium position to its
maximum negative position. It then repeats these two
motions in the reverse direction to return to its original
position and complete one cycle.

15.2 (f). The object is in the region x $ 0, so the position is
negative. Because the object is moving back toward the
origin in this region, the velocity is positive.
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15.3 (a). The amplitude is larger because the curve for Object
B shows that the displacement from the origin (the verti-
cal axis on the graph) is larger. The frequency is larger
for Object B because there are more oscillations per unit
time interval.

15.4 (a). The velocity is positive, as in Quick Quiz 15.2. Because
the spring is pulling the object toward equilibrium from
the negative x region, the acceleration is also positive.

15.5 (b). According to Equation 15.13, the period is propor-
tional to the square root of the mass.

15.6 (c). The amplitude of the simple harmonic motion is the
same as the radius of the circular motion. The initial posi-
tion of the object in its circular motion is ) radians from
the positive x axis.

15.7 (a). With a longer length, the period of the pendulum will
increase. Thus, it will take longer to execute each swing,
so that each second according to the clock will take
longer than an actual second—the clock will run slow.

15.8 (a). At the top of the mountain, the value of g is less than
that at sea level. As a result, the period of the pendulum
will increase and the clock will run slow. 

15.9 (a). If your goal is simply to stop the bounce from an ab-
sorbed shock as rapidly as possible, you should critically
damp the suspension. Unfortunately, the stiffness of this
design makes for an uncomfortable ride. If you under-
damp the suspension, the ride is more comfortable but the
car bounces. If you overdamp the suspension, the wheel is
displaced from its equilibrium position longer than it
should be. (For example, after hitting a bump, the spring
stays compressed for a short time and the wheel does not
quickly drop back down into contact with the road after
the wheel is past the bump—a dangerous situation.) Be-
cause of all these considerations, automotive engineers
usually design suspensions to be slightly underdamped.
This allows the suspension to absorb a shock rapidly (mini-
mizing the roughness of the ride) and then return to equi-
librium after only one or two noticeable oscillations.
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Chapter 16

Wave Motion

! The rich sound of a piano is due to waves on strings that are under tension. Many such
strings can be seen in this photograph. Waves also travel on the soundboard, which is
visible below the strings. In this chapter, we study the fundamental principles of wave
phenomena. (Kathy Ferguson Johnson/PhotoEdit/PictureQuest)
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Most of us experienced waves as children when we dropped a pebble into a pond. At
the point where the pebble hits the water’s surface, waves are created. These waves
move outward from the creation point in expanding circles until they reach the shore.
If you were to examine carefully the motion of a beach ball floating on the disturbed
water, you would see that the ball moves vertically and horizontally about its original
position but does not undergo any net displacement away from or toward the point
where the pebble hit the water. The small elements of water in contact with the beach
ball, as well as all the other water elements on the pond’s surface, behave in the same
way. That is, the water wave moves from the point of origin to the shore, but the water
is not carried with it.

The world is full of waves, the two main types being mechanical waves and electromag-
netic waves. In the case of mechanical waves, some physical medium is being dis-
turbed—in our pebble and beach ball example, elements of water are disturbed. Elec-
tromagnetic waves do not require a medium to propagate; some examples of
electromagnetic waves are visible light, radio waves, television signals, and x-rays. Here,
in this part of the book, we study only mechanical waves.

The wave concept is abstract. When we observe what we call a water wave, what we
see is a rearrangement of the water’s surface. Without the water, there would be no
wave. A wave traveling on a string would not exist without the string. Sound waves
could not travel from one point to another if there were no air molecules between the
two points. With mechanical waves, what we interpret as a wave corresponds to the
propagation of a disturbance through a medium.

Considering further the beach ball floating on the water, note that we have caused
the ball to move at one point in the water by dropping a pebble at another location.
The ball has gained kinetic energy from our action, so energy must have transferred
from the point at which we drop the pebble to the position of the ball. This is a central
feature of wave motion—energy is transferred over a distance, but matter is not.

All waves carry energy, but the amount of energy transmitted through a medium
and the mechanism responsible for that transport of energy differ from case to case.
For instance, the power of ocean waves during a storm is much greater than the power
of sound waves generated by a single human voice.

16.1 Propagation of a Disturbance

In the introduction, we alluded to the essence of wave motion—the transfer of energy
through space without the accompanying transfer of matter. In the list of energy
transfer mechanisms in Chapter 7, two mechanisms depend on waves—mechanical
waves and electromagnetic radiation. By contrast, in another mechanism—matter
transfer—the energy transfer is accompanied by a movement of matter through space.

All mechanical waves require (1) some source of disturbance, (2) a medium
that can be disturbed, and (3) some physical mechanism through which
elements of the medium can influence each other. One way to demonstrate wave
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motion is to flick one end of a long rope that is under tension and has its opposite end
fixed, as shown in Figure 16.1. In this manner, a single bump (called a pulse) is formed
and travels along the rope with a definite speed. Figure 16.1 represents four consecu-
tive “snapshots” of the creation and propagation of the traveling pulse. The rope is the
medium through which the pulse travels. The pulse has a definite height and a definite
speed of propagation along the medium (the rope). As we shall see later, the proper-
ties of this particular medium that determine the speed of the disturbance are the ten-
sion in the rope and its mass per unit length. The shape of the pulse changes very little
as it travels along the rope.1

We shall first focus our attention on a pulse traveling through a medium. Once we
have explored the behavior of a pulse, we will then turn our attention to a wave, which is
a periodic disturbance traveling through a medium. We created a pulse on our rope by
flicking the end of the rope once, as in Figure 16.1. If we were to move the end of the
rope up and down repeatedly, we would create a traveling wave, which has characteris-
tics that a pulse does not have. We shall explore these characteristics in Section 16.2.

As the pulse in Figure 16.1 travels, each disturbed element of the rope moves in a
direction perpendicular to the direction of propagation. Figure 16.2 illustrates this point
for one particular element, labeled P. Note that no part of the rope ever moves in the
direction of the propagation.

Figure 16.1 A pulse traveling
down a stretched rope. The shape
of the pulse is approximately un-
changed as it travels along the rope.

Figure 16.2 A transverse pulse
traveling on a stretched rope. The
direction of motion of any element
P of the rope (blue arrows) is per-
pendicular to the direction of
propagation (red arrows).

Figure 16.3 A longitudinal pulse along a stretched spring. The displacement of the
coils is parallel to the direction of the propagation. 

P

P

P

P

A traveling wave or pulse that causes the elements of the disturbed medium to move
perpendicular to the direction of propagation is called a transverse wave.

A traveling wave or pulse that causes the elements of the medium to move parallel
to the direction of propagation is called a longitudinal wave.

Compare this with another type of pulse—one moving down a long, stretched
spring, as shown in Figure 16.3. The left end of the spring is pushed briefly to the right
and then pulled briefly to the left. This movement creates a sudden compression of a
region of the coils. The compressed region travels along the spring (to the right in Fig-
ure 16.3). The compressed region is followed by a region where the coils are extended.
Notice that the direction of the displacement of the coils is parallel to the direction of
propagation of the compressed region.

Compressed Compressed

StretchedStretched

1 In reality, the pulse changes shape and gradually spreads out during the motion. This effect is
called dispersion and is common to many mechanical waves as well as to electromagnetic waves. We do
not consider dispersion in this chapter.

Sound waves, which we shall discuss in Chapter 17, are another example of longitu-
dinal waves. The disturbance in a sound wave is a series of high-pressure and low-
pressure regions that travel through air.

Some waves in nature exhibit a combination of transverse and longitudinal dis-
placements. Surface water waves are a good example. When a water wave travels on the
surface of deep water, elements of water at the surface move in nearly circular paths, as
shown in Figure 16.4. Note that the disturbance has both transverse and longitudinal
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components. The transverse displacements seen in Figure 16.4 represent the variations
in vertical position of the water elements. The longitudinal displacement can be ex-
plained as follows: as the wave passes over the water’s surface, water elements at the
highest points move in the direction of propagation of the wave, whereas elements at
the lowest points move in the direction opposite the propagation.

The three-dimensional waves that travel out from points under the Earth’s surface
along a fault at which an earthquake occurs are of both types—transverse and longitu-
dinal. The longitudinal waves are the faster of the two, traveling at speeds in the range
of 7 to 8 km/s near the surface. These are called P waves (with “P” standing for pri-
mary) because they travel faster than the transverse waves and arrive at a seismograph
(a device used to detect waves due to earthquakes) first. The slower transverse waves,
called S waves (with “S” standing for secondary), travel through the Earth at 4 to 5
km/s near the surface. By recording the time interval between the arrivals of these two
types of waves at a seismograph, the distance from the seismograph to the point of ori-
gin of the waves can be determined. A single measurement establishes an imaginary
sphere centered on the seismograph, with the radius of the sphere determined by the
difference in arrival times of the P and S waves. The origin of the waves is located
somewhere on that sphere. The imaginary spheres from three or more monitoring sta-
tions located far apart from each other intersect at one region of the Earth, and this re-
gion is where the earthquake occurred.

Consider a pulse traveling to the right on a long string, as shown in Figure 16.5.
Figure 16.5a represents the shape and position of the pulse at time t ! 0. At this time,
the shape of the pulse, whatever it may be, can be represented by some mathematical
function which we will write as y(x, 0) ! f(x). This function describes the transverse
position y of the element of the string located at each value of x at time t ! 0. Because
the speed of the pulse is v, the pulse has traveled to the right a distance vt at the time t
(Fig. 16.5b). We assume that the shape of the pulse does not change with time. Thus,
at time t, the shape of the pulse is the same as it was at time t ! 0, as in Figure 16.5a.

Active Figure 16.4 The motion of water elements on the surface of deep water in
which a wave is propagating is a combination of transverse and longitudinal displace-
ments, with the result that elements at the surface move in nearly circular paths. Each
element is displaced both horizontally and vertically from its equilibrium position.

Velocity of
propagation

A

y

(a) Pulse at t = 0

O

vt

xO

y

x

v

P

(b) Pulse at time t

P

v

Figure 16.5 A one-dimensional pulse traveling to the right with a speed v. (a) At t ! 0,
the shape of the pulse is given by y ! f (x). (b) At some later time t, the shape remains
unchanged and the vertical position of an element of the medium any point P is given
by y ! f (x " vt).

At the Active Figures link at http://www.pse6.com, you can observe the
displacement of water elements at the surface of the moving waves.



Consequently, an element of the string at x at this time has the same y position as an
element located at x " vt had at time t ! 0:

y(x, t) ! y(x " vt, 0)

In general, then, we can represent the transverse position y for all positions and times,
measured in a stationary frame with the origin at O, as

y(x, t) ! f (x " vt) (16.1)

Similarly, if the pulse travels to the left, the transverse positions of elements of the
string are described by

y(x, t) ! f (x # vt) (16.2)

The function y, sometimes called the wave function, depends on the two variables
x and t. For this reason, it is often written y(x, t), which is read “y as a function of x
and t.”

It is important to understand the meaning of y. Consider an element of the string
at point P, identified by a particular value of its x coordinate. As the pulse passes
through P, the y coordinate of this element increases, reaches a maximum, and then
decreases to zero. The wave function y(x, t) represents the y coordinate—the
transverse position—of any element located at position x at any time t. Further-
more, if t is fixed (as, for example, in the case of taking a snapshot of the pulse), then
the wave function y(x), sometimes called the waveform, defines a curve representing
the actual geometric shape of the pulse at that time.
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Pulse traveling to the right

A pulse moving to the right along the x axis is represented
by the wave function

where x and y are measured in centimeters and t is mea-
sured in seconds. Plot the wave function at t ! 0, t ! 1.0 s,
and t ! 2.0 s.

Solution First, note that this function is of the form
y ! f (x " vt). By inspection, we see that the wave speed is
v ! 3.0 cm/s. Furthermore, the maximum value of y is given
by A ! 2.0 cm. (We find the maximum value of the function
representing y by letting x " 3.0t ! 0.) The wave function
expressions are

y(x, 1.0) !
2

(x " 3.0)2 # 1
  at t ! 1.0 s

y(x, 0) !
2

x2 # 1
  at t ! 0

y(x, t) !
2

(x " 3.0t)2 # 1
We now use these expressions to plot the wave function ver-
sus x at these times. For example, let us evaluate y(x, 0) at
x ! 0.50 cm:

Likewise, at x ! 1.0 cm, y(1.0, 0) ! 1.0 cm, and at y ! 2.0 cm,
y(2.0, 0) ! 0.40 cm. Continuing this procedure for other val-
ues of x yields the wave function shown in Figure 16.6a. In a
similar manner, we obtain the graphs of y(x, 1.0) and y(x, 2.0),
shown in Figure 16.6b and c, respectively. These snapshots
show that the pulse moves to the right without changing its
shape and that it has a constant speed of 3.0 cm/s.

What If? (A) What if the wave function were

y(x, t) !
2

(x # 3.0t)2 # 1

y(0.50, 0) !
2

(0.50)2 # 1
! 1.6 cm

y(x, 2.0) !
2

(x " 6.0)2 # 1
  at t ! 2.0 s

Pulse traveling to the left

Example 16.1 A Pulse Moving to the Right

Quick Quiz 16.1 In a long line of people waiting to buy tickets, the first per-
son leaves and a pulse of motion occurs as people step forward to fill the gap. As each
person steps forward, the gap moves through the line. Is the propagation of this gap
(a) transverse (b) longitudinal?

Quick Quiz 16.2 Consider the “wave” at a baseball game: people stand up
and shout as the wave arrives at their location, and the resultant pulse moves around
the stadium. Is this wave (a) transverse (b) longitudinal?
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Figure 16.6 (Example 16.1) Graphs of the function y(x, t) !
2/[(x " 3.0t)2 # 1] at (a) t ! 0, (b) t ! 1.0 s, and (c) t ! 2.0 s.
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How would this change the situation?

(B) What if the wave function were

How would this change the situation?

y(x, t) !
4

(x " 3.0t)2 # 1

Answer (A) The new feature in this expression is the plus
sign in the denominator rather than the minus sign. This re-
sults in a pulse with the same shape as that in Figure 16.6,
but moving to the left as time progresses.

(B) The new feature here is the numerator of 4 rather than
2. This results in a pulse moving to the right, but with twice
the height of that in Figure 16.6.

16.2 Sinusoidal Waves

In this section, we introduce an important wave function whose shape is shown in
Figure 16.7. The wave represented by this curve is called a sinusoidal wave because
the curve is the same as that of the function sin $ plotted against $. On a rope, a sinu-
soidal wave could be established by shaking the end of the rope up and down in simple
harmonic motion.

The sinusoidal wave is the simplest example of a periodic continuous wave and can
be used to build more complex waves (see Section 18.8). The brown curve in Figure
16.7 represents a snapshot of a traveling sinusoidal wave at t ! 0, and the blue curve
represents a snapshot of the wave at some later time t. Notice two types of motion that
can be seen in your mind. First, the entire waveform in Figure 16.7 moves to the right,
so that the brown curve moves toward the right and eventually reaches the position of
the blue curve. This is the motion of the wave. If we focus on one element of the
medium, such as the element at x ! 0, we see that each element moves up and down
along the y axis in simple harmonic motion. This is the motion of the elements of the
medium. It is important to differentiate between the motion of the wave and the motion
of the elements of the medium.

Figure 16.8a shows a snapshot of a wave moving through a medium. Figure 16.8b
shows a graph of the position of one element of the medium as a function of time. The

t = 0 t

y

x

v
vt

Active Figure 16.7 A one-dimen-
sional sinusoidal wave traveling to
the right with a speed v. The brown
curve represents a snapshot of the
wave at t ! 0, and the blue curve
represents a snapshot at some later
time t.

At the Active Figures link
at http://www.pse6.com, you
can watch the wave move and
take snapshots of it at various
times.



point at which the displacement of the element from its normal position is highest is
called the crest of the wave. The distance from one crest to the next is called the
wavelength % (Greek lambda). More generally, the wavelength is the minimum dis-
tance between any two identical points (such as the crests) on adjacent waves, as
shown in Figure 16.8a.

If you count the number of seconds between the arrivals of two adjacent crests at a
given point in space, you are measuring the period T of the waves. In general, the pe-
riod is the time interval required for two identical points (such as the crests) of
adjacent waves to pass by a point. The period of the wave is the same as the period
of the simple harmonic oscillation of one element of the medium. 

The same information is more often given by the inverse of the period, which is
called the frequency f. In general, the frequency of a periodic wave is the number
of crests (or troughs, or any other point on the wave) that pass a given point in a
unit time interval. The frequency of a sinusoidal wave is related to the period by the
expression

(16.3)

The frequency of the wave is the same as the frequency of the simple harmonic oscilla-
tion of one element of the medium. The most common unit for frequency, as we
learned in Chapter 15, is second"1, or hertz (Hz). The corresponding unit for T is 
seconds.

The maximum displacement from equilibrium of an element of the medium is
called the amplitude A of the wave.

Waves travel with a specific speed, and this speed depends on the properties of the
medium being disturbed. For instance, sound waves travel through room-temperature
air with a speed of about 343 m/s (781 mi/h), whereas they travel through most solids
with a speed greater than 343 m/s.

Consider the sinusoidal wave in Figure 16.8a, which shows the position of the wave
at t ! 0. Because the wave is sinusoidal, we expect the wave function at this instant to
be expressed as y(x, 0) ! A sin ax, where A is the amplitude and a is a constant to be
determined. At x ! 0, we see that y(0, 0) ! A sin a(0) ! 0, consistent with Figure
16.8a. The next value of x for which y is zero is x ! %/2. Thus,

For this to be true, we must have a(%/2) ! &, or a ! 2&/%. Thus, the function de-
scribing the positions of the elements of the medium through which the sinusoidal
wave is traveling can be written

(16.4)

where the constant A represents the wave amplitude and the constant % is the wave-
length. We see that the vertical position of an element of the medium is the same
whenever x is increased by an integral multiple of %. If the wave moves to the right with
a speed v, then the wave function at some later time t is

(16.5)

That is, the traveling sinusoidal wave moves to the right a distance vt in the time t, as
shown in Figure 16.7. Note that the wave function has the form f (x " vt) (Eq. 16.1). If
the wave were traveling to the left, the quantity x " vt would be replaced by x # vt, as
we learned when we developed Equations 16.1 and 16.2.

y(x, t) ! A sin ! 2&

%
 (x " vt)"

y(x, 0) ! A sin # 2&

%
 x$

y # %

2
, 0$ ! A sin a # %

2 $ ! 0

f !
1
T
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Active Figure 16.8 (a) The wave-
length % of a wave is the distance
between adjacent crests or adjacent
troughs. (b) The period T of a wave
is the time interval required for the
wave to travel one wavelength.

λ

y

λ

x

(a)

T

y

t

(b)

A

A

T

At the Active Figures link
at http://www.pse6.com, you
can change the parameters to
see the effect on the wave
function.

! PITFALL PREVENTION
16.1 What’s the

Difference Between
Figure 16.8a and
16.8b?

Notice the visual similarity be-
tween Figures 16.8a and 16.8b.
The shapes are the same, but
(a) is a graph of vertical position
versus horizontal position while
(b) is vertical position versus
time. Figure 16.8a is a pictorial
representation of the wave for a
series of particles of the medium—
this is what you would see at an
instant of time. Figure 16.8b is a
graphical representation of the
position of one element of the
medium as a function of time. The
fact that both figures have the
identical shape represents Equa-
tion 16.1—a wave is the same
function of both x and t.
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By definition, the wave travels a distance of one wavelength in one period T. There-
fore, the wave speed, wavelength, and period are related by the expression

(16.6)

Substituting this expression for v into Equation 16.5, we find that

(16.7)

This form of the wave function shows the periodic nature of y. (We will often use y
rather than y(x, t) as a shorthand notation.) At any given time t, y has the same value at
the positions x, x # %, x # 2%, and so on. Furthermore, at any given position x, the
value of y is the same at times t, t # T, t # 2T, and so on.

We can express the wave function in a convenient form by defining two other quan-
tities, the angular wave number k (usually called simply the wave number) and the
angular frequency ':

(16.8)

(16.9)

Using these definitions, we see that Equation 16.7 can be written in the more compact
form

(16.10)

Using Equations 16.3, 16.8, and 16.9, we can express the wave speed v originally
given in Equation 16.6 in the alternative forms

(16.11)

(16.12)

The wave function given by Equation 16.10 assumes that the vertical position y of
an element of the medium is zero at x ! 0 and t ! 0. This need not be the case. If it is
not, we generally express the wave function in the form

y ! A sin(kx " 't # () (16.13)

where ( is the phase constant, just as we learned in our study of periodic motion in
Chapter 15. This constant can be determined from the initial conditions.

v ! %f

 v !
'

k

y ! A sin(kx " 't)

' % 
2&

T

k % 
2&

%

y ! A sin !2&  # x
%

"
t
T $"

v !
%

T

Angular wave number

Speed of a sinusoidal wave

General expression for a
sinusoidal wave

Wave function for a sinusoidal
wave

Angular frequency

Quick Quiz 16.3 A sinusoidal wave of frequency f is traveling along a
stretched string. The string is brought to rest, and a second traveling wave of frequency
2f is established on the string. The wave speed of the second wave is (a) twice that of
the first wave (b) half that of the first wave (c) the same as that of the first wave (d) im-
possible to determine.

Quick Quiz 16.4 Consider the waves in Quick Quiz 16.3 again. The wave-
length of the second wave is (a) twice that of the first wave (b) half that of the first wave
(c) the same as that of the first wave (d) impossible to determine.



Sinusoidal Waves on Strings

In Figure 16.1, we demonstrated how to create a pulse by jerking a taut string up and
down once. To create a series of such pulses—a wave—we can replace the hand with an
oscillating blade. If the wave consists of a series of identical waveforms, whatever their
shape, the relationships f ! 1/T and v ! f % among speed, frequency, period, and
wavelength hold true. We can make more definite statements about the wave function
if the source of the waves vibrates in simple harmonic motion. Figure 16.10 represents
snapshots of the wave created in this way at intervals of T/4. Because the end of the
blade oscillates in simple harmonic motion, each element of the string, such as that
at P, also oscillates vertically with simple harmonic motion. This must be the case
because each element follows the simple harmonic motion of the blade. Therefore,
every element of the string can be treated as a simple harmonic oscillator vibrating
with a frequency equal to the frequency of oscillation of the blade.2 Note that although
each element oscillates in the y direction, the wave travels in the x direction with a
speed v. Of course, this is the definition of a transverse wave.

If the wave at t ! 0 is as described in Figure 16.10b, then the wave function can be
written as

y ! A sin(kx " 't)
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2 In this arrangement, we are assuming that a string element always oscillates in a vertical line. The
tension in the string would vary if an element were allowed to move sideways. Such motion would make
the analysis very complex.

Quick Quiz 16.5 Consider the waves in Quick Quiz 16.3 again. The ampli-
tude of the second wave is (a) twice that of the first wave (b) half that of the first wave
(c) the same as that of the first wave (d) impossible to determine.

A sinusoidal wave traveling in the positive x direction has an
amplitude of 15.0 cm, a wavelength of 40.0 cm, and a fre-
quency of 8.00 Hz. The vertical position of an element of
the medium at t ! 0 and x ! 0 is also 15.0 cm, as shown in
Figure 16.9.

(A) Find the wave number k, period T, angular frequency ',
and speed v of the wave.

Solution Using Equations 16.8, 16.3, 16.9, and 16.12, we
find the following:

(B) Determine the phase constant (, and write a general
expression for the wave function.

Solution Because A ! 15.0 cm and because y ! 15.0 cm at
x ! 0 and t ! 0, substitution into Equation 16.13 gives

320 cm/s v ! %f ! (40.0 cm)(8.00 s"
 
1) !

50.3 rad/s ' ! 2&f ! 2&(8.00 s"
 
1) !

0.125 s T !
1
f

!
1

8.00 s"  1 !

0.157 rad/cm k !
2&

%
!

2& rad
40.0 cm

!

15.0 ! (15.0) sin ( or sin ( ! 1
We may take the principal value ( ! &/2 rad (or 90°).
Hence, the wave function is of the form

By inspection, we can see that the wave function must have
this form, noting that the cosine function has the same
shape as the sine function displaced by 90°. Substituting the
values for A, k, and ' into this expression, we obtain

(15.0 cm) cos(0.157x " 50.3t)y !

y ! A sin #kx " 't #
&

2 $ ! A cos(kx " 't)

y(cm)

40.0 cm

15.0 cm
x(cm)

Figure 16.9 (Example 16.2) A sinusoidal wave of wavelength
% ! 40.0 cm and amplitude A ! 15.0 cm. The wave function
can be written in the form y ! A cos(kx " 't).

Example 16.2 A Traveling Sinusoidal Wave
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We can use this expression to describe the motion of any element of the string. An ele-
ment at point P (or any other element of the string) moves only vertically, and so its x
coordinate remains constant. Therefore, the transverse speed vy (not to be confused
with the wave speed v) and the transverse acceleration ay of elements of the string are

(16.14)

(16.15)

In these expressions, we must use partial derivatives (see Section 8.5) because y de-
pends on both x and t. In the operation )y/)t, for example, we take a derivative with
respect to t while holding x constant. The maximum values of the transverse speed and
transverse acceleration are simply the absolute values of the coefficients of the cosine
and sine functions:

vy, max ! 'A (16.16)

ay, max ! '2A (16.17)

The transverse speed and transverse acceleration of elements of the string do not
reach their maximum values simultaneously. The transverse speed reaches its maxi-
mum value ('A) when y ! 0, whereas the magnitude of the transverse acceleration
reaches its maximum value ('2A) when y ! * A. Finally, Equations 16.16 and 16.17 are
identical in mathematical form to the corresponding equations for simple harmonic
motion, Equations 15.17 and 15.18.

ay !
dvy

dt "x !  constant
!

)vy

)t
! "  '2A sin(kx " 't)

vy !
dy
dt "x !  constant

!
)y
)t

! "'A cos(kx " 't)

Active Figure 16.10 One method for producing a sinusoidal wave on a string. The left
end of the string is connected to a blade that is set into oscillation. Every element of the
string, such as that at point P, oscillates with simple harmonic motion in the vertical
direction.

! PITFALL PREVENTION
16.2 Two Kinds of

Speed/Velocity
Do not confuse v, the speed of
the wave as it propagates along
the string, with vy , the transverse
velocity of a point on the string.
The speed v is constant while vy
varies sinusoidally.

Quick Quiz 16.6 The amplitude of a wave is doubled, with no other
changes made to the wave. As a result of this doubling, which of the following state-
ments is correct? (a) The speed of the wave changes. (b) The frequency of the wave
changes. (c) The maximum transverse speed of an element of the medium changes.
(d) All of these are true. (e) None of these is true.

P

(a)

A

y

Vibrating
blade

(c)

P

P

P

(b)

(d)

λ

At the Active Figures link
at http://www.pse6.com, you
can adjust the frequency of the
blade.



16.3 The Speed of Waves on Strings

In this section, we focus on determining the speed of a transverse pulse traveling on a
taut string. Let us first conceptually predict the parameters that determine the speed.
If a string under tension is pulled sideways and then released, the tension is responsi-
ble for accelerating a particular element of the string back toward its equilibrium posi-
tion. According to Newton’s second law, the acceleration of the element increases with
increasing tension. If the element returns to equilibrium more rapidly due to this in-
creased acceleration, we would intuitively argue that the wave speed is greater. Thus,
we expect the wave speed to increase with increasing tension.

Likewise, the wave speed should decrease as the mass per unit length of the string
increases. This is because it is more difficult to accelerate a massive element of the
string than a light element. If the tension in the string is T and its mass per unit length
is + (Greek mu), then as we shall show, the wave speed is

(16.18)

First, let us verify that this expression is dimensionally correct. The dimensions of 
T are ML/T2, and the dimensions of + are M/L. Therefore, the dimensions of 
T/+ are L2/T2; hence, the dimensions of are L/T, the dimensions of speed. No
other combination of T and + is dimensionally correct, and if we assume that these are
the only variables relevant to the situation, the speed must be proportional to .

Now let us use a mechanical analysis to derive Equation 16.18. Consider a pulse
moving on a taut string to the right with a uniform speed v measured relative to a sta-
tionary frame of reference. Instead of staying in this reference frame, it is more conve-
nient to choose as our reference frame one that moves along with the pulse with the
same speed as the pulse, so that the pulse is at rest within the frame. This change of
reference frame is permitted because Newton’s laws are valid in either a stationary
frame or one that moves with constant velocity. In our new reference frame, all ele-
ments of the string move to the left—a given element of the string initially to the right
of the pulse moves to the left, rises up and follows the shape of the pulse, and then
continues to move to the left. Figure 16.11a shows such an element at the instant it is
located at the top of the pulse.

The small element of the string of length ,s shown in Figure 16.11a, and magnified
in Figure 16.11b, forms an approximate arc of a circle of radius R. In our moving frame
of reference (which is moving to the right at a speed v along with the pulse), the shaded
element is moving to the left with a speed v. This element has a centripetal acceleration
equal to v2/R, which is supplied by components of the force T whose magnitude is the
tension in the string. The force T acts on both sides of the element and is tangent to the
arc, as shown in Figure 16.11b. The horizontal components of T cancel, and each
vertical component T sin $ acts radially toward the center of the arc. Hence, the total

√T/+

√T/+

v ! √ T
+
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! PITFALL PREVENTION
16.3 Multiple T ’s
Do not confuse the T in Equation
16.18 for the tension with the
symbol T used in this chapter for
the period of a wave. The context
of the equation should help you
to identify which quantity is
meant. There simply aren’t
enough letters in the alphabet to
assign a unique letter to each
variable!

Speed of a wave on a stretched
string

The string shown in Figure 16.10 is driven at a frequency of
5.00 Hz. The amplitude of the motion is 12.0 cm, and the
wave speed is 20.0 m/s. Determine the angular frequency '
and wave number k for this wave, and write an expression
for the wave function.

Solution Using Equations 16.3, 16.9, and 16.11, we find that

31.4 rad/s' !
2&

T
! 2&f ! 2&(5.00 Hz) !

Because A ! 12.0 cm ! 0.120 m, we have

(0.120 m) sin(1.57x " 31.4t)!

y ! A sin(kx " 't)

1.57 rad/mk !
'

v
!

31.4 rad/s
20.0 m/s

!

Example 16.3 A Sinusoidally Driven String
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radial force on the element is 2T sin $. Because the element is small, $ is small, and we
can use the small-angle approximation sin $ & $. Therefore, the total radial force is

Fr ! 2T sin $ & 2T$

The element has a mass m ! + ,s. Because the element forms part of a circle and sub-
tends an angle 2$ at the center, ,s ! R(2$), we find that

m ! + ,s ! 2+R$

If we apply Newton’s second law to this element in the radial direction, we have

This expression for v is Equation 16.18.
Notice that this derivation is based on the assumption that the pulse height is small

relative to the length of the string. Using this assumption, we were able to use the approxi-
mation sin $ & $. Furthermore, the model assumes that the tension T is not affected by
the presence of the pulse; thus, T is the same at all points on the string. Finally, this proof
does not assume any particular shape for the pulse. Therefore, we conclude that a pulse of
any shape travels along the string with speed without any change in pulse shape.v ! √T/+

2T $ !
2+R $ v 2

R
 9:  v ! √ 

T
+

Fr ! ma !
mv 2

R

∆s

R

O

(a) (b)

O

v

θ
∆s

θ

R

θ

TT

Figure 16.11 (a) To obtain the speed v of a wave on a stretched string, it is convenient
to describe the motion of a small element of the string in a moving frame of reference.
(b) In the moving frame of reference, the small element of length ,s moves to the left
with speed v. The net force on the element is in the radial direction because the hori-
zontal components of the tension force cancel.

Quick Quiz 16.7 Suppose you create a pulse by moving the free end of a taut
string up and down once with your hand beginning at t ! 0. The string is attached at its
other end to a distant wall. The pulse reaches the wall at time t. Which of the following
actions, taken by itself, decreases the time interval that it takes for the pulse to reach the
wall? More than one choice may be correct. (a) moving your hand more quickly, but still
only up and down once by the same amount (b) moving your hand more slowly, but still
only up and down once by the same amount (c) moving your hand a greater distance
up and down in the same amount of time (d) moving your hand a lesser distance up
and down in the same amount of time (e) using a heavier string of the same length and
under the same tension (f) using a lighter string of the same length and under the same
tension (g) using a string of the same linear mass density but under decreased tension
(h) using a string of the same linear mass density but under increased tension
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A uniform cord has a mass of 0.300 kg and a length of 6.00 m
(Fig. 16.12). The cord passes over a pulley and supports a
2.00-kg object. Find the speed of a pulse traveling along this
cord.

Solution The tension T in the cord is equal to the weight
of the suspended 2.00-kg object:

T ! mg ! (2.00 kg)(9.80 m/s2) ! 19.6 N

(This calculation of the tension neglects the small mass of
the cord. Strictly speaking, the cord can never be exactly
horizontal, and therefore the tension is not uniform.) The
mass per unit length + of the cord is

Therefore, the wave speed is

What If? What if the block were swinging back and forth
between maximum angles of ! 20° with respect to the verti-
cal? What range of wave speeds would this create on the
horizontal cord?

Answer Figure 16.13 shows the swinging block at three po-
sitions—its highest position, its lowest position, and an arbi-
trary position. Summing the forces on the block in the ra-
dial direction when the block is at an arbitrary position,
Newton’s second law gives

where the acceleration of the block is centripetal, L is the
length of the vertical piece of string, and vblock is the in-
stantaneous speed of the block at the arbitrary position.
Now consider conservation of mechanical energy for the
block–Earth system. We define the zero of gravitational po-
tential energy for the system when the block is at its lowest
point, point ! in Figure 16.13. Equating the mechanical
energy of the system when the block is at " to the mechani-
cal energy when the block is at an arbitrary position #,
we have,

(1)   ' F ! T " mg cos $ ! m 
v block

2

L

19.8 m/sv ! √ T
+

! √ 19.6 N
0.050 0 kg/m

!

+ !
m
!

!
0.300 kg
6.00 m

! 0.050 0 kg/m

Substituting this into Equation (1), we find an expression
for T as a function of angle $ and height h:

The maximum value of T occurs when $ ! 0 and h ! 0:

The minimum value of T occurs when h ! hmax and
$ ! $max:

Now we find the maximum and minimum values of the wave
speed v, using the fact that, as we see from Figure 16.13, h
and $ are related by h ! L " L cos $:

 ! √ mg {1 # [2(L " L cos $max)/L]}
+

vmax ! √ Tmax

+
! √ mg [1 # (2hmax/L)]

+

Tmin ! mg !cos $ max #
2
L

 (h max " h max)" ! mg  cos $ max

Tmax ! mg !cos 0 #
2
L

 (h max " 0)" ! mg  #1 #
2h max

L $

T ! mg  !cos $ #
2
L

 (hmax " h) "
T " mg cos $ !

2mg (hmax " h)
L

mv2
block ! 2mg (h max " h)

 mgh max ! mgh # 1
2mv 2

block

E A ! E B

5.00 m

2.00 kg

1.00 m

Figure 16.12 (Example 16.4) The tension T in the cord is
maintained by the suspended object. The speed of any 
wave traveling along the cord is given by v ! √T/+.

θ

"

#

!

T
L

L cos θ

hmax

h
h = 0

θ

mg

mg cosθ

Figure 16.13 (Example 16.4) If the block swings back and
forth, the tension in the cord changes, which causes a variation
in the wave speed on the horizontal section of cord in Figure
16.12. The forces on the block when it is at arbitrary position #
are shown. Position " is the highest position and ! is the low-
est. (The maximum angle is exaggerated for clarity.)

Example 16.4 The Speed of a Pulse on a Cord
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An 80.0-kg hiker is trapped on a mountain ledge following a
storm. A helicopter rescues the hiker by hovering above
him and lowering a cable to him. The mass of the cable is
8.00 kg, and its length is 15.0 m. A chair of mass 70.0 kg is
attached to the end of the cable. The hiker attaches himself
to the chair, and the helicopter then accelerates upward.
Terrified by hanging from the cable in midair, the hiker
tries to signal the pilot by sending transverse pulses up the
cable. A pulse takes 0.250 s to travel the length of the cable.
What is the acceleration of the helicopter?

Solution To conceptualize this problem, imagine the effect
of the acceleration of the helicopter on the cable. The
higher the upward acceleration, the larger is the tension in
the cable. In turn, the larger the tension, the higher is the
speed of pulses on the cable. Thus, we categorize this prob-
lem as a combination of one involving Newton’s laws and
one involving the speed of pulses on a string. To analyze the
problem, we use the time interval for the pulse to travel
from the hiker to the helicopter to find the speed of the
pulses on the cable:

v !
,x
,t

!
15.0 m
0.250 s

! 60.0 m/s

The speed of pulses on the cable is given by Equation 16.18,
which allows us to find the tension in the cable:

Newton’s second law relates the tension in the cable to the
acceleration of the hiker and the chair, which is the same as
the acceleration of the helicopter:

To finalize this problem, note that a real cable has stiffness
in addition to tension. Stiffness tends to return a wire to its
original straight-line shape even when it is not under ten-
sion. For example, a piano wire straightens if released from
a curved shape; package wrapping string does not.

Stiffness represents a restoring force in addition to ten-
sion, and increases the wave speed. Consequently, for a real
cable, the speed of 60.0 m/s that we determined is most
likely associated with a tension lower than 1.92 - 103 N and
a correspondingly smaller acceleration of the helicopter.

3.00 m/s2!

a !
T
m

" g !
1.92 - 103 N

150.0 kg
" 9.80 m/s2

' F ! ma 9:  T " mg ! ma

T ! 1.92 - 103 N

v ! √ T
+
 9:  T ! +v 2 ! # 8.00 kg

15.0 m $(60.0 m/s)2

 ! √ (2.00 kg)(9.80 m/s2)(3 " 2 cos 20.)
0.050 0 kg/m

! 21.0 m/s

 ! √ mg (3 " 2 cos $max)
+

 ! √ (2.00 kg)(9.80 m/s2)(cos 20.)
0.050 0 kg/m

! 19.2 m/s

vmin ! √ Tmin

+
! √ mg cos $max

+

16.4 Reflection and Transmission

We have discussed waves traveling through a uniform medium. We now consider how a
traveling wave is affected when it encounters a change in the medium. For example,
consider a pulse traveling on a string that is rigidly attached to a support at one end as
in Figure 16.14. When the pulse reaches the support, a severe change in the medium
occurs—the string ends. The result of this change is that the pulse undergoes reflec-
tion—that is, the pulse moves back along the string in the opposite direction.

Note that the reflected pulse is inverted. This inversion can be explained as follows.
When the pulse reaches the fixed end of the string, the string produces an upward
force on the support. By Newton’s third law, the support must exert an equal-
magnitude and oppositely directed (downward) reaction force on the string. This
downward force causes the pulse to invert upon reflection.

Now consider another case: this time, the pulse arrives at the end of a string that is
free to move vertically, as in Figure 16.15. The tension at the free end is maintained be-
cause the string is tied to a ring of negligible mass that is free to slide vertically on a
smooth post without friction. Again, the pulse is reflected, but this time it is not in-
verted. When it reaches the post, the pulse exerts a force on the free end of the string,
causing the ring to accelerate upward. The ring rises as high as the incoming pulse,

Example 16.5 Rescuing the Hiker Interactive

Investigate this situation at the Interactive Worked Example link at http://www.pse6.com.

(a)

(b)

(c)

(d)

(e) Reflected
pulse

Incident
pulse

Active Figure 16.14 The reflec-
tion of a traveling pulse at the fixed
end of a stretched string. The re-
flected pulse is inverted, but its
shape is otherwise unchanged.

At the Active Figures link at http://www.pse6.com, you can adjust the linear mass
density of the string and the transverse direction of the initial pulse.



and then the downward component of the tension force pulls the ring back down. This
movement of the ring produces a reflected pulse that is not inverted and that has the
same amplitude as the incoming pulse.

Finally, we may have a situation in which the boundary is intermediate between
these two extremes. In this case, part of the energy in the incident pulse is reflected
and part undergoes transmission—that is, some of the energy passes through the
boundary. For instance, suppose a light string is attached to a heavier string, as in Fig-
ure 16.16. When a pulse traveling on the light string reaches the boundary between
the two, part of the pulse is reflected and inverted and part is transmitted to the heav-
ier string. The reflected pulse is inverted for the same reasons described earlier in the
case of the string rigidly attached to a support.

Note that the reflected pulse has a smaller amplitude than the incident pulse. In
Section 16.5, we show that the energy carried by a wave is related to its amplitude. Ac-
cording to the principle of the conservation of energy, when the pulse breaks up into a
reflected pulse and a transmitted pulse at the boundary, the sum of the energies of
these two pulses must equal the energy of the incident pulse. Because the reflected
pulse contains only part of the energy of the incident pulse, its amplitude must be
smaller.

When a pulse traveling on a heavy string strikes the boundary between the heavy
string and a lighter one, as in Figure 16.17, again part is reflected and part is transmit-
ted. In this case, the reflected pulse is not inverted.

In either case, the relative heights of the reflected and transmitted pulses depend
on the relative densities of the two strings. If the strings are identical, there is no dis-
continuity at the boundary and no reflection takes place.
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Active Figure 16.15 The reflec-
tion of a traveling pulse at the free
end of a stretched string. The re-
flected pulse is not inverted.

Figure 16.16 (a) A pulse traveling to the right on a light string attached to a heavier
string. (b) Part of the incident pulse is reflected (and inverted), and part is transmitted to
the heavier string. See Figure 16.17 for an animation available for both figures at the Ac-
tive Figures link.

Incident
pulse

(a)

(b)

(c)

Reflected
pulse

(d)

Incident
pulse

Transmitted
pulse

Reflected
pulse

(a)

(b)

Active Figure 16.17 (a) A pulse traveling to the right on a heavy string attached to a lighter
string. (b) The incident pulse is partially reflected and partially transmitted, and the reflected
pulse is not inverted.

Incident
pulse

Reflected
pulse

Transmitted
pulse

(a)

(b)

At the Active Figures link
at http://www.pse6.com, you
can adjust the linear mass
densities of the strings and the
transverse direction of the
initial pulse.

At the Active Figures link
at http://www.pse6.com, you
can adjust the linear mass
density of the string and the
transverse direction of the
initial pulse.
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According to Equation 16.18, the speed of a wave on a string increases as the mass
per unit length of the string decreases. In other words, a wave travels more slowly on a
heavy string than on a light string if both are under the same tension. The following
general rules apply to reflected waves: when a wave or pulse travels from medium A
to medium B and vA ! vB (that is, when B is denser than A), it is inverted upon
reflection. When a wave or pulse travels from medium A to medium B and
vA " vB (that is, when A is denser than B), it is not inverted upon reflection.

16.5 Rate of Energy Transfer by Sinusoidal
Waves on Strings

Waves transport energy when they propagate through a medium. We can easily demon-
strate this by hanging an object on a stretched string and then sending a pulse down
the string, as in Figure 16.18a. When the pulse meets the suspended object, the object
is momentarily displaced upward, as in Figure 16.18b. In the process, energy is trans-
ferred to the object and appears as an increase in the gravitational potential energy of
the object–Earth system. This section examines the rate at which energy is transported
along a string. We shall assume a one-dimensional sinusoidal wave in the calculation of
the energy transferred.

Consider a sinusoidal wave traveling on a string (Fig. 16.19). The source of the en-
ergy is some external agent at the left end of the string, which does work in producing
the oscillations. We can consider the string to be a nonisolated system. As the external
agent performs work on the end of the string, moving it up and down, energy enters
the system of the string and propagates along its length. Let us focus our attention on
an element of the string of length ,x and mass ,m. Each such element moves vertically
with simple harmonic motion. Thus, we can model each element of the string as a sim-
ple harmonic oscillator, with the oscillation in the y direction. All elements have the
same angular frequency ' and the same amplitude A. The kinetic energy K associated
with a moving particle is . If we apply this equation to an element of length
,x and mass ,m, we see that the kinetic energy ,K of this element is

where vy is the transverse speed of the element. If + is the mass per unit length of the
string, then the mass ,m of the element of length ,x is equal to + ,x. Hence, we can
express the kinetic energy of an element of the string as

(16.19)

As the length of the element of the string shrinks to zero, this becomes a differential
relationship:

We substitute for the general transverse speed of a simple harmonic oscillator using
Equation 16.14:

 ! 1
2+'2A2 cos2(kx " 't) dx

dK ! 1
2+['A cos(kx " 't)]2 dx

dK ! 1
2(+ dx)vy

2

,K ! 1
2(+ ,x)vy

2

,K ! 1
2(,m)vy

2

K ! 1
2mv 2

m

m

(a)

(b)

Figure 16.18 (a) A pulse traveling
to the right on a stretched string
that has an object suspended from
it. (b) Energy is transmitted to the
suspended object when the pulse
arrives.

∆m
Figure 16.19 A sinusoidal wave trav-
eling along the x axis on a stretched
string. Every element moves verti-
cally, and every element has the same
total energy.



If we take a snapshot of the wave at time t ! 0, then the kinetic energy of a given ele-
ment is

Let us integrate this expression over all the string elements in a wavelength of the
wave, which will give us the total kinetic energy K% in one wavelength:

In addition to kinetic energy, each element of the string has potential energy associ-
ated with it due to its displacement from the equilibrium position and the restoring
forces from neighboring elements. A similar analysis to that above for the total poten-
tial energy U% in one wavelength will give exactly the same result:

The total energy in one wavelength of the wave is the sum of the potential and kinetic
energies:

(16.20)

As the wave moves along the string, this amount of energy passes by a given point on
the string during a time interval of one period of the oscillation. Thus, the power, or
rate of energy transfer, associated with the wave is

(16.21)

This expression shows that the rate of energy transfer by a sinusoidal wave on a string is
proportional to (a) the square of the frequency, (b) the square of the amplitude, and
(c) the wave speed. In fact: the rate of energy transfer in any sinusoidal wave is
proportional to the square of the angular frequency and to the square of the
amplitude.
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Quick Quiz 16.8 Which of the following, taken by itself, would be most effec-
tive in increasing the rate at which energy is transferred by a wave traveling along a string?
(a) reducing the linear mass density of the string by one half (b) doubling the wavelength
of the wave (c) doubling the tension in the string (d) doubling the amplitude of the wave

Example 16.6 Power Supplied to a Vibrating String

Because f ! 60.0 Hz, the angular frequency ' of the sinu-
soidal waves on the string has the value

' ! 2&f ! 2&(60.0 Hz) ! 377 s"1

v ! √ T
+

! √ 80.0 N
5.00 - 10"2 kg/m

! 40.0 m/s
A taut string for which + ! 5.00 - 10" 2 kg/m is under a
tension of 80.0 N. How much power must be supplied to the
string to generate sinusoidal waves at a frequency of 60.0 Hz
and an amplitude of 6.00 cm?

Solution The wave speed on the string is, from Equation
16.18,

Power of a wave
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16.6 The Linear Wave Equation

In Section 16.1 we introduced the concept of the wave function to represent waves
traveling on a string. All wave functions y(x, t) represent solutions of an equation called
the linear wave equation. This equation gives a complete description of the wave motion,
and from it one can derive an expression for the wave speed. Furthermore, the linear
wave equation is basic to many forms of wave motion. In this section, we derive this
equation as applied to waves on strings.

Suppose a traveling wave is propagating along a string that is under a tension T. Let
us consider one small string element of length ,x (Fig. 16.20). The ends of the ele-
ment make small angles $A and $B with the x axis. The net force acting on the element
in the vertical direction is

Because the angles are small, we can use the small-angle approximation sin $ & tan $
to express the net force as

(16.22)

Imagine undergoing an infinitesimal displacement outward from the end of the rope
element in Figure 16.20 along the blue line representing the force T. This displace-
ment has infinitesimal x and y components and can be represented by the vector

. The tangent of the angle with respect to the x axis for this displacement is
dy/dx. Because we are evaluating this tangent at a particular instant of time, we need to
express this in partial form as )y/)x. Substituting for the tangents in Equation 16.22
gives

(16.23)

We now apply Newton’s second law to the element, with the mass of the element given
by m ! + ,x:

(16.24)

Combining Equation 16.23 with Equation 16.24, we obtain

(16.25)
+

T
  

)2y
)t 2 !

()y/)x)B " ()y/dx)A

,x

+ ,x # )2y
)t 2 $ ! T  !# )y

)x $B
" # )y

)x $A
"

' Fy ! may ! + ,x # )2y
)t 2 $

' Fy & T  !# )y
)x $B

" # )y
)x $A

"

dx î # dy ĵ

' Fy & T(tan $B " tan $A)

' Fy ! T sin $B " T sin $A ! T(sin $B " sin $A)

Answer We set up a ratio of the new and old power, reflect-
ing only a change in the amplitude:

Solving for the new amplitude,

 ! 8.39 cm

Anew ! Aold √ "new

"old
! (6.00 cm)√ 1 000 W

512 W

"new

"old
!

1
2+'2A2

newv
1
2+'2A2

oldv
!

A2
new

A2
old

Using these values in Equation 16.21 for the power, with
A ! 6.00 - 10"2 m, we obtain

What If? What if the string is to transfer energy at a rate of
1 000 W? What must be the required amplitude if all other pa-
rameters remain the same?

512 W!

- (6.00 - 10"2 m)2(40.0 m/s)

 ! 1
2(5.00 - 10"2 kg/m)(377 s"1)2

" ! 1
2+'2A2v

Figure 16.20 An element of a
string under tension T. 
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θA

∆x

A

B

T
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The right side of this equation can be expressed in a different form if we note that the
partial derivative of any function is defined as

If we associate f(x # ,x) with ()y/)x)B and f(x) with ()y/)x)A, we see that, in the limit
,x : 0, Equation 16.25 becomes

(16.26)

This is the linear wave equation as it applies to waves on a string.
We now show that the sinusoidal wave function (Eq. 16.10) represents a solution

of the linear wave equation. If we take the sinusoidal wave function to be of the form
y(x, t) ! A sin(kx " 't), then the appropriate derivatives are

Substituting these expressions into Equation 16.26, we obtain

This equation must be true for all values of the variables x and t in order for the sinu-
soidal wave function to be a solution of the wave equation. Both sides of the equation
depend on x and t through the same function sin(kx " 't). Because this function di-
vides out, we do indeed have an identity, provided that

Using the relationship v ! '/k (Eq. 16.11) in this expression, we see that

which is Equation 16.18. This derivation represents another proof of the expression for
the wave speed on a taut string.

The linear wave equation (Eq. 16.26) is often written in the form

(16.27)

This expression applies in general to various types of traveling waves. For waves on
strings, y represents the vertical position of elements of the string. For sound waves, y
corresponds to longitudinal position of elements of air from equilibrium or variations
in either the pressure or the density of the gas through which the sound waves are
propagating. In the case of electromagnetic waves, y corresponds to electric or mag-
netic field components.

We have shown that the sinusoidal wave function (Eq. 16.10) is one solution of the
linear wave equation (Eq. 16.27). Although we do not prove it here, the linear wave
equation is satisfied by any wave function having the form y ! f(x * vt). Furthermore,
we have seen that the linear wave equation is a direct consequence of Newton’s second
law applied to any element of a string carrying a traveling wave.
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Linear wave equation for a
string

Linear wave equation in general



Questions 505

A transverse wave is one in which the elements of the medium move in a direction
perpendicular to the direction of propagation. An example is a wave on a taut string. A
longitudinal wave is one in which the elements of the medium move in a direction
parallel to the direction of propagation. Sound waves in fluids are longitudinal.

Any one-dimensional wave traveling with a speed v in the x direction can be repre-
sented by a wave function of the form

y(x, t) ! f(x * vt) (16.1, 16.2)

where the positive sign applies to a wave traveling in the negative x direction and the
negative sign applies to a wave traveling in the positive x direction. The shape of the
wave at any instant in time (a snapshot of the wave) is obtained by holding t constant.

The wave function for a one-dimensional sinusoidal wave traveling to the right
can be expressed as

(16.5, 16.10)

where A is the amplitude, % is the wavelength, k is the angular wave number, and ' is
the angular frequency. If T is the period and f the frequency, v, k, and ' can be written

(16.6, 16.12)

(16.8)

(16.3, 16.9)

The speed of a wave traveling on a taut string of mass per unit length + and tension
T is

(16.18)

A wave is totally or partially reflected when it reaches the end of the medium in
which it propagates or when it reaches a boundary where its speed changes discontinu-
ously. If a wave traveling on a string meets a fixed end, the wave is reflected and in-
verted. If the wave reaches a free end, it is reflected but not inverted.

The power transmitted by a sinusoidal wave on a stretched string is

(16.21)

Wave functions are solutions to a differential equation called the linear wave
equation:

(16.27)
)2y
)x2 !

1
v2   

)2y
)t2

" ! 1
2+'2A2v

v ! √ T
+

' % 
2&

T
! 2&f

k % 
2&

%

v !
%

T
! %f

y ! A sin ! 2&

%
 (x " vt)" ! A sin(kx " 't)

S U M M A RY

Take a practice test for
this chapter by clicking on
the Practice Test link at
http://www.pse6.com.

1. Why is a pulse on a string considered to be transverse?

How would you create a longitudinal wave in a stretched
spring? Would it be possible to create a transverse wave in
a spring?

3. By what factor would you have to multiply the tension in a
stretched string in order to double the wave speed?

4. When traveling on a taut string, does a pulse always invert
upon reflection? Explain.

2.

5. Does the vertical speed of a segment of a horizontal taut
string, through which a wave is traveling, depend on the
wave speed?

6. If you shake one end of a taut rope steadily three times
each second, what would be the period of the sinusoidal
wave set up in the rope?

A vibrating source generates a sinusoidal wave on a string
under constant tension. If the power delivered to the 

7.

Q U E S T I O N S
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string is doubled, by what factor does the amplitude
change? Does the wave speed change under these circum-
stances?

8. Consider a wave traveling on a taut rope. What is the dif-
ference, if any, between the speed of the wave and the
speed of a small segment of the rope?

9. If a long rope is hung from a ceiling and waves are sent up
the rope from its lower end, they do not ascend with con-
stant speed. Explain.

10. How do transverse waves differ from longitudinal waves?

11. When all the strings on a guitar are stretched to the same
tension, will the speed of a wave along the most massive
bass string be faster, slower, or the same as the speed of a
wave on the lighter strings?

12. If one end of a heavy rope is attached to one end of a light
rope, the speed of a wave will change as the wave goes from
the heavy rope to the light one. Will it increase or decrease?
What happens to the frequency? To the wavelength?

If you stretch a rubber hose and pluck it, you can observe a
pulse traveling up and down the hose. What happens to
the speed of the pulse if you stretch the hose more tightly?
What happens to the speed if you fill the hose with water?

13.

14. In a longitudinal wave in a spring, the coils move back
and forth in the direction of wave motion. Does the
speed of the wave depend on the maximum speed of
each coil?

15. Both longitudinal and transverse waves can propagate
through a solid. A wave on the surface of a liquid can in-
volve both longitudinal and transverse motion of elements
of the medium. On the other hand, a wave propagating
through the volume of a fluid must be purely longitudinal,
not transverse. Why?

16. In an earthquake both S (transverse) and P (longitudinal)
waves propagate from the focus of the earthquake. The focus
is in the ground below the epicenter on the surface. The S
waves travel through the Earth more slowly than the P waves
(at about 5 km/s versus 8 km/s). By detecting the time of ar-
rival of the waves, how can one determine the distance to the
focus of the quake? How many detection stations are neces-
sary to locate the focus unambiguously?

17. In mechanics, massless strings are often assumed. Why is
this not a good assumption when discussing waves on
strings?

Section 16.1 Propagation of a Disturbance
At t ! 0, a transverse pulse in a wire is described by the
function

where x and y are in meters. Write the function y(x, t) that
describes this pulse if it is traveling in the positive x direc-
tion with a speed of 4.50 m/s.

2. Ocean waves with a crest-to-crest distance of 10.0 m can be
described by the wave function

y(x, t) ! (0.800 m) sin[0.628(x " vt)]

where v ! 1.20 m/s. (a) Sketch y(x, t) at t ! 0. (b) Sketch
y(x, t) at t ! 2.00 s. Note that the entire wave form has
shifted 2.40 m in the positive x direction in this time interval.

3. A pulse moving along the x axis is described by

where x is in meters and t is in seconds. Determine (a) the
direction of the wave motion, and (b) the speed of the pulse.

4. Two points A and B on the surface of the Earth are at the
same longitude and 60.0° apart in latitude. Suppose that an
earthquake at point A creates a P wave that reaches point B
by traveling straight through the body of the Earth at a con-
stant speed of 7.80 km/s. The earthquake also radiates a
Rayleigh wave, which travels across the surface of the Earth in
an analogous way to a surface wave on water, at 4.50 km/s.

y(x, t) ! 5.00e"(x #5.00t)2

y !
6

x2 # 3

1.

(a) Which of these two seismic waves arrives at B first?
(b) What is the time difference between the arrivals of the
two waves at B? Take the radius of the Earth to be 6 370 km.

5. S and P waves, simultaneously radiated from the hypocenter
of an earthquake, are received at a seismographic station
17.3 s apart. Assume the waves have traveled over the same
path at speeds of 4.50 km/s and 7.80 km/s. Find the dis-
tance from the seismograph to the hypocenter of the quake.

Section 16.2 Sinusoidal Waves
6. For a certain transverse wave, the distance between two

successive crests is 1.20 m, and eight crests pass a given
point along the direction of travel every 12.0 s. Calculate
the wave speed.

A sinusoidal wave is traveling along a rope. The oscillator
that generates the wave completes 40.0 vibrations in 30.0 s.
Also, a given maximum travels 425 cm along the rope in
10.0 s. What is the wavelength?

8. When a particular wire is vibrating with a frequency of
4.00 Hz, a transverse wave of wavelength 60.0 cm is pro-
duced. Determine the speed of waves along the wire.

A wave is described by y ! (2.00 cm) sin(kx " 't), where
k ! 2.11 rad/m, ' ! 3.62 rad/s, x is in meters, and t is in
seconds. Determine the amplitude, wavelength, frequency,
and speed of the wave.

10. A sinusoidal wave on a string is described by

y ! (0.51 cm) sin(kx " 't)

9.

7.

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide

= coached solution with hints available at http://www.pse6.com = computer useful in solving problem

= paired numerical and symbolic problems

P R O B L E M S



Problems 507

where k ! 3.10 rad/cm and ' ! 9.30 rad/s. How far does
a wave crest move in 10.0 s? Does it move in the positive or
negative x direction?

11. Consider further the string shown in Figure 16.10 and
treated in Example 16.3. Calculate (a) the maximum trans-
verse speed and (b) the maximum transverse acceleration
of a point on the string.

12. Consider the sinusoidal wave of Example 16.2, with the
wave function

y ! (15.0 cm) cos(0.157x " 50.3t).

At a certain instant, let point A be at the origin and point
B be the first point along the x axis where the wave is 
60.0° out of phase with point A. What is the coordinate of
point B?

13. A sinusoidal wave is described by

y ! (0.25 m) sin(0.30x " 40t)

where x and y are in meters and t is in seconds. Determine
for this wave the (a) amplitude, (b) angular frequency, 
(c) angular wave number, (d) wavelength, (e) wave speed,
and (f) direction of motion.

14. (a) Plot y versus t at x ! 0 for a sinusoidal wave of the form
y ! (15.0 cm) cos(0.157x " 50.3t), where x and y are in
centimeters and t is in seconds. (b) Determine the period
of vibration from this plot and compare your result with
the value found in Example 16.2.

(a) Write the expression for y as a function of x and t
for a sinusoidal wave traveling along a rope in the negative
x direction with the following characteristics: A ! 8.00 cm,
% ! 80.0 cm, f ! 3.00 Hz, and y(0, t) ! 0 at t ! 0.
(b) What If? Write the expression for y as a function of x
and t for the wave in part (a) assuming that y(x, 0) ! 0 at
the point x ! 10.0 cm.

16. A sinusoidal wave traveling in the "x direction (to the left)
has an amplitude of 20.0 cm, a wavelength of 35.0 cm, and
a frequency of 12.0 Hz. The transverse position of an ele-
ment of the medium at t ! 0, x ! 0 is y ! " 3.00 cm, and
the element has a positive velocity here. (a) Sketch the
wave at t ! 0. (b) Find the angular wave number, period,
angular frequency, and wave speed of the wave. (c) Write
an expression for the wave function y(x, t).

17. A transverse wave on a string is described by the wave
function

y ! (0.120 m) sin[(&x/8) # 4&t]

(a) Determine the transverse speed and acceleration at 
t ! 0.200 s for the point on the string located at x !
1.60 m. (b) What are the wavelength, period, and speed of
propagation of this wave?

18. A transverse sinusoidal wave on a string has a period
T ! 25.0 ms and travels in the negative x direction with
a speed of 30.0 m/s. At t ! 0, a particle on the string at
x ! 0 has a transverse position of 2.00 cm and is traveling
downward with a speed of 2.00 m/s. (a) What is the ampli-
tude of the wave? (b) What is the initial phase angle?
(c) What is the maximum transverse speed of the string?
(d) Write the wave function for the wave.

15.

19. A sinusoidal wave of wavelength 2.00 m and amplitude
0.100 m travels on a string with a speed of 1.00 m/s to the
right. Initially, the left end of the string is at the origin.
Find (a) the frequency and angular frequency, (b) the an-
gular wave number, and (c) the wave function for this
wave. Determine the equation of motion for (d) the left
end of the string and (e) the point on the string at x !
1.50 m to the right of the left end. (f) What is the maxi-
mum speed of any point on the string?

20. A wave on a string is described by the wave function
y ! (0.100 m) sin(0.50x " 20t). (a) Show that a particle in
the string at x ! 2.00 m executes simple harmonic motion.
(b) Determine the frequency of oscillation of this particu-
lar point.

Section 16.3 The Speed of Waves on Strings
21. A telephone cord is 4.00 m long. The cord has a mass of

0.200 kg. A transverse pulse is produced by plucking one
end of the taut cord. The pulse makes four trips down and
back along the cord in 0.800 s. What is the tension in the
cord?

22. Transverse waves with a speed of 50.0 m/s are to be pro-
duced in a taut string. A 5.00-m length of string with a total
mass of 0.060 0 kg is used. What is the required tension?

23. A piano string having a mass per unit length equal to
5.00 - 10"3 kg/m is under a tension of 1 350 N. Find the
speed of a wave traveling on this string.

24. A transverse traveling wave on a taut wire has an amplitude
of 0.200 mm and a frequency of 500 Hz. It travels with a
speed of 196 m/s. (a) Write an equation in SI units of the
form y ! A sin(kx " 't) for this wave. (b) The mass per unit
length of this wire is 4.10 g/m. Find the tension in the 
wire.

25. An astronaut on the Moon wishes to measure the local
value of the free-fall acceleration by timing pulses traveling
down a wire that has an object of large mass suspended
from it. Assume a wire has a mass of 4.00 g and a length of
1.60 m, and that a 3.00-kg object is suspended from it. A
pulse requires 36.1 ms to traverse the length of the wire.
Calculate g Moon from these data. (You may ignore the mass
of the wire when calculating the tension in it.)

26. Transverse pulses travel with a speed of 200 m/s along a
taut copper wire whose diameter is 1.50 mm. What is the
tension in the wire? (The density of copper is 8.92 g/cm3.)

Transverse waves travel with a speed of 20.0 m/s in a string
under a tension of 6.00 N. What tension is required for a
wave speed of 30.0 m/s in the same string?

28. A simple pendulum consists of a ball of mass M hanging
from a uniform string of mass m and length L, with m // M.
If the period of oscillations for the pendulum is T, deter-
mine the speed of a transverse wave in the string when the
pendulum hangs at rest.

29. The elastic limit of the steel forming a piece of wire is equal
to 2.70 - 108 Pa. What is the maximum speed at which
transverse wave pulses can propagate along this wire without
exceeding this stress? (The density of steel is 7.86 - 103

km/m3.)

30. Review problem. A light string with a mass per unit length
of 8.00 g/m has its ends tied to two walls separated by a

27.
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distance equal to three fourths of the length of the string
(Fig. P16.30). An object of mass m is suspended from the
center of the string, putting a tension in the string.
(a) Find an expression for the transverse wave speed in the
string as a function of the mass of the hanging object.
(b) What should be the mass of the object suspended from
the string in order to produce a wave speed of 60.0 m/s?

and a wavelength of 0.500 m and traveling with a speed of
30.0 m/s?

35. A two-dimensional water wave spreads in circular ripples.
Show that the amplitude A at a distance r from the initial
disturbance is proportional to . (Suggestion: Con-
sider the energy carried by one outward-moving ripple.)

36. Transverse waves are being generated on a rope under con-
stant tension. By what factor is the required power increased
or decreased if (a) the length of the rope is doubled and
the angular frequency remains constant, (b) the amplitude
is doubled and the angular frequency is halved, (c) both the
wavelength and the amplitude are doubled, and (d) both
the length of the rope and the wavelength are halved?

Sinusoidal waves 5.00 cm in amplitude are to be
transmitted along a string that has a linear mass density of
4.00 - 10"2 kg/m. If the source can deliver a maximum
power of 300 W and the string is under a tension of 100 N,
what is the highest frequency at which the source can
operate?

38. It is found that a 6.00-m segment of a long string contains
four complete waves and has a mass of 180 g. The string is
vibrating sinusoidally with a frequency of 50.0 Hz and
a peak-to-valley distance of 15.0 cm. (The “peak-to-valley”
distance is the vertical distance from the farthest positive
position to the farthest negative position.) (a) Write the
function that describes this wave traveling in the positive x
direction. (b) Determine the power being supplied to the
string.

A sinusoidal wave on a string is described by the equation

y ! (0.15 m) sin(0.80x " 50t)

where x and y are in meters and t is in seconds. If the mass
per unit length of this string is 12.0 g/m, determine
(a) the speed of the wave, (b) the wavelength, (c) the fre-
quency, and (d) the power transmitted to the wave.

40. The wave function for a wave on a taut string is

y(x, t) ! (0.350 m)sin(10&t " 3&x # &/4)

where x is in meters and t in seconds. (a) What is the aver-
age rate at which energy is transmitted along the string if
the linear mass density is 75.0 g/m? (b) What is the energy
contained in each cycle of the wave?

41. A horizontal string can transmit a maximum power "0
(without breaking) if a wave with amplitude A and angular
frequency ' is traveling along it. In order to increase this
maximum power, a student folds the string and uses this
“double string” as a medium. Determine the maximum
power that can be transmitted along the “double string,”
assuming that the tension is constant.

42. In a region far from the epicenter of an earthquake, a seis-
mic wave can be modeled as transporting energy in a sin-
gle direction without absorption, just as a string wave does.
Suppose the seismic wave moves from granite into mudfill
with similar density but with a much lower bulk modulus.
Assume the speed of the wave gradually drops by a factor
of 25.0, with negligible reflection of the wave. Will the am-
plitude of the ground shaking increase or decrease? By

39.

37.
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A 30.0-m steel wire and a 20.0-m copper wire, both
with 1.00-mm diameters, are connected end to end and
stretched to a tension of 150 N. How long does it take a
transverse wave to travel the entire length of the two wires?

32. Review problem. A light string of mass m and length L has
its ends tied to two walls that are separated by the distance
D. Two objects, each of mass M, are suspended from the
string as in Figure P16.32. If a wave pulse is sent from
point A, how long does it take to travel to point B?

31.

33. A student taking a quiz finds on a reference sheet the two
equations

She has forgotten what T represents in each equation.
(a) Use dimensional analysis to determine the units re-
quired for T in each equation. (b) Identify the physical
quantity each T represents.

Section 16.5 Rate of Energy Transfer by Sinusoidal
Waves on Strings

34. A taut rope has a mass of 0.180 kg and a length of 3.60 m.
What power must be supplied to the rope in order to gen-
erate sinusoidal waves having an amplitude of 0.100 m

f ! 1/T  and  v ! √T/+
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what factor? This phenomenon led to the collapse of part
of the Nimitz Freeway in Oakland, California, during the
Loma Prieta earthquake of 1989.

Section 16.6 The Linear Wave Equation
43. (a) Evaluate A in the scalar equality (7 # 3)4 ! A. 

(b) Evaluate A, B, and C in the vector equality 7.00î #
3.00k̂ ! A î # B ĵ # C k̂. Explain how you arrive at the an-
swers to convince a student who thinks that you cannot
solve a single equation for three different unknowns.
(c) What If? The functional equality or identity

A # B cos(Cx # Dt # E ) ! (7.00 mm) cos(3x # 4t # 2)

is true for all values of the variables x and t, which are mea-
sured in meters and in seconds, respectively. Evaluate the
constants A, B, C, D, and E. Explain how you arrive at the
answers.

44. Show that the wave function y ! e b(x"vt) is a solution of the
linear wave equation (Eq. 16.27), where b is a constant.

Show that the wave function y ! ln[b(x " vt)] is a solution
to Equation 16.27, where b is a constant.

46. (a) Show that the function y(x, t) ! x2 # v2t2 is a solution
to the wave equation. (b) Show that the function in part
(a) can be written as f (x # vt) # g(x " vt), and determine
the functional forms for f and g. (c) What If? Repeat parts
(a) and (b) for the function y(x, t) ! sin(x)cos(vt).

Additional Problems

47. “The wave” is a particular type of pulse that can propagate
through a large crowd gathered at a sports arena to watch 
a soccer or American football match (Figure P16.47). The 
elements of the medium are the spectators, with zero posi-

45.

tion corresponding to their being seated and maximum 
position corresponding to their standing and raising their
arms. When a large fraction of the spectators participate in
the wave motion, a somewhat stable pulse shape can de-
velop. The wave speed depends on people’s reaction time,
which is typically on the order of 0.1 s. Estimate the order of
magnitude, in minutes, of the time required for such a
pulse to make one circuit around a large sports stadium.
State the quantities you measure or estimate and their
values.

48. A traveling wave propagates according to the expression
y ! (4.0 cm) sin(2.0x " 3.0t), where x is in centimeters
and t is in seconds. Determine (a) the amplitude, (b) the
wavelength, (c) the frequency, (d) the period, and (e) the
direction of travel of the wave.

The wave function for a traveling wave on a taut string
is (in SI units)

y(x, t) ! (0.350 m) sin(10&t "3&x # &/4)

(a) What are the speed and direction of travel of the wave?
(b) What is the vertical position of an element of the string
at t ! 0, x ! 0.100 m? (c) What are the wavelength and
frequency of the wave? (d) What is the maximum magni-
tude of the transverse speed of the string?

50. A transverse wave on a string is described by the equation

y(x, t) ! (0.350 m) sin[(1.25 rad/m)x # (99.6 rad/s)t]

Consider the element of the string at x ! 0. (a) What is
the time interval between the first two instants when this
element has a position of y ! 0.175 m? (b) What distance
does the wave travel during this time interval?

51. Motion picture film is projected at 24.0 frames per second.
Each frame is a photograph 19.0 mm high. At what con-
stant speed does the film pass into the projector?

52. Review problem. A block of mass M, supported by a string,
rests on an incline making an angle $ with the horizontal
(Fig. P16.52). The length of the string is L, and its mass is
m // M. Derive an expression for the time interval re-
quired for a transverse wave to travel from one end of the
string to the other.

49.
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53. Review problem. A 2.00-kg block hangs from a rubber 
cord, being supported so that the cord is not stretched. 
The unstretched length of the cord is 0.500 m, and its 
mass is 5.00 g. The “spring constant” for the cord is 
100 N/m. The block is released and stops at the lowest
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point. (a) Determine the tension in the cord when the block
is at this lowest point. (b) What is the length of the cord in
this “stretched” position? (c) Find the speed of a transverse
wave in the cord if the block is held in this lowest position.

54. Review problem. A block of mass M hangs from a rubber
cord. The block is supported so that the cord is not
stretched. The unstretched length of the cord is L 0 and its
mass is m, much less than M. The “spring constant” for the
cord is k. The block is released and stops at the lowest
point. (a) Determine the tension in the string when the
block is at this lowest point. (b) What is the length of the
cord in this “stretched” position? (c) Find the speed of a
transverse wave in the cord if the block is held in this low-
est position.

55. (a) Determine the speed of transverse waves on a string un-
der a tension of 80.0 N if the string has a length of 2.00 m
and a mass of 5.00 g. (b) Calculate the power required to
generate these waves if they have a wavelength of 16.0 cm
and an amplitude of 4.00 cm.

56. A sinusoidal wave in a rope is described by the wave function

y ! (0.20 m) sin(0.75&x # 18&t)

where x and y are in meters and t is in seconds. The rope
has a linear mass density of 0.250 kg/m. If the tension in
the rope is provided by an arrangement like the one illus-
trated in Figure 16.12, what is the value of the suspended
mass?

57. A block of mass 0.450 kg is attached to one end of a cord
of mass 0.003 20 kg; the other end of the cord is attached
to a fixed point. The block rotates with constant angular
speed in a circle on a horizontal frictionless table.
Through what angle does the block rotate in the time that
a transverse wave takes to travel along the string from the
center of the circle to the block?

58. A wire of density 0 is tapered so that its cross-sectional area
varies with x according to

A ! (1.0 - 10"3 x # 0.010) cm2

(a) If the wire is subject to a tension T, derive a relation-
ship for the speed of a wave as a function of position.
(b) What If? If the wire is aluminum and is subject to a
tension of 24.0 N, determine the speed at the origin and at
x ! 10.0 m.

A rope of total mass m and length L is suspended vertically.
Show that a transverse pulse travels the length of the rope
in a time interval . (Suggestion: First find an ex-
pression for the wave speed at any point a distance x from
the lower end by considering the tension in the rope as re-
sulting from the weight of the segment below that point.)

60. If an object of mass M is suspended from the bottom of
the rope in Problem 59, (a) show that the time interval for
a transverse pulse to travel the length of the rope is

What If? (b) Show that this reduces to the result of Prob-
lem 59 when M ! 0. (c) Show that for m // M, the

,t ! 2  √ L
mg

#√M # m " √M$

,t ! 2√L/g

59.

expression in part (a) reduces to

It is stated in Problem 59 that a pulse travels from the
bottom to the top of a hanging rope of length L in
a time interval . Use this result to answer the
following questions. (It is not necessary to set up
any new integrations.) (a) How long does it take for a
pulse to travel halfway up the rope? Give your answer as
a fraction of the quantity . (b) A pulse starts travel-
ing up the rope. How far has it traveled after a time in-
terval ?

62. Determine the speed and direction of propagation of each
of the following sinusoidal waves, assuming that x and y are
measured in meters and t in seconds.

√L/g

2√L/g

,t ! 2√L/g

61.

,t ! √ mL
Mg

(a) y ! 0.60 cos(3.0x " 15t # 2)

(b) y ! 0.40 cos(3.0x # 15t " 2)

(c) y ! 1.2 sin(15t # 2.0x)

(d) y ! 0.20 sin[12t " (x/2) # &]

An aluminum wire is clamped at each end under zero ten-
sion at room temperature. The tension in the wire is in-
creased by reducing the temperature, which results in a
decrease in the wire’s equilibrium length. What strain
(,L/L) results in a transverse wave speed of 100 m/s? Take
the cross-sectional area of the wire to be 5.00 - 10"6 m2,
the density to be 2.70 - 103 kg/m3, and Young’s modulus
to be 7.00 - 1010 N/m2.

64. If a loop of chain is spun at high speed, it can roll along
the ground like a circular hoop without slipping or col-
lapsing. Consider a chain of uniform linear mass density
+ whose center of mass travels to the right at a high
speed v0. (a) Determine the tension in the chain in terms
of + and v0. (b) If the loop rolls over a bump, the result-
ing deformation of the chain causes two transverse pulses
to propagate along the chain, one moving clockwise and
one moving counterclockwise. What is the speed of the
pulses traveling along the chain? (c) Through what angle
does each pulse travel during the time it takes the loop to
make one revolution?

65. (a) Show that the speed of longitudinal waves along
a spring of force constant k is , where L is the
unstretched length of the spring and + is the mass per unit
length. (b) A spring with a mass of 0.400 kg has an
unstretched length of 2.00 m and a force constant of
100 N/m. Using the result you obtained in (a), determine
the speed of longitudinal waves along this spring.

66. A string of length L consists of two sections. The left half
has mass per unit length + ! +0/2, while the right has a
mass per unit length +1 ! 3+ ! 3+0/2. Tension in the
string is T0. Notice from the data given that this string
has the same total mass as a uniform string of length L
and mass per unit length +0. (a) Find the speeds v and
v1 at which transverse pulses travel in the two sections.
Express the speeds in terms of T0 and +0, and also as
multiples of the speed v0 ! (T0/+0)1/2. (b) Find the
time interval required for a pulse to travel from one end

v ! √kL/+

63.
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of the string to the other. Give your result as a multiple
of ,t0 ! L/v0.

67. A pulse traveling along a string of linear mass density + is
described by the wave function

y ! [A0e"bx] sin(kx " 't)

where the factor in brackets before the sine function is
said to be the amplitude. (a) What is the power "(x) car-
ried by this wave at a point x? (b) What is the power car-
ried by this wave at the origin? (c) Compute the ratio
"(x)/"(0).

68. An earthquake on the ocean floor in the Gulf of Alaska
produces a tsunami (sometimes incorrectly called a “tidal
wave”) that reaches Hilo, Hawaii, 4 450 km away, in a time
interval of 9 h 30 min. Tsunamis have enormous wave-
lengths (100 to 200 km), and the propagation speed for
these waves is , where is the average depth of the
water. From the information given, find the average wave
speed and the average ocean depth between Alaska and
Hawaii. (This method was used in 1856 to estimate the av-
erage depth of the Pacific Ocean long before soundings
were made to give a direct determination.)

69. A string on a musical instrument is held under tension T
and extends from the point x ! 0 to the point x ! L. The
string is overwound with wire in such a way that its mass
per unit length +(x) increases uniformly from +0 at x ! 0
to +L at x ! L. (a) Find an expression for +(x) as a func-
tion of x over the range 0 2 x 2 L. (b) Show that the time
interval required for a transverse pulse to travel the length
of the string is given by

,t !
2L #+L # + 0 # √+L +0$

3√T #√+L # √+0$

dv & √gd

Answers to Quick Quizzes
16.1 (b). It is longitudinal because the disturbance (the shift of

position of the people) is parallel to the direction in
which the wave travels.

16.2 (a). It is transverse because the people stand up and sit
down (vertical motion), whereas the wave moves either to
the left or to the right.

16.3 (c). The wave speed is determined by the medium, so it is
unaffected by changing the frequency.

16.4 (b). Because the wave speed remains the same, the result
of doubling the frequency is that the wavelength is half as
large.

16.5 (d). The amplitude of a wave is unrelated to the wave
speed, so we cannot determine the new amplitude with-
out further information.

16.6 (c). With a larger amplitude, an element of the string has
more energy associated with its simple harmonic motion,
so the element passes through the equilibrium position
with a higher maximum transverse speed.

16.7 Only answers (f) and (h) are correct. (a) and (b) affect the
transverse speed of a particle of the string, but not the wave
speed along the string. (c) and (d) change the amplitude.
(e) and (g) increase the time interval by decreasing the
wave speed.

16.8 (d). Doubling the amplitude of the wave causes the power
to be larger by a factor of 4. In (a), halving the linear mass
density of the string causes the power to change by a fac-
tor of 0.71—the rate decreases. In (b), doubling the wave-
length of the wave halves the frequency and causes the
power to change by a factor of 0.25—the rate decreases.
In (c), doubling the tension in the string changes the
wave speed and causes the power to change by a factor of
1.4—not as large as in part (d).
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! Human ears have evolved to detect sound waves and interpret them as music or speech.
Some animals, such as this young bat-eared fox, have ears adapted for the detection of very
weak sounds. (Getty Images)



Sound waves are the most common example of longitudinal waves. They travel
through any material medium with a speed that depends on the properties of the
medium. As the waves travel through air, the elements of air vibrate to produce
changes in density and pressure along the direction of motion of the wave. If the
source of the sound waves vibrates sinusoidally, the pressure variations are also sinu-
soidal. The mathematical description of sinusoidal sound waves is very similar to that
of sinusoidal string waves, which were discussed in the previous chapter.

Sound waves are divided into three categories that cover different frequency
ranges. (1) Audible waves lie within the range of sensitivity of the human ear. They can
be generated in a variety of ways, such as by musical instruments, human voices, or
loudspeakers. (2) Infrasonic waves have frequencies below the audible range. Elephants
can use infrasonic waves to communicate with each other, even when separated by
many kilometers. (3) Ultrasonic waves have frequencies above the audible range. You
may have used a “silent” whistle to retrieve your dog. The ultrasonic sound it emits is
easily heard by dogs, although humans cannot detect it at all. Ultrasonic waves are also
used in medical imaging.

We begin this chapter by discussing the speed of sound waves and then wave inten-
sity, which is a function of wave amplitude. We then provide an alternative description
of the intensity of sound waves that compresses the wide range of intensities to which
the ear is sensitive into a smaller range for convenience. We investigate the effects of
the motion of sources and/or listeners on the frequency of a sound. Finally, we explore
digital reproduction of sound, focusing in particular on sound systems used in modern
motion pictures.

17.1 Speed of Sound Waves

Let us describe pictorially the motion of a one-dimensional longitudinal pulse moving
through a long tube containing a compressible gas (Fig. 17.1). A piston at the left end
can be moved to the right to compress the gas and create the pulse. Before the piston is
moved, the gas is undisturbed and of uniform density, as represented by the uniformly
shaded region in Figure 17.1a. When the piston is suddenly pushed to the right (Fig.
17.1b), the gas just in front of it is compressed (as represented by the more heavily
shaded region); the pressure and density in this region are now higher than they were
before the piston moved. When the piston comes to rest (Fig. 17.1c), the compressed
region of the gas continues to move to the right, corresponding to a longitudinal
pulse traveling through the tube with speed v. Note that the piston speed does not
equal v. Furthermore, the compressed region does not “stay with” the piston as the
piston moves, because the speed of the wave is usually greater than the speed of the
piston.

The speed of sound waves in a medium depends on the compressibility and density
of the medium. If the medium is a liquid or a gas and has a bulk modulus B (see
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Compressed region

Undisturbed gas

Figure 17.1 Motion of a longitudi-
nal pulse through a compressible
gas. The compression (darker re-
gion) is produced by the moving
piston.



Section 12.4) and density !, the speed of sound waves in that medium is

(17.1)

It is interesting to compare this expression with Equation 16.18 for the speed of trans-
verse waves on a string, . In both cases, the wave speed depends on an elastic
property of the medium—bulk modulus B or string tension T—and on an inertial
property of the medium—! or ". In fact, the speed of all mechanical waves follows an
expression of the general form

For longitudinal sound waves in a solid rod of material, for example, the speed of
sound depends on Young’s modulus Y and the density !. Table 17.1 provides the speed
of sound in several different materials.

The speed of sound also depends on the temperature of the medium. For sound
traveling through air, the relationship between wave speed and medium temperature is

where 331 m/s is the speed of sound in air at 0°C, and TC is the air temperature in de-
grees Celsius. Using this equation, one finds that at 20°C the speed of sound in air is
approximately 343 m/s.

This information provides a convenient way to estimate the distance to a thunder-
storm. You count the number of seconds between seeing the flash of lightning and
hearing the thunder. Dividing this time by 3 gives the approximate distance to the
lightning in kilometers, because 343 m/s is approximately km/s. Dividing the time in
seconds by 5 gives the approximate distance to the lightning in miles, because the
speed of sound in ft/s (1 125 ft/s) is approximately mi/s.1

5

1
3

v # (331 m/s)√1 $
TC

273%C

v # √ elastic property
inertial property

v # √T/"

v # √ B
!
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Quick Quiz 17.1 The speed of sound in air is a function of (a) wavelength
(b) frequency (c) temperature (d) amplitude.

Example 17.1 Speed of Sound in a Liquid

(A) Find the speed of sound in water, which has a bulk
modulus of 2.1 & 109 N/m2 at a temperature of 0°C and a
density of 1.00 & 103 kg/m3.

Solution Using Equation 17.1, we find that

In general, sound waves travel more slowly in liquids than in
solids because liquids are more compressible than solids.
Note that the speed of sound in water is lower at 0°C than at
25°C (Table 17.1).

1.4 km/svwater # √ B
!

# √ 2.1 & 109 N/m2

1.00 & 103 kg/m3 #

(B) Dolphins use sound waves to locate food. Experiments
have shown that a dolphin can detect a 7.5-cm target 110 m
away, even in murky water. For a bit of “dinner” at that dis-
tance, how much time passes between the moment the dol-
phin emits a sound pulse and the moment the dolphin
hears its reflection and thereby detects the distant target?

Solution The total distance covered by the sound wave as it
travels from dolphin to target and back is 2 & 110 m #
220 m. From Equation 2.2, we have, for 25°C water

0.14 s't  #   
'x
vx

  #   
220  m

1  533  m/s
  #   

Medium v (m/s)

Gases
Hydrogen (0°C) 1 286
Helium (0°C) 972
Air (20°C) 343
Air (0°C) 331
Oxygen (0°C) 317

Liquids at 25°C
Glycerol 1 904
Seawater 1 533
Water 1 493
Mercury 1 450
Kerosene 1 324
Methyl alcohol 1 143
Carbon tetrachloride 926

Solidsa

Pyrex glass 5 640
Iron 5 950
Aluminum 6 420
Brass 4 700
Copper 5 010
Gold 3 240
Lucite 2 680
Lead 1 960
Rubber 1 600

Speed of Sound in Various
Media

Table 17.1

a Values given are for propagation of
longitudinal waves in bulk media.
Speeds for longitudinal waves in thin
rods are smaller, and speeds of trans-
verse waves in bulk are smaller yet.

Interactive

At the Interactive Worked Example link at http://www.pse6.com, you can compare the speed of sound through the various
media found in Table 17.1.



17.2 Periodic Sound Waves

This section will help you better comprehend the nature of sound waves. An important
fact for understanding how our ears work is that pressure variations control what we hear.

One can produce a one-dimensional periodic sound wave in a long, narrow tube con-
taining a gas by means of an oscillating piston at one end, as shown in Figure 17.2. The
darker parts of the colored areas in this figure represent regions where the gas is com-
pressed and thus the density and pressure are above their equilibrium values. A com-
pressed region is formed whenever the piston is pushed into the tube. This compressed
region, called a compression, moves through the tube as a pulse, continuously com-
pressing the region just in front of itself. When the piston is pulled back, the gas in front
of it expands, and the pressure and density in this region fall below their equilibrium
values (represented by the lighter parts of the colored areas in Fig. 17.2). These low-
pressure regions, called rarefactions, also propagate along the tube, following the com-
pressions. Both regions move with a speed equal to the speed of sound in the medium.

As the piston oscillates sinusoidally, regions of compression and rarefaction are
continuously set up. The distance between two successive compressions (or two succes-
sive rarefactions) equals the wavelength (. As these regions travel through the tube,
any small element of the medium moves with simple harmonic motion parallel to the
direction of the wave. If s(x, t) is the position of a small element relative to its equilib-
rium position,1 we can express this harmonic position function as

(17.2)

where smax is the maximum position of the element relative to equilibrium. This
is often called the displacement amplitude of the wave. The parameter k is the wave
number and ) is the angular frequency of the piston. Note that the displacement of
the element is along x, in the direction of propagation of the sound wave, which means
we are describing a longitudinal wave.

The variation in the gas pressure 'P measured from the equilibrium value is also
periodic. For the position function in Equation 17.2, 'P is given by

(17.3)

where the pressure amplitude !Pmax—which is the maximum change in pressure
from the equilibrium value—is given by

(17.4)

Thus, we see that a sound wave may be considered as either a displacement wave or
a pressure wave. A comparison of Equations 17.2 and 17.3 shows that the pressure
wave is 90° out of phase with the displacement wave. Graphs of these functions are
shown in Figure 17.3. Note that the pressure variation is a maximum when the dis-
placement from equilibrium is zero, and the displacement from equilibrium is a maxi-
mum when the pressure variation is zero.

'Pmax # !v)smax

'P # 'Pmax sin(kx * )t)

s(x, t) # smax cos(kx * )t)
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Quick Quiz 17.2 If you blow across the top of an empty soft-drink bottle, a
pulse of sound travels down through the air in the bottle. At the moment the pulse
reaches the bottom of the bottle, the correct descriptions of the displacement of ele-
ments of air from their equilibrium positions and the pressure of the air at this point
are (a) the displacement and pressure are both at a maximum (b) the displacement
and pressure are both at a minimum (c) the displacement is zero and the pressure is a
maximum (d) the displacement is zero and the pressure is a minimum.

1 We use s(x, t) here instead of y(x, t) because the displacement of elements of the medium is not
perpendicular to the x direction.

P

λ

Active Figure 17.2 A longitudinal
wave propagating through a gas-
filled tube. The source of the wave
is an oscillating piston at the left.

At the Active Figures link
at http://www.pse6.com, you
can adjust the frequency of the
piston.

s

x

x

(a)

(b)

∆Pmax

∆P

smax

Figure 17.3 (a) Displacement
amplitude and (b) pressure
amplitude versus position for a
sinusoidal longitudinal wave.



Derivation of Equation 17.3

Consider a thin disk-shaped element of gas whose circular cross section is parallel to
the piston in Figure 17.2. This element will undergo changes in position, pressure, and
density as a sound wave propagates through the gas. From the definition of bulk modu-
lus (see Eq. 12.8), the pressure variation in the gas is

The element has a thickness 'x in the horizontal direction and a cross-sectional area
A, so its volume is Vi # A 'x. The change in volume 'V accompanying the pressure
change is equal to A ' s, where 's is the difference between the value of s at x + 'x and
the value of s at x. Hence, we can express 'P as

As 'x approaches zero, the ratio 's/'x becomes +s/+x. (The partial derivative indicates
that we are interested in the variation of s with position at a fixed time.) Therefore,

If the position function is the simple sinusoidal function given by Equation 17.2, we
find that

Because the bulk modulus is given by B # !v2 (see Eq. 17.1), the pressure variation re-
duces to

From Equation 16.11, we can write k # )/v; hence, 'P can be expressed as

Because the sine function has a maximum value of 1, we see that the maximum value of
the pressure variation is 'Pmax # !v)smax (see Eq. 17.4), and we arrive at Equation 17.3:

17.3 Intensity of Periodic Sound Waves

In the preceding chapter, we showed that a wave traveling on a taut string transports en-
ergy. The same concept applies to sound waves. Consider an element of air of mass 'm
and width 'x in front of a piston oscillating with a frequency ), as shown in Figure 17.4.

'P # 'Pmax sin(kx * )t)

'P # !v )smax sin(kx * )t)

'P # !v 
2smaxk sin(kx * )t)

'P # *B   
+

+x
 [smax cos(kx * )t)] # Bsmaxk sin(kx * )t)

'P # *B  
+s
+x

'P # *B  
'V
Vi

# *B  
A 's
A 'x

# *B  
's
'x

'P # *B  
'V
Vi
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Area = A

∆m

∆x

v
Figure 17.4 An oscillating piston
transfers energy to the air in the
tube, causing the element of air
of width 'x and mass 'm to
oscillate with an amplitude smax .



The piston transmits energy to this element of air in the tube, and the energy is
propagated away from the piston by the sound wave. To evaluate the rate of energy
transfer for the sound wave, we shall evaluate the kinetic energy of this element of air,
which is undergoing simple harmonic motion. We shall follow a procedure similar to
that in Section 16.5, in which we evaluated the rate of energy transfer for a wave on a
string. 

As the sound wave propagates away from the piston, the position of any element of
air in front of the piston is given by Equation 17.2. To evaluate the kinetic energy of
this element of air, we need to know its speed. We find the speed by taking the time de-
rivative of Equation 17.2:

Imagine that we take a “snapshot” of the wave at t # 0. The kinetic energy of a
given element of air at this time is

where A is the cross-sectional area of the element and A 'x is its volume. Now, as in
Section 16.5, we integrate this expression over a full wavelength to find the total ki-
netic energy in one wavelength. Letting the element of air shrink to infinitesimal thick-
ness, so that 'x : dx, we have

As in the case of the string wave in Section 16.5, the total potential energy for one
wavelength has the same value as the total kinetic energy; thus, the total mechanical
energy for one wavelength is

As the sound wave moves through the air, this amount of energy passes by a given point
during one period of oscillation. Hence, the rate of energy transfer is

where v is the speed of sound in air.

! #
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T
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1
2!A()s max)2(

T
# 1

2!A()s max)2 ! (
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'K # 1
2'm(v)2 # 1
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+
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 s(x,  t) #

+
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We define the intensity I of a wave, or the power per unit area, to be the rate at
which the energy being transported by the wave transfers through a unit area A per-
pendicular to the direction of travel of the wave:

(17.5)I  $  
!

A

In the present case, therefore, the intensity is

Thus, we see that the intensity of a periodic sound wave is proportional to the
square of the displacement amplitude and to the square of the angular frequency (as
in the case of a periodic string wave). This can also be written in terms of the pressure

I #
!

A
# 1

2!v()smax)2 Intensity of a sound wave
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Quick Quiz 17.3 An ear trumpet is a cone-shaped shell, like a megaphone,
that was used before hearing aids were developed to help persons who were hard of
hearing. The small end of the cone was held in the ear, and the large end was aimed to-
ward the source of sound as in Figure 17.5. The ear trumpet increases the intensity of
sound because (a) it increases the speed of sound (b) it reflects sound back toward the
source (c) it gathers sound that would normally miss the ear and concentrates it into a
smaller area (d) it increases the density of the air.

amplitude 'Pmax; in this case, we use Equation 17.4 to obtain

(17.6)

Now consider a point source emitting sound waves equally in all directions. From
everyday experience, we know that the intensity of sound decreases as we move farther
from the source. We identify an imaginary sphere of radius r centered on the source.
When a source emits sound equally in all directions, we describe the result as a spheri-
cal wave. The average power !av emitted by the source must be distributed uniformly
over this spherical surface of area 4,r2. Hence, the wave intensity at a distance r from
the source is

(17.7)

This inverse-square law, which is reminiscent of the behavior of gravity in Chapter 13,
states that the intensity decreases in proportion to the square of the distance from the
source.

I #
!av

A
#

!av

4,r2

I #
'P 2

max

2!v

Figure 17.5 (Quick Quiz 17.3) An ear trumpet, used before hearing aids to make
sounds intense enough for people who were hard of hearing. You can simulate the ef-
fect of an ear trumpet by cupping your hands behind your ears. 

Inverse-square behavior of
intensity for a point source
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Quick Quiz 17.4 A vibrating guitar string makes very little sound if it is not
mounted on the guitar. But if this vibrating string is attached to the guitar body, so that the
body of the guitar vibrates, the sound is higher in intensity. This is because (a) the power
of the vibration is spread out over a larger area (b) the energy leaves the guitar at a higher
rate (c) the speed of sound is higher in the material of the guitar body (d) none of these.

Example 17.2 Hearing Limits

The faintest sounds the human ear can detect at a
frequency of 1 000 Hz correspond to an intensity of
about 1.00 & 10* 12 W/m2—the so-called threshold of hear-
ing. The loudest sounds the ear can tolerate at this fre-
quency correspond to an intensity of about 1.00 W/m2—
the threshold of pain. Determine the pressure amplitude
and displacement amplitude associated with these two
limits.

Solution First, consider the faintest sounds. Using Equa-
tion 17.6 and taking v # 343 m/s as the speed of sound
waves in air and ! # 1.20 kg/m3 as the density of air, we ob-
tain

2.87 & 10*5 N/m2#

 # √2(1.20 kg/m3)(343 m/s)(1.00 & 10*12 W/m2)

'Pmax # √2!vI

Because atmospheric pressure is about 105 N/m2, this result
tells us that the ear is sensitive to pressure fluctuations as
small as 3 parts in 1010!

We can calculate the corresponding displacement ampli-
tude by using Equation 17.4, recalling that ) # 2,f (see
Eqs. 16.3 and 16.9):

This is a remarkably small number! If we compare this result
for smax with the size of an atom (about 10* 10 m), we see
that the ear is an extremely sensitive detector of sound waves.

In a similar manner, one finds that the loudest sounds
the human ear can tolerate correspond to a pressure ampli-
tude of 28.7 N/m2 and a displacement amplitude equal to
1.11 & 10* 5 m.

1.11 & 10*11 m#

smax #
'Pmax

!v)
#

2.87 & 10*5 N/m2

(1.20 kg/m3)(343 m/s)(2, & 1 000 Hz)

Example 17.3 Intensity Variations of a Point Source

A point source emits sound waves with an average power
output of 80.0 W.

(A) Find the intensity 3.00 m from the source.

Solution A point source emits energy in the form of spheri-
cal waves. Using Equation 17.7, we have

an intensity that is close to the threshold of pain.

0.707 W/m2I #
!av

4,r 
2 #

80.0 W
4,(3.00 m)2 #

(B) Find the distance at which the intensity of the sound is
1.00 & 10* 8 W/m2.

Solution Using this value for I in Equation 17.7 and solving
for r, we obtain

which equals about 16 miles!

2.52 & 104 m#

r # √ !av

4,I
# √ 80.0 W

4,(1.00 & 10*8 W/m2)

Sound Level in Decibels

Example 17.2 illustrates the wide range of intensities the human ear can detect. Be-
cause this range is so wide, it is convenient to use a logarithmic scale, where the sound
level - (Greek beta) is defined by the equation

(17.8)

The constant I0 is the reference intensity, taken to be at the threshold of hearing 
(I0 # 1.00 & 10* 12 W/m2), and I is the intensity in watts per square meter to which
the sound level - corresponds, where - is measured2 in decibels (dB). On this scale,

- $ 10 log ! I
I0
"

2 The unit bel is named after the inventor of the telephone, Alexander Graham Bell (1847–1922).
The prefix deci - is the SI prefix that stands for 10* 1.

Sound level in decibels
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Example 17.4 Sound Levels

Two identical machines are positioned the same distance
from a worker. The intensity of sound delivered by each ma-
chine at the location of the worker is 2.0 & 10* 7 W/m2.
Find the sound level heard by the worker

(A) when one machine is operating

(B) when both machines are operating.

Solution

(A) The sound level at the location of the worker with one
machine operating is calculated from Equation 17.8:

53 dB#

-1 # 10 log ! 2.0 & 10*7 W/m2

1.00 & 10*12 W/m2 " # 10 log(2.0 & 105)

(B) When both machines are operating, the intensity is dou-
bled to 4.0 & 10* 7 W/m2; therefore, the sound level now is

From these results, we see that when the intensity is dou-
bled, the sound level increases by only 3 dB.

What If? Loudness is a psychological response to a sound
and depends on both the intensity and the frequency of the
sound. As a rule of thumb, a doubling in loudness is approxi-
mately associated with an increase in sound level of 10 dB.
(Note that this rule of thumb is relatively inaccurate at
very low or very high frequencies.) If the loudness of the

56 dB#

-2 # 10 log ! 4.0 & 10*7 W/m2

1.00 & 10*12 W/m2 " # 10 log(4.0 & 105)

Quick Quiz 17.5 A violin plays a melody line and is then joined by a second
violin, playing at the same intensity as the first violin, in a repeat of the same melody. With
both violins playing, what physical parameter has doubled compared to the situation with
only one violin playing? (a) wavelength (b) frequency (c) intensity (d) sound level in dB
(e) none of these.

Quick Quiz 17.6 Increasing the intensity of a sound by a factor of 100 causes
the sound level to increase by (a) 100 dB (b) 20 dB (c) 10 dB (d) 2 dB.

the threshold of pain (I # 1.00 W/m2) corresponds to a sound level of - #
10 log[(1 W/m2)/(10* 12 W/m2)] # 10 log(1012) # 120 dB, and the threshold of
hearing corresponds to - # 10 log[(10* 12 W/m2)/(10* 12 W/m2)] # 0 dB.

Prolonged exposure to high sound levels may seriously damage the ear. Ear plugs
are recommended whenever sound levels exceed 90 dB. Recent evidence suggests that
“noise pollution” may be a contributing factor to high blood pressure, anxiety, and ner-
vousness. Table 17.2 gives some typical sound-level values.

Source of Sound " (dB)

Nearby jet airplane 150
Jackhammer; machine gun 130
Siren; rock concert 120
Subway; power mower 100
Busy traffic 80
Vacuum cleaner 70
Normal conversation 50
Mosquito buzzing 40
Whisper 30
Rustling leaves 10
Threshold of hearing 0

Sound Levels

Table 17.2
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machines in this example is to be doubled, how many ma-
chines must be running?

Answer Using the rule of thumb, a doubling of loud-
ness corresponds to a sound level increase of 10 dB.
Thus,

10 log ! I2

I1
"-2 * -1 # 10 dB #10 log ! I2

I0
"* 10 log ! I1

I0
" #

Thus, ten machines must be operating to double the
loudness.

I2 # 10I1

log ! I2

I1
" # 1

Loudness and Frequency

The discussion of sound level in decibels relates to a physical measurement of the
strength of a sound. Let us now consider how we describe the psychological “measure-
ment” of the strength of a sound. 

Of course, we don’t have meters in our bodies that can read out numerical values of
our reactions to stimuli. We have to “calibrate” our reactions somehow by comparing dif-
ferent sounds to a reference sound. However, this is not easy to accomplish. For example,
earlier we mentioned that the threshold intensity is 10* 12 W/m2, corresponding to an in-
tensity level of 0 dB. In reality, this value is the threshold only for a sound of frequency
1 000 Hz, which is a standard reference frequency in acoustics. If we perform an experi-
ment to measure the threshold intensity at other frequencies, we find a distinct variation
of this threshold as a function of frequency. For example, at 100 Hz, a sound must have an
intensity level of about 30 dB in order to be just barely audible! Unfortunately, there is no
simple relationship between physical measurements and psychological “measurements.”
The 100-Hz, 30-dB sound is psychologically “equal” to the 1 000-Hz, 0-dB sound (both are
just barely audible) but they are not physically equal (30 dB ≠ 0 dB).

By using test subjects, the human response to sound has been studied, and the re-
sults are shown in Figure 17.6 (the white area), along with the approximate frequency
and sound-level ranges of other sound sources. The lower curve of the white area cor-
responds to the threshold of hearing. Its variation with frequency is clear from this dia-
gram. Note that humans are sensitive to frequencies ranging from about 20 Hz to
about 20 000 Hz. The upper bound of the white area is the threshold of pain. Here the

Infrasonic
frequencies

Sonic
frequencies

Ultrasonic
frequencies

Large rocket engine

Jet engine (10 m away) Rifle

Thunder
overhead

Rock concert

Underwater communication

(Sonar)

Car horn
Motorcycle School cafeteria

Urban traffic Shout

Conversation
Birds

Bats
Whispered speechThreshold for

hearing

Sound level
  (dB)β

1 10 100 1 000 10 000 100 000
Frequency f (Hz)

220

200

180

160

140

120

100

80

60

40

20

0

Threshold for
pain

Figure 17.6 Approximate frequency and sound level ranges of various sources and that
of normal human hearing, shown by the white area. 
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boundary of the white area is straight, because the psychological response is relatively
independent of frequency at this high sound level.

The most dramatic change with frequency is in the lower left region of the white
area, for low frequencies and low intensity levels. Our ears are particularly insensitive in
this region. If you are listening to your stereo and the bass (low frequencies) and treble
(high frequencies) sound balanced at a high volume, try turning the volume down and
listening again. You will probably notice that the bass seems weak, which is due to the
insensitivity of the ear to low frequencies at low sound levels, as shown in Figure 17.6.

17.4 The Doppler Effect

Perhaps you have noticed how the sound of a vehicle’s horn changes as the vehicle
moves past you. The frequency of the sound you hear as the vehicle approaches you is
higher than the frequency you hear as it moves away from you. This is one example of
the Doppler effect.3

To see what causes this apparent frequency change, imagine you are in a boat that is
lying at anchor on a gentle sea where the waves have a period of T # 3.0 s. This means
that every 3.0 s a crest hits your boat. Figure 17.7a shows this situation, with the water
waves moving toward the left. If you set your watch to t # 0 just as one crest hits, the
watch reads 3.0 s when the next crest hits, 6.0 s when the third crest hits, and so on.
From these observations you conclude that the wave frequency is f # 1/T #
1/(3.0 s) # 0.33 Hz. Now suppose you start your motor and head directly into the
oncoming waves, as in Figure 17.7b. Again you set your watch to t # 0 as a crest hits the
front of your boat. Now, however, because you are moving toward the next wave crest as it
moves toward you, it hits you less than 3.0 s after the first hit. In other words, the period
you observe is shorter than the 3.0-s period you observed when you were stationary.
Because f # 1/T, you observe a higher wave frequency than when you were at rest.

If you turn around and move in the same direction as the waves (see Fig. 17.7c),
you observe the opposite effect. You set your watch to t # 0 as a crest hits the back of
the boat. Because you are now moving away from the next crest, more than 3.0 s has
elapsed on your watch by the time that crest catches you. Thus, you observe a lower fre-
quency than when you were at rest.

These effects occur because the relative speed between your boat and the waves de-
pends on the direction of travel and on the speed of your boat. When you are moving to-
ward the right in Figure 17.7b, this relative speed is higher than that of the wave speed,
which leads to the observation of an increased frequency. When you turn around and
move to the left, the relative speed is lower, as is the observed frequency of the water
waves.

Let us now examine an analogous situation with sound waves, in which the water
waves become sound waves, the water becomes the air, and the person on the boat be-
comes an observer listening to the sound. In this case, an observer O is moving and a
sound source S is stationary. For simplicity, we assume that the air is also stationary and
that the observer moves directly toward the source (Fig. 17.8). The observer moves
with a speed vO toward a stationary point source (vS # 0), where stationary means at
rest with respect to the medium, air.

If a point source emits sound waves and the medium is uniform, the waves move at
the same speed in all directions radially away from the source; this is a spherical wave,
as was mentioned in Section 17.3. It is useful to represent these waves with a series of
circular arcs concentric with the source, as in Figure 17.8. Each arc represents a sur-
face over which the phase of the wave is constant. For example, the surface could pass
through the crests of all waves. We call such a surface of constant phase a wave front.
The distance between adjacent wave fronts equals the wavelength (. In Figure 17.8, the

522 C H A P T E R  17 •  Sound Waves

3 Named after the Austrian physicist Christian Johann Doppler (1803–1853), who in 1842 predicted
the effect for both sound waves and light waves.



S E C T I O N  17. 4 •  The Doppler Effect 523

vwaves

(b)

vwaves

(a)

vwaves

(c)

vboat

vboat

Figure 17.7 (a) Waves mov-
ing toward a stationary boat.
The waves travel to the left,
and their source is far to the
right of the boat, out of the
frame of the photograph.
(b) The boat moving toward
the wave source. (c) The
boat moving away from the
wave source.

circles are the intersections of these three-dimensional wave fronts with the two-dimen-
sional paper.

We take the frequency of the source in Figure 17.8 to be f, the wavelength to be (,
and the speed of sound to be v. If the observer were also stationary, he or she would
detect wave fronts at a rate f. (That is, when vO # 0 and vS # 0, the observed frequency
equals the source frequency.) When the observer moves toward the source, the speed
of the waves relative to the observer is v. # v + vO , as in the case of the boat, but the

×

O

vO

S

Active Figure 17.8 An observer O (the cyclist) moves with a speed vO toward a station-
ary point source S, the horn of a parked truck. The observer hears a frequency f . that is
greater than the source frequency.

At the Active Figures link
at http://www.pse6.com, you
can adjust the speed of the 
observer.



wavelength ( is unchanged. Hence, using Equation 16.12, v # (f, we can say that the
frequency f . heard by the observer is increased and is given by

Because ( # v/f, we can express f . as

(17.9)

If the observer is moving away from the source, the speed of the wave relative to the
observer is v. # v * vO . The frequency heard by the observer in this case is decreased
and is given by

(17.10)

In general, whenever an observer moves with a speed vO relative to a stationary
source, the frequency heard by the observer is given by Equation 17.9, with a sign con-
vention: a positive value is substituted for vO when the observer moves toward the source
and a negative value is substituted when the observer moves away from the source.

Now consider the situation in which the source is in motion and the observer is at
rest. If the source moves directly toward observer A in Figure 17.9a, the wave fronts
heard by the observer are closer together than they would be if the source were not
moving. As a result, the wavelength (. measured by observer A is shorter than the wave-
length ( of the source. During each vibration, which lasts for a time interval T (the pe-
riod), the source moves a distance vST # vS/f and the wavelength is shortened by this
amount. Therefore, the observed wavelength (. is

Because ( # v/f, the frequency f . heard by observer A is

f . #
v
(.

#
v

( * (vS/f )
#

v
(v/f ) * (vS/f )

(. # ( * '( # ( *
vS

f

f . # ! v  * vO

v " f   (observer moving away from source)

f .  #   ! v  $ vO

v " f   (observer moving toward source)

f . #
v .

(
#

v $ vO

(
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(b)

A C

B

λ′λ

(a)

S

vS

Observer B

Observer A

Active Figure 17.9 (a) A source S moving with a speed vS toward a stationary ob-
server A and away from a stationary observer B. Observer A hears an increased
frequency, and observer B hears a decreased frequency. (b) The Doppler effect in
water, observed in a ripple tank. A point source is moving to the right with speed
vS. Letters shown in the photo refer to Quick Quiz 17.7.
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(source moving toward observer) (17.11)

That is, the observed frequency is increased whenever the source is moving toward the
observer.

When the source moves away from a stationary observer, as is the case for observer
B in Figure 17.9a, the observer measures a wavelength (. that is greater than ( and
hears a decreased frequency:

(source moving away from observer) (17.12)

We can express the general relationship for the observed frequency when a source
is moving and an observer is at rest as Equation 17.11, with the same sign convention
applied to vS as was applied to vO: a positive value is substituted for vS when the source
moves toward the observer and a negative value is substituted when the source moves
away from the observer.

Finally, we find the following general relationship for the observed frequency:

(17.13)

In this expression, the signs for the values substituted for vO and vS depend on the di-
rection of the velocity. A positive value is used for motion of the observer or the source
toward the other, and a negative sign for motion of one away from the other.

A convenient rule concerning signs for you to remember when working with all
Doppler-effect problems is as follows:

f . # ! v $ vO

v * vS
" f

f . # ! v
v $ vS

" f

f . # ! v
v * vS

" f
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! PITFALL PREVENTION
17.1 Doppler Effect Does

Not Depend on
Distance

Many people think that the
Doppler effect depends on the
distance between the source and
the observer. While the intensity
of a sound varies as the distance
changes, the apparent frequency
depends only on the relative
speed of source and observer. As
you listen to an approaching
source, you will detect increasing
intensity but constant frequency.
As the source passes, you will
hear the frequency suddenly
drop to a new constant value and
the intensity begin to decrease.

The word toward is associated with an increase in observed frequency. The words
away from are associated with a decrease in observed frequency.

Although the Doppler effect is most typically experienced with sound waves, it is a
phenomenon that is common to all waves. For example, the relative motion of source
and observer produces a frequency shift in light waves. The Doppler effect is used in
police radar systems to measure the speeds of motor vehicles. Likewise, astronomers
use the effect to determine the speeds of stars, galaxies, and other celestial objects rela-
tive to the Earth.

Quick Quiz 17.7 Consider detectors of water waves at three locations A, B,
and C in Figure 17.9b. Which of the following statements is true? (a) The wave speed is
highest at location A. (b) The wave speed is highest at location C. (c) The detected
wavelength is largest at location B. (c) The detected wavelength is largest at location C.
(e) The detected frequency is highest at location C. (f) The detected frequency is
highest at location A. 

Quick Quiz 17.8 You stand on a platform at a train station and listen to a
train approaching the station at a constant velocity. While the train approaches, but be-
fore it arrives, you hear (a) the intensity and the frequency of the sound both increas-
ing (b) the intensity and the frequency of the sound both decreasing (c) the intensity
increasing and the frequency decreasing (d) the intensity decreasing and the fre-
quency increasing (e) the intensity increasing and the frequency remaining the same
(f) the intensity decreasing and the frequency remaining the same.

General Doppler-shift
expression
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Example 17.5 The Broken Clock Radio

Your clock radio awakens you with a steady and irritating
sound of frequency 600 Hz. One morning, it malfunctions
and cannot be turned off. In frustration, you drop the clock
radio out of your fourth-story dorm window, 15.0 m from
the ground. Assume the speed of sound is 343 m/s.

(A) As you listen to the falling clock radio, what frequency do
you hear just before you hear the radio striking the ground?

(B) At what rate does the frequency that you hear change
with time just before you hear the radio striking the ground? 

Solution

(A) In conceptualizing the problem, note that the speed of
the radio increases as it falls. Thus, it is a source of sound
moving away from you with an increasing speed. We catego-
rize this problem as one in which we must combine our un-
derstanding of falling objects with that of the frequency shift
due to the Doppler effect. To analyze the problem, we iden-
tify the clock radio as a moving source of sound for which
the Doppler-shifted frequency is given by

The speed of the source of sound is given by Equation 2.9
for a falling object:

Thus, the Doppler-shifted frequency of the falling clock
radio is

The time at which the radio strikes the ground is found
from Equation 2.12:

Thus, the Doppler-shifted frequency just as the radio strikes
the ground is

571 Hz#

 # ! 343  m/s
343  m/s $ (9.80  m/s2)(1.75  s) "(600  Hz)

f . # ! v
v $ gt " f

t # 1.75  s

*15.0  m # 0 $ 0 * 1
2(9.80  m/s2)t2

yf # yi $ vyit * 1
2gt2

(1)   f . # ! v
v * (*gt) " f # ! v

v $ gt " f

vS # vyi $ ayt # 0 * gt # *gt

f . # ! v
v * vS

" f

(B) The rate at which the frequency changes is found by dif-
ferentiating Equation (1) with respect to t :

To finalize this problem, consider the following What If?

What If? Suppose you live on the eighth floor instead of
the fourth floor. If you repeat the radio-dropping activity, does
the frequency shift in part (A) and the rate of change of fre-
quency in part (B) of this example double?

Answer The doubled height does not give a time at which
the radio lands that is twice the time found in part (A).
From Equation 2.12:

The new frequency heard just before you hear the radio
strike the ground is

The frequency shift heard on the fourth floor is 600 Hz *
571 Hz # 29 Hz, while the frequency shift heard from the
eighth floor is 600 Hz * 560 Hz # 40 Hz, which is not twice
as large.

The new rate of change of frequency is

Note that this value is actually smaller in magnitude than the
previous value of * 15.5 Hz/s!

 # *15.0 Hz/s

 #
*(343  m/s)(9.80  m/s2)

[343  m/s $ (9.80  m/s2)(2.47  s)]2  (600  Hz)

df .
dt

#   
*vg

(v $ gt)2  f

560 Hz#

 # ! 343  m/s
343  m/s $ (9.80  m/s2)(2.47  s) " (600 Hz)

f . # ! v
v $ gt " f

t # 2.47  s

*30.0  m  #   0  $   0 * 1
2(9.80  m/s2)t 

2

yf # yi $ vyit * 1
2 
gt 

2

*15.5 Hz/s#

 #
*(343  m/s)(9.80  m/s2)

[343  m/s $ (9.80  m/s2)(1.75  s)]2  (600  Hz) 

df .
dt

#   
d
dt

 ! vf
v $ gt " #

*vg
(v $ gt)2  f

Example 17.6 Doppler Submarines

A submarine (sub A) travels through water at a speed of
8.00 m/s, emitting a sonar wave at a frequency of 1 400 Hz.
The speed of sound in the water is 1 533 m/s. A second sub-
marine (sub B) is located such that both submarines are
traveling directly toward one another. The second subma-
rine is moving at 9.00 m/s.

(A) What frequency is detected by an observer riding on
sub B as the subs approach each other?

(B) The subs barely miss each other and pass. What fre-
quency is detected by an observer riding on sub B as the
subs recede from each other?

Interactive
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Solution

(A) We use Equation 17.13 to find the Doppler-shifted fre-
quency. As the two submarines approach each other, the ob-
server in sub B hears the frequency

(B) As the two submarines recede from each other, the ob-
server in sub B hears the frequency

1  385 Hz# ! 1  533 m/s $   (*9.00 m/s)
1  533 m/s * (*8.00 m/s) " (1  400 Hz) #

f .# ! v $ vO

v * vS
" f

1  416 Hz# ! 1  533 m/s $ ($9.00 m/s)
1  533 m/s * ($8.00 m/s) " (1 400 Hz) #

f . # ! v $ vO

v * vS
" f

What If? While the subs are approaching each other, some
of the sound from sub A will reflect from sub B and return to
sub A. If this sound were to be detected by an observer on
sub A, what is its frequency?

Answer The sound of apparent frequency 1 416 Hz found
in part (A) will be reflected from a moving source (sub B)
and then detected by a moving observer (sub A). Thus, the
frequency detected by sub A is

This technique is used by police officers to measure the
speed of a moving car. Microwaves are emitted from the po-
lice car and reflected by the moving car. By detecting the
Doppler-shifted frequency of the reflected microwaves, the
police officer can determine the speed of the moving car.

1  432 Hz# ! 1  533 m/s $   ($8.00 m/s)
1  533 m/s *   ($9.00 m/s) " (1  416 Hz) #

f / # ! v $ vO

v * vS
" f .

At the Interactive Worked Example link at http://www.pse6.com, you can alter the relative speeds of the submarines and ob-
serve the Doppler-shifted frequency.

Shock Waves

Now consider what happens when the speed vS of a source exceeds the wave speed v.
This situation is depicted graphically in Figure 17.10a. The circles represent spherical
wave fronts emitted by the source at various times during its motion. At t # 0, the
source is at S0, and at a later time t, the source is at Sn. At the time t, the wave front

Figure 17.10 (a) A representation of a shock wave produced when a source moves
from S0 to Sn with a speed vS , which is greater than the wave speed v in the medium.
The envelope of the wave fronts forms a cone whose apex half-angle is given by
sin 0 # v/vS . (b) A stroboscopic photograph of a bullet moving at supersonic speed
through the hot air above a candle. Note the shock wave in the vicinity of the bullet. 
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centered at S0 reaches a radius of vt. In this same time interval, the source travels a dis-
tance vSt to Sn. At the instant the source is at Sn , waves are just beginning to be gener-
ated at this location, and hence the wave front has zero radius at this point. The tan-
gent line drawn from Sn to the wave front centered on S0 is tangent to all other wave
fronts generated at intermediate times. Thus, we see that the envelope of these wave
fronts is a cone whose apex half-angle 0 (the “Mach angle”) is given by

The ratio vS/v is referred to as the Mach number, and the conical wave front produced
when vS > v (supersonic speeds) is known as a shock wave. An interesting analogy to
shock waves is the V-shaped wave fronts produced by a boat (the bow wave) when the
boat’s speed exceeds the speed of the surface-water waves (Fig. 17.11).

Jet airplanes traveling at supersonic speeds produce shock waves, which are respon-
sible for the loud “sonic boom” one hears. The shock wave carries a great deal of en-
ergy concentrated on the surface of the cone, with correspondingly great pressure vari-
ations. Such shock waves are unpleasant to hear and can cause damage to buildings
when aircraft fly supersonically at low altitudes. In fact, an airplane flying at supersonic
speeds produces a double boom because two shock waves are formed, one from the
nose of the plane and one from the tail. People near the path of the space shuttle as it
glides toward its landing point often report hearing what sounds like two very closely
spaced cracks of thunder.

sin 0 #
vt
vSt

#
v
vS
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Figure 17.11 The V-shaped bow
wave of a boat is formed because
the boat speed is greater than the
speed of the water waves it gener-
ates. A bow wave is analogous to a
shock wave formed by an airplane
traveling faster than sound. w
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Quick Quiz 17.9 An airplane flying with a constant velocity moves from a
cold air mass into a warm air mass. Does the Mach number (a) increase (b) decrease
(c) stay the same?

17.5 Digital Sound Recording

The first sound recording device, the phonograph, was invented by Thomas Edison in
the nineteenth century. Sound waves were recorded in early phonographs by encoding
the sound waveforms as variations in the depth of a continuous groove cut in tin foil
wrapped around a cylinder. During playback, as a needle followed along the groove of
the rotating cylinder, the needle was pushed back and forth according to the sound



waves encoded on the record. The needle was attached to a diaphragm and a horn
(Fig. 17.12), which made the sound loud enough to be heard.

As the development of the phonograph continued, sound was recorded on card-
board cylinders coated with wax. During the last decade of the nineteenth century and
the first half of the twentieth century, sound was recorded on disks made of shellac and
clay. In 1948, the plastic phonograph disk was introduced and dominated the record-
ing industry market until the advent of compact discs in the 1980s.

There are a number of problems with phonograph records. As the needle follows
along the groove of the rotating phonograph record, the needle is pushed back and
forth according to the sound waves encoded on the record. By Newton’s third law, the
needle also pushes on the plastic. As a result, the recording quality diminishes with
each playing as small pieces of plastic break off and the record wears away.

Another problem occurs at high frequencies. The wavelength of the sound on the
record is so small that natural bumps and graininess in the plastic create signals as loud
as the sound signal, resulting in noise. The noise is especially noticeable during quiet
passages in which high frequencies are being played. This is handled electronically by
a process known as pre-emphasis. In this process, the high frequencies are recorded with
more intensity than they actually have, which increases the amplitude of the vibrations
and overshadows the sources of noise. Then, an equalization circuit in the playback sys-
tem is used to reduce the intensity of the high-frequency sounds, which also reduces
the intensity of the noise.

S E C T I O N  17. 5 •  Digital Sound Recording 529

Figure 17.12 An Edison
phonograph. Sound infor-
mation is recorded in a
groove on a rotating cylinder
of wax. A needle follows the
groove and vibrates accord-
ing to the sound informa-
tion. A diaphragm and a
horn make the sound in-
tense enough to hear.

Example 17.7 Wavelengths on a Phonograph Record

Consider a 10 000-Hz sound recorded on a phonograph
record which rotates at rev/min. How far apart are the
crests of the wave for this sound on the record

(A) at the outer edge of the record, 6.0 inches from the
center?

331
3

(B) at the inner edge, 1.0 inch from the center?

Solution

(A) The linear speed v of a point at the outer edge of the
record is 2,r/T where T is the period of the rotation and r
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Digital Recording

In digital recording, information is converted to binary code (ones and zeroes), similar
to the dots and dashes of Morse code. First, the waveform of the sound is sampled, typi-
cally at the rate of 44 100 times per second. Figure 17.13 illustrates this process. The
sampling frequency is much higher than the upper range of hearing, about 20 000 Hz,
so all frequencies of sound are sampled at this rate. During each sampling, the pres-
sure of the wave is measured and converted to a voltage. Thus, there are 44 100 num-
bers associated with each second of the sound being sampled. 

These measurements are then converted to binary numbers, which are numbers
expressed using base 2 rather than base 10. Table 17.3 shows some sample binary num-
bers. Generally, voltage measurements are recorded in 16-bit “words,” where each bit is
a one or a zero. Thus, the number of different voltage levels that can be assigned codes
is 216 # 65 536. The number of bits in one second of sound is 16 & 44 100 # 705 600.
It is these strings of ones and zeroes, in 16-bit words, that are recorded on the surface
of a compact disc.

Figure 17.14 shows a magnification of the surface of a compact disc. There are two
types of areas that are detected by the laser playback system—lands and pits. The lands
are untouched regions of the disc surface that are highly reflective. The pits, which are
areas burned into the surface, scatter light rather than reflecting it back to the detec-
tion system. The playback system samples the reflected light 705 600 times per second.
When the laser moves from a pit to a flat or from a flat to a pit, the reflected light
changes during the sampling and the bit is recorded as a one. If there is no change
during the sampling, the bit is recorded as a zero.
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is the distance from the center. We first find T: 

Now, the linear speed at the outer edge is 

Thus, the wave on the record is moving past the needle at
this speed. The wavelength is

53  "m#

(  #   
v
f

  #   
53 cm/s

10  000 Hz
  #   5.3 & 10*5

  m 

 #   53 cm/s

v  #   
2,r
T

  #   
2,(6.0  in.)

1.8 s
  #   21 in./s  ! 2.54 cm

1 in. "  

T  #  
1
f

  #   
1

33.33 rev/min
  #  0.030 min ! 60 s

1 min " # 1.8 s

(B) The linear speed at the inner edge is 

The wavelength is

Thus, the problem with noise interfering with the recorded
sound is more severe at the inner edge of the disk than at
the outer edge.

8.9  "m#

(  #   
v
f

  #   
8.9 cm/s

10  000 Hz
  #   8.9 &  10*6

  m

 #   8.9 cm/s

v  #   
2,r
T

  #   
2,(1.0  in.)

1.8 s
  #   3.5 in./s  ! 2.54 cm

1 in. "  

Figure 17.13 Sound is digitized by electronically sampling the sound waveform at
periodic intervals. During each time interval between the blue lines, a number is
recorded for the average voltage during the interval. The sampling rate shown here is
much slower than the actual sampling rate of 44 100 samples per second.



The binary numbers read from the CD are converted back to voltages, and the
waveform is reconstructed, as shown in Figure 17.15. Because the sampling rate is so
high—44 100 voltage readings each second—the fact that the waveform is constructed
from step-wise discrete voltages is not evident in the sound.

The advantage of digital recording is in the high fidelity of the sound. With analog
recording, any small imperfection in the record surface or the recording equipment
can cause a distortion of the waveform. If all peaks of a maximum in a waveform are
clipped off so as to be only 90% as high, for example, this will have a major effect on
the spectrum of the sound in an analog recording. With digital recording, however, it
takes a major imperfection to turn a one into a zero. If an imperfection causes the
magnitude of a one to be 90% of the original value, it still registers as a one, and there
is no distortion. Another advantage of digital recording is that the information is ex-
tracted optically, so that there is no mechanical wear on the disc. 
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Number in
Base 10 Number in Binary Sum

1 0000000000000001 1
2 0000000000000010 2 $ 0
3 0000000000000011 2 $ 1

10 0000000000001010 8 $ 0 $ 2 $ 0
37 0000000000100101 32 $ 0 $ 0 $ 4 $ 0 $ 1

275 0000000100010011 256 $ 0 $ 0 $ 0 $ 16 $ 0 $ 0 $ 2 $ 1

Sample Binary Numbers

Table 17.3

Figure 17.14 The surface of a compact disc, showing the pits. Transitions between pits
and lands correspond to ones. Regions without transitions correspond to zeroes.
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Figure 17.15 The reconstruction of the sound wave sampled in Figure 17.13. Notice that
the reconstruction is step-wise, rather than the continuous waveform in Figure 17.13.

Example 17.8 How Big Are the Pits?

In Example 10.2, we mentioned that the speed with which
the CD surface passes the laser is 1.3 m/s. What is the aver-
age length of the audio track on a CD associated with each
bit of the audio information?

Solution In one second, a 1.3-m length of audio track
passes by the laser. This length includes 705 600 bits of
audio information. Thus, the average length per bit is

1.3  m
705  600  bits

  # 1.8 & 10*6
  m/bit  

The average length per bit of total information on the CD is
smaller than this because there is additional information on
the disc besides the audio information. This information in-
cludes error correction codes, song numbers, timing codes,
etc. As a result, the shortest length per bit is actually about
0.8 "m.

1.8 "m/bit#

Example 17.9 What’s the Number?

Consider the photograph of the compact disc surface in
Figure 17.14. Audio data undergoes complicated processing
in order to reduce a variety of errors in reading the data.
Thus, an audio “word” is not laid out linearly on the disc.
Suppose that data has been read from the disc, the error en-
coding has been removed, and the resulting audio word is

1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 

What is the decimal number represented by this 16-bit
word?

Solution We convert each of these bits to a power of 2 and
add the results:

1 & 215 # 32 768 1 & 29 # 512 1 & 23 # 8
0 & 214 # 0 1 & 28 # 256 0 & 22 # 0
1 & 213 # 8 192 1 & 27 # 128 1 & 21 # 2
1 & 212 # 4 096 0 & 26 # 0 1 & 20 # 1
1 & 211 # 2 048 1 & 25 # 32
0 & 210 # 0 1 & 24 # 16 sum #

This number is converted by the CD player into a voltage,
representing one of the 44 100 values that will be used to
build one second of the electronic waveform that represents
the recorded sound.

48 059

17.6 Motion Picture Sound

Another interesting application of digital sound is the soundtrack in a motion picture.
Early twentieth-century movies recorded sound on phonograph records, which were syn-
chronized with the action on the screen. Beginning with early newsreel films, the vari-
able-area optical soundtrack process was introduced, in which sound was recorded on an op-
tical track on the film. The width of the transparent portion of the track varied according
to the sound wave that was recorded. A photocell detecting light passing through the
track converted the varying light intensity to a sound wave. As with phonograph record-
ing, there are a number of difficulties with this recording system. For example, dirt or
fingerprints on the film cause fluctuations in intensity and loss of fidelity.

Digital recording on film first appeared with Dick Tracy (1990), using the Cinema
Digital Sound (CDS) system. This system suffered from lack of an analog backup sys-
tem in case of equipment failure and is no longer used in the film industry. It did, how-
ever, introduce the use of 5.1 channels of sound—Left, Center, Right, Right Surround,
Left Surround, and Low Frequency Effects (LFE). The LFE channel, which is the “0.1



channel” of 5.1, carries very low frequencies for dramatic sound from explosions,
earthquakes, and the like.

Current motion pictures are produced with three systems of digital sound recording:

Dolby Digital; In this format, 5.1 channels of digital sound are optically stored
between the sprocket holes of the film. There is an analog optical backup in case the
digital system fails. The first film to use this technique was Batman Returns (1992).

DTS (Digital Theater Sound); 5.1 channels of sound are stored on a separate CD-
ROM which is synchronized to the film print by time codes on the film. There is an
analog optical backup in case the digital system fails. The first film to use this tech-
nique was Jurassic Park (1993).

SDDS (Sony Dynamic Digital Sound); Eight full channels of digital sound are optically
stored outside the sprocket holes on both sides of film. There is an analog optical
backup in case the digital system fails. The first film to use this technique was Last
Action Hero (1993). The existence of information on both sides of the tape is a system
of redundancy—in case one side is damaged, the system will still operate. SDDS em-
ploys a full-spectrum LFE channel and two additional channels (left center and right
center behind the screen). In Figure 17.16, showing a section of SDDS film, both the
analog optical soundtrack and the dual digital soundtracks can be seen.
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film image

sprocket holessprocket holes

stereo optical soundtrack digital soundtrackdigital soundtrack

Figure 17.16 The layout of information on motion picture film using the SDDS digital
sound system.

Co
ur

te
sy

 o
f S

on
y C

in
em

a 
Pr

od
uc

ts
 C

or
po

ra
tio

n 
©

 2
00

3 
So

ny
 C

in
em

a 
Pr

od
uc

ts
 C

or
po

ra
tio

n.
 A

ll 
Ri

gh
ts

 R
es

er
ve

d.
 R

ep
ro

du
ct

io
n 

in
 w

ho
le

 o
r i

n 
pa

rt 
w

ith
ou

t 
w

rit
te

n 
pe

rm
iss

io
n 

is 
pr

oh
ib

ite
d.



534 C H A P T E R  17 •  Sound Waves

Sound waves are longitudinal and travel through a compressible medium with a speed
that depends on the elastic and inertial properties of that medium. The speed of
sound in a liquid or gas having a bulk modulus B and density ! is

(17.1)

For sinusoidal sound waves, the variation in the position of an element of the
medium is given by

(17.2)

and the variation in pressure from the equilibrium value is

(17.3)

where 'Pmax is the pressure amplitude. The pressure wave is 90° out of phase with
the displacement wave. The relationship between smax and 'Pmax is given by

(17.4)

The intensity of a periodic sound wave, which is the power per unit area, is

(17.5, 17.6)

The sound level of a sound wave, in decibels, is given by

(17.8)

The constant I0 is a reference intensity, usually taken to be at the threshold of hearing
(1.00 & 10*12 W/m2), and I is the intensity of the sound wave in watts per square meter.

The change in frequency heard by an observer whenever there is relative motion
between a source of sound waves and the observer is called the Doppler effect. The
observed frequency is

(17.13)

In this expression, the signs for the values substituted for vO and vS depend on the di-
rection of the velocity. A positive value for the velocity of the observer or source is sub-
stituted if the velocity of one is toward the other, while a negative value represents a ve-
locity of one away from the other.

In digital recording of sound, the sound waveform is sampled 44 100 times per sec-
ond. The pressure of the wave for each sampling is measured and converted to a bi-
nary number. In playback, these binary numbers are read and used to build the origi-
nal waveform.

f . # ! v $ vO

v * vS
" f

- $ 10 log! I
I0
"

I  $ 
!

A
#

'P 2
max

2!v

'Pmax # !v)smax

'P # 'Pmax sin(kx * )t)

s(x, t) # smax cos(kx * )t)

v # √ B
!

S U M M A RY

Take a practice test for
this chapter by clicking on
the Practice Test link at
http://www.pse6.com.

1. Why are sound waves characterized as longitudinal?

If an alarm clock is placed in a good vacuum and then acti-
vated, no sound is heard. Explain.

3. A sonic ranger is a device that determines the distance to
an object by sending out an ultrasonic sound pulse and
measuring how long it takes for the wave to return after it
reflects from the object. Typically these devices cannot

2.

reliably detect an object that is less than half a meter from
the sensor. Why is that?

4. A friend sitting in her car far down the road waves to you
and beeps her horn at the same time. How far away must
she be for you to calculate the speed of sound to two sig-
nificant figures by measuring the time it takes for the
sound to reach you?

Q U E S T I O N S



Problems 535

5. If the wavelength of sound is reduced by a factor of 2, what
happens to its frequency? Its speed?

6. By listening to a band or orchestra, how can you de-
termine that the speed of sound is the same for all
frequencies?

7. In Example 17.3 we found that a point source with a 
power output of 80 W produces sound with an intensity of
1.00 & 10* 8 W/m2, which corresponds to 40 dB, at a dis-
tance of about 16 miles. Why do you suppose you cannot
normally hear a rock concert that is going on 16 miles
away? (See Table 17.2.)

If the distance from a point source is tripled, by what
factor does the intensity decrease?

9. The Tunguska Event. On June 30, 1908, a meteor burned
up and exploded in the atmosphere above the Tunguska
River valley in Siberia. It knocked down trees over thou-
sands of square kilometers and started a forest fire, but
apparently caused no human casualties. A witness sitting
on his doorstep outside the zone of falling trees recalled
events in the following sequence: He saw a moving light
in the sky, brighter than the sun and descending at a low
angle to the horizon. He felt his face become warm. He
felt the ground shake. An invisible agent picked him up
and immediately dropped him about a meter farther
away from where the light had been. He heard a very
loud protracted rumbling. Suggest an explanation for
these observations and for the order in which they
happened.

10. Explain how the Doppler effect with microwaves is used to
determine the speed of an automobile.

11. Explain what happens to the frequency of the echo of your
car horn as you move in a vehicle toward the wall of a
canyon. What happens to the frequency as you move away
from the wall?

12. Of the following sounds, which is most likely to have a
sound level of 60 dB: a rock concert, the turning of a page

8.

in this textbook, normal conversation, or a cheering crowd
at a football game?

13. Estimate the decibel level of each of the sounds in the pre-
vious question.

14. A binary star system consists of two stars revolving about
their common center of mass. If we observe the light
reaching us from one of these stars as it makes one com-
plete revolution, what does the Doppler effect predict will
happen to this light?

How can an object move with respect to an observer so
that the sound from it is not shifted in frequency?

16. Suppose the wind blows. Does this cause a Doppler effect
for sound propagating through the air? Is it like a moving
source or a moving observer?

17. Why is it not possible to use sonar (sound waves) to deter-
mine the speed of an object traveling faster than the speed
of sound?

18. Why is it so quiet after a snowfall?

19. Why is the intensity of an echo less than that of the origi-
nal sound?

20. A loudspeaker built into the exterior wall of an airplane
produces a large-amplitude burst of vibration at 200 Hz,
then a burst at 300 Hz, and then a burst at 400 Hz
(Boop . . . baap . . . beep), all while the plane is flying
faster than the speed of sound. Describe qualitatively what
an observer hears if she is in front of the plane, close to its
flight path. What If? What will the observer hear if the pi-
lot uses the loudspeaker to say, “How are you?”

21. In several cases, a nearby star has been found to have a
large planet orbiting about it, although the planet could
not be seen. Using the ideas of a system rotating about its
center of mass and of the Doppler shift for light (which is
in several ways similar to the Doppler effect for sound), ex-
plain how an astronomer could determine the presence of
the invisible planet.

15.

Section 17.1 Speed of Sound Waves
Suppose that you hear a clap of thunder 16.2 s after seeing
the associated lightning stroke. The speed of sound waves
in air is 343 m/s, and the speed of light is 3.00 & 108 m/s.
How far are you from the lightning stroke?

2. Find the speed of sound in mercury, which has a bulk
modulus of approximately 2.80 & 1010 N/m2 and a density
of 13 600 kg/m3.

3. A flowerpot is knocked off a balcony 20.0 m above the
sidewalk and falls toward an unsuspecting 1.75-m-tall man
who is standing below. How close to the sidewalk can the
flower pot fall before it is too late for a warning shouted

1.
from the balcony to reach the man in time? Assume that
the man below requires 0.300 s to respond to the warning.

4. The speed of sound in air (in m/s) depends on tempera-
ture according to the approximate expression

where TC is the Celsius temperature. In dry air the tem-
perature decreases about 1°C for every 150 m rise in alti-
tude. (a) Assuming this change is constant up to an alti-
tude of 9 000 m, how long will it take the sound from an
airplane flying at 9 000 m to reach the ground on a day
when the ground temperature is 30°C? (b) What If? Com-

v # 331.5 $ 0.607TC

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide

= coached solution with hints available at http://www.pse6.com = computer useful in solving problem             

= paired numerical and symbolic problems

P R O B L E M S
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pare this to the time interval required if the air were a con-
stant 30°C. Which time interval is longer?

5. A cowboy stands on horizontal ground between two paral-
lel vertical cliffs. He is not midway between the cliffs. He
fires a shot and hears its echoes. The second echo arrives
1.92 s after the first and 1.47 s before the third. Consider
only the sound traveling parallel to the ground and reflect-
ing from the cliffs. Take the speed of sound as 340 m/s.
(a) What is the distance between the cliffs? (b) What If? If
he can hear a fourth echo, how long after the third echo
does it arrive?

6. A rescue plane flies horizontally at a constant speed
searching for a disabled boat. When the plane is directly
above the boat, the boat’s crew blows a loud horn. By the
time the plane’s sound detector perceives the horn’s
sound, the plane has traveled a distance equal to half its al-
titude above the ocean. If it takes the sound 2.00 s to reach
the plane, determine (a) the speed of the plane and (b) its
altitude. Take the speed of sound to be 343 m/s.

Section 17.2 Periodic Sound Waves

Note : Use the following values as needed unless otherwise
specified: the equilibrium density of air at 20°C is
! # 1.20 kg/m3. The speed of sound in air is v #

343 m/s. Pressure variations 'P are measured relative 
to atmospheric pressure, 1.013 & 105 N/m2. 
Problem 70 in Chapter 2 can also be assigned with this
section.

7. A bat (Fig. P17.7) can detect very small objects, such as
an insect whose length is approximately equal to one
wavelength of the sound the bat makes. If a bat emits
chirps at a frequency of 60.0 kHz, and if the speed of
sound in air is 340 m/s, what is the smallest insect the bat
can detect?

8. An ultrasonic tape measure uses frequencies above
20 MHz to determine dimensions of structures such as
buildings. It does this by emitting a pulse of ultrasound
into air and then measuring the time for an echo to return
from a reflecting surface whose distance away is to be mea-
sured. The distance is displayed as a digital read-out. For a
tape measure that emits a pulse of ultrasound with a fre-
quency of 22.0 MHz, (a) What is the distance to an object
from which the echo pulse returns after 24.0 ms when the
air temperature is 26°C? (b) What should be the duration
of the emitted pulse if it is to include 10 cycles of the ultra-
sonic wave? (c) What is the spatial length of such a pulse?

9. Ultrasound is used in medicine both for diagnostic imaging
and for therapy. For diagnosis, short pulses of ultrasound
are passed through the patient’s body. An echo reflected
from a structure of interest is recorded, and from the time
delay for the return of the echo the distance to the struc-
ture can be determined. A single transducer emits and de-
tects the ultrasound. An image of the structure is obtained
by reducing the data with a computer. With sound of low
intensity, this technique is noninvasive and harmless. It is
used to examine fetuses, tumors, aneurysms, gallstones,
and many other structures. A Doppler ultrasound unit is
used to study blood flow and functioning of the heart. To
reveal detail, the wavelength of the reflected ultrasound
must be small compared to the size of the object reflecting
the wave. For this reason, frequencies in the range 1.00 to
20.0 MHz are used. What is the range of wavelengths corre-
sponding to this range of frequencies? The speed of ultra-
sound in human tissue is about 1 500 m/s (nearly the same
as the speed of sound in water).

10. A sound wave in air has a pressure amplitude equal to
4.00 & 10* 3 N/m2. Calculate the displacement amplitude
of the wave at a frequency of 10.0 kHz.

11. A sinusoidal sound wave is described by the displacement
wave function

(a) Find the amplitude, wavelength, and speed of this
wave. (b) Determine the instantaneous displacement from
equilibrium of the elements of air at the position
x # 0.050 0 m at t # 3.00 ms. (c) Determine the maxi-
mum speed of the element’s oscillatory motion. 

12. As a certain sound wave travels through the air, it produces
pressure variations (above and below atmospheric pres-
sure) given by 'P # 1.27 sin(,x * 340,t) in SI units. Find
(a) the amplitude of the pressure variations, (b) the fre-
quency, (c) the wavelength in air, and (d) the speed of the
sound wave.

Write an expression that describes the pressure variation as
a function of position and time for a sinusoidal sound
wave in air, if ( # 0.100 m and 'Pmax # 0.200 N/m2.

14. Write the function that describes the displacement wave
corresponding to the pressure wave in Problem 13.

An experimenter wishes to generate in air a sound
wave that has a displacement amplitude of 5.50 & 10*6 m.
The pressure amplitude is to be limited to 0.840 N/m2.
What is the minimum wavelength the sound wave can
have?

15.

13.

s(x, t) # (2.00 "m) cos[(15.7 m*1)x * (858 s*1)t]

Figure P17.7 Problems 7 and 60.
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16. The tensile stress in a thick copper bar is 99.5% of its elas-
tic breaking point of 13.0 & 1010 N/m2. If a 500-Hz sound
wave is transmitted through the material, (a) what dis-
placement amplitude will cause the bar to break?
(b) What is the maximum speed of the elements of copper
at this moment? (c) What is the sound intensity in the bar?

17. Prove that sound waves propagate with a speed given by
Equation 17.1. Proceed as follows. In Figure 17.3, consider a
thin cylindrical layer of air in the cylinder, with face area A
and thickness 'x. Draw a free-body diagram of this thin layer.
Show that %Fx # max implies that *[+('P)/+x]A 'x #
!A 'x(+2s/+t2). By substituting 'P # *B(+s1+x), obtain the
wave equation for sound, (B/!)(+2s/+x2) # (+2s/+t2). To a
mathematical physicist, this equation demonstrates the
existence of sound waves and determines their speed.
As a physics student, you must take another step or two.
Substitute into the wave equation the trial solution s(x, t) #
smax cos(kx * )t). Show that this function satisfies the
wave equation provided that This result reveals
that sound waves exist provided that they move with the
speed 

Section 17.3 Intensity of Periodic Sound Waves
18. The area of a typical eardrum is about 5.00 & 10* 5 m2.

Calculate the sound power incident on an eardrum at
(a) the threshold of hearing and (b) the threshold of pain.

Calculate the sound level in decibels of a sound wave that
has an intensity of 4.00 "W/m2. 

20. A vacuum cleaner produces sound with a measured sound
level of 70.0 dB. (a) What is the intensity of this sound in
W/m2? (b) What is the pressure amplitude of the sound?

21. The intensity of a sound wave at a fixed distance from a
speaker vibrating at 1.00 kHz is 0.600 W/m2. (a) Deter-
mine the intensity if the frequency is increased to 2.50 kHz
while a constant displacement amplitude is maintained.
(b) Calculate the intensity if the frequency is reduced to
0.500 kHz and the displacement amplitude is doubled.

22. The intensity of a sound wave at a fixed distance from a
speaker vibrating at a frequency f is I. (a) Determine the
intensity if the frequency is increased to f . while a constant
displacement amplitude is maintained. (b) Calculate the
intensity if the frequency is reduced to f/2 and the dis-
placement amplitude is doubled.

19.

v # f ( # (2,f  )((/2,) # )/k # √B/!.

)/k # √B/!.

23. The most soaring vocal melody is in Johann Sebastian
Bach’s Mass in B minor. A portion of the score for the Credo
section, number 9, bars 25 to 33, appears in Figure P17.23.
The repeating syllable O in the phrase “resurrectionem
mortuorum” (the resurrection of the dead) is seamlessly
passed from basses to tenors to altos to first sopranos, like a
baton in a relay. Each voice carries the melody up in a run
of an octave or more. Together they carry it from D below
middle C to A above a tenor’s high C. In concert pitch,
these notes are now assigned frequencies of 146.8 Hz and
880.0 Hz. (a) Find the wavelengths of the initial and final
notes. (b) Assume that the choir sings the melody with a
uniform sound level of 75.0 dB. Find the pressure ampli-
tudes of the initial and final notes. (c) Find the displace-
ment amplitudes of the initial and final notes. (d) What If?
In Bach’s time, before the invention of the tuning fork, fre-
quencies were assigned to notes as a matter of immediate
local convenience. Assume that the rising melody was sung
starting from 134.3 Hz and ending at 804.9 Hz. How would
the answers to parts (a) through (c) change?

24. The tube depicted in Figure 17.2 is filled with air at 20°C
and equilibrium pressure 1 atm. The diameter of the tube
is 8.00 cm. The piston is driven at a frequency of 600 Hz
with an amplitude of 0.120 cm. What power must be sup-
plied to maintain the oscillation of the piston? 

A family ice show is held at an enclosed arena. The
skaters perform to music with level 80.0 dB. This is too
loud for your baby, who yells at 75.0 dB. (a) What total
sound intensity engulfs you? (b) What is the combined
sound level? 

26. Consider sinusoidal sound waves propagating in these
three different media: air at 0°C, water, and iron. Use den-
sities and speeds from Tables 14.1 and 17.1. Each wave has
the same intensity I0 and the same angular frequency )0.
(a) Compare the values of the wavelength in the three me-
dia. (b) Compare the values of the displacement ampli-
tude in the three media. (c) Compare the values of the
pressure amplitude in the three media. (d) For values of
)0 # 2 000 , rad/s and I0 # 1.00 & 10*6 W/m2, evaluate
the wavelength, displacement amplitude, and pressure am-
plitude in each of the three media.

27. The power output of a certain public address speaker is
6.00 W. Suppose it broadcasts equally in all directions.
(a) Within what distance from the speaker would the
sound be painful to the ear? (b) At what distance from the
speaker would the sound be barely audible?

25.

resurrecti - o - - - -
resurrecti - o - - -

resurrecti - o - - -
resurrecti - o - - - nem mortuorum

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - rumnemmortu o
nemmortu o - - - - - - - - - - - - - - - - - - - - - - - - - - - - - rum

nem mortu o - - - rum

Figure P17.23 Bass (blue), tenor (green), alto (brown), and first soprano (red) parts
for a portion of Bach’s Mass in B minor. For emphasis, the line we choose to call the
melody is printed in black. Parts for the second soprano, violins, viola, flutes, oboes,
and continuo are omitted. The tenor part is written as it is sung.
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28. Show that the difference between decibel levels -1 and -2
of a sound is related to the ratio of the distances r1 and r2
from the sound source by

A firework charge is detonated many meters above the
ground. At a distance of 400 m from the explosion, the
acoustic pressure reaches a maximum of 10.0 N/m2.
Assume that the speed of sound is constant at 343 m/s
throughout the atmosphere over the region considered,
that the ground absorbs all the sound falling on it, and
that the air absorbs sound energy as described by the rate
7.00 dB/km. What is the sound level (in dB) at 4.00 km
from the explosion?

30. A loudspeaker is placed between two observers who are
110 m apart, along the line connecting them. If one ob-
server records a sound level of 60.0 dB and the other
records a sound level of 80.0 dB, how far is the speaker
from each observer?

31. Two small speakers emit sound waves of different frequen-
cies. Speaker A has an output of 1.00 mW, and speaker B
has an output of 1.50 mW. Determine the sound level (in
dB) at point C (Fig. P17.31) if (a) only speaker A emits
sound, (b) only speaker B emits sound, and (c) both
speakers emit sound.

29.

-2 * -1 # 20 log ! r1

r2
"

34. A fireworks rocket explodes at a height of 100 m above the
ground. An observer on the ground directly under the
explosion experiences an average sound intensity of
7.00 & 10*2 W/m2 for 0.200 s. (a) What is the total sound
energy of the explosion? (b) What is the sound level in
decibels heard by the observer?

35. As the people sing in church, the sound level everywhere
inside is 101 dB. No sound is transmitted through the mas-
sive walls, but all the windows and doors are open on a
summer morning. Their total area is 22.0 m2. (a) How
much sound energy is radiated in 20.0 min? (b) Suppose
the ground is a good reflector and sound radiates uni-
formly in all horizontal and upward directions. Find the
sound level 1 km away.

36. The smallest change in sound level that a person can dis-
tinguish is approximately 1 dB. When you are standing
next to your power lawnmower as it is running, can you
hear the steady roar of your neighbor’s lawnmower? Per-
form an order-of-magnitude calculation to substantiate
your answer, stating the data you measure or estimate.

Section 17.4 The Doppler Effect
37. A train is moving parallel to a highway with a constant

speed of 20.0 m/s. A car is traveling in the same direction
as the train with a speed of 40.0 m/s. The car horn sounds
at a frequency of 510 Hz, and the train whistle sounds at a
frequency of 320 Hz. (a) When the car is behind the train,
what frequency does an occupant of the car observe for
the train whistle? (b) After the car passes and is in front of
the train, what frequency does a train passenger observe
for the car horn? 

38. Expectant parents are thrilled to hear their unborn baby’s
heartbeat, revealed by an ultrasonic motion detector. Sup-
pose the fetus’s ventricular wall moves in simple harmonic
motion with an amplitude of 1.80 mm and a frequency of
115 per minute. (a) Find the maximum linear speed of the
heart wall. Suppose the motion detector in contact with
the mother’s abdomen produces sound at 2 000 000.0 Hz,
which travels through tissue at 1.50 km/s. (b) Find the
maximum frequency at which sound arrives at the wall of
the baby’s heart. (c) Find the maximum frequency at
which reflected sound is received by the motion detector.
By electronically “listening” for echoes at a frequency dif-
ferent from the broadcast frequency, the motion detector
can produce beeps of audible sound in synchronization
with the fetal heartbeat.

Standing at a crosswalk, you hear a frequency of
560 Hz from the siren of an approaching ambulance. After
the ambulance passes, the observed frequency of the siren
is 480 Hz. Determine the ambulance’s speed from these
observations.

40. A block with a speaker bolted to it is connected to a spring
having spring constant k # 20.0 N/m as in Figure P17.40.
The total mass of the block and speaker is 5.00 kg, and the
amplitude of this unit’s motion is 0.500 m. (a) If the
speaker emits sound waves of frequency 440 Hz, determine
the highest and lowest frequencies heard by the person to
the right of the speaker. (b) If the maximum sound level
heard by the person is 60.0 dB when he is closest to the

39.

C

3.00 m

2.00 m

4.00 m

A

B
Figure P17.31

32. A jackhammer, operated continuously at a construction
site, behaves as a point source of spherical sound waves. A
construction supervisor stands 50.0 m due north of this
sound source and begins to walk due west. How far does
she have to walk in order for the amplitude of the wave
function to drop by a factor of 2.00?

The sound level at a distance of 3.00 m from a source is
120 dB. At what distance will the sound level be (a) 100 dB
and (b) 10.0 dB?

33.



Problems 539

speaker, 1.00 m away, what is the minimum sound level
heard by the observer? Assume that the speed of sound is
343 m/s.

46. The loop of a circus ringmaster’s whip travels at Mach 1.38
(that is, vS/v # 1.38). What angle does the shock wave
make with the direction of the whip’s motion? 

A supersonic jet traveling at Mach 3.00 at an altitude
of 20 000 m is directly over a person at time t # 0 as in
Figure P17.47. (a) How long will it be before the person
encounters the shock wave? (b) Where will the plane be
when it is finally heard? (Assume the speed of sound in air
is 335 m/s.)

47.

x

mk

Figure P17.40

A tuning fork vibrating at 512 Hz falls from rest and
accelerates at 9.80 m/s2. How far below the point of re-
lease is the tuning fork when waves of frequency 485 Hz
reach the release point? Take the speed of sound in air to
be 340 m/s.

42. At the Winter Olympics, an athlete rides her luge down
the track while a bell just above the wall of the chute rings
continuously. When her sled passes the bell, she hears the
frequency of the bell fall by the musical interval called a
minor third. That is, the frequency she hears drops to five
sixths of its original value. (a) Find the speed of sound in
air at the ambient temperature *10.0°C. (b) Find the
speed of the athlete.

43. A siren mounted on the roof of a firehouse emits sound at
a frequency of 900 Hz. A steady wind is blowing with a
speed of 15.0 m/s. Taking the speed of sound in calm air
to be 343 m/s, find the wavelength of the sound (a) up-
wind of the siren and (b) downwind of the siren. Firefight-
ers are approaching the siren from various directions at
15.0 m/s. What frequency does a firefighter hear (c) if he
or she is approaching from an upwind position, so that he
or she is moving in the direction in which the wind is blow-
ing? (d) if he or she is approaching from a downwind posi-
tion and moving against the wind?

44. The Concorde can fly at Mach 1.50, which means the
speed of the plane is 1.50 times the speed of sound in air.
What is the angle between the direction of propagation of
the shock wave and the direction of the plane’s velocity?

45. When high-energy charged particles move through a trans-
parent medium with a speed greater than the speed of
light in that medium, a shock wave, or bow wave, of light is
produced. This phenomenon is called the Cerenkov effect.
When a nuclear reactor is shielded by a large pool of wa-
ter, Cerenkov radiation can be seen as a blue glow in the
vicinity of the reactor core, due to high-speed electrons
moving through the water. In a particular case, the
Cerenkov radiation produces a wave front with an apex
half-angle of 53.0°. Calculate the speed of the electrons in
the water. (The speed of light in water is 2.25 & 108 m/s.)

41.

(a) (b)

Observer hears
the ‘boom’

h

θ
x

θ

h
t = 0

Observer

Figure P17.47

Section 17.5 Digital Sound Recording
Section 17.6 Motion Picture Sound
48. This problem represents a possible (but not recom-

mended) way to code instantaneous pressures in a sound
wave into 16-bit digital words. Example 17.2 mentions that
the pressure amplitude of a 120-dB sound is 28.7 N/m2.
Let this pressure variation be represented by the digital
code 65 536. Let zero pressure variation be represented on
the recording by the digital word 0. Let other intermediate
pressures be represented by digital words of intermediate
size, in direct proportion to the pressure. (a) What digital
word would represent the maximum pressure in a 40 dB
sound? (b) Explain why this scheme works poorly for soft
sounds. (c) Explain how this coding scheme would clip off
half of the waveform of any sound, ignoring the actual
shape of the wave and turning it into a string of zeros. By
introducing sharp corners into every recorded waveform,
this coding scheme would make everything sound like a
buzzer or a kazoo.

49. Only two recording channels are required to give the illu-
sion of sound coming from any point located between two
speakers of a stereophonic sound system. If the same sig-
nal is recorded in both channels, a listener will hear it
coming from a single direction halfway between the two
speakers. This “phantom orchestra” illusion can be heard
in the two-channel original Broadway cast recording of the
song “Do-Re-Mi” from The Sound of Music (Columbia
Records KOS 2020). Each of the eight singers can be
heard at a different location between the loudspeakers. All
listeners with normal hearing will agree on their locations.
The brain can sense the direction of sound by noting how
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much earlier a sound is heard in one ear than in the other.
Model your ears as two sensors 19.0 cm apart in a flat
screen. If a click from a distant source is heard 210 "s ear-
lier in the left ear than in the right, from what direction
does it appear to originate?

50. Assume that a loudspeaker broadcasts sound equally in all
directions and produces sound with a level of 103 dB at a
distance of 1.60 m from its center. (a) Find its sound
power output. (b) If the salesperson claims to be giving
you 150 W per channel, he is referring to the electrical
power input to the speaker. Find the efficiency of the
speaker—that is, the fraction of input power that is con-
verted into useful output power.

Additional Problems

51. A large set of unoccupied football bleachers has solid seats
and risers. You stand on the field in front of the bleachers
and fire a starter’s pistol or sharply clap two wooden
boards together once. The sound pulse you produce has
no definite frequency and no wavelength. The sound you
hear reflected from the bleachers has an identifiable fre-
quency and may remind you of a short toot on a trumpet,
or of a buzzer or kazoo. Account for this sound. Compute
order-of-magnitude estimates for its frequency, wavelength,
and duration, on the basis of data you specify.

52. Many artists sing very high notes in ad lib ornaments and ca-
denzas. The highest note written for a singer in a published
score was F-sharp above high C, 1.480 kHz, for Zerbinetta in
the original version of Richard Strauss’s opera Ariadne auf
Naxos. (a) Find the wavelength of this sound in air. (b) Sup-
pose people in the fourth row of seats hear this note with
level 81.0 dB. Find the displacement amplitude of the
sound. (c) What If? Because of complaints, Strauss later
transposed the note down to F above high C, 1.397 kHz. By
what increment did the wavelength change?

53. A sound wave in a cylinder is described by Equations 17.2 
through 17.4. Show that 

54. On a Saturday morning, pickup trucks and sport utility
vehicles carrying garbage to the town dump form a
nearly steady procession on a country road, all traveling
at 19.7 m/s. From one direction, two trucks arrive at
the dump every 3 min. A bicyclist is also traveling toward
the dump, at 4.47 m/s. (a) With what frequency do the
trucks pass him? (b) What If? A hill does not slow down
the trucks, but makes the out-of-shape cyclist’s speed
drop to 1.56 m/s. How often do noisy, smelly, inefficient,
garbage-dripping, roadhogging trucks whiz past him
now?

55. The ocean floor is underlain by a layer of basalt that con-
stitutes the crust, or uppermost layer, of the Earth in that
region. Below this crust is found denser periodotite rock,
which forms the Earth’s mantle. The boundary between
these two layers is called the Mohorovicic discontinuity
(“Moho” for short). If an explosive charge is set off at the
surface of the basalt, it generates a seismic wave that is re-
flected back out at the Moho. If the speed of this wave in
basalt is 6.50 km/s and the two-way travel time is 1.85 s,
what is the thickness of this oceanic crust?

'P # 2!v) √s2
max * s 2.

56. For a certain type of steel, stress is always proportional to
strain with Young’s modulus as shown in Table 12.1. The
steel has the density listed for iron in Table 14.1. It will fail
by bending permanently if subjected to compressive stress
greater than its yield strength 3y # 400 MPa. A rod
80.0 cm long, made of this steel, is fired at 12.0 m/s
straight at a very hard wall, or at another identical rod
moving in the opposite direction. (a) The speed of a one-
dimensional compressional wave moving along the rod 
is given by , where ! is the density and Y is Young’s
modulus for the rod. Calculate this speed. (b) After the
front end of the rod hits the wall and stops, the back end
of the rod keeps moving, as described by Newton’s first
law, until it is stopped by excess pressure in a sound wave
moving back through the rod. How much time elapses be-
fore the back end of the rod receives the message that it
should stop? (c) How far has the back end of the rod
moved in this time? Find (d) the strain in the rod and 
(e) the stress. (f) If it is not to fail, show that the maximum
impact speed a rod can have is given by the expression

.

To permit measurement of her speed, a skydiver carries a
buzzer emitting a steady tone at 1 800 Hz. A friend on the
ground at the landing site directly below listens to the am-
plified sound he receives. Assume that the air is calm and
that the sound speed is 343 m/s, independent of altitude.
While the skydiver is falling at terminal speed, her friend
on the ground receives waves of frequency 2 150 Hz.
(a) What is the skydiver’s speed of descent? (b) What If?
Suppose the skydiver can hear the sound of the buzzer re-
flected from the ground. What frequency does she receive?

58. A train whistle ( f # 400 Hz) sounds higher or lower in fre-
quency depending on whether it approaches or recedes.
(a) Prove that the difference in frequency between the ap-
proaching and receding train whistle is 

where u is the speed of the train and v is the speed of
sound. (b) Calculate this difference for a train moving at a
speed of 130 km/h. Take the speed of sound in air to be
340 m/s.

Two ships are moving along a line due east. The trailing
vessel has a speed relative to a land-based observation
point of 64.0 km/h, and the leading ship has a speed of
45.0 km/h relative to that point. The two ships are in a re-
gion of the ocean where the current is moving uniformly
due west at 10.0 km/h. The trailing ship transmits a sonar
signal at a frequency of 1 200.0 Hz. What frequency is
monitored by the leading ship? (Use 1 520 m/s as the
speed of sound in ocean water.)

60. A bat, moving at 5.00 m/s, is chasing a flying insect
(Fig. P17.7). If the bat emits a 40.0 kHz chirp and receives
back an echo at 40.4 kHz, at what speed is the insect mov-
ing toward or away from the bat? (Take the speed of sound
in air to be v # 340 m/s.)

61. A supersonic aircraft is flying parallel to the ground. When
the aircraft is directly overhead, an observer sees a rocket
fired from the aircraft. Ten seconds later the observer

59.

'f #
2u/v

1 * u 2/v 2  f

57.

3y/√!Y

√Y/!



Problems 541

hears the sonic boom, followed 2.80 s later by the sound
of the rocket engine. What is the Mach number of the
aircraft?

62. A police car is traveling east at 40.0 m/s along a straight
road, overtaking a car ahead of it moving east at 30.0 m/s.
The police car has a malfunctioning siren that is stuck at
1 000 Hz. (a) Sketch the appearance of the wave fronts of
the sound produced by the siren. Show the wave fronts
both to the east and to the west of the police car. (b) What
would be the wavelength in air of the siren sound if the
police car were at rest? (c) What is the wavelength in
front of the police car? (d) What is it behind the police
car? (e) What is the frequency heard by the driver being
chased?

63. The speed of a one-dimensional compressional wave trav-
eling along a thin copper rod is 3.56 km/s. A copper bar is
given a sharp compressional blow at one end. The sound
of the blow, traveling through air at 0°C, reaches the oppo-
site end of the bar 6.40 ms later than the sound transmit-
ted through the metal of the bar. What is the length of
the bar? 

64. A jet flies toward higher altitude at a constant speed of
1 963 m/s in a direction making an angle 0 with the hori-
zontal (Fig. P17.64). An observer on the ground hears the
jet for the first time when it is directly overhead. Deter-
mine the value of 0 if the speed of sound in air is 340 m/s.

With particular experimental methods, it is possible to
produce and observe in a long thin rod both a longitudi-
nal wave and a transverse wave whose speed depends pri-
marily on tension in the rod. The speed of the longitudi-
nal wave is determined by the Young’s modulus and the
density of the material as . The transverse wave can be
modeled as a wave in a stretched string. A particular metal
rod is 150 cm long and has a radius of 0.200 cm and a
mass of 50.9 g. Young’s modulus for the material is
6.80 & 1010 N/m2. What must the tension in the rod be if
the ratio of the speed of longitudinal waves to the speed of
transverse waves is 8.00?

68. A siren creates sound with a level - at a distance d from
the speaker. The siren is powered by a battery that delivers
a total energy E. Let e represent the efficiency of the siren.
(That is, e is equal to the output sound energy divided by
the supplied energy). Determine the total time the siren
can sound.

69. The Doppler equation presented in the text is valid when
the motion between the observer and the source occurs on
a straight line, so that the source and observer are moving
either directly toward or directly away from each other. If
this restriction is relaxed, one must use the more general
Doppler equation

where 0O and 0S are defined in Figure P17.69a. (a) Show
that if the observer and source are moving away from each
other, the preceding equation reduces to Equation 17.13
with negative values for both vO and vS. (b) Use the pre-
ceding equation to solve the following problem. A train
moves at a constant speed of 25.0 m/s toward the intersec-
tion shown in Figure P17.69b. A car is stopped near the in-
tersection, 30.0 m from the tracks. If the train’s horn emits
a frequency of 500 Hz, what is the frequency heard by the
passengers in the car when the train is 40.0 m from the in-
tersection? Take the speed of sound to be 343 m/s.

f . # ! v $ vO  cos0O

v * vS  cos0S
" f

√Y/!

67.

θ

Figure P17.64

A meteoroid the size of a truck enters the earth’s atmos-
phere at a speed of 20.0 km/s and is not significantly
slowed before entering the ocean. (a) What is the Mach
angle of the shock wave from the meteoroid in the atmos-
phere? (Use 331 m/s as the sound speed.) (b) Assuming
that the meteoroid survives the impact with the ocean sur-
face, what is the (initial) Mach angle of the shock wave
that the meteoroid produces in the water? (Use the wave
speed for seawater given in Table 17.1.)

66. An interstate highway has been built through a poor
neighborhood in a city. In the afternoon, the sound level
in a rented room is 80.0 dB, as 100 cars pass outside the
window every minute. Late at night, when the tenant is
working in a factory, the traffic flow is only five cars per
minute. What is the average late-night sound level?

65.

fS
vS

fOvO

(b)

25.0 m/s

(a)

θOθ

θSθ

Figure P17.69

70. Equation 17.7 states that, at distance r away from a point
source with power !av, the wave intensity is

Study Figure 17.9 and prove that, at distance r straight 
in front of a point source with power !av moving with 

I #
!av

4,r 2



constant speed vS , the wave intensity is

Three metal rods are located relative to each other as
shown in Figure P17.71, where L1 $ L2 # L3 . The speed
of sound in a rod is given by , where ! is the den-
sity and Y is Young’s modulus for the rod. Values of 
density and Young’s modulus for the three materials are 
!1 # 2.70 & 103 kg/m3, Y1 # 7.00 & 1010 N/m2, !2 #
11.3 & 103 kg/m3, Y2 # 1.60 & 1010 N/m2, !3 # 8.80 &
103 kg/m3, Y3 # 11.0 & 1010 N/m2. (a) If L3 # 1.50 m,
what must the ratio L1/L2 be if a sound wave is to travel
the length of rods 1 and 2 in the same time as it takes for
the wave to travel the length of rod 3? (b) If the frequency
of the source is 4.00 kHz, determine the phase difference
between the wave traveling along rods 1 and 2 and the one
traveling along rod 3.

v # √Y/!

71.

I #
!av

4,r 2  ! v * vS

v "
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wave determines the size of the oscillations of elements of
air but does not affect the speed of the wave through the
air.

17.2 (c). Because the bottom of the bottle is a rigid barrier,
the displacement of elements of air at the bottom is zero.
Because the pressure variation is a minimum or a maxi-
mum when the displacement is zero, and the pulse is
moving downward, the pressure variation at the bottom is
a maximum.

17.3 (c). The ear trumpet collects sound waves from the large
area of its opening and directs it toward the ear. Most of
the sound in this large area would miss the ear in the ab-
sence of the trumpet.

17.4 (b). The large area of the guitar body sets many elements
of air into oscillation and allows the energy to leave the
system by mechanical waves at a much larger rate than
from the thin vibrating string.

17.5 (c). The only parameter that adds directly is intensity. Be-
cause of the logarithm function in the definition of
sound level, sound levels cannot be added directly.

17.6 (b). The factor of 100 is two powers of ten. Thus, the
logarithm of 100 is 2, which multiplied by 10 gives
20 dB.

17.7 (e). The wave speed cannot be changed by moving the
source, so (a) and (b) are incorrect. The detected wave-
length is largest at A, so (c) and (d) are incorrect. Choice
(f) is incorrect because the detected frequency is lowest
at location A.

17.8 (e). The intensity of the sound increases because the
train is moving closer to you. Because the train moves at a
constant velocity, the Doppler-shifted frequency remains
fixed.

17.9 (b). The Mach number is the ratio of the plane’s speed
(which does not change) to the speed of sound, which is
greater in the warm air than in the cold. The denomina-
tor of this ratio increases while the numerator stays con-
stant. Therefore, the ratio as a whole—the Mach num-
ber—decreases.

1 2
3

L3

L2L1

72.The smallest wavelength possible for a sound wave in air is
on the order of the separation distance between air mole-
cules. Find the order of magnitude of the highest-fre-
quency sound wave possible in air, assuming a wave speed
of 343 m/s, density 1.20 kg/m3, and an average molecular
mass of 4.82 & 10*26 kg.

Answers to Quick Quizzes
17.1 (c). Although the speed of a wave is given by the product

of its wavelength (a) and frequency (b), it is not affected
by changes in either one. The amplitude (d) of a sound

Figure P17.71
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18.1 Superposition and
Interference

18.2 Standing Waves

18.3 Standing Waves in a String
Fixed at Both Ends

18.4 Resonance

18.5 Standing Waves in Air
Columns

18.6 Standing Waves in Rods and
Membranes

18.7 Beats: Interference in Time

18.8 Nonsinusoidal Wave Patterns

! Guitarist Carlos Santana takes advantage of standing waves on strings. He changes to a
higher note on the guitar by pushing the strings against the frets on the fingerboard, shorten-
ing the lengths of the portions of the strings that vibrate. (Bettmann/Corbis)

Chapter 18
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In the previous two chapters, we introduced the wave model. We have seen that
waves are very different from particles. A particle is of zero size, while a wave has a
characteristic size—the wavelength. Another important difference between waves
and particles is that we can explore the possibility of two or more waves combining at
one point in the same medium. We can combine particles to form extended objects,
but the particles must be at different locations. In contrast, two waves can both be 
present at the same location, and the ramifications of this possibility are explored in
this chapter.

When waves are combined, only certain allowed frequencies can exist on systems
with boundary conditions—the frequencies are quantized. Quantization is a notion that
is at the heart of quantum mechanics, a subject that we introduce formally in Chapter
40. There we show that waves under boundary conditions explain many of the quan-
tum phenomena. For our present purposes in this chapter, quantization enables us to
understand the behavior of the wide array of musical instruments that are based on
strings and air columns.

We also consider the combination of waves having different frequencies and wave-
lengths. When two sound waves having nearly the same frequency interfere, we hear
variations in the loudness called beats. The beat frequency corresponds to the rate of
alternation between constructive and destructive interference. Finally, we discuss how
any nonsinusoidal periodic wave can be described as a sum of sine and cosine
functions.

18.1 Superposition and Interference

Many interesting wave phenomena in nature cannot be described by a single traveling
wave. Instead, one must analyze complex waves in terms of a combination of traveling
waves. To analyze such wave combinations, one can make use of the superposition
principle:

Waves that obey this principle are called linear waves. In the case of mechanical waves,
linear waves are generally characterized by having amplitudes much smaller than their
wavelengths. Waves that violate the superposition principle are called nonlinear waves
and are often characterized by large amplitudes. In this book, we deal only with linear
waves.

One consequence of the superposition principle is that two traveling waves can
pass through each other without being destroyed or even altered. For instance,

If two or more traveling waves are moving through a medium, the resultant value of
the wave function at any point is the algebraic sum of the values of the wave func-
tions of the individual waves.

Superposition principle



when two pebbles are thrown into a pond and hit the surface at different places, the
expanding circular surface waves do not destroy each other but rather pass through
each other. The complex pattern that is observed can be viewed as two independent
sets of expanding circles. Likewise, when sound waves from two sources move through
air, they pass through each other.

Figure 18.1 is a pictorial representation of the superposition of two pulses. The
wave function for the pulse moving to the right is y1, and the wave function for the
pulse moving to the left is y2. The pulses have the same speed but different shapes, and
the displacement of the elements of the medium is in the positive y direction for both
pulses. When the waves begin to overlap (Fig. 18.1b), the wave function for the result-
ing complex wave is given by y1 ! y2. When the crests of the pulses coincide
(Fig. 18.1c), the resulting wave given by y1 ! y2 has a larger amplitude than that of the
individual pulses. The two pulses finally separate and continue moving in their original
directions (Fig. 18.1d). Note that the pulse shapes remain unchanged after the interac-
tion, as if the two pulses had never met!

The combination of separate waves in the same region of space to produce a resultant
wave is called interference. For the two pulses shown in Figure 18.1, the displacement of
the elements of the medium is in the positive y direction for both pulses, and the resultant
pulse (created when the individual pulses overlap) exhibits an amplitude greater than
that of either individual pulse. Because the displacements caused by the two pulses are in
the same direction, we refer to their superposition as constructive interference.

Now consider two pulses traveling in opposite directions on a taut string where one
pulse is inverted relative to the other, as illustrated in Figure 18.2. In this case, when
the pulses begin to overlap, the resultant pulse is given by y1 ! y2, but the values of the
function y2 are negative. Again, the two pulses pass through each other; however, be-
cause the displacements caused by the two pulses are in opposite directions, we refer to
their superposition as destructive interference.
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(c)

(d)

(b)

(a)

y2 y 1

y 1+ y2

y 1+ y2

y2y 1

Active Figure 18.1 (a–d) Two pulses traveling on a stretched string in opposite direc-
tions pass through each other. When the pulses overlap, as shown in (b) and (c), the
net displacement of the string equals the sum of the displacements produced by each
pulse. Because each pulse produces positive displacements of the string, we refer to
their superposition as constructive interference. (e) Photograph of the superposition of
two equal, symmetric pulses traveling in opposite directions on a stretched spring. 
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! PITFALL PREVENTION
18.1 Do Waves Really

Interfere?
In popular usage, the term inter-
fere implies that an agent affects a
situation in some way so as to pre-
clude something from happen-
ing. For example, in American
football, pass interference means
that a defending player has af-
fected the receiver so that he is
unable to catch the ball. This is
very different from its use in
physics, where waves pass through
each other and interfere, but do
not affect each other in any way.
In physics, interference is similar
to the notion of combination as de-
scribed in this chapter.

Constructive interference

Destructive interference

(e)

At the Active Figures link at http://www.pse6.com, you can choose the
amplitude and orientation of each of the pulses and study the interference
between them as they pass each other.
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(a)

(b)

(d)

(e)

y 1

y 2

y 1

y 2

y 2

y 1

y 2

y 1

(c)
y 1+ y 2

Active Figure 18.2 (a–e) Two pulses traveling in opposite directions and having dis-
placements that are inverted relative to each other. When the two overlap in (c), their
displacements partially cancel each other. (f ) Photograph of the superposition of two
symmetric pulses traveling in opposite directions, where one is inverted relative to the
other. 
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Quick Quiz 18.1 Two pulses are traveling toward each other, each at 10 cm/s
on a long string, as shown in Figure 18.3. Sketch the shape of the string at t " 0.6 s.

Quick Quiz 18.2 Two pulses move in opposite directions on a string and are
identical in shape except that one has positive displacements of the elements of the
string and the other has negative displacements. At the moment that the two pulses
completely overlap on the string, (a) the energy associated with the pulses has disap-
peared (b) the string is not moving (c) the string forms a straight line (d) the pulses
have vanished and will not reappear.

1 cm

At the Active Figures link
at http://www.pse6.com, you
can choose the amplitude and
orientation of each of the
pulses and watch the interfer-
ence as they pass each other.

Figure 18.3 (Quick Quiz 18.1) The pulses on this string are traveling at 10 cm/s.

(f)



Superposition of Sinusoidal Waves

Let us now apply the principle of superposition to two sinusoidal waves traveling in the
same direction in a linear medium. If the two waves are traveling to the right and have
the same frequency, wavelength, and amplitude but differ in phase, we can express
their individual wave functions as

y1 " A sin(kx # $t) y2 " A sin(kx # $t ! %)

where, as usual, k " 2&/', $ " 2&f, and % is the phase constant, which we discussed in
Section 16.2. Hence, the resultant wave function y is

y " y1 ! y2 " A[sin(kx # $t) ! sin(kx # $t ! %)]

To simplify this expression, we use the trigonometric identity

If we let a " kx # $t and b " kx # $t ! %, we find that the resultant wave function
y reduces to

This result has several important features. The resultant wave function y also is sinus-
oidal and has the same frequency and wavelength as the individual waves because the
sine function incorporates the same values of k and $ that appear in the original wave
functions. The amplitude of the resultant wave is 2A cos(%/2), and its phase is %/2. If
the phase constant % equals 0, then cos (%/2) " cos 0 " 1, and the amplitude of the
resultant wave is 2A—twice the amplitude of either individual wave. In this case the
waves are said to be everywhere in phase and thus interfere constructively. That is, the
crests and troughs of the individual waves y1 and y2 occur at the same positions and
combine to form the red curve y of amplitude 2A shown in Figure 18.4a. Because the

y " 2A cos ! %

2 " sin !kx # $t !
%

2 "

sin a ! sin b " 2 cos ! a # b
2 " sin ! a ! b

2 "
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y

= 0°

y1 and y2 are identical

x

y
y1 y2 y

x

x

y

(a)

(b)

(c)

φ

y
y1

y2

= 180°φ

= 60°φ

y

Active Figure 18.4 The superposition
of two identical waves y1 and y2 (blue
and green) to yield a resultant wave
(red). (a) When y1 and y2 are in phase,
the result is constructive interference.
(b) When y1 and y2 are & rad out of
phase, the result is destructive interfer-
ence. (c) When the phase angle has a
value other than 0 or & rad, the resul-
tant wave y falls somewhere between the
extremes shown in (a) and (b).

At the Active Figures link
at http://www.pse6.com, you
can change the phase relation-
ship between the waves and
observe the wave representing
the superposition.

Resultant of two traveling
sinusoidal waves 



individual waves are in phase, they are indistinguishable in Figure 18.4a, in which they
appear as a single blue curve. In general, constructive interference occurs when
cos(%/2) " ( 1. This is true, for example, when % " 0, 2&, 4&, . . . rad—that is, when
% is an even multiple of &.

When % is equal to & rad or to any odd multiple of &, then cos(%/2) " cos(&/2) "
0, and the crests of one wave occur at the same positions as the troughs of the second
wave (Fig. 18.4b). Thus, the resultant wave has zero amplitude everywhere, as a conse-
quence of destructive interference. Finally, when the phase constant has an arbitrary
value other than 0 or an integer multiple of & rad (Fig. 18.4c), the resultant wave has
an amplitude whose value is somewhere between 0 and 2A.

Interference of Sound Waves

One simple device for demonstrating interference of sound waves is illustrated in
Figure 18.5. Sound from a loudspeaker S is sent into a tube at point P, where there is a
T-shaped junction. Half of the sound energy travels in one direction, and half travels in
the opposite direction. Thus, the sound waves that reach the receiver R can travel
along either of the two paths. The distance along any path from speaker to receiver is
called the path length r. The lower path length r1 is fixed, but the upper path length
r2 can be varied by sliding the U-shaped tube, which is similar to that on a slide trom-
bone. When the difference in the path lengths )r " #r2 # r1 # is either zero or some in-
teger multiple of the wavelength ' (that is )r " n', where n " 0, 1, 2, 3, . . .), the two
waves reaching the receiver at any instant are in phase and interfere constructively, as
shown in Figure 18.4a. For this case, a maximum in the sound intensity is detected at
the receiver. If the path length r2 is adjusted such that the path difference )r " '/2,
3'/2, . . . , n'/2 (for n odd), the two waves are exactly & rad, or 180°, out of phase at
the receiver and hence cancel each other. In this case of destructive interference, no
sound is detected at the receiver. This simple experiment demonstrates that a phase
difference may arise between two waves generated by the same source when they travel
along paths of unequal lengths. This important phenomenon will be indispensable in
our investigation of the interference of light waves in Chapter 37.

It is often useful to express the path difference in terms of the phase angle % be-
tween the two waves. Because a path difference of one wavelength corresponds to a
phase angle of 2& rad, we obtain the ratio %/2& " )r/' or

(18.1)

Using the notion of path difference, we can express our conditions for constructive
and destructive interference in a different way. If the path difference is any even multi-
ple of '/2, then the phase angle % " 2n&, where n " 0, 1, 2, 3, . . . , and the interfer-
ence is constructive. For path differences of odd multiples of '/2, % " (2n ! 1)&,
where n " 0, 1, 2, 3, . . . , and the interference is destructive. Thus, we have the
conditions

)r "
%

2&
 '
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r 1

r 2

R

Speaker

S

P
Receiver

Figure 18.5 An acoustical system for demonstrat-
ing interference of sound waves. A sound wave
from the speaker (S) propagates into the tube
and splits into two parts at point P. The two waves,
which combine at the opposite side, are detected
at the receiver (R). The upper path length r2 can
be varied by sliding the upper section.

Relationship between path
difference and phase angle



for constructive interference

and (18.2)

for destructive interference

This discussion enables us to understand why the speaker wires in a stereo system
should be connected properly. When connected the wrong way—that is, when the posi-
tive (or red) wire is connected to the negative (or black) terminal on one of the speakers
and the other is correctly wired—the speakers are said to be “out of phase”—one speaker
cone moves outward while the other moves inward. As a consequence, the sound wave
coming from one speaker destructively interferes with the wave coming from the other—
along a line midway between the two, a rarefaction region due to one speaker is
superposed on a compression region from the other speaker. Although the two sounds
probably do not completely cancel each other (because the left and right stereo signals
are usually not identical), a substantial loss of sound quality occurs at points along
this line.

)r " (2n ! 1) 
'

2

)r " (2n) 
'

2
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Example 18.1 Two Speakers Driven by the Same Source

3.00 m

8.00 m

r 2

r 1

O

0.350 m

1.85 m

P
1.15 m

Figure 18.6 (Example 18.1) Two speakers emit sound waves to
a listener at P.

18.2 Standing Waves

The sound waves from the speakers in Example 18.1 leave the speakers in the forward
direction, and we considered interference at a point in front of the speakers. Suppose
that we turn the speakers so that they face each other and then have them emit sound
of the same frequency and amplitude. In this situation, two identical waves travel in

Figure 18.6 shows the physical arrangement of the
speakers, along with two shaded right triangles that can be
drawn on the basis of the lengths described in the problem.
From these triangles, we find that the path lengths are

and

Hence, the path difference is r2 # r1 " 0.13 m. Because we
require that this path difference be equal to '/2 for the first
minimum, we find that ' " 0.26 m.

To obtain the oscillator frequency, we use Equation
16.12, v " 'f, where v is the speed of sound in air, 343 m/s:

What If? What if the speakers were connected out of
phase? What happens at point P in Figure 18.6?

Answer In this situation, the path difference of '/2 com-
bines with a phase difference of '/2 due to the incorrect
wiring to give a full phase difference of '. As a result, the
waves are in phase and there is a maximum intensity at
point P.

1.3 kHzf "
v
'

"
343 m/s
0.26 m

"

r2 " √(8.00 m)2 ! (1.85 m)2 " 8.21 m

r1 " √(8.00 m)2 ! (1.15 m)2 " 8.08 m

A pair of speakers placed 3.00 m apart are driven by the
same oscillator (Fig. 18.6). A listener is originally at point O,
which is located 8.00 m from the center of the line connect-
ing the two speakers. The listener then walks to point P,
which is a perpendicular distance 0.350 m from O, before
reaching the first minimum in sound intensity. What is the
frequency of the oscillator?

Solution To find the frequency, we must know the wave-
length of the sound coming from the speakers. With this in-
formation, combined with our knowledge of the speed of
sound, we can calculate the frequency. The wavelength can
be determined from the interference information given. The
first minimum occurs when the two waves reaching the lis-
tener at point P are 180° out of phase—in other words, when
their path difference )r equals '/2. To calculate the path dif-
ference, we must first find the path lengths r1 and r2 .



opposite directions in the same medium, as in Figure 18.7. These waves combine in ac-
cordance with the superposition principle.

We can analyze such a situation by considering wave functions for two transverse si-
nusoidal waves having the same amplitude, frequency, and wavelength but traveling in
opposite directions in the same medium:

y1 " A sin(kx # $t) y2 " A sin(kx ! $t)

where y1 represents a wave traveling in the ! x direction and y2 represents one traveling
in the # x direction. Adding these two functions gives the resultant wave function y:

y " y1 ! y2 " A sin(kx # $t) ! A sin(kx ! $t)

When we use the trigonometric identity sin(a ( b) " sin(a) cos(b) ( cos(a) sin(b),
this expression reduces to

(18.3)

Equation 18.3 represents the wave function of a standing wave. A standing wave,
such as the one shown in Figure 18.8, is an oscillation pattern with a stationary outline
that results from the superposition of two identical waves traveling in opposite direc-
tions.

Notice that Equation 18.3 does not contain a function of kx # $t. Thus, it is not an
expression for a traveling wave. If we observe a standing wave, we have no sense of mo-
tion in the direction of propagation of either of the original waves. If we compare this
equation with Equation 15.6, we see that Equation 18.3 describes a special kind of sim-
ple harmonic motion. Every element of the medium oscillates in simple harmonic mo-
tion with the same frequency $ (according to the cos $t factor in the equation). How-
ever, the amplitude of the simple harmonic motion of a given element (given by the
factor 2A sin kx, the coefficient of the cosine function) depends on the location x of
the element in the medium.

The maximum amplitude of an element of the medium has a minimum value of
zero when x satisfies the condition sin kx " 0, that is, when

kx " &, 2&, 3&, . . . 

Because k " 2&/', these values for kx give

(18.4)

These points of zero amplitude are called nodes.

x "
'

2
, ', 

3'

2
, * * * "

n'

2
  n " 0, 1, 2, 3, * * *

y " (2A sin kx) cos $t
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v

v

Figure 18.7 Two speakers emit
sound waves toward each other.
When they overlap, identical waves
traveling in opposite directions will
combine to form standing waves.

Antinode Antinode

Node

2A sin kx

Node

Figure 18.8 Multiflash photograph of a standing wave on a string. The time behavior
of the vertical displacement from equilibrium of an individual element of the string is
given by cos $t. That is, each element vibrates at an angular frequency $. The ampli-
tude of the vertical oscillation of any elements of the string depends on the horizontal
position of the element. Each element vibrates within the confines of the envelope
function 2A sin kx. 
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! PITFALL PREVENTION
18.2 Three Types of

Amplitude
We need to distinguish carefully
here between the amplitude of
the individual waves, which is A,
and the amplitude of the simple
harmonic motion of the elements
of the medium, which is 2A sin kx.
A given element in a standing
wave vibrates within the con-
straints of the envelope function 
2A sin kx, where x is that ele-
ment’s position in the medium.
This is in contrast to traveling 
sinusoidal waves, in which all ele-
ments oscillate with the same am-
plitude and the same frequency,
and the amplitude A of the wave
is the same as the amplitude A of
the simple harmonic motion of
the elements. Furthermore, we
can identify the amplitude of the
standing wave as 2A.



The element with the greatest possible displacement from equilibrium has an ampli-
tude of 2A, and we define this as the amplitude of the standing wave. The positions in
the medium at which this maximum displacement occurs are called antinodes. The
antinodes are located at positions for which the coordinate x satisfies the condition
sin kx " ( 1, that is, when

Thus, the positions of the antinodes are given by

(18.5)

In examining Equations 18.4 and 18.5, we note the following important features of
the locations of nodes and antinodes:

x "
'

4
, 

3'

4
, 

5'

4
, * * * "

n'

4
  n " 1, 3, 5, * * *  

kx "
&

2
, 

3&

2
, 

5&

2
, * * *
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The distance between adjacent antinodes is equal to '/2.

The distance between adjacent nodes is equal to '/2.

The distance between a node and an adjacent antinode is '/4.

Wave patterns of the elements of the medium produced at various times by
two waves traveling in opposite directions are shown in Figure 18.9. The blue and
green curves are the wave patterns for the individual traveling waves, and the red
curves are the wave patterns for the resultant standing wave. At t " 0 (Fig. 18.9a),
the two traveling waves are in phase, giving a wave pattern in which each element of
the medium is experiencing its maximum displacement from equilibrium. One
quarter of a period later, at t " T/4 (Fig. 18.9b), the traveling waves have moved
one quarter of a wavelength (one to the right and the other to the left). At this
time, the traveling waves are out of phase, and each element of the medium is pass-
ing through the equilibrium position in its simple harmonic motion. The result is
zero displacement for elements at all values of x—that is, the wave pattern is a
straight line. At t " T/2 (Fig. 18.9c), the traveling waves are again in phase, produc-
ing a wave pattern that is inverted relative to the t " 0 pattern. In the standing wave,
the elements of the medium alternate in time between the extremes shown in
Figure 18.9a and c.

(a) t = 0

y1

y2

y
N N N N N

AA

(b) t = T/4

y2

y1

y

(c) t = T/2

y1

A A

y2

y
N N N N N

A A

A A

Active Figure 18.9 Standing-wave patterns produced at various times by two waves of
equal amplitude traveling in opposite directions. For the resultant wave y, the nodes
(N) are points of zero displacement, and the antinodes (A) are points of maximum dis-
placement.

At the Active Figures link
at http://www.pse6.com, you
can choose the wavelength of
the waves and see the standing
wave that results.

Position of antinodes



552 C H A P T E R  18 •  Superposition and Standing Waves

Quick Quiz 18.3 Consider a standing wave on a string as shown in Figure
18.9. Define the velocity of elements of the string as positive if they are moving upward
in the figure. At the moment the string has the shape shown by the red curve in Figure
18.9a, the instantaneous velocity of elements along the string (a) is zero for all
elements (b) is positive for all elements (c) is negative for all elements (d) varies with
the position of the element.

Quick Quiz 18.4 Continuing with the scenario in Quick Quiz 18.3, at the
moment the string has the shape shown by the red curve in Figure 18.9b, the instanta-
neous velocity of elements along the string (a) is zero for all elements (b) is positive for
all elements (c) is negative for all elements (d) varies with the position of the element.

Example 18.2 Formation of a Standing Wave

18.3 Standing Waves in a String
Fixed at Both Ends

Consider a string of length L fixed at both ends, as shown in Figure 18.10. Standing
waves are set up in the string by a continuous superposition of waves incident on and
reflected from the ends. Note that there is a boundary condition for the waves on the

Two waves traveling in opposite directions produce a stand-
ing wave. The individual wave functions are

y1 " (4.0 cm) sin(3.0x # 2.0t) 

y2 " (4.0 cm) sin(3.0x ! 2.0t)

where x and y are measured in centimeters.

(A) Find the amplitude of the simple harmonic motion of
the element of the medium located at x " 2.3 cm.

Solution The standing wave is described by Equation 18.3;
in this problem, we have A " 4.0 cm, k " 3.0 rad/cm, and
$ " 2.0 rad/s. Thus,

y " (2A sin kx) cos $t " [(8.0 cm)sin 3.0x] cos 2.0t

Thus, we obtain the amplitude of the simple harmonic mo-
tion of the element at the position x " 2.3 cm by evaluating
the coefficient of the cosine function at this position:

(B) Find the positions of the nodes and antinodes if one
end of the string is at x " 0.

Solution With k " 2&/' " 3.0 rad/cm, we see that the
wavelength is ' " (2&/3.0) cm. Therefore, from Equation
18.4 we find that the nodes are located at

0, 1, 2, 3, . . .x " n  
'

2
" n  ! &

3 " cm  n "

4.6 cm" (8.0 cm) sin (6.9 rad) "

y max " (8.0 cm)sin 3.0x #x"2.3

and from Equation 18.5 we find that the antinodes are lo-
cated at

(C) What is the maximum value of the position in the
simple harmonic motion of an element located at an
antinode?

Solution According to Equation 18.3, the maximum posi-
tion of an element at an antinode is the amplitude of the
standing wave, which is twice the amplitude of the individual
traveling waves:

ymax " 2A(sin kx)max " 2(4.0 cm)(( 1) "

where we have used the fact that the maximum value of
sin kx is ( 1. Let us check this result by evaluating the coeffi-
cient of our standing-wave function at the positions we
found for the antinodes:

In evaluating this expression, we have used the fact that n
is an odd integer; thus, the sine function is equal to ( 1,
depending on the value of n.

 " (8.0 cm) sin $n  ! &

2 " rad % " ( 8.0 cm

 " (8.0 cm) sin $3.0n  ! &

6 " rad %
y max " (8.0 cm)sin 3.0x # x"n(&/6)

(8.0 cm

1, 3, 5, . . .x " n  
'

4
" n  ! &

6 " cm  n "



string. The ends of the string, because they are fixed, must necessarily have zero
displacement and are, therefore, nodes by definition. The boundary condition results
in the string having a number of natural patterns of oscillation, called normal modes,
each of which has a characteristic frequency that is easily calculated. This situation in
which only certain frequencies of oscillation are allowed is called quantization. Quan-
tization is a common occurrence when waves are subject to boundary conditions and
will be a central feature in our discussions of quantum physics in the extended version
of this text.

Figure 18.11 shows one of the normal modes of oscillation of a string fixed at
both ends. Except for the nodes, which are always stationary, all elements of the
string oscillate vertically with the same frequency but with different amplitudes of
simple harmonic motion. Figure 18.11 represents snapshots of the standing wave at
various times over one half of a period. The red arrows show the velocities of various
elements of the string at various times. As we found in Quick Quizzes 18.3 and 18.4,
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L

(a) (c)

(b) (d)

n = 2

n = 3

L = λ2

L = – λ3
3
2

n = 1 L = – λ1
1
2

f1 f3

f2

N

A

N

λ

λλ

Active Figure 18.10 (a) A string of length L fixed at both ends. The normal modes of
vibration form a harmonic series: (b) the fundamental, or first harmonic; (c) the sec-
ond harmonic; (d) the third harmonic.

At the Active Figures link
at http://www.pse6.com, you
can choose the mode number
and see the corresponding
standing wave.

NN N
t = 0

(a)

(b) t = T/ 8

t = T/4(c)

t = 3T/ 8(d)

(e) t = T/ 2

Figure 18.11 A standing-wave pattern in a taut string. The five
“snapshots” were taken at intervals of one eighth of the period.
(a) At t " 0, the string is momentarily at rest. (b) At t " T/8,
the string is in motion, as indicated by the red arrows, and dif-
ferent parts of the string move in different directions with dif-
ferent speeds. (c) At t " T/4, the string is moving but horizon-
tal (undeformed). (d) The motion continues as indicated.
(e) At t " T/2, the string is again momentarily at rest, but the
crests and troughs of (a) are reversed. The cycle continues 
until ultimately, when a time interval equal to T has passed, the
configuration shown in (a) is repeated.



all elements of the string have zero velocity at the extreme positions (Figs. 18.11a
and 18.11e) and elements have varying velocities at other positions (Figs. 18.11b
through 18.11d).

The normal modes of oscillation for the string can be described by imposing the
requirements that the ends be nodes and that the nodes and antinodes be separated
by one fourth of a wavelength. The first normal mode that is consistent with the
boundary conditions, shown in Figure 18.10b, has nodes at its ends and one antinode
in the middle. This is the longest-wavelength mode that is consistent with our require-
ments. This first normal mode occurs when the length of the string is half the wave-
length '1, as indicated in Figure 18.10b, or '1 " 2L. The next normal mode (see Fig.
18.10c) of wavelength '2 occurs when the wavelength equals the length of the string,
that is, when '2 " L. The third normal mode (see Fig. 18.10d) corresponds to the case
in which '3 " 2L/3. In general, the wavelengths of the various normal modes for a
string of length L fixed at both ends are

(18.6)

where the index n refers to the nth normal mode of oscillation. These are the possible
modes of oscillation for the string. The actual modes that are excited on a string are
discussed shortly.

The natural frequencies associated with these modes are obtained from the rela-
tionship f " v/', where the wave speed v is the same for all frequencies. Using Equa-
tion 18.6, we find that the natural frequencies fn of the normal modes are

(18.7)

These natural frequencies are also called the quantized frequencies associated with the vi-
brating string fixed at both ends.

Because (see Eq. 16.18), where T is the tension in the string and + is its
linear mass density, we can also express the natural frequencies of a taut string as

(18.8)

The lowest frequency f1, which corresponds to n " 1, is called either the fundamental
or the fundamental frequency and is given by

(18.9)

The frequencies of the remaining normal modes are integer multiples of the fun-
damental frequency. Frequencies of normal modes that exhibit an integer-multiple re-
lationship such as this form a harmonic series, and the normal modes are called

f1 "
1

2L
 √ T

+

 fn "
n

2L
 √ T

+
  n " 1, 2, 3, * * *

v " √T/+

fn  "   
v
'n

  "   n  
v

2L
                  n  "   1,   2,  3, * * *

'n "
2L
n

  n " 1, 2, 3,  . . .
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Multiflash photographs of standing-wave patterns in a cord driven by a vibrator at its
left end. The single-loop pattern represents the first normal mode (the fundamental),
n " 1). The double-loop pattern represents the second normal mode (n " 2), and the
triple-loop pattern represents the third normal mode (n " 3). 

Fundamental frequency of a
taut string

Frequencies of normal modes
as functions of string tension
and linear mass density

Frequencies of normal modes
as functions of wave speed and
length of string

Wavelengths of normal modes
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harmonics. The fundamental frequency f1 is the frequency of the first harmonic; the
frequency f2 " 2f1 is the frequency of the second harmonic; and the frequency fn " nf1
is the frequency of the nth harmonic. Other oscillating systems, such as a drumhead,
exhibit normal modes, but the frequencies are not related as integer multiples of
a fundamental. Thus, we do not use the term harmonic in association with these types
of systems.

In obtaining Equation 18.6, we used a technique based on the separation distance
between nodes and antinodes. We can obtain this equation in an alternative manner.
Because we require that the string be fixed at x " 0 and x " L, the wave function
y(x, t) given by Equation 18.3 must be zero at these points for all times. That is, the
boundary conditions require that y(0, t) " 0 and y(L, t) " 0 for all values of t. Because
the standing wave is described by y " 2A(sin kx) cos $t, the first boundary condition,
y(0, t) " 0, is automatically satisfied because sin kx " 0 at x " 0. To meet the second
boundary condition, y(L, t) " 0, we require that sin kL " 0. This condition is satisfied
when the angle kL equals an integer multiple of & rad. Therefore, the allowed values
of k are given by1

knL " n& n " 1, 2, 3, . . . (18.10)

Because kn " 2&/'n , we find that

which is identical to Equation 18.6.
Let us examine further how these various harmonics are created in a string. If we

wish to excite just a single harmonic, we must distort the string in such a way that its
distorted shape corresponds to that of the desired harmonic. After being released,
the string vibrates at the frequency of that harmonic. This maneuver is difficult to
perform, however, and it is not how we excite a string of a musical instrument. If the
string is distorted such that its distorted shape is not that of just one harmonic, the
resulting vibration includes various harmonics. Such a distortion occurs in musical
instruments when the string is plucked (as in a guitar), bowed (as in a cello), or
struck (as in a piano). When the string is distorted into a nonsinusoidal shape, only
waves that satisfy the boundary conditions can persist on the string. These are the
harmonics.

The frequency of a string that defines the musical note that it plays is that of the
fundamental. The frequency of the string can be varied by changing either the tension
or the string’s length. For example, the tension in guitar and violin strings is varied by
a screw adjustment mechanism or by tuning pegs located on the neck of the instru-
ment. As the tension is increased, the frequency of the normal modes increases in
accordance with Equation 18.8. Once the instrument is “tuned,” players vary the fre-
quency by moving their fingers along the neck, thereby changing the length of the
oscillating portion of the string. As the length is shortened, the frequency increases
because, as Equation 18.8 specifies, the normal-mode frequencies are inversely propor-
tional to string length.

! 2&

'n
" L " n&  or   'n "

2L
n
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1 We exclude n " 0 because this value corresponds to the trivial case in which no wave exists (k " 0).

Quick Quiz 18.5 When a standing wave is set up on a string fixed at both
ends, (a) the number of nodes is equal to the number of antinodes (b) the wavelength
is equal to the length of the string divided by an integer (c) the frequency is equal to
the number of nodes times the fundamental frequency (d) the shape of the string at
any time is symmetric about the midpoint of the string.
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Example 18.3 Give Me a C Note!

Middle C on a piano has a fundamental frequency of 262 Hz,
and the first A above middle C has a fundamental frequency
of 440 Hz.

(A) Calculate the frequencies of the next two harmonics of
the C string.

Solution Knowing that the frequencies of higher harmon-
ics are integer multiples of the fundamental frequency
f1 " 262 Hz, we find that

f2 " 2f1 "

f3 " 3f1 "

(B) If the A and C strings have the same linear mass density +
and length L, determine the ratio of tensions in the two strings.

Solution Using Equation 18.9 for the two strings vibrating
at their fundamental frequencies gives

f1A "
1

2L
 √ TA

+
  and  f1C "

1
2L

 √ TC

+

786 Hz

524 Hz

Setting up the ratio of these frequencies, we find that

What If? What if we look inside a real piano? In this case,
the assumption we made in part (B) is only partially true. The
string densities are equal, but the length of the A string is
only 64 percent of the length of the C string. What is the ratio
of their tensions?

Answer Using Equation 18.8 again, we set up the ratio of
frequencies:

TA

TC
" (0.64)2 ! 440

262 "
2

" 1.16

f1A

f1C
"

L C

L A
 √ TA

TC
" ! 100

64 " √ TA

TC

2.82
TA

TC
" ! f1A

f1C
"2

" ! 440
262 "

2
"

f1A

f1C
" √ TA

TC

Example 18.4 Guitar Basics

The high E string on a guitar measures 64.0 cm in length
and has a fundamental frequency of 330 Hz. By pressing
down so that the string is in contact with the first fret (Fig.
18.12), the string is shortened so that it plays an F note that
has a frequency of 350 Hz. How far is the fret from the neck
end of the string?

Solution Equation 18.7 relates the string’s length to the
fundamental frequency. With n " 1, we can solve for the
speed of the wave on the string,

Because we have not adjusted the tuning peg, the tension in
the string, and hence the wave speed, remain constant. We
can again use Equation 18.7, this time solving for L and

v "
2L
n

 fn "
2(0.640 m)

1
 (330 Hz) " 422 m/s

substituting the new frequency to find the shortened string
length:

The difference between this length and the measured
length of 64.0 cm is the distance from the fret to the neck
end of the string, or 

What If? What if we wish to play an F sharp, which we do
by pressing down on the second fret from the neck in Figure
18.12? The frequency of F sharp is 370 Hz. Is this fret another
3.7 cm from the neck?

Answer If you inspect a guitar fingerboard, you will find
that the frets are not equally spaced. They are far apart near
the neck and close together near the opposite end. Conse-
quently, from this observation, we would not expect the F
sharp fret to be another 3.7 cm from the end.

Let us repeat the calculation of the string length, this
time for the frequency of F sharp:

This gives a distance of 0.640 m # 0.571 m " 0.069 m "
6.9 cm from the neck. Subtracting the distance from the
neck to the first fret, the separation distance between the
first and second frets is 6.9 cm # 3.7 cm " 3.2 cm.

L " n  
v

2fn
" (1) 

422 m/s
2(370 Hz)

" 0.571 m

3.7 cm.

L " n  
v

2fn
" (1) 

422 m/s
2(350 Hz)

" 0.603 m " 60.3 cm

Figure 18.12 (Example 18.4) Playing an F note on a guitar. 
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Explore this situation at the Interactive Worked Example link at http://www.pse6.com.

Interactive
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Example 18.5 Changing String Vibration with Water Interactive

One end of a horizontal string is attached to a vibrating
blade and the other end passes over a pulley as in Figure
18.13a. A sphere of mass 2.00 kg hangs on the end of the
string. The string is vibrating in its second harmonic. A con-
tainer of water is raised under the sphere so that the sphere
is completely submerged. After this is done, the string vi-
brates in its fifth harmonic, as shown in Figure 18.13b. What
is the radius of the sphere?

Solution To conceptualize the problem, imagine what hap-
pens when the sphere is immersed in the water. The buoy-
ant force acts upward on the sphere, reducing the tension in
the string. The change in tension causes a change in the
speed of waves on the string, which in turn causes a change
in the wavelength. This altered wavelength results in the
string vibrating in its fifth normal mode rather than the sec-
ond. We categorize the problem as one in which we will
need to combine our understanding of Newton’s second
law, buoyant forces, and standing waves on strings. We begin
to analyze the problem by studying Figure 18.13a. Newton’s
second law applied to the sphere tells us that the tension in
the string is equal to the weight of the sphere:

&F " T1 # mg " 0

T1 " mg " (2.00 kg)(9.80 m/s2) " 19.6 N

where the subscript 1 is used to indicate initial variables
before we immerse the sphere in water. Once the sphere is

immersed in water, the tension in the string decreases to
T2. Applying Newton’s second law to the sphere again in this
situation, we have

T2 ! B # mg " 0

(1) B " mg # T2

The desired quantity, the radius of the sphere, will appear in
the expression for the buoyant force B. Before proceeding
in this direction, however, we must evaluate T2. We do this
from the standing wave information. We write the equation
for the frequency of a standing wave on a string (Equation
18.8) twice, once before we immerse the sphere and once
after, and divide the equations:

where the frequency f is the same in both cases, because it
is determined by the vibrating blade. In addition, the linear
mass density + and the length L of the vibrating portion of
the string are the same in both cases. Solving for T2, we
have

Substituting this into Equation (1), we can evaluate the
buoyant force on the sphere:

B " mg # T2 " 19.6 N # 3.14 N " 16.5 N

Finally, expressing the buoyant force (Eq. 14.5) in terms
of the radius of the sphere, we solve for the radius:

B " ,watergVsphere " ,waterg ( &r3)

To finalize this problem, note that only certain radii of the
sphere will result in the string vibrating in a normal mode.
This is because the speed of waves on the string must be
changed to a value such that the length of the string is an in-
teger multiple of half wavelengths. This is a feature of the
quantization that we introduced earlier in this chapter—the
sphere radii that cause the string to vibrate in a normal
mode are quantized.

7.38 cm" 7.38 - 10#2 m "

r " √3 3B
4&,waterg

" √3 3(16.5 N)
4&(1 000 kg/m3)(9.80 m/s2)

4
3

T2 " ! n1

n 2
"2

T1 " ! 2
5 "

2
(19.6  N) " 3.14  N

f "
n1

2L √ T1

+

f "
n2

2L √ T2

+

 9:  1 "
n1

n2 √ T1

T2

You can adjust the mass at the Interactive Worked Example link at http://www.pse6.com.

(b)

(a)

Figure 18.13 (Example 18.5) When the sphere hangs in air,
the string vibrates in its second harmonic. When the sphere is
immersed in water, the string vibrates in its fifth harmonic.



18.4 Resonance

We have seen that a system such as a taut string is capable of oscillating in one or
more normal modes of oscillation. If a periodic force is applied to such a system,
the amplitude of the resulting motion is greatest when the frequency of the ap-
plied force is equal to one of the natural frequencies of the system. We discussed
this phenomenon, known as resonance, briefly in Section 15.7. Although a
block–spring system or a simple pendulum has only one natural frequency, standing-
wave systems have a whole set of natural frequencies, such as that given by Equation
18.7 for a string. Because an oscillating system exhibits a large amplitude when driven
at any of its natural frequencies, these frequencies are often referred to as resonance
frequencies.

Figure 18.14 shows the response of an oscillating system to various driving fre-
quencies, where one of the resonance frequencies of the system is denoted by f0 . Note
that the amplitude of oscillation of the system is greatest when the frequency of the
driving force equals the resonance frequency. The maximum amplitude is limited by
friction in the system. If a driving force does work on an oscillating system that is ini-
tially at rest, the input energy is used both to increase the amplitude of the oscillation
and to overcome the friction force. Once maximum amplitude is reached, the work
done by the driving force is used only to compensate for mechanical energy loss due
to friction.

Examples of Resonance

A playground swing is a pendulum having a natural frequency that depends on its
length. Whenever we use a series of regular impulses to push a child in a swing, the
swing goes higher if the frequency of the periodic force equals the natural frequency
of the swing. We can demonstrate a similar effect by suspending pendulums of differ-
ent lengths from a horizontal support, as shown in Figure 18.15. If pendulum A is set
into oscillation, the other pendulums begin to oscillate as a result of waves transmitted
along the beam. However, pendulum C, the length of which is close to the length of A,
oscillates with a much greater amplitude than pendulums B and D, the lengths of
which are much different from that of pendulum A. Pendulum C moves the way it does
because its natural frequency is nearly the same as the driving frequency associated
with pendulum A.

Next, consider a taut string fixed at one end and connected at the opposite end to
an oscillating blade, as illustrated in Figure 18.16. The fixed end is a node, and the
end connected to the blade is very nearly a node because the amplitude of the blade’s
motion is small compared with that of the elements of the string. As the blade oscil-
lates, transverse waves sent down the string are reflected from the fixed end. As we
learned in Section 18.3, the string has natural frequencies that are determined by its
length, tension, and linear mass density (see Eq. 18.8). When the frequency of the
blade equals one of the natural frequencies of the string, standing waves are pro-
duced and the string oscillates with a large amplitude. In this resonance case, the
wave generated by the oscillating blade is in phase with the reflected wave, and the
string absorbs energy from the blade. If the string is driven at a frequency that is not
one of its natural frequencies, then the oscillations are of low amplitude and exhibit
no stable pattern.

Once the amplitude of the standing-wave oscillations is a maximum, the mechani-
cal energy delivered by the blade and absorbed by the system is transformed to internal
energy because of the damping forces caused by friction in the system. If the applied
frequency differs from one of the natural frequencies, energy is transferred to the
string at first, but later the phase of the wave becomes such that it forces the blade to
receive energy from the string, thereby reducing the energy in the string.

Resonance is very important in the excitation of musical instruments based on air
columns. We shall discuss this application of resonance in Section 18.5.
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Figure 18.14 Graph of the ampli-
tude (response) versus driving fre-
quency for an oscillating system.
The amplitude is a maximum at
the resonance frequency f0.

A

B

C

D

Figure 18.15 An example of reso-
nance. If pendulum A is set into os-
cillation, only pendulum C, whose
length matches that of A, eventu-
ally oscillates with large amplitude,
or resonates. The arrows indicate
motion in a plane perpendicular to
the page.

Vibrating
blade

Figure 18.16 Standing waves are
set up in a string when one end is
connected to a vibrating blade.
When the blade vibrates at one of
the natural frequencies of the
string, large-amplitude standing
waves are created.



18.5 Standing Waves in Air Columns

Standing waves can be set up in a tube of air, such as that inside an organ pipe, as the
result of interference between longitudinal sound waves traveling in opposite direc-
tions. The phase relationship between the incident wave and the wave reflected from
one end of the pipe depends on whether that end is open or closed. This relationship
is analogous to the phase relationships between incident and reflected transverse waves
at the end of a string when the end is either fixed or free to move (see Figs. 16.14 and
16.15).

In a pipe closed at one end, the closed end is a displacement node because the
wall at this end does not allow longitudinal motion of the air. As a result, at a
closed end of a pipe, the reflected sound wave is 180° out of phase with the incident
wave. Furthermore, because the pressure wave is 90° out of phase with the displace-
ment wave (see Section 17.2), the closed end of an air column corresponds to a
pressure antinode (that is, a point of maximum pressure variation).

The open end of an air column is approximately a displacement antinode2

and a pressure node. We can understand why no pressure variation occurs at an open
end by noting that the end of the air column is open to the atmosphere; thus, the pres-
sure at this end must remain constant at atmospheric pressure.

You may wonder how a sound wave can reflect from an open end, as there may not
appear to be a change in the medium at this point. It is indeed true that the medium
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Quick Quiz 18.6 A wine glass can be shattered through resonance by main-
taining a certain frequency of a high-intensity sound wave. Figure 18.17a shows a side
view of a wine glass vibrating in response to such a sound wave. Sketch the standing-
wave pattern in the rim of the glass as seen from above. If an integral number of waves
“fit” around the circumference of the vibrating rim, how many wavelengths fit around
the rim in Figure 18.17a?

(a) (b)

Figure 18.17 (Quick Quiz 18.6) (a) Standing-wave pattern in a vibrating wine glass.
The glass shatters if the amplitude of vibration becomes too great. (b) A wine glass shat-
tered by the amplified sound of a human voice. 
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2 Strictly speaking, the open end of an air column is not exactly a displacement antinode. A com-
pression reaching an open end does not reflect until it passes beyond the end. For a tube of circular
cross section, an end correction equal to approximately 0.6R, where R is the tube’s radius, must be
added to the length of the air column. Hence, the effective length of the air column is longer than the
true length L. We ignore this end correction in this discussion.



through which the sound wave moves is air both inside and outside the pipe. However,
sound is a pressure wave, and a compression region of the sound wave is constrained
by the sides of the pipe as long as the region is inside the pipe. As the compression re-
gion exits at the open end of the pipe, the constraint of the pipe is removed and the
compressed air is free to expand into the atmosphere. Thus, there is a change in the
character of the medium between the inside of the pipe and the outside even though
there is no change in the material of the medium. This change in character is sufficient
to allow some reflection.

With the boundary conditions of nodes or antinodes at the ends of the air column,
we have a set of normal modes of oscillation, as we do for the string fixed at both ends.
Thus, the air column has quantized frequencies.

The first three normal modes of oscillation of a pipe open at both ends are shown
in Figure 18.18a. Note that both ends are displacement antinodes (approximately). In
the first normal mode, the standing wave extends between two adjacent antinodes,
which is a distance of half a wavelength. Thus, the wavelength is twice the length of the
pipe, and the fundamental frequency is f1 " v/2L. As Figure 18.18a shows, the fre-
quencies of the higher harmonics are 2f1 , 3f1 , . . . . Thus, we can say that
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Figure 18.18 Motion of elements of air in standing longitudinal waves in a pipe,
along with schematic representations of the waves. In the schematic representations,
the structure at the left end has the purpose of exciting the air column into a normal
mode. The hole in the upper edge of the column assures that the left end acts as an
open end. The graphs represent the displacement amplitudes, not the pressure ampli-
tudes. (a) In a pipe open at both ends, the harmonic series created consists of all inte-
ger multiples of the fundamental frequency: f1 , 2f1 , 3f1 , . . . . (b) In a pipe closed at
one end and open at the other, the harmonic series created consists of only odd-integer
multiples of the fundamental frequency: f1 , 3f1 , 5f1 , . . . .

In a pipe open at both ends, the natural frequencies of oscillation form a harmonic
series that includes all integral multiples of the fundamental frequency.

! PITFALL PREVENTION
18.3 Sound Waves in Air

Are Longitudinal, not
Transverse

Note that the standing longitudi-
nal waves are drawn as transverse
waves in Figure 18.18. This is be-
cause it is difficult to draw longitu-
dinal displacements—they are in
the same direction as the propaga-
tion. Thus, it is best to interpret
the curves in Figure 18.18 as a
graphical representation of the
waves (our diagrams of string
waves are pictorial representa-
tions), with the vertical axis repre-
senting horizontal displacement
of the elements of the medium.



Because all harmonics are present, and because the fundamental frequency is given by
the same expression as that for a string (see Eq. 18.7), we can express the natural fre-
quencies of oscillation as

(18.11)

Despite the similarity between Equations 18.7 and 18.11, you must remember that v in
Equation 18.7 is the speed of waves on the string, whereas v in Equation 18.11 is the
speed of sound in air.

If a pipe is closed at one end and open at the other, the closed end is a displace-
ment node (see Fig. 18.18b). In this case, the standing wave for the fundamental mode
extends from an antinode to the adjacent node, which is one fourth of a wavelength.
Hence, the wavelength for the first normal mode is 4L, and the fundamental frequency
is f1 " v/4L. As Figure 18.18b shows, the higher-frequency waves that satisfy our condi-
tions are those that have a node at the closed end and an antinode at the open end;
this means that the higher harmonics have frequencies 3f1 , 5f1 , . . . .

fn " n  
v

2L
  n " 1, 2, 3, . . .
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In a pipe closed at one end, the natural frequencies of oscillation form a harmonic
series that includes only odd integral multiples of the fundamental frequency.

We express this result mathematically as

(18.12)

It is interesting to investigate what happens to the frequencies of instruments based
on air columns and strings during a concert as the temperature rises. The sound
emitted by a flute, for example, becomes sharp (increases in frequency) as it warms up
because the speed of sound increases in the increasingly warmer air inside the flute
(consider Eq. 18.11). The sound produced by a violin becomes flat (decreases in fre-
quency) as the strings thermally expand because the expansion causes their tension to
decrease (see Eq. 18.8).

Musical instruments based on air columns are generally excited by resonance. The
air column is presented with a sound wave that is rich in many frequencies. The air col-
umn then responds with a large-amplitude oscillation to the frequencies that match
the quantized frequencies in its set of harmonics. In many woodwind instruments, the
initial rich sound is provided by a vibrating reed. In the brasses, this excitation is pro-
vided by the sound coming from the vibration of the player’s lips. In a flute, the initial
excitation comes from blowing over an edge at the mouthpiece of the instrument. This
is similar to blowing across the opening of a bottle with a narrow neck. The sound of
the air rushing across the edge has many frequencies, including one that sets the air
cavity in the bottle into resonance.

fn " n  
v

4L
  n " 1, 3, 5, . . .

Quick Quiz 18.7 A pipe open at both ends resonates at a fundamental
frequency fopen. When one end is covered and the pipe is again made to resonate,
the fundamental frequency is fclosed. Which of the following expressions describes
how these two resonant frequencies compare? (a) fclosed " fopen (b) fclosed "

fopen (c) fclosed " 2 fopen (d) fclosed " fopen

Quick Quiz 18.8 Balboa Park in San Diego has an outdoor organ. When
the air temperature increases, the fundamental frequency of one of the organ pipes
(a) stays the same (b) goes down (c) goes up (d) is impossible to determine.

3
2

1
2

Natural frequencies of a pipe
open at both ends

Natural frequencies of a pipe
closed at one end and open at
the other
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Example 18.6 Wind in a Culvert

A section of drainage culvert 1.23 m in length makes a
howling noise when the wind blows.

(A) Determine the frequencies of the first three harmonics
of the culvert if it is cylindrical in shape and open at both
ends. Take v " 343 m/s as the speed of sound in air.

Solution The frequency of the first harmonic of a pipe
open at both ends is

Because both ends are open, all harmonics are present;
thus,

f2 " 2f1 " and f3 " 3f1 "

(B) What are the three lowest natural frequencies of the
culvert if it is blocked at one end?

Solution The fundamental frequency of a pipe closed at
one end is

417 Hz278 Hz

139 Hzf1 "
v

2L
"

343 m/s
2(1.23 m)

"

In this case, only odd harmonics are present; hence, the 

next two harmonics have frequencies f3 " 3f1 "

and f5 " 5f1 "

(C) For the culvert open at both ends, how many of the har-
monics present fall within the normal human hearing range
(20 to 20 000 Hz)?

Solution Because all harmonics are present for a pipe open
at both ends, we can express the frequency of the highest
harmonic heard as fn " nf1 where n is the number of har-
monics that we can hear. For fn " 20 000 Hz, we find that the
number of harmonics present in the audible range is

Only the first few harmonics are of sufficient amplitude to
be heard.

143n  "   
20  000  Hz

139  Hz
  "  

349 Hz.

209 Hz

69.7 Hzf1 "
v

4L
"

343 m/s
4(1.23 m)

"

Example 18.7 Measuring the Frequency of a Tuning Fork

A simple apparatus for demonstrating resonance in an air
column is depicted in Figure 18.19. A vertical pipe open at
both ends is partially submerged in water, and a tuning fork
vibrating at an unknown frequency is placed near the top of
the pipe. The length L of the air column can be adjusted by
moving the pipe vertically. The sound waves generated by
the fork are reinforced when L corresponds to one of the
resonance frequencies of the pipe.

For a certain pipe, the smallest value of L for
which a peak occurs in the sound intensity is 9.00 cm. What
are

(A) the frequency of the tuning fork

(B) the values of L for the next two resonance frequen-
cies?

Solution

(A) Although the pipe is open at its lower end to allow the
water to enter, the water’s surface acts like a wall at one end.
Therefore, this setup can be modeled as an air column
closed at one end, and so the fundamental frequency is
given by f1 " v/4L. Taking v " 343 m/s for the speed of
sound in air and L " 0.090 0 m, we obtain

Because the tuning fork causes the air column to resonate at
this frequency, this must also be the frequency of the tuning
fork.

(B) Because the pipe is closed at one end, we know from
Figure 18.18b that the wavelength of the fundamental
mode is ' " 4L " 4(0.090 0 m) " 0.360 m. Because the
frequency of the tuning fork is constant, the next two
normal modes (see Fig. 18.19b) correspond to lengths of 

L " 3'/4 " and L " 5'/4 " 0.450 m.0.270 m

953 Hzf1 "
v

4L
"

343 m/s
4(0.090  0 m)

"

L

Water

f = ?

First
resonance

Second
resonance

(third
harmonic) Third

resonance
(fifth

harmonic)

(b)

(a)

λ/4 3λ/4

5λ/4

λ λ

λ

Figure 18.19 (Example 18.7) (a) Apparatus for demon-
strating the resonance of sound waves in a pipe closed at
one end. The length L of the air column is varied by
moving the pipe vertically while it is partially submerged in
water. (b) The first three normal modes of the system shown
in part (a).
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18.6 Standing Waves in Rods and Membranes

Standing waves can also be set up in rods and membranes. A rod clamped in the mid-
dle and stroked parallel to the rod at one end oscillates, as depicted in Figure 18.20a.
The oscillations of the elements of the rod are longitudinal, and so the broken lines in
Figure 18.20 represent longitudinal displacements of various parts of the rod. For clar-
ity, we have drawn them in the transverse direction, just as we did for air columns. The
midpoint is a displacement node because it is fixed by the clamp, whereas the ends are
displacement antinodes because they are free to oscillate. The oscillations in this setup
are analogous to those in a pipe open at both ends. The broken lines in Figure 18.20a
represent the first normal mode, for which the wavelength is 2L and the frequency is
f " v/2L, where v is the speed of longitudinal waves in the rod. Other normal modes
may be excited by clamping the rod at different points. For example, the second
normal mode (Fig. 18.20b) is excited by clamping the rod a distance L/4 away from
one end.

Musical instruments that depend on standing waves in rods include triangles,
marimbas, xylophones, glockenspiels, chimes, and vibraphones. Other devices that
make sounds from bars include music boxes and wind chimes.

Two-dimensional oscillations can be set up in a flexible membrane stretched over a
circular hoop, such as that in a drumhead. As the membrane is struck at some point,
waves that arrive at the fixed boundary are reflected many times. The resulting sound
is not harmonic because the standing waves have frequencies that are not related by in-
teger multiples. Without this relationship, the sound may be more correctly described
as noise than as music. This is in contrast to the situation in wind and stringed instru-
ments, which produce sounds that we describe as musical.

Some possible normal modes of oscillation for a two-dimensional circular mem-
brane are shown in Figure 18.21. While nodes are points in one-dimensional standing

A N A

λ1 = 2L

(a)

L

f1 = – = –v
λ1

v
2L

λ

λ

Figure 18.20 Normal-mode longi-
tudinal vibrations of a rod of
length L (a) clamped at the middle
to produce the first normal mode
and (b) clamped at a distance L/4
from one end to produce the sec-
ond normal mode. Note that the
broken lines represent oscillations
parallel to the rod (longitudinal
waves).01 11 21 02 31 12

1 1.59 2.14 2.30 2.65 2.92

41 22 03 51 32 61

3.16 3.50 3.60 3.65 4.06 4.15

Elements of the medium moving out
of the page at an instant of time.

Elements of the medium moving into
the page at an instant of time.

Figure 18.21 Representation of some of the normal modes possible in a circular mem-
brane fixed at its perimeter. The pair of numbers above each pattern corresponds to
the number of radial nodes and the number of circular nodes. Below each pattern is a
factor by which the frequency of the mode is larger than that of the 01 mode. The fre-
quencies of oscillation do not form a harmonic series because these factors are not inte-
gers. In each diagram, elements of the membrane on either side of a nodal line move
in opposite directions, as indicated by the colors. (Adapted from T. D. Rossing, The Sci-
ence of Sound, 2nd ed, Reading, Massachusetts, Addison-Wesley Publishing Co., 1990)
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waves on strings and in air columns, a two-dimensional oscillator has curves along
which there is no displacement of the elements of the medium. The lowest normal
mode, which has a frequency f1 , contains only one nodal curve; this curve runs
around the outer edge of the membrane. The other possible normal modes show ad-
ditional nodal curves that are circles and straight lines across the diameter of the
membrane.

18.7 Beats: Interference in Time

The interference phenomena with which we have been dealing so far involve the su-
perposition of two or more waves having the same frequency. Because the amplitude of
the oscillation of elements of the medium varies with the position in space of the ele-
ment, we refer to the phenomenon as spatial interference. Standing waves in strings and
pipes are common examples of spatial interference.

We now consider another type of interference, one that results from the superposi-
tion of two waves having slightly different frequencies. In this case, when the two waves
are observed at the point of superposition, they are periodically in and out of phase.
That is, there is a temporal (time) alternation between constructive and destructive in-
terference. As a consequence, we refer to this phenomenon as interference in time or tem-
poral interference. For example, if two tuning forks of slightly different frequencies are
struck, one hears a sound of periodically varying amplitude. This phenomenon is
called beating:

Beating is the periodic variation in amplitude at a given point due to the superposi-
tion of two waves having slightly different frequencies.

The number of amplitude maxima one hears per second, or the beat frequency,
equals the difference in frequency between the two sources, as we shall show below.
The maximum beat frequency that the human ear can detect is about 20 beats/s.
When the beat frequency exceeds this value, the beats blend indistinguishably with the
sounds producing them.

A piano tuner can use beats to tune a stringed instrument by “beating” a note
against a reference tone of known frequency. The tuner can then adjust the string ten-
sion until the frequency of the sound it emits equals the frequency of the reference
tone. The tuner does this by tightening or loosening the string until the beats pro-
duced by it and the reference source become too infrequent to notice.

Consider two sound waves of equal amplitude traveling through a medium with
slightly different frequencies f1 and f2 . We use equations similar to Equation 16.10
to represent the wave functions for these two waves at a point that we choose as
x " 0:

y1 " A cos $1t " A cos 2&f1t

y2 " A cos $2t " A cos 2&f2t

Using the superposition principle, we find that the resultant wave function at this point is

y " y1 ! y2 " A(cos 2&f1t ! cos 2&f2t)

The trigonometric identity

cos a ! cos b " 2 cos ! a # b
2 " cos ! a ! b

2 "

Definition of beating



allows us to write the expression for y as

(18.13)

Graphs of the individual waves and the resultant wave are shown in Figure 18.22. From
the factors in Equation 18.13, we see that the resultant sound for a listener standing at
any given point has an effective frequency equal to the average frequency ( f1 ! f2)/2
and an amplitude given by the expression in the square brackets:

(18.14)

That is, the amplitude and therefore the intensity of the resultant sound vary in
time. The broken blue line in Figure 18.22b is a graphical representation of Equation
18.14 and is a sine wave varying with frequency ( f1 # f2)/2.

Note that a maximum in the amplitude of the resultant sound wave is detected
whenever

This means there are two maxima in each period of the resultant wave. Because the am-
plitude varies with frequency as ( f1 # f2)/2, the number of beats per second, or the
beat frequency f beat, is twice this value. That is,

(18.15)

For instance, if one tuning fork vibrates at 438 Hz and a second one vibrates at
442 Hz, the resultant sound wave of the combination has a frequency of 440 Hz (the
musical note A) and a beat frequency of 4 Hz. A listener would hear a 440-Hz sound
wave go through an intensity maximum four times every second.

f beat " # f1 # f 2 #

cos 2& ! f 1 # f 2

2 "t " ( 1

A resultant " 2A cos 2&  ! f1 # f2

2 " t

y " $2A  cos 2&   ! f1 # f 2

2 " t% cos  2&   ! f1 ! f 2

2 " t
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(b)
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Active Figure 18.22 Beats are formed by the combination of two waves of slightly dif-
ferent frequencies. (a) The individual waves. (b) The combined wave has an amplitude
(broken line) that oscillates in time.

At the Active Figures link
at http://www.pse6.com, you
can choose the two frequencies
and see the corresponding
beats.

Resultant of two waves of
different frequencies but equal
amplitude

Beat frequency

Quick Quiz 18.9 You are tuning a guitar by comparing the sound of the
string with that of a standard tuning fork. You notice a beat frequency of 5 Hz when
both sounds are present. You tighten the guitar string and the beat frequency rises to
8 Hz. In order to tune the string exactly to the tuning fork, you should (a) continue to
tighten the string (b) loosen the string (c) impossible to determine.



18.8 Nonsinusoidal Wave Patterns

The sound wave patterns produced by the majority of musical instruments are nonsi-
nusoidal. Characteristic patterns produced by a tuning fork, a flute, and a clarinet,
each playing the same note, are shown in Figure 18.23. Each instrument has its own
characteristic pattern. Note, however, that despite the differences in the patterns, each
pattern is periodic. This point is important for our analysis of these waves.

It is relatively easy to distinguish the sounds coming from a violin and a saxophone
even when they are both playing the same note. On the other hand, an individual un-
trained in music may have difficulty distinguishing a note played on a clarinet from the
same note played on an oboe. We can use the pattern of the sound waves from various
sources to explain these effects.

This is in contrast to a musical instrument that makes a noise, such as the drum, in
which the combination of frequencies do not form a harmonic series. When frequen-
cies that are integer multiples of a fundamental frequency are combined, the result is a
musical sound. A listener can assign a pitch to the sound, based on the fundamental
frequency. Pitch is a psychological reaction to a sound that allows the listener to place
the sound on a scale of low to high (bass to treble). Combinations of frequencies that
are not integer multiples of a fundamental result in a noise, rather than a musical
sound. It is much harder for a listener to assign a pitch to a noise than to a musical
sound.

The wave patterns produced by a musical instrument are the result of the superpo-
sition of various harmonics. This superposition results in the corresponding richness
of musical tones. The human perceptive response associated with various mixtures of
harmonics is the quality or timbre of the sound. For instance, the sound of the trumpet
is perceived to have a “brassy” quality (that is, we have learned to associate the adjec-
tive brassy with that sound); this quality enables us to distinguish the sound of the
trumpet from that of the saxophone, whose quality is perceived as “reedy.” The clar-
inet and oboe, however, both contain air columns excited by reeds; because of this
similarity, it is more difficult for the ear to distinguish them on the basis of their
sound quality.

The problem of analyzing nonsinusoidal wave patterns appears at first sight to be a
formidable task. However, if the wave pattern is periodic, it can be represented as
closely as desired by the combination of a sufficiently large number of sinusoidal waves
that form a harmonic series. In fact, we can represent any periodic function as a series
of sine and cosine terms by using a mathematical technique based on Fourier’s
theorem.3 The corresponding sum of terms that represents the periodic wave pattern
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Example 18.8 The Mistuned Piano Strings

Tuning fork

Flute

Clarinet

(a)

(b)

(c)

t

t

t

Figure 18.23 Sound wave patterns
produced by (a) a tuning fork,
(b) a flute, and (c) a clarinet, each
at approximately the same fre-
quency. (Adapted from C. A. Culver,
Musical Acoustics, 4th ed., New
York, McGraw-Hill Book Company,
1956, p. 128.)

3 Developed by Jean Baptiste Joseph Fourier (1786–1830).

Two identical piano strings of length 0.750 m are each
tuned exactly to 440 Hz. The tension in one of the strings is
then increased by 1.0%. If they are now struck, what is the
beat frequency between the fundamentals of the two strings?

Solution We find the ratio of frequencies if the tension in
one string is 1.0% larger than the other:

" 1.005

f2

f1
"

(v 2/2L)
(v1/2L)

"
v2

v1
"

√T2/+

√T1/+
" √ T2

T1
" √ 1.010T1

T1

Thus, the frequency of the tightened string is

f2 " 1.005f1 " 1.005(440 Hz) " 442 Hz

and the beat frequency is 

f beat " 442 Hz # 440 Hz " 2 Hz.



is called a Fourier series. Let y(t) be any function that is periodic in time with period
T, such that y(t ! T ) " y(t). Fourier’s theorem states that this function can be
written as

(18.16)

where the lowest frequency is f1 " 1/T. The higher frequencies are integer multiples
of the fundamental, fn " nf1 , and the coefficients An and Bn represent the amplitudes
of the various waves. Figure 18.24 represents a harmonic analysis of the wave patterns
shown in Figure 18.23. Note that a struck tuning fork produces only one harmonic
(the first), whereas the flute and clarinet produce the first harmonic and many higher
ones.

Note the variation in relative intensity of the various harmonics for the flute
and the clarinet. In general, any musical sound consists of a fundamental frequency
f plus other frequencies that are integer multiples of f, all having different
intensities.

y(t) " &
n

(An sin 2&fnt ! Bn cos 2&fnt)
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Harmonics

(c)
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Figure 18.24 Harmonics of the wave patterns shown in Figure 18.23. Note the varia-
tions in intensity of the various harmonics. (Adapted from C. A. Culver, Musical Acoustics,
4th ed., New York, McGraw-Hill Book Company, 1956.)

(b)(a) (c)

Each musical instrument has its own characteristic sound and mixture of harmonics.
Instruments shown are (a) the violin, (b) the saxophone, and (c) the trumpet. 

Fourier’s theorem

! PITFALL PREVENTION
18.4 Pitch vs. Frequency
Do not confuse the term pitch with
frequency. Frequency is the physical
measurement of the number of
oscillations per second. Pitch is a
psychological reaction to sound
that enables a person to place the
sound on a scale from high to low,
or from treble to bass. Thus, fre-
quency is the stimulus and pitch is
the response. Although pitch is re-
lated mostly (but not completely)
to frequency, they are not the
same. A phrase such as “the pitch
of the sound” is incorrect because
pitch is not a physical property of
the sound.
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We have discussed the analysis of a wave pattern using Fourier’s theorem. The
analysis involves determining the coefficients of the harmonics in Equation 18.16 from
a knowledge of the wave pattern. The reverse process, called Fourier synthesis, can also
be performed. In this process, the various harmonics are added together to form a re-
sultant wave pattern. As an example of Fourier synthesis, consider the building of a
square wave, as shown in Figure 18.25. The symmetry of the square wave results in only
odd multiples of the fundamental frequency combining in its synthesis. In Figure
18.25a, the orange curve shows the combination of f and 3f. In Figure 18.25b, we have
added 5f to the combination and obtained the green curve. Notice how the general
shape of the square wave is approximated, even though the upper and lower portions
are not flat as they should be.

Figure 18.25c shows the result of adding odd frequencies up to 9f. This ap-
proximation (purple curve) to the square wave is better than the approximations
in parts a and b. To approximate the square wave as closely as possible, we would 
need to add all odd multiples of the fundamental frequency, up to infinite 
frequency.

Using modern technology, we can generate musical sounds electronically by 
mixing different amplitudes of any number of harmonics. These widely used elec-
tronic music synthesizers are capable of producing an infinite variety of musical 
tones.
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(c)

f + 3f + 5f + 7f + 9f

Square wave
f + 3f + 5f + 7f + 9f + ...

(b)

f + 3f + 5f

5f

f

3f

(a)

f
f + 3f

3f

Active Figure 18.25 Fourier synthesis of a square wave, which is represented by the sum of odd
multiples of the first harmonic, which has frequency f. (a) Waves of frequency f and 3f are added.
(b) One more odd harmonic of frequency 5f is added. (c) The synthesis curve approaches closer
to the square wave when odd frequencies up to 9f are added.

At the Active Figures link
at http://www.pse6.com, you
can add in harmonics with
frequencies higher than 9f to
try to synthesize a square wave.



Questions 569

The superposition principle specifies that when two or more waves move through
a medium, the value of the resultant wave function equals the algebraic sum of the val-
ues of the individual wave functions.

When two traveling waves having equal amplitudes and frequencies superimpose,
the resultant wave has an amplitude that depends on the phase angle % between the
two waves. Constructive interference occurs when the two waves are in phase, corre-
sponding to % " 0, 2&, 4&, . . . rad. Destructive interference occurs when the two
waves are 180° out of phase, corresponding to % " &, 3&, 5&, . . . rad.

Standing waves are formed from the superposition of two sinusoidal waves having
the same frequency, amplitude, and wavelength but traveling in opposite directions.
The resultant standing wave is described by the wave function

y " (2A sin kx) cos $t (18.3)

Hence, the amplitude of the standing wave is 2A, and the amplitude of the simple har-
monic motion of any particle of the medium varies according to its position as 2A sin kx.
The points of zero amplitude (called nodes) occur at x " n'/2 (n " 0, 1, 2, 3, . . .).
The maximum amplitude points (called antinodes) occur at x " n'/4 (n " 1, 3,
5, . . .). Adjacent antinodes are separated by a distance '/2. Adjacent nodes also are
separated by a distance '/2.

The natural frequencies of vibration of a taut string of length L and fixed at both
ends are quantized and are given by

n " 1, 2, 3, . . . (18.8)

where T is the tension in the string and + is its linear mass density. The natural fre-
quencies of vibration f1, 2f1, 3f1, . . . form a harmonic series.

An oscillating system is in resonance with some driving force whenever the fre-
quency of the driving force matches one of the natural frequencies of the system. When
the system is resonating, it responds by oscillating with a relatively large amplitude.

Standing waves can be produced in a column of air inside a pipe. If the pipe is open
at both ends, all harmonics are present and the natural frequencies of oscillation are

n " 1, 2, 3, . . . (18.11)

If the pipe is open at one end and closed at the other, only the odd harmonics are 
present, and the natural frequencies of oscillation are

n " 1, 3, 5, . . . (18.12)

The phenomenon of beating is the periodic variation in intensity at a given point due
to the superposition of two waves having slightly different frequencies.

fn " n
v

4L

fn " n
v

2L

fn "
n

2L √ T
+

S U M M A RY

Take a practice test for
this chapter by clicking on
the Practice Test link at
http://www.pse6.com.

Does the phenomenon of wave interference apply only to
sinusoidal waves?

2. As oppositely moving pulses of the same shape (one up-
ward, one downward) on a string pass through each other,
there is one instant at which the string shows no displace-
ment from the equilibrium position at any point. Has the
energy carried by the pulses disappeared at this instant of
time? If not, where is it?

1. 3. Can two pulses traveling in opposite directions on the
same string reflect from each other? Explain.

When two waves interfere, can the amplitude of the resul-
tant wave be greater than either of the two original waves?
Under what conditions?

5. For certain positions of the movable section shown in Fig-
ure 18.5, no sound is detected at the receiver—a situation

4.

Q U E S T I O N S
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corresponding to destructive interference. This suggests
that energy is somehow lost. What happens to the energy
transmitted by the speaker?

When two waves interfere constructively or destructively, is
there any gain or loss in energy? Explain.

7. A standing wave is set up on a string, as shown in Figure
18.10. Explain why no energy is transmitted along the
string.

8. What limits the amplitude of motion of a real vibrating
system that is driven at one of its resonant frequencies? 

9. Explain why your voice seems to sound better than usual
when you sing in the shower. 

10. What is the purpose of the slide on a trombone or of the
valves on a trumpet?

11. Explain why all harmonics are present in an organ pipe
open at both ends, but only odd harmonics are present in
a pipe closed at one end.

12. Explain how a musical instrument such as a piano may be
tuned by using the phenomenon of beats.

13. To keep animals away from their cars, some people mount
short, thin pipes on the fenders. The pipes give out a high-
pitched wail when the cars are moving. How do they create
the sound?

14. When a bell is rung, standing waves are set up around the
bell’s circumference. What boundary conditions must
be satisfied by the resonant wavelengths? How does a crack
in the bell, such as in the Liberty Bell, affect the satisfying
of the boundary conditions and the sound emanating
from the bell?

15. An archer shoots an arrow from a bow. Does the string of the
bow exhibit standing waves after the arrow leaves? If so, and
if the bow is perfectly symmetric so that the arrow leaves
from the center of the string, what harmonics are excited?

6.

16. Despite a reasonably steady hand, a person often spills his
coffee when carrying it to his seat. Discuss resonance as a
possible cause of this difficulty, and devise a means for solv-
ing the problem.

An airplane mechanic notices that the sound from a twin-
engine aircraft rapidly varies in loudness when both en-
gines are running. What could be causing this variation
from loud to soft?

18. When the base of a vibrating tuning fork is placed against
a chalkboard, the sound that it emits becomes louder. This
is because the vibrations of the tuning fork are transmitted
to the chalkboard. Because it has a larger area than the
tuning fork, the vibrating chalkboard sets more air into vi-
bration. Thus, the chalkboard is a better radiator of sound
than the tuning fork. How does this affect the length of
time during which the fork vibrates? Does this agree with
the principle of conservation of energy? 

19. If you wet your finger and lightly run it around the rim of
a fine wineglass, a high-frequency sound is heard. Why?
How could you produce various musical notes with a set of
wineglasses, each of which contains a different amount of
water? 

20. If you inhale helium from a balloon and do your best to
speak normally, your voice will have a comical quacky qual-
ity. Explain why this “Donald Duck effect” happens. Cau-
tion : Helium is an asphyxiating gas and asphyxiation can
cause panic. Helium can contain poisonous contaminants.

21. You have a standard tuning fork whose frequency is 262 Hz
and a second tuning fork with an unknown frequency.
When you tap both of them on the heel of one of your
sneakers, you hear beats with a frequency of 4 per second.
Thoughtfully chewing your gum, you wonder whether the
unknown frequency is 258 Hz or 266 Hz. How can you
decide?

17.

Section 18.1 Superposition and Interference

1. Two waves in one string are described by the wave functions

y1 " 3.0 cos(4.0x # 1.6t)

and

y2 " 4.0 sin(5.0x # 2.0t)

where y and x are in centimeters and t is in seconds. Find the
superposition of the waves y1 ! y2 at the points (a) x " 1.00,
t " 1.00, (b) x " 1.00, t " 0.500, and (c) x " 0.500, t " 0.
(Remember that the arguments of the trigonometric func-
tions are in radians.)

2. Two pulses A and B are moving in opposite directions
along a taut string with a speed of 2.00 cm/s. The ampli-

tude of A is twice the amplitude of B. The pulses are
shown in Figure P18.2 at t " 0. Sketch the shape of the
string at t " 1, 1.5, 2, 2.5, and 3 s.

1, 2, 3 " straightforward, intermediate, challenging " full solution available in the Student Solutions Manual and Study Guide

" coached solution with hints available at http://www.pse6.com " computer useful in solving problem             

" paired numerical and symbolic problems

P R O B L E M S
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Figure P18.2
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Two pulses traveling on the same string are described by

(a) In which direction does each pulse travel? (b) At what
time do the two cancel everywhere? (c) At what point do
the two pulses always cancel?

4. Two waves are traveling in the same direction along a
stretched string. The waves are 90.0° out of phase. Each
wave has an amplitude of 4.00 cm. Find the amplitude of
the resultant wave.

Two traveling sinusoidal waves are described by the
wave functions

y1 " (5.00 m) sin[&(4.00x # 1 200t)]

and

y2 " (5.00 m) sin[&(4.00x # 1 200t # 0.250)]

where x, y1 , and y2 are in meters and t is in seconds.
(a) What is the amplitude of the resultant wave? (b) What
is the frequency of the resultant wave?

6. Two identical sinusoidal waves with wavelengths of 3.00 m
travel in the same direction at a speed of 2.00 m/s. The
second wave originates from the same point as the first,
but at a later time. Determine the minimum possible time
interval between the starting moments of the two waves if
the amplitude of the resultant wave is the same as that of
each of the two initial waves.

7. Review problem. A series of pulses, each of amplitude
0.150 m, is sent down a string that is attached to a post at
one end. The pulses are reflected at the post and travel
back along the string without loss of amplitude. What is
the net displacement at a point on the string where two
pulses are crossing, (a) if the string is rigidly attached to
the post? (b) if the end at which reflection occurs is free to
slide up and down?

8. Two loudspeakers are placed on a wall 2.00 m apart. A lis-
tener stands 3.00 m from the wall directly in front of one
of the speakers. A single oscillator is driving the speakers
at a frequency of 300 Hz. (a) What is the phase difference
between the two waves when they reach the observer?
(b) What If? What is the frequency closest to 300 Hz to
which the oscillator may be adjusted such that the observer
hears minimal sound?

9. Two speakers are driven by the same oscillator whose fre-
quency is 200 Hz. They are located on a vertical pole a
distance of 4.00 m from each other. A man walks straight
toward the lower speaker in a direction perpendicular to
the pole as shown in Figure P18.9. (a) How many times
will he hear a minimum in sound intensity, and (b) how
far is he from the pole at these moments? Take the speed
of sound to be 330 m/s and ignore any sound reflections
coming off the ground.

10. Two speakers are driven by the same oscillator whose fre-
quency is f. They are located a distance d from each other
on a vertical pole. A man walks straight toward the lower

5.

y1 "
5

(3x # 4t)2 ! 2
  and  y2 "

#5
(3x ! 4t # 6)2 ! 2

3.

speaker in a direction perpendicular to the pole, as shown
in Figure P18.9. (a) How many times will he hear a mini-
mum in sound intensity? (b) How far is he from the pole
at these moments? Let v represent the speed of sound, and
assume that the ground does not reflect sound.

Two sinusoidal waves in a string are defined by the
functions

y1 " (2.00 cm) sin(20.0x # 32.0t)

and

y2 " (2.00 cm) sin(25.0x # 40.0t)

where y1, y2, and x are in centimeters and t is in seconds.
(a) What is the phase difference between these two waves
at the point x " 5.00 cm at t " 2.00 s? (b) What is the posi-
tive x value closest to the origin for which the two phases
differ by ( & at t " 2.00 s? (This is where the two waves
add to zero.)

12. Two identical speakers 10.0 m apart are driven by the same
oscillator with a frequency of f " 21.5 Hz (Fig. P18.12).
(a) Explain why a receiver at point A records a minimum in
sound intensity from the two speakers. (b) If the receiver is
moved in the plane of the speakers, what path should it take
so that the intensity remains at a minimum? That is, deter-

11.

dL

Figure P18.9 Problems 9 and 10.
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mine the relationship between x and y (the coordinates of
the receiver) that causes the receiver to record a minimum
in sound intensity. Take the speed of sound to be 344 m/s.

Section 18.2 Standing Waves

13. Two sinusoidal waves traveling in opposite directions inter-
fere to produce a standing wave with the wave function

y " (1.50 m) sin(0.400x) cos(200t)

where x is in meters and t is in seconds. Determine the
wavelength, frequency, and speed of the interfering waves.

14. Two waves in a long string have wave functions given by

and

where y1 , y2 , and x are in meters and t is in seconds. (a) De-
termine the positions of the nodes of the resulting standing
wave. (b) What is the maximum transverse position of an
element of the string at the position x " 0.400 m?

Two speakers are driven in phase by a common oscil-
lator at 800 Hz and face each other at a distance of 1.25 m.
Locate the points along a line joining the two speakers
where relative minima of sound pressure amplitude would
be expected. (Use v " 343 m/s.)

16. Verify by direct substitution that the wave function for a
standing wave given in Equation 18.3,

y " 2A sin kx cos $t

is a solution of the general linear wave equation, Equation
16.27:

Two sinusoidal waves combining in a medium are de-
scribed by the wave functions

y1 " (3.0 cm) sin &(x ! 0.60t)

and

y2 " (3.0 cm) sin &(x # 0.60t)

where x is in centimeters and t is in seconds. Determine
the maximum transverse position of an element of
the medium at (a) x " 0.250 cm, (b) x " 0.500 cm, and
(c) x " 1.50 cm. (d) Find the three smallest values of x
corresponding to antinodes.

18. Two waves that set up a standing wave in a long string are
given by the wave functions 

y1 " A sin(kx # $t ! %) and y2 " A sin(kx ! $t)

Show (a) that the addition of the arbitrary phase constant
% changes only the position of the nodes and, in particu-
lar, (b) that the distance between nodes is still one half the
wavelength.

17.
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15.

y2 " (0.015 0 m) cos  ! x
2

! 40t"

y1 " (0.015 0 m) cos  ! x
2

# 40t"

Section 18.3 Standing Waves in a String Fixed at
Both Ends

Find the fundamental frequency and the next three frequen-
cies that could cause standing-wave patterns on a string that
is 30.0 m long, has a mass per length of 9.00 - 10#3 kg/m,
and is stretched to a tension of 20.0 N.

20. A string with a mass of 8.00 g and a length of 5.00 m has
one end attached to a wall; the other end is draped over
a pulley and attached to a hanging object with a mass of
4.00 kg. If the string is plucked, what is the fundamental
frequency of vibration?

21. In the arrangement shown in Figure P18.21, an object can
be hung from a string (with linear mass density + "
0.002 00 kg/m) that passes over a light pulley. The string is
connected to a vibrator (of constant frequency f ), and the
length of the string between point P and the pulley is L "
2.00 m. When the mass m of the object is either 16.0 kg or
25.0 kg, standing waves are observed; however, no standing
waves are observed with any mass between these values.
(a) What is the frequency of the vibrator? (Note: The
greater the tension in the string, the smaller the number
of nodes in the standing wave.) (b) What is the largest
object mass for which standing waves could be observed?

19.

µ

L

P

Vibrator

m

Figure P18.21 Problems 21 and 22.

22. A vibrator, pulley, and hanging object are arranged as in
Figure P18.21, with a compound string, consisting of two
strings of different masses and lengths fastened together
end-to-end. The first string, which has a mass of 1.56 g and
a length of 65.8 cm, runs from the vibrator to the junction
of the two strings. The second string runs from the junc-
tion over the pulley to the suspended 6.93-kg object. The
mass and length of the string from the junction to the pul-
ley are, respectively, 6.75 g and 95.0 cm. (a) Find the low-
est frequency for which standing waves are observed in
both strings, with a node at the junction. The standing
wave patterns in the two strings may have different num-
bers of nodes. (b) What is the total number of nodes ob-
served along the compound string at this frequency,
excluding the nodes at the vibrator and the pulley?

23. Example 18.4 tells you that the adjacent notes E, F, and F-
sharp can be assigned frequencies of 330 Hz, 350 Hz, and
370 Hz. You might not guess how the pattern continues.
The next notes, G, G-sharp, and A, have frequencies of
392 Hz, 416 Hz, and 440 Hz. On the equally tempered or
chromatic scale used in Western music, the frequency of
each higher note is obtained by multiplying the previous
frequency by . A standard guitar has strings 64.0 cm
long and nineteen frets. In Example 18.4, we found the

12√2
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spacings of the first two frets. Calculate the distance be-
tween the last two frets.

24. The top string of a guitar has a fundamental frequency of
330 Hz when it is allowed to vibrate as a whole, along all of
its 64.0-cm length from the neck to the bridge. A fret is
provided for limiting vibration to just the lower two-thirds
of the string. (a) If the string is pressed down at this fret
and plucked, what is the new fundamental frequency?
(b) What If? The guitarist can play a “natural harmonic”
by gently touching the string at the location of this fret
and plucking the string at about one sixth of the way along
its length from the bridge. What frequency will be heard
then?

25. A string of length L, mass per unit length +, and tension T
is vibrating at its fundamental frequency. What effect will
the following have on the fundamental frequency? (a) The
length of the string is doubled, with all other factors held
constant. (b) The mass per unit length is doubled, with all
other factors held constant. (c) The tension is doubled,
with all other factors held constant.

26. A 60.000-cm guitar string under a tension of 50.000 N has
a mass per unit length of 0.100 00 g/cm. What is the high-
est resonant frequency that can be heard by a person capa-
ble of hearing frequencies up to 20 000 Hz?

A cello A-string vibrates in its first normal mode with a fre-
quency of 220 Hz. The vibrating segment is 70.0 cm long
and has a mass of 1.20 g. (a) Find the tension in the string.
(b) Determine the frequency of vibration when the string
vibrates in three segments.

28. A violin string has a length of 0.350 m and is tuned to con-
cert G, with fG " 392 Hz. Where must the violinist place
her finger to play concert A, with fA " 440 Hz? If this posi-
tion is to remain correct to half the width of a finger (that
is, to within 0.600 cm), what is the maximum allowable
percentage change in the string tension?

29. Review problem. A sphere of mass M is supported by a
string that passes over a light horizontal rod of length L
(Fig. P18.29). Given that the angle is / and that f repre-
sents the fundamental frequency of standing waves in the
portion of the string above the rod, determine the mass of
this portion of the string.

27.

30. Review problem. A copper cylinder hangs at the bottom of
a steel wire of negligible mass. The top end of the wire is
fixed. When the wire is struck, it emits sound with a funda-
mental frequency of 300 Hz. If the copper cylinder is then
submerged in water so that half its volume is below the
water line, determine the new fundamental frequency.

31. A standing-wave pattern is observed in a thin wire with a
length of 3.00 m. The equation of the wave is

y " (0.002 m) sin(&x) cos(100&t)

where x is in meters and t is in seconds. (a) How many
loops does this pattern exhibit? (b) What is the fundamen-
tal frequency of vibration of the wire? (c) What If? If the
original frequency is held constant and the tension in the
wire is increased by a factor of 9, how many loops are pres-
ent in the new pattern?

Section 18.4 Resonance
32. The chains suspending a child’s swing are 2.00 m long. At

what frequency should a big brother push to make the
child swing with largest amplitude?

33. An earthquake can produce a seiche in a lake, in which the
water sloshes back and forth from end to end with remark-
ably large amplitude and long period. Consider a seiche
produced in a rectangular farm pond, as in the cross-sec-
tional view of Figure P18.33. (The figure is not drawn to
scale.) Suppose that the pond is 9.15 m long and of uni-
form width and depth. You measure that a pulse produced
at one end reaches the other end in 2.50 s. (a) What is the
wave speed? (b) To produce the seiche, several people
stand on the bank at one end and paddle together with
snow shovels, moving them in simple harmonic motion.
What should be the frequency of this motion?

L

M

θ

Figure P18.29

Figure P18.33

34. The Bay of Fundy, Nova Scotia, has the highest tides in the
world, as suggested in the photographs on page 452. As-
sume that in mid-ocean and at the mouth of the bay, the
Moon’s gravity gradient and the Earth’s rotation make the
water surface oscillate with an amplitude of a few centime-
ters and a period of 12 h 24 min. At the head of the bay,
the amplitude is several meters. Argue for or against the
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proposition that the tide is amplified by standing-wave reso-
nance. Assume the bay has a length of 210 km and a uni-
form depth of 36.1 m. The speed of long-wavelength water
waves is given by , where d is the water’s depth.

35. Standing-wave vibrations are set up in a crystal goblet with
four nodes and four antinodes equally spaced around the
20.0-cm circumference of its rim. If transverse waves move
around the glass at 900 m/s, an opera singer would have
to produce a high harmonic with what frequency to shat-
ter the glass with a resonant vibration?

Section 18.5 Standing Waves in Air Columns

√gd

cylinder is r, and at the open top of the cylinder a tuning
fork is vibrating with a frequency f. As the water rises, how
much time elapses between successive resonances?

Note : Unless otherwise specified, assume that the speed of
sound in air is 343 m/s at 20°C, and is described by

at any Celsius temperature TC.

v " (331 m/s) √1 !
TC

2730

36. The overall length of a piccolo is 32.0 cm. The resonating
air column vibrates as in a pipe open at both ends.
(a) Find the frequency of the lowest note that a piccolo
can play, assuming that the speed of sound in air is
340 m/s. (b) Opening holes in the side effectively shortens
the length of the resonant column. If the highest note a
piccolo can sound is 4 000 Hz, find the distance between
adjacent antinodes for this mode of vibration.

Calculate the length of a pipe that has a fundamental fre-
quency of 240 Hz if the pipe is (a) closed at one end and
(b) open at both ends. 

38. The fundamental frequency of an open organ pipe corre-
sponds to middle C (261.6 Hz on the chromatic musical
scale). The third resonance of a closed organ pipe has the
same frequency. What are the lengths of the two pipes?

39. The windpipe of one typical whooping crane is 5.00 ft
long. What is the fundamental resonant frequency of the
bird’s trachea, modeled as a narrow pipe closed at one
end? Assume a temperature of 37°C.

40. Do not stick anything into your ear! Estimate the length of
your ear canal, from its opening at the external ear to the
eardrum. If you regard the canal as a narrow tube that is
open at one end and closed at the other, at approximately
what fundamental frequency would you expect your hear-
ing to be most sensitive? Explain why you can hear espe-
cially soft sounds just around this frequency.

A shower stall measures 86.0 cm - 86.0 cm - 210 cm.
If you were singing in this shower, which frequencies would
sound the richest (because of resonance)? Assume that the
stall acts as a pipe closed at both ends, with nodes at oppo-
site sides. Assume that the voices of various singers range
from 130 Hz to 2 000 Hz. Let the speed of sound in the hot
shower stall be 355 m/s.

42. As shown in Figure P18.42, water is pumped into a tall ver-
tical cylinder at a volume flow rate R. The radius of the

41.

37.

R

f

Figure P18.42

If two adjacent natural frequencies of an organ pipe
are determined to be 550 Hz and 650 Hz, calculate the
fundamental frequency and length of this pipe. (Use v "
340 m/s.)

44. A glass tube (open at both ends) of length L is positioned
near an audio speaker of frequency f " 680 Hz. For what
values of L will the tube resonate with the speaker?

An air column in a glass tube is open at one end and
closed at the other by a movable piston. The air in the
tube is warmed above room temperature, and a 384-Hz
tuning fork is held at the open end. Resonance is heard
when the piston is 22.8 cm from the open end and again
when it is 68.3 cm from the open end. (a) What speed of
sound is implied by these data? (b) How far from the
open end will the piston be when the next resonance is
heard?

46. A tuning fork with a frequency of 512 Hz is placed near
the top of the pipe shown in Figure 18.19a. The water level
is lowered so that the length L slowly increases from an ini-
tial value of 20.0 cm. Determine the next two values of L
that correspond to resonant modes.

47. When an open metal pipe is cut into two pieces, the lowest
resonance frequency for the air column in one piece is
256 Hz and that for the other is 440 Hz. (a) What resonant
frequency would have been produced by the original
length of pipe? (b) How long was the original pipe?

48. With a particular fingering, a flute plays a note with fre-
quency 880 Hz at 20.0°C. The flute is open at both ends.
(a) Find the air column length. (b) Find the frequency it
produces at the beginning of the half-time performance at
a late-season American football game, when the ambient
temperature is # 5.00°C and the musician has not had a
chance to warm up the flute.

45.

43.
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Section 18.6 Standing Waves in Rods
and Membranes

An aluminum rod 1.60 m long is held at its center. It is
stroked with a rosin-coated cloth to set up a longitudinal
vibration. The speed of sound in a thin rod of aluminum is
5 100 m/s. (a) What is the fundamental frequency of the
waves established in the rod? (b) What harmonics are set
up in the rod held in this manner? (c) What If? What
would be the fundamental frequency if the rod were made
of copper, in which the speed of sound is 3 560 m/s?

50. An aluminum rod is clamped one quarter of the way along
its length and set into longitudinal vibration by a variable-
frequency driving source. The lowest frequency that pro-
duces resonance is 4 400 Hz. The speed of sound in an alu-
minum rod is 5 100 m/s. Find the length of the rod.

Section 18.7 Beats: Interference in Time
In certain ranges of a piano keyboard, more than one

string is tuned to the same note to provide extra loudness.
For example, the note at 110 Hz has two strings at this fre-
quency. If one string slips from its normal tension of 600 N
to 540 N, what beat frequency is heard when the hammer
strikes the two strings simultaneously?

52. While attempting to tune the note C at 523 Hz, a piano
tuner hears 2 beats/s between a reference oscillator and
the string. (a) What are the possible frequencies of the
string? (b) When she tightens the string slightly, she hears
3 beats/s. What is the frequency of the string now? (c) By
what percentage should the piano tuner now change the
tension in the string to bring it into tune?

A student holds a tuning fork oscillating at 256 Hz. He
walks toward a wall at a constant speed of 1.33 m/s. 
(a) What beat frequency does he observe between the tun-
ing fork and its echo? (b) How fast must he walk away
from the wall to observe a beat frequency of 5.00 Hz?

54. When beats occur at a rate higher than about 20 per sec-
ond, they are not heard individually but rather as a steady
hum, called a combination tone. The player of a typical pipe
organ can press a single key and make the organ produce
sound with different fundamental frequencies. She can se-
lect and pull out different stops to make the same key for
the note C produce sound at the following frequencies:
65.4 Hz from a so-called eight-foot pipe; 2 - 65.4 "
131 Hz from a four-foot pipe; 3 - 65.4 " 196 Hz from a
two-and-two-thirds-foot pipe; 4 - 65.4 " 262 Hz from a
two-foot pipe; or any combination of these. With notes at
low frequencies, she obtains sound with the richest quality
by pulling out all the stops. When an air leak develops in
one of the pipes, that pipe cannot be used. If a leak occurs
in an eight-foot pipe, playing a combination of other pipes
can create the sensation of sound at the frequency that the
eight-foot pipe would produce. Which sets of stops, among
those listed, could be pulled out to do this?

Section 18.8 Nonsinusoidal Wave Patterns
55. An A-major chord consists of the notes called A, C #, and E. It

can be played on a piano by simultaneously striking strings
with fundamental frequencies of 440.00 Hz, 554.37 Hz, and

53.

51.

49.

659.26 Hz. The rich consonance of the chord is associated
with near equality of the frequencies of some of the higher
harmonics of the three tones. Consider the first five harmon-
ics of each string and determine which harmonics show near
equality.

56. Suppose that a flutist plays a 523-Hz C note with first
harmonic displacement amplitude A1 " 100 nm. From
Figure 18.24b read, by proportion, the displacement am-
plitudes of harmonics 2 through 7. Take these as the values
A2 through A7 in the Fourier analysis of the sound, and as-
sume that B1 " B2 " . . . " B7 " 0. Construct a graph of
the waveform of the sound. Your waveform will not look
exactly like the flute waveform in Figure 18.23b because
you simplify by ignoring cosine terms; nevertheless, it pro-
duces the same sensation to human hearing.

Additional Problems

57. On a marimba (Fig. P18.57), the wooden bar that sounds a
tone when struck vibrates in a transverse standing wave
having three antinodes and two nodes. The lowest fre-
quency note is 87.0 Hz, produced by a bar 40.0 cm long.
(a) Find the speed of transverse waves on the bar. (b) A
resonant pipe suspended vertically below the center of the
bar enhances the loudness of the emitted sound. If the
pipe is open at the top end only and the speed of sound in
air is 340 m/s, what is the length of the pipe required to
resonate with the bar in part (a)? 

Figure P18.57 Marimba players in Mexico City.

58. A loudspeaker at the front of a room and an identical loud-
speaker at the rear of the room are being driven by the
same oscillator at 456 Hz. A student walks at a uniform rate
of 1.50 m/s along the length of the room. She hears a sin-
gle tone, repeatedly becoming louder and softer. (a) Model
these variations as beats between the Doppler-shifted
sounds the student receives. Calculate the number of beats
the student hears each second. (b) What If? Model the two
speakers as producing a standing wave in the room and the
student as walking between antinodes. Calculate the num-
ber of intensity maxima the student hears each second.

Two train whistles have identical frequencies of 180 Hz.
When one train is at rest in the station and the other is

59.
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moving nearby, a commuter standing on the station plat-
form hears beats with a frequency of 2.00 beats/s when the
whistles sound at the same time. What are the two possible
speeds and directions that the moving train can have?

60. A string fixed at both ends and having a mass of 4.80 g, a
length of 2.00 m, and a tension of 48.0 N vibrates in its sec-
ond (n " 2) normal mode. What is the wavelength in air
of the sound emitted by this vibrating string?

61. A student uses an audio oscillator of adjustable frequency
to measure the depth of a water well. The student hears
two successive resonances at 51.5 Hz and 60.0 Hz. How
deep is the well?

62. A string has a mass per unit length of 9.00 - 10#3 kg/m
and a length of 0.400 m. What must be the tension in the
string if its second harmonic has the same frequency as the
second resonance mode of a 1.75-m-long pipe open at one
end?

Two wires are welded together end to end. The wires are
made of the same material, but the diameter of one is twice
that of the other. They are subjected to a tension of 4.60 N.
The thin wire has a length of 40.0 cm and a linear mass den-
sity of 2.00 g/m. The combination is fixed at both ends and
vibrated in such a way that two antinodes are present, with
the node between them being right at the weld. (a) What is
the frequency of vibration? (b) How long is the thick wire?

64. Review problem. For the arrangement shown in Figure
P18.64, / " 30.0°, the inclined plane and the small pulley
are frictionless, the string supports the object of mass M at
the bottom of the plane, and the string has mass m that is
small compared to M. The system is in equilibrium and the
vertical part of the string has a length h. Standing waves
are set up in the vertical section of the string. (a) Find the
tension in the string. (b) Model the shape of the string as
one leg and the hypotenuse of a right triangle. Find the
whole length of the string. (c) Find the mass per unit
length of the string. (d) Find the speed of waves on the
string. (e) Find the lowest frequency for a standing wave.
(f ) Find the period of the standing wave having three
nodes. (g) Find the wavelength of the standing wave hav-
ing three nodes. (h) Find the frequency of the beats result-
ing from the interference of the sound wave of lowest fre-
quency generated by the string with another sound wave
having a frequency that is 2.00% greater.

63.

the string are fixed. When the vibrator has a frequency f,
in a string of length L and under tension T, n antinodes
are set up in the string. (a) If the length of the string is
doubled, by what factor should the frequency be changed
so that the same number of antinodes is produced? (b) If
the frequency and length are held constant, what tension
will produce n ! 1 antinodes? (c) If the frequency is
tripled and the length of the string is halved, by what fac-
tor should the tension be changed so that twice as many
antinodes are produced?

66. A 0.010 0-kg wire, 2.00 m long, is fixed at both ends and vi-
brates in its simplest mode under a tension of 200 N.
When a vibrating tuning fork is placed near the wire, a
beat frequency of 5.00 Hz is heard. (a) What could be the
frequency of the tuning fork? (b) What should the tension
in the wire be if the beats are to disappear?

67. Two waves are described by the wave functions

y1(x, t) " 5.0 sin(2.0x # 10t)

and

y2(x, t) " 10 cos(2.0x # 10t)

where y1, y2, and x are in meters and t is in seconds. Show
that the wave resulting from their superposition is also
sinusoidal. Determine the amplitude and phase of this
sinusoidal wave.

68. The wave function for a standing wave is given in Equation
18.3 as y " 2A sin kx cos $t. (a) Rewrite this wave function
in terms of the wavelength ' and the wave speed v of the
wave. (b) Write the wave function of the simplest standing-
wave vibration of a stretched string of length L. (c) Write
the wave function for the second harmonic. (d) General-
ize these results and write the wave function for the nth
resonance vibration.

69. Review problem. A 12.0-kg object hangs in equilibrium
from a string with a total length of L " 5.00 m and a lin-
ear mass density of + " 0.001 00 kg/m. The string is
wrapped around two light, frictionless pulleys that are sep-
arated by a distance of d " 2.00 m (Fig. P18.69a). (a) De-
termine the tension in the string. (b) At what frequency
must the string between the pulleys vibrate in order to
form the standing wave pattern shown in Figure P18.69b?
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A standing wave is set up in a string of variable length and
tension by a vibrator of variable frequency. Both ends of

65.
Figure P18.69
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70. A quartz watch contains a crystal oscillator in the form of
a block of quartz that vibrates by contracting and expand-
ing. Two opposite faces of the block, 7.05 mm apart, are
antinodes, moving alternately toward each other and
away from each other. The plane halfway between these
two faces is a node of the vibration. The speed of sound
in quartz is 3.70 km/s. Find the frequency of the vibra-
tion. An oscillating electric voltage accompanies the me-
chanical oscillation—the quartz is described as piezoelec-
tric. An electric circuit feeds in energy to maintain the
oscillation and also counts the voltage pulses to keep
time.

Answers to Quick Quizzes
18.1 The shape of the string at t " 0.6 s is shown below.

18.5 (d). Choice (a) is incorrect because the number of nodes
is one greater than the number of antinodes. Choice (b)
is only true for half of the modes; it is not true for any
odd-numbered mode. Choice (c) would be correct if we
replace the word nodes with antinodes.

18.6 For each natural frequency of the glass, the standing wave
must “fit” exactly around the rim. In Figure 18.17a we see
three antinodes on the near side of the glass, and thus
there must be another three on the far side. This corre-
sponds to three complete waves. In a top view, the wave
pattern looks like this (although we have greatly exagger-
ated the amplitude):

1 cm

18.2 (c). The pulses completely cancel each other in terms of
displacement of elements of the string from equilibrium,
but the string is still moving. A short time later, the string
will be displaced again and the pulses will have passed
each other.

18.3 (a). The pattern shown at the bottom of Figure 18.9a cor-
responds to the extreme position of the string. All ele-
ments of the string have momentarily come to rest.

18.4 (d). Near a nodal point, elements on one side of the
point are moving upward at this instant and elements on
the other side are moving downward.

18.7 (b). With both ends open, the pipe has a fundamental fre-
quency given by Equation 18.11: fopen " v/2L. With one
end closed, the pipe has a fundamental frequency given
by Equation 18.12:

18.8 (c). The increase in temperature causes the speed of
sound to go up. According to Equation 18.11, this will re-
sult in an increase in the fundamental frequency of a
given organ pipe.

18.9 (b). Tightening the string has caused the frequencies to be
farther apart, based on the increase in the beat frequency.

fclosed "
v

4L
" 1

2  
v

2L
" 1

2 fopen





Thermodynamics
e now direct our attention to the study of thermodynamics, which involves
situations in which the temperature or state (solid, liquid, gas) of a system
changes due to energy transfers. As we shall see, thermodynamics is very

successful in explaining the bulk properties of matter and the correlation between
these properties and the mechanics of atoms and molecules.

Historically, the development of thermodynamics paralleled the development of
the atomic theory of matter. By the 1820s, chemical experiments had provided solid
evidence for the existence of atoms. At that time, scientists recognized that a con-
nection between thermodynamics and the structure of matter must exist. In 1827, the
botanist Robert Brown reported that grains of pollen suspended in a liquid move er-
ratically from one place to another, as if under constant agitation. In 1905, Albert
Einstein used kinetic theory to explain the cause of this erratic motion, which today is
known as Brownian motion. Einstein explained this phenomenon by assuming that
the grains are under constant bombardment by “invisible” molecules in the liquid,
which themselves move erratically. This explanation gave scientists insight into the
concept of molecular motion and gave credence to the idea that matter is made up
of atoms. A connection was thus forged between the everyday world and the tiny, in-
visible building blocks that make up this world.

Thermodynamics also addresses more practical questions. Have you ever won-
dered how a refrigerator is able to cool its contents, what types of transformations
occur in a power plant or in the engine of your automobile, or what happens to the ki-
netic energy of a moving object when the object comes to rest? The laws of thermo-
dynamics can be used to provide explanations for these and other phenomena. !

W

P A R T 3

! The Alyeska oil pipeline near the Tazlina River in Alaska. The oil in the pipeline is warm,
and energy transferring from the pipeline could melt environmentally sensitive permafrost in
the ground. The finned structures on top of the support posts are thermal radiators that allow
the energy to be transferred into the air in order to protect the permafrost. (Topham
Picturepoint/The Image Works)
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" Why would someone designing a pipeline include these strange loops? Pipelines
carrying liquids often contain loops such as these to allow for expansion and contraction 
as the temperature changes. We will study thermal expansion in this chapter. 
(Lowell Georgia/CORBIS)
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In our study of mechanics, we carefully defined such concepts as mass, force, and kinetic
energy to facilitate our quantitative approach. Likewise, a quantitative description of
thermal phenomena requires careful definitions of such important terms as temperature,
heat, and internal energy. This chapter begins with a discussion of temperature and with a
description of one of the laws of thermodynamics (the so-called “zeroth law”).

Next, we consider why an important factor when we are dealing with thermal 
phenomena is the particular substance we are investigating. For example, gases expand
appreciably when heated, whereas liquids and solids expand only slightly.

This chapter concludes with a study of ideal gases on the macroscopic scale. Here,
we are concerned with the relationships among such quantities as pressure, volume,
and temperature. In Chapter 21, we shall examine gases on a microscopic scale, using
a model that represents the components of a gas as small particles.

19.1 Temperature and the Zeroth
Law of Thermodynamics

We often associate the concept of temperature with how hot or cold an object feels
when we touch it. Thus, our senses provide us with a qualitative indication of tempera-
ture. However, our senses are unreliable and often mislead us. For example, if we 
remove a metal ice tray and a cardboard box of frozen vegetables from the freezer, the
ice tray feels colder than the box even though both are at the same temperature. The two 
objects feel different because metal transfers energy by heat at a higher rate than 
cardboard does. What we need is a reliable and reproducible method for measuring
the relative hotness or coldness of objects rather than the rate of energy transfer. 
Scientists have developed a variety of thermometers for making such quantitative 
measurements.

We are all familiar with the fact that two objects at different initial temperatures
eventually reach some intermediate temperature when placed in contact with each
other. For example, when hot water and cold water are mixed in a bathtub, the final
temperature of the mixture is somewhere between the initial hot and cold 
temperatures. Likewise, when an ice cube is dropped into a cup of hot coffee, it melts
and the coffee’s temperature decreases.

To understand the concept of temperature, it is useful to define two often-used
phrases: thermal contact and thermal equilibrium. To grasp the meaning of thermal
contact, imagine that two objects are placed in an insulated container such that they
interact with each other but not with the environment. If the objects are at different
temperatures, energy is exchanged between them, even if they are initially not in physi-
cal contact with each other. The energy transfer mechanisms from Chapter 7 that we
will focus on are heat and electromagnetic radiation. For purposes of the current dis-
cussion, we assume that two objects are in thermal contact with each other if energy
can be exchanged between them by these processes due to a temperature difference.



Thermal equilibrium is a situation in which two objects would not exchange energy
by heat or electromagnetic radiation if they were placed in thermal contact.

Let us consider two objects A and B, which are not in thermal contact, and a third
object C, which is our thermometer. We wish to determine whether A and B are in
thermal equilibrium with each other. The thermometer (object C) is first placed in
thermal contact with object A until thermal equilibrium is reached,1 as shown in Fig-
ure 19.1a. From that moment on, the thermometer’s reading remains constant, and we
record this reading. The thermometer is then removed from object A and placed in
thermal contact with object B, as shown in Figure 19.1b. The reading is again recorded
after thermal equilibrium is reached. If the two readings are the same, then object A
and object B are in thermal equilibrium with each other. If they are placed in contact
with each other as in Figure 19.1c, there is no exchange of energy between them.

We can summarize these results in a statement known as the zeroth law of ther-
modynamics (the law of equilibrium):
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This statement can easily be proved experimentally and is very important because it 
enables us to define temperature. We can think of temperature as the property that
determines whether an object is in thermal equilibrium with other objects. Two 
objects in thermal equilibrium with each other are at the same temperature.
Conversely, if two objects have different temperatures, then they are not in thermal
equilibrium with each other.

If objects A and B are separately in thermal equilibrium with a third object C, then
A and B are in thermal equilibrium with each other.

Quick Quiz 19.1 Two objects, with different sizes, masses, and temperatures,
are placed in thermal contact. Energy travels (a) from the larger object to the smaller
object (b) from the object with more mass to the one with less (c) from the object at
higher temperature to the object at lower temperature.

1 We assume that negligible energy transfers between the thermometer and object A during the
equilibrium process. Without this assumption, which is also made for the thermometer and object B,
the measurement of the temperature of an object disturbs the system so that the measured tempera-
ture is different from the initial temperature of the object. In practice, whenever you measure a tem-
perature with a thermometer, you measure the disturbed system, not the original system.

A
B B

A

(a) (b) (c)
Figure 19.1 The zeroth law of thermodynamics. (a) and (b) If the temperatures of A
and B are measured to be the same by placing them in thermal contact with a ther-
mometer (object C), no energy will be exchanged between them when they are placed
in thermal contact with each other (c).

Zeroth law of thermodynamics



19.2 Thermometers and the Celsius
Temperature Scale

Thermometers are devices that are used to measure the temperature of a system. All
thermometers are based on the principle that some physical property of a system
changes as the system’s temperature changes. Some physical properties that change
with temperature are (1) the volume of a liquid, (2) the dimensions of a solid, (3) the
pressure of a gas at constant volume, (4) the volume of a gas at constant pressure, (5)
the electric resistance of a conductor, and (6) the color of an object. A temperature
scale can be established on the basis of any one of these physical properties.

A common thermometer in everyday use consists of a mass of liquid—usually mercury
or alcohol—that expands into a glass capillary tube when heated (Fig. 19.2). In this case
the physical property that changes is the volume of a liquid. Any temperature change in
the range of the thermometer can be defined as being proportional to the change in
length of the liquid column. The thermometer can be calibrated by placing it in thermal
contact with some natural systems that remain at constant temperature. One such system
is a mixture of water and ice in thermal equilibrium at atmospheric pressure. On the Cel-
sius temperature scale, this mixture is defined to have a temperature of zero degrees
Celsius, which is written as 0°C; this temperature is called the ice point of water. Another
commonly used system is a mixture of water and steam in thermal equilibrium at atmos-
pheric pressure; its temperature is 100°C, which is the steam point of water. Once the liquid
levels in the thermometer have been established at these two points, the length of the liq-
uid column between the two points is divided into 100 equal segments to create the Cel-
sius scale. Thus, each segment denotes a change in temperature of one Celsius degree.

Thermometers calibrated in this way present problems when extremely accurate
readings are needed. For instance, the readings given by an alcohol thermometer 
calibrated at the ice and steam points of water might agree with those given by a mercury
thermometer only at the calibration points. Because mercury and alcohol have 
different thermal expansion properties, when one thermometer reads a temperature of,
for example, 50°C, the other may indicate a slightly different value. The discrepancies
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Figure 19.2 As a result of thermal expansion, the level of the mercury in the
thermometer rises as the mercury is heated by water in the test tube. 
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between thermometers are especially large when the temperatures to be measured are
far from the calibration points.2

An additional practical problem of any thermometer is the limited range of tem-
peratures over which it can be used. A mercury thermometer, for example, cannot be
used below the freezing point of mercury, which is ! 39°C, and an alcohol thermome-
ter is not useful for measuring temperatures above 85°C, the boiling point of alcohol.
To surmount this problem, we need a universal thermometer whose readings are inde-
pendent of the substance used in it. The gas thermometer, discussed in the next
section, approaches this requirement.

19.3 The Constant-Volume Gas Thermometer
and the Absolute Temperature Scale

One version of a gas thermometer is the constant-volume apparatus shown in Figure 19.3.
The physical change exploited in this device is the variation of pressure of a fixed volume
of gas with temperature. When the constant-volume gas thermometer was developed, it
was calibrated by using the ice and steam points of water as follows. (A different calibra-
tion procedure, which we shall discuss shortly, is now used.) The flask was immersed in an
ice-water bath, and mercury reservoir B was raised or lowered until the top of the mercury
in column A was at the zero point on the scale. The height h, the difference between the
mercury levels in reservoir B and column A, indicated the pressure in the flask at 0°C.

The flask was then immersed in water at the steam point, and reservoir B was read-
justed until the top of the mercury in column A was again at zero on the scale; this 
ensured that the gas’s volume was the same as it was when the flask was in the ice bath
(hence, the designation “constant volume”). This adjustment of reservoir B gave a
value for the gas pressure at 100°C. These two pressure and temperature values were
then plotted, as shown in Figure 19.4. The line connecting the two points serves as a
calibration curve for unknown temperatures. (Other experiments show that a linear
relationship between pressure and temperature is a very good assumption.) If we
wanted to measure the temperature of a substance, we would place the gas flask in
thermal contact with the substance and adjust the height of reservoir B until the top of
the mercury column in A is at zero on the scale. The height of the mercury column 
indicates the pressure of the gas; knowing the pressure, we could find the temperature
of the substance using the graph in Figure 19.4.

Now let us suppose that temperatures are measured with gas thermometers contain-
ing different gases at different initial pressures. Experiments show that the thermometer
readings are nearly independent of the type of gas used, as long as the gas pressure is low
and the temperature is well above the point at which the gas liquefies (Fig. 19.5). The
agreement among thermometers using various gases improves as the pressure is reduced.
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Scale

Bath or
environment
to be measured Flexible

hose

Mercury
reservoir

A B

h

P
Gas

0

Figure 19.3 A constant-volume gas
thermometer measures the pres-
sure of the gas contained in the
flask immersed in the bath. The
volume of gas in the flask is kept
constant by raising or lowering
reservoir B to keep the mercury
level in column A constant.

1000
T(°C)

P

Figure 19.4 A typical graph of
pressure versus temperature taken
with a constant-volume gas ther-
mometer. The two dots represent
known reference temperatures
(the ice and steam points of water).

Trial 2

Trial 3

Trial 1P

200 T(°C)1000–100–200–273.15

Figure 19.5 Pressure versus temperature
for experimental trials in which gases have
different pressures in a constant-volume
gas thermometer. Note that, for all three
trials, the pressure extrapolates to zero at
the temperature ! 273.15°C.

2 Two thermometers that use the same liquid may also give different readings. This is due in part to
difficulties in constructing uniform-bore glass capillary tubes.



If we extend the straight lines in Figure 19.5 toward negative temperatures, we find
a remarkable result— in every case, the pressure is zero when the temperature is
! 273.15°C! This suggests some special role that this particular temperature must play.
It is used as the basis for the absolute temperature scale, which sets ! 273.15°C as its
zero point. This temperature is often referred to as absolute zero. The size of a de-
gree on the absolute temperature scale is chosen to be identical to the size of a degree
on the Celsius scale. Thus, the conversion between these temperatures is

(19.1)

where TC is the Celsius temperature and T is the absolute temperature.
Because the ice and steam points are experimentally difficult to duplicate, an absolute

temperature scale based on two new fixed points was adopted in 1954 by the International
Committee on Weights and Measures. The first point is absolute zero. The second refer-
ence temperature for this new scale was chosen as the triple point of water, which is the
single combination of temperature and pressure at which liquid water, gaseous water, and
ice (solid water) coexist in equilibrium. This triple point occurs at a temperature of
0.01°C and a pressure of 4.58 mm of mercury. On the new scale, which uses the unit
kelvin, the temperature of water at the triple point was set at 273.16 kelvins, abbreviated
273.16 K. This choice was made so that the old absolute temperature scale based on the
ice and steam points would agree closely with the new scale based on the triple point. This
new absolute temperature scale (also called the Kelvin scale) employs the SI unit of
absolute temperature, the kelvin, which is defined to be 1/273.16 of the difference
between absolute zero and the temperature of the triple point of water.

Figure 19.6 shows the absolute temperature for various physical processes and
structures. The temperature of absolute zero (0 K) cannot be achieved, although labo-
ratory experiments incorporating the laser cooling of atoms have come very close.

What would happen to a gas if its temperature could reach 0 K (and it did not 
liquefy or solidify)? As Figure 19.5 indicates, the pressure it exerts on the walls of its
container would be zero. In Chapter 21 we shall show that the pressure of a gas is pro-
portional to the average kinetic energy of its molecules. Thus, according to classical
physics, the kinetic energy of the gas molecules would become zero at absolute zero,
and molecular motion would cease; hence, the molecules would settle out on the bot-
tom of the container. Quantum theory modifies this prediction and shows that some
residual energy, called the zero-point energy, would remain at this low temperature.

The Celsius, Fahrenheit, and Kelvin Temperature Scales3

Equation 19.1 shows that the Celsius temperature TC is shifted from the absolute
(Kelvin) temperature T by 273.15°. Because the size of a degree is the same on the two
scales, a temperature difference of 5°C is equal to a temperature difference of 5 K. The
two scales differ only in the choice of the zero point. Thus, the ice-point temperature
on the Kelvin scale, 273.15 K, corresponds to 0.00°C, and the Kelvin-scale steam point,
373.15 K, is equivalent to 100.00°C.

A common temperature scale in everyday use in the United States is the Fahren-
heit scale. This scale sets the temperature of the ice point at 32°F and the tempera-
ture of the steam point at 212°F. The relationship between the Celsius and Fahrenheit
temperature scales is

(19.2)

We can use Equations 19.1 and 19.2 to find a relationship between changes in tempera-
ture on the Celsius, Kelvin, and Fahrenheit scales:

(19.3)"TC # "T # 5
9   

"TF

TF # 9
5TC $ 32%F

TC # T ! 273.15
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Figure 19.6 Absolute tempera-
tures at which various physical
processes occur. Note that the scale
is logarithmic.

" PITFALL PREVENTION
19.1 A Matter of Degree
Note that notations for temper-
atures in the Kelvin scale do not
use the degree sign. The unit for
a Kelvin temperature is simply
“kelvins” and not “degrees Kelvin.”

3 Named after Anders Celsius (1701–1744), Daniel Gabriel Fahrenheit (1686–1736), and William
Thomson, Lord Kelvin (1824–1907), respectively.



19.4 Thermal Expansion of Solids and Liquids

Our discussion of the liquid thermometer makes use of one of the best-known changes
in a substance: as its temperature increases, its volume increases. This phenomenon,
known as thermal expansion, has an important role in numerous engineering applica-
tions. For example, thermal-expansion joints, such as those shown in Figure 19.7, must
be included in buildings, concrete highways, railroad tracks, brick walls, and bridges to
compensate for dimensional changes that occur as the temperature changes.

Thermal expansion is a consequence of the change in the average separation be-
tween the atoms in an object. To understand this, model the atoms as being connected
by stiff springs, as discussed in Section 15.3 and shown in Figure 15.12b. At ordinary
temperatures, the atoms in a solid oscillate about their equilibrium positions with an
amplitude of approximately 10!11 m and a frequency of approximately 1013 Hz. The
average spacing between the atoms is about 10!10 m. As the temperature of the solid
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Quick Quiz 19.2 Consider the following pairs of materials. Which pair rep-
resents two materials, one of which is twice as hot as the other? (a) boiling water at
100°C, a glass of water at 50°C (b) boiling water at 100°C, frozen methane at ! 50°C
(c) an ice cube at ! 20°C, flames from a circus fire-eater at 233°C (d) No pair repre-
sents materials one of which is twice as hot as the other

Example 19.1 Converting Temperatures

From Equation 19.1, we find that

A convenient set of weather-related temperature equivalents
to keep in mind is that 0°C is (literally) freezing at 32°F,
10°C is cool at 50°F, 20°C is room temperature, 30°C is
warm at 86°F, and 40°C is a hot day at 104°F.

283 KT # TC $ 273.15 # 10%C $ 273.15 #

On a day when the temperature reaches 50°F, what is the
temperature in degrees Celsius and in kelvins?

Solution Substituting into Equation 19.2, we obtain

10%C#

TC #  59(TF ! 32) # 5
9(50 ! 32)

From Equation 19.3, we also find that

99%F"TF #  95 
"TC # 9

5(55%C) #

A pan of water is heated from 25°C to 80°C. What is the
change in its temperature on the Kelvin scale and on the
Fahrenheit scale?

Solution From Equation 19.3, we see that the change in
temperature on the Celsius scale equals the change on the
Kelvin scale. Therefore,

55 K"T # "TC # 80%C ! 25%C # 55%C #

Example 19.2 Heating a Pan of Water

Of the three temperature scales that we have discussed, only the Kelvin scale is
based on a true zero value of temperature. The Celsius and Fahrenheit scales are based
on an arbitrary zero associated with one particular substance—water—on one particu-
lar planet—Earth. Thus, if you encounter an equation that calls for a temperature T or
involves a ratio of temperatures, you must convert all temperatures to kelvins. If the
equation contains a change in temperature "T, using Celsius temperatures will give
you the correct answer, in light of Equation 19.3, but it is always safest to convert tem-
peratures to the Kelvin scale.



increases, the atoms oscillate with greater amplitudes; as a result, the average separa-
tion between them increases.4 Consequently, the object expands.

If thermal expansion is sufficiently small relative to an object’s initial dimensions,
the change in any dimension is, to a good approximation, proportional to the first
power of the temperature change. Suppose that an object has an initial length Li along
some direction at some temperature and that the length increases by an amount "L
for a change in temperature "T. Because it is convenient to consider the fractional
change in length per degree of temperature change, we define the average coeffi-
cient of linear expansion as

Experiments show that & is constant for small changes in temperature. For purposes of
calculation, this equation is usually rewritten as

(19.4)

or as

(19.5)

where Lf is the final length, Ti and Tf are the initial and final temperatures, and the
proportionality constant & is the average coefficient of linear expansion for a given ma-
terial and has units of (°C)!1.

It may be helpful to think of thermal expansion as an effective magnification or as
a photographic enlargement of an object. For example, as a metal washer is heated
(Fig. 19.8), all dimensions, including the radius of the hole, increase according to
Equation 19.4. Notice that this is equivalent to saying that a cavity in a piece of mate-
rial expands in the same way as if the cavity were filled with the material.

Table 19.1 lists the average coefficient of linear expansion for various materials.
Note that for these materials & is positive, indicating an increase in length with increas-
ing temperature. This is not always the case. Some substances—calcite (CaCO3) is one
example—expand along one dimension (positive &) and contract along another (neg-
ative &) as their temperatures are increased.

Lf ! Li # &Li(Tf ! Ti)

"L # &Li "T

& ! 
"L/Li

"T
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(a) (b)

Figure 19.7 (a) Thermal-expansion joints are used to separate sections of roadways on
bridges. Without these joints, the surfaces would buckle due to thermal expansion on
very hot days or crack due to contraction on very cold days. (b) The long, vertical joint
is filled with a soft material that allows the wall to expand and contract as the tempera-
ture of the bricks changes.

4 More precisely, thermal expansion arises from the asymmetrical nature of the potential-energy curve
for the atoms in a solid, as shown in Figure 15.12a. If the oscillators were truly harmonic, the average
atomic separations would not change regardless of the amplitude of vibration.

" PITFALL PREVENTION
19.2 Do Holes Become

Larger or Smaller?
When an object’s temperature is
raised, every linear dimension in-
creases in size. This includes any
holes in the material, which ex-
pand in the same way as if the
hole were filled with the material,
as shown in Figure 19.8. Keep in
mind the notion of thermal ex-
pansion as being similar to a pho-
tographic enlargement.
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Active Figure 19.8 Thermal ex-
pansion of a homogeneous metal
washer. As the washer is heated, all
dimensions increase. (The expan-
sion is exaggerated in this figure.)

At the Active Figures link
at http://www.pse6.com, you
can compare expansions for
various temperatures of the
burner and materials from
which the washer is made.



Because the linear dimensions of an object change with temperature, it follows that
surface area and volume change as well. The change in volume is proportional to the
initial volume Vi and to the change in temperature according to the relationship

(19.6)

where ' is the average coefficient of volume expansion. For a solid, the average co-
efficient of volume expansion is three times the average linear expansion coefficient:
' # 3&. (This assumes that the average coefficient of linear expansion of the solid is
the same in all directions—that is, the material is isotropic.)

To see that ' # 3& for a solid, consider a solid box of dimensions !, w, and h. Its
volume at some temperature Ti is Vi # !wh. If the temperature changes to Ti $ "T, its
volume changes to Vi $ "V, where each dimension changes according to Equation
19.4. Therefore,

If we now divide both sides by Vi and isolate the term "V/Vi , we obtain the fractional
change in volume:

Because &"T (( 1 for typical values of "T (( " 100°C), we can neglect the terms 
3(& "T )2 and (& "T )3. Upon making this approximation, we see that

Equation 19.6 shows that the right side of this expression is equal to ', and so we have
3& # ', the relationship we set out to prove. In a similar way, you can show that the
change in area of a rectangular plate is given by "A # 2&Ai "T (see Problem 55).

As Table 19.1 indicates, each substance has its own characteristic average coefficient
of expansion. For example, when the temperatures of a brass rod and a steel rod of

3& #
1
Vi

 
"V
"T

"V
Vi

 # 3& "T

"V
Vi

# 3& "T $ 3(& "T )2 $ (& "T )3

 # Vi[1 $ 3& "T $ 3(& "T )2 $ (& "T )3]

 # !wh(1 $ &  "T )3
 # (! $ &! "T )(w $ &w  "T )(h $ &h  "T )

Vi $ "V # (! $ "!)(w $ "w)(h $ "h)

"V # 'Vi "T
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Average Linear  Average Volume
Expansion Expansion 
Coefficient Coefficient

Material (")(°C)!1 Material (#)(°C)!1

Aluminum 24 ) 10!6 Alcohol, ethyl 1.12 ) 10!4

Brass and bronze 19 ) 10!6 Benzene 1.24 ) 10!4

Copper 17 ) 10!6 Acetone 1.5 ) 10!4

Glass (ordinary) 9 ) 10!6 Glycerin 4.85 ) 10!4

Glass (Pyrex) 3.2 ) 10!6 Mercury 1.82 ) 10!4

Lead 29 ) 10!6 Turpentine 9.0 ) 10!4

Steel 11 ) 10!6 Gasoline 9.6 ) 10!4

Invar (Ni–Fe alloy) 0.9 ) 10!6 Aira at 0°C 3.67 ) 10!3

Concrete 12 ) 10!6 Heliuma 3.665 ) 10!3

Average Expansion Coefficients for Some Materials Near Room Temperature

Table 19.1

a Gases do not have a specific value for the volume expansion coefficient because the amount of expan-
sion depends on the type of process through which the gas is taken. The values given here assume that
the gas undergoes an expansion at constant pressure.



equal length are raised by the same amount from some common initial value, the brass
rod expands more than the steel rod does because brass has a greater average coefficient
of expansion than steel does. A simple mechanism called a bimetallic strip utilizes this
principle and is found in practical devices such as thermostats. It consists of two thin
strips of dissimilar metals bonded together. As the temperature of the strip increases, the
two metals expand by different amounts and the strip bends, as shown in Figure 19.9.
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Quick Quiz 19.3 If you are asked to make a very sensitive glass thermome-
ter, which of the following working liquids would you choose? (a) mercury (b) alcohol
(c) gasoline (d) glycerin

Quick Quiz 19.4 Two spheres are made of the same metal and have the
same radius, but one is hollow and the other is solid. The spheres are taken through
the same temperature increase. Which sphere expands more? (a) solid sphere (b) hol-
low sphere (c) They expand by the same amount. (d) not enough information to say

(b)

(a)

Steel

Brass

Room temperature Higher temperature

Bimetallic strip

Off 30°COn 25°C

Figure 19.9 (a) A bimetallic strip bends as the temperature changes because the two
metals have different expansion coefficients. (b) A bimetallic strip used in a thermostat
to break or make electrical contact.

Example 19.3 Expansion of a Railroad Track

(B) Suppose that the ends of the rail are rigidly clamped at
0.0°C so that expansion is prevented. What is the thermal
stress set up in the rail if its temperature is raised to 40.0°C?

Solution The thermal stress will be the same as that in the
situation in which we allow the rail to expand freely and
then compress it with a mechanical force F back to its origi-
nal length. From the definition of Young’s modulus for a
solid (see Eq. 12.6), we have

Because Y for steel is 20 ) 1010 N/m2 (see Table 12.1), we
have

Tensile stress #
F
A

# Y
"L
Li

A segment of steel railroad track has a length of 30.000 m
when the temperature is 0.0°C.

(A) What is its length when the temperature is 40.0°C?

Solution Making use of Table 19.1 and noting that the
change in temperature is 40.0°C, we find that the increase
in length is

If the track is 30.000 m long at 0.0°C, its length at 40.0°C is 

30.013 m.

 # 0.013 m

"L # &Li "T # [11 ) 10!6(%C)!1](30.000 m)(40.0%C)



The Unusual Behavior of Water

Liquids generally increase in volume with increasing temperature and have average coeffi-
cients of volume expansion about ten times greater than those of solids. Cold water is an
exception to this rule, as we can see from its density-versus-temperature curve, shown in
Figure 19.11. As the temperature increases from 0°C to 4°C, water contracts and thus its
density increases. Above 4°C, water expands with increasing temperature, and so its den-
sity decreases. Thus, the density of water reaches a maximum value of 1.000 g/cm3 at 4°C.

We can use this unusual thermal-expansion behavior of water to explain why a
pond begins freezing at the surface rather than at the bottom. When the atmospheric
temperature drops from, for example, 7°C to 6°C, the surface water also cools and con-
sequently decreases in volume. This means that the surface water is denser than the
water below it, which has not cooled and decreased in volume. As a result, the surface
water sinks, and warmer water from below is forced to the surface to be cooled. When
the atmospheric temperature is between 4°C and 0°C, however, the surface water ex-
pands as it cools, becoming less dense than the water below it. The mixing process
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Solving for "T, we find

Thus, the temperature at which the bolts touch is 27°C $

7.4°C # To finalize this problem, note that this 

temperature is possible if the air conditioning in the building
housing the device fails for a long period on a very hot sum-
mer day.

34°C

 # 7.4%C

  #  
5.0 ) 10!6 m

(19 ) 10!6
 %C!1)(0.030 m) $ (11 ) 10!6

 %C!1)(0.010 m)

"T  #  
5.0 ) 10!6 m

& brL i, br $ & stL i, st

"L br $ "L st # & brL i, br "T $ & stL i, st "T # 5.0 ) 10!6 mAn electronic device has been poorly designed so that two
bolts attached to different parts of the device almost touch
each other in its interior, as in Figure 19.10. The steel and
brass bolts are at different electric potentials and if they
touch, a short circuit will develop, damaging the device. (We
will study electric potential in Chapter 25.) If the initial gap
between the ends of the bolts is 5.0 *m at 27°C, at what tem-
perature will the bolts touch?

Solution We can conceptualize the situation by imagining
that the ends of both bolts expand into the gap between
them as the temperature rises. We categorize this as a ther-
mal expansion problem, in which the sum of the changes in
length of the two bolts must equal the length of the initial
gap between the ends. To analyze the problem, we write this
condition mathematically:

Example 19.4 The Thermal Electrical Short

creases. Thus, if there is an increase in length of 0.013 m
when the temperature increases by 40°C, then there is a
decrease in length of 0.013 m when the temperature
decreases by 40°C. (We assume that & is constant over
the entire range of temperatures.) The new length at the
colder temperature is 30.000 m ! 0.013 m # 29.987 m.

What If? What if the temperature drops to ! 40.0°C? What
is the length of the unclamped segment? 

The expression for the change in length in Equation 19.4
is the same whether the temperature increases or de-

 8.7 ) 107 N/m2F
A

# (20 ) 1010 N/m2)# 0.013 m
30.000 m $ #

0.010 m 0.030 m

5.0   mµ

Steel Brass

Figure 19.10 (Example 19.4) Two bolts attached to different parts of an electrical de-
vice are almost touching when the temperature is 27°C. As the temperature increases,
the ends of the bolts move toward each other.



stops, and eventually the surface water freezes. As the water freezes, the ice remains on
the surface because ice is less dense than water. The ice continues to build up at the
surface, while water near the bottom remains at 4°C. If this were not the case, then fish
and other forms of marine life would not survive.

19.5 Macroscopic Description of an Ideal Gas

The volume expansion equation "V # 'Vi "T is based on the assumption that the ma-
terial has an initial volume Vi before the temperature change occurs. This is the case
for solids and liquids because they have a fixed volume at a given temperature.

The case for gases is completely different. The interatomic forces within gases are
very weak, and, in many cases, we can imagine these forces to be nonexistent and still
make very good approximations. Note that there is no equilibrium separation for the atoms
and, thus, no “standard” volume at a given temperature. As a result, we cannot express
changes in volume "V in a process on a gas with Equation 19.6 because we have no de-
fined volume Vi at the beginning of the process. For a gas, the volume is entirely deter-
mined by the container holding the gas. Thus, equations involving gases will contain
the volume V as a variable, rather than focusing on a change in the volume from an ini-
tial value.

For a gas, it is useful to know how the quantities volume V, pressure P, and temper-
ature T are related for a sample of gas of mass m . In general, the equation that interre-
lates these quantities, called the equation of state, is very complicated. However, if the gas
is maintained at a very low pressure (or low density), the equation of state is quite sim-
ple and can be found experimentally. Such a low-density gas is commonly referred to
as an ideal gas.5

It is convenient to express the amount of gas in a given volume in terms of the
number of moles n. One mole of any substance is that amount of the substance that

S E C T I O N  19 . 5 •  Macroscopic Description of an Ideal Gas 591

1.00
0.99
0.98
0.97

0.96

0.95

0 20 40 60 80 100

Temperature (°C)

(g/cm3)

0.9999

0

1.0000

0.9998
0.9997

0.9996

0.9995

2 4 6 8 10 12

Temperature (°C)

ρ (g/cm3)ρ

Figure 19.11 The variation in the density of water at atmospheric pressure with
temperature. The inset at the right shows that the maximum density of water occurs
at 4°C.

5 To be more specific, the assumption here is that the temperature of the gas must not be too low
(the gas must not condense into a liquid) or too high, and that the pressure must be low. The concept
of an ideal gas implies that the gas molecules do not interact except upon collision, and that the molec-
ular volume is negligible compared with the volume of the container. In reality, an ideal gas does not
exist. However, the concept of an ideal gas is very useful because real gases at low pressures behave as
ideal gases do.



contains Avogadro’s number NA # 6.022 ) 1023 of constituent particles (atoms or
molecules). The number of moles n of a substance is related to its mass m through the
expression

(19.7)

where M is the molar mass of the substance. The molar mass of each chemical element
is the atomic mass (from the periodic table, Appendix C) expressed in g/mol. For ex-
ample, the mass of one He atom is 4.00 u (atomic mass units), so the molar mass of 
He is 4.00 g/mol. For a molecular substance or a chemical compound, you can add up
the molar mass from its molecular formula. The molar mass of stable diatomic oxygen
(O2) is 32.0 g/mol.

Now suppose that an ideal gas is confined to a cylindrical container whose volume
can be varied by means of a movable piston, as in Figure 19.12. If we assume that the
cylinder does not leak, the mass (or the number of moles) of the gas remains constant.
For such a system, experiments provide the following information. First, when the gas
is kept at a constant temperature, its pressure is inversely proportional to its volume
(Boyle’s law). Second, when the pressure of the gas is kept constant, its volume is di-
rectly proportional to its temperature (the law of Charles and Gay-Lussac). These
observations are summarized by the equation of state for an ideal gas:

(19.8)

In this expression, known as the ideal gas law, R is a constant and n is the number of
moles of gas in the sample. Experiments on numerous gases show that as the pressure
approaches zero, the quantity PV/nT approaches the same value R for all gases. For
this reason, R is called the universal gas constant. In SI units, in which pressure is ex-
pressed in pascals (1 Pa # 1 N/m2) and volume in cubic meters, the product PV has
units of newton+ meters, or joules, and R has the value

(19.9)

If the pressure is expressed in atmospheres and the volume in liters (1 L # 103 cm3 #
10!3 m3), then R has the value

Using this value of R and Equation 19.8, we find that the volume occupied by 1 mol of
any gas at atmospheric pressure and at 0°C (273 K) is 22.4 L.

The ideal gas law states that if the volume and temperature of a fixed amount of
gas do not change, then the pressure also remains constant. Consider a bottle of cham-
pagne that is shaken and then spews liquid when opened, as shown in Figure 19.13.

R # 0.082 14  L+atm/mol+K

R # 8.314 J/mol +K

PV # nRT

n #
m
M
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Gas

Active Figure 19.12 An ideal gas
confined to a cylinder whose volume
can be varied by means of a movable
piston. 

Equation of state for an ideal
gas

At the Active Figures link
at http://www.pse6.com, you
can choose to keep either the
temperature or the pressure
constant and verify Boyle’s law
and the law of Charles and
Gay–Lussac.

Figure 19.13 A bottle of champagne is
shaken and opened. Liquid spews out of the
opening. A common misconception is that
the pressure inside the bottle is increased
due to the shaking.St
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A common misconception is that the pressure inside the bottle is increased when the
bottle is shaken. On the contrary, because the temperature of the bottle and its con-
tents remains constant as long as the bottle is sealed, so does the pressure, as can be
shown by replacing the cork with a pressure gauge. The correct explanation is as fol-
lows. Carbon dioxide gas resides in the volume between the liquid surface and the
cork. Shaking the bottle displaces some of this carbon dioxide gas into the liquid,
where it forms bubbles, and these bubbles become attached to the inside of the bottle.
(No new gas is generated by shaking.) When the bottle is opened, the pressure is re-
duced; this causes the volume of the bubbles to increase suddenly. If the bubbles are
attached to the bottle (beneath the liquid surface), their rapid expansion expels liquid
from the bottle. If the sides and bottom of the bottle are first tapped until no bubbles
remain beneath the surface, then when the champagne is opened, the drop in pres-
sure will not force liquid from the bottle.

The ideal gas law is often expressed in terms of the total number of molecules N.
Because the total number of molecules equals the product of the number of moles n
and Avogadro’s number NA, we can write Equation 19.8 as

(19.10)

where kB is Boltzmann’s constant, which has the value

(19.11)

It is common to call quantities such as P, V, and T the thermodynamic variables of an
ideal gas. If the equation of state is known, then one of the variables can always be ex-
pressed as some function of the other two.

kB #
R

NA
# 1.38 ) 10!23  J/K

PV # NkBT

PV # nRT #
N
NA

 RT
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" PITFALL PREVENTION
19.3 So Many k’s
There are a variety of physical
quantities for which the letter k is
used—we have seen two previ-
ously, the force constant for a
spring (Chapter 15) and the wave
number for a mechanical wave
(Chapter 16). Boltzmann’s con-
stant is another k, and we will see k
used for thermal conductivity in
Chapter 20 and for an electrical
constant in Chapter 23. In order
to make some sense of this confus-
ing state of affairs, we will use a
subscript for Boltzmann’s constant
to help us recognize it. In this
book, we will see Boltzmann’s con-
stant as kB, but keep in mind that
you may see Boltzmann’s constant
in other resources as simply k.

Boltzmann’s constant

Quick Quiz 19.5 A common material for cushioning objects in packages is
made by trapping bubbles of air between sheets of plastic. This material is more effec-
tive at keeping the contents of the package from moving around inside the package on
(a) a hot day (b) a cold day (c) either hot or cold days.

Quick Quiz 19.6 A helium-filled rubber balloon is left in a car on a cold
winter night. Compared to its size when it was in the warm car the afternoon before,
the size the next morning is (a) larger (b) smaller (c) unchanged.

Quick Quiz 19.7 On a winter day, you turn on your furnace and the temper-
ature of the air inside your home increases. Assuming that your home has the normal
amount of leakage between inside air and outside air, the number of moles of air 
in your room at the higher temperature is (a) larger than before (b) smaller than 
before (c) the same as before.

Example 19.5 How Many Moles of Gas in a Container?

and T # 20°C # 293 K. Using Equation 19.8, we find that

4.11 ) 10!6 mol#

n #
PV
RT

#
(100 Pa)(1.00 ) 10!4 m3)
(8.314 J/mol+K)(293 K)

An ideal gas occupies a volume of 100 cm3 at 20°C
and 100 Pa. Find the number of moles of gas in the
container.

Solution The quantities given are volume, pressure, and
temperature: V # 100 cm3 # 1.00 ) 10!4 m3, P # 100 Pa,
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Example 19.6 Filling a Scuba Tank

The initial pressure of the air is 14.7 lb/in.2, its final pressure
is 3 000 lb/in.2, and the air is compressed from an initial
volume of 66.0 ft3 to a final volume of 0.350 ft3. The initial
temperature, converted to SI units, is 295 K. Solving for Tf ,
we obtain

319 K#

Tf # # PfVf

PiVi
$ Ti #

(3 000 lb/in.2)(0.350 ft3)
(14.7 lb/in.2)(66.0 ft3)

 (295 K)

PiVi

Ti
#

Pf Vf

Tf

A certain scuba tank is designed to hold 66.0 ft3 of
air when it is at atmospheric pressure at 22°C. When this
volume of air is compressed to an absolute pressure of 
3 000 lb/in.2 and stored in a 10.0-L (0.350-ft3) tank, the
air becomes so hot that the tank must be allowed to
cool before it can be used. Before the air cools, what is
its temperature? (Assume that the air behaves like an
ideal gas.)

Solution If no air escapes during the compression, then
the number of moles n of air remains constant; therefore,
using PV # nRT, with n and R constant, we obtain a rela-
tionship between the initial and final values:

Two objects are in thermal equilibrium with each other if they do not exchange en-
ergy when in thermal contact.

The zeroth law of thermodynamics states that if objects A and B are separately in
thermal equilibrium with a third object C, then objects A and B are in thermal equilib-
rium with each other.

Temperature is the property that determines whether an object is in thermal equi-
librium with other objects. Two objects in thermal equilibrium with each other are
at the same temperature.

S U M M A RY

Example 19.7 Heating a Spray Can

creases. Does this alter our answer for the final pressure
significantly?

Because the thermal expansion coefficient of steel is very
small, we do not expect much of an effect on our final an-
swer. The change in the volume of the can is found using
Equation 19.6 and the value for & for steel from Table 19.1:

So the final volume of the can is 125.71 cm3. Starting
from Equation (1) again, the equation for the final pressure
becomes

This differs from Equation (2) only in the factor Vi /Vf . Let
us evaluate this factor:

Thus, the final pressure will differ by only 0.6% from the
value we calculated without considering the thermal ex-
pansion of the can. Taking 99.4% of the previous final
pressure, the final pressure including thermal expansion is
318 kPa.

Vi

Vf
#

125.00 cm3

125.71 cm3 # 0.994 # 99.4%

Pf # # Tf

Ti
$# Vi

Vf
$ Pi

 # 0.71 cm3

 # 3(11 ) 10!6 %C!1)(125.00 cm3)(173%C)

"V # 'Vi "T # 3&Vi "T

A spray can containing a propellant gas at twice atmospheric
pressure (202 kPa) and having a volume of 125.00 cm3 is at
22°C. It is then tossed into an open fire. When the tempera-
ture of the gas in the can reaches 195°C, what is the pres-
sure inside the can? Assume any change in the volume of
the can is negligible.

Solution We employ the same approach we used in Exam-
ple 19.6, starting with the expression

Because the initial and final volumes of the gas are assumed
to be equal, this expression reduces to

Solving for Pf gives

Obviously, the higher the temperature, the higher the pres-
sure exerted by the trapped gas. Of course, if the pressure
increases sufficiently, the can will explode. Because of this
possibility, you should never dispose of spray cans in a fire.

What If? Suppose we include a volume change due to
thermal expansion of the steel can as the temperature in-

320 kPa#(2)   Pf # # Tf

Ti
$ Pi # # 468 K

295 K $(202 kPa)

Pi

Ti
#

Pf

Tf

(1)   PiVi

Ti
#

Pf Vf

Tf

Take a practice test for
this chapter by clicking on
the Practice Test link at
http://www.pse6.com.

Interactive

Explore this situation at the Interactive Worked Example link at http://www.pse6.com.



Questions 595

The SI unit of absolute temperature is the kelvin, which is defined to be the frac-
tion 1/273.16 of the temperature of the triple point of water.

When the temperature of an object is changed by an amount "T, its length
changes by an amount "L that is proportional to "T and to its initial length Li :

(19.4)

where the constant & is the average coefficient of linear expansion. The average
coefficient of volume expansion ' for a solid is approximately equal to 3&.

An ideal gas is one for which PV/nT is constant. An ideal gas is described by the
equation of state,

(19.8)

where n equals the number of moles of the gas, V is its volume, R is the universal gas
constant (8.314 J/mol + K), and T is the absolute temperature. A real gas behaves ap-
proximately as an ideal gas if it has a low density.

PV # nRT

"L # &Li "T

1. Is it possible for two objects to be in thermal equilibrium if
they are not in contact with each other? Explain.

A piece of copper is dropped into a beaker of water. If the
water’s temperature rises, what happens to the tempera-
ture of the copper? Under what conditions are the water
and copper in thermal equilibrium?

3. In describing his upcoming trip to the Moon, and as por-
trayed in the movie Apollo 13 (Universal, 1995), astronaut
Jim Lovell said, “I’ll be walking in a place where there’s a
400-degree difference between sunlight and shadow.” What
is it that is hot in sunlight and cold in shadow? Suppose an
astronaut standing on the Moon holds a thermometer in
his gloved hand. Is it reading the temperature of the vac-
uum at the Moon’s surface? Does it read any temperature?
If so, what object or substance has that temperature?

4. Rubber has a negative average coefficient of linear expan-
sion. What happens to the size of a piece of rubber as it is
warmed?

5. Explain why a column of mercury in a thermometer first
descends slightly and then rises when the thermometer is
placed into hot water.

6. Why should the amalgam used in dental fillings have the
same average coefficient of expansion as a tooth? What
would occur if they were mismatched?

2.

7. Markings to indicate length are placed on a steel tape in a
room that has a temperature of 22°C. Are measurements
made with the tape on a day when the temperature is 27°C
too long, too short, or accurate? Defend your answer.

8. Determine the number of grams in a mole of the following
gases: (a) hydrogen (b) helium (c) carbon monoxide.

9. What does the ideal gas law predict about the volume of
a sample of gas at absolute zero? Why is this prediction
incorrect?

10. An inflated rubber balloon filled with air is immersed in a
flask of liquid nitrogen that is at 77 K. Describe what hap-
pens to the balloon, assuming that it remains flexible while
being cooled.

11. Two identical cylinders at the same temperature each con-
tain the same kind of gas and the same number of moles
of gas. If the volume of cylinder A is three times greater
than the volume of cylinder B, what can you say about the
relative pressures in the cylinders?

12. After food is cooked in a pressure cooker, why is it very
important to cool off the container with cold water before
attempting to remove the lid?

13. The shore of the ocean is very rocky at a particular place.
The rocks form a cave sloping upward from an underwater
opening, as shown in Figure Q19.13a. (a) Inside the cave is

Q U E S T I O N S

(a) (b)

Rock

Trapped air

Water

Ocean level
at high tide

Ocean level
at low tide

Figure Q19.13
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a pocket of trapped air. As the level of the ocean rises and
falls with the tides, will the level of water in the cave rise
and fall? If so, will it have the same amplitude as that of
the ocean? (b) What If? Now suppose that the cave is
deeper in the water, so that it is completely submerged and
filled with water at high tide, as shown in Figure Q19.13b.
At low tide, will the level of the water in the cave be the
same as that of the ocean?

14. In Colonization: Second Contact (Harry Turtledove, Ballantine
Publishing Group, 1999), the Earth has been partially settled
by aliens from another planet, whom humans call Lizards.
Laboratory study by humans of Lizard science requires “shift-
ing back and forth between the metric system and the one
the Lizards used, which was also based on powers of ten but
used different basic quantities for everything but tempera-
ture.” Why might temperature be an exception?

15. The pendulum of a certain pendulum clock is made of
brass. When the temperature increases, does the period of
the clock increase, decrease, or remain the same? Explain.

16. An automobile radiator is filled to the brim with water
while the engine is cool. What happens to the water when
the engine is running and the water is heated? What do
modern automobiles have in their cooling systems to pre-
vent the loss of coolants?

17. Metal lids on glass jars can often be loosened by running
hot water over them. How is this possible?

When the metal ring and metal sphere in Figure Q19.18
are both at room temperature, the sphere can just be
passed through the ring. After the sphere is heated, it can-
not be passed through the ring. Explain. What If? What if
the ring is heated and the sphere is left at room tempera-
ture? Does the sphere pass through the ring?

18.

Figure Q19.18

Section 19.2 Thermometers and the Celsius
Temperature Scale

Section 19.3 The Constant-Volume Gas
Thermometer and the 
Absolute Temperature Scale

A constant-volume gas thermometer is calibrated in
dry ice (that is, carbon dioxide in the solid state, which has
a temperature of ! 80.0°C) and in boiling ethyl alcohol
(78.0°C). The two pressures are 0.900 atm and 1.635 atm.
(a) What Celsius value of absolute zero does the calibra-
tion yield? What is the pressure at (b) the freezing point of
water and (c) the boiling point of water?

2. In a constant-volume gas thermometer, the pressure at
20.0°C is 0.980 atm. (a) What is the pressure at 45.0°C?
(b) What is the temperature if the pressure is 0.500 atm?

Liquid nitrogen has a boiling point of ! 195.81°C at at-
mospheric pressure. Express this temperature (a) in de-
grees Fahrenheit and (b) in kelvins.

4. Convert the following to equivalent temperatures on the Cel-
sius and Kelvin scales: (a) the normal human body tempera-
ture, 98.6°F; (b) the air temperature on a cold day, ! 5.00°F.

5. The temperature difference between the inside and the
outside of an automobile engine is 450°C. Express this

3.

1.

temperature difference on (a) the Fahrenheit scale and
(b) the Kelvin scale.

6. On a Strange temperature scale, the freezing point of wa-
ter is ! 15.0°S and the boiling point is $ 60.0°S. Develop a
linear conversion equation between this temperature scale
and the Celsius scale.

7. The melting point of gold is 1 064°C, and the boiling
point is 2 660°C. (a) Express these temperatures in kelvins.
(b) Compute the difference between these temperatures
in Celsius degrees and kelvins.

Section 19.4 Thermal Expansion of Solids 
and Liquids

8. The New River Gorge bridge in West Virginia is a steel arch
bridge 518 m in length. How much does the total length of
the roadway decking change between temperature ex-
tremes of ! 20.0°C and 35.0°C? The result indicates the

Note : Table 19.1 is available for use in solving problems in
this section.

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide

= coached solution with hints available at http://www.pse6.com = computer useful in solving problem

= paired numerical and symbolic problems
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size of the expansion joints that must be built into the
structure.

A copper telephone wire has essentially no sag between
poles 35.0 m apart on a winter day when the temperature
is ! 20.0°C. How much longer is the wire on a summer day
when TC # 35.0°C?

10. The concrete sections of a certain superhighway are de-
signed to have a length of 25.0 m. The sections are poured
and cured at 10.0°C. What minimum spacing should the
engineer leave between the sections to eliminate buckling
if the concrete is to reach a temperature of 50.0°C?

11. A pair of eyeglass frames is made of epoxy plastic. At room
temperature (20.0°C), the frames have circular lens holes
2.20 cm in radius. To what temperature must the frames
be heated if lenses 2.21 cm in radius are to be inserted in
them? The average coefficient of linear expansion for
epoxy is 1.30 ) 10!4 (°C)!1.

12. Each year thousands of children are badly burned by hot
tap water. Figure P19.12 shows a cross-sectional view of an
antiscalding faucet attachment designed to prevent such
accidents. Within the device, a spring made of material
with a high coefficient of thermal expansion controls a
movable plunger. When the water temperature rises above
a preset safe value, the expansion of the spring causes the
plunger to shut off the water flow. If the initial length L of
the unstressed spring is 2.40 cm and its coefficient of lin-
ear expansion is 22.0 ) 10!6 (°C)!1, determine the in-
crease in length of the spring when the water temperature
rises by 30.0°C. (You will find the increase in length to be
small. For this reason actual devices have a more compli-
cated mechanical design, to provide a greater variation in
valve opening for the temperature change anticipated.)

9.

floorboard hold stationary the ends of this section of copper
pipe. Find the magnitude and direction of the displacement
of the pipe elbow when the water flow is turned on, raising
the temperature of the pipe from 18.0°C to 46.5°C.

L

Figure P19.12

The active element of a certain laser is made of a glass
rod 30.0 cm long by 1.50 cm in diameter. If the tempera-
ture of the rod increases by 65.0°C, what is the increase in
(a) its length, (b) its diameter, and (c) its volume? Assume
that the average coefficient of linear expansion of the glass
is 9.00 ) 10!6 (°C)!1.

14. Review problem. Inside the wall of a house, an L-shaped
section of hot-water pipe consists of a straight horizontal
piece 28.0 cm long, an elbow, and a straight vertical piece
134 cm long (Figure P19.14). A stud and a second-story

13.

Figure P19.14

15. A brass ring of diameter 10.00 cm at 20.0°C is heated and
slipped over an aluminum rod of diameter 10.01 cm at
20.0°C. Assuming the average coefficients of linear expan-
sion are constant, (a) to what temperature must this com-
bination be cooled to separate them? Is this attainable?
(b) What If? What if the aluminum rod were 10.02 cm in
diameter?

16. A square hole 8.00 cm along each side is cut in a sheet of
copper. (a) Calculate the change in the area of this hole 
if the temperature of the sheet is increased by 50.0 K. 
(b) Does this change represent an increase or a decrease
in the area enclosed by the hole?

17. The average coefficient of volume expansion for carbon
tetrachloride is 5.81 ) 10!4 (°C)!1. If a 50.0-gal steel con-
tainer is filled completely with carbon tetrachloride when
the temperature is 10.0°C, how much will spill over when
the temperature rises to 30.0°C?

18. At 20.0°C, an aluminum ring has an inner diameter of
5.000 0 cm and a brass rod has a diameter of 5.050 0 cm.
(a) If only the ring is heated, what temperature must it
reach so that it will just slip over the rod? (b) What If? If
both are heated together, what temperature must they
both reach so that the ring just slips over the rod? Would
this latter process work?

19. A volumetric flask made of Pyrex is calibrated at 20.0°C. It
is filled to the 100-mL mark with 35.0°C acetone. (a) What
is the volume of the acetone when it cools to 20.0°C? 
(b) How significant is the change in volume of the flask?
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20. A concrete walk is poured on a day when the temperature
is 20.0°C in such a way that the ends are unable to move.
(a) What is the stress in the cement on a hot day of
50.0°C? (b) Does the concrete fracture? Take Young’s
modulus for concrete to be 7.00 ) 109 N/m2 and the com-
pressive strength to be 2.00 ) 109 N/m2.

A hollow aluminum cylinder 20.0 cm deep has an internal
capacity of 2.000 L at 20.0°C. It is completely filled with
turpentine and then slowly warmed to 80.0°C. (a) How
much turpentine overflows? (b) If the cylinder is then
cooled back to 20.0°C, how far below the cylinder’s rim
does the turpentine’s surface recede?

22. A beaker made of ordinary glass contains a lead sphere of
diameter 4.00 cm firmly attached to its bottom. At a uni-
form temperature of ! 10.0°C, the beaker is filled to the
brim with 118 cm3 of mercury, which completely covers
the sphere. How much mercury overflows from the beaker
if the temperature is raised to 30.0°C?

23. A steel rod undergoes a stretching force of 500 N. Its cross-
sectional area is 2.00 cm2. Find the change in temperature
that would elongate the rod by the same amount as the
500-N force does. Tables 12.1 and 19.1 are available to you.

24. The Golden Gate Bridge in San Francisco has a main span
of length 1.28 km—one of the longest in the world. Imag-
ine that a taut steel wire with this length and a cross-sec-
tional area of 4.00 ) 10!6 m2 is laid on the bridge deck 
with its ends attached to the towers of the bridge, on a sum-
mer day when the temperature of the wire is 35.0°C.
(a) When winter arrives, the towers stay the same distance
apart and the bridge deck keeps the same shape as its ex-
pansion joints open. When the temperature drops to
! 10.0°C, what is the tension in the wire? Take Young’s 
modulus for steel to be 20.0 ) 1010 N/m2. (b) Permanent
deformation occurs if the stress in the steel exceeds its elas-
tic limit of 3.00 ) 108 N/m2. At what temperature would
this happen? (c) What If? How would your answers to 
(a) and (b) change if the Golden Gate Bridge were twice 
as long?

25. A certain telescope forms an image of part of a cluster of
stars on a square silicon charge-coupled detector (CCD)
chip 2.00 cm on each side. A star field is focused on the
CCD chip when it is first turned on and its temperature is
20.0°C. The star field contains 5 342 stars scattered uni-
formly. To make the detector more sensitive, it is cooled to
! 100°C. How many star images then fit onto the chip?
The average coefficient of linear expansion of silicon is
4.68 ) 10!6 (°C)!1.

Section 19.5 Macroscopic Description of an Ideal Gas

26. Gas is contained in an 8.00-L vessel at a temperature of
20.0°C and a pressure of 9.00 atm. (a) Determine the

Note : Problem 8 in Chapter 1 can be assigned with this
section.

21.

number of moles of gas in the vessel. (b) How many mole-
cules are there in the vessel?

An automobile tire is inflated with air originally at 10.0°C
and normal atmospheric pressure. During the process, the
air is compressed to 28.0% of its original volume and the
temperature is increased to 40.0°C. (a) What is the tire
pressure? (b) After the car is driven at high speed, the tire
air temperature rises to 85.0°C and the interior volume of
the tire increases by 2.00%. What is the new tire pressure
(absolute) in pascals?

28. A tank having a volume of 0.100 m3 contains helium gas at
150 atm. How many balloons can the tank blow up if each
filled balloon is a sphere 0.300 m in diameter at an ab-
solute pressure of 1.20 atm?

An auditorium has dimensions 10.0 m ) 20.0 m ) 30.0 m.
How many molecules of air fill the auditorium at 20.0°C
and a pressure of 101 kPa?

30. Imagine a baby alien playing with a spherical balloon the
size of the Earth in the outer solar system. Helium gas in-
side the balloon has a uniform temperature of 50.0 K due
to radiation from the Sun. The uniform pressure of the
helium is equal to normal atmospheric pressure on
Earth. (a) Find the mass of the gas in the balloon. 
(b) The baby blows an additional mass of 8.00 ) 1020 kg
of helium into the balloon. At the same time, she wanders
closer to the Sun and the pressure in the balloon doubles.
Find the new temperature inside the balloon, whose vol-
ume remains constant.

31. Just 9.00 g of water is placed in a 2.00-L pressure cooker 
and heated to 500°C. What is the pressure inside the 
container?

32. One mole of oxygen gas is at a pressure of 6.00 atm and a
temperature of 27.0°C. (a) If the gas is heated at constant
volume until the pressure triples, what is the final tempera-
ture? (b) If the gas is heated until both the pressure and
volume are doubled, what is the final temperature?

The mass of a hot-air balloon and its cargo (not in-
cluding the air inside) is 200 kg. The air outside is at
10.0°C and 101 kPa. The volume of the balloon is 400 m3.
To what temperature must the air in the balloon be heated
before the balloon will lift off? (Air density at 10.0°C is
1.25 kg/m3.)

34. Your father and your little brother are confronted with the
same puzzle. Your father’s garden sprayer and your
brother’s water cannon both have tanks with a capacity of
5.00 L (Figure P19.34). Your father inserts a negligible
amount of concentrated insecticide into his tank. They
both pour in 4.00 L of water and seal up their tanks, so
that they also contain air at atmospheric pressure. Next,
each uses a hand-operated piston pump to inject more air,
until the absolute pressure in the tank reaches 2.40 atm
and it becomes too difficult to move the pump handle.
Now each uses his device to spray out water—not air—
until the stream becomes feeble, as it does when the pres-
sure in the tank reaches 1.20 atm. Then he must pump it
up again, spray again, and so on. In order to spray out all
the water, each finds that he must pump up the tank three

33.

29.

27.
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35. (a) Find the number of moles in one cubic meter of an
ideal gas at 20.0°C and atmospheric pressure. (b) For air,
Avogadro’s number of molecules has mass 28.9 g. Calcu-
late the mass of one cubic meter of air. Compare the result
with the tabulated density of air.

36. The void fraction of a porous medium is the ratio of the
void volume to the total volume of the material. The void
is the hollow space within the material; it may be filled
with a fluid. A cylindrical canister of diameter 2.54 cm
and height 20.0 cm is filled with activated carbon having
a void fraction of 0.765. Then it is flushed with an ideal
gas at 25.0°C and pressure 12.5 atm. How many moles of
gas are contained in the cylinder at the end of this
process?

37. A cube 10.0 cm on each edge contains air (with equivalent
molar mass 28.9 g/mol) at atmospheric pressure and tem-
perature 300 K. Find (a) the mass of the gas, (b) its weight,
and (c) the force it exerts on each face of the cube.
(d) Comment on the physical reason why such a small
sample can exert such a great force.

38. At 25.0 m below the surface of the sea (, # 1 025 kg/m3),
where the temperature is 5.00°C, a diver exhales an air
bubble having a volume of 1.00 cm3. If the surface temper-
ature of the sea is 20.0°C, what is the volume of the bubble
just before it breaks the surface?

The pressure gauge on a tank registers the gauge pressure,
which is the difference between the interior and exterior
pressure. When the tank is full of oxygen (O2), it contains
12.0 kg of the gas at a gauge pressure of 40.0 atm. Deter-
mine the mass of oxygen that has been withdrawn from
the tank when the pressure reading is 25.0 atm. Assume
that the temperature of the tank remains constant.

39.

40. Estimate the mass of the air in your bedroom. State the
quantities you take as data and the value you measure or
estimate for each.

41. A popular brand of cola contains 6.50 g of carbon dioxide
dissolved in 1.00 L of soft drink. If the evaporating carbon
dioxide is trapped in a cylinder at 1.00 atm and 20.0°C,
what volume does the gas occupy?

42. In state-of-the-art vacuum systems, pressures as low as
10!9 Pa are being attained. Calculate the number of mole-
cules in a 1.00-m3 vessel at this pressure if the temperature
is 27.0°C.

43. A room of volume V contains air having equivalent molar
mass M (in g/mol). If the temperature of the room is
raised from T1 to T2, what mass of air will leave the room?
Assume that the air pressure in the room is maintained
at P0.

44. A diving bell in the shape of a cylinder with a height
of 2.50 m is closed at the upper end and open at the
lower end. The bell is lowered from air into sea water
(, # 1.025 g/cm3). The air in the bell is initially at
20.0°C. The bell is lowered to a depth (measured to the
bottom of the bell) of 45.0 fathoms or 82.3 m. At this
depth the water temperature is 4.0°C, and the bell is in
thermal equilibrium with the water. (a) How high does
sea water rise in the bell? (b) To what minimum pressure
must the air in the bell be raised to expel the water that
entered?

Additional Problems

45. A student measures the length of a brass rod with a steel
tape at 20.0°C. The reading is 95.00 cm. What will the tape
indicate for the length of the rod when the rod and the
tape are at (a) ! 15.0°C and (b) 55.0°C?

46. The density of gasoline is 730 kg/m3 at 0°C. Its average
coefficient of volume expansion is 9.60 ) 10!4/°C. If
1.00 gal of gasoline occupies 0.003 80 m3, how many extra
kilograms of gasoline would you get if you bought 10.0 gal
of gasoline at 0°C rather than at 20.0°C from a pump that
is not temperature compensated?

A mercury thermometer is constructed as shown in Figure
P19.47. The capillary tube has a diameter of 0.004 00 cm,

47.

Figure P19.34

Ti + ∆T

A

Ti

∆h

Figure P19.47 Problems 47 and 48.

times. This is the puzzle: most of the water sprays out as a
result of the second pumping. The first and the third
pumping-up processes seem just as difficult, but result in a
disappointingly small amount of water coming out. Ac-
count for this phenomenon.
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and the bulb has a diameter of 0.250 cm. Neglecting the
expansion of the glass, find the change in height of the
mercury column that occurs with a temperature change of
30.0°C.

48. A liquid with a coefficient of volume expansion ' just fills
a spherical shell of volume Vi at a temperature of Ti (see
Fig. P19.47). The shell is made of a material that has an av-
erage coefficient of linear expansion &. The liquid is free
to expand into an open capillary of area A projecting from
the top of the sphere. (a) If the temperature increases by
"T, show that the liquid rises in the capillary by the
amount "h given by "h # (Vi/A)(' ! 3&)"T. (b) For a
typical system, such as a mercury thermometer, why is
it a good approximation to neglect the expansion of
the shell?

49. Review problem. An aluminum pipe, 0.655 m long at
20.0°C and open at both ends, is used as a flute. The
pipe is cooled to a low temperature but then is filled
with air at 20.0°C as soon as you start to play it. After
that, by how much does its fundamental frequency
change as the metal rises in temperature from 5.00°C to
20.0°C?

50. A cylinder is closed by a piston connected to a spring of
constant 2.00 ) 103 N/m (see Fig. P19.50). With the
spring relaxed, the cylinder is filled with 5.00 L of gas at a
pressure of 1.00 atm and a temperature of 20.0°C. (a) If
the piston has a cross-sectional area of 0.010 0 m2 and neg-
ligible mass, how high will it rise when the temperature is
raised to 250°C? (b) What is the pressure of the gas at
250°C?

erated in the respiration recycling of three astronauts
during one week of flight is stored in an originally empty
150-L tank at ! 45.0°C, what is the final pressure in the
tank?

A vertical cylinder of cross-sectional area A is fitted
with a tight-fitting, frictionless piston of mass m (Fig.
P19.53). (a) If n moles of an ideal gas are in the cylinder at
a temperature of T, what is the height h at which the pis-
ton is in equilibrium under its own weight? (b) What is the
value for h if n # 0.200 mol, T # 400 K, A # 0.008 00 m2,
and m # 20.0 kg?

53.

h
20°C

k

250°C

Figure P19.50

Gas
h

m

Figure P19.53

A liquid has a density ,. (a) Show that the fractional
change in density for a change in temperature "T is
",/, # ! ' "T. What does the negative sign signify?
(b) Fresh water has a maximum density of 1.000 0 g/cm3

at 4.0°C. At 10.0°C, its density is 0.999 7 g/cm3. What is
' for water over this temperature interval?

52. Long-term space missions require reclamation of the oxy-
gen in the carbon dioxide exhaled by the crew. In one
method of reclamation, 1.00 mol of carbon dioxide pro-
duces 1.00 mol of oxygen and 1.00 mol of methane as a
byproduct. The methane is stored in a tank under pres-
sure and is available to control the attitude of the space-
craft by controlled venting. A single astronaut exhales
1.09 kg of carbon dioxide each day. If the methane gen-

51.

54. A bimetallic strip is made of two ribbons of dissimilar met-
als bonded together. (a) First assume the strip is originally
straight. As they are heated, the metal with the greater aver-
age coefficient of expansion expands more than the other,
forcing the strip into an arc, with the outer radius having a
greater circumference (Fig. P19.54a). Derive an expression
for the angle of bending - as a function of the initial length
of the strips, their average coefficients of linear expansion,
the change in temperature, and the separation of the cen-
ters of the strips ("r # r2 ! r1). (b) Show that the angle of
bending decreases to zero when "T decreases to zero and
also when the two average coefficients of expansion be-
come equal. (c) What If? What happens if the strip is
cooled? (d) Figure P19.54b shows a compact spiral bimetal-
lic strip in a home thermostat. The equation from part (a)
applies to it as well, if - is interpreted as the angle of addi-
tional bending caused by a change in temperature. The in-
ner end of the spiral strip is fixed, and the outer end is free
to move. Assume the metals are bronze and invar, the thick-
ness of the strip is 2 "r # 0.500 mm, and the overall length
of the spiral strip is 20.0 cm. Find the angle through which
the free end of the strip turns when the temperature
changes by one Celsius degree. The free end of the strip
supports a capsule partly filled with mercury, visible above
the strip in Figure P19.54b. When the capsule tilts, the mer-
cury shifts from one end to the other, to make or break an
electrical contact switching the furnace on or off.
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The rectangular plate shown in Figure P19.55 has an area
Ai equal to !w. If the temperature increases by "T, each di-
mension increases according to the equation "L # &Li "T,
where & is the average coefficient of linear expansion.
Show that the increase in area is "A # 2&Ai "T. What
approximation does this expression assume?

55.

r 2
r 1

θ

(a)

(b)

Figure P19.54

Ch
ar

le
s D

. W
in

te
rs

w w  +  ∆w

!  +  ∆!

!

Ti T + ∆TTi

Figure P19.55

(a)

T

250 m

T + 20°C
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y

Figure P19.61 Problems 61 and 62.

below the surface, the volume of the balloon at the sur-
face, the pressure at the surface, and the density of the wa-
ter. (Assume water temperature does not change with
depth.) (b) Does the buoyant force increase or decrease as
the balloon is submerged? (c) At what depth is the buoy-
ant force half the surface value?

59. A copper wire and a lead wire are joined together, end to
end. The compound wire has an effective coefficient of lin-
ear expansion of 20.0 ) 10!6 (°C)!1. What fraction of the
length of the compound wire is copper?

60. Review problem. Following a collision in outer space, a
copper disk at 850°C is rotating about its axis with an an-
gular speed of 25.0 rad/s. As the disk radiates infrared
light, its temperature falls to 20.0°C. No external torque
acts on the disk. (a) Does the angular speed change as the
disk cools off? Explain why. (b) What is its angular speed at
the lower temperature?

61. Two concrete spans of a 250-m-long bridge are placed end
to end so that no room is allowed for expansion (Fig.
P19.61a). If a temperature increase of 20.0°C occurs, what
is the height y to which the spans rise when they buckle
(Fig. P19.61b)?

56. Review problem. A clock with a brass pendulum has a period
of 1.000 s at 20.0°C. If the temperature increases to 30.0°C,
(a) by how much does the period change, and (b) how
much time does the clock gain or lose in one week?

57. Review problem. Consider an object with any one of the
shapes displayed in Table 10.2. What is the percentage in-
crease in the moment of inertia of the object when it is
heated from 0°C to 100°C if it is composed of (a) copper
or (b) aluminum? Assume that the average linear expan-
sion coefficients shown in Table 19.1 do not vary between
0°C and 100°C.

58. (a) Derive an expression for the buoyant force on a spheri-
cal balloon, submerged in water, as a function of the depth

62. Two concrete spans of a bridge of length L are placed end
to end so that no room is allowed for expansion (Fig.
P19.61a). If a temperature increase of "T occurs, what is
the height y to which the spans rise when they buckle (Fig.
P19.61b)?

63. (a) Show that the density of an ideal gas occupying a vol-
ume V is given by , # PM/RT, where M is the molar mass.
(b) Determine the density of oxygen gas at atmospheric
pressure and 20.0°C.

64. (a) Use the equation of state for an ideal gas and the defi-
nition of the coefficient of volume expansion, in the form
' # (1/V ) dV/dT, to show that the coefficient of volume
expansion for an ideal gas at constant pressure is given by
' # 1/T, where T is the absolute temperature. (b) What
value does this expression predict for ' at 0°C? Compare
this result with the experimental values for helium and air
in Table 19.1. Note that these are much larger than the
coefficients of volume expansion for most liquids and
solids.

Starting with Equation 19.10, show that the total pressure
P in a container filled with a mixture of several ideal gases
is P # P1 $ P2 $ P3 $ + + + , where P1, P2, . . . , are the pres-
sures that each gas would exert if it alone filled the con-
tainer (these individual pressures are called the partial pres-

65.
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sures of the respective gases). This result is known as
Dalton’s law of partial pressures.

66. A sample of dry air that has a mass of 100.00 g, collected at
sea level, is analyzed and found to consist of the following
gases:

nitrogen (N2) # 75.52 g

oxygen (O2) # 23.15 g

argon (Ar) # 1.28 g

carbon dioxide (CO2) # 0.05 g

plus trace amounts of neon, helium, methane, and other
gases. (a) Calculate the partial pressure (see Problem 65)
of each gas when the pressure is 1.013 ) 105 Pa. (b) Deter-
mine the volume occupied by the 100-g sample at a tem-
perature of 15.00°C and a pressure of 1.00 atm. What is
the density of the air for these conditions? (c) What is the
effective molar mass of the air sample?

67. Helium gas is sold in steel tanks. If the helium is used to
inflate a balloon, could the balloon lift the spherical tank
the helium came in? Justify your answer. Steel will rupture
if subjected to tensile stress greater than its yield strength
of 5 ) 108 N/m2. Suggestion: You may consider a steel shell
of radius r and thickness t containing helium at high pres-
sure and on the verge of breaking apart into two hemi-
spheres.

68. A cylinder that has a 40.0-cm radius and is 50.0 cm deep is
filled with air at 20.0°C and 1.00 atm (Fig. P19.68a). A
20.0-kg piston is now lowered into the cylinder, compress-
ing the air trapped inside (Fig. P19.68b). Finally, a 75.0-kg
man stands on the piston, further compressing the air,
which remains at 20°C (Fig. P19.68c). (a) How far down
("h) does the piston move when the man steps onto it?
(b) To what temperature should the gas be heated to raise
the piston and man back to hi ?

small. If & is large, one must integrate the relationship
dL/dT # &L to determine the final length. (a) Assuming
that the coefficient of linear expansion is constant as L
varies, determine a general expression for the final length.
(b) Given a rod of length 1.00 m and a temperature
change of 100.0°C, determine the error caused by the ap-
proximation when & # 2.00 ) 10!5 (°C)!1 (a typical
value for a metal) and when & # 0.020 0 (°C)!1 (an unre-
alistically large value for comparison).

70. A steel wire and a copper wire, each of diameter 2.000 mm,
are joined end to end. At 40.0°C, each has an unstretched
length of 2.000 m; they are connected between two fixed
supports 4.000 m apart on a tabletop, so that the steel wire
extends from x # ! 2.000 m to x # 0, the copper wire ex-
tends from x # 0 to x # 2.000 m, and the tension is negligi-
ble. The temperature is then lowered to 20.0°C. At this
lower temperature, find the tension in the wire and the
x coordinate of the junction between the wires. (Refer to
Tables 12.1 and 19.1.)

Review problem. A steel guitar string with a diameter of
1.00 mm is stretched between supports 80.0 cm apart. The
temperature is 0.0°C. (a) Find the mass per unit length of
this string. (Use the value 7.86 ) 103 kg/m3 for the den-
sity.) (b) The fundamental frequency of transverse oscilla-
tions of the string is 200 Hz. What is the tension in the
string? (c) If the temperature is raised to 30.0°C, find the
resulting values of the tension and the fundamental fre-
quency. Assume that both the Young’s modulus (Table
12.1) and the average coefficient of expansion (Table
19.1) have constant values between 0.0°C and 30.0°C.

72. In a chemical processing plant, a reaction chamber of
fixed volume V0 is connected to a reservoir chamber of
fixed volume 4V0 by a passage containing a thermally insu-
lating porous plug. The plug permits the chambers to be
at different temperatures. The plug allows gas to pass from
either chamber to the other, ensuring that the pressure is
the same in both. At one point in the processing, both
chambers contain gas at a pressure of 1.00 atm and a tem-
perature of 27.0°C. Intake and exhaust valves to the pair of
chambers are closed. The reservoir is maintained at 27.0°C
while the reaction chamber is heated to 400°C. What is the
pressure in both chambers after this is done?

73. A 1.00-km steel railroad rail is fastened securely at
both ends when the temperature is 20.0°C. As the temper-
ature increases, the rail begins to buckle. If its shape is an
arc of a vertical circle, find the height h of the center of
the rail when the temperature is 25.0°C. You will need to
solve a transcendental equation.

74. Review problem. A perfectly plane house roof makes an
angle - with the horizontal. When its temperature changes,
between Tc before dawn each day to Th in the middle of
each afternoon, the roof expands and contracts uniformly
with a coefficient of thermal expansion &1. Resting on the
roof is a flat rectangular metal plate with expansion coeffi-
cient &2, greater than &1. The length of the plate is L, mea-
sured up the slope of the roof. The component of the
plate’s weight perpendicular to the roof is supported by a
normal force uniformly distributed over the area of the
plate. The coefficient of kinetic friction between the plate
and the roof is *k . The plate is always at the same tempera-

71.

50.0 cm

(a)

(b)

hi

∆h

(c)

Figure P19.68

69. The relationship Lf # Li(1 $ & "T ) is an approximation
that works when the average coefficient of expansion is
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ture as the roof, so we assume its temperature is continu-
ously changing. Because of the difference in expansion co-
efficients, each bit of the plate is moving relative to the roof
below it, except for points along a certain horizontal line
running across the plate. We call this the stationary line. If
the temperature is rising, parts of the plate below the sta-
tionary line are moving down relative to the roof and feel a
force of kinetic friction acting up the roof. Elements of
area above the stationary line are sliding up the roof and
on them kinetic friction acts downward parallel to the roof.
The stationary line occupies no area, so we assume no force
of static friction acts on the plate while the temperature is
changing. The plate as a whole is very nearly in equilib-
rium, so the net friction force on it must be equal to the
component of its weight acting down the incline. (a) Prove
that the stationary line is at a distance of

below the top edge of the plate. (b) Analyze the forces that
act on the plate when the temperature is falling, and prove
that the stationary line is at that same distance above the
bottom edge of the plate. (c) Show that the plate steps
down the roof like an inchworm, moving each day by the
distance

(d) Evaluate the distance an aluminum plate moves each
day if its length is 1.20 m, if the temperature cycles be-
tween 4.00°C and 36.0°C, and if the roof has slope 18.5°,

 
L(& 2 ! &1)(Th ! Tc)tan-

*k

L
2 #1 !

tan-

*k
$

coefficient of linear expansion 1.50 ) 10!5 (°C)!1,
and coefficient of friction 0.420 with the plate. (e) What
If? What if the expansion coefficient of the plate is
less than that of the roof? Will the plate creep up the
roof?

Answers to Quick Quizzes
19.1 (c). The direction of the transfer of energy depends only

on temperature and not on the size of the object or on
which object has more mass.

19.2 (c). The phrase “twice as hot” refers to a ratio of tem-
peratures. When the given temperatures are converted to
kelvins, only those in part (c) are in the correct ratio.

19.3 (c). Gasoline has the largest average coefficient of volume
expansion.

19.4 (c). A cavity in a material expands in the same way as if it
were filled with material.

19.5 (a). On a cold day, the trapped air in the bubbles is re-
duced in pressure, according to the ideal gas law. Thus,
the volume of the bubbles may be smaller than on a hot
day, and the package contents can shift more.

19.6 (b). Because of the decreased temperature of the helium,
the pressure in the balloon is reduced. The atmospheric
pressure around the balloon then compresses it to a
smaller size until the pressure in the balloon reaches the
atmospheric pressure.

19.7 (b). Because of the increased temperature, the air ex-
pands. Consequently, some of the air leaks to the outside,
leaving less air in the house.
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Heat and the First Law 
of Thermodynamics
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Thermodynamics

20.6 Some Applications of the First
Law of Thermodynamics
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! In this photograph of Bow Lake in Banff National Park, Alberta, we see evidence of
water in all three phases. In the lake is liquid water, and solid water in the form of snow
appears on the ground. The clouds in the sky consist of liquid water droplets that have
condensed from the gaseous water vapor in the air. Changes of a substance from one phase
to another are a result of energy transfer. (Jacob Taposchaner/Getty Images)
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Until about 1850, the fields of thermodynamics and mechanics were considered to be
two distinct branches of science, and the law of conservation of energy seemed to de-
scribe only certain kinds of mechanical systems. However, mid-nineteenth-century ex-
periments performed by the Englishman James Joule and others showed that there was
a strong connection between the transfer of energy by heat in thermal processes and
the transfer of energy by work in mechanical processes. Today we know that internal
energy, which we formally define in this chapter, can be transformed to mechanical en-
ergy. Once the concept of energy was generalized from mechanics to include internal
energy, the law of conservation of energy emerged as a universal law of nature.

This chapter focuses on the concept of internal energy, the processes by which en-
ergy is transferred, the first law of thermodynamics, and some of the important appli-
cations of the first law. The first law of thermodynamics is a statement of conservation
of energy. It describes systems in which the only energy change is that of internal en-
ergy and the transfers of energy are by heat and work. Furthermore, the first law makes
no distinction between the results of heat and the results of work. According to the
first law, a system’s internal energy can be changed by an energy transfer to or from the
system either by heat or by work. A major difference in our discussion of work in this
chapter from that in the chapters on mechanics is that we will consider work done on
deformable systems.

20.1 Heat and Internal Energy

At the outset, it is important that we make a major distinction between internal energy
and heat. Internal energy is all the energy of a system that is associated with its
microscopic components—atoms and molecules—when viewed from a reference
frame at rest with respect to the center of mass of the system. The last part of this
sentence ensures that any bulk kinetic energy of the system due to its motion through
space is not included in internal energy. Internal energy includes kinetic energy of ran-
dom translational, rotational, and vibrational motion of molecules, potential energy
within molecules, and potential energy between molecules. It is useful to relate inter-
nal energy to the temperature of an object, but this relationship is limited—we show in
Section 20.3 that internal energy changes can also occur in the absence of temperature
changes.

Heat is defined as the transfer of energy across the boundary of a system
due to a temperature difference between the system and its surroundings. When
you heat a substance, you are transferring energy into it by placing it in contact with
surroundings that have a higher temperature. This is the case, for example, when you
place a pan of cold water on a stove burner—the burner is at a higher temperature
than the water, and so the water gains energy. We shall also use the term heat to repre-
sent the amount of energy transferred by this method.

Scientists used to think of heat as a fluid called caloric, which they believed was
transferred between objects; thus, they defined heat in terms of the temperature
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! PITFALL PREVENTION
20.1 Internal Energy,

Thermal Energy, and
Bond Energy

In reading other physics books,
you may see terms such as thermal
energy and bond energy. Thermal
energy can be interpreted as that
part of the internal energy associ-
ated with random motion of mol-
ecules and, therefore, related to
temperature. Bond energy is the
intermolecular potential energy.
Thus, 

internal energy ! thermal energy
" bond energy

While this breakdown is pre-
sented here for clarification with
regard to other texts, we will not
use these terms, because there is
no need for them.



James Prescott Joule
British physicist (1818–1889)

Joule received some formal
education in mathematics,
philosophy, and chemistry from
John Dalton but was in large part
self-educated. Joule’s research
led to the establishment of the
principle of conservation of
energy. His study of the
quantitative relationship among
electrical, mechanical, and
chemical effects of heat
culminated in his announcement
in 1843 of the amount of work
required to produce a unit of
energy, called the mechanical
equivalent of heat. (By kind
permission of the President and
Council of the Royal Society)

changes produced in an object during heating. Today we recognize the distinct differ-
ence between internal energy and heat. Nevertheless, we refer to quantities using
names that do not quite correctly define the quantities but which have become en-
trenched in physics tradition based on these early ideas. Examples of such quantities
are heat capacity and latent heat (Sections 20.2 and 20.3).

As an analogy to the distinction between heat and internal energy, consider the dis-
tinction between work and mechanical energy discussed in Chapter 7. The work done
on a system is a measure of the amount of energy transferred to the system from its sur-
roundings, whereas the mechanical energy of the system (kinetic plus potential) is a
consequence of the motion and configuration of the system. Thus, when a person does
work on a system, energy is transferred from the person to the system. It makes no
sense to talk about the work of a system—one can refer only to the work done on or by a
system when some process has occurred in which energy has been transferred to or
from the system. Likewise, it makes no sense to talk about the heat of a system—one
can refer to heat only when energy has been transferred as a result of a temperature dif-
ference. Both heat and work are ways of changing the energy of a system.

It is also important to recognize that the internal energy of a system can be
changed even when no energy is transferred by heat. For example, when a gas in an
insulated container is compressed by a piston, the temperature of the gas and its in-
ternal energy increase, but no transfer of energy by heat from the surroundings to the
gas has occurred. If the gas then expands rapidly, it cools and its internal energy de-
creases, but no transfer of energy by heat from it to the surroundings has taken place.
The temperature changes in the gas are due not to a difference in temperature be-
tween the gas and its surroundings but rather to the compression and the expansion.
In each case, energy is transferred to or from the gas by work. The changes in internal
energy in these examples are evidenced by corresponding changes in the temperature
of the gas.

Units of Heat

As we have mentioned, early studies of heat focused on the resultant increase in tem-
perature of a substance, which was often water. The early notions of heat based on
caloric suggested that the flow of this fluid from one substance to another caused
changes in temperature. From the name of this mythical fluid, we have an energy
unit related to thermal processes, the calorie (cal), which is defined as the amount
of energy transfer necessary to raise the temperature of 1 g of water from
14.5°C to 15.5°C.1 (Note that the “Calorie,” written with a capital “C” and used in
describing the energy content of foods, is actually a kilocalorie.) The unit of energy
in the U.S. customary system is the British thermal unit (Btu), which is defined
as the amount of energy transfer required to raise the temperature of 1 lb of
water from 63°F to 64°F.

Scientists are increasingly using the SI unit of energy, the joule, when describing ther-
mal processes. In this textbook, heat, work, and internal energy are usually measured in
joules. (Note that both heat and work are measured in energy units. Do not confuse
these two means of energy transfer with energy itself, which is also measured in joules.)

The Mechanical Equivalent of Heat

In Chapters 7 and 8, we found that whenever friction is present in a mechanical sys-
tem, some mechanical energy is lost—in other words, mechanical energy is not con-
served in the presence of nonconservative forces. Various experiments show that this
lost mechanical energy does not simply disappear but is transformed into internal
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! PITFALL PREVENTION
20.2 Heat, Temperature,

and Internal Energy
Are Different

As you read the newspaper or lis-
ten to the radio, be alert for in-
correctly used phrases including
the word heat, and think about
the proper word to be used in
place of heat. Incorrect examples
include “As the truck braked to a
stop, a large amount of heat was
generated by friction” and “The
heat of a hot summer day . . .”

1 Originally, the calorie was defined as the “heat” necessary to raise the temperature of 1 g of water
by 1°C. However, careful measurements showed that the amount of energy required to produce a 1°C
change depends somewhat on the initial temperature; hence, a more precise definition evolved.



energy. We can perform such an experiment at home by simply hammering a nail into
a scrap piece of wood. What happens to all the kinetic energy of the hammer once we
have finished? Some of it is now in the nail as internal energy, as demonstrated by the
fact that the nail is measurably warmer. Although this connection between mechanical
and internal energy was first suggested by Benjamin Thompson, it was Joule who estab-
lished the equivalence of these two forms of energy.

A schematic diagram of Joule’s most famous experiment is shown in Figure 20.1.
The system of interest is the water in a thermally insulated container. Work is done on
the water by a rotating paddle wheel, which is driven by heavy blocks falling at a con-
stant speed. The temperature of the stirred water increases due to the friction between
it and the paddles. If the energy lost in the bearings and through the walls is neglected,
then the loss in potential energy associated with the blocks equals the work done by
the paddle wheel on the water. If the two blocks fall through a distance h, the loss in
potential energy is 2mgh, where m is the mass of one block; this energy causes the
temperature of the water to increase. By varying the conditions of the experiment,
Joule found that the loss in mechanical energy 2mgh is proportional to the increase in
water temperature #T. The proportionality constant was found to be approximately
4.18 J/g $ °C. Hence, 4.18 J of mechanical energy raises the temperature of 1 g of water
by 1°C. More precise measurements taken later demonstrated the proportionality to be
4.186 J/g $ °C when the temperature of the water was raised from 14.5°C to 15.5°C. We
adopt this “15-degree calorie” value:

1 cal ! 4.186 J (20.1)

This equality is known, for purely historical reasons, as the mechanical equivalent
of heat.

20.2 Specific Heat and Calorimetry

When energy is added to a system and there is no change in the kinetic or potential
energy of the system, the temperature of the system usually rises. (An exception to this
statement is the case in which a system undergoes a change of state—also called a phase
transition—as discussed in the next section.) If the system consists of a sample of a sub-
stance, we find that the quantity of energy required to raise the temperature of a given
mass of the substance by some amount varies from one substance to another. For ex-
ample, the quantity of energy required to raise the temperature of 1 kg of water by 1°C
is 4 186 J, but the quantity of energy required to raise the temperature of 1 kg of
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Example 20.1 Losing Weight the Hard Way

A student eats a dinner rated at 2 000 Calories. He wishes to
do an equivalent amount of work in the gymnasium by lift-
ing a 50.0-kg barbell. How many times must he raise the bar-
bell to expend this much energy? Assume that he raises the
barbell 2.00 m each time he lifts it and that he regains no
energy when he lowers the barbell.

Solution Because 1 Calorie ! 1.00 % 103 cal, the total amount
of work required to be done on the barbell–Earth system is
2.00 % 106 cal. Converting this value to joules, we have

W ! (2.00 % 106 cal)(4.186 J/cal) ! 8.37 % 106 J

The work done in lifting the barbell a distance h is equal to
mgh, and the work done in lifting it n times is nmgh. We
equate this to the total work required:

W ! nmgh ! 8.37 % 106 J

!

If the student is in good shape and lifts the barbell once
every 5 s, it will take him about 12 h to perform this feat.
Clearly, it is much easier for this student to lose weight by
dieting.

In reality, the human body is not 100% efficient. Thus,
not all of the energy transformed within the body from the
dinner transfers out of the body by work done on the bar-
bell. Some of this energy is used to pump blood and
perform other functions within the body. Thus, the 2 000
Calories can be worked off in less time than 12 h when
these other energy requirements are included.

8.54 % 103 times

n !
W

mgh
!

8.37 % 106 J
(50.0 kg)(9.80 m/s2)(2.00 m)

mm

Thermal
insulator

Figure 20.1 Joule’s experiment for
determining the mechanical
equivalent of heat. The falling
blocks rotate the paddles, causing
the temperature of the water to
increase.



copper by 1°C is only 387 J. In the discussion that follows, we shall use heat as our ex-
ample of energy transfer, but keep in mind that we could change the temperature of
our system by means of any method of energy transfer.

The heat capacity C of a particular sample of a substance is defined as the amount
of energy needed to raise the temperature of that sample by 1°C. From this definition,
we see that if energy Q produces a change #T in the temperature of a sample, then

Q ! C #T (20.2)

The specific heat c of a substance is the heat capacity per unit mass. Thus, if en-
ergy Q transfers to a sample of a substance with mass m and the temperature of the
sample changes by #T, then the specific heat of the substance is

(20.3)

Specific heat is essentially a measure of how thermally insensitive a substance is to the
addition of energy. The greater a material’s specific heat, the more energy must be
added to a given mass of the material to cause a particular temperature change. Table
20.1 lists representative specific heats.

From this definition, we can relate the energy Q transferred between a sample of
mass m of a material and its surroundings to a temperature change #T as

(20.4)Q ! mc  #T

c ! 
Q

m  #T
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Specific heat

! PITFALL PREVENTION
20.3 An Unfortunate

Choice of
Terminology

The name specific heat is an unfor-
tunate holdover from the days
when thermodynamics and me-
chanics developed separately. A
better name would be specific
energy transfer, but the existing
term is too entrenched to be
replaced.

Specific Heats of Some Substances at 25°C 
and Atmospheric Pressure

Table 20.1

Specific heat c

Substance J/kg ! °C cal/g ! °C

Elemental solids
Aluminum 900 0.215
Beryllium 1 830 0.436
Cadmium 230 0.055
Copper 387 0.092 4
Germanium 322 0.077
Gold 129 0.030 8
Iron 448 0.107
Lead 128 0.030 5
Silicon 703 0.168
Silver 234 0.056

Other solids
Brass 380 0.092
Glass 837 0.200
Ice (& 5°C) 2 090 0.50
Marble 860 0.21
Wood 1 700 0.41

Liquids
Alcohol (ethyl) 2 400 0.58
Mercury 140 0.033
Water (15°C) 4 186 1.00

Gas
Steam (100°C) 2 010 0.48



For example, the energy required to raise the temperature of 0.500 kg of water by 3.00°C
is (0.500 kg)(4 186 J/kg $°C)(3.00°C) ! 6.28 % 103 J. Note that when the temperature in-
creases, Q and #T are taken to be positive, and energy transfers into the system. When the
temperature decreases, Q and #T are negative, and energy transfers out of the system.

Specific heat varies with temperature. However, if temperature intervals are not too
great, the temperature variation can be ignored and c can be treated as a constant.2

For example, the specific heat of water varies by only about 1% from 0°C to 100°C at
atmospheric pressure. Unless stated otherwise, we shall neglect such variations.

Measured values of specific heats are found to depend on the conditions of the ex-
periment. In general, measurements made in a constant-pressure process are different
from those made in a constant-volume process. For solids and liquids, the difference
between the two values is usually no greater than a few percent and is often neglected.
Most of the values given in Table 20.1 were measured at atmospheric pressure and
room temperature. The specific heats for gases measured at constant pressure are
quite different from values measured at constant volume (see Chapter 21).

It is interesting to note from Table 20.1 that water has the highest specific heat of com-
mon materials. This high specific heat is responsible, in part, for the moderate tempera-
tures found near large bodies of water. As the temperature of a body of water decreases
during the winter, energy is transferred from the cooling water to the air by heat, increas-
ing the internal energy of the air. Because of the high specific heat of water, a relatively
large amount of energy is transferred to the air for even modest temperature changes of
the water. The air carries this internal energy landward when prevailing winds are favor-
able. For example, the prevailing winds on the West Coast of the United States are toward
the land (eastward). Hence, the energy liberated by the Pacific Ocean as it cools keeps
coastal areas much warmer than they would otherwise be. This explains why the western
coastal states generally have more favorable winter weather than the eastern coastal states,
where the prevailing winds do not tend to carry the energy toward land.

Conservation of Energy: Calorimetry

One technique for measuring specific heat involves heating a sample to some known
temperature Tx , placing it in a vessel containing water of known mass and temperature
Tw ' Tx , and measuring the temperature of the water after equilibrium has been
reached. This technique is called calorimetry, and devices in which this energy trans-
fer occurs are called calorimeters. If the system of the sample and the water is iso-
lated, the law of the conservation of energy requires that the amount of energy that
leaves the sample (of unknown specific heat) equal the amount of energy that enters
the water.3
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2 The definition given by Equation 20.3 assumes that the specific heat does not vary with
temperature over the interval #T ! Tf & Ti . In general, if c varies with temperature over the inter-
val, then the correct expression for Q is 
3 For precise measurements, the water container should be included in our calculations because it
also exchanges energy with the sample. Doing so would require a knowledge of its mass and
composition, however. If the mass of the water is much greater than that of the container, we can
neglect the effects of the container.

Q ! m "Tf

Ti
c dT.

Quick Quiz 20.1 Imagine you have 1 kg each of iron, glass, and water, and
that all three samples are at 10°C. Rank the samples from lowest to highest tempera-
ture after 100 J of energy is added to each sample.

Quick Quiz 20.2 Considering the same samples as in Quick Quiz 20.1, rank
them from least to greatest amount of energy transferred by heat if each sample in-
creases in temperature by 20°C.

! PITFALL PREVENTION
20.4 Energy Can Be

Transferred by Any
Method

We will use Q to represent the
amount of energy transferred,
but keep in mind that the energy
transfer in Equation 20.4 could
be by any of the methods intro-
duced in Chapter 7; it does not
have to be heat. For example, re-
peatedly bending a coat hanger
wire raises the temperature at the
bending point by work.



Conservation of energy allows us to write the mathematical representation of this
energy statement as

Q cold ! & Q hot (20.5)

The negative sign in the equation is necessary to maintain consistency with our sign
convention for heat. 

Suppose mx is the mass of a sample of some substance whose specific heat we wish
to determine. Let us call its specific heat cx and its initial temperature Tx . Likewise, let
mw , cw , and Tw represent corresponding values for the water. If Tf is the final equilib-
rium temperature after everything is mixed, then from Equation 20.4, we find that the
energy transfer for the water is mwcw(Tf & Tw), which is positive because Tf ( Tw , and
that the energy transfer for the sample of unknown specific heat is mxcx(Tf & Tx),
which is negative. Substituting these expressions into Equation 20.5 gives

mwcw(Tf & Tw) ! &mxcx(Tf & Tx)

Solving for cx gives

cx !
mwcw (Tf & Tw)
mx (Tx & Tf)
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Example 20.2 Cooling a Hot Ingot

A 0.050 0-kg ingot of metal is heated to 200.0°C and then
dropped into a beaker containing 0.400 kg of water initially
at 20.0°C. If the final equilibrium temperature of the mixed
system is 22.4°C, find the specific heat of the metal.

Solution According to Equation 20.5, we can write

mwcw(Tf & Tw) ! & mxcx(Tf & Tx)

(0.400 kg)(4 186 J/kg $ °C)(22.4°C & 20.0°C)

! & (0.050 0 kg)(cx)(22.4°C & 200.0°C)

From this we find that

The ingot is most likely iron, as we can see by comparing
this result with the data given in Table 20.1. Note that the
temperature of the ingot is initially above the steam point.
Thus, some of the water may vaporize when we drop the in-

453 J/kg$)Ccx !

got into the water. We assume that we have a sealed system
and that this steam cannot escape. Because the final equilib-
rium temperature is lower than the steam point, any steam
that does result recondenses back into water.

What If? Suppose you are performing an experiment in the
laboratory that uses this technique to determine the specific
heat of a sample and you wish to decrease the overall uncer-
tainty in your final result for cx. Of the data given in the text of
this example, changing which value would be most effective
in decreasing the uncertainty?

Answer The largest experimental uncertainty is associated
with the small temperature difference of 2.4°C for Tf & Tw .
For example, an uncertainty of 0.1°C in each of these two
temperature readings leads to an 8% uncertainty in their
difference. In order for this temperature difference to be
larger experimentally, the most effective change is to decrease
the amount of water.

Example 20.3 Fun Time for a Cowboy

A cowboy fires a silver bullet with a muzzle speed of 200 m/s
into the pine wall of a saloon. Assume that all the internal
energy generated by the impact remains with the bullet.
What is the temperature change of the bullet?

Solution The kinetic energy of the bullet is

Because nothing in the environment is hotter than the bul-
let, the bullet gains no energy by heat. Its temperature in-
creases because the kinetic energy is transformed to extra

K ! 1
2 mv  2

internal energy when the bullet is stopped by the wall. The
temperature change is the same as that which would take
place if energy Q ! K were transferred by heat from a stove
to the bullet. If we imagine this latter process taking place,
we can calculate #T from Equation 20.4. Using 234 J/kg $ °C
as the specific heat of silver (see Table 20.1), we obtain

Note that the result does not depend on the mass of the
bullet.

85.5)C(1)   #T !
Q
mc

!
K
mc

!

1
2 m(200 m/s)2

m(234 J/kg$)C)
!

! PITFALL PREVENTION
20.5 Remember the

Negative Sign
It is critical to include the nega-
tive sign in Equation 20.5. The
negative sign in the equation is
necessary for consistency with
our sign convention for energy
transfer. The energy transfer Q hot
has a negative value because en-
ergy is leaving the hot substance.
The negative sign in the equation
assures that the right-hand side is
a positive number, consistent
with the left-hand side, which is
positive because energy is enter-
ing the cold water.



20.3 Latent Heat

A substance often undergoes a change in temperature when energy is transferred be-
tween it and its surroundings. There are situations, however, in which the transfer of
energy does not result in a change in temperature. This is the case whenever the physi-
cal characteristics of the substance change from one form to another; such a change is
commonly referred to as a phase change. Two common phase changes are from solid
to liquid (melting) and from liquid to gas (boiling); another is a change in the crys-
talline structure of a solid. All such phase changes involve a change in internal energy
but no change in temperature. The increase in internal energy in boiling, for example,
is represented by the breaking of bonds between molecules in the liquid state; this
bond breaking allows the molecules to move farther apart in the gaseous state, with a
corresponding increase in intermolecular potential energy.

As you might expect, different substances respond differently to the addition or re-
moval of energy as they change phase because their internal molecular arrangements
vary. Also, the amount of energy transferred during a phase change depends on the
amount of substance involved. (It takes less energy to melt an ice cube than it does to
thaw a frozen lake.) If a quantity Q of energy transfer is required to change the phase
of a mass m of a substance, the ratio L ! Q/m characterizes an important thermal
property of that substance. Because this added or removed energy does not result in a
temperature change, the quantity L is called the latent heat (literally, the “hidden”
heat) of the substance. The value of L for a substance depends on the nature of the
phase change, as well as on the properties of the substance.

From the definition of latent heat, and again choosing heat as our energy transfer
mechanism, we find that the energy required to change the phase of a given mass m of
a pure substance is

Q ! * mL (20.6)

Latent heat of fusion Lf is the term used when the phase change is from solid to liq-
uid (to fuse means “to combine by melting”), and latent heat of vaporization Lv is the
term used when the phase change is from liquid to gas (the liquid “vaporizes”).4 The
latent heats of various substances vary considerably, as data in Table 20.2 show. The
positive sign in Equation 20.6 is used when energy enters a system, causing melting or
vaporization. The negative sign corresponds to energy leaving a system, such that the
system freezes or condenses.

To understand the role of latent heat in phase changes, consider the energy
required to convert a 1.00-g cube of ice at & 30.0°C to steam at 120.0°C. Figure 20.2
indicates the experimental results obtained when energy is gradually added to the ice.
Let us examine each portion of the red curve.
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What If? Suppose that the cowboy runs out of silver bul-
lets and fires a lead bullet at the same speed into the wall.
Will the temperature change of the bullet be larger or
smaller?

Answer Consulting Table 20.1, we find that the specific
heat of lead is 128 J/kg $ °C, which is smaller than that for
silver. Thus, a given amount of energy input will raise lead to
a higher temperature than silver and the final temperature

of the lead bullet will be larger. In Equation (1), we substi-
tute the new value for the specific heat:

Note that there is no requirement that the silver and lead
bullets have the same mass to determine this temperature.
The only requirement is that they have the same speed.

#T !
Q
mc

!
K
mc

!

1
2 m(200 m/s)2

m(128 J/kg $)C)
! 156)C

4 When a gas cools, it eventually condenses—that is, it returns to the liquid phase. The energy given
up per unit mass is called the latent heat of condensation and is numerically equal to the latent heat of
vaporization. Likewise, when a liquid cools, it eventually solidifies, and the latent heat of solidification is
numerically equal to the latent heat of fusion.

Latent heat

! PITFALL PREVENTION
20.6 Signs Are Critical
Sign errors occur very often
when students apply calorimetry
equations, so we will make this
point once again. For phase
changes, use the correct explicit
sign in Equation 20.6, depending
on whether you are adding or re-
moving energy from the sub-
stance. In Equation 20.4, there is
no explicit sign to consider, but
be sure that your #T is always the
final temperature minus the ini-
tial temperature. In addition,
make sure that you always in-
clude the negative sign on the
right-hand side of Equation 20.5.
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Latent Heats of Fusion and Vaporization

Table 20.2

Latent Heat Latent Heat of
Melting of Fusion Boiling Vaporization

Substance Point (°C) ( J/kg) Point (°C) ( J/kg)

Helium & 269.65 5.23 % 103 & 268.93 2.09 % 104

Nitrogen & 209.97 2.55 % 104 & 195.81 2.01 % 105

Oxygen & 218.79 1.38 % 104 & 182.97 2.13 % 105

Ethyl alcohol & 114 1.04 % 105 78 8.54 % 105

Water 0.00 3.33 % 105 100.00 2.26 % 106

Sulfur 119 3.81 % 104 444.60 3.26 % 105

Lead 327.3 2.45 % 104 1 750 8.70 % 105

Aluminum 660 3.97 % 105 2 450 1.14 % 107

Silver 960.80 8.82 % 104 2 193 2.33 % 106

Gold 1 063.00 6.44 % 104 2 660 1.58 % 106

Copper 1 083 1.34 % 105 1 187 5.06 % 106

Part A. On this portion of the curve, the temperature of the ice changes from
& 30.0°C to 0.0°C. Because the specific heat of ice is 2 090 J/kg $ °C, we can calculate
the amount of energy added by using Equation 20.4:

Q ! mici #T ! (1.00 % 10&3 kg)(2 090 J/kg $ °C)(30.0°C) ! 62.7 J

Part B. When the temperature of the ice reaches 0.0°C, the ice–water mixture re-
mains at this temperature—even though energy is being added—until all the ice melts.
The energy required to melt 1.00 g of ice at 0.0°C is, from Equation 20.6,

Q ! mi Lf ! (1.00 % 10&3 kg)(3.33 % 105 J/kg) ! 333 J

Thus, we have moved to the 396 J (! 62.7 J " 333 J) mark on the energy axis in
Figure 20.2.

Part C. Between 0.0°C and 100.0°C, nothing surprising happens. No phase change
occurs, and so all energy added to the water is used to increase its temperature. The
amount of energy necessary to increase the temperature from 0.0°C to 100.0°C is

Q ! mwcw #T ! (1.00 % 10&3 kg)(4.19 % 103 J/kg $ °C)(100.0°C) ! 419 J
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Figure 20.2 A plot of temperature versus energy added when 1.00 g of ice initially at
& 30.0°C is converted to steam at 120.0°C.



Part D. At 100.0°C, another phase change occurs as the water changes from water at
100.0°C to steam at 100.0°C. Similar to the ice–water mixture in part B, the
water–steam mixture remains at 100.0°C—even though energy is being added—until
all of the liquid has been converted to steam. The energy required to convert 1.00 g of
water to steam at 100.0°C is

Q ! mw Lv ! (1.00 % 10&3 kg)(2.26 % 106 J/kg)! 2.26 % 103 J

Part E. On this portion of the curve, as in parts A and C, no phase change occurs;
thus, all energy added is used to increase the temperature of the steam. The energy
that must be added to raise the temperature of the steam from 100.0°C to 120.0°C is

Q ! mscs #T ! (1.00 % 10&3 kg)(2.01 % 103 J/kg $ °C)(20.0°C)! 40.2 J

The total amount of energy that must be added to change 1 g of ice at & 30.0°C to
steam at 120.0°C is the sum of the results from all five parts of the curve, which is
3.11 % 103 J. Conversely, to cool 1 g of steam at 120.0°C to ice at & 30.0°C, we must 
remove 3.11 % 103 J of energy.

Note in Figure 20.2 the relatively large amount of energy that is transferred into
the water to vaporize it to steam. Imagine reversing this process—there is a large
amount of energy transferred out of steam to condense it into water. This is why a burn
to your skin from steam at 100°C is much more damaging than exposure of your skin
to water at 100°C. A very large amount of energy enters your skin from the steam and
the steam remains at 100°C for a long time while it condenses. Conversely, when your
skin makes contact with water at 100°C, the water immediately begins to drop in tem-
perature as energy transfers from the water to your skin.

We can describe phase changes in terms of a rearrangement of molecules when 
energy is added to or removed from a substance. (For elemental substances in which
the atoms do not combine to form molecules, the following discussion should be inter-
preted in terms of atoms. We use the general term molecules to refer to both chemical
compounds and elemental substances.) Consider first the liquid-to-gas phase change.
The molecules in a liquid are close together, and the forces between them are stronger
than those between the more widely separated molecules of a gas. Therefore, work
must be done on the liquid against these attractive molecular forces if the molecules
are to separate. The latent heat of vaporization is the amount of energy per unit mass
that must be added to the liquid to accomplish this separation.

Similarly, for a solid, we imagine that the addition of energy causes the amplitude
of vibration of the molecules about their equilibrium positions to become greater as
the temperature increases. At the melting point of the solid, the amplitude is great
enough to break the bonds between molecules and to allow molecules to move to new
positions. The molecules in the liquid also are bound to each other, but less strongly
than those in the solid phase. The latent heat of fusion is equal to the energy required
per unit mass to transform the bonds among all molecules from the solid-type bond to
the liquid-type bond.

As you can see from Table 20.2, the latent heat of vaporization for a given substance
is usually somewhat higher than the latent heat of fusion. This is not surprising if we con-
sider that the average distance between molecules in the gas phase is much greater than
that in either the liquid or the solid phase. In the solid-to-liquid phase change, we trans-
form solid-type bonds between molecules into liquid-type bonds between molecules,
which are only slightly less strong. In the liquid-to-gas phase change, however, we break
liquid-type bonds and create a situation in which the molecules of the gas essentially are
not bonded to each other. Therefore, it is not surprising that more energy is required to
vaporize a given mass of substance than is required to melt it.
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Quick Quiz 20.3 Suppose the same process of adding energy to the ice cube
is performed as discussed above, but we graph the internal energy of the system as a
function of energy input. What would this graph look like?
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Quick Quiz 20.4 Calculate the slopes for the A, C, and E portions of Figure
20.2. Rank the slopes from least to greatest and explain what this ordering means.

P R O B L E M - S O LV I N G  H I N T S

Calorimetry Problems
If you have difficulty in solving calorimetry problems, be sure to consider the
following points:

• Units of measure must be consistent. For instance, if you are using specific
heats measured in J/kg $ °C, be sure that masses are in kilograms and
temperatures are in Celsius degrees.

• Transfers of energy are given by the equation Q ! mc #T only for those
processes in which no phase changes occur. Use the equations Q ! * mLf and
Q ! * mLv only when phase changes are taking place; be sure to select the
proper sign for these equations depending on the direction of energy transfer.

• Often, errors in sign are made when the equation Q cold ! &Q hot is used.
Make sure that you use the negative sign in the equation, and remember that
#T is always the final temperature minus the initial temperature.

Example 20.4 Cooling the Steam

What mass of steam initially at 130°C is needed to warm
200 g of water in a 100-g glass container from 20.0°C to
50.0°C?

Solution The steam loses energy in three stages. In the first
stage, the steam is cooled to 100°C. The energy transfer in
the process is

Q1 ! mscs #T ! ms(2.01 % 103 J/kg $ °C)(& 30.0°C)

! & ms(6.03 % 104 J/kg)

where ms is the unknown mass of the steam.
In the second stage, the steam is converted to water. To

find the energy transfer during this phase change, we use
Q ! & mLv , where the negative sign indicates that energy is
leaving the steam:

Q 2 ! &ms(2.26 % 106 J/kg)

In the third stage, the temperature of the water created
from the steam is reduced to 50.0°C. This change requires
an energy transfer of

Q 3 ! mscw #T ! ms(4.19 % 103 J/kg $ °C)(& 50.0°C)

! & ms(2.09 % 105 J/kg)

Adding the energy transfers in these three stages, we obtain

Q hot ! Q1 " Q 2 " Q 3

! & ms[6.03 % 104 J/kg " 2.26 % 106 J/kg

" 2.09 % 105 J/kg]

! & ms(2.53 % 106 J/kg)

Now, we turn our attention to the temperature increase of
the water and the glass. Using Equation 20.4, we find that

Q cold ! (0.200 kg)(4.19 % 103 J/kg $ °C)(30.0°C)

" (0.100 kg)(837 J/kg $ °C)(30.0°C)

! 2.77 % 104 J

Using Equation 20.5, we can solve for the unknown mass:

Qcold ! & Q hot

2.77 % 104 J ! &[&ms(2.53 % 106 J/kg)]

ms ! 1.09 % 10&2 kg !

What If? What if the final state of the system is water at
100°C? Would we need more or less steam? How would the
analysis above change?

Answer More steam would be needed to raise the tempera-
ture of the water and glass to 100°C instead of 50.0°C. There
would be two major changes in the analysis. First, we would
not have a term Q 3 for the steam because the water that
condenses from the steam does not cool below 100°C. 
Second, in Q cold, the temperature change would be 80.0°C
instead of 30.0°C. Thus, Q hot becomes

Q hot ! Q 1 " Q 2

! &ms(6.03 % 104 J/kg " 2.26 % 106 J/kg)

! &ms(2.32 % 106 J/kg)

and Q cold becomes

Q cold ! (0.200 kg)(4.19 % 103 J/kg $ °C)(80.0°C)

" (0.100 kg)(837 J/kg $ °C)(80.0°C)

! 7.37 % 104 J

leading to ms ! 3.18 % 10&2 kg ! 31.8 g.

10.9 g

! PITFALL PREVENTION
20.7 Celsius vs. Kelvin
In equations in which T ap-
pears—for example, the ideal gas
law—the Kelvin temperature
must be used. In equations involv-
ing #T, such as calorimetry equa-
tions, it is possible to use Celsius
temperatures, because a change
in temperature is the same on
both scales. It is safest, however, to
consistently use Kelvin tempera-
tures in all equations involving T
or #T.



20.4 Work and Heat in Thermodynamic Processes

In the macroscopic approach to thermodynamics, we describe the state of a system us-
ing such variables as pressure, volume, temperature, and internal energy. As a result,
these quantities belong to a category called state variables. For any given configura-
tion of the system, we can identify values of the state variables. It is important to note
that a macroscopic state of an isolated system can be specified only if the system is in ther-
mal equilibrium internally. In the case of a gas in a container, internal thermal equilib-
rium requires that every part of the gas be at the same pressure and temperature.

A second category of variables in situations involving energy is transfer variables.
These variables are zero unless a process occurs in which energy is transferred across
the boundary of the system. Because a transfer of energy across the boundary repre-
sents a change in the system, transfer variables are not associated with a given state of
the system, but with a change in the state of the system. In the previous sections, we dis-
cussed heat as a transfer variable. For a given set of conditions of a system, there is no
defined value for the heat. We can only assign a value of the heat if energy crosses the
boundary by heat, resulting in a change in the system. State variables are characteristic
of a system in thermal equilibrium. Transfer variables are characteristic of a process in
which energy is transferred between a system and its environment.

In this section, we study another important transfer variable for thermodynamic
systems—work. Work performed on particles was studied extensively in Chapter 7, and
here we investigate the work done on a deformable system—a gas. Consider a gas con-
tained in a cylinder fitted with a movable piston (Fig. 20.3). At equilibrium, the gas oc-
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Example 20.5 Boiling Liquid Helium

Liquid helium has a very low boiling point, 4.2 K, and a very
low latent heat of vaporization, 2.09 % 104 J/kg. If energy is
transferred to a container of boiling liquid helium from an
immersed electric heater at a rate of 10.0 W, how long does
it take to boil away 1.00 kg of the liquid?

Solution Because Lv ! 2.09 % 104 J/kg, we must supply
2.09 % 104 J of energy to boil away 1.00 kg. Because

10.0 W ! 10.0 J/s, 10.0 J of energy is transferred to the
helium each second. From ! ! #E/#t, the time interval
required to transfer 2.09 % 104 J of energy is

35 min#t !
#E
!

!
2.09 % 104 J

10.0 J/s
! 2.09 % 103 s #

dy

P

(a)

A

V

(b)

Figure 20.3 Work is done on a gas contained in a
cylinder at a pressure P as the piston is pushed
downward so that the gas is compressed.



cupies a volume V and exerts a uniform pressure P on the cylinder’s walls and on the
piston. If the piston has a cross-sectional area A, the force exerted by the gas on the pis-
ton is F ! PA. Now let us assume that we push the piston inward and compress the gas
quasi-statically, that is, slowly enough to allow the system to remain essentially in
thermal equilibrium at all times. As the piston is pushed downward by an external
force F ! & F ĵ through a displacement of dr ! dy ĵ (Fig. 20.3b), the work done on the
gas is, according to our definition of work in Chapter 7,

dW ! F $ dr ! & F ĵ $ dy ĵ ! & F dy ! & PA dy

where we have set the magnitude F of the external force equal to PA because the pis-
ton is always in equilibrium between the external force and the force from the gas.
For this discussion, we assume the mass of the piston is negligible. Because A dy is the
change in volume of the gas dV, we can express the work done on the gas as

dW ! & P dV (20.7)

If the gas is compressed, dV is negative and the work done on the gas is positive. If
the gas expands, dV is positive and the work done on the gas is negative. If the volume
remains constant, the work done on the gas is zero. The total work done on the gas as
its volume changes from Vi to Vf is given by the integral of Equation 20.7:

(20.8)

To evaluate this integral, one must know how the pressure varies with volume during
the process.

In general, the pressure is not constant during a process followed by a gas, but
depends on the volume and temperature. If the pressure and volume are known at
each step of the process, the state of the gas at each step can be plotted on a graph
called a PV diagram, as in Figure 20.4. This type of diagram allows us to visualize a
process through which a gas is progressing. The curve on a PV diagram is called the
path taken between the initial and final states.

Note that the integral in Equation 20.8 is equal to the area under a curve on a PV
diagram. Thus, we can identify an important use for PV diagrams:

The work done on a gas in a quasi-static process that takes the gas from an initial
state to a final state is the negative of the area under the curve on a PV diagram,
evaluated between the initial and final states.

As Figure 20.4 suggests, for our process of compressing a gas in the cylinder, the
work done depends on the particular path taken between the initial and final states.
To illustrate this important point, consider several different paths connecting i and f
(Fig. 20.5). In the process depicted in Figure 20.5a, the volume of the gas is first
reduced from Vi to Vf at constant pressure Pi and the pressure of the gas then in-
creases from Pi to Pf by heating at constant volume Vf . The work done on the gas
along this path is &Pi(Vf & Vi). In Figure 20.5b, the pressure of the gas is increased
from Pi to Pf at constant volume Vi and then the volume of the gas is reduced from Vi
to Vf at constant pressure Pf . The work done on the gas is &Pf(Vf & Vi), which is
greater than that for the process described in Figure 20.5a. It is greater because the
piston is moved through the same displacement by a larger force than for the situa-
tion in Figure 20.5a. Finally, for the process described in Figure 20.5c, where both
P and V change continuously, the work done on the gas has some value intermediate
between the values obtained in the first two processes. To evaluate the work in
this case, the function P(V ) must be known, so that we can evaluate the integral in
Equation 20.8.

W ! &"Vf

Vi
 P dV
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Work done on a gas

f
Pf

P

i

V
ViVf

Pi

Active Figure 20.4 A gas is
compressed quasi-statically (slowly)
from state i to state f. The work
done on the gas equals the negative
of the area under the PV curve. 

At the Active Figures link
at http://www.pse6.com, you can
compress the piston in Figure
20.3 and see the result on the PV
diagram in this figure.



The energy transfer Q into or out of a system by heat also depends on the process.
Consider the situations depicted in Figure 20.6. In each case, the gas has the same ini-
tial volume, temperature, and pressure, and is assumed to be ideal. In Figure 20.6a, the
gas is thermally insulated from its surroundings except at the bottom of the gas-filled
region, where it is in thermal contact with an energy reservoir. An energy reservoir is a
source of energy that is considered to be so great that a finite transfer of energy to or
from the reservoir does not change its temperature. The piston is held at its initial po-
sition by an external agent—a hand, for instance. When the force holding the piston is
reduced slightly, the piston rises very slowly to its final position. Because the piston is
moving upward, the gas is doing work on the piston. During this expansion to the final
volume Vf , just enough energy is transferred by heat from the reservoir to the gas to
maintain a constant temperature Ti .

Now consider the completely thermally insulated system shown in Figure 20.6b.
When the membrane is broken, the gas expands rapidly into the vacuum until it occu-
pies a volume Vf and is at a pressure Pf . In this case, the gas does no work because it
does not apply a force—no force is required to expand into a vacuum. Furthermore,
no energy is transferred by heat through the insulating wall.

The initial and final states of the ideal gas in Figure 20.6a are identical to the initial
and final states in Figure 20.6b, but the paths are different. In the first case, the gas
does work on the piston, and energy is transferred slowly to the gas by heat. In the sec-
ond case, no energy is transferred by heat, and the value of the work done is zero.
Therefore, we conclude that energy transfer by heat, like work done, depends on
the initial, final, and intermediate states of the system. In other words, because
heat and work depend on the path, neither quantity is determined solely by the end
points of a thermodynamic process.
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At the Active Figures link
at http://www.pse6.com, you
can choose one of the three
paths and see the movement of
the piston in Figure 20.3 and of
a point on the PV diagram in
this figure.
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Active Figure 20.5 The work done on a gas as it is taken from an initial state to a
final state depends on the path between these states.

Energy reservoir
at Ti

Gas at Ti
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Final
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Gas at Ti
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Figure 20.6 (a) A gas at
temperature Ti expands slowly
while absorbing energy from a
reservoir in order to maintain a
constant temperature. (b) A gas
expands rapidly into an evacuated
region after a membrane is
broken.



20.5 The First Law of Thermodynamics

When we introduced the law of conservation of energy in Chapter 7, we stated that the
change in the energy of a system is equal to the sum of all transfers of energy across
the boundary of the system. The first law of thermodynamics is a special case of the law
of conservation of energy that encompasses changes in internal energy and energy
transfer by heat and work. It is a law that can be applied to many processes and pro-
vides a connection between the microscopic and macroscopic worlds.

We have discussed two ways in which energy can be transferred between a system
and its surroundings. One is work done on the system, which requires that there be a
macroscopic displacement of the point of application of a force. The other is heat,
which occurs on a molecular level whenever a temperature difference exists across the
boundary of the system. Both mechanisms result in a change in the internal energy of
the system and therefore usually result in measurable changes in the macroscopic vari-
ables of the system, such as the pressure, temperature, and volume of a gas.

To better understand these ideas on a quantitative basis, suppose that a system un-
dergoes a change from an initial state to a final state. During this change, energy trans-
fer by heat Q to the system occurs, and work W is done on the system. As an example,
suppose that the system is a gas in which the pressure and volume change from Pi and
Vi to Pf and Vf . If the quantity Q " W is measured for various paths connecting the ini-
tial and final equilibrium states, we find that it is the same for all paths connecting the
two states. We conclude that the quantity Q " W is determined completely by the ini-
tial and final states of the system, and we call this quantity the change in the internal
energy of the system. Although Q and W both depend on the path, the quantity
Q " W is independent of the path. If we use the symbol E int to represent the internal
energy, then the change in internal energy #E int can be expressed as5

(20.9)

where all quantities must have the same units of measure for energy. Equation 20.9 is
known as the first law of thermodynamics. One of the important consequences of
the first law of thermodynamics is that there exists a quantity known as internal energy
whose value is determined by the state of the system. The internal energy is therefore a
state variable like pressure, volume, and temperature.

When a system undergoes an infinitesimal change in state in which a small amount
of energy dQ is transferred by heat and a small amount of work dW is done, the inter-
nal energy changes by a small amount dE int. Thus, for infinitesimal processes we can
express the first law as6

dE int ! dQ " dW

The first law of thermodynamics is an energy conservation equation specifying that
the only type of energy that changes in the system is the internal energy E int. Let us
investigate some special cases in which this condition exists. 

First, consider an isolated system—that is, one that does not interact with its sur-
roundings. In this case, no energy transfer by heat takes place and the work done on

#Eint ! Q " W
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! PITFALL PREVENTION
20.8 Dual Sign

Conventions
Some physics and engineering
textbooks present the first law as
#Eint ! Q & W, with a minus sign
between the heat and work. The
reason for this is that work is de-
fined in these treatments as the
work done by the gas rather than
on the gas, as in our treatment.
The equivalent equation to Equa-
tion 20.8 in these treatments de-
fines work as W ! . Thus,
if positive work is done by the
gas, energy is leaving the system,
leading to the negative sign in
the first law.

In your studies in other chem-
istry or engineering courses, or in
your reading of other physics text-
books, be sure to note which sign
convention is being used for the
first law.

"Vf

Vi
 P dV

First law of thermodynamics

5 It is an unfortunate accident of history that the traditional symbol for internal energy is U, which is
also the traditional symbol for potential energy, as introduced in Chapter 8. To avoid confusion
between potential energy and internal energy, we use the symbol E int for internal energy in this book. If
you take an advanced course in thermodynamics, however, be prepared to see U used as the symbol for
internal energy.
6 Note that dQ and dW are not true differential quantities because Q and W are not state variables;
however, dEint is. Because dQ and dW are inexact differentials, they are often represented by the symbols
d–Q and d–W. For further details on this point, see an advanced text on thermodynamics, such as
R. P. Bauman, Modern Thermodynamics and Statistical Mechanics, New York, Macmillan Publishing Co.,
1992.



the system is zero; hence, the internal energy remains constant. That is, because
Q ! W ! 0, it follows that #E int ! 0, and thus Eint, i ! Eint, f . We conclude that the
internal energy Eint of an isolated system remains constant.

Next, consider the case of a system (one not isolated from its surroundings) that is
taken through a cyclic process—that is, a process that starts and ends at the same
state. In this case, the change in the internal energy must again be zero, because E int is
a state variable, and therefore the energy Q added to the system must equal the nega-
tive of the work W done on the system during the cycle. That is, in a cyclic process,

#E int ! 0 and Q ! &W (cyclic process)

On a PV diagram, a cyclic process appears as a closed curve. (The processes described in
Figure 20.5 are represented by open curves because the initial and final states differ.) It
can be shown that in a cyclic process, the net work done on the system per cycle
equals the area enclosed by the path representing the process on a PV diagram.

20.6 Some Applications of the First Law 
of Thermodynamics

The first law of thermodynamics that we discussed in the preceding section relates the
changes in internal energy of a system to transfers of energy by work or heat. In this
section, we consider applications of the first law to processes through which a gas is
taken. As a model, we consider the sample of gas contained in the piston–cylinder ap-
paratus in Figure 20.7. This figure shows work being done on the gas and energy trans-
ferring in by heat, so the internal energy of the gas is rising. In the following discussion
of various processes, refer back to this figure and mentally alter the directions of the
transfer of energy so as to reflect what is happening in the process.

Before we apply the first law of thermodynamics to specific systems, it is useful to
first define some idealized thermodynamic processes. An adiabatic process is one
during which no energy enters or leaves the system by heat—that is, Q ! 0. An adia-
batic process can be achieved either by thermally insulating the walls of the system,
such as the cylinder in Figure 20.7, or by performing the process rapidly, so that there
is negligible time for energy to transfer by heat. Applying the first law of thermodynam-
ics to an adiabatic process, we see that

#E int ! W (adiabatic process) (20.10)

From this result, we see that if a gas is compressed adiabatically such that W is positive,
then #E int is positive and the temperature of the gas increases. Conversely, the temper-
ature of a gas decreases when the gas expands adiabatically.

Adiabatic processes are very important in engineering practice. Some common ex-
amples are the expansion of hot gases in an internal combustion engine, the liquefac-
tion of gases in a cooling system, and the compression stroke in a diesel engine.

The process described in Figure 20.6b, called an adiabatic free expansion, is
unique. The process is adiabatic because it takes place in an insulated container. Be-
cause the gas expands into a vacuum, it does not apply a force on a piston as was de-
picted in Figure 20.6a, so no work is done on or by the gas. Thus, in this adiabatic
process, both Q ! 0 and W ! 0. As a result, #E int ! 0 for this process, as we can see
from the first law. That is, the initial and final internal energies of a gas are equal
in an adiabatic free expansion. As we shall see in the next chapter, the internal en-
ergy of an ideal gas depends only on its temperature. Thus, we expect no change in
temperature during an adiabatic free expansion. This prediction is in accord with the
results of experiments performed at low pressures. (Experiments performed at high
pressures for real gases show a slight change in temperature after the expansion. This
change is due to intermolecular interactions, which represent a deviation from the
model of an ideal gas.)
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! PITFALL PREVENTION
20.9 The First Law
With our approach to energy in
this book, the first law of thermo-
dynamics is a special case of
Equation 7.17. Some physicists
argue that the first law is the gen-
eral equation for energy conser-
vation, equivalent to Equation
7.17. In this approach, the first
law is applied to a closed system
(so that there is no matter trans-
fer), heat is interpreted so as to
include electromagnetic radia-
tion, and work is interpreted so
as to include electrical transmis-
sion (“electrical work”) and me-
chanical waves (“molecular
work”). Keep this in mind if you
run across the first law in your
reading of other physics books.

P

A

V

Q

W

∆ E int

Active Figure 20.7 The first law of
thermodynamics equates the
change in internal energy E int in a
system to the net energy transfer to
the system by heat Q and work W.
In the situation shown here, the
internal energy of the gas
increases.

At the Active Figures link
at http://www.pse6.com, you
can choose one of the four
processes for the gas
discussed in this section and
see the movement of the piston
and of a point on a PV diagram.



A process that occurs at constant pressure is called an isobaric process. In Figure
20.7, an isobaric process could be established by allowing the piston to move freely so that
it is always in equilibrium between the net force from the gas pushing upward and the
weight of the piston plus the force due to atmospheric pressure pushing downward. In
Figure 20.5, the first process in part (a) and the second process in part (b) are isobaric.

In such a process, the values of the heat and the work are both usually nonzero.
The work done on the gas in an isobaric process is simply

W ! & P(Vf & Vi) (isobaric process) (20.11)

where P is the constant pressure.
A process that takes place at constant volume is called an isovolumetric process.

In Figure 20.7, clamping the piston at a fixed position would ensure an isovolumetric
process. In Figure 20.5, the second process in part (a) and the first process in part (b)
are isovolumetric.

In such a process, the value of the work done is zero because the volume does not
change. Hence, from the first law we see that in an isovolumetric process, because W ! 0,

#E int ! Q (isovolumetric process) (20.12)

This expression specifies that if energy is added by heat to a system kept at con-
stant volume, then all of the transferred energy remains in the system as an in-
crease in its internal energy. For example, when a can of spray paint is thrown into a
fire, energy enters the system (the gas in the can) by heat through the metal walls of
the can. Consequently, the temperature, and thus the pressure, in the can increases
until the can possibly explodes.

A process that occurs at constant temperature is called an isothermal process. In
Figure 20.7, this process can be established by immersing the cylinder in Figure 20.7 in
an ice-water bath or by putting the cylinder in contact with some other constant-tem-
perature reservoir. A plot of P versus V at constant temperature for an ideal gas yields a
hyperbolic curve called an isotherm. The internal energy of an ideal gas is a function of
temperature only. Hence, in an isothermal process involving an ideal gas, #E int ! 0.
For an isothermal process, then, we conclude from the first law that the energy transfer
Q must be equal to the negative of the work done on the gas—that is, Q ! &W. Any
energy that enters the system by heat is transferred out of the system by work; as a re-
sult, no change in the internal energy of the system occurs in an isothermal process.

Isothermal Expansion of an Ideal Gas

Suppose that an ideal gas is allowed to expand quasi-statically at constant temperature.
This process is described by the PV diagram shown in Figure 20.8. The curve is a hyper-
bola (see Appendix B, Eq. B.23), and the ideal gas law with T constant indicates that
the equation of this curve is PV ! constant. 
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Isobaric process

Isovolumetric process

Isothermal process

Quick Quiz 20.5 In the last three columns of the following table, fill in the
boxes with &, ", or 0. For each situation, the system to be considered is identified.

Situation System Q W #Eint

(a) Rapidly pumping up Air in the pump
a bicycle tire

(b) Pan of room-temperature Water in the pan
water sitting on a hot stove

(c) Air quickly leaking out Air originally in the 
of a balloon balloon

! PITFALL PREVENTION
20.10 Q Y 0 in an

Isothermal Process
Do not fall into the common trap
of thinking that there must be no
transfer of energy by heat if the
temperature does not change, as
is the case in an isothermal
process. Because the cause of
temperature change can be ei-
ther heat or work, the tempera-
ture can remain constant even if
energy enters the gas by heat.
This can only happen if the en-
ergy entering the gas by heat
leaves by work.



Let us calculate the work done on the gas in the expansion from state i to state f.
The work done on the gas is given by Equation 20.8. Because the gas is ideal and the
process is quasi-static, we can use the expression PV ! nRT for each point on the path.
Therefore, we have

Because T is constant in this case, it can be removed from the integral along with n
and R :

To evaluate the integral, we used ∫(dx/x) ! ln x. Evaluating this at the initial and final
volumes, we have

(20.13)

Numerically, this work W equals the negative of the shaded area under the PV curve
shown in Figure 20.8. Because the gas expands, Vf ( Vi and the value for the work
done on the gas is negative, as we expect. If the gas is compressed, then Vf ' Vi and
the work done on the gas is positive.

W ! nRT ln $ Vi

Vf
% 

W ! &nRT "Vf

Vi
  

dV
V

! &nRT ln V &Vf

Vi

W ! &"Vf

Vi

  P dV ! &"Vf

Vi
  

nRT
V

 dV
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f

i

V

PV = constant

Isotherm
P

Pi

Pf

Vi Vf

Figure 20.8 The PV diagram for
an isothermal expansion of an
ideal gas from an initial state to a
final state. The curve is a
hyperbola.

Quick Quiz 20.6 Characterize the paths in Figure 20.9 as isobaric, isovolu-
metric, isothermal, or adiabatic. Note that Q ! 0 for path B.

A

B

C

D

V

P

T1

T3

T2

T4

Figure 20.9 (Quick Quiz 20.6) Identify the nature of paths A, B, C, and D.

Example 20.6 An Isothermal Expansion

A 1.0-mol sample of an ideal gas is kept at 0.0°C during an
expansion from 3.0 L to 10.0 L.

(A) How much work is done on the gas during the expan-
sion?

Solution Substituting the values into Equation 20.13, we
have

W ! nRT  ln $ Vi

Vf
%

!

(B) How much energy transfer by heat occurs with the
surroundings in this process?

&2.7 % 103 J 

 ! (1.0 mol)(8.31 J/mol $K)(273 K) ln $ 3.0 L
10.0 L %



Example 20.7 Boiling Water

Suppose 1.00 g of water vaporizes isobarically at atmospheric
pressure (1.013 % 105 Pa). Its volume in the liquid state is
Vi ! Vliquid ! 1.00 cm3, and its volume in the vapor state is
Vf ! Vvapor ! 1 671 cm3. Find the work done in the expansion
and the change in internal energy of the system. Ignore 
any mixing of the steam and the surrounding air—imagine 
that the steam simply pushes the surrounding air out of 
the way.

Solution Because the expansion takes place at constant pres-
sure, the work done on the system (the vaporizing water) as it
pushes away the surrounding air is, from Equation 20.11,

! &169 J

!&(1.013 % 105
 Pa)(1 671 % 10&6 m3 & 1.00 % 10&6 m3)

W ! &P(Vf &Vi)

To determine the change in internal energy, we must know
the energy transfer Q needed to vaporize the water. Using
Equation 20.6 and the latent heat of vaporization for water,
we have

Q ! mLv ! (1.00 % 10&3 kg)(2.26 % 106 J/kg)! 2 260 J

Hence, from the first law, the change in internal energy is

#E int ! Q " W ! 2 260 J " (& 169 J) !

The positive value for #E int indicates that the internal 
energy of the system increases. We see that most of the
energy (2 090 J/2 260 J ! 93%) transferred to the liquid
goes into increasing the internal energy of the system.
The remaining 7% of the energy transferred leaves the
system by work done by the steam on the surrounding
atmosphere.

2.09 k J

Example 20.8 Heating a Solid

A 1.0-kg bar of copper is heated at atmospheric pressure. If
its temperature increases from 20°C to 50°C,

(A) what is the work done on the copper bar by the sur-
rounding atmosphere?

Solution Because the process is isobaric, we can find the
work done on the copper bar using Equation 20.11,
W ! &P(Vf & Vi). We can calculate the change in volume of
the copper bar using Equation 19.6. Using the average lin-
ear expansion coefficient for copper given in Table 19.1,
and remembering that + ! 3,, we obtain

The volume Vi is equal to m/-, and Table 14.1 indicates that
the density of copper is 8.92 % 103 kg/m3. Hence,

 ! 1.7 % 10&7 m3

#V ! (1.5 % 10&3)$ 1.0 kg
8.92 % 103 kg/m3 %

! [5.1 % 10&5 ()C)&1](50)C & 20)C)Vi ! 1.5 % 10&3 Vi

#V ! +Vi  #T

The work done on the copper bar is

!

Because this work is negative, work is done by the copper bar
on the atmosphere.

(B) What quantity of energy is transferred to the copper bar
by heat?

Solution Taking the specific heat of copper from Table
20.1 and using Equation 20.4, we find that the energy trans-
ferred by heat is

! 1.2 % 104 J

Q ! mc  #T ! (1.0 kg)(387 J/kg $)C)(30)C)

&1.7 % 10&2 J

W ! &P  #V ! &(1.013 % 105 N/m2)(1.7 % 10&7 m3)
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Solution From the first law, we find that

#E int ! Q " W

0 ! Q " W

Q ! &W !

(C) If the gas is returned to the original volume by means of
an isobaric process, how much work is done on the gas?

Solution The work done in an isobaric process is given by
Equation 20.11. In this case, the initial volume is 10.0 L and
the final volume is 3.0 L, the reverse of the situation in part
(A). We are not given the pressure, so we need to incorpo-

2.7 % 103 J

rate the ideal gas law:

!

Notice that we use the initial temperature and volume to de-
termine the value of the constant pressure because we do
not know the final temperature. The work done on the gas
is positive because the gas is being compressed.

1.6 % 103 J

% (3.0 % 10&3 m3 & 10.0 % 10&3 m3)

 ! &
(1.0 mol)(8.31 J/mol $K)(273 K)

10.0 % 10&3 m3

W ! &P(Vf & Vi) ! &  
nRTi

Vi
  (Vf & Vi)



20.7 Energy Transfer Mechanisms

In Chapter 7, we introduced a global approach to energy analysis of physical processes
through Equation 7.17, #Esystem ! T, where T represents energy transfer. Earlier in this
chapter, we discussed two of the terms on the right-hand side of this equation, work and
heat. In this section, we explore more details about heat as a means of energy transfer
and consider two other energy transfer methods that are often related to temperature
changes—convection (a form of matter transfer) and electromagnetic radiation.

Thermal Conduction

The process of energy transfer by heat can also be called conduction or thermal con-
duction. In this process, the transfer can be represented on an atomic scale as an ex-
change of kinetic energy between microscopic particles—molecules, atoms, and free
electrons—in which less-energetic particles gain energy in collisions with more ener-
getic particles. For example, if you hold one end of a long metal bar and insert the
other end into a flame, you will find that the temperature of the metal in your hand
soon increases. The energy reaches your hand by means of conduction. We can under-
stand the process of conduction by examining what is happening to the microscopic
particles in the metal. Initially, before the rod is inserted into the flame, the micro-
scopic particles are vibrating about their equilibrium positions. As the flame heats the
rod, the particles near the flame begin to vibrate with greater and greater amplitudes.
These particles, in turn, collide with their neighbors and transfer some of their energy
in the collisions. Slowly, the amplitudes of vibration of metal atoms and electrons far-
ther and farther from the flame increase until, eventually, those in the metal near your
hand are affected. This increased vibration is detected by an increase in the tempera-
ture of the metal and of your potentially burned hand.

The rate of thermal conduction depends on the properties of the substance being
heated. For example, it is possible to hold a piece of asbestos in a flame indefinitely.
This implies that very little energy is conducted through the asbestos. In general, met-
als are good thermal conductors, and materials such as asbestos, cork, paper, and fiber-
glass are poor conductors. Gases also are poor conductors because the separation dis-
tance between the particles is so great. Metals are good thermal conductors because
they contain large numbers of electrons that are relatively free to move through the
metal and so can transport energy over large distances. Thus, in a good conductor,
such as copper, conduction takes place by means of both the vibration of atoms and
the motion of free electrons.

Conduction occurs only if there is a difference in temperature between two parts of
the conducting medium. Consider a slab of material of thickness #x and cross-sec-
tional area A. One face of the slab is at a temperature Tc , and the other face is at a tem-
perature Th ( Tc (Fig. 20.10). Experimentally, it is found that the energy Q transfers in
a time interval #t from the hotter face to the colder one. The rate ! ! Q /#t at which
this energy transfer occurs is found to be proportional to the cross-sectional area and
the temperature difference #T ! Th & Tc , and inversely proportional to the thickness:

'
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(C) What is the increase in internal energy of the copper bar?

Solution From the first law of thermodynamics, we have

! 1.2 % 104 J

#Eint ! Q " W ! 1.2 % 104 J " (&1.7 % 10&2 J)

Note that almost all of the energy transferred into the
system by heat goes into increasing the internal energy of
the copper bar. The fraction of energy used to do work on
the surrounding atmosphere is only about 10&6! Hence,
when the thermal expansion of a solid or a liquid is ana-
lyzed, the small amount of work done on or by the system is
usually ignored.

A pan of boiling water sits on a
stove burner. Energy enters the
water through the bottom of the
pan by thermal conduction.
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Tc

Energy transfer
for Th > Tc

Th
A

∆x

Figure 20.10 Energy transfer
through a conducting slab with a
cross-sectional area A and a
thickness #x. The opposite faces
are at different temperatures
Tc and Th.



Note that ! has units of watts when Q is in joules and #t is in seconds. This is not
surprising because ! is power—the rate of energy transfer by heat. For a slab of infini-
tesimal thickness dx and temperature difference dT, we can write the law of thermal
conduction as

(20.14)

where the proportionality constant k is the thermal conductivity of the material
and |dT/dx | is the temperature gradient (the rate at which temperature varies with
position).

Suppose that a long, uniform rod of length L is thermally insulated so that energy
cannot escape by heat from its surface except at the ends, as shown in Figure 20.11.
One end is in thermal contact with an energy reservoir at temperature Tc , and the
other end is in thermal contact with a reservoir at temperature Th ( Tc . When a steady
state has been reached, the temperature at each point along the rod is constant in
time. In this case if we assume that k is not a function of temperature, the temperature
gradient is the same everywhere along the rod and is

& dT
dx & !

Th & Tc

L

! ! kA & dT
dx &

! !
Q
#t

 . A  
#T
#x
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Law of thermal conduction

Th

InsulationTh > Tc

Tc

L

Energy
transfer

Figure 20.11 Conduction of
energy through a uniform,
insulated rod of length L . The
opposite ends are in thermal
contact with energy reservoirs at
different temperatures.

Thermal Conductivities

Table 20.3

Thermal Conductivity 
Substance (W/m ! °C)

Metals (at 25°C)
Aluminum 238
Copper 397
Gold 314
Iron 79.5
Lead 34.7
Silver 427

Nonmetals 
(approximate values)
Asbestos 0.08
Concrete 0.8
Diamond 2 300
Glass 0.8
Ice 2
Rubber 0.2
Water 0.6
Wood 0.08

Gases (at 20°C)
Air 0.023 4
Helium 0.138
Hydrogen 0.172
Nitrogen 0.023 4
Oxygen 0.023 8



Thus the rate of energy transfer by conduction through the rod is

(20.15)

Substances that are good thermal conductors have large thermal conductivity val-
ues, whereas good thermal insulators have low thermal conductivity values. Table 20.3
lists thermal conductivities for various substances. Note that metals are generally better
thermal conductors than nonmetals.

For a compound slab containing several materials of thicknesses L1, L2, . . . and
thermal conductivities k1, k2, . . . , the rate of energy transfer through the slab at steady
state is

(20.16)

where Tc and Th are the temperatures of the outer surfaces (which are held constant)
and the summation is over all slabs. Example 20.9 shows how this equation results from
a consideration of two thicknesses of materials.

! !
A(Th & Tc)

'
i

(Li /k i)

! ! k A $ Th & Tc

L %

S E C T I O N  2 0 . 7   •   Energy Transfer Mechanisms 625

Example 20.9 Energy Transfer Through Two Slabs

Two slabs of thickness L1 and L2 and thermal conductivities
k1 and k2 are in thermal contact with each other, as shown
in Figure 20.12. The temperatures of their outer surfaces
are Tc and Th , respectively, and Th ( Tc . Determine the tem-
perature at the interface and the rate of energy transfer by
conduction through the slabs in the steady-state condition.

Solution To conceptualize this problem, notice the phrase
“in the steady-state condition.” We interpret this to mean
that energy transfers through the compound slab at the
same rate at all points. Otherwise, energy would be building
up or disappearing at some point. Furthermore, the temper-
ature will vary with position in the two slabs, most likely at
different rates in each part of the compound slab. Thus,
there will be some fixed temperature T at the interface

when the system is in steady state. We categorize this as a
thermal conduction problem and impose the condition that
the power is the same in both slabs of material. To analyze
the problem, we use Equation 20.15 to express the rate at
which energy is transferred through slab 1:

The rate at which energy is transferred through slab 2 is

When a steady state is reached, these two rates must be
equal; hence,

Solving for T gives

(3) T !

Substituting Equation (3) into either Equation (1) or Equa-
tion (2), we obtain

(4) ! !

To finalize this problem, note that extension of this proce-
dure to several slabs of materials leads to Equation 20.16.

A(Th & Tc)
(L1/k1) " (L2/k2)

k1L2Tc " k2L1Th

k1L2 " k2L1

k1A $ T & Tc

L1
% ! k2A $ Th & T

L2
%

(2)   !2 ! k2A $ Th & T
L2

%

(1)   !1 ! k1A $ T & Tc

L1
%

L 2 L 1

T h k 2 k 1 T c

T
Figure 20.12 (Example 20.9) Energy transfer by conduction
through two slabs in thermal contact with each other. At steady
state, the rate of energy transfer through slab 1 equals the rate
of energy transfer through slab 2.



Home Insulation

In engineering practice, the term L/k for a particular substance is referred to as the R
value of the material. Thus, Equation 20.16 reduces to

(20.17)

where Ri ! Li/ki . The R values for a few common building materials are given in Table
20.4. In the United States, the insulating properties of materials used in buildings are
usually expressed in U.S. customary units, not SI units. Thus, in Table 20.4, measure-
ments of R values are given as a combination of British thermal units, feet, hours, and
degrees Fahrenheit.

At any vertical surface open to the air, a very thin stagnant layer of air adheres to
the surface. One must consider this layer when determining the R value for a wall.
The thickness of this stagnant layer on an outside wall depends on the speed of the
wind. Energy loss from a house on a windy day is greater than the loss on a day
when the air is calm. A representative R value for this stagnant layer of air is given in
Table 20.4.

! !
A(Th & Tc)

'
i

Ri
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What If? Suppose you are building an insulated container
with two layers of insulation and the rate of energy transfer de-
termined by Equation (4) turns out to be too high. You have
enough room to increase the thickness of one of the two lay-
ers by 20%. How would you decide which layer to choose?

Answer To decrease the power as much as possible, you
must increase the denominator in Equation (4) as much as

possible. Whichever thickness you choose to increase, L1 or
L2, you will increase the corresponding term L/k in the de-
nominator by 20%. In order for this percentage change to
represent the largest absolute change, you want to take
20% of the larger term. Thus, you should increase the
thickness of the layer that has the larger value of L/k.

Energy is conducted from the
inside to the exterior more rapidly
on the part of the roof where the
snow has melted. The dormer
appears to have been added and
insulated. The main roof does not
appear to be well insulated.
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Quick Quiz 20.7 Will an ice cube wrapped in a wool blanket remain frozen
for (a) a shorter length of time (b) the same length of time (c) a longer length of time
than an identical ice cube exposed to air at room temperature?

Quick Quiz 20.8 You have two rods of the same length and diameter but
they are formed from different materials. The rods will be used to connect two regions
of different temperature such that energy will transfer through the rods by heat. They
can be connected in series, as in Figure 20.13a, or in parallel, as in Figure 20.13b. In
which case is the rate of energy transfer by heat larger? (a) when the rods are in series
(b) when the rods are in parallel (c) The rate is the same in both cases.

Th Tc
Rod 1 Rod 2

(a)

Th Tc

Rod 1

Rod 2

(b)

Figure 20.13 (Quick Quiz 20.8) In which case is the rate of energy transfer larger?



Convection

At one time or another, you probably have warmed your hands by holding them over
an open flame. In this situation, the air directly above the flame is heated and expands.
As a result, the density of this air decreases and the air rises. This hot air warms your
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Example 20.10 The R Value of a Typical Wall

Calculate the total R value for a wall constructed as shown in
Figure 20.14a. Starting outside the house (toward the front
in the figure) and moving inward, the wall consists of 4 in.
of brick, 0.5 in. of sheathing, an air space 3.5 in. thick, and
0.5 in. of drywall. Do not forget the stagnant air layers inside
and outside the house.

Solution Referring to Table 20.4, we find that

R1 (outside stagnant air layer) ! 0.17 ft2 $ °F $ h/Btu

R2 (brick) ! 4.00 ft2 $ °F $ h/Btu

R3 (sheathing) ! 1.32 ft2 $ °F $ h/Btu

R4 (air space) ! 1.01 ft2 $ °F $ h/Btu

R5 (drywall) ! 0.45 ft2 $ °F $ h/Btu

R6 (inside stagnant air layer) ! 0.17 ft2 $ °F $ h/Btu

R total !

What If? You are not happy with this total R value for the
wall. You cannot change the overall structure, but you can fill
the air space as in Figure 20.14b. What material should you

7.12 ft2$)F$h/Btu

choose to fill the air space in order to maximize the total
R value?

Answer Looking at Table 20.4, we see that 3.5 in. of fiber-
glass insulation is over ten times as effective at insulating the
wall as 3.5 in. of air. Thus, we could fill the air space with
fiberglass insulation. The result is that we add 10.90
ft2 $ °F $ h/Btu of R value and we lose 1.01 ft2 $ °F $ h/Btu due
to the air space we have replaced, for a total change of 10.90
ft2 $ °F $ h/Btu & 1.01 ft2 $ °F $ h/Btu ! 9.89 ft2 $ °F $ h/Btu.
The new total R value is 7.12 ft2 $ °F $ h/Btu " 9.89
ft2 $ °F $ h/Btu ! 17.01 ft2 $ °F $ h/Btu.

R Values for Some Common Building Materials

Table 20.4

R value 
Material (ft2 ! °F !h/Btu)

Hardwood siding (1 in. thick) 0.91
Wood shingles (lapped) 0.87
Brick (4 in. thick) 4.00
Concrete block (filled cores) 1.93
Fiberglass insulation (3.5 in. thick) 10.90
Fiberglass insulation (6 in. thick) 18.80
Fiberglass board (1 in. thick) 4.35
Cellulose fiber (1 in. thick) 3.70
Flat glass (0.125 in. thick) 0.89
Insulating glass (0.25-in. space) 1.54
Air space (3.5 in. thick) 1.01
Stagnant air layer 0.17
Drywall (0.5 in. thick) 0.45
Sheathing (0.5 in. thick) 1.32

Sheathing

Insulation

Brick

Air
space

(a) (b)

Dry wall

Figure 20.14 (Example 20.10) An exterior house wall
containing (a) an air space and (b) insulation.

Interactive

Study the R values of various types of common building materials at the Interactive Worked Example link at
http://www.pse6.com.



hands as it flows by. Energy transferred by the movement of a warm substance is
said to have been transferred by convection. When the movement results from
differences in density, as with air around a fire, it is referred to as natural convection. Air
flow at a beach is an example of natural convection, as is the mixing that occurs as sur-
face water in a lake cools and sinks (see Section 19.4). When the heated substance is
forced to move by a fan or pump, as in some hot-air and hot-water heating systems, the
process is called forced convection.

If it were not for convection currents, it would be very difficult to boil water. As wa-
ter is heated in a teakettle, the lower layers are warmed first. This water expands and
rises to the top because its density is lowered. At the same time, the denser, cool water
at the surface sinks to the bottom of the kettle and is heated.

The same process occurs when a room is heated by a radiator. The hot radiator
warms the air in the lower regions of the room. The warm air expands and rises to the
ceiling because of its lower density. The denser, cooler air from above sinks, and the
continuous air current pattern shown in Figure 20.15 is established.

Radiation

The third means of energy transfer that we shall discuss is radiation. All objects 
radiate energy continuously in the form of electromagnetic waves (see Chapter 34)
produced by thermal vibrations of the molecules. You are likely familiar with 
electromagnetic radiation in the form of the orange glow from an electric stove
burner, an electric space heater, or the coils of a toaster.

The rate at which an object radiates energy is proportional to the fourth power of
its absolute temperature. This is known as Stefan’s law and is expressed in equation
form as

(20.18)

where ! is the power in watts radiated from the surface of the object, / is a constant
equal to 5.669 6 % 10& 8 W/m2 $ K4, A is the surface area of the object in square me-
ters, e is the emissivity, and T is the surface temperature in kelvins. The value of e can
vary between zero and unity, depending on the properties of the surface of the object.
The emissivity is equal to the absorptivity, which is the fraction of the incoming radia-
tion that the surface absorbs.

Approximately 1 340 J of electromagnetic radiation from the Sun passes 
perpendicularly through each 1 m2 at the top of the Earth’s atmosphere every second.
This radiation is primarily visible and infrared light accompanied by a significant
amount of ultraviolet radiation. We shall study these types of radiation in detail in
Chapter 34. Some of this energy is reflected back into space, and some is absorbed by
the atmosphere. However, enough energy arrives at the surface of the Earth each day
to supply all our energy needs on this planet hundreds of times over—if only it could
be captured and used efficiently. The growth in the number of solar energy–powered
houses built in this country reflects the increasing efforts being made to use this abun-
dant energy. Radiant energy from the Sun affects our day-to-day existence in a number
of ways. For example, it influences the Earth’s average temperature, ocean currents,
agriculture, and rain patterns.

What happens to the atmospheric temperature at night is another example of the
effects of energy transfer by radiation. If there is a cloud cover above the Earth, the wa-
ter vapor in the clouds absorbs part of the infrared radiation emitted by the Earth and
re-emits it back to the surface. Consequently, temperature levels at the surface remain
moderate. In the absence of this cloud cover, there is less in the way to prevent this ra-
diation from escaping into space; thus the temperature decreases more on a clear
night than on a cloudy one.

As an object radiates energy at a rate given by Equation 20.18, it also absorbs elec-
tromagnetic radiation. If the latter process did not occur, an object would eventually

! ! /AeT 4
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Figure 20.15 Convection currents
are set up in a room warmed by a
radiator.

Stefan’s law



radiate all its energy, and its temperature would reach absolute zero. The energy an
object absorbs comes from its surroundings, which consist of other objects that radi-
ate energy. If an object is at a temperature T and its surroundings are at an average
temperature T0, then the net rate of energy gained or lost by the object as a result of
radiation is

(20.19)

When an object is in equilibrium with its surroundings, it radiates and absorbs
energy at the same rate, and its temperature remains constant. When an object is
hotter than its surroundings, it radiates more energy than it absorbs, and its tempera-
ture decreases. 

An ideal absorber is defined as an object that absorbs all the energy incident on it,
and for such an object, e ! 1. An object for which e ! 1 is often referred to as a black
body. We shall investigate experimental and theoretical approaches to radiation from a
black body in Chapter 40. An ideal absorber is also an ideal radiator of energy. In 
contrast, an object for which e ! 0 absorbs none of the energy incident on it. Such an
object reflects all the incident energy, and thus is an ideal reflector.

The Dewar Flask

The Dewar flask7 is a container designed to minimize energy losses by conduction, con-
vection, and radiation. Such a container is used to store either cold or hot liquids for
long periods of time. (A Thermos bottle is a common household equivalent of a Dewar
flask.) The standard construction (Fig. 20.16) consists of a double-walled Pyrex glass
vessel with silvered walls. The space between the walls is evacuated to minimize energy
transfer by conduction and convection. The silvered surfaces minimize energy transfer
by radiation because silver is a very good reflector and has very low emissivity. A further
reduction in energy loss is obtained by reducing the size of the neck. Dewar flasks are
commonly used to store liquid nitrogen (boiling point: 77 K) and liquid oxygen (boil-
ing point: 90 K).

To confine liquid helium (boiling point: 4.2 K), which has a very low heat of vapor-
ization, it is often necessary to use a double Dewar system, in which the Dewar flask
containing the liquid is surrounded by a second Dewar flask. The space between the
two flasks is filled with liquid nitrogen.

Newer designs of storage containers use “super insulation” that consists of many
layers of reflecting material separated by fiberglass. All of this is in a vacuum, and no
liquid nitrogen is needed with this design.

!net ! /Ae(T 4 & T0 

4)
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7 Invented by Sir James Dewar (1842–1923).

Vacuum

Silvered
surfaces

Hot or
cold

liquid

Figure 20.16 A cross-sectional
view of a Dewar flask, which is used
to store hot or cold substances.

Example 20.11 Who Turned Down the Thermostat?

A student is trying to decide what to wear. The surroundings
(his bedroom) are at 20.0°C. If the skin temperature of the
unclothed student is 35°C, what is the net energy loss from
his body in 10.0 min by radiation? Assume that the emissivity
of skin is 0.900 and that the surface area of the student is
1.50 m2.

Solution Using Equation 20.19, we find that the net rate of
energy loss from the skin is

!net ! /Ae(T 4 & T0 

4)

At this rate, the total energy lost by the skin in 10 min is

Note that the energy radiated by the student is roughly
equivalent to that produced by two 60-W light bulbs!

7.5 % 104 JQ ! !net #t ! (125 W)(600 s) !

%(0.900)[(308 K)4 & (293 K)4] ! 125 W

 ! (5.67 % 10&8 W/m2$K4)(1.50 m2)



630 C H A P T E R  2 0   •   Heat and the First Law of Thermodynamics

Internal energy is all of a system’s energy that is associated with the system’s mi-
croscopic components. Internal energy includes kinetic energy of random translation,
rotation, and vibration of molecules, potential energy within molecules, and potential
energy between molecules.

Heat is the transfer of energy across the boundary of a system resulting from a tem-
perature difference between the system and its surroundings. We use the symbol Q for
the amount of energy transferred by this process.

The calorie is the amount of energy necessary to raise the temperature of 1 g of
water from 14.5°C to 15.5°C. The mechanical equivalent of heat is 1 cal ! 4.186 J.

The heat capacity C of any sample is the amount of energy needed to raise the
temperature of the sample by 1°C. The energy Q required to change the temperature
of a mass m of a substance by an amount #T is

Q ! mc #T (20.4)

where c is the specific heat of the substance.
The energy required to change the phase of a pure substance of mass m is

Q ! * mL (20.6)

where L is the latent heat of the substance and depends on the nature of the phase
change and the properties of the substance. The positive sign is used if energy is enter-
ing the system, and the negative sign is used if energy is leaving.

The work done on a gas as its volume changes from some initial value Vi to some
final value Vf is

(20.8)

where P is the pressure, which may vary during the process. In order to evaluate W, the
process must be fully specified—that is, P and V must be known during each step. In
other words, the work done depends on the path taken between the initial and final
states.

The first law of thermodynamics states that when a system undergoes a change
from one state to another, the change in its internal energy is

(20.9)

where Q is the energy transferred into the system by heat and W is the work done on
the system. Although Q and W both depend on the path taken from the initial state to
the final state, the quantity #Eint is path-independent. 

In a cyclic process (one that originates and terminates at the same state),
#E int ! 0 and, therefore, Q ! & W. That is, the energy transferred into the system by
heat equals the negative of the work done on the system during the process.

In an adiabatic process, no energy is transferred by heat between the system and
its surroundings (Q ! 0). In this case, the first law gives #E int ! W. That is, the inter-
nal energy changes as a consequence of work being done on the system. In the adia-
batic free expansion of a gas Q ! 0 and W ! 0, and so #E int ! 0. That is, the internal
energy of the gas does not change in such a process.

An isobaric process is one that occurs at constant pressure. The work done on a
gas in such a process is W ! & P(Vf & Vi).

An isovolumetric process is one that occurs at constant volume. No work is done
in such a process, so #E int ! Q.

An isothermal process is one that occurs at constant temperature. The work done
on an ideal gas during an isothermal process is

(20.13)W ! nRT  ln $ Vi

Vf
%

#Eint ! Q " W

W ! &"Vf

Vi

 P dV

S U M M A RY

Take a practice test for
this chapter by clicking on
the Practice Test link at
http://www.pse6.com.



Questions 631

Energy may be transferred by work, which we addressed in Chapter 7, and by
conduction, convection, or radiation. Conduction can be viewed as an exchange of
kinetic energy between colliding molecules or electrons. The rate of energy transfer by
conduction through a slab of area A is

(20.14)

where k is the thermal conductivity of the material from which the slab is made
and is the temperature gradient. This equation can be used in many situa-
tions in which the rate of transfer of energy through materials is important.

In convection, a warm substance transfers energy from one location to another.
All objects emit radiation in the form of electromagnetic waves at the rate

! ! /AeT 4 (20.18)

An object that is hotter than its surroundings radiates more energy than it absorbs,
whereas an object that is cooler than its surroundings absorbs more energy than it
radiates.

&dT/dx&

! ! kA& dT
dx &

1. Clearly distinguish among temperature, heat, and internal
energy.

2. Ethyl alcohol has about half the specific heat of water. If
equal-mass samples of alcohol and water in separate
beakers are supplied with the same amount of energy,
compare the temperature increases of the two liquids.

3. A small metal crucible is taken from a 200°C oven and im-
mersed in a tub full of water at room temperature (this
process is often referred to as quenching). What is the ap-
proximate final equilibrium temperature?

4. What is a major problem that arises in measuring specific
heats if a sample with a temperature above 100°C is placed
in water?

5. In a daring lecture demonstration, an instructor dips his wet-
ted fingers into molten lead (327°C) and withdraws them
quickly, without getting burned. How is this possible? (This is
a dangerous experiment, which you should NOT attempt.)

What is wrong with the following statement? “Given any
two objects, the one with the higher temperature contains
more heat.”

7. Why is a person able to remove a piece of dry aluminum
foil from a hot oven with bare fingers, while a burn results
if there is moisture on the foil? 

The air temperature above coastal areas is profoundly influ-
enced by the large specific heat of water. One reason is that
the energy released when 1 m3 of water cools by 1°C will
raise the temperature of a much larger volume of air by 1°C.
Find this volume of air. The specific heat of air is approxi-
mately 1 kJ/kg $°C. Take the density of air to be 1.3 kg/m3.

9. Concrete has a higher specific heat than soil. Use this fact
to explain (partially) why cities have a higher average
nighttime temperature than the surrounding countryside.
If a city is hotter than the surrounding countryside, would
you expect breezes to blow from city to country or from
country to city? Explain.

Using the first law of thermodynamics, explain why the
total energy of an isolated system is always constant.

10.

8.

6.

11. When a sealed Thermos bottle full of hot coffee is shaken,
what are the changes, if any, in (a) the temperature of the
coffee (b) the internal energy of the coffee?

12. Is it possible to convert internal energy to mechanical
energy? Explain with examples.

13. The U.S. penny was formerly made mostly of copper and is
now made of copper-coated zinc. Can a calorimetric exper-
iment be devised to test for the metal content in a collec-
tion of pennies? If so, describe the procedure you would
use.

14. Figure Q20.14 shows a pattern formed by snow on the roof
of a barn. What causes the alternating pattern of snow-
covered and exposed roof ? 

15. A tile floor in a bathroom may feel uncomfortably cold to
your bare feet, but a carpeted floor in an adjoining room
at the same temperature will feel warm. Why?

16. Why can potatoes be baked more quickly when a metal
skewer has been inserted through them?

Q U E S T I O N S

Figure Q20.14 Alternating patterns on a snow-covered roof.
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17. A piece of paper is wrapped around a rod made half of
wood and half of copper. When held over a flame, the pa-
per in contact with the wood burns but the half in contact
with the metal does not. Explain.

18. Why do heavy draperies over the windows help keep a
home cool in the summer, as well as warm in the winter?

19. If you wish to cook a piece of meat thoroughly on an open
fire, why should you not use a high flame? (Note that car-
bon is a good thermal insulator.)

20. In an experimental house, Styrofoam beads were pumped
into the air space between the panes of glass in double
windows at night in the winter, and pumped out to hold-
ing bins during the day. How would this assist in conserv-
ing energy in the house?

21. Pioneers stored fruits and vegetables in underground cel-
lars. Discuss the advantages of this choice for a storage site.

22. The pioneers referred to in the last question found that a
large tub of water placed in a storage cellar would prevent
their food from freezing on really cold nights. Explain why
this is so.

23. When camping in a canyon on a still night, one notices
that as soon as the sun strikes the surrounding peaks, a
breeze begins to stir. What causes the breeze?

24. Updrafts of air are familiar to all pilots and are used to keep
nonmotorized gliders aloft. What causes these currents?

25. If water is a poor thermal conductor, why can its tempera-
ture be raised quickly when it is placed over a flame?

26. Why is it more comfortable to hold a cup of hot tea by the
handle rather than by wrapping your hands around the
cup itself?

27. If you hold water in a paper cup over a flame, you can
bring the water to a boil without burning the cup. How is
this possible?

28. You need to pick up a very hot cooking pot in your
kitchen. You have a pair of hot pads. Should you soak
them in cold water or keep them dry, to be able to pick up
the pot most comfortably?

29. Suppose you pour hot coffee for your guests, and one of
them wants to drink it with cream, several minutes later,
and then as warm as possible. In order to have the warmest

coffee, should the person add the cream just after the cof-
fee is poured or just before drinking? Explain.

30. Two identical cups both at room temperature are filled
with the same amount of hot coffee. One cup contains a
metal spoon, while the other does not. If you wait for sev-
eral minutes, which of the two will have the warmer cof-
fee? Which energy transfer process explains your answer?

31. A warning sign often seen on highways just before a bridge
is “Caution—Bridge surface freezes before road surface.”
Which of the three energy transfer processes discussed in
Section 20.7 is most important in causing a bridge surface
to freeze before a road surface on very cold days?

32. A professional physics teacher drops one marshmallow into
a flask of liquid nitrogen, waits for the most energetic boil-
ing to stop, fishes it out with tongs, shakes it off, pops it into
his mouth, chews it up, and swallows it. Clouds of ice crystals
issue from his mouth as he crunches noisily and comments
on the sweet taste. How can he do this without injury?
Caution: Liquid nitrogen can be a dangerous substance and
you should not try this yourself. The teacher might be badly
injured if he did not shake it off, if he touched the tongs to
a tooth, or if he did not start with a mouthful of saliva.

33. In 1801 Humphry Davy rubbed together pieces of ice inside
an ice-house. He took care that nothing in their environ-
ment was at a higher temperature than the rubbed pieces.
He observed the production of drops of liquid water. Make a
table listing this and other experiments or processes, to illus-
trate each of the following. (a) A system can absorb energy
by heat, increase in internal energy, and increase in tempera-
ture. (b) A system can absorb energy by heat and increase in
internal energy, without an increase in temperature. (c) A
system can absorb energy by heat without increasing in tem-
perature or in internal energy. (d) A system can increase in
internal energy and in temperature, without absorbing en-
ergy by heat. (e) A system can increase in internal energy
without absorbing energy by heat or increasing in tempera-
ture. (f) What If ? If a system’s temperature increases, is it
necessarily true that its internal energy increases?

34. Consider the opening photograph for Part 3 on page 578.
Discuss the roles of conduction, convection, and radiation
in the operation of the cooling fins on the support posts of
the Alaskan oil pipeline.

Section 20.1 Heat and Internal Energy 

On his honeymoon James Joule traveled from England to
Switzerland. He attempted to verify his idea of the inter-
convertibility of mechanical energy and internal energy by
measuring the increase in temperature of water that fell in
a waterfall. If water at the top of an alpine waterfall has a
temperature of 10.0°C and then falls 50.0 m (as at Niagara

1.

Falls), what maximum temperature at the bottom of the
falls could Joule expect? He did not succeed in measuring
the temperature change, partly because evaporation
cooled the falling water, and also because his thermometer
was not sufficiently sensitive. 

2. Consider Joule’s apparatus described in Figure 20.1. The
mass of each of the two blocks is 1.50 kg, and the insulated

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide

= coached solution with hints available at http://www.pse6.com = computer useful in solving problem

= paired numerical and symbolic problems

P R O B L E M S



Problems 633

tank is filled with 200 g of water. What is the increase in
the temperature of the water after the blocks fall through
a distance of 3.00 m?

Section 20.2 Specific Heat and Calorimetry

The temperature of a silver bar rises by 10.0°C when it ab-
sorbs 1.23 kJ of energy by heat. The mass of the bar is
525 g. Determine the specific heat of silver.

4. A 50.0-g sample of copper is at 25.0°C. If 1 200 J of energy
is added to it by heat, what is the final temperature of the
copper?

5. Systematic use of solar energy can yield a large saving in
the cost of winter space heating for a typical house in the
north central United States. If the house has good insula-
tion, you may model it as losing energy by heat steadily at
the rate 6 000 W on a day in April when the average exte-
rior temperature is 4°C, and when the conventional heat-
ing system is not used at all. The passive solar energy col-
lector can consist simply of very large windows in a room
facing south. Sunlight shining in during the daytime is ab-
sorbed by the floor, interior walls, and objects in the room,
raising their temperature to 38°C. As the sun goes down,
insulating draperies or shutters are closed over the win-
dows. During the period between 5:00 P.M. and 7:00 A.M.
the temperature of the house will drop, and a sufficiently
large “thermal mass” is required to keep it from dropping
too far. The thermal mass can be a large quantity of stone
(with specific heat 850 J/kg $ °C) in the floor and the inte-
rior walls exposed to sunlight. What mass of stone is re-
quired if the temperature is not to drop below 18°C
overnight?

6. The Nova laser at Lawrence Livermore National Labora-
tory in California is used in studies of initiating controlled
nuclear fusion (Section 45.4). It can deliver a power of
1.60 % 1013 W over a time interval of 2.50 ns. Compare its
energy output in one such time interval to the energy re-
quired to make a pot of tea by warming 0.800 kg of water
from 20.0°C to 100°C.

A 1.50-kg iron horseshoe initially at 600°C is dropped
into a bucket containing 20.0 kg of water at 25.0°C. What
is the final temperature? (Ignore the heat capacity of the
container, and assume that a negligible amount of water
boils away.)

8. An aluminum cup of mass 200 g contains 800 g of water
in thermal equilibrium at 80.0°C. The combination of
cup and water is cooled uniformly so that the tempera-
ture decreases by 1.50°C per minute. At what rate is en-
ergy being removed by heat? Express your answer in
watts.

9. An aluminum calorimeter with a mass of 100 g contains
250 g of water. The calorimeter and water are in thermal
equilibrium at 10.0°C. Two metallic blocks are placed into
the water. One is a 50.0-g piece of copper at 80.0°C. The
other block has a mass of 70.0 g and is originally at a tem-
perature of 100°C. The entire system stabilizes at a final
temperature of 20.0°C. (a) Determine the specific heat of
the unknown sample. (b) Guess the material of the un-
known, using the data in Table 20.1.

7.

3.

10. A 3.00-g copper penny at 25.0°C drops 50.0 m to the
ground. (a) Assuming that 60.0% of the change in poten-
tial energy of the penny–Earth system goes into increasing
the internal energy of the penny, determine its final tem-
perature. (b) What If ? Does the result depend on the mass
of the penny? Explain.

11. A combination of 0.250 kg of water at 20.0°C, 0.400 kg of
aluminum at 26.0°C, and 0.100 kg of copper at 100°C is
mixed in an insulated container and allowed to come to
thermal equilibrium. Ignore any energy transfer to or
from the container and determine the final temperature
of the mixture.

12. If water with a mass mh at temperature Th is poured into an
aluminum cup of mass mAl containing mass mc of water at
Tc , where Th ( Tc , what is the equilibrium temperature of
the system?

13. A water heater is operated by solar power. If the solar col-
lector has an area of 6.00 m2 and the intensity delivered by
sunlight is 550 W/m2, how long does it take to increase
the temperature of 1.00 m3 of water from 20.0°C to
60.0°C?

14. Two thermally insulated vessels are connected by a narrow
tube fitted with a valve that is initially closed. One vessel, of
volume 16.8 L, contains oxygen at a temperature of 300 K
and a pressure of 1.75 atm. The other vessel, of volume
22.4 L, contains oxygen at a temperature of 450 K and a
pressure of 2.25 atm. When the valve is opened, the gases
in the two vessels mix, and the temperature and pressure
become uniform throughout. (a) What is the final temper-
ature? (b) What is the final pressure?

Section 20.3 Latent Heat 

15. How much energy is required to change a 40.0-g ice cube
from ice at &10.0°C to steam at 110°C?

16. A 50.0-g copper calorimeter contains 250 g of water at
20.0°C. How much steam must be condensed into the wa-
ter if the final temperature of the system is to reach
50.0°C?

A 3.00-g lead bullet at 30.0°C is fired at a speed of 240 m/s
into a large block of ice at 0°C, in which it becomes em-
bedded. What quantity of ice melts?

18. Steam at 100°C is added to ice at 0°C. (a) Find the amount
of ice melted and the final temperature when the mass of
steam is 10.0 g and the mass of ice is 50.0 g. (b) What If ?
Repeat when the mass of steam is 1.00 g and the mass of
ice is 50.0 g.

19. A 1.00-kg block of copper at 20.0°C is dropped into a large
vessel of liquid nitrogen at 77.3 K. How many kilograms of
nitrogen boil away by the time the copper reaches 77.3 K?
(The specific heat of copper is 0.092 0 cal/g $ °C. The la-
tent heat of vaporization of nitrogen is 48.0 cal/g.)

20. Assume that a hailstone at 0°C falls through air at a uni-
form temperature of 0°C and lands on a sidewalk also at
this temperature. From what initial height must the hail-
stone fall in order to entirely melt on impact?

In an insulated vessel, 250 g of ice at 0°C is added to
600 g of water at 18.0°C. (a) What is the final temperature

21.

17.



of the system? (b) How much ice remains when the system
reaches equilibrium?

22. Review problem. Two speeding lead bullets, each of mass
5.00 g, and at temperature 20.0°C, collide head-on at
speeds of 500 m/s each. Assuming a perfectly inelastic col-
lision and no loss of energy by heat to the atmosphere, de-
scribe the final state of the two-bullet system.

Section 20.4 Work and Heat in Thermodynamic
Processes

A sample of ideal gas is expanded to twice its original
volume of 1.00 m3 in a quasi-static process for which
P ! ,V 2, with , ! 5.00 atm/m6, as shown in Figure
P20.23. How much work is done on the expanding gas?

23.

24. (a) Determine the work done on a fluid that expands from
i to f as indicated in Figure P20.24. (b) What If? How
much work is performed on the fluid if it is compressed
from f to i along the same path?

An ideal gas is enclosed in a cylinder with a movable
piston on top of it. The piston has a mass of 8 000 g and
an area of 5.00 cm2 and is free to slide up and down, keep-
ing the pressure of the gas constant. How much work is
done on the gas as the temperature of 0.200 mol of the gas
is raised from 20.0°C to 300°C?

26. An ideal gas is enclosed in a cylinder that has a movable
piston on top. The piston has a mass m and an area A and
is free to slide up and down, keeping the pressure of the
gas constant. How much work is done on the gas as the
temperature of n mol of the gas is raised from T1 to T2?

25.

27. One mole of an ideal gas is heated slowly so that it goes
from the PV state (Pi , Vi) to (3Pi , 3Vi) in such a way that the
pressure is directly proportional to the volume. (a) How
much work is done on the gas in the process? (b) How is
the temperature of the gas related to its volume during this
process?

Section 20.5 The First Law of Thermodynamics

28. A gas is compressed at a constant pressure of 0.800 atm
from 9.00 L to 2.00 L. In the process, 400 J of energy
leaves the gas by heat. (a) What is the work done on the
gas? (b) What is the change in its internal energy?

A thermodynamic system undergoes a process in which its
internal energy decreases by 500 J. At the same time, 220 J
of work is done on the system. Find the energy transferred
to or from it by heat.

30. A gas is taken through the cyclic process described in Fig-
ure P20.30. (a) Find the net energy transferred to the sys-
tem by heat during one complete cycle. (b) What If? If the
cycle is reversed—that is, the process follows the path
ACBA—what is the net energy input per cycle by heat?

29.

31. Consider the cyclic process depicted in Figure P20.30. If Q
is negative for the process BC and #E int is negative for the
process CA, what are the signs of Q , W, and #E int that are
associated with each process?

32. A sample of an ideal gas goes through the process shown
in Figure P20.32. From A to B, the process is adiabatic;
from B to C, it is isobaric with 100 kJ of energy entering
the system by heat.  From C to D, the process is isothermal;
from D to A, it is isobaric with 150 kJ of energy leaving the
system by heat. Determine the difference in internal en-
ergy E int, B & E int, A.
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33. A sample of an ideal gas is in a vertical cylinder fitted with
a piston. As 5.79 kJ of energy is transferred to the gas by
heat to raise its temperature, the weight on the piston is
adjusted so that the state of the gas changes from point A
to point B along the semicircle shown in Figure P20.33.
Find the change in internal energy of the gas. 

Section 20.6 Some Applications of the First Law 
of Thermodynamics

34. One mole of an ideal gas does 3 000 J of work on its sur-
roundings as it expands isothermally to a final pressure of
1.00 atm and volume of 25.0 L. Determine (a) the initial
volume and (b) the temperature of the gas.

An ideal gas initially at 300 K undergoes an isobaric expan-
sion at 2.50 kPa. If the volume increases from 1.00 m3 to
3.00 m3 and 12.5 kJ is transferred to the gas by heat, what
are (a) the change in its internal energy and (b) its final
temperature?

36. A 1.00-kg block of aluminum is heated at atmospheric pres-
sure so that its temperature increases from 22.0°C to 40.0°C.
Find (a) the work done on the aluminum, (b) the energy
added to it by heat, and (c) the change in its internal energy.

How much work is done on the steam when 1.00 mol of
water at 100°C boils and becomes 1.00 mol of steam at
100°C at 1.00 atm pressure? Assuming the steam to behave
as an ideal gas, determine the change in internal energy of
the material as it vaporizes.

38. An ideal gas initially at Pi , Vi , and Ti is taken through a cy-
cle as in Figure P20.38. (a) Find the net work done on the
gas per cycle. (b) What is the net energy added by heat to
the system per cycle? (c) Obtain a numerical value for the
net work done per cycle for 1.00 mol of gas initially at 0°C.

37.

35.

A 2.00-mol sample of helium gas initially at 300 K and
0.400 atm is compressed isothermally to 1.20 atm. Noting
that the helium behaves as an ideal gas, find (a) the final
volume of the gas, (b) the work done on the gas, and
(c) the energy transferred by heat. 

40. In Figure P20.40, the change in internal energy of a gas
that is taken from A to C is " 800 J. The work done on the
gas along path ABC is &500 J. (a) How much energy must
be added to the system by heat as it goes from A through B
to C ? (b) If the pressure at point A is five times that of
point C, what is the work done on the system in going
from C to D? (c) What is the energy exchanged with the
surroundings by heat as the cycle goes from C to A along
the green path? (d) If the change in internal energy in go-
ing from point D to point A is " 500 J, how much energy
must be added to the system by heat as it goes from point
C to point D ?

39.

Section 20.7 Energy-Transfer Mechanisms

41. A box with a total surface area of 1.20 m2 and a wall thick-
ness of 4.00 cm is made of an insulating material. A 10.0-W
electric heater inside the box maintains the inside temper-
ature at 15.0°C above the outside temperature. Find the
thermal conductivity k of the insulating material.

42. A glass window pane has an area of 3.00 m2 and a thick-
ness of 0.600 cm. If the temperature difference between its
faces is 25.0°C, what is the rate of energy transfer by con-
duction through the window? 

A bar of gold is in thermal contact with a bar of silver of
the same length and area (Fig. P20.43). One end of the
compound bar is maintained at 80.0°C while the opposite
end is at 30.0°C. When the energy transfer reaches steady
state, what is the temperature at the junction?

43.

44. A thermal window with an area of 6.00 m2 is constructed
of two layers of glass, each 4.00 mm thick, and separated
from each other by an air space of 5.00 mm. If the inside
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surface is at 20.0°C and the outside is at &30.0°C, what
is the rate of energy transfer by conduction through the
window?

45. A power transistor is a solid-state electronic device. Assume
that energy entering the device at the rate of 1.50 W by
electrical transmission causes the internal energy of the
device to increase. The surface area of the transistor is so
small that it tends to overheat. To prevent overheating, the
transistor is attached to a larger metal heat sink with fins.
The temperature of the heat sink remains constant at
35.0°C under steady-state conditions. The transistor is elec-
trically insulated from the heat sink by a rectangular sheet
of mica measuring 8.25 mm by 6.25 mm, and 0.085 2 mm
thick. The thermal conductivity of mica is equal to 
0.075 3 W/m $ °C. What is the operating temperature of
the transistor? 

46. Calculate the R value of (a) a window made of a single pane
of flat glass in. thick, and (b) a thermal window made of
two single panes each in. thick and separated by a -in. air
space. (c) By what factor is the transfer of energy by heat
through the window reduced by using the thermal window
instead of the single pane window?

47. The surface of the Sun has a temperature of about
5 800 K. The radius of the Sun is 6.96 % 108 m. Calculate
the total energy radiated by the Sun each second. Assume
that the emissivity of the Sun is 0.965.

48. A large hot pizza floats in outer space. What is the order of
magnitude of (a) its rate of energy loss? (b) its rate of tem-
perature change? List the quantities you estimate and the
value you estimate for each.

49. The tungsten filament of a certain 100-W light bulb radi-
ates 2.00 W of light. (The other 98 W is carried away by
convection and conduction.) The filament has a surface
area of 0.250 mm2 and an emissivity of 0.950. Find the fila-
ment’s temperature. (The melting point of tungsten is 
3 683 K.)

50. At high noon, the Sun delivers 1 000 W to each square me-
ter of a blacktop road. If the hot asphalt loses energy only
by radiation, what is its equilibrium temperature?

51. The intensity of solar radiation reaching the top of the
Earth’s atmosphere is 1 340 W/m2. The temperature of
the Earth is affected by the so-called greenhouse effect of
the atmosphere. That effect makes our planet’s emissivity
for visible light higher than its emissivity for infrared light.
For comparison, consider a spherical object with no atmos-
phere, at the same distance from the Sun as the Earth. 
Assume that its emissivity is the same for all kinds of elec-
tromagnetic waves and that its temperature is uniform
over its surface. Identify the projected area over which it
absorbs sunlight and the surface area over which it radi-
ates. Compute its equilibrium temperature.  Chilly, isn’t it?
Your calculation applies to (a) the average temperature of
the Moon, (b) astronauts in mortal danger aboard the
crippled Apollo 13 spacecraft, and (c) global catastrophe
on the Earth if widespread fires should cause a layer of
soot to accumulate throughout the upper atmosphere, so
that most of the radiation from the Sun were absorbed
there rather than at the surface below the atmosphere.

1
4

1
8

1
8

Additional Problems

52. Liquid nitrogen with a mass of 100 g at 77.3 K is stirred
into a beaker containing 200 g of 5.00°C water. If the nitro-
gen leaves the solution as soon as it turns to gas, how much
water freezes? (The latent heat of vaporization of nitrogen
is 48.0 cal/g, and the latent heat of fusion of water is
79.6 cal/g.)

53. A 75.0-kg cross-country skier moves across the snow (Fig.
P20.53). The coefficient of friction between the skis and
the snow is 0.200. Assume that all the snow beneath his skis
is at 0°C and that all the internal energy generated by fric-
tion is added to the snow, which sticks to his skis until it
melts. How far would he have to ski to melt 1.00 kg of
snow?

54. On a cold winter day you buy roasted chestnuts from a
street vendor. Into the pocket of your down parka you put
the change he gives you—coins constituting 9.00 g of cop-
per at &12.0°C. Your pocket already contains 14.0 g of sil-
ver coins at 30.0°C. A short time later the temperature of
the copper coins is 4.00°C and is increasing at a rate of
0.500°C/s. At this time, (a) what is the temperature of the
silver coins, and (b) at what rate is it changing?

An aluminum rod 0.500 m in length and with a cross-
sectional area of 2.50 cm2 is inserted into a thermally insu-
lated vessel containing liquid helium at 4.20 K. The rod is
initially at 300 K. (a) If half of the rod is inserted into the
helium, how many liters of helium boil off by the time the
inserted half cools to 4.20 K ? (Assume the upper half does
not yet cool.) (b) If the upper end of the rod is maintained
at 300 K, what is the approximate boil-off rate of liquid he-
lium after the lower half has reached 4.20 K? (Aluminum
has thermal conductivity of 31.0 J/s $ cm $ K at 4.2 K; ignore
its temperature variation. Aluminum has a specific heat of
0.210 cal/g $ °C and density of 2.70 g/cm3. The density of
liquid helium is 0.125 g/cm3.)

56. A copper ring (with mass of 25.0 g, coefficient of linear
expansion of 1.70 % 10&5 (°C)&1, and specific heat of
9.24 % 10&2 cal/g $ °C) has a diameter of 5.00 cm at its
temperature of 15.0°C. A spherical aluminum shell (with
mass 10.9 g, coefficient of linear expansion 2.40 % 10&5

(°C)&1, and specific heat 0.215 cal/g$°C) has a diameter of
5.01 cm at a temperature higher than 15.0°C. The sphere
is placed on top of the horizontal ring, and the two are
allowed to come to thermal equilibrium without any

55.
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Problems 637

exchange of energy with the surroundings. As soon as the
sphere and ring reach thermal equilibrium, the sphere
barely falls through the ring. Find (a) the equilibrium tem-
perature, and (b) the initial temperature of the sphere.

57. A flow calorimeter is an apparatus used to measure the spe-
cific heat of a liquid. The technique of flow calorimetry in-
volves measuring the temperature difference between the
input and output points of a flowing stream of the liquid
while energy is added by heat at a known rate. A liquid of
density - flows through the calorimeter with volume flow
rate R. At steady state, a temperature difference #T is es-
tablished between the input and output points when en-
ergy is supplied at the rate !. What is the specific heat of
the liquid?

58. One mole of an ideal gas is contained in a cylinder with a
movable piston. The initial pressure, volume, and tem-
perature are Pi , Vi , and Ti , respectively. Find the work
done on the gas for the following processes and show
each process on a PV diagram: (a) An isobaric compres-
sion in which the final volume is half the initial volume.
(b) An isothermal compression in which the final pres-
sure is four times the initial pressure. (c) An isovolumet-
ric process in which the final pressure is three times the
initial pressure.

59. One mole of an ideal gas, initially at 300 K, is cooled at
constant volume so that the final pressure is one fourth of
the initial pressure. Then the gas expands at constant pres-
sure until it reaches the initial temperature. Determine the
work done on the gas.

60. Review problem. Continue the analysis of Problem 60 in
Chapter 19. Following a collision between a large space-
craft and an asteroid, a copper disk of radius 28.0 m and
thickness 1.20 m, at a temperature of 850°C, is floating in
space, rotating about its axis with an angular speed of 
25.0 rad/s. As the disk radiates infrared light, its tempera-
ture falls to 20.0°C. No external torque acts on the disk.
(a) Find the change in kinetic energy of the disk. (b) Find
the change in internal energy of the disk. (b) Find the
amount of energy it radiates.

61. Review problem. A 670-kg meteorite happens to be com-
posed of aluminum. When it is far from the Earth, its tem-
perature is & 15°C and it moves with a speed of 14.0 km/s
relative to the Earth. As it crashes into the planet, assume
that the resulting additional internal energy is shared
equally between the meteor and the planet, and that all of
the material of the meteor rises momentarily to the same
final temperature. Find this temperature. Assume that the
specific heat of liquid and of gaseous aluminum is 
1170 J/kg $ °C.

62. An iron plate is held against an iron wheel so that a kinetic
friction force of 50.0 N acts between the two pieces of
metal. The relative speed at which the two surfaces slide
over each other is 40.0 m/s. (a) Calculate the rate at which
mechanical energy is converted to internal energy. (b) The
plate and the wheel each have a mass of 5.00 kg, and each
receives 50.0% of the internal energy. If the system is run
as described for 10.0 s and each object is then allowed to
reach a uniform internal temperature, what is the resul-
tant temperature increase?

A solar cooker consists of a curved reflecting surface
that concentrates sunlight onto the object to be warmed
(Fig. P20.63). The solar power per unit area reaching the
Earth’s surface at the location is 600 W/m2. The cooker
faces the Sun and has a diameter of 0.600 m. Assume that
40.0% of the incident energy is transferred to 0.500 L of
water in an open container, initially at 20.0°C. How long
does it take to completely boil away the water? (Ignore the
heat capacity of the container.)

63.

64. Water in an electric teakettle is boiling. The power ab-
sorbed by the water is 1.00 kW. Assuming that the pres-
sure of vapor in the kettle equals atmospheric pressure,
determine the speed of effusion of vapor from the ket-
tle’s spout, if the spout has a cross-sectional area of
2.00 cm2.

65. A cooking vessel on a slow burner contains 10.0 kg of wa-
ter and an unknown mass of ice in equilibrium at 0°C at
time t ! 0. The temperature of the mixture is measured at
various times, and the result is plotted in Figure P20.65.
During the first 50.0 min, the mixture remains at 0°C.
From 50.0 min to 60.0 min, the temperature increases to
2.00°C. Ignoring the heat capacity of the vessel, determine
the initial mass of ice.
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66. (a) In air at 0°C, a 1.60-kg copper block at 0°C is set slid-
ing at 2.50 m/s over a sheet of ice at 0°C. Friction brings
the block to rest. Find the mass of the ice that melts. To de-
scribe the process of slowing down, identify the energy in-
put Q , the work input W, the change in internal energy
#E int, and the change in mechanical energy #K for the
block and also for the ice. (b) A 1.60-kg block of ice at 0°C
is set sliding at 2.50 m/s over a sheet of copper at 0°C.
Friction brings the block to rest. Find the mass of the ice
that melts. Identify Q , W, #E int , and #K for the block and
for the metal sheet during the process. (c) A thin 1.60-kg
slab of copper at 20°C is set sliding at 2.50 m/s over an
identical stationary slab at the same temperature. Friction
quickly stops the motion. If no energy is lost to the envi-
ronment by heat, find the change in temperature of both
objects. Identify Q , W, #E int , and #K for each object dur-
ing the process.

67. The average thermal conductivity of the walls (including
the windows) and roof of the house depicted in Figure
P20.67 is 0.480 W/m $ °C, and their average thickness is
21.0 cm. The house is heated with natural gas having a
heat of combustion (that is, the energy provided per cubic
meter of gas burned) of 9 300 kcal/m3. How many cubic
meters of gas must be burned each day to maintain an in-
side temperature of 25.0°C if the outside temperature is
0.0°C? Disregard radiation and the energy lost by heat
through the ground.

68. A pond of water at 0°C is covered with a layer of ice
4.00 cm thick. If the air temperature stays constant at
& 10.0°C, how long does it take for the ice thickness to
increase to 8.00 cm? Suggestion: Utilize Equation 20.15 in
the form

and note that the incremental energy dQ extracted from
the water through the thickness x of ice is the amount 
required to freeze a thickness dx of ice. That is, dQ !
L-A dx, where - is the density of the ice, A is the area, and
L is the latent heat of fusion.

69. An ideal gas is carried through a thermodynamic cycle
consisting of two isobaric and two isothermal processes as
shown in Figure P20.69. Show that the net work done on
the gas in the entire cycle is given by

Wnet ! &P1(V2 & V1) ln 
P2

P1

dQ
dt

! kA  
#T
x

70. The inside of a hollow cylinder is maintained at a tempera-
ture Ta while the outside is at a lower temperature, Tb (Fig.
P20.70). The wall of the cylinder has a thermal conductiv-
ity k. Ignoring end effects, show that the rate of energy
conduction from the inner to the outer surface in the ra-
dial direction is

(Suggestions: The temperature gradient is dT/dr. Note that
a radial energy current passes through a concentric cylin-
der of area 20rL.)

dQ
dt

! 20Lk ( Ta & Tb

ln (b/a) )

The passenger section of a jet airliner is in the shape of a
cylindrical tube with a length of 35.0 m and an inner ra-
dius of 2.50 m. Its walls are lined with an insulating mater-
ial 6.00 cm in thickness and having a thermal conductivity
of 4.00 % 10&5 cal/s $ cm $ °C. A heater must maintain the
interior temperature at 25.0°C while the outside tempera-
ture is & 35.0°C. What power must be supplied to the
heater? (Use the result of Problem 70.)

72. A student obtains the following data in a calorimetry ex-
periment designed to measure the specific heat of alu-
minum:

Initial temperature of 
water and calorimeter: 70°C

Mass of water: 0.400 kg

Mass of calorimeter: 0.040 kg

Specific heat of calorimeter: 0.63 kJ/kg $ °C

Initial temperature of aluminum: 27°C

Mass of aluminum: 0.200 kg

Final temperature of mixture: 66.3°C

71.
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Situation System Q W #Eint

(a) Rapidly pumping Air in the 0 " "
up a bicycle tire pump

(b) Pan of room- Water in " 0 "
temperature the pan
water sitting 
on a hot stove

(c) Air quickly Air originally 0 & &
leaking out in the balloon
of a balloon

Answers to Quick Quizzes 639

Use these data to determine the specific heat of alu-
minum. Your result should be within 15% of the value
listed in Table 20.1.

73. During periods of high activity, the Sun has more sunspots
than usual. Sunspots are cooler than the rest of the lumi-
nous layer of the Sun’s atmosphere (the photosphere).
Paradoxically, the total power output of the active Sun is not
lower than average but is the same or slightly higher than
average. Work out the details of the following crude model
of this phenomenon. Consider a patch of the photosphere
with an area of 5.10 % 1014 m2. Its emissivity is 0.965.
(a) Find the power it radiates if its temperature is uniformly
5 800 K, corresponding to the quiet Sun. (b) To represent a
sunspot, assume that 10.0% of the area is at 4 800 K and the
other 90.0% is at 5 890 K. That is, a section with the surface
area of the Earth is 1 000 K cooler than before and a section
nine times as large is 90 K warmer. Find the average temper-
ature of the patch. (c) Find the power output of the patch.
Compare it with the answer to part (a). (The next sunspot
maximum is expected around the year 2012.)

Answers to Quick Quizzes

20.1 Water, glass, iron. Because water has the highest specific
heat (4 186 J/kg $ °C), it has the smallest change in tem-
perature. Glass is next (837 J/kg $ °C), and iron is last
(448 J/kg $ °C).

20.2 Iron, glass, water. For a given temperature increase, the
energy transfer by heat is proportional to the specific
heat.

20.3 The figure below shows a graphical representation of
the internal energy of the ice in parts A to E as a

function of energy added. Notice that this graph looks
quite different from Figure 20.2—it doesn’t have the
flat portions during the phase changes. Regardless of
how the temperature is varying in Figure 20.2, the inter-
nal energy of the system simply increases linearly with
energy input.

20.4 C, A, E. The slope is the ratio of the temperature
change to the amount of energy input. Thus, the slope
is proportional to the reciprocal of the specific heat.
Water, which has the highest specific heat, has the small-
est slope.

20.5

(a) Because the pumping is rapid, no energy enters or
leaves the system by heat. Because W ( 0 when work is
done on the system, it is positive here. Thus, we see that
#E int ! Q " W must be positive. The air in the pump is
warmer. (b) There is no work done either on or by the
system, but energy transfers into the water by heat from
the hot burner, making both Q and #E int positive. 
(c) Again no energy transfers into or out of the system by
heat, but the air molecules escaping from the balloon do
work on the surrounding air molecules as they push
them out of the way. Thus W is negative and #E int is 
negative. The decrease in internal energy is evidenced by
the fact that the escaping air becomes cooler.

20.6 A is isovolumetric, B is adiabatic, C is isothermal, and D is
isobaric.

20.7 (c). The blanket acts as a thermal insulator, slowing the
transfer of energy by heat from the air into the cube.

20.8 (b). In parallel, the rods present a larger area through
which energy can transfer and a smaller length.

E int ( J)

Ice +
water

Water

0 500 1000 1500 2000 2500 3000
3110307081539662.7

Ice
Water +
steam

Energy added ( J)

Steam
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The Kinetic Theory of Gases
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Law
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Speeds
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! Dogs do not have sweat glands like humans. In hot weather, dogs pant to promote evapora-
tion from the tongue. In this chapter, we show that evaporation is a cooling process based on
the removal of molecules with high kinetic energy from a liquid. (Frank Oberle/Getty Images)



In Chapter 19 we discussed the properties of an ideal gas, using such macroscopic vari-
ables as pressure, volume, and temperature. We shall now show that such large-scale
properties can be related to a description on a microscopic scale, where matter is
treated as a collection of molecules. Newton’s laws of motion applied in a statistical
manner to a collection of particles provide a reasonable description of thermodynamic
processes. To keep the mathematics relatively simple, we shall consider primarily the
behavior of gases, because in gases the interactions between molecules are much
weaker than they are in liquids or solids. In our model of gas behavior, called kinetic
theory, gas molecules move about in a random fashion, colliding with the walls of
their container and with each other. Kinetic theory provides us with a physical basis for
our understanding of the concept of temperature.

21.1 Molecular Model of an Ideal Gas

We begin this chapter by developing a microscopic model of an ideal gas. The model
shows that the pressure that a gas exerts on the walls of its container is a consequence
of the collisions of the gas molecules with the walls and is consistent with the macro-
scopic description of Chapter 19. In developing this model, we make the following as-
sumptions:

1. The number of molecules in the gas is large, and the average separation 
between them is large compared with their dimensions. This means that the
molecules occupy a negligible volume in the container. This is consistent with the
ideal gas model, in which we imagine the molecules to be point-like.

2. The molecules obey Newton’s laws of motion, but as a whole they move ran-
domly. By “randomly” we mean that any molecule can move in any direction with
any speed. At any given moment, a certain percentage of molecules move at high
speeds, and a certain percentage move at low speeds.

3. The molecules interact only by short-range forces during elastic collisions.
This is consistent with the ideal gas model, in which the molecules exert no long-
range forces on each other.

4. The molecules make elastic collisions with the walls.
5. The gas under consideration is a pure substance; that is, all molecules are

identical.

Although we often picture an ideal gas as consisting of single atoms, we can assume
that the behavior of molecular gases approximates that of ideal gases rather well at low
pressures. Molecular rotations or vibrations have no effect, on the average, on the 
motions that we consider here.

For our first application of kinetic theory, let us derive an expression for the pres-
sure of N molecules of an ideal gas in a container of volume V in terms of microscopic
quantities. The container is a cube with edges of length d (Fig. 21.1). We shall first
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Figure 21.1 A cubical box with
sides of length d containing an
ideal gas. The molecule shown
moves with velocity vi .
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Assumptions of the molecular
model of an ideal gas
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focus our attention on one of these molecules of mass m, and assume that it is moving
so that its component of velocity in the x direction is vxi as in Figure 21.2. (The sub-
script i here refers to the i th molecule, not to an initial value. We will combine the ef-
fects of all of the molecules shortly.) As the molecule collides elastically with any wall
(assumption 4), its velocity component perpendicular to the wall is reversed because
the mass of the wall is far greater than the mass of the molecule. Because the momen-
tum component pxi of the molecule is mvxi before the collision and ! mvxi after the col-
lision, the change in the x component of the momentum of the molecule is

"pxi # ! mvxi ! (mvxi) # ! 2mvxi

Because the molecules obey Newton’s laws (assumption 2), we can apply the impulse-
momentum theorem (Eq. 9.8) to the molecule to give us

where is the x component of the average force that the wall exerts on the
molecule during the collision and is the duration of the collision. In order for
the molecule to make another collision with the same wall after this first collision, it
must travel a distance of 2d in the x direction (across the container and back). There-
fore, the time interval between two collisions with the same wall is

The force that causes the change in momentum of the molecule in the collision with
the wall occurs only during the collision. However, we can average the force over the
time interval for the molecule to move across the cube and back. Sometime during this
time interval, the collision occurs, so that the change in momentum for this time inter-
val is the same as that for the short duration of the collision. Thus, we can rewrite the
impulse-momentum theorem as

where is the average force component over the time for the molecule to move across
the cube and back. Because exactly one collision occurs for each such time interval,
this is also the long-term average force on the molecule, over long time intervals con-
taining any number of multiples of "t.

This equation and the preceding one enable us to express the x component of the
long-term average force exerted by the wall on the molecule as

Now, by Newton’s third law, the average x component of the force exerted by the mole-
cule on the wall is equal in magnitude and opposite in direction:

The total average force exerted by the gas on the wall is found by adding the 
average forces exerted by the individual molecules. We add terms such as that above
for all molecules:

where we have factored out the length of the box and the mass m, because assumption 5
tells us that all of the molecules are the same. We now impose assumption 1, that the
number of molecules is large. For a small number of molecules, the actual force on the
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d
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#
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#
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Fi  "t # !2mvxi

"t #
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Fi, on molecule

Fi, on molecule "t collision # "pxi # !2mvxi

Active Figure 21.2 A molecule
makes an elastic collision with the
wall of the container. Its x compo-
nent of momentum is reversed,
while its y component remains un-
changed. In this construction, we
assume that the molecule moves in
the xy plane.

At the Active Figures link
at http://www.pse6.com, you
can observe molecules within
a container making collisions
with the walls of the container
and with each other.
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wall would vary with time. It would be nonzero during the short interval of a collision of
a molecule with the wall and zero when no molecule happens to be hitting the wall. For
a very large number of molecules, however, such as Avogadro’s number, these variations
in force are smoothed out, so that the average force given above is the same over any
time interval. Thus, the constant force F on the wall due to the molecular collisions is

To proceed further, let us consider how to express the average value of the square
of the x component of the velocity for N molecules. The traditional average of a set of
values is the sum of the values over the number of values:

The numerator of this expression is contained in the right-hand side of the preceding
equation. Thus, combining the two expressions, the total force on the wall can be written

(21.1)

Now let us focus again on one molecule with velocity components vxi , vyi , and vzi .
The Pythagorean theorem relates the square of the speed of the molecule to the
squares of the velocity components:

Hence, the average value of v 2 for all the molecules in the container is related to the
average values of , , and according to the expression

Because the motion is completely random (assumption 2), the average values , ,
and are equal to each other. Using this fact and the preceding equation, we find
that

Thus, from Equation 21.1, the total force exerted on the wall is

Using this expression, we can find the total pressure exerted on the wall:

(21.2)

This result indicates that the pressure of a gas is proportional to the number of
molecules per unit volume and to the average translational kinetic energy of the
molecules, . In analyzing this simplified model of an ideal gas, we obtain an im-
portant result that relates the macroscopic quantity of pressure to a microscopic quan-
tity—the average value of the square of the molecular speed. Thus, we have established
a key link between the molecular world and the large-scale world.

You should note that Equation 21.2 verifies some features of pressure with which
you are probably familiar. One way to increase the pressure inside a container is to in-
crease the number of molecules per unit volume N/V in the container. This is what
you do when you add air to a tire. The pressure in the tire can also be increased by
increasing the average translational kinetic energy of the air molecules in the tire.
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This can be accomplished by increasing the temperature of that air, as we shall soon
show mathematically. This is why the pressure inside a tire increases as the tire warms
up during long trips. The continuous flexing of the tire as it moves along the road sur-
face results in work done as parts of the tire distort, causing an increase in internal en-
ergy of the rubber. The increased temperature of the rubber results in the transfer of
energy by heat into the air inside the tire. This transfer increases the air’s temperature,
and this increase in temperature in turn produces an increase in pressure.

Molecular Interpretation of Temperature

We can gain some insight into the meaning of temperature by first writing Equation
21.2 in the form

Let us now compare this with the equation of state for an ideal gas (Eq. 19.10):

PV # NkBT

Recall that the equation of state is based on experimental facts concerning the macro-
scopic behavior of gases. Equating the right sides of these expressions, we find that

(21.3)

This result tells us that temperature is a direct measure of average molecular ki-
netic energy. By rearranging Equation 21.3, we can relate the translational molecular
kinetic energy to the temperature:

(21.4)

That is, the average translational kinetic energy per molecule is . Because
, it follows that

(21.5)

In a similar manner, it follows that the motions in the y and z directions give us

Thus, each translational degree of freedom contributes an equal amount of energy,
, to the gas. (In general, a “degree of freedom” refers to an independent means

by which a molecule can possess energy.) A generalization of this result, known as the
theorem of equipartition of energy, states that

1
2kBT

1
2mv 2

y # 1
2kBT  and  1

2mv 2
z # 1
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1
2mv 2

x # 1
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v 2
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3v2

3
2kBT

1
2mv2 # 3

2kBT

T #
2

3kB
 (1

2mv2)

PV # 2
3N (1

2mv2)

Temperature is proportional to
average kinetic energy

Average kinetic energy per
molecule

Theorem of equipartition of
energy

Total translational kinetic
energy of N molecules

each degree of freedom contributes to the energy of a system, where possible
degrees of freedom in addition to those associated with translation arise from rota-
tion and vibration of molecules.

1
2kBT

The total translational kinetic energy of N molecules of gas is simply N times the
average energy per molecule, which is given by Equation 21.4:

(21.6)

where we have used kB # R/NA for Boltzmann’s constant and n # N/NA for the num-
ber of moles of gas. If we consider a gas in which molecules possess only translational
kinetic energy, Equation 21.6 represents the internal energy of the gas. This result im-
plies that the internal energy of an ideal gas depends only on the temperature.
We will follow up on this point in Section 21.2.

Ktot  trans # N(1
2mv2) # 3

2N kBT # 3
2nRT



The square root of is called the root-mean-square (rms) speed of the molecules.
From Equation 21.4 we find that the rms speed is

(21.7)

where M is the molar mass in kilograms per mole and is equal to mNA. This expression
shows that, at a given temperature, lighter molecules move faster, on the average, than
do heavier molecules. For example, at a given temperature, hydrogen molecules,
whose molar mass is 2.02 % 10!3 kg/mol, have an average speed approximately four
times that of oxygen molecules, whose molar mass is 32.0 % 10!3 kg/mol. Table 21.1
lists the rms speeds for various molecules at 20°C.

vrms # √v2 # √ 3kBT
m

# √ 3RT
M

v2
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Root-mean-square speed

! PITFALL PREVENTION
21.1 The Square Root of

the Square?
Notice that taking the square
root of does not “undo” the
square because we have taken an
average between squaring and tak-
ing the square root. While the
square root of is because
the squaring is done after the av-
eraging, the square root of is
not , but rather vrms.v

v2

v(v)2

v2Molar mass vrms
Gas (g/mol) at 20!C(m/s)

H2 2.02 1 902
He 4.00 1 352
H2O 18.0 637
Ne 20.2 602
N2 or CO 28.0 511
NO 30.0 494
O2 32.0 478
CO2 44.0 408
SO2 64.1 338

Table 21.1
Some rms Speeds

Example 21.1 A Tank of Helium

A tank used for filling helium balloons has a volume of
0.300 m3 and contains 2.00 mol of helium gas at 20.0°C.
Assume that the helium behaves like an ideal gas.

(A) What is the total translational kinetic energy of the gas
molecules?

Solution Using Equation 21.6 with n # 2.00 mol and T #
293 K, we find that

(B) What is the average kinetic energy per molecule?

Solution Using Equation 21.4, we find that the average
kinetic energy per molecule is

7.30 % 103 J#

Ktot  trans # 3
2nRT # 3

2(2.00 mol)(8.31 J/mol&K)(293 K)

What If? What if the temperature is raised from 20.0°C to
40.0°C? Because 40.0 is twice as large as 20.0, is the total
translational energy of the molecules of the gas twice as
large at the higher temperature?

Answer The expression for the total translational energy
depends on the temperature, and the value for the tempera-
ture must be expressed in kelvins, not in degrees Celsius.
Thus, the ratio of 40.0 to 20.0 is not the appropriate ratio.
Converting the Celsius temperatures to kelvins, 20.0°C is
293 K and 40.0°C is 313 K. Thus, the total translational
energy increases by a factor of 313 K/293 K # 1.07.

6.07 % 10!21 J#

1
2mv2 # 3

2kBT #  
3
2(1.38 % 10!23 J/K)(293 K)

Quick Quiz 21.1 Two containers hold an ideal gas at the same temperature
and pressure. Both containers hold the same type of gas but container B has twice the
volume of container A. The average translational kinetic energy per molecule in con-
tainer B is (a) twice that for container A (b) the same as that for container A (c) half
that for container A (d) impossible to determine.
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21.2 Molar Specific Heat of an Ideal Gas

Consider an ideal gas undergoing several processes such that the change in tempera-
ture is "T # Tf ! Ti for all processes. The temperature change can be achieved by tak-
ing a variety of paths from one isotherm to another, as shown in Figure 21.3. Because
"T is the same for each path, the change in internal energy "Eint is the same for all
paths. However, we know from the first law, Q # "Eint ! W, that the heat Q is different
for each path because W (the negative of the area under the curves) is different for
each path. Thus, the heat associated with a given change in temperature does not have
a unique value.

We can address this difficulty by defining specific heats for two processes that fre-
quently occur: changes at constant volume and changes at constant pressure. Because
the number of moles is a convenient measure of the amount of gas, we define the
molar specific heats associated with these processes with the following equations:

(21.8)

(21.9)

where CV is the molar specific heat at constant volume and CP is the molar specific
heat at constant pressure. When we add energy to a gas by heat at constant pressure,
not only does the internal energy of the gas increase, but work is done on the gas be-
cause of the change in volume. Therefore, the heat Q constant P must account for both
the increase in internal energy and the transfer of energy out of the system by work.
For this reason, Q constant P is greater than Q constant V for given values of n and "T. Thus,
CP is greater than CV .

In the previous section, we found that the temperature of a gas is a measure of the
average translational kinetic energy of the gas molecules. This kinetic energy is associ-
ated with the motion of the center of mass of each molecule. It does not include the
energy associated with the internal motion of the molecule—namely, vibrations and ro-
tations about the center of mass. This should not be surprising because the simple
kinetic theory model assumes a structureless molecule.

In view of this, let us first consider the simplest case of an ideal monatomic gas, that
is, a gas containing one atom per molecule, such as helium, neon, or argon. When
energy is added to a monatomic gas in a container of fixed volume, all of the added en-
ergy goes into increasing the translational kinetic energy of the atoms. There is no
other way to store the energy in a monatomic gas. Therefore, from Equation 21.6, we
see that the internal energy Eint of N molecules (or n mol) of an ideal monatomic gas is

(21.10)

Note that for a monatomic ideal gas, Eint is a function of T only, and the functional
relationship is given by Equation 21.10. In general, the internal energy of an ideal gas
is a function of T only, and the exact relationship depends on the type of gas.

Eint # Ktot  trans # 3
2NkBT # 3

2nRT

Q # nCP "T  (constant pressure)

Q # nCV "T  (constant volume)

P

V

Isotherms

i

f

f ′

T + ∆T

f ′′

T

Figure 21.3 An ideal gas is taken
from one isotherm at temperature
T to another at temperature
T $ "T along three different 
paths.

Internal energy of an ideal
monatomic gas

Quick Quiz 21.2 Consider again the situation in Quick Quiz 21.1. The
internal energy of the gas in container B is (a) twice that for container A (b) the same
as that for container A (c) half that for container A (d) impossible to determine.

Quick Quiz 21.3 Consider again the situation in Quick Quiz 21.1. The rms
speed of the gas molecules in container B is (a) twice that for container A (b) the same
as that for container A (c) half that for container A (d) impossible to determine.



If energy is transferred by heat to a system at constant volume, then no work is done
on the system. That is, for a constant-volume process. Hence, from
the first law of thermodynamics, we see that

(21.11)

In other words, all of the energy transferred by heat goes into increasing the internal
energy of the system. A constant-volume process from i to f for an ideal gas is described
in Figure 21.4, where "T is the temperature difference between the two isotherms. Sub-
stituting the expression for Q given by Equation 21.8 into Equation 21.11, we obtain

(21.12)

If the molar specific heat is constant, we can express the internal energy of a gas as

E int # nCVT

This equation applies to all ideal gases—to gases having more than one atom per mole-
cule as well as to monatomic ideal gases. In the limit of infinitesimal changes, we can
use Equation 21.12 to express the molar specific heat at constant volume as

(21.13)

Let us now apply the results of this discussion to the monatomic gas that we have
been studying. Substituting the internal energy from Equation 21.10 into Equation
21.13, we find that

(21.14)

This expression predicts a value of for all monatomic gases.
This prediction is in excellent agreement with measured values of molar specific heats
for such gases as helium, neon, argon, and xenon over a wide range of temperatures
(Table 21.2). Small variations in Table 21.2 from the predicted values are due to the

CV # 3
2R # 12.5 J/mol&K

CV # 3
2R

CV #
1
n

  
dEint

dT

"Eint # nCV  "T

Q # "Eint

W # !$P dV # 0
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Active Figure 21.4 Energy is trans-
ferred by heat to an ideal gas in two
ways. For the constant-volume path
i : f, all the energy goes into in-
creasing the internal energy of the
gas because no work is done. Along
the constant-pressure path i : f ',
part of the energy transferred in by
heat is transferred out by work.

At the Active Figures link
at http://www.pse6.com, you
can choose initial and final
temperatures for one mole of
an ideal gas undergoing
constant-volume and constant
pressure processes and mea-
sure Q, W, "Eint , CV , and CP .

P

V

T + ∆T
T

i

f

f ′

Isotherms

Molar Specific Heat ( J/mol " K)a

Gas CP CV CP # CV $ % CP/CV

Monatomic Gases
He 20.8 12.5 8.33 1.67
Ar 20.8 12.5 8.33 1.67
Ne 20.8 12.7 8.12 1.64
Kr 20.8 12.3 8.49 1.69

Diatomic Gases
H2 28.8 20.4 8.33 1.41
N2 29.1 20.8 8.33 1.40
O2 29.4 21.1 8.33 1.40
CO 29.3 21.0 8.33 1.40
Cl2 34.7 25.7 8.96 1.35

Polyatomic Gases
CO2 37.0 28.5 8.50 1.30
SO2 40.4 31.4 9.00 1.29
H2O 35.4 27.0 8.37 1.30
CH4 35.5 27.1 8.41 1.31

Molar Specific Heats of Various Gases

Table 21.2

a All values except that for water were obtained at 300 K.



fact that real gases are not ideal gases. In real gases, weak intermolecular interactions
occur, which are not addressed in our ideal gas model.

Now suppose that the gas is taken along the constant-pressure path i : f ' shown in
Figure 21.4. Along this path, the temperature again increases by "T. The energy that
must be transferred by heat to the gas in this process is Q # nCP "T. Because the vol-
ume changes in this process, the work done on the gas is W # ! P "V where P is the
constant pressure at which the process occurs. Applying the first law of thermodynam-
ics to this process, we have

(21.15)

In this case, the energy added to the gas by heat is channeled as follows: Part of it
leaves the system by work (that is, the gas moves a piston through a displacement), and
the remainder appears as an increase in the internal energy of the gas. But the change
in internal energy for the process i : f ' is equal to that for the process i : f because
Eint depends only on temperature for an ideal gas and because "T is the same for both
processes. In addition, because PV # nRT, we note that for a constant-pressure
process, P "V # nR "T. Substituting this value for P "V into Equation 21.15 with
"Eint # nCV "T (Eq. 21.12) gives

CP ! CV # R (21.16)

This expression applies to any ideal gas. It predicts that the molar specific heat of an
ideal gas at constant pressure is greater than the molar specific heat at constant volume
by an amount R, the universal gas constant (which has the value 8.31 J/mol & K). This
expression is applicable to real gases, as the data in Table 21.2 show.

Because CV # R for a monatomic ideal gas, Equation 21.16 predicts a value CP #
R # 20.8 J/mol & K for the molar specific heat of a monatomic gas at constant pressure.

The ratio of these molar specific heats is a dimensionless quantity ( (Greek gamma):

(21.17)

Theoretical values of CV , CP and ( are in excellent agreement with experimental
values obtained for monatomic gases, but they are in serious disagreement with the val-
ues for the more complex gases (see Table 21.2). This is not surprising because the
value CV # R was derived for a monatomic ideal gas and we expect some additional
contribution to the molar specific heat from the internal structure of the more com-
plex molecules. In Section 21.4, we describe the effect of molecular structure on the
molar specific heat of a gas. The internal energy—and, hence, the molar specific
heat—of a complex gas must include contributions from the rotational and the vibra-
tional motions of the molecule.

In the case of solids and liquids heated at constant pressure, very little work is done
because the thermal expansion is small. Consequently, CP and CV are approximately
equal for solids and liquids.

3
2

( #
CP

CV
#

5R/2
3R/2

#
5
3

# 1.67

5
2

3
2

nCV  "T # nCP  "T ! nR  "T

"Eint # Q $ W # nCP  "T $ (!P  "V  )
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Quick Quiz 21.4 How does the internal energy of an ideal gas change as it
follows path i : f in Figure 21.4? (a) E int increases. (b) E int decreases. (c) E int stays the
same. (d) There is not enough information to determine how E int changes.

Quick Quiz 21.5 How does the internal energy of an ideal gas change as it
follows path f : f ' along the isotherm labeled T $ "T in Figure 21.4? (a) E int
increases. (b) E int decreases. (c) E int stays the same. (d) There is not enough informa-
tion to determine how E int changes.

Ratio of molar specific heats for
a monatomic ideal gas



21.3 Adiabatic Processes for an Ideal Gas

As we noted in Section 20.6, an adiabatic process is one in which no energy is trans-
ferred by heat between a system and its surroundings. For example, if a gas is com-
pressed (or expanded) very rapidly, very little energy is transferred out of (or into) the
system by heat, and so the process is nearly adiabatic. Such processes occur in the cycle
of a gasoline engine, which we discuss in detail in the next chapter. Another example
of an adiabatic process is the very slow expansion of a gas that is thermally insulated
from its surroundings.

Suppose that an ideal gas undergoes an adiabatic expansion. At any time during
the process, we assume that the gas is in an equilibrium state, so that the equation of
state PV # nRT is valid. As we show below, the pressure and volume of an ideal gas at
any time during an adiabatic process are related by the expression

(21.18)

where ( # CP/CV is assumed to be constant during the process. Thus, we see that all
three variables in the ideal gas law—P, V, and T—change during an adiabatic process.

Proof That PV$ % Constant for an Adiabatic Process

When a gas is compressed adiabatically in a thermally insulated cylinder, no energy is
transferred by heat between the gas and its surroundings; thus, Q # 0. Let us imagine
an infinitesimal change in volume dV and an accompanying infinitesimal change in
temperature dT. The work done on the gas is ! P dV. Because the internal energy of
an ideal gas depends only on temperature, the change in the internal energy in an
adiabatic process is the same as that for an isovolumetric process between the same
temperatures, dE int # nCV dT (Eq. 21.12). Hence, the first law of thermodynamics,
"Eint # Q $ W, with Q # 0 becomes

Taking the total differential of the equation of state of an ideal gas, PV # nRT, we see that

P dV $ V dP # nR dT

Eliminating dT from these two equations, we find that

P  dV $ V  dP # !
R
CV

 P  dV

dE int # nCV  dT # !P  dV

PV ( # constant
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Relationship between P and V
for an adiabatic process involv-
ing an ideal gas

Example 21.2 Heating a Cylinder of Helium

A cylinder contains 3.00 mol of helium gas at a temperature
of 300 K.

(A) If the gas is heated at constant volume, how much
energy must be transferred by heat to the gas for its temper-
ature to increase to 500 K?

Solution For the constant-volume process, we have

Because CV # 12.5 J/mol & K for helium and "T # 200 K, we
obtain

7.50 % 103 J#

Q 1 # (3.00 mol)(12.5 J/mol &K)(200 K)

Q 1 # nCV  "T

(B) How much energy must be transferred by heat to the
gas at constant pressure to raise the temperature to 500 K?

Solution Making use of Table 21.2, we obtain

Note that this is larger than Q1, due to the transfer of
energy out of the gas by work in the constant pressure
process.

12.5 % 103 J#

# (3.00 mol)(20.8 J/mol&K)(200 K)

Q 2 # nCP  "T



Because PV # nRT is valid throughout an ideal gas process
and because no gas escapes from the cylinder,

To finalize the problem, note that the temperature of the
gas has increased by a factor of 2.82. The high compres-
sion in a diesel engine raises the temperature of the fuel
enough to cause its combustion without the use of spark
plugs.

553)C# 826 K #

Tf #
Pf Vf

PiVi
 Ti #

(37.6 atm)(60.0 cm3)
(1.00 atm)(800.0 cm3)

  (293 K)

PiVi

Ti
#

Pf Vf

Tf
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Example 21.3 A Diesel Engine Cylinder

Air at 20.0°C in the cylinder of a diesel engine is com-
pressed from an initial pressure of 1.00 atm and volume of
800.0 cm3 to a volume of 60.0 cm3. Assume that air behaves
as an ideal gas with ( # 1.40 and that the compression is
adiabatic. Find the final pressure and temperature of the air.

Solution Conceptualize by imagining what happens if we
compress a gas into a smaller volume. Our discussion above
and Figure 21.5 tell us that the pressure and temperature
both increase. We categorize this as a problem involving an
adiabatic compression. To analyze the problem, we use
Equation 21.19 to find the final pressure:

37.6 atm#

Pf # Pi " Vi

Vf
#(

# (1.00 atm)" 800.0 cm3

60.0 cm3 #1.40

Figure 21.5 The PV diagram for
an adiabatic compression. Note
that Tf * Ti in this process, so the
temperature of the gas increases.

Substituting R # CP ! CV and dividing by PV, we obtain

Integrating this expression, we have

which is equivalent to Equation 21.18:

PV ( # constant

The PV diagram for an adiabatic compression is shown in Figure 21.5. Because
( * 1, the PV curve is steeper than it would be for an isothermal compression. By the
definition of an adiabatic process, no energy is transferred by heat into or out of the
system. Hence, from the first law, we see that "Eint is positive (work is done on the gas,
so its internal energy increases) and so "T also is positive. Thus, the temperature of
the gas increases (Tf * Ti) during an adiabatic compression. Conversely, the tempera-
ture decreases if the gas expands adiabatically.1 Applying Equation 21.18 to the initial
and final states, we see that

(21.19)

Using the ideal gas law, we can express Equation 21.19 as

(21.20)TiV i
 (!1 # Tf V f
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 ( # Pf V f

 (
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Adiabatic process
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21.4 The Equipartition of Energy

We have found that predictions based on our model for molar specific heat agree quite
well with the behavior of monatomic gases but not with the behavior of complex gases
(see Table 21.2). The value predicted by the model for the quantity CP ! CV # R, how-
ever, is the same for all gases. This is not surprising because this difference is the result
of the work done on the gas, which is independent of its molecular structure.

Relationship between T and V
for an adiabatic process involv-
ing an ideal gas

1 In the adiabatic free expansion discussed in Section 20.6, the temperature remains constant. This is a
special process in which no work is done because the gas expands into a vacuum. In general, the tempera-
ture decreases in an adiabatic expansion in which work is done.
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To clarify the variations in CV and CP in gases more complex than monatomic gases,
let us explore further the origin of molar specific heat. So far, we have assumed that
the sole contribution to the internal energy of a gas is the translational kinetic energy
of the molecules. However, the internal energy of a gas includes contributions from
the translational, vibrational, and rotational motion of the molecules. The rotational
and vibrational motions of molecules can be activated by collisions and therefore are
“coupled” to the translational motion of the molecules. The branch of physics known
as statistical mechanics has shown that, for a large number of particles obeying the laws
of Newtonian mechanics, the available energy is, on the average, shared equally by
each independent degree of freedom. Recall from Section 21.1 that the equipartition
theorem states that, at equilibrium, each degree of freedom contributes kBT of energy
per molecule.

Let us consider a diatomic gas whose molecules have the shape of a dumbbell
(Fig. 21.6). In this model, the center of mass of the molecule can translate in the x, y,
and z directions (Fig. 21.6a). In addition, the molecule can rotate about three mutually
perpendicular axes (Fig. 21.6b). We can neglect the rotation about the y axis because
the molecule’s moment of inertia Iy and its rotational energy Iy+2 about this axis are
negligible compared with those associated with the x and z axes. (If the two atoms are
taken to be point masses, then Iy is identically zero.) Thus, there are five degrees of
freedom for translation and rotation: three associated with the translational motion
and two associated with the rotational motion. Because each degree of freedom con-
tributes, on the average, kBT of energy per molecule, the internal energy for a system
of N molecules, ignoring vibration for now, is

We can use this result and Equation 21.13 to find the molar specific heat at constant
volume:

(21.21)

From Equations 21.16 and 21.17, we find that

These results agree quite well with most of the data for diatomic molecules given in
Table 21.2. This is rather surprising because we have not yet accounted for the possible
vibrations of the molecule.

In the model for vibration, the two atoms are joined by an imaginary spring (see
Fig. 21.6c). The vibrational motion adds two more degrees of freedom, which
correspond to the kinetic energy and the potential energy associated with vibrations
along the length of the molecule. Hence, classical physics and the equipartition
theorem in a model that includes all three types of motion predict a total internal
energy of

and a molar specific heat at constant volume of

(21.22)

This value is inconsistent with experimental data for molecules such as H2 and N2 (see
Table 21.2) and suggests a breakdown of our model based on classical physics.

It might seem that our model is a failure for predicting molar specific heats for
diatomic gases. We can claim some success for our model, however, if measurements
of molar specific heat are made over a wide temperature range, rather than at the
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Figure 21.6 Possible motions of a
diatomic molecule: (a) translational
motion of the center of mass,
(b) rotational motion about the
various axes, and (c) vibrational
motion along the molecular axis.
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single temperature that gives us the values in Table 21.2. Figure 21.7 shows the mo-
lar specific heat of hydrogen as a function of temperature. There are three plateaus
in the curve. The remarkable feature of these plateaus is that they are at the values
of the molar specific heat predicted by Equations 21.14, 21.21, and 21.22! For low
temperatures, the diatomic hydrogen gas behaves like a monatomic gas. As the
temperature rises to room temperature, its molar specific heat rises to a value for a
diatomic gas, consistent with the inclusion of rotation but not vibration. For high
temperatures, the molar specific heat is consistent with a model including all types
of motion.

Before addressing the reason for this mysterious behavior, let us make a brief re-
mark about polyatomic gases. For molecules with more than two atoms, the vibrations
are more complex than for diatomic molecules and the number of degrees of freedom
is even larger. This results in an even higher predicted molar specific heat, which is in
qualitative agreement with experiment. For the polyatomic gases shown in Table 21.2
we see that the molar specific heats are higher than those for diatomic gases. The more
degrees of freedom available to a molecule, the more “ways” there are to store energy,
resulting in a higher molar specific heat.

A Hint of Energy Quantization

Our model for molar specific heats has been based so far on purely classical notions. It
predicts a value of the specific heat for a diatomic gas that, according to Figure 21.7,
only agrees with experimental measurements made at high temperatures. In order to
explain why this value is only true at high temperatures and why the plateaus exist in
Figure 21.7, we must go beyond classical physics and introduce some quantum physics
into the model. In Chapter 18, we discussed quantization of frequency for vibrating
strings and air columns. This is a natural result whenever waves are subject to bound-
ary conditions.

Quantum physics (Chapters 40 to 43) shows that atoms and molecules can be de-
scribed by the physics of waves under boundary conditions. Consequently, these waves
have quantized frequencies. Furthermore, in quantum physics, the energy of a system
is proportional to the frequency of the wave representing the system. Hence, the ener-
gies of atoms and molecules are quantized.

For a molecule, quantum physics tells us that the rotational and vibrational ener-
gies are quantized. Figure 21.8 shows an energy-level diagram for the rotational and
vibrational quantum states of a diatomic molecule. The lowest allowed state is called
the ground state. Notice that vibrational states are separated by larger energy gaps
than are rotational states.
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Figure 21.7 The molar specific heat of hydrogen as a function of temperature. The
horizontal scale is logarithmic. Note that hydrogen liquefies at 20 K.



At low temperatures, the energy that a molecule gains in collisions with its neigh-
bors is generally not large enough to raise it to the first excited state of either rotation
or vibration. Thus, even though rotation and vibration are classically allowed, they do
not occur at low temperatures. All molecules are in the ground state for rotation and
vibration. Thus, the only contribution to the molecules’ average energy is from transla-
tion, and the specific heat is that predicted by Equation 21.14.

As the temperature is raised, the average energy of the molecules increases. In some
collisions, a molecule may have enough energy transferred to it from another molecule
to excite the first rotational state. As the temperature is raised further, more molecules
can be excited to this state. The result is that rotation begins to contribute to the inter-
nal energy and the molar specific heat rises. At about room temperature in Figure 21.7,
the second plateau has been reached and rotation contributes fully to the molar specific
heat. The molar specific heat is now equal to the value predicted by Equation 21.21.

There is no contribution at room temperature from vibration, because the molecules
are still in the ground vibrational state. The temperature must be raised even further 
to excite the first vibrational state. This happens in Figure 21.7 between 1000 K and 
10 000 K. At 10 000 K on the right side of the figure, vibration is contributing fully to the
internal energy and the molar specific heat has the value predicted by Equation 21.22.

The predictions of this model are supportive of the theorem of equipartition of en-
ergy. In addition, the inclusion in the model of energy quantization from quantum
physics allows a full understanding of Figure 21.7.
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Figure 21.8 An energy-level diagram
for vibrational and rotational states of a
diatomic molecule. Note that the
rotational states lie closer together in
energy than the vibrational states.
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Quick Quiz 21.6 The molar specific heat of a diatomic gas is measured at
constant volume and found to be 29.1 J/mol & K. The types of energy that are contribut-
ing to the molar specific heat are (a) translation only (b) translation and rotation only
(c) translation and vibration only (d) translation, rotation, and vibration.

Quick Quiz 21.7 The molar specific heat of a gas is measured at constant
volume and found to be 11R/2. The gas is most likely to be (a) monatomic
(b) diatomic (c) polyatomic.

The Molar Specific Heat of Solids

The molar specific heats of solids also demonstrate a marked temperature depen-
dence. Solids have molar specific heats that generally decrease in a nonlinear manner
with decreasing temperature and approach zero as the temperature approaches



absolute zero. At high temperatures (usually above 300 K), the molar specific heats
approach the value of 3R % 25 J/mol & K, a result known as the DuLong–Petit law. The
typical data shown in Figure 21.9 demonstrate the temperature dependence of the
molar specific heats for several solids.

We can explain the molar specific heat of a solid at high temperatures using the
equipartition theorem. For small displacements of an atom from its equilibrium
position, each atom executes simple harmonic motion in the x, y, and z directions. The
energy associated with vibrational motion in the x direction is

The expressions for vibrational motions in the y and z directions are analogous. There-
fore, each atom of the solid has six degrees of freedom. According to the equipartition
theorem, this corresponds to an average vibrational energy of per
atom. Therefore, the internal energy of a solid consisting of N atoms is

E int # 3NkBT # 3nRT (21.23)

From this result, we find that the molar specific heat of a solid at constant volume is

(21.24)

This result is in agreement with the empirical DuLong–Petit law. The discrepancies
between this model and the experimental data at low temperatures are again due to
the inadequacy of classical physics in describing the world at the atomic level.

21.5 The Boltzmann Distribution Law

Thus far we have considered only average values of the energies of molecules in a gas
and have not addressed the distribution of energies among molecules. In reality, the
motion of the molecules is extremely chaotic. Any individual molecule is colliding with
others at an enormous rate—typically, a billion times per second. Each collision results
in a change in the speed and direction of motion of each of the participant molecules.
Equation 21.7 shows that rms molecular speeds increase with increasing temperature.
What is the relative number of molecules that possess some characteristic, such as en-
ergy within a certain range?

We shall address this question by considering the number density nV(E ). This
quantity, called a distribution function, is defined so that nV(E ) dE is the number of mol-
ecules per unit volume with energy between E and E $ dE. (Note that the ratio of the
number of molecules that have the desired characteristic to the total number of mole-
cules is the probability that a particular molecule has that characteristic.) In general,

CV #
1
n

  
dE int

dT
# 3R

6(1
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E # 1
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x $ 1
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Figure 21.9 Molar specific heat of four solids. As T
approaches zero, the molar specific heat also approaches
zero.
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At the Interactive Worked Example link at http://www.pse6.com, you can investigate the effects of changing the temperature
and the energy difference between the states.

the number density is found from statistical mechanics to be

(21.25)

where n0 is defined such that n0 dE is the number of molecules per unit volume having
energy between E # 0 and E # dE. This equation, known as the Boltzmann distribu-
tion law, is important in describing the statistical mechanics of a large number of mol-
ecules. It states that the probability of finding the molecules in a particular energy
state varies exponentially as the negative of the energy divided by kBT. All the
molecules would fall into the lowest energy level if the thermal agitation at a tempera-
ture T did not excite the molecules to higher energy levels.

nV (E ) # n0e!E/k BT
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Boltzmann distribution law

Figure 21.10 (Example 21.4) Energy-level diagram for a gas
whose atoms can occupy two energy states.

Therefore, the required ratio is

This result indicates that at T # 2 500 K, only a small frac-
tion of the atoms are in the higher energy level. In fact, for
every atom in the higher energy level, there are about 1 000
atoms in the lower level. The number of atoms in the higher
level increases at even higher temperatures, but the distribu-
tion law specifies that at equilibrium there are always more
atoms in the lower level than in the higher level.

What If? What if the energy levels in Figure 21.10 were
closer together in energy? Would this increase or decrease
the fraction of the atoms in the upper energy level?

Answer If the excited level is lower in energy than that in
Figure 21.10, it would be easier for thermal agitation to
excite atoms to this level, and the fraction of atoms in this
energy level would be larger. Let us see this mathematically
by expressing Equation (1) as

where r 2 is the ratio of atoms having energy E2 to those with
energy E1. Differentiating with respect to E 2, we find

Because the derivative has a negative value, we see that as E2
decreases, r 2 increases.

dr2

dE2
#

d
dE2

 "e!(E2!E1)/kBT# # !
1

kBT
 e!(E 2!E1)/kBT , 0

r2 # e!(E2!E1)/kBT

9.64 % 10!4#

nV (E2)
nV (E1)

# e!1.50 eV/0.216 eV # e!6.94

Example 21.4 Thermal Excitation of Atomic Energy Levels

As we discussed in Section 21.4, atoms can occupy only cer-
tain discrete energy levels. Consider a gas at a temperature
of 2 500 K whose atoms can occupy only two energy levels
separated by 1.50 eV, where 1 eV (electron volt) is an energy
unit equal to 1.60 % 10!19 J (Fig. 21.10). Determine the
ratio of the number of atoms in the higher energy level to
the number in the lower energy level.

Solution Equation 21.25 gives the relative number of
atoms in a given energy level. In this case, the atom has two
possible energies, E1 and E2 , where E1 is the lower energy
level. Hence, the ratio of the number of atoms in the higher
energy level to the number in the lower energy level is

In this problem, E2 ! E1 # 1.50 eV, and the denominator of
the exponent is

# 0.216 eV

kBT # (1.38 % 10!23 J/K)(2  500 K)" 1 eV
1.60 % 10!19 J #

(1)   nV (E2)
nV (E1)

#
n0e!E 2/kBT

n0e!E1/kBT # e!(E 2! E1)/kBT

21.6 Distribution of Molecular Speeds

In 1860 James Clerk Maxwell (1831–1879) derived an expression that describes the dis-
tribution of molecular speeds in a very definite manner. His work and subsequent de-
velopments by other scientists were highly controversial because direct detection of
molecules could not be achieved experimentally at that time. However, about 60 years
later, experiments were devised that confirmed Maxwell’s predictions.

E1

E2

1.50 eV

Interactive



Let us consider a container of gas whose molecules have some distribution of speeds.
Suppose we want to determine how many gas molecules have a speed in the range from,
for example, 400 to 410 m/s. Intuitively, we expect that the speed distribution depends on
temperature. Furthermore, we expect that the distribution peaks in the vicinity of vrms.
That is, few molecules are expected to have speeds much less than or much greater than
vrms because these extreme speeds result only from an unlikely chain of collisions.

The observed speed distribution of gas molecules in thermal equilibrium is shown
in Figure 21.11. The quantity Nv, called the Maxwell–Boltzmann speed distribution
function, is defined as follows. If N is the total number of molecules, then the number
of molecules with speeds between v and v $ dv is dN # Nv dv. This number is also
equal to the area of the shaded rectangle in Figure 21.11. Furthermore, the fraction of
molecules with speeds between v and v $ dv is (Nv dv)/N. This fraction is also equal to
the probability that a molecule has a speed in the range v to v $ dv.

The fundamental expression that describes the distribution of speeds of N gas
molecules is

(21.26)

where m is the mass of a gas molecule, kB is Boltzmann’s constant, and T is the absolute
temperature.2 Observe the appearance of the Boltzmann factor with .

As indicated in Figure 21.11, the average speed is somewhat lower than the rms
speed. The most probable speed vmp is the speed at which the distribution curve reaches a
peak. Using Equation 21.26, one finds that

(21.27)

(21.28)

(21.29)

Equation 21.27 has previously appeared as Equation 21.7. The details of the deriva-
tions of these equations from Equation 21.26 are left for the student (see Problems 39
and 65). From these equations, we see that

Figure 21.12 represents speed distribution curves for nitrogen, N2. The curves were
obtained by using Equation 21.26 to evaluate the distribution function at various
speeds and at two temperatures. Note that the peak in the curve shifts to the right as T
increases, indicating that the average speed increases with increasing temperature, as
expected. The asymmetric shape of the curves is due to the fact that the lowest speed
possible is zero while the upper classical limit of the speed is infinity. (In Chapter 39,
we will show that the actual upper limit is the speed of light.)

Equation 21.26 shows that the distribution of molecular speeds in a gas depends both
on mass and on temperature. At a given temperature, the fraction of molecules with
speeds exceeding a fixed value increases as the mass decreases. This explains why lighter
molecules, such as H2 and He, escape more readily from the Earth’s atmosphere than do
heavier molecules, such as N2 and O2. (See the discussion of escape speed in Chapter 13.
Gas molecules escape even more readily from the Moon’s surface than from the Earth’s
because the escape speed on the Moon is lower than that on the Earth.)

The speed distribution curves for molecules in a liquid are similar to those shown
in Figure 21.12. We can understand the phenomenon of evaporation of a liquid from
this distribution in speeds, using the fact that some molecules in the liquid are more

vrms * v * vmp

vmp # √ 2kBT
m

# 1.41 √ kBT
m

v # √ 8kBT
-m

# 1.60 √ kBT
m

vrms # √v2 # √ 3kBT
m

# 1.73 √ kBT
m

E # 1
2mv2e!E/kBT

Nv # 4-N  " m
2-kBT #3/2

v2e!mv 2/2kBT
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vmp

vrms

Nv

v

v

Nv

dv
Active Figure 21.11 The speed
distribution of gas molecules at
some temperature. The number of
molecules having speeds in the
range v to v $ dv is equal to the
area of the shaded rectangle, Nvdv.
The function Nv approaches zero
as v approaches infinity.

At the Active Figures link
at http://www.pse6.com, you
can move the blue triangle
and measure the number of
molecules with speeds within
a small range.

2 For the derivation of this expression, see an advanced textbook on thermodynamics, such as that by
R. P. Bauman, Modern Thermodynamics with Statistical Mechanics, New York, Macmillan Publishing Co., 1992.

Ludwig Boltzmann
Austrian physicist (1844–1906)

Boltzmann made many important
contributions to the development
of the kinetic theory of gases,
electromagnetism, and
thermodynamics. His pioneering
work in the field of kinetic theory
led to the branch of physics
known as statistical mechanics.
(Courtesy of AIP Niels Bohr
Library, Lande Collection)



energetic than others. Some of the faster-moving molecules in the liquid penetrate the
surface and leave the liquid even at temperatures well below the boiling point. The
molecules that escape the liquid by evaporation are those that have sufficient energy to
overcome the attractive forces of the molecules in the liquid phase. Consequently, the
molecules left behind in the liquid phase have a lower average kinetic energy; as a re-
sult, the temperature of the liquid decreases. Hence, evaporation is a cooling process.
For example, an alcohol-soaked cloth often is placed on a feverish head to cool and
comfort a patient.
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Quick Quiz 21.8 Consider the qualitative shapes of the two curves in Figure
21.12, without regard for the numerical values or labels in the graph. Suppose you have
two containers of gas at the same temperature. Container A has 105 nitrogen molecules
and container B has 105 hydrogen molecules. The correct qualitative matching be-
tween the containers and the two curves in Figure 21.12 is (a) container A corresponds
to the blue curve and container B to the brown curve (b) container B corresponds to
the blue curve and container A to the brown curve (c) both containers correspond to
the same curve.

Active Figure 21.12 The speed distribution function for 105 nitrogen molecules at
300 K and 900 K. The total area under either curve is equal to the total number of mol-
ecules, which in this case equals 105. Note that .vrms * v * vmp

At the Active Figures link
at http://www.pse6.com, you
can set the desired tempera-
ture and see the effect on the
distribution curve.
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Example 21.5 A System of Nine Particles

Nine particles have speeds of 5.00, 8.00, 12.0, 12.0, 12.0,
14.0, 14.0, 17.0, and 20.0 m/s.

(A) Find the particles’ average speed.

Solution The average speed of the particles is the sum of
the speeds divided by the total number of particles:

(B) What is the rms speed of the particles?

Solution The average value of the square of the speed is

12.7 m/s#

v #

(5.00 $ 8.00 $ 12.0 $ 12.0 $ 12.0
$ 14.0 $ 14.0 $ 17.0 $ 20.0) m/s

9

Hence, the rms speed of the particles is

(C) What is the most probable speed of the particles?

Solution Three of the particles have a speed of 12.0 m/s,
two have a speed of 14.0 m/s, and the remaining have differ-
ent speeds. Hence, we see that the most probable speed vmp is

12.0 m/s.

13.3 m/svrms # √v2 # √178 m2/s2 #

178 m2/s2#

v2 #

(5.002 $ 8.002 $ 12.02 $ 12.02 $ 12.02

$ 14.02 $ 14.02 $ 17.02 $ 20.02) m2/s2

9



21.7 Mean Free Path

Most of us are familiar with the fact that the strong odor associated with a gas such as
ammonia may take a fraction of a minute to diffuse throughout a room. However, be-
cause average molecular speeds are typically several hundred meters per second at
room temperature, we might expect a diffusion time of much less than one second.
The reason for this difference is that molecules collide with one other because they are
not geometrical points. Therefore, they do not travel from one side of a room to the
other in a straight line. Between collisions, the molecules move with constant speed
along straight lines. The average distance between collisions is called the mean free
path. The path of an individual molecule is random and resembles that shown in
Figure 21.13. As we would expect from this description, the mean free path is related
to the diameter of the molecules and the density of the gas.

We now describe how to estimate the mean free path for a gas molecule. For this cal-
culation, we assume that the molecules are spheres of diameter d. We see from Figure
21.14a that no two molecules collide unless their paths, assumed perpendicular to the
page in Figure 21.14a are less than a distance d apart as the molecules approach each
other. An equivalent way to describe the collisions is to imagine that one of the molecules
has a diameter 2d and that the rest are geometrical points (Fig. 21.14b). Let us choose the
large molecule to be one moving with the average speed . In a time interval "t, this mole-
cule travels a distance In this time interval, the molecule sweeps out a cylinder hav-
ing a cross-sectional area -d2 and a length (Fig. 21.15). Hence, the volume of the
cylinder is If nV is the number of molecules per unit volume, then the number
of point-size molecules in the cylinder is . The molecule of equivalent diame-
ter 2d collides with every molecule in this cylinder in the time interval "t. Hence, the
number of collisions in the time interval "t is equal to the number of molecules in the
cylinder, .

The mean free path ! equals the average distance traveled in a time interval "t
divided by the number of collisions that occur in that time interval:

Because the number of collisions in a time interval "t is , the number
of collisions per unit time interval, or collision frequency f, is

The inverse of the collision frequency is the average time interval between collisions,
known as the mean free time.

Our analysis has assumed that molecules in the cylinder are stationary. When the
motion of these molecules is included in the calculation, the correct results are

(21.30)

(21.31)f # √2 -d2vnV #
v
!

! #
1

√2 -d2nV

f # -d2vnV

(-d2v "t)nV

! #
v "t

(-d2v "t)nV
#

1
-d2nV

v "t
(-d2v "t)nV

(-d2v "t)nV

-d2v "t.
v "t

v "t.
v
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Mean free path

Collision frequency

Figure 21.13 A molecule moving
through a gas collides with other
molecules in a random fashion.
This behavior is sometimes re-
ferred to as a random-walk process.
The mean free path increases as
the number of molecules per unit
volume decreases. Note that the
motion is not limited to the plane
of the paper.

Figure 21.14 (a) Two spherical molecules, each of diameter d and moving along paths
perpendicular to the page, collide if their paths are within a distance d of each other.
(b) The collision between the two molecules is equivalent to a point molecule colliding
with a molecule having an effective diameter of 2d.

Figure 21.15 In a time interval "t,
a molecule of effective diameter 2d
and moving to the right sweeps out
a cylinder of length where is
its average speed. In this time inter-
val, it collides with every point mol-
ecule within this cylinder.

vv"t
(b)

2d

Equivalent
collision

(a)

d

d

Actual
collision

2d v"t
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Example 21.6 Bouncing Around in the Air

Approximate the air around you as a collection of nitrogen
molecules, each having a diameter of 2.00 % 10!10 m.

(A) How far does a typical molecule move before it collides
with another molecule?

Solution Assuming that the gas is ideal, we can use the
equation PV # NkBT to obtain the number of molecules per
unit volume under typical room conditions:

Hence, the mean free path is

2.25 % 10!7 m#

#
1

√2-(2.00 % 10!10 m)2(2.50 % 1025 molecules/m3)

! #
1

√2-d2nV

# 2.50 % 1025 molecules/m3

nV #
N
V

#
P

kBT
#

1.01 % 105 N/m2

(1.38 % 10!23 J/K)(293 K)

This value is about 103 times greater than the molecular
diameter.

(B) On average, how frequently does one molecule collide
with another?

Solution Because the rms speed of a nitrogen molecule at
20.0°C is 511 m/s (see Table 21.1), we know from Equations
21.27 and 21.28 that # (1.60/1.73)(511 m/s) # 473 m/s.
Therefore, the collision frequency is

The molecule collides with other molecules at the average
rate of about two billion times each second!

The mean free path ! is not the same as the average
separation between particles. In fact, the average separation
d between particles is approximately nV

! 1/3. In this exam-
ple, the average molecular separation is

d #
1

nV
1/3 #

1
(2.5 % 1025)1/3 # 3.4 % 10!9 m

2.10 % 109/sf #
v
!

#
473 m/s

2.25 % 10!7 m
#

v  

The pressure of N molecules of an ideal gas contained in a volume V is

(21.2)

The average translational kinetic energy per molecule of a gas, , is related to
the temperature T of the gas through the expression

(21.4)

where kB is Boltzmann’s constant. Each translational degree of freedom (x, y, or z) has
kBT of energy associated with it.

The theorem of equipartition of energy states that the energy of a system in ther-
mal equilibrium is equally divided among all degrees of freedom.

The internal energy of N molecules (or n mol) of an ideal monatomic gas is

(21.10)

The change in internal energy for n mol of any ideal gas that undergoes a change
in temperature "T is

(21.12)

where CV is the molar specific heat at constant volume.
The molar specific heat of an ideal monatomic gas at constant volume is CV # R ;

the molar specific heat at constant pressure is CP # R . The ratio of specific heats is
given by ( # CP/CV # .

If an ideal gas undergoes an adiabatic expansion or compression, the first law of
thermodynamics, together with the equation of state, shows that

PV ( # constant (21.18)
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2NkBT # 3
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1
2mv2 # 3
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N
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Take a practice test for
this chapter by clicking on
the Practice Test link at
http://www.pse6.com.
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1. Dalton’s law of partial pressures states that the total pressure
of a mixture of gases is equal to the sum of the partial pres-
sures of gases making up the mixture. Give a convincing
argument for this law based on the kinetic theory of gases.

2. One container is filled with helium gas and another with
argon gas. If both containers are at the same temperature,
which molecules have the higher rms speed? Explain.

3. A gas consists of a mixture of He and N2 molecules. Do the
lighter He molecules travel faster than the N2 molecules?
Explain.

4. Although the average speed of gas molecules in thermal
equilibrium at some temperature is greater than zero, the
average velocity is zero. Explain why this statement must
be true.

When alcohol is rubbed on your body, it lowers your skin
temperature. Explain this effect.

6. A liquid partially fills a container. Explain why the temper-
ature of the liquid decreases if the container is then par-
tially evacuated. (Using this technique, it is possible to
freeze water at temperatures above 0°C.)

7. A vessel containing a fixed volume of gas is cooled. Does
the mean free path of the molecules increase, decrease,
or remain constant in the cooling process? What about the
collision frequency?

8. A gas is compressed at a constant temperature. What hap-
pens to the mean free path of the molecules in this process?

If a helium-filled balloon initially at room temperature is
placed in a freezer, will its volume increase, decrease, or
remain the same?

9.

5.

10. Which is denser, dry air or air saturated with water vapor?
Explain.

What happens to a helium-filled balloon released into the
air? Will it expand or contract? Will it stop rising at some
height?

12. Why does a diatomic gas have a greater energy content
per mole than a monatomic gas at the same tempera-
ture?

13. An ideal gas is contained in a vessel at 300 K. If the tem-
perature is increased to 900 K, by what factor does each
one of the following change? (a) The average kinetic en-
ergy of the molecules. (b) The rms molecular speed.
(c) The average momentum change of one molecule in a
collision with a wall. (d) The rate of collisions of molecules
with walls. (e) The pressure of the gas.

14. A vessel is filled with gas at some equilibrium pressure and
temperature. Can all gas molecules in the vessel have the
same speed?

15. In our model of the kinetic theory of gases, molecules
were viewed as hard spheres colliding elastically with the
walls of the container. Is this model realistic?

16. In view of the fact that hot air rises, why does it generally
become cooler as you climb a mountain? (Note that air
has low thermal conductivity.)

17. Inspecting the magnitudes of CV and CP for the diatomic
and polyatomic gases in Table 21.2, we find that the values
increase with increasing molecular mass. Give a qualitative
explanation of this observation.

11.

Q U E S T I O N S

The Boltzmann distribution law describes the distribution of particles among
available energy states. The relative number of particles having energy between E and
E $ dE is nV(E) dE, where

(21.25)

The Maxwell–Boltzmann speed distribution function describes the distribution
of speeds of molecules in a gas:

(21.26)

This expression enables us to calculate the root-mean-square speed, the average
speed, and the most probable speed:

(21.27)

(21.28)

(21.29)vmp # √ 2kBT
m

# 1.41 √ kBT
m

v # √ 8kBT
-m

# 1.60 √ kBT
m

vrms # √v2 # √ 3kBT
m

# 1.73 √ kBT
m

Nv # 4-N  " m
2-kBT #3/2

v2e!mv 2/2kBT

nV (E  ) # n0e!E/kBT



Problems 661

Section 21.1 Molecular Model of an Ideal Gas
1. In a 30.0-s interval, 500 hailstones strike a glass window of

area 0.600 m2 at an angle of 45.0° to the window surface.
Each hailstone has a mass of 5.00 g and moves with a
speed of 8.00 m/s. Assuming the collisions are elastic, find
the average force and pressure on the window.

2. In a period of 1.00 s, 5.00 % 1023 nitrogen molecules strike
a wall with an area of 8.00 cm2. If the molecules move with
a speed of 300 m/s and strike the wall head-on in elastic
collisions, what is the pressure exerted on the wall? (The
mass of one N2 molecule is 4.68 % 10!26 kg.)

3. A sealed cubical container 20.0 cm on a side contains
three times Avogadro’s number of molecules at a tempera-
ture of 20.0°C. Find the force exerted by the gas on one of
the walls of the container.

4. A 2.00-mol sample of oxygen gas is confined to a 5.00-L
vessel at a pressure of 8.00 atm. Find the average transla-
tional kinetic energy of an oxygen molecule under these
conditions.
A spherical balloon of volume 4 000 cm3 contains helium
at an (inside) pressure of 1.20 % 105 Pa. How many moles
of helium are in the balloon if the average kinetic energy
of the helium atoms is 3.60 % 10!22 J?

6. Use the definition of Avogadro’s number to find the mass
of a helium atom.
(a) How many atoms of helium gas fill a balloon having a
diameter of 30.0 cm at 20.0°C and 1.00 atm? (b) What is
the average kinetic energy of the helium atoms? (c) What
is the root-mean-square speed of the helium atoms?

8. Given that the rms speed of a helium atom at a certain
temperature is 1 350 m/s, find by proportion the rms
speed of an oxygen (O2) molecule at this temperature.
The molar mass of O2 is 32.0 g/mol, and the molar mass
of He is 4.00 g/mol.

A cylinder contains a mixture of helium and argon
gas in equilibrium at 150°C. (a) What is the average
kinetic energy for each type of gas molecule? (b) What is
the root-mean-square speed of each type of molecule?

10. A 5.00-L vessel contains nitrogen gas at 27.0°C and a pres-
sure of 3.00 atm. Find (a) the total translational kinetic en-
ergy of the gas molecules and (b) the average kinetic en-
ergy per molecule.

11. (a) Show that 1 Pa # 1 J/m3. (b) Show that the density in
space of the translational kinetic energy of an ideal gas is
3P/2.

Section 21.2 Molar Specific Heat of an Ideal Gas

Note: You may use data in Table 21.2 about particular
gases. Here we define a “monatomic ideal gas” to have
molar specific heats CV # 3R/2 and CP # 5R/2, and a
“diatomic ideal gas” to have CV # 5R/2 and CP # 7R/2.

9.

7.

5.

12. Calculate the change in internal energy of 3.00 mol of
helium gas when its temperature is increased by 2.00 K.

A 1.00-mol sample of hydrogen gas is heated at con-
stant pressure from 300 K to 420 K. Calculate (a) the
energy transferred to the gas by heat, (b) the increase in
its internal energy, and (c) the work done on the gas.

14. A 1.00-mol sample of air (a diatomic ideal gas) at 300 K,
confined in a cylinder under a heavy piston, occupies a
volume of 5.00 L. Determine the final volume of the gas
after 4.40 kJ of energy is transferred to the air by heat.

15. In a constant-volume process, 209 J of energy is transferred
by heat to 1.00 mol of an ideal monatomic gas initially at
300 K. Find (a) the increase in internal energy of the gas,
(b) the work done on it, and (c) its final temperature.

16. A house has well-insulated walls. It contains a volume of
100 m3 of air at 300 K. (a) Calculate the energy required
to increase the temperature of this diatomic ideal gas by
1.00°C. (b) What If? If this energy could be used to lift an
object of mass m through a height of 2.00 m, what is the
value of m?

17. An incandescent lightbulb contains a volume V of argon at
pressure Pi . The bulb is switched on and constant power "
is transferred to the argon for a time interval "t. 
(a) Show that the pressure Pf in the bulb at the end of this
process is Pf # Pi[1 $ (""tR)/(PiVCV)]. (b) Find the pres-
sure in a spherical light bulb 10.0 cm in diameter 4.00 s af-
ter it is switched on, given that it has initial pressure 
1.00 atm and that 3.60 W of power is transferred to the gas.

18. A vertical cylinder with a heavy piston contains air at a
temperature of 300 K. The initial pressure is 200 kPa, and
the initial volume is 0.350 m3. Take the molar mass of air
as 28.9 g/mol and assume that CV # 5R/2. (a) Find the
specific heat of air at constant volume in units of J/kg & )C.
(b) Calculate the mass of the air in the cylinder. (c) Sup-
pose the piston is held fixed. Find the energy input re-
quired to raise the temperature of the air to 700 K. 
(d) What If? Assume again the conditions of the initial
state and that the heavy piston is free to move. Find the
energy input required to raise the temperature to 700 K.

19. A 1-L Thermos bottle is full of tea at 90°C. You pour out
one cup and immediately screw the stopper back on.
Make an order-of-magnitude estimate of the change in
temperature of the tea remaining in the flask that results
from the admission of air at room temperature. State the
quantities you take as data and the values you measure or
estimate for them.

20. A 1.00-mol sample of a diatomic ideal gas has pressure P
and volume V. When the gas is heated, its pressure triples
and its volume doubles. This heating process includes two
steps, the first at constant pressure and the second at con-
stant volume. Determine the amount of energy trans-
ferred to the gas by heat.

13.

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide

= coached solution with hints available at http://www.pse6.com = computer useful in solving problem

= paired numerical and symbolic problems

P R O B L E M S
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21. A 1.00-mol sample of an ideal monatomic gas is at an ini-
tial temperature of 300 K. The gas undergoes an isovolu-
metric process acquiring 500 J of energy by heat. It then
undergoes an isobaric process losing this same amount of
energy by heat. Determine (a) the new temperature of the
gas and (b) the work done on the gas.

22. A vertical cylinder with a movable piston contains 1.00 mol
of a diatomic ideal gas. The volume of the gas is Vi, and its
temperature is Ti . Then the cylinder is set on a stove and ad-
ditional weights are piled onto the piston as it moves up, in
such a way that the pressure is proportional to the volume
and the final volume is 2Vi . (a) What is the final tempera-
ture? (b) How much energy is transferred to the gas by heat?

23. A container has a mixture of two gases: n1 mol of gas 1
having molar specific heat C1 and n2 mol of gas 2 of molar
specific heat C2 . (a) Find the molar specific heat of the
mixture. (b) What If? What is the molar specific heat if the
mixture has m gases in the amounts n1, n2, n3 , . . . , nm ,
with molar specific heats C1, C2 , C3 , . . . , Cm , respectively?

Section 21.3 Adiabatic Processes for an Ideal Gas
24. During the compression stroke of a certain gasoline en-

gine, the pressure increases from 1.00 atm to 20.0 atm. If
the process is adiabatic and the fuel–air mixture behaves
as a diatomic ideal gas, (a) by what factor does the volume
change and (b) by what factor does the temperature
change? (c) Assuming that the compression starts with
0.016 0 mol of gas at 27.0°C, find the values of Q , W, and
"Eint that characterize the process.

A 2.00-mol sample of a diatomic ideal gas expands slowly
and adiabatically from a pressure of 5.00 atm and a volume
of 12.0 L to a final volume of 30.0 L. (a) What is the final
pressure of the gas? (b) What are the initial and final tem-
peratures? (c) Find Q , W, and "Eint .

26. Air (a diatomic ideal gas) at 27.0°C and atmospheric
pressure is drawn into a bicycle pump that has a cylinder
with an inner diameter of 2.50 cm and length 50.0 cm. The
down stroke adiabatically compresses the air, which reaches
a gauge pressure of 800 kPa before entering the tire (Fig.
P21.26). Determine (a) the volume of the compressed air
and (b) the temperature of the compressed air. (c) What If?
The pump is made of steel and has an inner wall that is 
2.00 mm thick. Assume that 4.00 cm of the cylinder’s length
is allowed to come to thermal equilibrium with the air. What
will be the increase in wall temperature?

Air in a thundercloud expands as it rises. If its initial tem-
perature is 300 K and no energy is lost by thermal conduc-
tion on expansion, what is its temperature when the initial
volume has doubled?

28. The largest bottle ever made by blowing glass has a volume
of about 0.720 m3. Imagine that this bottle is filled with air
that behaves as an ideal diatomic gas. The bottle is held
with its opening at the bottom and rapidly submerged into
the ocean. No air escapes or mixes with the water. No en-
ergy is exchanged with the ocean by heat. (a) If the final
volume of the air is 0.240 m3, by what factor does the inter-
nal energy of the air increase? (b) If the bottle is sub-
merged so that the air temperature doubles, how much
volume is occupied by air?

27.

25.
Figure P21.26
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29. A 4.00-L sample of a diatomic ideal gas with specific heat
ratio 1.40, confined to a cylinder, is carried through a
closed cycle. The gas is initially at 1.00 atm and at 300 K.
First, its pressure is tripled under constant volume.
Then, it expands adiabatically to its original pressure.
Finally, the gas is compressed isobarically to its original
volume. (a) Draw a PV diagram of this cycle. (b) Deter-
mine the volume of the gas at the end of the adiabatic
expansion. (c) Find the temperature of the gas at the
start of the adiabatic expansion. (d) Find the tempera-
ture at the end of the cycle. (e) What was the net work
done on the gas for this cycle?

30. A diatomic ideal gas (( # 1.40) confined to a cylinder is
put through a closed cycle. Initially the gas is at Pi , Vi , and
Ti . First, its pressure is tripled under constant volume. It
then expands adiabatically to its original pressure and fi-
nally is compressed isobarically to its original volume.
(a) Draw a PV diagram of this cycle. (b) Determine the vol-
ume at the end of the adiabatic expansion. Find (c) the
temperature of the gas at the start of the adiabatic expan-
sion and (d) the temperature at the end of the cycle.
(e) What was the net work done on the gas for this cycle?

31. How much work is required to compress 5.00 mol of air at
20.0°C and 1.00 atm to one tenth of the original volume
(a) by an isothermal process? (b) by an adiabatic process?
(c) What is the final pressure in each of these two cases?
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Section 21.5 The Boltzmann Distribution Law

Section 21.6 Distribution of Molecular Speeds
36. One cubic meter of atomic hydrogen at 0°C and atmos-

pheric pressure contains approximately 2.70 % 1025 atoms.
The first excited state of the hydrogen atom has an energy
of 10.2 eV above the lowest energy level, called the ground
state. Use the Boltzmann factor to find the number of
atoms in the first excited state at 0°C and at 10 000°C.

Fifteen identical particles have various speeds: one has a
speed of 2.00 m/s; two have speeds of 3.00 m/s; three
have speeds of 5.00 m/s; four have speeds of 7.00 m/s;
three have speeds of 9.00 m/s; and two have speeds of
12.0 m/s. Find (a) the average speed, (b) the rms speed,
and (c) the most probable speed of these particles.

38. Two gases in a mixture diffuse through a filter at rates
proportional to the gases’ rms speeds. (a) Find the ratio of
speeds for the two isotopes of chlorine, 35Cl and 37Cl, as they
diffuse through the air. (b) Which isotope moves faster?

From the Maxwell–Boltzmann speed distribution, show
that the most probable speed of a gas molecule is given by
Equation 21.29. Note that the most probable speed corre-
sponds to the point at which the slope of the speed distri-
bution curve dNv /dv is zero.

40. Helium gas is in thermal equilibrium with liquid helium
at 4.20 K. Even though it is on the point of condensation,
model the gas as ideal and determine the most probable
speed of a helium atom (mass # 6.64 % 10!27 kg) in it.

41. Review problem. At what temperature would the average
speed of helium atoms equal (a) the escape speed from
Earth, 1.12 % 104 m/s and (b) the escape speed from the
Moon, 2.37 % 103 m/s? (See Chapter 13 for a discussion
of escape speed, and note that the mass of a helium atom
is 6.64 % 10!27 kg.)

42. A gas is at 0°C. If we wish to double the rms speed of its
molecules, to what temperature must the gas be brought?

43. Assume that the Earth’s atmosphere has a uniform tempera-
ture of 20°C and uniform composition, with an effective 
molar mass of 28.9 g/mol. (a) Show that the number den-
sity of molecules depends on height according to

where n0 is the number density at sea level, where y # 0.
This result is called the law of atmospheres. (b) Commercial
jetliners typically cruise at an altitude of 11.0 km. Find the
ratio of the atmospheric density there to the density at sea
level.

44. If you can’t walk to outer space, can you at least walk halfway?
Using the law of atmospheres from Problem 43, we find
that the average height of a molecule in the Earth’s atmos-
phere is given by

(a) Prove that this average height is equal to kBT/mg.
(b) Evaluate the average height, assuming the tempera-
ture is 10°C and the molecular mass is 28.9 u.

y #
$.

0
ynV (y) dy

$.

0
nV (y) dy

#
$.

0
ye!mgy/kBT

 dy

$.

0
e!mgy/kBT dy

nV (y) # n0e!mgy/kBT

39.

37.

32. During the power stroke in a four-stroke automobile
engine, the piston is forced down as the mixture of
combustion products and air undergoes an adiabatic
expansion (Fig. P21.32). Assume that (1) the engine is
running at 2 500 cycles/min, (2) the gauge pressure
right before the expansion is 20.0 atm, (3) the volumes
of the mixture right before and after the expansion are
50.0 and 400 cm3, respectively, (4) the time involved in
the expansion is one-fourth that of the total cycle, and
(5) the mixture behaves like an ideal gas with specific
heat ratio 1.40. Find the average power generated dur-
ing the expansion.

Section 21.4 The Equipartition of Energy
Consider 2.00 mol of an ideal diatomic gas. (a) Find

the total heat capacity of the gas at constant volume and at
constant pressure assuming the molecules rotate but do
not vibrate. (b) What If? Repeat, assuming the molecules
both rotate and vibrate.

34. A certain molecule has f degrees of freedom. Show that an
ideal gas consisting of such molecules has the following
properties: (1) its total internal energy is fnRT/2; (2) its
molar specific heat at constant volume is fR/2; (3) its
molar specific heat at constant pressure is ( f $ 2)R/2;
(4) its specific heat ratio is ( # CP/CV # ( f $ 2)/f.

35. In a crude model (Fig. P21.35) of a rotating diatomic mole-
cule of chlorine (Cl2), the two Cl atoms are 2.00 % 10!10 m
apart and rotate about their center of mass with angular
speed + # 2.00 % 1012 rad/s. What is the rotational kinetic
energy of one molecule of Cl2, which has a molar mass of
70.0 g/mol?

33.
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Section 21.7 Mean Free Path
In an ultra-high-vacuum system, the pressure is measured
to be 1.00 % 10!10 torr (where 1 torr # 133 Pa). Assum-
ing the molecular diameter is 3.00 % 10!10 m, the average
molecular speed is 500 m/s, and the temperature is 300 K,
find (a) the number of molecules in a volume of 1.00 m3,
(b) the mean free path of the molecules, and (c) the colli-
sion frequency.

46. In deep space the number density of particles can be one
particle per cubic meter. Using the average temperature of
3.00 K and assuming the particle is H2 with a diameter of
0.200 nm, (a) determine the mean free path of the parti-
cle and the average time between collisions. (b) What If?
Repeat part (a) assuming a density of one particle per cu-
bic centimeter.

47. Show that the mean free path for the molecules of an ideal
gas is

where d is the molecular diameter.

48. In a tank full of oxygen, how many molecular diameters d
(on average) does an oxygen molecule travel (at 1.00 atm
and 20.0°C) before colliding with another O2 molecule?
(The diameter of the O2 molecule is approximately
3.60 % 10!10 m.)

49. Argon gas at atmospheric pressure and 20.0°C is confined
in a 1.00-m3 vessel. The effective hard-sphere diameter of
the argon atom is 3.10 % 10!10 m. (a) Determine the
mean free path !. (b) Find the pressure when ! # 1.00 m.
(c) Find the pressure when ! # 3.10 % 10!10 m.

Additional Problems
50. The dimensions of a room are 4.20 m % 3.00 m % 2.50 m.

(a) Find the number of molecules of air in the room at at-
mospheric pressure and 20.0°C. (b) Find the mass of this
air, assuming that the air consists of diatomic molecules
with molar mass 28.9 g/mol. (c) Find the average kinetic
energy of one molecule. (d) Find the root-mean-square
molecular speed. (e) On the assumption that the molar
specific heat is a constant independent of temperature, we
have Eint # 5nRT/2. Find the internal energy in the air.
(f ) What If? Find the internal energy of the air in the
room at 25.0°C.

51. The function Eint # 3.50nRT describes the internal energy
of a certain ideal gas. A sample comprising 2.00 mol of the
gas always starts at pressure 100 kPa and temperature
300 K. For each one of the following processes, determine
the final pressure, volume, and temperature; the change
in internal energy of the gas; the energy added to the gas
by heat; and the work done on the gas. (a) The gas is
heated at constant pressure to 400 K . (b) The gas is
heated at constant volume to 400 K . (c) The gas is com-
pressed at constant temperature to 120 kPa. (d) The gas is
compressed adiabatically to 120 kPa.

52. Twenty particles, each of mass m and confined to a volume
V, have various speeds: two have speed v; three have speed
2v; five have speed 3v; four have speed 4v; three have speed

! #
kBT

√2-d2P

45.

5v; two have speed 6v ; one has speed 7v. Find (a) the aver-
age speed, (b) the rms speed, (c) the most probable speed,
(d) the pressure the particles exert on the walls of the ves-
sel, and (e) the average kinetic energy per particle.

A cylinder containing n mol of an ideal gas under-
goes an adiabatic process. (a) Starting with the expression

and using the condition PV ( # constant,
show that the work done on the gas is

(b) Starting with the first law of thermodynamics in differ-
ential form, prove that the work done on the gas is also
equal to nCV(Tf ! Ti). Show that this result is consistent
with the equation in part (a).

54. As a 1.00-mol sample of a monatomic ideal gas expands
adiabatically, the work done on it is ! 2 500 J. The initial
temperature and pressure of the gas are 500 K and 
3.60 atm. Calculate (a) the final temperature and (b) the
final pressure. You may use the result of Problem 53.

55. A cylinder is closed at both ends and has insulating walls.
It is divided into two compartments by a perfectly insulat-
ing partition that is perpendicular to the axis of the cylin-
der. Each compartment contains 1.00 mol of oxygen,
which behaves as an ideal gas with ( # 7/5. Initially the
two compartments have equal volumes, and their tempera-
tures are 550 K and 250 K. The partition is then allowed to
move slowly until the pressures on its two sides are equal.
Find the final temperatures in the two compartments. You
may use the result of Problem 53.

56. An air rifle shoots a lead pellet by allowing high-pressure air
to expand, propelling the pellet down the rifle barrel. Be-
cause this process happens very quickly, no appreciable ther-
mal conduction occurs, and the expansion is essentially adia-
batic. Suppose that the rifle starts by admitting to the barrel
12.0 cm3 of compressed air, which behaves as an ideal gas
with ( # 1.40. The air expands behind a 1.10-g pellet and
pushes on it as a piston with cross-sectional area 0.030 0 cm2,
as the pellet moves 50.0 cm along the gun barrel. The pellet
emerges with muzzle speed 120 m/s. Use the result of prob-
lem 53 to find the initial pressure required.

57. Review problem. Oxygen at pressures much greater than 
1 atm is toxic to lung cells. Assume that a deep-sea diver
breathes a mixture of oxygen (O2) and helium (He). By
weight, what ratio of helium to oxygen must be used if the
diver is at an ocean depth of 50.0 m?

58. A vessel contains 1.00 % 104 oxygen molecules at 500 K.
(a) Make an accurate graph of the Maxwell–Boltzmann
speed distribution function versus speed with points at
speed intervals of 100 m/s. (b) Determine the most prob-
able speed from this graph. (c) Calculate the average and
rms speeds for the molecules and label these points on
your graph. (d) From the graph, estimate the fraction of
molecules with speeds in the range 300 m/s to 600 m/s.

The compressibility / of a substance is defined as the
fractional change in volume of that substance for a given
change in pressure:

/ # !
1
V

 
dV
dP

59.

W # " 1
( ! 1 # (Pf Vf  ! PiVi)

W # !$P dV

53.
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acting toward the center of the circular path on a given
particle is m+2r. (a) Discuss how a gas centrifuge can be
used to separate particles of different mass. (b) Show that
the density of the particles as a function of r is

65. Verify Equations 21.27 and 21.28 for the rms and average
speed of the molecules of a gas at a temperature T. Note
that the average value of vn is

Use the table of definite integrals in Appendix B (Table B.6).

66. On the PV diagram for an ideal gas, one isothermal curve
and one adiabatic curve pass through each point. Prove
that the slope of the adiabat is steeper than the slope of
the isotherm by the factor (.

67. A sample of monatomic ideal gas occupies 5.00 L at atmos-
pheric pressure and 300 K (point A in Figure P21.67). It is
heated at constant volume to 3.00 atm (point B). Then it is
allowed to expand isothermally to 1.00 atm (point C) and
at last compressed isobarically to its original state. (a) Find
the number of moles in the sample. (b) Find the tempera-
ture at points B and C and the volume at point C. (c) As-
suming that the molar specific heat does not depend on
temperature, so that E int # 3nRT/2, find the internal en-
ergy at points A, B, and C. (d) Tabulate P, V, T, and E int for
the states at points A, B, and C. (e) Now consider the
processes A : B, B : C, and C : A. Describe just how to
carry out each process experimentally. (f ) Find Q , W, and
"E int for each of the processes. (g) For the whole cycle
A : B : C : A find Q , W, and "E int .

68. This problem can help you to think about the size of mole-
cules. In the city of Beijing a restaurant keeps a pot of
chicken broth simmering continuously. Every morning it is
topped up to contain 10.0 L of water, along with a fresh
chicken, vegetables, and spices. The soup is thoroughly
stirred. The molar mass of water is 18.0 g/mol. (a) Find

vn #
1
N

 $.

0
 vnNv dv

n(r) # n0emr  
2+ 

2/2kBT

(a) Explain why the negative sign in this expression
ensures that / is always positive. (b) Show that if an ideal
gas is compressed isothermally, its compressibility is given
by /1 # 1/P. (c) What If? Show that if an ideal gas is
compressed adiabatically, its compressibility is given by
/2 # 1/(P. (d) Determine values for /1 and /2 for a
monatomic ideal gas at a pressure of 2.00 atm.

60. Review problem. (a) Show that the speed of sound in an
ideal gas is

where M is the molar mass. Use the general expression for
the speed of sound in a fluid from Section 17.1, the defini-
tion of the bulk modulus from Section 12.4, and the result
of Problem 59 in this chapter. As a sound wave passes
through a gas, the compressions are either so rapid or so
far apart that thermal conduction is prevented by a negli-
gible time interval or by effective thickness of insulation.
The compressions and rarefactions are adiabatic. (b) Com-
pute the theoretical speed of sound in air at 20°C and
compare it with the value in Table 17.1. Take M #
28.9 g/mol. (c) Show that the speed of sound in an ideal
gas is

where m is the mass of one molecule. Compare it with the
most probable, average, and rms molecular speeds.

61. Model air as a diatomic ideal gas with M # 28.9 g/mol. A
cylinder with a piston contains 1.20 kg of air at 25.0°C and
200 kPa. Energy is transferred by heat into the system as it
is allowed to expand, with the pressure rising to 400 kPa.
Throughout the expansion, the relationship between pres-
sure and volume is given by

where C is a constant. (a) Find the initial volume. (b) Find
the final volume. (c) Find the final temperature. (d) Find the
work done on the air. (e) Find the energy transferred by heat.

62. Smokin’! A pitcher throws a 0.142-kg baseball at 47.2 m/s
(Fig. P21.62). As it travels 19.4 m, the ball slows to a speed
of 42.5 m/s because of air resistance. Find the change in
temperature of the air through which it passes. To find the
greatest possible temperature change, you may make the
following assumptions: Air has a molar specific heat of 
CP # 7R/2 and an equivalent molar mass of 28.9 g/mol.
The process is so rapid that the cover of the baseball acts
as thermal insulation, and the temperature of the ball it-
self does not change. A change in temperature happens
initially only for the air in a cylinder 19.4 m in length and
3.70 cm in radius. This air is initially at 20.0°C.

For a Maxwellian gas, use a computer or programma-
ble calculator to find the numerical value of the ratio
Nv(v)/Nv(vmp) for the following values of v: v # (vmp/50),
(vmp/10), (vmp/2), vmp, 2vmp, 10vmp, and 50vmp. Give your
results to three significant figures.

64. Consider the particles in a gas centrifuge, a device used to
separate particles of different mass by whirling them in a
circular path of radius r at angular speed +. The force

63.

P # CV 1/2

v # √ (kBT
m

v # √ (RT
M
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Figure P21.62 John Lackey, the first rookie to win a World Series
game 7 in 93 years, pitches for the Anaheim Angels during the
final game of the 2002 World Series.
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the number of molecules of water in the pot. (b) During a
certain month, 90.0% of the broth was served each day to
people who then emigrated immediately. Of the water
molecules in the pot on the first day of the month, when
was the last one likely to have been ladled out of the pot?
(c) The broth has been simmering for centuries, through
wars, earthquakes, and stove repairs. Suppose the water
that was in the pot long ago has thoroughly mixed into the
Earth’s hydrosphere, of mass 1.32 % 1021 kg. How many of
the water molecules originally in the pot are likely to be
present in it again today?

69. Review problem. (a) If it has enough kinetic energy, a mol-
ecule at the surface of the Earth can “escape the Earth’s
gravitation,” in the sense that it can continue to move away
from the Earth forever, as discussed in Section 13.7. Using
the principle of conservation of energy, show that the mini-
mum kinetic energy needed for “escape” is mgRE , where m
is the mass of the molecule, g is the free-fall acceleration at
the surface, and RE is the radius of the Earth. (b) Calculate

the temperature for which the minimum escape kinetic en-
ergy is ten times the average kinetic energy of an oxygen
molecule.

70. Using multiple laser beams, physicists have been able to cool
and trap sodium atoms in a small region. In one experiment
the temperature of the atoms was reduced to 0.240 mK. 
(a) Determine the rms speed of the sodium atoms at this
temperature. The atoms can be trapped for about 1.00 s.
The trap has a linear dimension of roughly 1.00 cm. 
(b) Approximately how long would it take an atom to wan-
der out of the trap region if there were no trapping action?

Answers to Quick Quizzes
21.1 (b). The average translational kinetic energy per mole-

cule is a function only of temperature.

21.2 (a). Because there are twice as many molecules and the
temperature of both containers is the same, the total en-
ergy in B is twice that in A.

21.3 (b). Because both containers hold the same type of gas,
the rms speed is a function only of temperature.

21.4 (a). According to Equation 21.10, Eint is a function of
temperature only. Because the temperature increases, the
internal energy increases.

21.5 (c). Along an isotherm, T is constant by definition. There-
fore, the internal energy of the gas does not change.

21.6 (d). The value of 29.1 J/mol & K is 7R/2. According to
Figure 21.7, this suggests that all three types of motion are
occurring.

21.7 (c). The highest possible value of CV for a diatomic gas is
7R/2, so the gas must be polyatomic.

21.8 (a). Because the hydrogen atoms are lighter than the ni-
trogen molecules, they move with a higher average speed
and the distribution curve is stretched out more along the
horizontal axis. See Equation 21.26 for a mathematical
statement of the dependence of Nv on m.
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3

0 5 10 V(L)
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Figure P21.67
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! This cutaway image of an automobile engine shows two pistons that have work done on
them by an explosive mixture of air and fuel, ultimately leading to the motion of the
automobile. This apparatus can be modeled as a heat engine, which we study in this chapter.
(Courtesy of Ford Motor Company)
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The first law of thermodynamics, which we studied in Chapter 20, is a statement of
conservation of energy. This law states that a change in internal energy in a system can
occur as a result of energy transfer by heat or by work, or by both. As was stated in
Chapter 20, the law makes no distinction between the results of heat and the results of
work—either heat or work can cause a change in internal energy. However, there is an
important distinction between heat and work that is not evident from the first law. One
manifestation of this distinction is that it is impossible to design a device that, operat-
ing in a cyclic fashion, takes in energy by heat and expels an equal amount of energy by
work. A cyclic device that takes in energy by heat and expels a fraction of this energy by
work is possible and is called a heat engine.

Although the first law of thermodynamics is very important, it makes no distinc-
tion between processes that occur spontaneously and those that do not. However,
only certain types of energy-conversion and energy-transfer processes actually take
place in nature. The second law of thermodynamics, the major topic in this chapter,
establishes which processes do and which do not occur. The following are examples
of processes that do not violate the principle of conservation of energy if they pro-
ceed in either direction, but are observed to proceed in only one direction, governed
by the second law:

• When two objects at different temperatures are placed in thermal contact with
each other, the net transfer of energy by heat is always from the warmer object to
the cooler object, never from the cooler to the warmer.

• A rubber ball dropped to the ground bounces several times and eventually comes
to rest, but a ball lying on the ground never gathers internal energy from the
ground and begins bouncing on its own.

• An oscillating pendulum eventually comes to rest because of collisions with air mol-
ecules and friction at the point of suspension. The mechanical energy of the system
is converted to internal energy in the air, the pendulum, and the suspension; the
reverse conversion of energy never occurs.

All these processes are irreversible—that is, they are processes that occur naturally in
one direction only. No irreversible process has ever been observed to run backward—if
it were to do so, it would violate the second law of thermodynamics.1

From an engineering standpoint, perhaps the most important implication of the
second law is the limited efficiency of heat engines. The second law states that a ma-
chine that operates in a cycle, taking in energy by heat and expelling an equal amount
of energy by work, cannot be constructed.

1 Although we have never observed a process occurring in the time-reversed sense, it is possible for it to
occur. As we shall see later in the chapter, however, the probability of such a process occurring is
infinitesimally small. From this viewpoint, we say that processes occur with a vastly greater probability in
one direction than in the opposite direction.

Lord Kelvin
British physicist and
mathematician (1824–1907)

Born William Thomson in Belfast,
Kelvin was the first to propose
the use of an absolute scale of
temperature. The Kelvin
temperature scale is named in
his honor. Kelvin’s work in
thermodynamics led to the idea
that energy cannot pass
spontaneously from a colder
object to a hotter object.
(J. L. Charmet/SPL/Photo
Researchers, Inc.)
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22.1 Heat Engines and the Second Law 
of Thermodynamics

A heat engine is a device that takes in energy by heat2 and, operating in a cyclic
process, expels a fraction of that energy by means of work. For instance, in a typical
process by which a power plant produces electricity, coal or some other fuel is burned,
and the high-temperature gases produced are used to convert liquid water to steam.
This steam is directed at the blades of a turbine, setting it into rotation. The mechani-
cal energy associated with this rotation is used to drive an electric generator. Another
device that can be modeled as a heat engine—the internal combustion engine in an
automobile—uses energy from a burning fuel to perform work on pistons that results
in the motion of the automobile.

A heat engine carries some working substance through a cyclic process during
which (1) the working substance absorbs energy by heat from a high-temperature en-
ergy reservoir, (2) work is done by the engine, and (3) energy is expelled by heat to a
lower-temperature reservoir. As an example, consider the operation of a steam engine
(Fig. 22.1), which uses water as the working substance. The water in a boiler absorbs
energy from burning fuel and evaporates to steam, which then does work by expand-
ing against a piston. After the steam cools and condenses, the liquid water produced
returns to the boiler and the cycle repeats.

It is useful to represent a heat engine schematically as in Figure 22.2. The engine
absorbs a quantity of energy !Q h ! from the hot reservoir. For this discussion of heat en-
gines, we will use absolute values to make all energy transfers positive and will indicate
the direction of transfer with an explicit positive or negative sign. The engine does
work Weng (so that negative work W ! " Weng is done on the engine), and then gives up
a quantity of energy !Q c ! to the cold reservoir. Because the working substance goes

2 We will use heat as our model for energy transfer into a heat engine. Other methods of energy
transfer are also possible in the model of a heat engine, however. For example, the Earth’s atmosphere
can be modeled as a heat engine, in which the input energy transfer is by means of electromagnetic
radiation from the Sun. The output of the atmospheric heat engine causes the wind structure in the
atmosphere.

Figure 22.1 This steam-driven
locomotive runs from Durango to
Silverton, Colorado. It obtains its
energy by burning wood or coal.
The generated energy vaporizes
water into steam, which powers the
locomotive. (This locomotive must
take on water from tanks located
along the route to replace steam
lost through the funnel.) Modern
locomotives use diesel fuel instead
of wood or coal. Whether old-
fashioned or modern, such
locomotives can be modeled as
heat engines, which extract energy
from a burning fuel and convert a
fraction of it to mechanical energy.©
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Hot reservoir at Th

Q h

Q c

Weng

Cold reservoir at Tc

Engine

Active Figure 22.2 Schematic
representation of a heat engine.
The engine does work Weng. The
arrow at the top represents energy
Q h # 0 entering the engine. At the
bottom, Q c $ 0 represents energy
leaving the engine.

At the Active Figures link
at http://www.pse6.com, you
can select the efficiency of the
engine and observe the
transfer of energy.



through a cycle, its initial and final internal energies are equal, and so %E int ! 0.
Hence, from the first law of thermodynamics, %E int ! Q & W ! Q " Weng , and with
no change in internal energy, the net work Weng done by a heat engine is equal
to the net energy Q net transferred to it. As we can see from Figure 22.2,
Q net ! |Q h| " |Q c |; therefore,

(22.1)

If the working substance is a gas, the net work done in a cyclic process is the
area enclosed by the curve representing the process on a PV diagram. This is
shown for an arbitrary cyclic process in Figure 22.3.

The thermal efficiency e of a heat engine is defined as the ratio of the net work
done by the engine during one cycle to the energy input at the higher temperature
during the cycle:

(22.2)

We can think of the efficiency as the ratio of what you gain (work) to what you give
(energy transfer at the higher temperature). In practice, all heat engines expel only a
fraction of the input energy Qh by mechanical work and consequently their efficiency
is always less than 100%. For example, a good automobile engine has an efficiency of
about 20%, and diesel engines have efficiencies ranging from 35% to 40%.

Equation 22.2 shows that a heat engine has 100% efficiency (e ! 1) only if
!Q c ! ! 0—that is, if no energy is expelled to the cold reservoir. In other words, a heat
engine with perfect efficiency would have to expel all of the input energy by work. On
the basis of the fact that efficiencies of real engines are well below 100%, the
Kelvin–Planck form of the second law of thermodynamics states the following:

It is impossible to construct a heat engine that, operating in a cycle, produces no
effect other than the input of energy by heat from a reservoir and the performance
of an equal amount of work.

This statement of the second law means that, during the operation of a heat engine,
Weng can never be equal to !Q h !, or, alternatively, that some energy !Q c ! must be
rejected to the environment. Figure 22.4 is a schematic diagram of the impossible
“perfect” heat engine.

e !
Weng

! Q h !
!

! Q h ! " ! Q c !
! Q h !

! 1 "
! Q c !
! Q h !

Weng ! !Q  h! " !Q  c !
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P

V

Area = Weng

Figure 22.3 PV diagram for an
arbitrary cyclic process taking place
in an engine. The value of the net
work done by the engine in one
cycle equals the area enclosed by
the curve.

Thermal efficiency of a heat
engine

Quick Quiz 22.1 The energy input to an engine is 3.00 times greater than
the work it performs. What is its thermal efficiency? (a) 3.00 (b) 1.00 (c) 0.333
(d) impossible to determine

Quick Quiz 22.2 For the engine of Quick Quiz 22.1, what fraction of the en-
ergy input is expelled to the cold reservoir? (a) 0.333 (b) 0.667 (c) 1.00 (d) impossible
to determine

Example 22.1 The Efficiency of an Engine

An engine transfers 2.00 ' 103 J of energy from a hot reser-
voir during a cycle and transfers 1.50 ' 103 J as exhaust to a
cold reservoir.

(A) Find the efficiency of the engine.

Solution The efficiency of the engine is given by Equation
22.2 as

0.250, or 25.0%e ! 1 "
! Q  c !
! Q  h !

! 1 "
1.50 ' 103 J
2.00 ' 103 J

!

The impossible engine

Q h

Cold reservoir at Tc

Engine

Hot reservoir at Th

Weng

Figure 22.4 Schematic diagram of
a heat engine that takes in energy
from a hot reservoir and does an
equivalent amount of work. It is
impossible to construct such a
perfect engine.
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22.2 Heat Pumps and Refrigerators

In a heat engine, the direction of energy transfer is from the hot reservoir to the cold
reservoir, which is the natural direction. The role of the heat engine is to process the
energy from the hot reservoir so as to do useful work. What if we wanted to transfer en-
ergy from the cold reservoir to the hot reservoir? Because this is not the natural direc-
tion of energy transfer, we must put some energy into a device in order to accomplish
this. Devices that perform this task are called heat pumps or refrigerators. For exam-
ple, we cool homes in summer using heat pumps called air conditioners. The air condi-
tioner transfers energy from the cool room in the home to the warm air outside.

In a refrigerator or heat pump, the engine takes in energy !Q c ! from a cold reser-
voir and expels energy !Qh ! to a hot reservoir (Fig. 22.5). This can be accomplished
only if work is done on the engine. From the first law, we know that the energy given up
to the hot reservoir must equal the sum of the work done and the energy taken in from
the cold reservoir. Therefore, the refrigerator or heat pump transfers energy from a
colder body (for example, the contents of a kitchen refrigerator or the winter air out-
side a building) to a hotter body (the air in the kitchen or a room in the building). In
practice, it is desirable to carry out this process with a minimum of work. If it could be
accomplished without doing any work, then the refrigerator or heat pump would be
“perfect” (Fig. 22.6). Again, the existence of such a device would be in violation of the
second law of thermodynamics, which in the form of the Clausius statement3 states:

(B) How much work does this engine do in one cycle?

Solution The work done is the difference between the 
input and output energies:

!

What If? Suppose you were asked for the power output of
this engine? Do you have sufficient information to answer
this question?

5.0 ' 102 J

Weng ! ! Q  h ! " ! Q  c ! ! 2.00 ' 103 J " 1.50 ' 103 J

Answer No, you do not have enough information. The
power of an engine is the rate at which work is done by the
engine. You know how much work is done per cycle but you
have no information about the time interval associated with
one cycle. However, if you were told that the engine oper-
ates at 2 000 rpm (revolutions per minute), you could relate
this rate to the period of rotation T of the mechanism of the
engine. If we assume that there is one thermodynamic cycle
per revolution, then the power is

! !
Weng

T
!

5.0 ' 102 J

" 1
2 000

 min#
 " 1 min

60 s # ! 1.7 ' 104 W

3 First expressed by Rudolf Clausius (1822–1888).

Q h

Q c

Cold reservoir at Tc

Heat pump

W

Hot reservoir at Th

Active Figure 22.5 Schematic diagram of a heat pump,
which takes in energy Q c # 0 from a cold reservoir and
expels energy Q h $ 0 to a hot reservoir. Work W is done
on the heat pump. A refrigerator works the same way.

! PITFALL PREVENTION
22.1 The First and Second

Laws
Notice the distinction between
the first and second laws of
thermodynamics. If a gas under-
goes a one-time isothermal process
%E int ! Q & W ! 0. Therefore,
the first law allows all energy in-
put by heat to be expelled by
work. In a heat engine, however,
in which a substance undergoes a
cyclic process, only a portion of
the energy input by heat can be
expelled by work according to
the second law.

At the Active Figures link
at http://www.pse6.com, you
can select the COP of the heat
pump and observe the transfer
of energy.



It is impossible to construct a cyclical machine whose sole effect is to transfer energy
continuously by heat from one object to another object at a higher temperature
without the input of energy by work.

In simpler terms, energy does not transfer spontaneously by heat from a cold 
object to a hot object. This direction of energy transfer requires an input of energy to
a heat pump, which is often supplied by means of electricity.

The Clausius and Kelvin–Planck statements of the second law of thermodynamics
appear, at first sight, to be unrelated, but in fact they are equivalent in all respects. Al-
though we do not prove so here, if either statement is false, then so is the other.4

Heat pumps have long been used for cooling homes and buildings, and they are
now becoming increasingly popular for heating them as well. The heat pump contains
two sets of metal coils that can exchange energy by heat with the surroundings: one set
on the outside of the building, in contact with the air or buried in the ground, and the
other set in the interior of the building. In the heating mode, a circulating fluid flow-
ing through the coils absorbs energy from the outside and releases it to the interior of
the building from the interior coils. The fluid is cold and at low pressure when it is in
the external coils, where it absorbs energy by heat from either the air or the ground.
The resulting warm fluid is then compressed and enters the interior coils as a hot,
high-pressure fluid, where it releases its stored energy to the interior air.

An air conditioner is simply a heat pump with its exterior and interior coils inter-
changed, so that it operates in the cooling mode. Energy is absorbed into the circulat-
ing fluid in the interior coils; then, after the fluid is compressed, energy leaves the
fluid through the external coils. The air conditioner must have a way to release energy
to the outside. Otherwise, the work done on the air conditioner would represent en-
ergy added to the air inside the house, and the temperature would increase. In the
same manner, a refrigerator cannot cool the kitchen if the refrigerator door is left
open. The amount of energy leaving the external coils (Fig. 22.7) behind or under-
neath the refrigerator is greater than the amount of energy removed from the food.
The difference between the energy out and the energy in is the work done by the elec-
tricity supplied to the refrigerator.

The effectiveness of a heat pump is described in terms of a number called the coeffi-
cient of performance (COP). In the heating mode, the COP is defined as the ratio of
the energy transferred to the hot reservoir to the work required to transfer that energy:

(22.3)

Note that the COP is similar to the thermal efficiency for a heat engine in that it is a
ratio of what you gain (energy delivered to the interior of the building) to what you
give (work input). Because |Q h| is generally greater than W, typical values for the COP
are greater than unity. It is desirable for the COP to be as high as possible, just as it is
desirable for the thermal efficiency of an engine to be as high as possible.

If the outside temperature is 25°F ("4°C) or higher, a typical value of the COP for a
heat pump is about 4. That is, the amount of energy transferred to the building is about
four times greater than the work done by the motor in the heat pump. However, as the
outside temperature decreases, it becomes more difficult for the heat pump to extract
sufficient energy from the air, and so the COP decreases. In fact, the COP can fall below
unity for temperatures below about 15°F ("9°C). Thus, the use of heat pumps that
extract energy from the air, while satisfactory in moderate climates, is not appropriate in
areas where winter temperatures are very low. It is possible to use heat pumps in colder

COP (heating mode) $ 
energy transferred at high temperature

work done by heat pump
!

! Q h !
W

672 C H A P T E R  2 2   •   Heat Engines, Entropy, and the Second Law of Thermodynamics

Hot reservoir at Th

Q h  = Q c

Q c

Cold reservoir at Tc

Heat pump

Impossible heat pump
Figure 22.6 Schematic diagram
of an impossible heat pump or
refrigerator—that is, one that takes
in energy from a cold reservoir and
expels an equivalent amount of
energy to a hot reservoir without
the input of energy by work.

4 See, for example, R. P. Bauman, Modern Thermodynamics and Statistical Mechanics, New York,
Macmillan Publishing Co., 1992.

Figure 22.7 The coils on the back
of a refrigerator transfer energy by
heat to the air. The second law of
thermodynamics states that this
amount of energy must be greater
than the amount of energy
removed from the contents of the
refrigerator, due to the input of
energy by work.
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22.3 Reversible and Irreversible Processes

In the next section we discuss a theoretical heat engine that is the most efficient possi-
ble. To understand its nature, we must first examine the meaning of reversible and ir-
reversible processes. In a reversible process, the system undergoing the process can be

Example 22.2 Freezing Water

A certain refrigerator has a COP of 5.00. When the refrigera-
tor is running, its power input is 500 W. A sample of water of
mass 500 g and temperature 20.0°C is placed in the freezer
compartment. How long does it take to freeze the water to
ice at 0°C? Assume that all other parts of the refrigerator stay
at the same temperature and there is no leakage of energy
from the exterior, so that the operation of the refrigerator
results only in energy being extracted from the water.

Solution Conceptualize this problem by realizing that en-
ergy leaves the water, reducing its temperature and then
freezing it into ice. The time interval required for this entire
process is related to the rate at which energy is withdrawn
from the water, which, in turn is related to the power input
of the refrigerator. We categorize this problem as one in
which we will need to combine our understanding of tem-
perature changes and phase changes from Chapter 20 with
our understanding of heat pumps from the current chapter.
To analyze the problem, we first find the amount of energy
that we must extract from 500 g of water at 20°C to turn it
into ice at 0°C. Using Equations 20.4 and 20.6,

! 2.08 ' 105 J

!(0.500 kg)[(4 186 J/kg()C)(20.0)C) & 3.33 ' 105 J/kg]

! Q  c ! ! ! mc  %T & mLf ! ! m ! c  %T & Lf !

Now we use Equation 22.4 to find out how much energy we
need to provide to the refrigerator to extract this much 
energy from the water:

Using the power rating of the refrigerator, we find out
the time interval required for the freezing process to
occur:

To finalize this problem, note that this time interval is very
different from that of our everyday experience; this sug-
gests the difficulties with our assumptions. Only a small
part of the energy extracted from the refrigerator interior
in a given time interval will come from the water. Energy
must also be extracted from the container in which the wa-
ter is placed, and energy that continuously leaks into the
interior from the exterior must be continuously extracted.
In reality, the time interval for the water to freeze is much
longer than 83.3 s.

83.3 s! !
W
%t

 9:  %t !
W
!

!
4.17 ' 104 J

500 W
!

 W ! 4.17 ' 104 J

COP !
! Q  c !

W
 9:  W !

! Q  c !
COP

!
2.08 ' 105 J

5.00

Quick Quiz 22.3 The energy entering an electric heater by electrical trans-
mission can be converted to internal energy with an efficiency of 100%. By what factor
does the cost of heating your home change when you replace your electric heating sys-
tem with an electric heat pump that has a COP of 4.00? Assume that the motor run-
ning the heat pump is 100% efficient. (a) 4.00 (b) 2.00 (c) 0.500 (d) 0.250

areas by burying the external coils deep in the ground. In this case, the energy is
extracted from the ground, which tends to be warmer than the air in the winter.

For a heat pump operating in the cooling mode, “what you gain” is energy 
removed from the cold reservoir. The most effective refrigerator or air conditioner is
one that removes the greatest amount of energy from the cold reservoir in exchange
for the least amount of work. Thus, for these devices we define the COP in terms 
of |Q c|:

(22.4)

A good refrigerator should have a high COP, typically 5 or 6.

COP (cooling mode) !
!Q  c !
W



returned to its initial conditions along the same path on a PV diagram, and every point
along this path is an equilibrium state. A process that does not satisfy these require-
ments is irreversible.

All natural processes are known to be irreversible. From the endless number of ex-
amples that could be selected, let us examine the adiabatic free expansion of a gas,
which was already discussed in Section 20.6, and show that it cannot be reversible. Con-
sider a gas in a thermally insulated container, as shown in Figure 22.8. A membrane
separates the gas from a vacuum. When the membrane is punctured, the gas expands
freely into the vacuum. As a result of the puncture, the system has changed because it
occupies a greater volume after the expansion. Because the gas does not exert a force
through a displacement, it does no work on the surroundings as it expands. In addi-
tion, no energy is transferred to or from the gas by heat because the container is insu-
lated from its surroundings. Thus, in this adiabatic process, the system has changed but
the surroundings have not.

For this process to be reversible, we need to be able to return the gas to its original
volume and temperature without changing the surroundings. Imagine that we try to
reverse the process by compressing the gas to its original volume. To do so, we fit the
container with a piston and use an engine to force the piston inward. During this
process, the surroundings change because work is being done by an outside agent on
the system. In addition, the system changes because the compression increases the
temperature of the gas. We can lower the temperature of the gas by allowing it to come
into contact with an external energy reservoir. Although this step returns the gas to its
original conditions, the surroundings are again affected because energy is being added
to the surroundings from the gas. If this energy could somehow be used to drive the
engine that compressed the gas, then the net energy transfer to the surroundings
would be zero. In this way, the system and its surroundings could be returned to their
initial conditions, and we could identify the process as reversible. However, the
Kelvin–Planck statement of the second law specifies that the energy removed from the
gas to return the temperature to its original value cannot be completely converted to
mechanical energy in the form of the work done by the engine in compressing the gas.
Thus, we must conclude that the process is irreversible.

We could also argue that the adiabatic free expansion is irreversible by relying on
the portion of the definition of a reversible process that refers to equilibrium states.
For example, during the expansion, significant variations in pressure occur through-
out the gas. Thus, there is no well-defined value of the pressure for the entire system at
any time between the initial and final states. In fact, the process cannot even be repre-
sented as a path on a PV diagram. The PV diagram for an adiabatic free expansion
would show the initial and final conditions as points, but these points would not be
connected by a path. Thus, because the intermediate conditions between the initial
and final states are not equilibrium states, the process is irreversible.

Although all real processes are irreversible, some are almost reversible. If a real
process occurs very slowly such that the system is always very nearly in an equilibrium
state, then the process can be approximated as being reversible. Suppose that a gas is
compressed isothermally in a piston–cylinder arrangement in which the gas is in ther-
mal contact with an energy reservoir, and we continuously transfer just enough energy
from the gas to the reservoir during the process to keep the temperature constant. For
example, imagine that the gas is compressed very slowly by dropping grains of sand
onto a frictionless piston, as shown in Figure 22.9. As each grain lands on the piston
and compresses the gas a bit, the system deviates from an equilibrium state, but is so
close to one that it achieves a new equilibrium state in a relatively short time interval.
Each grain added represents a change to a new equilibrium state but the differences
between states are so small that we can approximate the entire process as occurring
through continuous equilibrium states. We can reverse the process by slowly removing
grains from the piston.

A general characteristic of a reversible process is that no dissipative effects (such as
turbulence or friction) that convert mechanical energy to internal energy can be
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Insulating
wall

Membrane

Vacuum

Gas at Ti

Figure 22.8 Adiabatic free
expansion of a gas.

Energy reservoir

Sand

Figure 22.9 A gas in thermal
contact with an energy reservoir is
compressed slowly as individual
grains of sand drop onto the
piston. The compression is
isothermal and reversible.

! PITFALL PREVENTION
22.2 All Real Processes

Are Irreversible
The reversible process is an ideal-
ization—all real processes on
Earth are irreversible.
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present. Such effects can be impossible to eliminate completely. Hence, it is not
surprising that real processes in nature are irreversible.

22.4 The Carnot Engine

In 1824 a French engineer named Sadi Carnot described a theoretical engine, now
called a Carnot engine, which is of great importance from both practical and theoreti-
cal viewpoints. He showed that a heat engine operating in an ideal, reversible cycle—
called a Carnot cycle—between two energy reservoirs is the most efficient engine pos-
sible. Such an ideal engine establishes an upper limit on the efficiencies of all other
engines. That is, the net work done by a working substance taken through the Carnot
cycle is the greatest amount of work possible for a given amount of energy supplied to
the substance at the higher temperature. Carnot’s theorem can be stated as follows:

No real heat engine operating between two energy reservoirs can be more efficient
than a Carnot engine operating between the same two reservoirs.

To argue the validity of this theorem, imagine two heat engines operating between
the same energy reservoirs. One is a Carnot engine with efficiency eC, and the other is
an engine with efficiency e, where we assume that e # eC. The more efficient engine is
used to drive the Carnot engine as a Carnot refrigerator. The output by work of the
more efficient engine is matched to the input by work of the Carnot refrigerator. For
the combination of the engine and refrigerator, no exchange by work with the sur-
roundings occurs. Because we have assumed that the engine is more efficient than the
refrigerator, the net result of the combination is a transfer of energy from the cold to
the hot reservoir without work being done on the combination. According to the
Clausius statement of the second law, this is impossible. Hence, the assumption that
e # eC must be false. All real engines are less efficient than the Carnot engine 
because they do not operate through a reversible cycle. The efficiency of a real
engine is further reduced by such practical difficulties as friction and energy losses by
conduction.

To describe the Carnot cycle taking place between temperatures Tc and Th , we
assume that the working substance is an ideal gas contained in a cylinder fitted with a
movable piston at one end. The cylinder’s walls and the piston are thermally noncon-
ducting. Four stages of the Carnot cycle are shown in Figure 22.10, and the PV diagram
for the cycle is shown in Figure 22.11. The Carnot cycle consists of two adiabatic
processes and two isothermal processes, all reversible:

1. Process A : B (Fig. 22.10a) is an isothermal expansion at temperature Th . The gas
is placed in thermal contact with an energy reservoir at temperature Th . During the
expansion, the gas absorbs energy !Q h ! from the reservoir through the base of the
cylinder and does work WAB in raising the piston.

2. In process B : C (Fig. 22.10b), the base of the cylinder is replaced by a thermally
nonconducting wall, and the gas expands adiabatically—that is, no energy enters or
leaves the system by heat. During the expansion, the temperature of the gas
decreases from Th to Tc and the gas does work WBC in raising the piston.

3. In process C : D (Fig. 22.10c), the gas is placed in thermal contact with an energy
reservoir at temperature Tc and is compressed isothermally at temperature Tc . Dur-
ing this time, the gas expels energy !Q c ! to the reservoir, and the work done by the
piston on the gas is WCD .

4. In the final process D : A (Fig. 22.10d), the base of the cylinder is replaced by a
nonconducting wall, and the gas is compressed adiabatically. The temperature of
the gas increases to Th , and the work done by the piston on the gas is WDA .

Sadi Carnot
French engineer (1796–1832)

Carnot was the first to show the
quantitative relationship between
work and heat. In 1824 he
published his only work—
Reflections on the Motive Power
of Heat—which reviewed the
industrial, political, and economic
importance of the steam engine.
In it, he defined work as “weight
lifted through a height.”
(J.-L. Charmet/Science Photo
Library/Photo Researchers, Inc.)

! PITFALL PREVENTION
22.3 Don’t Shop for a

Carnot Engine
The Carnot engine is an idealiza-
tion—do not expect a Carnot
engine to be developed for com-
mercial use. We explore the
Carnot engine only for theoreti-
cal considerations.



The net work done in this reversible, cyclic process is equal to the area enclosed by
the path ABCDA in Figure 22.11. As we demonstrated in Section 22.1, because the
change in internal energy is zero, the net work Weng done by the gas in one cycle
equals the net energy transferred into the system, !Qh ! " !Qc !. The thermal efficiency
of the engine is given by Equation 22.2:

In Example 22.3, we show that for a Carnot cycle

(22.5)
! Q  c !
! Q  h !

!
Tc

Th

e !
Weng

! Q  h !
!

! Q  h ! " ! Q  c !
! Q  h !

! 1 "
! Q  c !
! Q  h !
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Cycle

Energy reservoir at Tc

C → D
Isothermal

compression

Q c

B → C

Adiabatic
expansion

Q = 0

(b)

Q = 0

(d)

Energy reservoir at Th

(a)

A → B

Isothermal
expansion

Q h

D → A

Adiabatic
compression

Active Figure 22.10 The Carnot cycle. (a) In process A : B, the gas expands
isothermally while in contact with a reservoir at Th . (b) In process B : C, the gas
expands adiabatically (Q ! 0). (c) In process C : D, the gas is compressed
isothermally while in contact with a reservoir at Tc $ Th . (d) In process D : A, the gas
is compressed adiabatically. The arrows on the piston indicate the direction of its
motion during each process.

At the Active Figures link
at http://www.pse6.com, you
can observe the motion of the
piston in the Carnot cycle while
you also observe the cycle on
the PV diagram of Figure 22.11.

V

P

Weng

D

B

Qh

Th

TcQ c

C

A

Active Figure 22.11 PV diagram
for the Carnot cycle. The net work
done Weng equals the net energy
transferred into the Carnot engine
in one cycle, !Q h! " !Q c !. Note that
%E int ! 0 for the cycle.

At the Active Figures link
at http://www.pse6.com, you
can observe the Carnot cycle
on the PV diagram while you
also observe the motion of the
piston in Figure 22.10.
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Hence, the thermal efficiency of a Carnot engine is

(22.6)

This result indicates that all Carnot engines operating between the same two tem-
peratures have the same efficiency.5

Equation 22.6 can be applied to any working substance operating in a Carnot cycle
between two energy reservoirs. According to this equation, the efficiency is zero if
Tc ! Th , as one would expect. The efficiency increases as Tc is lowered and as Th is
raised. However, the efficiency can be unity (100%) only if Tc ! 0 K. Such reservoirs
are not available; thus, the maximum efficiency is always less than 100%. In most prac-
tical cases, Tc is near room temperature, which is about 300 K. Therefore, one usually
strives to increase the efficiency by raising Th . Theoretically, a Carnot-cycle heat engine
run in reverse constitutes the most effective heat pump possible, and it determines the
maximum COP for a given combination of hot and cold reservoir temperatures. Using
Equations 22.1 and 22.3, we see that the maximum COP for a heat pump in its heating
mode is

The Carnot COP for a heat pump in the cooling mode is

As the difference between the temperatures of the two reservoirs approaches zero in
this expression, the theoretical COP approaches infinity. In practice, the low tempera-
ture of the cooling coils and the high temperature at the compressor limit the COP to
values below 10.

COPC (cooling mode) !
Tc

Th " Tc

 !
! Q  h !

! Q  h ! " ! Q  c !
!

1

1 "
! Q  c !
! Q  h !

!
1

1 "
Tc

Th

!
Th

Th " Tc

COPC (heating mode) !
!Q  h !
W

e C ! 1 "
Tc

Th

5 In order for the processes in the Carnot cycle to be reversible, they must be carried out
infinitesimally slowly. Thus, although the Carnot engine is the most efficient engine possible, it has
zero power output, because it takes an infinite time interval to complete one cycle! For a real engine,
the short time interval for each cycle results in the working substance reaching a high temperature
lower than that of the hot reservoir and a low temperature higher than that of the cold reservoir. An
engine undergoing a Carnot cycle between this narrower temperature range was analyzed by Curzon
and Ahlborn (Am. J. Phys., 43(1), 22, 1975), who found that the efficiency at maximum power output
depends only on the reservoir temperatures Tc and Th , and is given by eC - A ! 1 " (Tc /Th)1/2. The
Curzon–Ahlborn efficiency eC-A provides a closer approximation to the efficiencies of real engines than
does the Carnot efficiency.

Efficiency of a Carnot engine

Quick Quiz 22.4 Three engines operate between reservoirs separated in
temperature by 300 K. The reservoir temperatures are as follows: Engine A:
Th ! 1 000 K, Tc ! 700 K; Engine B: Th ! 800 K, Tc ! 500 K ; Engine C: Th ! 600 K,
Tc ! 300 K. Rank the engines in order of theoretically possible efficiency, from
highest to lowest.
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Example 22.3 Efficiency of the Carnot Engine

Show that the efficiency of a heat engine operating in a
Carnot cycle using an ideal gas is given by Equation 22.6.

Solution During the isothermal expansion (process A : B
in Fig. 22.10), the temperature of the gas does not change.
Thus, its internal energy remains constant. The work done
on a gas during an isothermal process is given by Equation
20.13. According to the first law,

In a similar manner, the energy transferred to the cold
reservoir during the isothermal compression C : D is

Dividing the second expression by the first, we find that

We now show that the ratio of the logarithmic quantities is
unity by establishing a relationship between the ratio of vol-
umes. For any quasi-static, adiabatic process, the tempera-
ture and volume are related by Equation 21.20:

(1)   ! Q  c !
! Q  h !

!
Tc

Th
 
ln(VC/VD)
ln(VB/VA)

! Q c ! ! ! "WCD ! ! nRTc ln 
VC

VD

! Q h ! ! ! "WAB ! ! nRTh ln 
VB

VA

Applying this result to the adiabatic processes B : C and
D : A, we obtain

Dividing the first equation by the second, we obtain

Substituting Equation (2) into Equation (1), we find that
the logarithmic terms cancel, and we obtain the relationship

Using this result and Equation 22.2, we see that the thermal
efficiency of the Carnot engine is

which is Equation 22.6, the one we set out to prove.

e C ! 1 "
! Q  c !
! Q  h !

! 1 "
Tc

Th

! Q  c !
! Q  h !

!
Tc

Th

(2)   VB

VA
!

VC

VD

(VB/VA)*"1
! (VC /VD)*"1

ThVA 

*"1
! TcVD 

*"1

ThVB 

*"1
! TcVC 

*"1

TiVi 

*"1
! TfVf 

*"1

Example 22.4 The Steam Engine

A steam engine has a boiler that operates at 500 K. The
energy from the burning fuel changes water to steam, and
this steam then drives a piston. The cold reservoir’s tem-
perature is that of the outside air, approximately 300 K.
What is the maximum thermal efficiency of this steam
engine?

Solution Using Equation 22.6, we find that the maximum
thermal efficiency for any engine operating between these
temperatures is

or

You should note that this is the highest theoretical efficiency
of the engine. In practice, the efficiency is considerably
lower.

What If? Suppose we wished to increase the theoretical ef-
ficiency of this engine and we could do so by increasing Th by

40.0%0.400e C ! 1 "
Tc

Th
! 1 "

300 K
500 K

!

%T or by decreasing Tc by the same %T. Which would be more
effective?

Answer A given %T would have a larger fractional effect on
a smaller temperature, so we would expect a larger change
in efficiency if we alter Tc by %T. Let us test this numerically.
Increasing Th by 50 K, corresponding to Th ! 550 K, would
give a maximum efficiency of

Decreasing Tc by 50 K, corresponding to Tc ! 250 K, would
give a maximum efficiency of

While changing Tc is mathematically more effective, often
changing Th is practically more feasible.

e C ! 1 "
Tc

Th
! 1 "

250 K
500 K

! 0.500

e C ! 1 "
Tc

Th
! 1 "

300 K
550 K

! 0.455

Example 22.5 The Carnot Efficiency

The highest theoretical efficiency of a certain engine is
30.0%. If this engine uses the atmosphere, which has a tem-
perature of 300 K, as its cold reservoir, what is the tempera-
ture of its hot reservoir?

Solution We use the Carnot efficiency to find Th :

429 KTh !
Tc

1 " e C
!

300 K
1 " 0.300

!

e C ! 1 "
Tc

Th
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22.5 Gasoline and Diesel Engines

In a gasoline engine, six processes occur in each cycle; five of these are illustrated in
Figure 22.12. In this discussion, we consider the interior of the cylinder above the pis-
ton to be the system that is taken through repeated cycles in the operation of the en-
gine. For a given cycle, the piston moves up and down twice. This represents a four-
stroke cycle consisting of two upstrokes and two downstrokes. The processes in the
cycle can be approximated by the Otto cycle, shown in the PV diagram in Figure
22.13. In the following discussion, refer to Figure 22.12 for the pictorial representation
of the strokes and to Figure 22.13 for the significance on the PV diagram of the letter
designations below:

1. During the intake stroke O : A (Fig. 22.12a), the piston moves downward, and a
gaseous mixture of air and fuel is drawn into the cylinder at atmospheric pressure.
In this process, the volume increases from V2 to V1 . This is the energy input part of
the cycle—energy enters the system (the interior of the cylinder) as potential en-
ergy stored in the fuel.

2. During the compression stroke A : B (Fig. 22.12b), the piston moves upward, the
air–fuel mixture is compressed adiabatically from volume V1 to volume V2 , and the
temperature increases from TA to TB . The work done on the gas is positive, and its
value is equal to the negative of the area under the curve AB in Figure 22.13.

3. In process B : C, combustion occurs when the spark plug fires (Fig. 22.12c). This
is not one of the strokes of the cycle because it occurs in a very short period of time
while the piston is at its highest position. The combustion represents a rapid trans-
formation from potential energy stored in chemical bonds in the fuel to internal
energy associated with molecular motion, which is related to temperature. During
this time, the pressure and temperature in the cylinder increase rapidly, with the
temperature rising from TB to TC . The volume, however, remains approximately
constant because of the short time interval. As a result, approximately no work is
done on or by the gas. We can model this process in the PV diagram (Fig. 22.13) as

Air
and
fuel

Spark plug

Piston

Intake
(a)

Compression
(b)

Spark
(c)

Power
(d)

Exhaust

Exhaust
(e)

Active Figure 22.12 The four-stroke cycle of a conventional gasoline engine. The
arrows on the piston indicate the direction of its motion during each process. (a) In
the intake stroke, air and fuel enter the cylinder. (b) The intake valve is then closed,
and the air–fuel mixture is compressed by the piston. (c) The mixture is ignited by the
spark plug, with the result that the temperature of the mixture increases at essentially
constant volume. (d) In the power stroke, the gas expands against the piston.
(e) Finally, the residual gases are expelled, and the cycle repeats.

At the Active Figures link
at http://www.pse6.com, you
can observe the motion of the
piston and crankshaft while you
also observe the cycle on the
PV diagram of Figure 22.13.

V

P

C

Qh

B D TCQc

Adiabatic
processes

V2 V1

O A TA

Active Figure 22.13 PV diagram
for the Otto cycle, which
approximately represents the
processes occurring in an internal
combustion engine.

At the Active Figures link
at http://www.pse6.com, you can
observe the Otto cycle on the
PV diagram while you observe
the motion of the piston and
crankshaft in Figure 22.12.



that process in which the energy !Qh! enters the system. (However, in reality this
process is a conversion of energy already in the cylinder from process O : A.)

4. In the power stroke C : D (Fig. 22.12d), the gas expands adiabatically from V2 to V1.
This expansion causes the temperature to drop from TC to TD . Work is done by the
gas in pushing the piston downward, and the value of this work is equal to the area
under the curve CD.

5. In the process D : A (not shown in Fig. 22.12), an exhaust valve is opened as the
piston reaches the bottom of its travel, and the pressure suddenly drops for a short
time interval. During this interval, the piston is almost stationary and the volume is
approximately constant. Energy is expelled from the interior of the cylinder and
continues to be expelled during the next process.

6. In the final process, the exhaust stroke A : O (Fig. 22.12e), the piston moves upward
while the exhaust valve remains open. Residual gases are exhausted at atmospheric
pressure, and the volume decreases from V1 to V2. The cycle then repeats.

If the air–fuel mixture is assumed to be an ideal gas, then the efficiency of the
Otto cycle is

(Otto cycle) (22.7)

where * is the ratio of the molar specific heats CP/CV for the fuel–air mixture and
V1/V2 is the compression ratio. Equation 22.7, which we derive in Example 22.6,
shows that the efficiency increases as the compression ratio increases. For a typical
compression ratio of 8 and with * ! 1.4, we predict a theoretical efficiency of 56% for
an engine operating in the idealized Otto cycle. This value is much greater than that
achieved in real engines (15% to 20%) because of such effects as friction, energy trans-
fer by conduction through the cylinder walls, and incomplete combustion of the
air–fuel mixture.

Diesel engines operate on a cycle similar to the Otto cycle but do not employ a
spark plug. The compression ratio for a diesel engine is much greater than that for a
gasoline engine. Air in the cylinder is compressed to a very small volume, and, as a con-
sequence, the cylinder temperature at the end of the compression stroke is very high.
At this point, fuel is injected into the cylinder. The temperature is high enough for the
fuel–air mixture to ignite without the assistance of a spark plug. Diesel engines are
more efficient than gasoline engines because of their greater compression ratios and
resulting higher combustion temperatures.

e ! 1 "
1

(V1/V2)*"1
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Example 22.6 Efficiency of the Otto Cycle

Show that the thermal efficiency of an engine operating in
an idealized Otto cycle (see Figs. 22.12 and 22.13) is given
by Equation 22.7. Treat the working substance as an ideal
gas.

Solution First, let us calculate the work done on the gas
during each cycle. No work is done during processes B : C
and D : A. The work done on the gas during the adiabatic
compression A : B is positive, and the work done on the
gas during the adiabatic expansion C : D is negative. The
value of the net work done equals the area of the shaded re-
gion bounded by the closed curve in Figure 22.13. Because
the change in internal energy for one cycle is zero, we see
from the first law that the net work done during one cycle
equals the net energy transfer to the system:

Weng ! ! Q  h ! " ! Q  c !

Because processes B : C and D : A take place at constant
volume, and because the gas is ideal, we find from the defin-
ition of molar specific heat (Eq. 21.8) that

Using these expressions together with Equation 22.2, we ob-
tain for the thermal efficiency

We can simplify this expression by noting that processes
A : B and C : D are adiabatic and hence obey Equation
21.20. For the two adiabatic processes, then,

C : D :  TCVC 

*"1 ! TDVD 

*"1

A : B :  TAVA 

*"1 ! TBVB 

*"1

(1)   e !
Weng

! Q h !
! 1 "

! Q  c !
! Q h !

! 1 "
TD " TA

TC " TB

! Q  h ! ! nCV (TC " TB)  and  ! Q c ! ! nCV (TD " TA)
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Using these equations and relying on the fact that
VA ! VD ! V1 and VB ! VC ! V2, we find that

Subtracting Equation (2) from Equation (3) and rearrang-
ing, we find that

Substituting Equation (4) into Equation (1), we obtain for
the thermal efficiency

(4)   TD " TA

TC " TB
! " V2

V1
#*"1

(3)   TD ! TC " V2

V1
#*"1

 TDV1 

*"1 ! TCV2 

*"1

(2)   TA ! TB " V2

V1
#*"1

 TAV1 

*"1 ! TBV2 

*"1 which is Equation 22.7.
We can also express this efficiency in terms of tempera-

tures by noting from Equations (2) and (3) that

Therefore, Equation (5) becomes

During the Otto cycle, the lowest temperature is TA and the
highest temperature is TC . Therefore, the efficiency of
a Carnot engine operating between reservoirs at these
two temperatures, which is given by the expression
eC ! 1 " (TA/TC), is greater than the efficiency of the Otto
cycle given by Equation (6), as expected.

(6)   e ! 1 "
TA

TB
! 1 "

TD

TC

" V2

V1
#*"1

!
TA

TB
!

TD

TC

(5)   e ! 1 "
1

(V1/V2)*"1

Application Models of Gasoline and Diesel Engines

We can use the thermodynamic principles discussed in this
and earlier chapters to model the performance of gasoline
and diesel engines. In both types of engine, a gas is first
compressed in the cylinders of the engine and then the
fuel–air mixture is ignited. Work is done on the gas during
compression, but significantly more work is done on the
piston by the mixture as the products of combustion expand
in the cylinder. The power of the engine is transferred from
the piston to the crankshaft by the connecting rod.

Two important quantities of either engine are the
displacement volume, which is the volume displaced by
the piston as it moves from the bottom to the top of the
cylinder, and the compression ratio r, which is the ratio of
the maximum and minimum volumes of the cylinder, as
discussed earlier. Most gasoline and diesel engines operate
with a four-stroke cycle (intake, compression, power,
exhaust), in which the net work of the intake and exhaust
strokes can be considered negligible. Therefore, power is
developed only once for every two revolutions of the
crankshaft (see Fig. 22.12).

In a diesel engine, only air (and no fuel) is present in
the cylinder at the beginning of the compression. In the
idealized diesel cycle of Figure 22.14, air in the cylinder
undergoes an adiabatic compression from A to B. Starting
at B, fuel is injected into the cylinder. The high
temperature of the mixture causes combustion of the
fuel–air mixture. Fuel continues to be injected in such a
way that during the time interval while the fuel is being
injected, the fuel–air mixture undergoes a constant-
pressure expansion to an intermediate volume VC (B : C).
At C, the fuel injection is cut off and the power stroke is an
adiabatic expansion back to VD ! VA (C : D). The exhaust
valve is opened, and a constant-volume output of energy
occurs (D : A) as the cylinder empties.

To simplify our calculations, we assume that the
mixture in the cylinder is air modeled as an ideal gas.
We use specific heats c instead of molar specific heats

C and assume constant values for air at 300 K. We express
the specific heats and the universal gas constant in
terms of unit masses rather than moles. Thus, cV !
0.718 kJ/kg ( K, cP ! 1.005 kJ/kg ( K, * ! cP/cV ! 1.40, and
R ! cP " cV ! 0.287 kJ/kg ( K ! 0.287 kPa ( m3/kg ( K.

A 3.00-L Gasoline Engine

Let us calculate the power delivered by a six-cylinder gasoline
engine that has a displacement volume of 3.00 L operating at
4 000 rpm and having a compression ratio of r ! 9.50. The
air–fuel mixture enters a cylinder at atmospheric pressure and
an ambient temperature of 27°C. During combustion, the
mixture reaches a temperature of 1 350°C.

First, let us calculate the work done in an individual
cylinder. Using the initial pressure PA ! 100 kPa, and the
initial temperature TA ! 300 K, we calculate the initial volume
and the mass of the air–fuel mixture. We know that the ratio
of the initial and final volumes is the compression ratio,

We also know that the difference in volumes is the
displacement volume. The 3.00-L rating of the engine is the

VA

VB
! r ! 9.50

Adiabatic
processes

A

B C

D

P

V

Qh

Qc

V2 = VB VC V1 = VA

Figure 22.14 PV diagram for an ideal diesel engine.
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total displacement volume for all six cylinders. Thus, for one
cylinder,

Solving these two equations simultaneously, we find the
initial and final volumes:

Using the ideal gas law (in the form PV ! mRT, because
we are using the universal gas constant in terms of mass
rather than moles), we can find the mass of the air–fuel
mixture:

Process A : B (see Fig. 22.13) is an adiabatic compression,
and this means that PV * ! constant; hence,

Using the ideal gas law, we find that the temperature after
the compression is

In process B : C, the combustion that transforms the
potential energy in chemical bonds into internal energy of
molecular motion occurs at constant volume; thus, VC ! VB .
Combustion causes the temperature to increase to TC !
1 350°C ! 1 623 K. Using this value and the ideal gas law, we
can calculate PC :

Process C : D is an adiabatic expansion; the pressure after
the expansion is

Using the ideal gas law again, we find the final temperature:

Now that we have the temperatures at the beginning and end
of each process of the cycle, we can calculate the net energy
transfer and net work done in each cylinder every two cycles:

! 660 K

TD !
PDVD

mR
!

(220 kPa)(0.559 ' 10"3 m3)
(6.49 ' 10"4 kg)(0.287 kPa (m3/kg(K)

! (5.14 ' 103 kPa)" 1
9.50 #

1.40
! 220 kPa

PD ! PC " VC

VD
#*

! PC " VB

VA
#*

! PC " 1
r #

*

!5.14 ' 103 kPa

!
(6.49 ' 10"4 kg)(0.287 kPa (m3/kg(K)(1 623 K)

(0.588 ' 10"4 m3)

PC !
mRTC

VC

! 739 K

TB !
PBVB

mR
!

(2.34 ' 103 kPa)(0.588 ' 10"4 m3)
(6.49 ' 10"4 kg) (0.287 kPa (m3/kg(K)

!2.34 ' 103 kPa

PB ! PA" VA

VB
#*

! PA(r)* ! (100 kPa)(9.50)1.40

PBVB 

* ! PAVA 

*

! 6.49 ' 10"4 kg

m !
PAVA

RTA
!

(100 kPa)(0.559 ' 10"3 m3)
(0.287 kPa (m3/kg(K)(300 K)

VA ! 0.559 ' 10"3 m3  VB ! 0.588 ' 10"4 m3

VA " VB !
3.00 L

6
! 0.500 ' 10"3 m3

From Equation 22.2, the efficiency is e ! Wnet/|Q in| ! 59%.
(We can also use Equation 22.7 to calculate the efficiency
directly from the compression ratio.)

Recalling that power is delivered every other revolution
of the crankshaft, we find that the net power for the six-
cylinder engine operating at 4 000 rpm is

A 2.00-L Diesel Engine

Let us calculate the power delivered by a four-cylinder diesel
engine that has a displacement volume of 2.00 L and is operat-
ing at 3 000 rpm. The compression ratio is  r ! VA/VB ! 22.0,
and the cutoff ratio, which is the ratio of the volume change
during the constant-pressure process B : C in Figure 22.14, is
rc ! VC/VB ! 2.00. The air enters each cylinder at the
beginning of the compression cycle at atmospheric pressure
and at an ambient temperature of 27°C.

Our model of the diesel engine is similar to our model
of the gasoline engine except that now the fuel is injected at
point B and the mixture self-ignites near the end of the
compression cycle A : B, when the temperature reaches
the ignition temperature. We assume that the energy input
occurs in the constant-pressure process B : C, and that the
expansion process continues from C to D with no further
energy transfer by heat.

Let us calculate the work done in an individual cylinder
that has an initial volume of VA ! (2.00 ' 10"3 m3)/4 !
0.500 ' 10"3 m3. Because the compression ratio is quite high,
we approximate the maximum cylinder volume to be the
displacement volume. Using the initial pressure PA ! 100 kPa
and initial temperature TA ! 300 K , we can calculate the mass
of the air in the cylinder using the ideal gas law:

Process A : B is an adiabatic compression, so
PV * ! constant; thus,

Using the ideal gas law, we find that the temperature of the
air after the compression is

! 1.03 ' 103 K

TB !
PBVB

mR
!

(7.58 ' 103 kPa)(0.500 ' 10"3 m3)(1/22.0)
(5.81 ' 10"4 kg)(0.287 kPa (m3/kg(K)

 PB ! PA" VA

VB
#*

! (100 kPa)(22.0)1.40 ! 7.58 ' 103 kPa

PBVB 

* ! PAVA 

*

! 5.81 ' 10"4 kg

m !
PAVA

RTA
!

(100 kPa)(0.500 ' 10"3 m3)
(0.287 kPa (m3/kg(K)(300 K)

!48.8 kW ! 65 hp

!net ! 6( 
1
2 rev)[(4 000 rev/min)(1 min/60 s)](0.244 kJ)

Wnet ! ! Q  in ! " ! Q   out ! ! 0.244 kJ

! 0.168 kJ

! (6.49 ' 10"4 kg)(0.718 kJ/kg(K)(660 K " 300 K)

! Q  c ! ! ! Q   out ! ! mcV (TD " TA)

! 0.412 kJ

! (6.49 ' 10"4 kg)(0.718 kJ/kg(K)(1 623 " 739 K)

! Q  h ! ! ! Q  in ! ! mcV (TC " TB)



22.6 Entropy

The zeroth law of thermodynamics involves the concept of temperature, and the first
law involves the concept of internal energy. Temperature and internal energy are both
state variables—that is, they can be used to describe the thermodynamic state of a sys-
tem. Another state variable—this one related to the second law of thermodynamics—is
entropy S. In this section we define entropy on a macroscopic scale as it was first ex-
pressed by Clausius in 1865.

Entropy was originally formulated as a useful concept in thermodynamics; however,
its importance grew as the field of statistical mechanics developed because the analyti-
cal techniques of statistical mechanics provide an alternative means of interpreting
entropy and a more global significance to the concept. In statistical mechanics, the
behavior of a substance is described in terms of the statistical behavior of its atoms and
molecules. One of the main results of this treatment is that isolated systems tend
toward disorder and that entropy is a measure of this disorder. For example,
consider the molecules of a gas in the air in your room. If half of the gas molecules
had velocity vectors of equal magnitude directed toward the left and the other half had
velocity vectors of the same magnitude directed toward the right, the situation would
be very ordered. However, such a situation is extremely unlikely. If you could actually
view the molecules, you would see that they move haphazardly in all directions, bump-
ing into one another, changing speed upon collision, some going fast and others going
slowly. This situation is highly disordered.

The cause of the tendency of an isolated system toward disorder is easily explained.
To do so, we distinguish between microstates and macrostates of a system. A microstate is
a particular configuration of the individual constituents of the system. For example,
the description of the ordered velocity vectors of the air molecules in your room refers
to a particular microstate, and the more likely haphazard motion is another mi-
crostate—one that represents disorder. A macrostate is a description of the conditions
of the system from a macroscopic point of view and makes use of macroscopic variables
such as pressure, density, and temperature for gases.

For any given macrostate of the system, a number of microstates are possible. For
example, the macrostate of a four on a pair of dice can be formed from the possible
microstates 1-3, 2-2, and 3-1. It is assumed that all microstates are equally probable.
However, when all possible macrostates are examined, it is found that macrostates
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! PITFALL PREVENTION
22.4 Entropy Is Abstract
Entropy is one of the most ab-
stract notions in physics, so fol-
low the discussion in this and the
subsequent sections very care-
fully. Do not confuse energy with
entropy—even though the names
sound similar, they are very dif-
ferent concepts.

Process B : C is a constant-pressure expansion; thus,
PC ! PB . We know from the cutoff ratio of 2.00 that the
volume doubles in this process. According to the ideal gas
law, a doubling of volume in an isobaric process results in
a doubling of the temperature, so

Process C : D is an adiabatic expansion; therefore,

We find the temperature at D from the ideal gas law:

! 792 K

TD !
PDVD

mR
!

(264 kPa)(0.500 ' 10"3 m3)
(5.81 ' 10"4 kg)(0.287 kPa (m3/kg(K)

! 264 kPa

 ! (7.57 ' 103 kPa) " 2.00
22.0 #

1.40

 PD ! PC " VC

VD
#*

! PC " VC

VB
 

VB

VD
#*

! PC "rc  
1
r #

*

TC ! 2TB ! 2.06 ' 103 K

Now that we have the temperatures at the beginning and
the end of each process, we can calculate the net energy
transfer by heat and the net work done in each cylinder
every two cycles:

The efficiency is e ! Wnet/!Q in ! ! 66%.
The net power for the four-cylinder engine operating at

3 000 rpm is

Modern engine design goes beyond this very simple
thermodynamic treatment, which uses idealized cycles.

! 39.6 kW ! 53 hp

!net ! 4( 
1
2 rev)[(3 000 rev/min)(1 min/60 s)](0.396 kJ)

Wnet ! ! Q  in ! " ! Q  out ! ! 0.396 kJ

! Q  c ! ! ! Q  out ! ! mcV (TD " TA) ! 0.205 kJ

! Q  h ! ! ! Q  in ! ! mcP(TC " TB) ! 0.601 kJ



associated with disorder have far more possible microstates than those associated with
order. For example, there is only one microstate associated with the macrostate of
a royal flush in a poker hand of five spades, laid out in order from ten to ace
(Fig. 22.15a). This is a highly ordered hand. However, there are many microstates (the
set of five individual cards in a poker hand) associated with a worthless hand in poker
(Fig. 22.15b).

The probability of being dealt the royal flush in spades is exactly the same as the
probability of being dealt any particular worthless hand. Because there are so many
worthless hands, however, the probability of a macrostate of a worthless hand is far
larger than the probability of a macrostate of a royal flush in spades.

We can also imagine ordered macrostates and disordered macrostates in physical
processes, not just in games of dice and poker. The probability of a system moving in
time from an ordered macrostate to a disordered macrostate is far greater than the prob-
ability of the reverse, because there are more microstates in a disordered macrostate.

If we consider a system and its surroundings to include the entire Universe, then
the Universe is always moving toward a macrostate corresponding to greater disor-
der. Because entropy is a measure of disorder, an alternative way of stating this is
the entropy of the Universe increases in all real processes. This is yet another
statement of the second law of thermodynamics that can be shown to be equivalent
to the Kelvin–Planck and Clausius statements.

The original formulation of entropy in thermodynamics involves the transfer of
energy by heat during a reversible process. Consider any infinitesimal process in which
a system changes from one equilibrium state to another. If dQ r is the amount of energy
transferred by heat when the system follows a reversible path between the states, then
the change in entropy dS is equal to this amount of energy for the reversible process
divided by the absolute temperature of the system:

(22.8)

We have assumed that the temperature is constant because the process is infinitesimal.
Because we have claimed that entropy is a state variable, the change in entropy dur-
ing a process depends only on the end points and therefore is independent of
the actual path followed. Consequently, the entropy change for an irreversible
process can be determined by calculating the entropy change for a reversible
process that connects the same initial and final states.

The subscript r on the quantity dQ r is a reminder that the transferred energy is to
be measured along a reversible path, even though the system may actually have fol-
lowed some irreversible path. When energy is absorbed by the system, dQ r is positive
and the entropy of the system increases. When energy is expelled by the system, dQ r is
negative and the entropy of the system decreases. Note that Equation 22.8 defines not
entropy but rather the change in entropy. Hence, the meaningful quantity in describing
a process is the change in entropy.

dS !
dQ  r

T
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Figure 22.15 (a) A royal flush is a
highly ordered poker hand with low
probability of occurring.
(b) A disordered and worthless
poker hand. The probability of this
particular hand occurring is the same
as that of the royal flush. There are
so many worthless hands, however,
that the probability of being dealt a
worthless hand is much higher than
that of a royal flush.

Quick Quiz 22.5 Suppose that you select four cards at random from a stan-
dard deck of playing cards and end up with a macrostate of four deuces. How many
microstates are associated with this macrostate? 

Quick Quiz 22.6 Suppose you pick up two cards at random from a standard
deck of playing cards and end up with a macrostate of two aces. How many microstates
are associated with this macrostate?

a 
an

d 
b 

Ge
or

ge
 S

em
pl

e

(a)

(b)



To calculate the change in entropy for a finite process, we must recognize that T is
generally not constant. If dQ r is the energy transferred by heat when the system follows
an arbitrary reversible process between the same initial and final states as the irre-
versible process, then

(22.9)

As with an infinitesimal process, the change in entropy %S of a system going
from one state to another has the same value for all paths connecting the two states.
That is, the finite change in entropy %S of a system depends only on the properties
of the initial and final equilibrium states. Thus, we are free to choose a particular
reversible path over which to evaluate the entropy in place of the actual path, as
long as the initial and final states are the same for both paths. This point is explored
further in Section 22.7.

%S ! %f

i
 dS ! %f

i
  

dQ  r

T

Let us consider the changes in entropy that occur in a Carnot heat engine that
operates between the temperatures Tc and Th. In one cycle, the engine takes in energy
Q h from the hot reservoir and expels energy Q c to the cold reservoir. These energy
transfers occur only during the isothermal portions of the Carnot cycle; thus, the con-
stant temperature can be brought out in front of the integral sign in Equation 22.9.
The integral then simply has the value of the total amount of energy transferred by
heat. Thus, the total change in entropy for one cycle is

where the negative sign represents the fact that !Q c ! is positive, but this term must rep-
resent energy leaving the engine. In Example 22.3 we showed that, for a Carnot engine,

Using this result in the previous expression for %S, we find that the total change in
entropy for a Carnot engine operating in a cycle is zero:

Now consider a system taken through an arbitrary (non-Carnot) reversible cycle.
Because entropy is a state variable—and hence depends only on the properties of a
given equilibrium state—we conclude that %S ! 0 for any reversible cycle. In general,
we can write this condition in the mathematical form

(22.10)

where the symbol indicates that the integration is over a closed path.&
&  

dQ r

T
! 0

%S ! 0

! Q  c !
! Q  h !

!
Tc 

Th

%S !
! Q  h !
Th

"
! Q  c !
Tc
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Quick Quiz 22.7 Which of the following is true for the entropy change of a
system that undergoes a reversible, adiabatic process? (a) %S $ 0 (b) %S ! 0 (c) %S # 0

Quick Quiz 22.8 An ideal gas is taken from an initial temperature Ti to a
higher final temperature Tf along two different reversible paths: Path A is at constant
pressure; Path B is at constant volume. The relation between the entropy changes of
the gas for these paths is (a) %SA # % SB (b) %SA ! % SB (c) % SA $ %SB.

Change in entropy for a finite
process



Quasi-Static, Reversible Process for an Ideal Gas

Suppose that an ideal gas undergoes a quasi-static, reversible process from an initial
state having temperature Ti and volume Vi to a final state described by Tf and Vf . Let us
calculate the change in entropy of the gas for this process.

Writing the first law of thermodynamics in differential form and rearranging the
terms, we have dQr ! dE int " dW, where dW ! " P dV. For an ideal gas, recall that
dE int ! nCV dT (Eq. 21.12), and from the ideal gas law, we have P = nRT/V. Therefore,
we can express the energy transferred by heat in the process as

We cannot integrate this expression as it stands because the last term contains two
variables, T and V. However, if we divide all terms by T, each of the terms on the
right-hand side depends on only one variable:

(22.11)

Assuming that CV is constant over the process, and integrating Equation 22.11 from the
initial state to the final state, we obtain

(22.12)

This expression demonstrates mathematically what we argued earlier—%S depends only
on the initial and final states and is independent of the path between the states. We can
claim this because we have not specified the path taken between the initial and final
states. We have only required that the path be reversible. Also, note in Equation 22.12
that %S can be positive or negative, depending on the values of the initial and final vol-
umes and temperatures. Finally, for a cyclic process (Ti ! Tf and Vi ! Vf ), we see from
Equation 22.12 that % S ! 0. This is further evidence that entropy is a state variable.

%S ! %f

i
 
dQ  r

T
! nCV   ln  

Tf

Ti
& nR   ln 

Vf

Vi

dQ  r

T
! nCV   

dT
T

& nR  
dV
V

dQ  r ! d Eint & P dV ! nCV  dT & nRT  
dV
V
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Example 22.7 Change in Entropy—Melting

A solid that has a latent heat of fusion Lf melts at a tempera-
ture Tm .

(A) Calculate the change in entropy of this substance when
a mass m of the substance melts.

Solution Let us assume that the melting occurs so slowly
that it can be considered a reversible process. In this case
the temperature can be regarded as constant and equal to
Tm . Making use of Equations 22.9 and that for the latent
heat of fusion Q ! mLf (Eq. 20.6, choosing the positive sign
because energy is entering the ice), we find that

Note that we are able to remove Tm from the integral be-
cause the process is modeled as isothermal. Note also that
%S is positive.

(B) Estimate the value of the change in entropy of an ice
cube when it melts.

Solution Let us assume an ice tray makes cubes that are
about 3 cm on a side. The volume per cube is then (very

mLf

Tm
%S ! % 

dQ  r

T
!

1
Tm

 % dQ !
Q
Tm

!

roughly) 30 cm3. This much liquid water has a mass of 30 g.
From Table 20.2 we find that the latent heat of fusion of ice
is 3.33 ' 105 J/kg. Substituting these values into our answer
for part (A), we find that

We retain only one significant figure, in keeping with the
nature of our estimations.

What If? Suppose you did not have Equation 22.9 avail-
able so that you could not calculate an entropy change. How
could you argue from the statistical description of entropy
that the changes in entropy for parts (A) and (B) should be
positive?

Answer When a solid melts, its entropy increases because
the molecules are much more disordered in the liquid state
than they are in the solid state. The positive value for %S
also means that the substance in its liquid state does not
spontaneously transfer energy from itself to the surround-
ings and freeze because to do so would involve a sponta-
neous increase in order and a decrease in entropy.

4 ' 101 J/K%S !
mLf

Tm
!

(0.03 kg)(3.33 ' 105 J/kg)
273 K

!



22.7 Entropy Changes in Irreversible Processes

By definition, a calculation of the change in entropy for a system requires information
about a reversible path connecting the initial and final equilibrium states. To calculate
changes in entropy for real (irreversible) processes, we must remember that entropy
(like internal energy) depends only on the state of the system. That is, entropy is a state
variable. Hence, the change in entropy when a system moves between any two equilib-
rium states depends only on the initial and final states.

We can calculate the entropy change in some irreversible process between two
equilibrium states by devising a reversible process (or series of reversible processes)
between the same two states and computing for the reversible process.
In irreversible processes, it is critically important that we distinguish between Q , the
actual energy transfer in the process, and Qr , the energy that would have been
transferred by heat along a reversible path. Only Q r is the correct value to be used in
calculating the entropy change.

As we show in the following examples, the change in entropy for a system and its
surroundings is always positive for an irreversible process. In general, the total en-
tropy—and therefore the disorder—always increases in an irreversible process. Keeping
these considerations in mind, we can state the second law of thermodynamics as follows:

The total entropy of an isolated system that undergoes a change cannot decrease.

Furthermore, if the process is irreversible, then the total entropy of an isolated
system always increases. In a reversible process, the total entropy of an isolated
system remains constant.

When dealing with a system that is not isolated from its surroundings, remember
that the increase in entropy described in the second law is that of the system and its
surroundings. When a system and its surroundings interact in an irreversible process,
the increase in entropy of one is greater than the decrease in entropy of the other.
Hence, we conclude that the change in entropy of the Universe must be greater
than zero for an irreversible process and equal to zero for a reversible process.
Ultimately, the entropy of the Universe should reach a maximum value. At this value,
the Universe will be in a state of uniform temperature and density. All physical, chemi-
cal, and biological processes will cease because a state of perfect disorder implies that
no energy is available for doing work. This gloomy state of affairs is sometimes referred
to as the heat death of the Universe.

%S ! %dQ r /T

Entropy Change in Thermal Conduction

Let us now consider a system consisting of a hot reservoir and a cold reservoir that are
in thermal contact with each other and isolated from the rest of the Universe. A
process occurs during which energy Q is transferred by heat from the hot reservoir at
temperature Th to the cold reservoir at temperature Tc . The process as described is ir-
reversible, and so we must find an equivalent reversible process. Let us assume that the
objects are connected by a poor thermal conductor whose temperature spans the
range from Tc to Th. This conductor transfers energy slowly, and its state does not
change during the process. Under this assumption, the energy transfer to or from each
object is reversible, and we may set Q ! Q r . 

Because the cold reservoir absorbs energy Q , its entropy increases by Q /Tc . At the
same time, the hot reservoir loses energy Q , and so its entropy change is " Q /Th .
Because Th # Tc , the increase in entropy of the cold reservoir is greater than the
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Quick Quiz 22.9 True or false: The entropy change in an adiabatic process
must be zero because Q ! 0.



decrease in entropy of the hot reservoir. Therefore, the change in entropy of the sys-
tem (and of the Universe) is greater than zero:

%SU !
Q
Tc

&
"Q
Th

# 0

Entropy Change in a Free Expansion

Let us again consider the adiabatic free expansion of a gas occupying an initial volume
Vi (Fig. 22.16). In this situation, a membrane separating the gas from an evacuated
region is broken, and the gas expands (irreversibly) to a volume Vf . What are the
changes in entropy of the gas and of the Universe during this process?

The process is neither reversible nor quasi-static. The work done by the gas against
the vacuum is zero, and because the walls are insulating, no energy is transferred by
heat during the expansion. That is, W ! 0 and Q ! 0. Using the first law, we see that
the change in internal energy is zero. Because the gas is ideal, E int depends on temper-
ature only, and we conclude that %T ! 0 or Ti ! Tf .

To apply Equation 22.9, we cannot use Q ! 0, the value for the irreversible process,
but must instead find Q r ; that is, we must find an equivalent reversible path that shares
the same initial and final states. A simple choice is an isothermal, reversible expansion
in which the gas pushes slowly against a piston while energy enters the gas by heat from
a reservoir to hold the temperature constant. Because T is constant in this process,
Equation 22.9 gives

For an isothermal process, the first law of thermodynamics specifies that is equal to
the negative of the work done on the gas during the expansion from Vi to Vf , which is
given by Equation 20.13. Using this result, we find that the entropy change for the gas is

(22.13)%S ! nR ln 
Vf

Vi

%f

i
 dQ r

%S ! %f

i
 
dQ  r

T
!

1
T

  %f

i
 dQ  r
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Example 22.8 Which Way Does the Energy Go?

A large, cold object is at 273 K, and a second large, hot ob-
ject is at 373 K. Show that it is impossible for a small amount
of energy—for example, 8.00 J—to be transferred sponta-
neously by heat from the cold object to the hot one without
a decrease in the entropy of the Universe and therefore a
violation of the second law.

Solution We assume that, during the energy transfer, the
two objects do not undergo a temperature change. This is
not a necessary assumption; we make it only to avoid compli-
cating the situation by having to use integral calculus in our
calculations. The entropy change of the hot object is

The cold object loses energy, and its entropy change is

We consider the two objects to be isolated from the rest of
the Universe. Thus, the entropy change of the Universe is
just that of our two-object system, which is

%Sc !
Q  r

Tc
!

"8.00 J
273 K

! "0.029 3 J/K

%Sh !
Q  r

Th
!

8.00 J
373 K

! 0.021 4 J/K

This decrease in entropy of the Universe is in violation of
the second law. That is, the spontaneous transfer of en-
ergy by heat from a cold to a hot object cannot occur.

Suppose energy were to continue to transfer sponta-
neously from a cold object to a hot object, in violation of the
second law. We can describe this impossible energy transfer
in terms of disorder. Before the transfer, a certain degree of
order is associated with the different temperatures of the ob-
jects. The hot object’s molecules have a higher average
energy than the cold object’s molecules. If energy sponta-
neously transfers from the cold object to the hot object,
then, over a period of time, the cold object will become
colder and the hot object will become hotter. The differ-
ence in average molecular energy will become even greater;
this would represent an increase in order for the system and
a violation of the second law.

In comparison, the process that does occur naturally is
the transfer of energy from the hot object to the cold object.
In this process, the difference in average molecular energy
decreases; this represents a more random distribution of
energy and an increase in disorder.

%SU ! %Sc & %Sh ! "0.007 9 J/K

Insulating
wall

Membrane

Vacuum

Gas at Ti

Figure 22.16 Adiabatic free
expansion of a gas. When the
membrane separating the gas from
the evacuated region is ruptured,
the gas expands freely and
irreversibly. As a result, it occupies
a greater final volume. The
container is thermally insulated
from its surroundings; thus, Q ! 0.



Because Vf # Vi , we conclude that %S is positive. This positive result indicates that
both the entropy and the disorder of the gas increase as a result of the irreversible,
adiabatic expansion.

It is easy to see that the gas is more disordered after the expansion. Instead of
being concentrated in a relatively small space, the molecules are scattered over a larger
region.

Because the free expansion takes place in an insulated container, no energy is
transferred by heat from the surroundings. (Remember that the isothermal, reversible
expansion is only a replacement process that we use to calculate the entropy change for
the gas; it is not the actual process.) Thus, the free expansion has no effect on the sur-
roundings, and the entropy change of the surroundings is zero. Thus, the entropy
change for the Universe is positive; this is consistent with the second law.

Entropy Change in Calorimetric Processes

A substance of mass m1, specific heat c1, and initial temperature Tc is placed in thermal
contact with a second substance of mass m 2, specific heat c 2, and initial temperature
Th # Tc . The two substances are contained in a calorimeter so that no energy is lost to
the surroundings. The system of the two substances is allowed to reach thermal equilib-
rium. What is the total entropy change for the system?

First, let us calculate the final equilibrium temperature Tf . Using the techniques of
Section 20.2—namely, Equation 20.5, Q cold ! " Q hot, and Equation 20.4, Q ! mc %T,
we obtain

Solving for Tf , we have

(22.14)

The process is irreversible because the system goes through a series of nonequilib-
rium states. During such a transformation, the temperature of the system at any time is
not well defined because different parts of the system have different temperatures.
However, we can imagine that the hot substance at the initial temperature Th is slowly
cooled to the temperature Tf as it comes into contact with a series of reservoirs differ-
ing infinitesimally in temperature, the first reservoir being at Th and the last being at
Tf . Such a series of very small changes in temperature would approximate a reversible
process. We imagine doing the same thing for the cold substance. Applying Equation
22.9 and noting that dQ ! mc dT for an infinitesimal change, we have

where we have assumed that the specific heats remain constant. Integrating, we find that

(22.15)

where Tf is given by Equation 22.14. If Equation 22.14 is substituted into Equation
22.15, we can show that one of the terms in Equation 22.15 is always positive and the
other is always negative. (You may want to verify this for yourself.) The positive term is
always greater than the negative term, and this results in a positive value for %S. Thus,
we conclude that the entropy of the Universe increases in this irreversible process.

Finally, you should note that Equation 22.15 is valid only when no mixing of differ-
ent substances occurs, because a further entropy increase is associated with the increase
in disorder during the mixing. If the substances are liquids or gases and mixing occurs,
the result applies only if the two fluids are identical, as in the following example.

%S ! m1c 1 ln 
Tf

Tc
& m2c2 ln 

Tf

Th

%S ! %
1
 
dQ  cold

T
& %

2
 
dQ  hot

T
! m1c 1 %Tf

Tc
  

dT
T

& m2c 2%Tf

Th

  
dT
T

Tf !
m1c 1Tc & m2c2Th

m1c 1 & m2c2

m1c 1 (Tf " Tc) ! "m2c 2 (Tf " Th)

 m1c 1 %Tc ! "m2c 2  %Th
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6 This section was adapted from A. Hudson and R. Nelson, University Physics, Philadelphia, Saunders
College Publishing, 1990.

Example 22.9 Calculating !S for a Calorimetric Process

Suppose that 1.00 kg of water at 0.00°C is mixed with an
equal mass of water at 100°C. After equilibrium is reached,
the mixture has a uniform temperature of 50.0°C. What is
the change in entropy of the system?

Solution We can calculate the change in entropy from
Equation 22.15 using the given values m1 ! m2 ! 1.00 kg,
c1 ! c2 ! 4 186 J/kg (K, T1 ! 273 K, T2 ! 373 K, and
Tf ! 323 K:

%S ! m1c 1 ln 
Tf

T1
& m2c2 ln 

Tf

T2

!

That is, as a result of this irreversible process, the increase
in entropy of the cold water is greater than the decrease in
entropy of the warm water. Consequently, the increase in
entropy of the system is 102 J/K.

704 J/K "602 J/K ! 102 J/K

& (1.00 kg)(4 186 J/kg(K) ln " 323 K
373 K #

%S ! (1.00 kg)(4 186 J/kg (K) ln " 323 K
273 K #

22.8 Entropy on a Microscopic Scale6

As we have seen, we can approach entropy by relying on macroscopic concepts. We can
also treat entropy from a microscopic viewpoint through statistical analysis of molecu-
lar motions. We now use a microscopic model to investigate once again the free expan-
sion of an ideal gas, which was discussed from a macroscopic point of view in the pre-
ceding section.

In the kinetic theory of gases, gas molecules are represented as particles moving
randomly. Let us suppose that the gas is initially confined to a volume Vi , as shown in
Figure 22.17a. When the partition separating Vi from a larger container is removed,
the molecules eventually are distributed throughout the greater volume Vf (Fig.
22.17b). For a given uniform distribution of gas in the volume, there are a large num-
ber of equivalent microstates, and we can relate the entropy of the gas to the number
of microstates corresponding to a given macrostate.

We count the number of microstates by considering the variety of molecular loca-
tions involved in the free expansion. The instant after the partition is removed (and
before the molecules have had a chance to rush into the other half of the container), all
the molecules are in the initial volume. We assume that each molecule occupies some
microscopic volume Vm . The total number of possible locations of a single molecule in a
macroscopic initial volume Vi is the ratio wi ! Vi /Vm, which is a huge number. We use wi
here to represent the number of ways that the molecule can be placed in the volume, or
the number of microstates, which is equivalent to the number of available locations. We
assume that the probabilities of a molecule occupying any of these locations are equal.

As more molecules are added to the system, the number of possible ways that the
molecules can be positioned in the volume multiplies. For example, if we consider two
molecules, for every possible placement of the first, all possible placements of the sec-
ond are available. Thus, there are w1 ways of locating the first molecule, and for each
of these, there are w2 ways of locating the second molecule. The total number of ways
of locating the two molecules is w1w2 .

Neglecting the very small probability of having two molecules occupy the same loca-
tion, each molecule may go into any of the Vi /Vm locations, and so the number of ways
of locating N molecules in the volume becomes (Wi is not to be
confused with work.) Similarly, when the volume is increased to Vf , the number of ways
of locating N molecules increases to The ratio of the number of
ways of placing the molecules in the volume for the initial and final configurations is

Wf ! wf  

N ! (Vf /Vm)N.

Wi ! wi  

N ! (Vi /Vm)N.

VacuumVi

(a)

Vf

(b)

Figure 22.17 In a free expansion,
the gas is allowed to expand into a
region that was previously
evacuated.



If we now take the natural logarithm of this equation and multiply by Boltzmann’s con-
stant, we find that

where we have used the equality N ! nNA. We know from Equation 19.11 that NAkB is
the universal gas constant R ; thus, we can write this equation as

(22.16)

From Equation 22.13 we know that when n mol of a gas undergoes a free expansion
from Vi to Vf , the change in entropy is

(22.17)

Note that the right-hand sides of Equations 22.16 and 22.17 are identical. Thus, from
the left-hand sides, we make the following important connection between entropy and
the number of microstates for a given macrostate:

(22.18)

The more microstates there are that correspond to a given macrostate, the greater is
the entropy of that macrostate. As we have discussed previously, there are many more
microstates associated with disordered macrostates than with ordered macrostates.
Thus, Equation 22.18 indicates mathematically that entropy is a measure of disor-
der. Although in our discussion we used the specific example of the free expansion of
an ideal gas, a more rigorous development of the statistical interpretation of entropy
would lead us to the same conclusion.

We have stated that individual microstates are equally probable. However, because
there are far more microstates associated with a disordered macrostate than with an or-
dered microstate, a disordered macrostate is much more probable than an ordered one.

Figure 22.18 shows a real-world example of this concept. There are two possible
macrostates for the carnival game—winning a goldfish and winning a black fish. Be-
cause only one jar in the array of jars contains a black fish, only one possible microstate
corresponds to the macrostate of winning a black fish. A large number of microstates
are described by the coin’s falling into a jar containing a goldfish. Thus, for the
macrostate of winning a goldfish, there are many equivalent microstates. As a result,
the probability of winning a goldfish is much greater than the probability of winning a
black fish. If there are 24 goldfish and 1 black fish, the probability of winning the black
fish is 1 in 25. This assumes that all microstates have the same probability, a situation

S $ k  B  ln W

Sf " Si ! nR  ln" Vf

Vi
#

k  B ln Wf " k  B ln Wi ! nR  ln" Vf

Vi
#

kB ln " Wf

Wi
# ! nNAkB ln " Vf

Vi
#

Wf

Wi
!

(Vf/Vm)N

(Vi/Vm)N ! " Vf

Vi
#N
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Entropy (microscopic definition)

Figure 22.18 By tossing a coin into a jar, the carnival-goer can win the fish in the jar. It
is more likely that the coin will land in a jar containing a goldfish than in the one
containing the black fish.



that may not be quite true for the situation shown in Figure 22.18. For example, if you
are an accurate coin tosser and you are aiming for the edge of the array of jars, then
the probability of the coin’s landing in a jar near the edge is likely to be greater than
the probability of its landing in a jar near the center.

Let us consider a similar type of probability problem for 100 molecules in a con-
tainer. At any given moment, the probability of one molecule being in the left part of the
container shown in Figure 22.19a as a result of random motion is . If there are two mol-
ecules, as shown in Figure 22.19b, the probability of both being in the left part is

or 1 in 4. If there are three molecules (Fig. 22.19c), the probability of all of them

being in the left portion at the same moment is , or 1 in 8. For 100 independently

moving molecules, the probability that the 50 fastest ones will be found in the left part at

any moment is . Likewise, the probability that the remaining 50 slower molecules

will be found in the right part at any moment is . Therefore, the probability of find-

ing this fast-slow separation as a result of random motion is the product !

, which corresponds to about 1 in 1030. When this calculation is extrapolated from

100 molecules to the number in 1 mol of gas (6.02 ' 1023), the ordered arrangement is

found to be extremely improbable!

"1
2#100

"1
2#50"1

2#50
"1

2#50
"1

2#50

"1
2#3

"1
2#2
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(a)

(b)

(c)

Active Figure 22.19 (a) One molecule in a two-sided container has a 1-in-2 chance of
being on the left side. (b) Two molecules have a 1-in-4 chance of being on the left side at
the same time. (c) Three molecules have a 1-in-8 chance of being on the left side at the
same time.

Conceptual Example 22.10 Let’s Play Marbles!

Suppose you have a bag of 100 marbles. Fifty of the marbles
are red, and 50 are green. You are allowed to draw four mar-
bles from the bag according to the following rules. Draw one
marble, record its color, and return it to the bag. Shake the
bag and then draw another marble. Continue this process
until you have drawn and returned four marbles. What are
the possible macrostates for this set of events? What is the
most likely macrostate? What is the least likely macrostate?

Solution Because each marble is returned to the bag before
the next one is drawn, and the bag is shaken, the probability

of drawing a red marble is always the same as the probability
of drawing a green one. All the possible microstates and
macrostates are shown in Table 22.1. As this table indicates,
there is only one way to draw a macrostate of four red marbles,
and so there is only one microstate for that macrostate. How-
ever, there are four possible microstates that correspond to
the macrostate of one green marble and three red marbles; six
microstates that correspond to two green marbles and two red
marbles; four microstates that correspond to three green mar-
bles and one red marble; and one microstate that corresponds
to four green marbles. The most likely, and most disordered,

Interactive

At the Active Figures link
at http://www.pse6.com, you
can choose the number of
molecules to put in the
container and measure the
probability of all of them being
in the left hand side.
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Macrostate Possible Microstates Total Number of Microstates

All R RRRR 1
1G, 3R RRRG, RRGR, RGRR, GRRR 4
2G, 2R RRGG, RGRG, GRRG, RGGR,

GRGR, GGRR 6
3G, 1R GGGR, GGRG, GRGG, RGGG 4
All G GGGG 1

Possible Results of Drawing Four Marbles from a Bag

Table 22.1

Example 22.11 Adiabatic Free Expansion—One Last Time

Let us verify that the macroscopic and microscopic ap-
proaches to the calculation of entropy lead to the same con-
clusion for the adiabatic free expansion of an ideal gas. Sup-
pose that an ideal gas expands to four times its initial
volume. As we have seen for this process, the initial and final
temperatures are the same.

(A) Using a macroscopic approach, calculate the entropy
change for the gas.

(B) Using statistical considerations, calculate the change in
entropy for the gas and show that it agrees with the answer
you obtained in part (A).

Solution

(A) Using Equation 22.13, we have

(B) The number of microstates available to a single mole-
cule in the initial volume Vi is . For N molecules,wi ! Vi /Vm

nR  ln 4%S ! nR  ln" Vf

Vi
# ! nR  ln" 4Vi

Vi
# !

the number of available microstates is

The number of microstates for all N molecules in the final
volume Vf ! 4Vi is

Thus, the ratio of the number of final microstates to initial
microstates is

Using Equation 22.18, we obtain

The answer is the same as that for part (A), which dealt with
macroscopic parameters.

What If? In part (A) we used Equation 22.13, which was
based on a reversible isothermal process connecting the
initial and final states. What if we were to choose a different
reversible process? Would we arrive at the same result?

Answer We must arrive at the same result because entropy is
a state variable. For example, consider the two-step process
in Figure 22.20—a reversible adiabatic expansion from
Vi to 4Vi , (A : B) during which the temperature drops from
T1 to T2, and a reversible isovolumetric process (B : C) that
takes the gas back to the initial temperature T1.

During the reversible adiabatic process, %S ! 0 because
Q r ! 0. During the reversible isovolumetric process (B : C),
we have from Equation 22.9,

nR  ln 4 ! kB ln(4N ) ! NkB ln 4 !

%S ! kB lnWf " kB lnWi ! kB ln " Wf

Wi
#

Wf

Wi
! 4N

Wf ! " Vf

Vm
#N

! " 4Vi

Vm
#N

 Wi ! wi 

N ! " Vi

Vm
#N

V

P

Vi 4Vi

B

C

A

T1
T2

Figure 22.20 (Example 22.11) A gas expands to four times its
initial volume and back to the initial temperature by means of a
two-step process.

Explore the generation of microstates and macrostates at the Interactive Worked Example link at http://www.pse6.com.

macrostate—two red marbles and two green marbles—corre-
sponds to the largest number of microstates. The least likely,

most ordered macrostates—four red marbles or four green
marbles—correspond to the smallest number of microstates.
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A heat engine is a device that takes in energy by heat and, operating in a cyclic
process, expels a fraction of that energy by means of work. The net work done by a
heat engine in carrying a working substance through a cyclic process (%E int ! 0) is

(22.1)

where !Q h ! is the energy taken in from a hot reservoir and !Q c ! is the energy expelled
to a cold reservoir.

The thermal efficiency e of a heat engine is

(22.2)

The second law of thermodynamics can be stated in the following two ways:

• It is impossible to construct a heat engine that, operating in a cycle, produces no
effect other than the input of energy by heat from a reservoir and the performance
of an equal amount of work (the Kelvin–Planck statement).

• It is impossible to construct a cyclical machine whose sole effect is to transfer en-
ergy continuously by heat from one object to another object at a higher tempera-
ture without the input of energy by work (the Clausius statement).

In a reversible process, the system can be returned to its initial conditions along
the same path on a PV diagram, and every point along this path is an equilibrium state.
A process that does not satisfy these requirements is irreversible. Carnot’s theorem
states that no real heat engine operating (irreversibly) between the temperatures Tc
and Th can be more efficient than an engine operating reversibly in a Carnot cycle be-
tween the same two temperatures.

The thermal efficiency of a heat engine operating in the Carnot cycle is

(22.6)

The second law of thermodynamics states that when real (irreversible) processes
occur, the degree of disorder in the system plus the surroundings increases. When a
process occurs in an isolated system, the state of the system becomes more disordered.
The measure of disorder in a system is called entropy S. Thus, another way in which
the second law can be stated is

• The entropy of the Universe increases in all real processes.

The change in entropy dS of a system during a process between two infinitesimally
separated equilibrium states is

(22.8)

where dQ r is the energy transfer by heat for a reversible process that connects the
initial and final states. The change in entropy of a system during an arbitrary process

dS !
dQ   r

T

eC ! 1 "
Tc

Th

e !
Weng

! Q h !
! 1 "

! Q  c !
! Q  h !

Weng ! ! Q  h ! " ! Q  c !

S U M M A RY

Take a practice test for
this chapter by clicking on
the Practice Test link at
http://www.pse6.com.

Now, we can find the relationship of temperature T2 to T1
from Equation 21.20 for the adiabatic process:

T1

T2
! " 4Vi

Vi
#*"1

! (4)*"1

%S ! %f

i
 
dQ  r

T
! %C

B
 
nCV  dT

T
! nCV ln " T1

T2
# Thus,

and we do indeed obtain the exact same result for the
entropy change.

 ! nCV  " CP

CV
" 1# ln 4 ! n(CP " CV) ln 4 ! nR  ln 4

%S ! nCV  ln (4)*"1 ! nCV(* " 1) ln 4



Questions 695

What are some factors that affect the efficiency of automo-
bile engines?

2. In practical heat engines, which are we better able to con-
trol: the temperature of the hot reservoir or the tempera-
ture of the cold reservoir? Explain.

A steam-driven turbine is one major component of an
electric power plant. Why is it advantageous to have the
temperature of the steam as high as possible?

4. Is it possible to construct a heat engine that creates no
thermal pollution? What does this tell us about environ-
mental considerations for an industrialized society?

5. Does the second law of thermodynamics contradict or cor-
rect the first law? Argue for your answer.

6. “The first law of thermodynamics says you can’t really win,
and the second law says you can’t even break even.”
Explain how this statement applies to a particular device
or process; alternatively, argue against the statement.

7. In solar ponds constructed in Israel, the Sun’s energy is
concentrated near the bottom of a salty pond. With the

3.

1. proper layering of salt in the water, convection is pre-
vented, and temperatures of 100°C may be reached. Can
you estimate the maximum efficiency with which useful
energy can be extracted from the pond?

8. Can a heat pump have a coefficient of performance less
than unity? Explain.

9. Give various examples of irreversible processes that occur
in nature. Give an example of a process in nature that is
nearly reversible.

10. A heat pump is to be installed in a region where the aver-
age outdoor temperature in the winter months
is " 20°C. In view of this, why would it be advisable to
place the outdoor compressor unit deep in the ground?
Why are heat pumps not commonly used for heating in
cold climates?

The device shown in Figure Q22.11, called a thermoelec-
tric converter, uses a series of semiconductor cells to
convert internal energy to electric potential energy, which
we will study in Chapter 25. In the photograph at the left,

11.

Q U E S T I O N S

Figure Q22.11
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between an initial state and a final state is

(22.9)

The value of %S for the system is the same for all paths connecting the initial and
final states. The change in entropy for a system undergoing any reversible, cyclic
process is zero, and when such a process occurs, the entropy of the Universe remains
constant.

From a microscopic viewpoint, the entropy of a given macrostate is defined as

(22.18)

where kB is Boltzmann’s constant and W is the number of microstates of the system cor-
responding to the macrostate.

S $ kB  ln W

%S ! %f

i
 
dQ r

T
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both legs of the device are at the same temperature, and
no electric potential energy is produced. However, when
one leg is at a higher temperature than the other, as in
the photograph on the right, electric potential energy is
produced as the device extracts energy from the hot 
reservoir and drives a small electric motor. (a) Why does
the temperature differential produce electric potential
energy in this demonstration? (b) In what sense does this
intriguing experiment demonstrate the second law of
thermodynamics?

12. Discuss three common examples of natural processes that
involve an increase in entropy. Be sure to account for all
parts of each system under consideration.

Discuss the change in entropy of a gas that expands (a) at
constant temperature and (b) adiabatically.

14. A thermodynamic process occurs in which the entropy of a
system changes by " 8.0 J/K. According to the second law
of thermodynamics, what can you conclude about the en-
tropy change of the environment?

15. If a supersaturated sugar solution is allowed to evaporate
slowly, sugar crystals form in the container. Hence, sugar
molecules go from a disordered form (in solution) to a
highly ordered crystalline form. Does this process violate
the second law of thermodynamics? Explain.

13.

16. How could you increase the entropy of 1 mol of a metal
that is at room temperature? How could you decrease its
entropy?

17. Suppose your roommate is “Mr. Clean” and tidies up your
messy room after a big party. Because your roommate is
creating more order, does this represent a violation of the
second law of thermodynamics?

18. Discuss the entropy changes that occur when you (a) bake
a loaf of bread and (b) consume the bread.

19. “Energy is the mistress of the Universe and entropy is her
shadow.” Writing for an audience of general readers, argue
for this statement with examples. Alternatively, argue for
the view that entropy is like a decisive hands-on executive
instantly determining what will happen, while energy is
like a wretched back-office bookkeeper telling us how little
we can afford.

20. A classmate tells you that it is just as likely for all the air mol-
ecules in the room you are both in to be concentrated in
one corner (with the rest of the room being a vacuum) as it
is for the air molecules to be distributed uniformly about
the room in their current state. Is this a true statement?
Why doesn’t the situation he describes actually happen?

21. If you shake a jar full of jellybeans of different sizes, the
larger beans tend to appear near the top, and the smaller
ones tend to fall to the bottom. Why? Does this process vio-
late the second law of thermodynamics?

Section 22.1 Heat Engines and the Second Law 
of Thermodynamics

1. A heat engine takes in 360 J of energy from a hot reservoir
and performs 25.0 J of work in each cycle. Find (a) the ef-
ficiency of the engine and (b) the energy expelled to the
cold reservoir in each cycle.

2. A heat engine performs 200 J of work in each cycle and
has an efficiency of 30.0%. For each cycle, how much
energy is (a) taken in and (b) expelled by heat?

A particular heat engine has a useful power output of
5.00 kW and an efficiency of 25.0%. The engine expels
8 000 J of exhaust energy in each cycle. Find (a) the
energy taken in during each cycle and (b) the time inter-
val for each cycle.

4. Heat engine X takes in four times more energy by heat from
the hot reservoir than heat engine Y. Engine X delivers two
times more work, and it rejects seven times more energy by
heat to the cold reservoir than heat engine Y. Find the effi-
ciency of (a) heat engine X and (b) heat engine Y.

5. A multicylinder gasoline engine in an airplane, operating
at 2 500 rev/min, takes in energy 7.89 ' 103 J and ex-
hausts 4.58 ' 103 J for each revolution of the crankshaft.

3.

(a) How many liters of fuel does it consume in 1.00 h of
operation if the heat of combustion is 4.03 ' 107 J/L? 
(b) What is the mechanical power output of the engine?
Ignore friction and express the answer in horsepower. 
(c) What is the torque exerted by the crankshaft on the
load? (d) What power must the exhaust and cooling sys-
tem transfer out of the engine?

6. Suppose a heat engine is connected to two energy reser-
voirs, one a pool of molten aluminum (660°C) and the
other a block of solid mercury (" 38.9°C). The engine
runs by freezing 1.00 g of aluminum and melting 15.0 g of
mercury during each cycle. The heat of fusion of alu-
minum is 3.97 ' 105 J/kg; the heat of fusion of mercury is
1.18 ' 104 J/kg. What is the efficiency of this engine?

Section 22.2 Heat Pumps and Refrigerators 
7. A refrigerator has a coefficient of performance equal to

5.00. The refrigerator takes in 120 J of energy from a cold
reservoir in each cycle. Find (a) the work required in each
cycle and (b) the energy expelled to the hot reservoir.

8. A refrigerator has a coefficient of performance of 3.00.
The ice tray compartment is at " 20.0°C, and the room

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide

= coached solution with hints available at http://www.pse6.com = computer useful in solving problem

= paired numerical and symbolic problems

P R O B L E M S



temperature is 22.0°C. The refrigerator can convert 30.0 g
of water at 22.0°C to 30.0 g of ice at " 20.0°C each minute.
What input power is required? Give your answer in watts.

9. In 1993 the federal government instituted a requirement
that all room air conditioners sold in the United States
must have an energy efficiency ratio (EER) of 10 or higher.
The EER is defined as the ratio of the cooling capacity of
the air conditioner, measured in Btu/h, to its electrical
power requirement in watts. (a) Convert the EER of 10.0 to
dimensionless form, using the conversion 1 Btu ! 1055 J.
(b) What is the appropriate name for this dimensionless
quantity? (c) In the 1970s it was common to find room air
conditioners with EERs of 5 or lower. Compare the operat-
ing costs for 10 000-Btu/h air conditioners with EERs of
5.00 and 10.0. Assume that each air conditioner operates
for 1 500 h during the summer in a city where electricity
costs 10.0¢ per kWh.

Section 22.3 Reversible and Irreversible Processes
Section 22.4 The Carnot Engine
10. A Carnot engine has a power output of 150 kW. The en-

gine operates between two reservoirs at 20.0°C and 500°C.
(a) How much energy does it take in per hour? (b) How
much energy is lost per hour in its exhaust?

One of the most efficient heat engines ever built is a steam
turbine in the Ohio valley, operating between 430°C and
1 870°C on energy from West Virginia coal to produce
electricity for the Midwest. (a) What is its maximum theo-
retical efficiency? (b) The actual efficiency of the engine is
42.0%. How much useful power does the engine deliver if
it takes in 1.40 ' 105 J of energy each second from its hot
reservoir?

12. A heat engine operating between 200°C and 80.0°C achieves
20.0% of the maximum possible efficiency. What energy
input will enable the engine to perform 10.0 kJ of work?

An ideal gas is taken through a Carnot cycle. The
isothermal expansion occurs at 250°C, and the isothermal
compression takes place at 50.0°C. The gas takes in 1 200 J
of energy from the hot reservoir during the isothermal ex-
pansion. Find (a) the energy expelled to the cold reservoir
in each cycle and (b) the net work done by the gas in each
cycle.

14. The exhaust temperature of a Carnot heat engine is
300°C. What is the intake temperature if the efficiency of
the engine is 30.0%?

15. A Carnot heat engine uses a steam boiler at 100°C as the
high-temperature reservoir. The low-temperature reservoir
is the outside environment at 20.0°C. Energy is exhausted
to the low-temperature reservoir at the rate of 15.4 W.
(a) Determine the useful power output of the heat engine.
(b) How much steam will it cause to condense in the high-
temperature reservoir in 1.00 h?

16. A power plant operates at a 32.0% efficiency during the
summer when the sea water used for cooling is at 20.0°C.
The plant uses 350°C steam to drive turbines. If the plant’s
efficiency changes in the same proportion as the ideal effi-

13.

11.

ciency, what would be the plant’s efficiency in the winter,
when the sea water is 10.0°C?

17. Argon enters a turbine at a rate of 80.0 kg/min, a temper-
ature of 800°C and a pressure of 1.50 MPa. It expands adi-
abatically as it pushes on the turbine blades and exits at
pressure 300 kPa. (a) Calculate its temperature at exit.
(b) Calculate the (maximum) power output of the turning
turbine. (c) The turbine is one component of a model
closed-cycle gas turbine engine. Calculate the maximum
efficiency of the engine.

18. An electric power plant that would make use of the tem-
perature gradient in the ocean has been proposed. The
system is to operate between 20.0°C (surface water temper-
ature) and 5.00°C (water temperature at a depth of about
1 km). (a) What is the maximum efficiency of such a
system? (b) If the useful power output of the plant is
75.0 MW, how much energy is taken in from the warm
reservoir per hour? (c) In view of your answer to part
(a), do you think such a system is worthwhile? Note that
the “fuel” is free.

19. Here is a clever idea. Suppose you build a two-engine
device such that the exhaust energy output from one heat
engine is the input energy for a second heat engine. We
say that the two engines are running in series. Let e 1 and e 2
represent the efficiencies of the two engines. (a) The
overall efficiency of the two-engine device is defined as
the total work output divided by the energy put into the
first engine by heat. Show that the overall efficiency is
given by

e ! e1 & e2 " e1e2

(b) What If? Assume the two engines are Carnot engines.
Engine 1 operates between temperatures Th and Ti . The
gas in engine 2 varies in temperature between Ti and Tc .
In terms of the temperatures, what is the efficiency of the
combination engine? (c) What value of the intermediate
temperature Ti will result in equal work being done by
each of the two engines in series? (d) What value of Ti will
result in each of the two engines in series having the same
efficiency?

20. A 20.0%-efficient real engine is used to speed up a train
from rest to 5.00 m/s. It is known that an ideal (Carnot)
engine using the same cold and hot reservoirs would accel-
erate the same train from rest to a speed of 6.50 m/s using
the same amount of fuel. The engines use air at 300 K as a
cold reservoir. Find the temperature of the steam serving
as the hot reservoir.

21. A firebox is at 750 K, and the ambient temperature is 300 K.
The efficiency of a Carnot engine doing 150 J of work as
it transports energy between these constant-temperature
baths is 60.0%. The Carnot engine must take in energy
150 J/0.600 ! 250 J from the hot reservoir and must put
out 100 J of energy by heat into the environment. To follow
Carnot’s reasoning, suppose that some other heat engine S
could have efficiency 70.0%. (a) Find the energy input and
wasted energy output of engine S as it does 150 J of work.
(b) Let engine S operate as in part (a) and run the Carnot
engine in reverse. Find the total energy the firebox puts out
as both engines operate together, and the total energy trans-
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ferred to the environment. Show that the Clausius state-
ment of the second law of thermodynamics is violated. 
(c) Find the energy input and work output of engine S as it
puts out exhaust energy of 100 J. (d) Let engine S operate
as in (c) and contribute 150 J of its work output to running
the Carnot engine in reverse. Find the total energy the fire-
box puts out as both engines operate together, the total
work output, and the total energy transferred to the envi-
ronment. Show that the Kelvin–Planck statement of the sec-
ond law is violated. Thus our assumption about the effi-
ciency of engine S must be false. (e) Let the engines
operate together through one cycle as in part (d). Find the
change in entropy of the Universe. Show that the entropy
statement of the second law is violated.

22. At point A in a Carnot cycle, 2.34 mol of a monatomic
ideal gas has a pressure of 1 400 kPa, a volume of 10.0 L,
and a temperature of 720 K. It expands isothermally to
point B, and then expands adiabatically to point C where
its volume is 24.0 L. An isothermal compression brings it
to point D, where its volume is 15.0 L. An adiabatic process
returns the gas to point A. (a) Determine all the unknown
pressures, volumes and temperatures as you fill in the
following table:

26. A heat pump, shown in Figure P22.26, is essentially an air
conditioner installed backward. It extracts energy from
colder air outside and deposits it in a warmer room. Sup-
pose that the ratio of the actual energy entering the room
to the work done by the device’s motor is 10.0% of the the-
oretical maximum ratio. Determine the energy entering
the room per joule of work done by the motor, given that
the inside temperature is 20.0°C and the outside tempera-
ture is " 5.00°C.

How much work does an ideal Carnot refrigerator
require to remove 1.00 J of energy from helium at 4.00 K
and reject this energy to a room-temperature (293-K)
environment?

28. A refrigerator maintains a temperature of 0°C in the cold
compartment with a room temperature of 25.0°C. It
removes energy from the cold compartment at the rate of
8 000 kJ/h. (a) What minimum power is required to
operate the refrigerator? (b) The refrigerator exhausts
energy into the room at what rate?

29. If a 35.0%-efficient Carnot heat engine (Fig. 22.2) is run in
reverse so as to form a refrigerator (Fig. 22.5), what would
be this refrigerator’s coefficient of performance?

30. Two Carnot engines have the same efficiency. One engine
runs in reverse as a heat pump, and the other runs in reverse
as a refrigerator. The coefficient of performance of the heat
pump is 1.50 times the coefficient of performance of the
refrigerator. Find (a) the coefficient of performance of the
refrigerator, (b) the coefficient of performance of the heat
pump, and (c) the efficiency of each heat engine.

Section 22.5 Gasoline and Diesel Engines
In a cylinder of an automobile engine, just after combus-
tion, the gas is confined to a volume of 50.0 cm3 and has
an initial pressure of 3.00 ' 106 Pa. The piston moves out-
ward to a final volume of 300 cm3, and the gas expands
without energy loss by heat. (a) If * ! 1.40 for the gas,
what is the final pressure? (b) How much work is done by
the gas in expanding?

32. A gasoline engine has a compression ratio of 6.00 and
uses a gas for which * ! 1.40. (a) What is the efficiency

31.

27.
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Q h

Inside
Th

Outside
Tc

Q c
Heat
pump

Figure P22.26

P V T

A 1 400 kPa 10.0 L 720 K

B

C 24.0 L

D 15.0 L

(b) Find the energy added by heat, the work done by the
engine, and the change in internal energy for each of the
steps A : B, B : C, C : D, and D : A. (c) Calculate the
efficiency Wnet/Q h . Show that it is equal to 1 " TC /TA ,
the Carnot efficiency.

23. What is the coefficient of performance of a refrigerator
that operates with Carnot efficiency between temperatures
" 3.00°C and & 27.0°C?

24. What is the maximum possible coefficient of performance
of a heat pump that brings energy from outdoors at
" 3.00°C into a 22.0°C house? Note that the work done to
run the heat pump is also available to warm up the house.

An ideal refrigerator or ideal heat pump is equivalent to a
Carnot engine running in reverse. That is, energy Q c is
taken in from a cold reservoir and energy Q h is rejected to
a hot reservoir. (a) Show that the work that must be sup-
plied to run the refrigerator or heat pump is

(b) Show that the coefficient of performance of the ideal
refrigerator is

COP !
Tc

Th " Tc
 

W !
Th " Tc

Tc
 Q  c

25.



Q (input) W (output) %E int

A : B
B : C
C : D
D : A
ABCDA

of the engine if it operates in an idealized Otto cycle?
(b) What If ? If the actual efficiency is 15.0%, what
fraction of the fuel is wasted as a result of friction and
energy losses by heat that could by avoided in a re-
versible engine? (Assume complete combustion of the
air–fuel mixture.)

33. A 1.60-L gasoline engine with a compression ratio of 6.20
has a useful power output of 102 hp. Assuming the en-
gine operates in an idealized Otto cycle, find the energy
taken in and the energy exhausted each second. Assume
the fuel–air mixture behaves like an ideal gas with
* ! 1.40.

34. The compression ratio of an Otto cycle, as shown in Figure
22.13, is VA/VB ! 8.00. At the beginning A of the compres-
sion process, 500 cm3 of gas is at 100 kPa and 20.0°C. At
the beginning of the adiabatic expansion the temperature
is TC ! 750°C. Model the working fluid as an ideal gas
with E int ! nCVT ! 2.50nRT and * ! 1.40. (a) Fill in the
table below to follow the states of the gas:

38. In making raspberry jelly, 900 g of raspberry juice is com-
bined with 930 g of sugar. The mixture starts at room tem-
perature, 23.0°C, and is slowly heated on a stove until it
reaches 220°F. It is then poured into heated jars and al-
lowed to cool. Assume that the juice has the same specific
heat as water. The specific heat of sucrose is 0.299 cal/g ( °C.
Consider the heating process. (a) Which of the following
terms describe(s) this process: adiabatic, isobaric, isother-
mal, isovolumetric, cyclic, reversible, isentropic? (b) How
much energy does the mixture absorb? (c) What is the mini-
mum change in entropy of the jelly while it is heated?

39. What change in entropy occurs when a 27.9-g ice cube at
" 12°C is transformed into steam at 115°C?

Section 22.7 Entropy Changes in Irreversible
Processes

40. The temperature at the surface of the Sun is approxi-
mately 5 700 K , and the temperature at the surface of the
Earth is approximately 290 K. What entropy change occurs
when 1 000 J of energy is transferred by radiation from the
Sun to the Earth?

A 1 500-kg car is moving at 20.0 m/s. The driver
brakes to a stop. The brakes cool off to the temperature of
the surrounding air, which is nearly constant at 20.0°C.
What is the total entropy change?

42. A 1.00-kg iron horseshoe is taken from a forge at 900°C
and dropped into 4.00 kg of water at 10.0°C. Assuming
that no energy is lost by heat to the surroundings, deter-
mine the total entropy change of the horseshoe-plus-water
system.

43. How fast are you personally making the entropy of the
Universe increase right now? Compute an order-of-magni-
tude estimate, stating what quantities you take as data and
the values you measure or estimate for them.

44. A rigid tank of small mass contains 40.0 g of argon, initially
at 200°C and 100 kPa. The tank is placed into a reservoir
at 0°C and allowed to cool to thermal equilibrium. (a) Cal-
culate the volume of the tank. (b) Calculate the change in
internal energy of the argon. (c) Calculate the energy
transferred by heat. (d) Calculate the change in entropy of
the argon. (e) Calculate the change in entropy of the con-
stant-temperature bath.

A 1.00-mol sample of H2 gas is contained in the left-hand
side of the container shown in Figure P22.45, which has
equal volumes left and right. The right-hand side is evacu-
ated. When the valve is opened, the gas streams into the
right-hand side. What is the final entropy change of the
gas? Does the temperature of the gas change?

45.

41.
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Valve

VacuumH2

Figure P22.45

T (K) P (kPa) V (cm3) E int

A 293 100 500
B
C 1 023
D
A

(c) Identify the energy input Q h , the energy exhaust Q c ,
and the net output work Weng. (d) Calculate the thermal
efficiency. (e) Find the number of crankshaft revolutions
per minute required for a one-cylinder engine to have
an output power of 1.00 kW ! 1.34 hp. Note that the
thermodynamic cycle involves four piston strokes.

Section 22.6 Entropy
35. An ice tray contains 500 g of liquid water at 0°C. Calculate

the change in entropy of the water as it freezes slowly and
completely at 0°C.

36. At a pressure of 1 atm, liquid helium boils at 4.20 K . The
latent heat of vaporization is 20.5 kJ/kg. Determine the
entropy change (per kilogram) of the helium resulting
from vaporization.

Calculate the change in entropy of 250 g of water heated
slowly from 20.0°C to 80.0°C. (Suggestion: Note that
dQ ! mc dT.)

37.

(b) Fill in the table below to follow the processes:
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46. A 2.00-L container has a center partition that divides 
it into two equal parts, as shown in Figure P22.46. The
left side contains H2 gas, and the right side contains
O2 gas. Both gases are at room temperature and at at-
mospheric pressure. The partition is removed, and the
gases are allowed to mix. What is the entropy increase of
the system?

47. A 1.00-mol sample of an ideal monatomic gas, initially at a
pressure of 1.00 atm and a volume of 0.025 0 m3, is heated
to a final state with a pressure of 2.00 atm and a volume of
0.040 0 m3. Determine the change in entropy of the gas in
this process.

48. A 1.00-mol sample of a diatomic ideal gas, initially having
pressure P and volume V, expands so as to have pressure
2P and volume 2V. Determine the entropy change of the
gas in the process.

Section 22.8 Entropy on a Microscopic Scale
49. If you toss two dice, what is the total number of ways in

which you can obtain (a) a 12 and (b) a 7?

50. Prepare a table like Table 22.1 for the following occur-
rence. You toss four coins into the air simultaneously and
then record the results of your tosses in terms of the num-
bers of heads and tails that result. For example, HHTH
and HTHH are two possible ways in which three heads and
one tail can be achieved. (a) On the basis of your table,
what is the most probable result of a toss? In terms of en-
tropy, (b) what is the most ordered state and (c) what is
the most disordered state?

Repeat the procedure used to construct Table 22.1 (a) for
the case in which you draw three marbles from your bag
rather than four and (b) for the case in which you draw
five rather than four.

Additional Problems
52. Every second at Niagara Falls (Fig. P22.52), some 

5 000 m3 of water falls a distance of 50.0 m. What is the 
increase in entropy per second due to the falling water?
Assume that the mass of the surroundings is so great that
its temperature and that of the water stay nearly constant
at 20.0°C. Suppose that a negligible amount of water 
evaporates.

51.

A house loses energy through the exterior walls and
roof at a rate of 5 000 J/s ! 5.00 kW when the interior
temperature is 22.0°C and the outside temperature is
" 5.00°C. Calculate the electric power required to main-
tain the interior temperature at 22.0°C for the following
two cases. (a) The electric power is used in electric resis-
tance heaters (which convert all of the energy transferred
in by electrical transmission into internal energy).
(b) What If ? The electric power is used to drive an electric
motor that operates the compressor of a heat pump, which
has a coefficient of performance equal to 60.0% of the
Carnot-cycle value.

54. How much work is required, using an ideal Carnot refrig-
erator, to change 0.500 kg of tap water at 10.0°C into ice at
" 20.0°C? Assume the temperature of the freezer compart-
ment is held at " 20.0°C and the refrigerator exhausts en-
ergy into a room at 20.0°C.

55. A heat engine operates between two reservoirs at
T2 ! 600 K and T1 ! 350 K . It takes in 1 000 J of energy
from the higher-temperature reservoir and performs
250 J of work. Find (a) the entropy change of the Uni-
verse %SU for this process and (b) the work W that could
have been done by an ideal Carnot engine operating be-
tween these two reservoirs. (c) Show that the difference
between the amounts of work done in parts (a) and (b) is
T1 %SU .

56. Two identically constructed objects, surrounded by ther-
mal insulation, are used as energy reservoirs for a Carnot
engine. The finite reservoirs both have mass m and spe-
cific heat c. They start out at temperatures Th and Tc ,
where Th # Tc . (a) Show that the engine will stop work-
ing when the final temperature of each object is 
(Th Tc)1/2. (b) Show that the total work done by the

53.

Figure P22.52 Niagara Falls, a popular tourist attraction. 
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Carnot engine is

In 1816 Robert Stirling, a Scottish clergyman,
patented the Stirling engine, which has found a wide variety
of applications ever since. Fuel is burned externally to
warm one of the engine’s two cylinders. A fixed quantity of
inert gas moves cyclically between the cylinders, expanding
in the hot one and contracting in the cold one. Figure
P22.57 represents a model for its thermodynamic cycle.
Consider n mol of an ideal monatomic gas being taken
once through the cycle, consisting of two isothermal
processes at temperatures 3Ti and Ti and two constant-
volume processes. Determine, in terms of n, R , and Ti ,
(a) the net energy transferred by heat to the gas and
(b) the efficiency of the engine. A Stirling engine is easier
to manufacture than an internal combustion engine or a
turbine. It can run on burning garbage. It can run on the
energy of sunlight and produce no material exhaust.

57.

Weng ! mc(Th 

1/2 " Tc 

 

1/2)2

58. An electric power plant has an overall efficiency of 15.0%.
The plant is to deliver 150 MW of power to a city, and its
turbines use coal as the fuel. The burning coal produces
steam that drives the turbines. This steam is then con-
densed to water at 25.0°C by passing it through cooling
coils in contact with river water. (a) How many metric tons
of coal does the plant consume each day (1 metric
ton ! 103 kg)? (b) What is the total cost of the fuel per
year if the delivered price is $8.00/metric ton? (c) If the
river water is delivered at 20.0°C, at what minimum rate
must it flow over the cooling coils in order that its temper-
ature not exceed 25.0°C? (Note: The heat of combustion of
coal is 33.0 kJ/g.)

59. A power plant, having a Carnot efficiency, produces
1 000 MW of electrical power from turbines that take in
steam at 500 K and reject water at 300 K into a flowing river.
The water downstream is 6.00 K warmer due to the output of
the power plant. Determine the flow rate of the river.

60. A power plant, having a Carnot efficiency, produces elec-
tric power ! from turbines that take in energy from steam

at temperature Th and discharge energy at temperature Tc
through a heat exchanger into a flowing river. The water
downstream is warmer by %T due to the output of the
power plant. Determine the flow rate of the river.

61. An athlete whose mass is 70.0 kg drinks 16 oz (453.6 g) of
refrigerated water. The water is at a temperature of 35.0°F.
(a) Ignoring the temperature change of the body that re-
sults from the water intake (so that the body is regarded as
a reservoir always at 98.6°F), find the entropy increase of
the entire system. (b) What If ? Assume that the entire
body is cooled by the drink and that the average specific
heat of a person is equal to the specific heat of liquid
water. Ignoring any other energy transfers by heat and any
metabolic energy release, find the athlete’s temperature
after she drinks the cold water, given an initial body
temperature of 98.6°F. Under these assumptions, what is
the entropy increase of the entire system? Compare this
result with the one you obtained in part (a).

62. A 1.00-mol sample of an ideal monatomic gas is taken
through the cycle shown in Figure P22.62. The process
A : B is a reversible isothermal expansion. Calculate
(a) the net work done by the gas, (b) the energy added to
the gas by heat, (c) the energy exhausted from the gas by
heat, and (d) the efficiency of the cycle.

63. A biology laboratory is maintained at a constant tempera-
ture of 7.00°C by an air conditioner, which is vented to the
air outside. On a typical hot summer day the outside
temperature is 27.0°C and the air conditioning unit emits
energy to the outside at a rate of 10.0 kW. Model the unit
as having a coefficient of performance equal to 40.0% of
the coefficient of performance of an ideal Carnot device.
(a) At what rate does the air conditioner remove energy
from the laboratory? (b) Calculate the power required for
the work input. (c) Find the change in entropy produced
by the air conditioner in 1.00 h. (d) What If ? The 
outside temperature increases to 32.0)C. Find the
fractional change in the coefficient of performance of the
air conditioner.

64. A 1.00-mol sample of an ideal gas expands isothermally,
doubling in volume. (a) Show that the work it does in ex-

Isothermal
processes

P

V
Vi 2Vi

Ti

3Ti

Figure P22.57
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panding is W ! RT ln 2. (b) Because the internal energy
E int of an ideal gas depends solely on its temperature, the
change in internal energy is zero during the expansion. It
follows from the first law that the energy input to the gas
by heat during the expansion is equal to the energy output
by work. Why does this conversion not violate the second
law?

A 1.00-mol sample of a monatomic ideal gas is taken
through the cycle shown in Figure P22.65. At point A, the
pressure, volume, and temperature are Pi , Vi , and Ti ,
respectively. In terms of R and Ti , find (a) the total energy
entering the system by heat per cycle, (b) the total energy
leaving the system by heat per cycle, (c) the efficiency of
an engine operating in this cycle, and (d) the efficiency of
an engine operating in a Carnot cycle between the same
temperature extremes.

65.

An idealized diesel engine operates in a cycle known as the
air-standard diesel cycle, shown in Figure 22.14. Fuel is
sprayed into the cylinder at the point of maximum com-
pression, B. Combustion occurs during the expansion 
B : C, which is modeled as an isobaric process. Show that
the efficiency of an engine operating in this idealized
diesel cycle is

70. A 1.00-mol sample of an ideal gas (* ! 1.40) is carried
through the Carnot cycle described in Figure 22.11. At
point A, the pressure is 25.0 atm and the temperature is
600 K. At point C, the pressure is 1.00 atm and the temper-
ature is 400 K. (a) Determine the pressures and volumes at
points A, B, C, and D. (b) Calculate the net work done per
cycle. (c) Determine the efficiency of an engine operating
in this cycle.

71. Suppose 1.00 kg of water at 10.0°C is mixed with 1.00 kg of
water at 30.0°C at constant pressure. When the mixture
has reached equilibrium, (a) what is the final tempera-
ture? (b) Take cP ! 4.19 kJ/kg ( K for water and show that
the entropy of the system increases by

(c) Verify numerically that %S # 0. (d) Is the mixing an ir-
reversible process?

Answers to Quick Quizzes

22.1 (c). Equation 22.2 gives this result directly.

22.2 (b). The work represents one third of the input energy.
The remainder, two thirds, must be expelled to the cold
reservoir.

22.3 (d). The COP of 4.00 for the heat pump means that you
are receiving four times as much energy as the energy en-
tering by electrical transmission. With four times as much
energy per unit of energy from electricity, you need only
one fourth as much electricity.

22.4 C, B, A. Although all three engines operate over a 300-K
temperature difference, the efficiency depends on the
ratio of temperatures, not the difference.

22.5 One microstate—all four deuces.

22.6 Six microstates—club–diamond, club–heart, club–spade,
diamond–heart, diamond–spade, heart–spade. The
macrostate of two aces is more probable than that of four
deuces in Quick Quiz 22.5 because there are six times as
many microstates for this particular macrostate com-
pared to the macrostate of four deuces. Thus, in a hand
of poker, two of a kind is less valuable than four of a
kind.

22.7 (b). Because the process is reversible and adiabatic,
Q r ! 0; therefore, %S ! 0.

%S ! 4.19 ln '" 293
283 # " 293

303 #( kJ/K

e ! 1 "
1
*

 " TD " TA

TC " TB
#

69.
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66. A sample consisting of n mol of an ideal gas undergoes a
reversible isobaric expansion from volume Vi to volume
3Vi . Find the change in entropy of the gas by calculating

where dQ ! nCP dT.

A system consisting of n mol of an ideal gas undergoes two
reversible processes. It starts with pressure Pi and volume
Vi , expands isothermally, and then contracts adiabatically
to reach a final state with pressure Pi and volume 3Vi . 
(a) Find its change in entropy in the isothermal process.
The entropy does not change in the adiabatic process. 
(b) What If ? Explain why the answer to part (a) must be
the same as the answer to Problem 66.

68. Suppose you are working in a patent office, and an inven-
tor comes to you with the claim that her heat engine,
which employs water as a working substance, has a ther-
modynamic efficiency of 0.61. She explains that it oper-
ates between energy reservoirs at 4°C and 0°C. It is a very
complicated device, with many pistons, gears, and pul-
leys, and the cycle involves freezing and melting. Does
her claim that e ! 0.61 warrant serious consideration? 
Explain.

67.

%f

i
 dQ /T



22.8 (a). From the first law of thermodynamics, for these two
reversible processes, Q r ! %E int " W. During the con-
stant-volume process, W ! 0, while the work W is
nonzero and negative during the constant-pressure
expansion. Thus, Q r is larger for the constant-pressure
process, leading to a larger value for the change in
entropy. In terms of entropy as disorder, during the
constant-pressure process, the gas must expand. The
increase in volume results in more ways of locating the

molecules of the gas in a container, resulting in a larger
increase in entropy.

22.9 False. The determining factor for the entropy change is
Q r , not Q. If the adiabatic process is not reversible, the
entropy change is not necessarily zero because a re-
versible path between the same initial and final states may
involve energy transfer by heat.
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Electricity and
Magnetism

e now study the branch of physics concerned with electric and magnetic phe-
nomena. The laws of electricity and magnetism have a central role in the oper-
ation of such devices as radios, televisions, electric motors, computers,

high-energy accelerators, and other electronic devices. More fundamentally, the in-
teratomic and intermolecular forces responsible for the formation of solids and liq-
uids are electric in origin. Furthermore, such forces as the pushes and pulls between
objects and the elastic force in a spring arise from electric forces at the atomic level.

Evidence in Chinese documents suggests that magnetism was observed as early
as 2000 B.C. The ancient Greeks observed electric and magnetic phenomena possi-
bly as early as 700 B.C. They found that a piece of amber, when rubbed, becomes
electrified and attracts pieces of straw or feathers. The Greeks knew about magnetic
forces from observations that the naturally occurring stone magnetite (Fe3O4) is at-
tracted to iron. (The word electric comes from elecktron, the Greek word for “amber.”
The word magnetic comes from Magnesia, the name of the district of Greece where
magnetite was first found.) In 1600, the Englishman William Gilbert discovered that
electrification is not limited to amber but rather is a general phenomenon. In the
years following this discovery, scientists electrified a variety of objects. Experiments
by Charles Coulomb in 1785 confirmed the inverse-square law for electric forces.

It was not until the early part of the nineteenth century that scientists established
that electricity and magnetism are related phenomena. In 1819, Hans Oersted dis-
covered that a compass needle is deflected when placed near a circuit carrying an
electric current. In 1831, Michael Faraday and, almost simultaneously, Joseph Henry
showed that when a wire is moved near a magnet (or, equivalently, when a magnet is
moved near a wire), an electric current is established in the wire. In 1873, James
Clerk Maxwell used these observations and other experimental facts as a basis for
formulating the laws of electromagnetism as we know them today. (Electromagnet-
ism is a name given to the combined study of electricity and magnetism.) Shortly
thereafter (around 1888), Heinrich Hertz verified Maxwell’s predictions by producing
electromagnetic waves in the laboratory. This achievement led to such practical de-
velopments as radio and television.

Maxwell’s contributions to the field of electromagnetism were especially signifi-
cant because the laws he formulated are basic to all forms of electromagnetic phe-
nomena. His work is as important as Newton’s work on the laws of motion and the
theory of gravitation.

W
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! Lightning is a dramatic example of electrical phenomena occurring in nature. While we
are most familiar with lightning originating from thunderclouds, it can occur in other
situations, such as in a volcanic eruption (here, the Sakurajima volcano, Japan). (M. Zhilin/
M. Newman/Photo Researchers, Inc.)
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Electric Fields

CHAPTE R OUTL I N E

23.1 Properties of Electric Charges

23.2 Charging Objects By
Induction

23.3 Coulomb’s Law

23.4 The Electric Field

23.5 Electric Field of a Continuous
Charge Distribution

23.6 Electric Field Lines
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! Mother and daughter are both enjoying the effects of electrically charging their bodies.
Each individual hair on their heads becomes charged and exerts a repulsive force on the
other hairs, resulting in the “stand-up’’ hairdos that you see here. (Courtesy of Resonance
Research Corporation)
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The electromagnetic force between charged particles is one of the fundamental forces
of nature. We begin this chapter by describing some of the basic properties of one
manifestation of the electromagnetic force, the electric force. We then discuss
Coulomb’s law, which is the fundamental law governing the electric force between any
two charged particles. Next, we introduce the concept of an electric field associated
with a charge distribution and describe its effect on other charged particles. We then
show how to use Coulomb’s law to calculate the electric field for a given charge distrib-
ution. We conclude the chapter with a discussion of the motion of a charged particle
in a uniform electric field.

23.1 Properties of Electric Charges

A number of simple experiments demonstrate the existence of electric forces and
charges. For example, after running a comb through your hair on a dry day, you will
find that the comb attracts bits of paper. The attractive force is often strong enough to
suspend the paper. The same effect occurs when certain materials are rubbed together,
such as glass rubbed with silk or rubber with fur.

Another simple experiment is to rub an inflated balloon with wool. The balloon
then adheres to a wall, often for hours. When materials behave in this way, they are
said to be electrified, or to have become electrically charged. You can easily electrify
your body by vigorously rubbing your shoes on a wool rug. Evidence of the electric
charge on your body can be detected by lightly touching (and startling) a friend.
Under the right conditions, you will see a spark when you touch, and both of you will
feel a slight tingle. (Experiments such as these work best on a dry day because an
excessive amount of moisture in the air can cause any charge you build up to “leak”
from your body to the Earth.)

In a series of simple experiments, it was found that there are two kinds of electric
charges, which were given the names positive and negative by Benjamin Franklin
(1706–1790). We identify negative charge as that type possessed by electrons and posi-
tive charge as that possessed by protons. To verify that there are two types of charge,
suppose a hard rubber rod that has been rubbed with fur is suspended by a sewing
thread, as shown in Figure 23.1. When a glass rod that has been rubbed with silk is
brought near the rubber rod, the two attract each other (Fig. 23.1a). On the other
hand, if two charged rubber rods (or two charged glass rods) are brought near each
other, as shown in Figure 23.1b, the two repel each other. This observation shows that
the rubber and glass have two different types of charge on them. On the basis of these
observations, we conclude that charges of the same sign repel one another and
charges with opposite signs attract one another.

Using the convention suggested by Franklin, the electric charge on the glass rod is
called positive and that on the rubber rod is called negative. Therefore, any charged
object attracted to a charged rubber rod (or repelled by a charged glass rod) must



have a positive charge, and any charged object repelled by a charged rubber rod (or at-
tracted to a charged glass rod) must have a negative charge.

Attractive electric forces are responsible for the behavior of a wide variety of com-
mercial products. For example, the plastic in many contact lenses, etafilcon, is made up
of molecules that electrically attract the protein molecules in human tears. These
protein molecules are absorbed and held by the plastic so that the lens ends up being
primarily composed of the wearer’s tears. Because of this, the lens does not behave as a
foreign object to the wearer’s eye, and it can be worn comfortably. Many cosmetics also
take advantage of electric forces by incorporating materials that are electrically
attracted to skin or hair, causing the pigments or other chemicals to stay put once they
are applied.

Another important aspect of electricity that arises from experimental observa-
tions is that electric charge is always conserved in an isolated system. That is,
when one object is rubbed against another, charge is not created in the process. The
electrified state is due to a transfer of charge from one object to the other. One
object gains some amount of negative charge while the other gains an equal amount
of positive charge. For example, when a glass rod is rubbed with silk, as in Figure
23.2, the silk obtains a negative charge that is equal in magnitude to the posi-
tive charge on the glass rod. We now know from our understanding of atomic struc-
ture that electrons are transferred from the glass to the silk in the rubbing process.
Similarly, when rubber is rubbed with fur, electrons are transferred from the fur to
the rubber, giving the rubber a net negative charge and the fur a net positive
charge. This process is consistent with the fact that neutral, uncharged matter
contains as many positive charges (protons within atomic nuclei) as negative
charges (electrons).

In 1909, Robert Millikan (1868–1953) discovered that electric charge always
occurs as some integral multiple of a fundamental amount of charge e (see Section
25.7). In modern terms, the electric charge q is said to be quantized, where q is the
standard symbol used for charge as a variable. That is, electric charge exists as
discrete “packets,” and we can write q ! Ne, where N is some integer. Other experi-
ments in the same period showed that the electron has a charge " e and the proton
has a charge of equal magnitude but opposite sign # e. Some particles, such as
the neutron, have no charge.

From our discussion thus far, we conclude that electric charge has the following im-
portant properties:
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Electric charge is conserved
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Figure 23.1 (a) A negatively charged rubber rod suspended by a thread is attracted 
to a positively charged glass rod. (b) A negatively charged rubber rod is repelled by 
another negatively charged rubber rod.
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Figure 23.2 When a glass rod is
rubbed with silk, electrons are
transferred from the glass to the
silk. Because of conservation of
charge, each electron adds nega-
tive charge to the silk, and an equal
positive charge is left behind on
the rod. Also, because the charges
are transferred in discrete bundles,
the charges on the two objects are
$ e, or $ 2e, or $ 3e, and so on.



23.2 Charging Objects By Induction

It is convenient to classify materials in terms of the ability of electrons to move through
the material:
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Quick Quiz 23.1 If you rub an inflated balloon against your hair, the two
materials attract each other, as shown in Figure 23.3. Is the amount of charge present
in the system of the balloon and your hair after rubbing (a) less than, (b) the same as,
or (c) more than the amount of charge present before rubbing?

Quick Quiz 23.2 Three objects are brought close to each other, two at a
time. When objects A and B are brought together, they repel. When objects B and C
are brought together, they also repel. Which of the following are true? (a) Objects A
and C possess charges of the same sign. (b) Objects A and C possess charges of oppo-
site sign. (c) All three of the objects possess charges of the same sign. (d) One of the
objects is neutral. (e) We would need to perform additional experiments to determine
the signs of the charges.

Properties of electric charge• There are two kinds of charges in nature; charges of opposite sign attract one
another and charges of the same sign repel one another.

• Total charge in an isolated system is conserved.

• Charge is quantized.

Electrical conductors are materials in which some of the electrons are free
electrons1 that are not bound to atoms and can move relatively freely through the
material; electrical insulators are materials in which all electrons are bound to
atoms and cannot move freely through the material.

Figure 23.3 (Quick Quiz 23.1)
Rubbing a balloon against your
hair on a dry day causes the
balloon and your hair to become
charged. 
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1 A metal atom contains one or more outer electrons, which are weakly bound to the nucleus. When
many atoms combine to form a metal, the so-called free electrons are these outer electrons, which are not
bound to any one atom. These electrons move about the metal in a manner similar to that of gas mole-
cules moving in a container.

Materials such as glass, rubber, and wood fall into the category of electrical insulators.
When such materials are charged by rubbing, only the area rubbed becomes charged,
and the charged particles are unable to move to other regions of the material.

In contrast, materials such as copper, aluminum, and silver are good electrical con-
ductors. When such materials are charged in some small region, the charge readily dis-
tributes itself over the entire surface of the material. If you hold a copper rod in your
hand and rub it with wool or fur, it will not attract a small piece of paper. This might
suggest that a metal cannot be charged. However, if you attach a wooden handle to the
rod and then hold it by that handle as you rub the rod, the rod will remain charged
and attract the piece of paper. The explanation for this is as follows: without the insu-
lating wood, the electric charges produced by rubbing readily move from the copper
through your body, which is also a conductor, and into the Earth. The insulating
wooden handle prevents the flow of charge into your hand.

Semiconductors are a third class of materials, and their electrical properties
are somewhere between those of insulators and those of conductors. Silicon and



germanium are well-known examples of semiconductors commonly used in the fabrica-
tion of a variety of electronic chips used in computers, cellular telephones, and stereo
systems. The electrical properties of semiconductors can be changed over many orders
of magnitude by the addition of controlled amounts of certain atoms to the materials.

To understand how to charge a conductor by a process known as induction, con-
sider a neutral (uncharged) conducting sphere insulated from the ground, as shown in
Figure 23.4a. There are an equal number of electrons and protons in the sphere if the
charge on the sphere is exactly zero. When a negatively charged rubber rod is brought
near the sphere, electrons in the region nearest the rod experience a repulsive force
and migrate to the opposite side of the sphere. This leaves the side of the sphere near
the rod with an effective positive charge because of the diminished number of
electrons, as in Figure 23.4b. (The left side of the sphere in Figure 23.4b is positively
charged as if positive charges moved into this region, but remember that it is only
electrons that are free to move.) This occurs even if the rod never actually touches the
sphere. If the same experiment is performed with a conducting wire connected from
the sphere to the Earth (Fig. 23.4c), some of the electrons in the conductor are so
strongly repelled by the presence of the negative charge in the rod that they move out
of the sphere through the wire and into the Earth. The symbol at the end of the 

wire in Figure 23.4c indicates that the wire is connected to ground, which means a
reservoir, such as the Earth, that can accept or provide electrons freely with negligible
effect on its electrical characteristics. If the wire to ground is then removed (Fig.
23.4d), the conducting sphere contains an excess of induced positive charge because it
has fewer electrons than it needs to cancel out the positive charge of the protons.
When the rubber rod is removed from the vicinity of the sphere (Fig. 23.4e), this in-
duced positive charge remains on the ungrounded sphere. Note that the rubber rod
loses none of its negative charge during this process.

Charging an object by induction requires no contact with the object inducing the
charge. This is in contrast to charging an object by rubbing (that is, by conduction),
which does require contact between the two objects.

A process similar to induction in conductors takes place in insulators. In most neutral
molecules, the center of positive charge coincides with the center of negative charge.
However, in the presence of a charged object, these centers inside each molecule in an
insulator may shift slightly, resulting in more positive charge on one side of the molecule
than on the other. This realignment of charge within individual molecules produces a
layer of charge on the surface of the insulator, as shown in Figure 23.5a. Knowing about
induction in insulators, you should be able to explain why a comb that has been rubbed
through hair attracts bits of electrically neutral paper and why a balloon that has been
rubbed against your clothing is able to stick to an electrically neutral wall.
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Figure 23.4 Charging a metallic
object by induction (that is, the two
objects never touch each other).
(a) A neutral metallic sphere, with
equal numbers of positive and neg-
ative charges. (b) The electrons on
the neutral sphere are redistrib-
uted when a charged rubber rod is
placed near the sphere. (c) When
the sphere is grounded, some of its
electrons leave through the ground
wire. (d) When the ground connec-
tion is removed, the sphere has
excess positive charge that is
nonuniformly distributed. 
(e) When the rod is removed, the
remaining electrons redistribute
uniformly and there is a net 
uniform distribution of positive
charge on the sphere.
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Figure 23.5 (a) The charged object on the left induces a charge distribution on the
surface of an insulator due to realignment of charges in the molecules. (b) A charged
comb attracts bits of paper because charges in molecules in the paper are realigned.
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23.3 Coulomb’s Law

Charles Coulomb (1736–1806) measured the magnitudes of the electric forces between
charged objects using the torsion balance, which he invented (Fig. 23.6). Coulomb con-
firmed that the electric force between two small charged spheres is proportional to the
inverse square of their separation distance r —that is, Fe % 1/r 2. The operating principle
of the torsion balance is the same as that of the apparatus used by Cavendish to measure
the gravitational constant (see Section 13.2), with the electrically neutral spheres
replaced by charged ones. The electric force between charged spheres A and B in Figure
23.6 causes the spheres to either attract or repel each other, and the resulting motion
causes the suspended fiber to twist. Because the restoring torque of the twisted fiber is
proportional to the angle through which the fiber rotates, a measurement of this angle
provides a quantitative measure of the electric force of attraction or repulsion. Once the
spheres are charged by rubbing, the electric force between them is very large compared
with the gravitational attraction, and so the gravitational force can be neglected.

From Coulomb’s experiments, we can generalize the following properties of the
electric force between two stationary charged particles. The electric force

• is inversely proportional to the square of the separation r between the particles and
directed along the line joining them;

• is proportional to the product of the charges q1 and q2 on the two particles;

• is attractive if the charges are of opposite sign and repulsive if the charges have the
same sign;

• is a conservative force.

We will use the term point charge to mean a particle of zero size that carries
an electric charge. The electrical behavior of electrons and protons is very well
described by modeling them as point charges. From experimental observations on the
electric force, we can express Coulomb’s law as an equation giving the magnitude of
the electric force (sometimes called the Coulomb force) between two point charges:

(23.1)

where ke is a constant called the Coulomb constant. In his experiments, Coulomb was
able to show that the value of the exponent of r was 2 to within an uncertainty of a few
percent. Modern experiments have shown that the exponent is 2 to within an uncer-
tainty of a few parts in 1016.

The value of the Coulomb constant depends on the choice of units. The SI unit of
charge is the coulomb (C). The Coulomb constant ke in SI units has the value

ke ! 8.987 5 & 109 N ' m2/C2 (23.2)

This constant is also written in the form

(23.3)ke !
1

4()0

Fe ! ke  
! q 1 !! q 2 !

r  
2
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Quick Quiz 23.3 Three objects are brought close to each other, two at a
time. When objects A and B are brought together, they attract. When objects B and C
are brought together, they repel. From this, we conclude that (a) objects A and C
possess charges of the same sign. (b) objects A and C possess charges of opposite sign.
(c) all three of the objects possess charges of the same sign. (d) one of the objects is
neutral. (e) we need to perform additional experiments to determine information
about the charges on the objects.

Coulomb’s law

Coulomb constant

Suspension
head

Fiber

B

A

Figure 23.6 Coulomb’s torsion
balance, used to establish the
inverse-square law for the electric
force between two charges.



where the constant )0 (lowercase Greek epsilon) is known as the permittivity of free
space and has the value

)0 ! 8.854 2 & 10"12 C2/N ' m2 (23.4)

The smallest unit of charge e known in nature2 is the charge on an electron (" e)
or a proton (# e) and has a magnitude

e ! 1.602 19 & 10"19 C (23.5)

Therefore, 1 C of charge is approximately equal to the charge of 6.24 & 1018 electrons
or protons. This number is very small when compared with the number of free
electrons in 1 cm3 of copper, which is on the order of 1023. Still, 1 C is a substantial
amount of charge. In typical experiments in which a rubber or glass rod is charged by
friction, a net charge on the order of 10"6 C is obtained. In other words, only a very
small fraction of the total available charge is transferred between the rod and the
rubbing material.

The charges and masses of the electron, proton, and neutron are given in Table
23.1.
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Example 23.1 The Hydrogen Atom

gravitational force is

!

The ratio Fe /Fg " 2 & 1039. Thus, the gravitational force
between charged atomic particles is negligible when com-
pared with the electric force. Note the similarity of form of
Newton’s law of universal gravitation and Coulomb’s law of
electric forces. Other than magnitude, what is a fundamen-
tal difference between the two forces?

3.6 & 10"47 N

&
(9.11 & 10"31 kg)(1.67 & 10"27 kg)

(5.3 & 10"11 m)2

!(6.67 & 10"11 N'm2/kg2)

Fg ! G 
memp

r2

The electron and proton of a hydrogen atom are separated
(on the average) by a distance of approximately 5.3 &
10"11 m. Find the magnitudes of the electric force and the
gravitational force between the two particles.

Solution From Coulomb’s law, we find that the magnitude
of the electric force is

!

Using Newton’s law of universal gravitation and Table 23.1
for the particle masses, we find that the magnitude of the

8.2 & 10"8 N

Fe ! ke 
!e ! !"e !

r  2 ! (8.99 & 109 N'm2/C2) 
(1.60 & 10"19 C)2

(5.3 & 10"11 m)2

Quick Quiz 23.4 Object A has a charge of # 2 *C, and object B
has a charge of # 6 *C. Which statement is true about the electric forces on 
the objects? (a) FAB ! " 3FBA (b) FAB ! " FBA (c) 3FAB ! " FBA (d) FAB ! 3FBA
(e) FAB ! FBA (f) 3FAB ! FBA

Particle Charge (C) Mass (kg)

Electron (e) " 1.602 191 7 & 10"19 9.109 5 & 10"31

Proton (p) # 1.602 191 7 & 10"19 1.672 61 & 10"27

Neutron (n) 0 1.674 92 & 10"27

Charge and Mass of the Electron, Proton, and Neutron

Table 23.1

2 No unit of charge smaller than e has been detected on a free particle; however, current theories
propose the existence of particles called quarks having charges "e/3 and 2e/3. Although there is
considerable experimental evidence for such particles inside nuclear matter, free quarks have never
been detected. We discuss other properties of quarks in Chapter 46 of the extended version of this text.

Charles Coulomb
French physicist (1736–1806)

Coulomb’s major contributions
to science were in the areas of
electrostatics and magnetism.
During his lifetime, he also
investigated the strengths of
materials and determined the
forces that affect objects on
beams, thereby contributing to
the field of structural
mechanics. In the field of
ergonomics, his research
provided a fundamental
understanding of the ways in
which people and animals can
best do work. (Photo courtesy of
AIP Niels Bohr Library/E. Scott
Barr Collection)
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Quick Quiz 23.5 Object A has a charge of #2 *C, and object B has a
charge of # 6 *C. Which statement is true about the electric forces on the 
objects? (a) FAB ! " 3FBA (b) FAB ! " FBA (c) 3FAB ! " FBA (d) FAB ! 3FBA
(e) FAB ! FBA (f) 3FAB ! FBA

Example 23.2 Find the Resultant Force

q2 ! " 2.0 *C, and a ! 0.10 m. Find the resultant force
exerted on q3.

Solution First, note the direction of the individual forces
exerted by q1 and q2 on q3. The force F23 exerted by q2 on
q3 is attractive because q2 and q3 have opposite signs. The
force F13 exerted by q1 on q3 is repulsive because both
charges are positive.

The magnitude of F23 is

In the coordinate system shown in Figure 23.8, the attractive
force F23 is to the left (in the negative x direction).

 ! 9.0 N

 ! (8.99 & 109 N'm2/C2) 
(2.0 & 10"6 C)(5.0 & 10"6 C)

(0.10 m)2

F23 ! ke 
! q 2 !! q 3 !

a2

Consider three point charges located at the corners of a right
triangle as shown in Figure 23.8, where q1 ! q3 ! 5.0 *C,

When dealing with Coulomb’s law, you must remember that force is a vector quan-
tity and must be treated accordingly. The law expressed in vector form for the electric
force exerted by a charge q1 on a second charge q2, written F12, is

(23.6)

where r̂ is a unit vector directed from q1 toward q2, as shown in Figure 23.7a. Because
the electric force obeys Newton’s third law, the electric force exerted by q2 on q1 is
equal in magnitude to the force exerted by q1 on q2 and in the opposite direction;
that is, F21 ! " F12. Finally, from Equation 23.6, we see that if q1 and q2 have the
same sign, as in Figure 23.7a, the product q1q2 is positive. If q1 and q2 are of opposite
sign, as shown in Figure 23.7b, the product q1q2 is negative. These signs describe the
relative direction of the force but not the absolute direction. A negative product indi-
cates an attractive force, so that the charges each experience a force toward the
other—thus, the force on one charge is in a direction relative to the other. A positive
product indicates a repulsive force such that each charge experiences a force away
from the other. The absolute direction of the force in space is not determined solely by
the sign of q1q2—whether the force on an individual charge is in the positive or nega-
tive direction on a coordinate axis depends on the location of the other charge. For
example, if an x axis lies along the two charges in Figure 23.7a, the product q1q2 is
positive, but F12 points in the # x direction and F21 points in the " x direction.

F12 ! ke 
q 1q 2

r  
2  r̂

–

+
r

(a)F21

F12

q1

q2

(b)

F21

F12

q1

q2

r̂

+

+

Active Figure 23.7 Two point
charges separated by a distance r
exert a force on each other that is
given by Coulomb’s law. The force
F21 exerted by q2 on q1 is equal in
magnitude and opposite in direction
to the force F12 exerted by q1 on q2.
(a) When the charges are of the
same sign, the force is repulsive.
(b) When the charges are of
opposite signs, the force is attractive.

At the Active Figures link
at http://www.pse6.com, you
can move the charges to any
position in two-dimensional
space and observe the electric
forces on them.

F13

q3

q1

q2

a

a

y

x

–

+

+
F23

2a√

Figure 23.8 (Example 23.2) The force exerted by q1 on q3 is
F13. The force exerted by q2 on q3 is F23. The resultant force F3
exerted on q3 is the vector sum F13 # F23.

Vector form of Coulomb’s law

When more than two charges are present, the force between any pair of them is given
by Equation 23.6. Therefore, the resultant force on any one of them equals the vector
sum of the forces exerted by the various individual charges. For example, if four charges
are present, then the resultant force exerted by particles 2, 3, and 4 on particle 1 is

F1 ! F21 # F31 # F41
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Example 23.4 Find the Charge on the Spheres

Solution Figure 23.10a helps us conceptualize this
problem—the two spheres exert repulsive forces on each
other. If they are held close to each other and released, they
will move outward from the center and settle into the con-
figuration in Figure 23.10a after the damped oscillations

Two identical small charged spheres, each having a mass of
3.0 & 10"2 kg, hang in equilibrium as shown in Figure
23.10a. The length of each string is 0.15 m, and the angle +
is 5.0°. Find the magnitude of the charge on each 
sphere.

The magnitude of the force F13 exerted by q1 on q3 is

The repulsive force F13 makes an angle of 45° with the x
axis. Therefore, the x and y components of F13 are equal,
with magnitude given by F13 cos 45° ! 7.9 N.

Combining F13 with F23 by the rules of vector addition,
we arrive at the x and y components of the resultant force
acting on q3:

 ! 11 N

 ! (8.99 & 109 N'm2/C2) 
(5.0 & 10"6 C)(5.0 & 10"6 C)

2(0.10 m)2

F13 ! ke
! q 1 !! q 3 !
(√2a)2

F3x ! F13x # F23x ! 7.9 N # (" 9.0 N) ! " 1.1 N

F3y ! F13y # F23y ! 7.9 N # 0 ! 7.9 N

We can also express the resultant force acting on q3 in unit-
vector form as

What If? What if the signs of all three charges were changed
to the opposite signs? How would this affect the result for F3?

Answer The charge q3 would still be attracted toward q2
and repelled from q1 with forces of the same magnitude.
Thus, the final result for F3 would be exactly the same.

("1.1î # 7.9 ĵ)  NF3 !

of the forces on q3 are equal, but both forces are in the
same direction at this location.

What If? Suppose charge q3 is constrained to move only
along the x axis. From its initial position at x ! 0.775 m, it is
pulled a very small distance along the x axis. When released,
will it return to equilibrium or be pulled further from equilib-
rium? That is, is the equilibrium stable or unstable?

Answer If the charge is moved to the right, F13 becomes
larger and F23 becomes smaller. This results in a net force to
the right, in the same direction as the displacement. Thus,
the equilibrium is unstable.

Note that if the charge is constrained to stay at a fixed x
coordinate but allowed to move up and down in Figure 23.9,
the equilibrium is stable. In this case, if the charge is pulled
upward (or downward) and released, it will move back
toward the equilibrium position and undergo oscillation.

Three point charges lie along the x axis as shown in Figure
23.9. The positive charge q1 ! 15.0 *C is at x ! 2.00 m,
the positive charge q2 ! 6.00 *C is at the origin, and the
resultant force acting on q3 is zero. What is the x coordi-
nate of q3?

Solution Because q3 is negative and q1 and q2 are positive,
the forces F13 and F23 are both attractive, as indicated in Fig-
ure 23.9. From Coulomb’s law, F13 and F23 have magnitudes

For the resultant force on q3 to be zero, F23 must be equal in
magnitude and opposite in direction to F13. Setting the
magnitudes of the two forces equal, we have

Noting that ke and are common to both sides and so can
be dropped, we solve for x and find that

This can be reduced to the following quadratic equation:

3.00x2 # 8.00x " 8.00 = 0

Solving this quadratic equation for x, we find that the positive 

root is x ! There is also a second root, x !

" 3.44 m. This is another location at which the magnitudes

0.775 m.

(4.00 " 4.00x # x 2)(6.00 & 10"6 C) ! x 2(15.0 & 10"6 C)

 (2.00 " x)2 ! q 2 ! ! x2 ! q 1 !

! q 3 !

ke 
! q 2 !! q 3 !

x2 ! ke 
! q 1 !! q 3 !

(2.00 " x)2

F13 ! ke 
! q 1 !! q 3 !

(2.00 " x)2   F23 ! ke 
! q 2 !! q 3 !

x 2

Example 23.3 Where Is the Resultant Force Zero?

2.00 m

x

q1

x
q3

–
q2 F13F23

2.00 – x

+ +

Figure 23.9 (Example 23.3) Three point charges are placed
along the x axis. If the resultant force acting on q3 is zero, then
the force F13 exerted by q1 on q3 must be equal in magnitude
and opposite in direction to the force F23 exerted by q2 on q3.

At the Interactive Worked Example link at http://www.pse6.com, you can predict where on the x axis the electric force is zero
for random values of q1 and q2.

Interactive



23.4 The Electric Field

Two field forces have been introduced into our discussions so far—the gravitational
force in Chapter 13 and the electric force here. As pointed out earlier, field forces can
act through space, producing an effect even when no physical contact occurs between
interacting objects. The gravitational field g at a point in space was defined in Section
13.5 to be equal to the gravitational force Fg acting on a test particle of mass m divided
by that mass: g # Fg/m. The concept of a field was developed by Michael Faraday
(1791–1867) in the context of electric forces and is of such practical value that we shall
devote much attention to it in the next several chapters. In this approach, an electric
field is said to exist in the region of space around a charged object—the source
charge. When another charged object—the test charge—enters this electric field, an
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The separation of the spheres is 2a ! 0.026 m.
From Coulomb’s law (Eq. 23.1), the magnitude of the

electric force is

where r ! 2a ! 0.026 m and !q ! is the magnitude of the
charge on each sphere. (Note that the term !q !2 arises here
because the charge is the same on both spheres.) This equa-
tion can be solved for !q !2 to give

To finalize the problem, note that we found only the
magnitude of the charge !q ! on the spheres. There is no way
we could find the sign of the charge from the information
given. In fact, the sign of the charge is not important. The
situation will be exactly the same whether both spheres are
positively charged or negatively charged.

What If? Suppose your roommate proposes solving this
problem without the assumption that the charges are of
equal magnitude. She claims that the symmetry of the
problem is destroyed if the charges are not equal, so that the
strings would make two different angles with the vertical, and
the problem would be much more complicated. How would
you respond?

Answer You should argue that the symmetry is not de-
stroyed and the angles remain the same. Newton’s third law
requires that the electric forces on the two charges be the
same, regardless of the equality or nonequality of the
charges. The solution to the example remains the same
through the calculation of !q !2. In this situation, the value of
1.96 & 10" 15 C2 corresponds to the product q1q2, where q1
and q2 are the values of the charges on the two spheres. The
symmetry of the problem would be destroyed if the masses of
the spheres were not the same. In this case, the strings
would make different angles with the vertical and the
problem would be more complicated.

4.4 & 10"8 C! q ! !

!q !2 !
Fe r 2

ke
!

(2.6 & 10"2 N)(0.026 m)2

8.99 & 109 N'm2/C2 ! 1.96 & 10"15 C2

Fe ! ke 
! q !2

r  2

due to air resistance have vanished. The key phrase “in equi-
librium’’ helps us categorize this as an equilibrium problem,
which we approach as we did equilibrium problems in
Chapter 5 with the added feature that one of the forces on a
sphere is an electric force. We analyze this problem by
drawing the free-body diagram for the left-hand sphere in
Figure 23.10b. The sphere is in equilibrium under the appli-
cation of the forces T from the string, the electric force Fe
from the other sphere, and the gravitational force mg.

Because the sphere is in equilibrium, the forces in the hor-
izontal and vertical directions must separately add up to zero:

From Equation (2), we see that T ! mg/cos + ; thus, T can
be eliminated from Equation (1) if we make this substitu-
tion. This gives a value for the magnitude of the electric
force Fe :

Fe ! mg tan + ! (3.0 & 10"2 kg)(9.80 m/s2) tan(5.0°)

! 2.6 & 10"2 N
Considering the geometry of the right triangle in Figure
23.10a, we see that sin + ! a/L. Therefore,

a ! L sin + ! (0.15 m) sin(5.0°) ! 0.013 m

(2)   $ Fy  ! T cos + " mg ! 0

(1)   $ Fx ! T sin + " Fe ! 0

(a) (b)

mg

LL

θ θ

L = 0.15 m
θ = 5.0°

q a q

θT
T cos θ

T sin θ

θ

Fe

θ

θ

θ

Figure 23.10 (Example 23.4) (a) Two identical spheres, each
carrying the same charge q, suspended in equilibrium. (b) The
free-body diagram for the sphere on the left.



electric force acts on it. As an example, consider Figure 23.11, which shows a small posi-
tive test charge q0 placed near a second object carrying a much greater positive charge
Q. We define the electric field due to the source charge at the location of the test
charge to be the electric force on the test charge per unit charge, or to be more specific
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This dramatic photograph captures a
lightning bolt striking a tree near
some rural homes. Lightning is associ-
ated with very strong electric fields in
the atmosphere.©
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+ +

+ +
+

++

+

Q

q0

E

Figure 23.11 A small positive test
charge q0 placed near an object
carrying a much larger positive
charge Q experiences an electric
field E directed as shown.

the electric field vector E at a point in space is defined as the electric force Fe
acting on a positive test charge q0 placed at that point divided by the test charge:

(23.7)E # 
Fe

q 0

Note that E is the field produced by some charge or charge distribution separate from
the test charge—it is not the field produced by the test charge itself. Also, note that the
existence of an electric field is a property of its source—the presence of the test charge
is not necessary for the field to exist. The test charge serves as a detector of the electric
field.

Equation 23.7 can be rearranged as

(23.8)

where we have used the general symbol q for a charge. This equation gives us the force
on a charged particle placed in an electric field. If q is positive, the force is in the same

Fe ! q E

! PITFALL PREVENTION 
23.1 Particles Only
Equation 23.8 is only valid for a
charged particle —an object of
zero size. For a charged object of
finite size in an electric field, the
field may vary in magnitude and
direction over the size of the
object, so the corresponding
force equation may be more
complicated.

Definition of electric field
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direction as the field. If q is negative, the force and the field are in opposite directions.
Notice the similarity between Equation 23.8 and the corresponding equation for a par-
ticle with mass placed in a gravitational field, Fg ! mg (Eq. 5.6).

The vector E has the SI units of newtons per coulomb (N/C). The direction of E,
as shown in Figure 23.11, is the direction of the force a positive test charge experiences
when placed in the field. We say that an electric field exists at a point if a test
charge at that point experiences an electric force. Once the magnitude and direc-
tion of the electric field are known at some point, the electric force exerted on any
charged particle placed at that point can be calculated from Equation 23.8. The
electric field magnitudes for various field sources are given in Table 23.2.

When using Equation 23.7, we must assume that the test charge q0 is small enough
that it does not disturb the charge distribution responsible for the electric field. If a
vanishingly small test charge q0 is placed near a uniformly charged metallic sphere, as
in Figure 23.12a, the charge on the metallic sphere, which produces the electric field,
remains uniformly distributed. If the test charge is great enough (q0, -- q0), as in
Figure 23.12b, the charge on the metallic sphere is redistributed and the ratio of the
force to the test charge is different: (Fe,/q0, . Fe /q0). That is, because of this redistribu-
tion of charge on the metallic sphere, the electric field it sets up is different from the
field it sets up in the presence of the much smaller test charge q0.

To determine the direction of an electric field, consider a point charge q as a
source charge. This charge creates an electric field at all points in space surround-
ing it. A test charge q 0 is placed at point P, a distance r from the source charge, as in
Figure 23.13a. We imagine using the test charge to determine the direction of the
electric force and therefore that of the electric field. However, the electric field
does not depend on the existence of the test charge—it is established solely by the
source charge. According to Coulomb’s law, the force exerted by q on the test
charge is

where r̂ is a unit vector directed from q toward q0. This force in Figure 23.13a is
directed away from the source charge q. Because the electric field at P, the position
of the test charge, is defined by E ! Fe/q0, we find that at P, the electric field created
by q is

(23.9)

If the source charge q is positive, Figure 23.13b shows the situation with the test charge
removed—the source charge sets up an electric field at point P, directed away from q.
If q is negative, as in Figure 23.13c, the force on the test charge is toward the source
charge, so the electric field at P is directed toward the source charge, as in Figure
23.13d.

E ! ke  
q
r  2   r̂  

Fe ! ke  
qq0

r  2   r̂

Source E (N/C)

Fluorescent lighting tube 10
Atmosphere (fair weather) 100
Balloon rubbed on hair 1 000
Atmosphere (under thundercloud) 10 000
Photocopier 100 000
Spark in air -3 000 000
Near electron in hydrogen atom 5 & 1011

Typical Electric Field Values

Table 23.2

(a) (b)

q0+ q′0>>q0+

–
– –

–

–

––
–

–

–

–
–

– – –
–

–
––

–
–

–
–

–

Figure 23.12 (a) For a small
enough test charge q0, the charge
distribution on the sphere is undis-
turbed. (b) When the test charge
q0, is greater, the charge distribu-
tion on the sphere is disturbed as
the result of the proximity of q0, .

Active Figure 23.13 A test charge
q0 at point P is a distance r from a
point charge q. (a) If q is positive,
then the force on the test charge is
directed away from q. (b) For the
positive source charge, the electric
field at P points radially outward
from q. (c) If q is negative, then the
force on the test charge is directed
toward q. (d) For the negative
source charge, the electric field at P
points radially inward toward q.

At the Active Figures link at
http://www.pse6.com, you can
move point P to any position in
two-dimensional space and 
observe the electric field due 
to q.

(b)

E

q r

P

r̂

+

(a)

F

q

q0

r
P

r̂

+

–
(c)

Fq

q0

P

r̂

–
(d)

E

q
P

r̂
r
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To calculate the electric field at a point P due to a group of point charges, we first
calculate the electric field vectors at P individually using Equation 23.9 and then add
them vectorially. In other words,

at any point P, the total electric field due to a group of source charges equals the
vector sum of the electric fields of all the charges.

Quick Quiz 23.6 A test charge of # 3 *C is at a point P where an external
electric field is directed to the right and has a magnitude of 4 & 106 N/C. If the test
charge is replaced with another test charge of " 3 *C, the external electric field at P
(a) is unaffected (b) reverses direction (c) changes in a way that cannot be determined

Electric field due to a finite
number of point charges

Example 23.5 Electric Field Due to Two Charges

Solution First, let us find the magnitude of the electric field
at P due to each charge. The fields E1 due to the 7.0-*C
charge and E2 due to the " 5.0-*C charge are shown in
Figure 23.14. Their magnitudes are

The vector E1 has only a y component. The vector E2 has an
x component given by E 2 cos + ! E2 and a negative y

component given by " E 2 sin + ! " E 2 . Hence, we can

express the vectors as

The resultant field E at P is the superposition of E1 and E2:

From this result, we find that E makes an angle / of 66° with
the positive x axis and has a magnitude of 2.7 & 105 N/C.

(1.1 & 105 î # 2.5 & 105 ĵ) N/CE ! E1 # E2 !

E2 ! (1.1 & 105 î " 1.4 & 105 ĵ) N/C

E1 ! 3.9 & 105 ĵ  N/C

4
5

3
5

! 1.8 & 105 N/C

E2 ! ke  
! q 2 !
r 2 

2 ! (8.99 & 109 N'm2/C2) 
(5.0 & 10"6 C)

(0.50 m)2

! 3.9 & 105 N/C

E1 ! ke  
! q 1 !
r 1 

2 ! (8.99 & 109 N'm2/C2) 
(7.0 & 10"6 C)

(0.40 m)2

A charge q1 ! 7.0 *C is located at the origin, and a second
charge q2 ! " 5.0 *C is located on the x axis, 0.30 m from
the origin (Fig. 23.14). Find the electric field at the point P,
which has coordinates (0, 0.40) m.

0.40 m

P
θ

E

E2

0.50 m

E1

y

θ
x

q2q1
0.30 m

–

φ

+

Figure 23.14 (Example 23.5) The total electric field E at P
equals the vector sum E1 # E2, where E1 is the field due to the
positive charge q1 and E2 is the field due to the negative
charge q2.

This superposition principle applied to fields follows directly from the superposition
property of electric forces, which, in turn, follows from the fact that we know that
forces add as vectors from Chapter 5. Thus, the electric field at point P due to a group
of source charges can be expressed as the vector sum

(23.10)

where ri is the distance from the i th source charge qi to the point P and r̂i is a unit
vector directed from qi toward P.

E ! ke  $ 
i

qi

r i
2   r̂i
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The y components of E1 and E2 cancel each other, and
the x components are both in the positive x direction and
have the same magnitude. Therefore, E is parallel to the
x axis and has a magnitude equal to 2E1 cos +. From
Figure 23.15 we see that cos + ! a/r ! a/(y 2 # a2)1/2.
Therefore,

Because y -- a, we can neglect a2 compared to y2 and write

Thus, we see that, at distances far from a dipole but along
the perpendicular bisector of the line joining the two
charges, the magnitude of the electric field created by the
dipole varies as 1/r 3, whereas the more slowly varying field
of a point charge varies as 1/r 2 (see Eq. 23.9). This is
because at distant points, the fields of the two charges of
equal magnitude and opposite sign almost cancel each
other. The 1/r 3 variation in E for the dipole also is obtained
for a distant point along the x axis (see Problem 22) and for
any general distant point.

The electric dipole is a good model of many mole-
cules, such as hydrochloric acid (HCl). Neutral atoms and
molecules behave as dipoles when placed in an external
electric field. Furthermore, many molecules, such as HCl,
are permanent dipoles. The effect of such dipoles on the
behavior of materials subjected to electric fields is dis-
cussed in Chapter 26.

ke  
2qa
y  3E "

 ! ke  
2qa

(y 
2 # a2)3/2

 E ! 2E1 cos + ! 2ke  
q

(y 
2 # a2)

 
a

(y 
2 # a2)1/2

An electric dipole is defined as a positive charge q and a
negative charge " q separated by a distance 2a. For the dipole
shown in Figure 23.15, find the electric field E at P due to the
dipole, where P is a distance y -- a from the origin.

Solution At P, the fields E1 and E2 due to the two charges
are equal in magnitude because P is equidistant from the
charges. The total field is E ! E1 # E2, where

E1 ! E2 ! ke  
q
r  2 ! ke  

q
y2 # a2

Example 23.6 Electric Field of a Dipole

P E
θ

θ

y

E1

E2
y

r

θ

a
q

θ

a
–q
– x+

Figure 23.15 (Example 23.6) The total electric field E at P due
to two charges of equal magnitude and opposite sign (an elec-
tric dipole) equals the vector sum E1 # E2. The field E1 is due
to the positive charge q, and E2 is the field due to the negative
charge " q.

23.5 Electric Field of a Continuous
Charge Distribution

Very often the distances between charges in a group of charges are much smaller than the
distance from the group to some point of interest (for example, a point where the electric
field is to be calculated). In such situations, the system of charges can be modeled as con-
tinuous. That is, the system of closely spaced charges is equivalent to a total charge that is
continuously distributed along some line, over some surface, or throughout some volume.

To evaluate the electric field created by a continuous charge distribution, we use the
following procedure: first, we divide the charge distribution into small elements, each of
which contains a small charge 0q, as shown in Figure 23.16. Next, we use Equation 23.9
to calculate the electric field due to one of these elements at a point P. Finally, we evalu-
ate the total electric field at P due to the charge distribution by summing the contribu-
tions of all the charge elements (that is, by applying the superposition principle).

The electric field at P due to one charge element carrying charge 0q is

0E ! ke  
0q
r  2   r̂

r

∆q
r̂

P

∆E

Figure 23.16 The electric field at
P due to a continuous charge distri-
bution is the vector sum of the
fields 0E due to all the elements
0q of the charge distribution.



where r is the distance from the charge element to point P and r̂ is a unit vector di-
rected from the element toward P. The total electric field at P due to all elements in
the charge distribution is approximately

where the index i refers to the i th element in the distribution. Because the charge dis-
tribution is modeled as continuous, the total field at P in the limit 0qi : 0 is

(23.11)

where the integration is over the entire charge distribution. This is a vector operation
and must be treated appropriately.

We illustrate this type of calculation with several examples, in which we assume the
charge is uniformly distributed on a line, on a surface, or throughout a volume. When
performing such calculations, it is convenient to use the concept of a charge density
along with the following notations:

• If a charge Q is uniformly distributed throughout a volume V, the volume charge
density 1 is defined by

where 1 has units of coulombs per cubic meter (C/m3).

• If a charge Q is uniformly distributed on a surface of area A, the surface charge
density 2 (lowercase Greek sigma) is defined by

where 2 has units of coulombs per square meter (C/m2).

• If a charge Q is uniformly distributed along a line of length !, the linear charge
density 3 is defined by

where 3 has units of coulombs per meter (C/m).

• If the charge is nonuniformly distributed over a volume, surface, or line, the
amounts of charge dq in a small volume, surface, or length element are

dq ! 1 dV dq ! 2 dA dq ! 3 d!

3 # 
Q
!

2 # 
Q
A

1 # 
Q
V

E ! ke  lim
0qi : 0

 $  

i

0qi

ri
 2   r̂i ! ke % 

dq
r 2   r̂

E " ke  $ 
i

0qi

ri
 2   r̂ i
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P R O B L E M - S O LV I N G  H I N T S

Finding the Electric Field
• Units: in calculations using the Coulomb constant ke (! 1/4()0), charges must

be expressed in coulombs and distances in meters.

• Calculating the electric field of point charges: to find the total electric field at a
given point, first calculate the electric field at the point due to each individual
charge. The resultant field at the point is the vector sum of the fields due to
the individual charges.

• Continuous charge distributions: when you are confronted with problems that
involve a continuous distribution of charge, the vector sums for evaluating the

Volume charge density

Surface charge density

Linear charge density

Electric field due to a
continuous charge distribution



S E C T I O N  2 3 . 5 •  Electric Field of a Continuous Charge Distribution 721

total electric field at some point must be replaced by vector integrals. Divide
the charge distribution into infinitesimal pieces, and calculate the vector sum
by integrating over the entire charge distribution. Examples 23.7 through 23.9
demonstrate this technique.

• Symmetry: with both distributions of point charges and continuous charge dis-
tributions, take advantage of any symmetry in the system to simplify your
calculations.

Example 23.7 The Electric Field Due to a Charged Rod

is particularly simple in this case. The total field at P due to all
segments of the rod, which are at different distances from P,
is given by Equation 23.11, which in this case becomes3

where the limits on the integral extend from one end of the
rod (x ! a) to the other (x ! ! # a). The constants ke and 3
can be removed from the integral to yield

where we have used the fact that the total charge Q ! 3!.

What If? Suppose we move to a point P very far away from
the rod. What is the nature of the electric field at such a point?

Answer If P is far from the rod (a -- !), then ! in the
denominator of the final expression for E can be neglected,
and E " keQ /a2. This is just the form you would expect
for a point charge. Therefore, at large values of a/!, the
charge distribution appears to be a point charge of magni-
tude Q —we are so far away from the rod that we cannot dis-
tinguish that it has a size. The use of the limiting technique
( ) often is a good method for checking a mathe-
matical expression.
a/! : 4

ke Q
a(! # a)

! ke  3 & 1
a

"
1

! # a ' !

E ! ke 3%!#a

a
 

dx
x  2  ! ke 3 ("

1
x )a

!#a

E ! %!#a

a
 ke 3 

dx
x  2

A rod of length ! has a uniform positive charge per unit
length 3 and a total charge Q. Calculate the electric field at
a point P that is located along the long axis of the rod and a
distance a from one end (Fig. 23.17).

Solution Let us assume that the rod is lying along the
x axis, that dx is the length of one small segment, and that
dq is the charge on that segment. Because the rod has a
charge per unit length 3, the charge dq on the small
segment is dq ! 3 dx.

The field d E at P due to this segment is in the negative
x direction (because the source of the field carries a positive
charge), and its magnitude is

Because every other element also produces a field in the neg-
ative x direction, the problem of summing their contributions

dE ! ke  
dq
x 

2 ! ke  
3 dx
x  2

3 It is important that you understand how to carry out integrations such as this. First, express the
charge element dq in terms of the other variables in the integral. (In this example, there is one vari-
able, x, and so we made the change dq ! 3 dx.) The integral must be over scalar quantities; therefore,
you must express the electric field in terms of components, if necessary. (In this example the field has
only an x component, so we do not bother with this detail.) Then, reduce your expression to an inte-
gral over a single variable (or to multiple integrals, each over a single variable). In examples that have
spherical or cylindrical symmetry, the single variable will be a radial coordinate.

x

y

!
a

P
x

dx
dq =   dx

E

3

Figure 23.17 (Example 23.7) The electric field at P due to a
uniformly charged rod lying along the x axis. The magnitude of
the field at P due to the segment of charge dq is kedq/x2. The
total field at P is the vector sum over all segments of the rod.

This field has an x component dEx ! dE cos + along the x
axis and a component dE⊥ perpendicular to the x axis. As
we see in Figure 23.18b, however, the resultant field at P
must lie along the x axis because the perpendicular com-

d E ! ke  
dq
r  2

A ring of radius a carries a uniformly distributed positive
total charge Q. Calculate the electric field due to the ring at
a point P lying a distance x from its center along the central
axis perpendicular to the plane of the ring (Fig. 23.18a).

Solution The magnitude of the electric field at P due to
the segment of charge dq is

Example 23.8 The Electric Field of a Uniform Ring of Charge
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This result shows that the field is zero at x = 0. Does this
finding surprise you?

What If? Suppose a negative charge is placed at the center
of the ring in Figure 23.18 and displaced slightly by a
distance x !! a along the x axis. When released, what type of
motion does it exhibit?

Answer In the expression for the field due to a ring of
charge, we let x 55 a, which results in

Thus, from Equation 23.8, the force on a charge " q placed
near the center of the ring is

Because this force has the form of Hooke’s law (Eq. 15.1),
the motion will be simple harmonic !

Fx ! "
ke qQ

a3  x

Ex !
ke Q
a3  x

ponents of all the various charge segments sum to zero.
That is, the perpendicular component of the field created
by any charge element is canceled by the perpendicular
component created by an element on the opposite side of
the ring. Because r ! (x 2 # a2)1/2 and cos + ! x/r, we find
that

All segments of the ring make the same contribution
to the field at P because they are all equidistant from
this point. Thus, we can integrate to obtain the total field
at P :

ke x
(x2 # a 

2)3/2
  Q!

Ex ! % 
ke x

(x 
2 # a 

2)3/2   dq !
ke x

(x 
2 # a 

2)3/2  % dq 

d Ex ! d E cos + ! &ke  
dq
r  2 ' 

x
r

!
ke x

(x2 # a2)3/2   dq

(a)

+ +

+

+

+
+

+

+
+ +

++
++

++

θ P dEx

dEdE⊥

x

r

dq

a

(b)

+ +

+

+

+
+

+

+
+

+

++

+
+ +

+

θ

dE2

1

dE1

2

Figure 23.18 (Example 23.8) A uniformly charged ring of radius a. (a) The field at P
on the x axis due to an element of charge dq. (b) The total electric field at P is along
the x axis. The perpendicular component of the field at P due to segment 1 is canceled
by the perpendicular component due to segment 2.

Example 23.9 The Electric Field of a Uniformly Charged Disk

A disk of radius R has a uniform surface charge density 2.
Calculate the electric field at a point P that lies along the
central perpendicular axis of the disk and a distance x from
the center of the disk (Fig. 23.19).

Solution If we consider the disk as a set of concentric rings,
we can use our result from Example 23.8—which gives the
field created by a ring of radius a—and sum the contribu-
tions of all rings making up the disk. By symmetry, the field
at an axial point must be along the central axis.

The ring of radius r and width dr shown in Figure 23.19
has a surface area equal to 2(r dr. The charge dq on this
ring is equal to the area of the ring multiplied by the surface
charge density: dq ! 2(2r dr. Using this result in the equa-
tion given for Ex in Example 23.8 (with a replaced by r), we
have for the field due to the ring

d Ex !
ke x

(x2 # r 2)3/2  (2(2r dr) To obtain the total field at P, we integrate this expression
over the limits r ! 0 to r ! R, noting that x is a constant.

P
x

r

R

dq

dr

Figure 23.19 (Example 23.9) A uniformly charged disk of ra-
dius R. The electric field at an axial point P is directed along
the central axis, perpendicular to the plane of the disk.
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This gives

2(ke 2  &1 "
x

(x 
2 # R2)1/2 '!  

 ! ke x(2  ( (x2 # r 2)"1/2

"1/2 )
0

R
 

 ! ke x(2 %R

0
 (x 

2 # r  
2)"3/2 d(r  

 
2)

Ex ! ke x(2 %R

0
 

2r dr
(x 2 # r 2)3/2

This result is valid for all values of x - 0. We can calculate
the field close to the disk along the axis by assuming that
R -- x ; thus, the expression in parentheses reduces to unity
to give us the near-field approximation:

where )0 is the permittivity of free space. In the next chapter
we shall obtain the same result for the field created by a
uniformly charged infinite sheet. 

Ex ! 2(ke 2 !
2

2)0

23.6 Electric Field Lines

We have defined the electric field mathematically through Equation 23.7. We now explore
a means of representing the electric field pictorially. A convenient way of visualizing
electric field patterns is to draw curved lines that are parallel to the electric field vector at
any point in space. These lines, called electric field lines and first introduced by Faraday, are
related to the electric field in a region of space in the following manner:

• The electric field vector E is tangent to the electric field line at each point. The
line has a direction, indicated by an arrowhead, that is the same as that of the
electric field vector.

• The number of lines per unit area through a surface perpendicular to the lines is
proportional to the magnitude of the electric field in that region. Thus, the field
lines are close together where the electric field is strong and far apart where the
field is weak.

These properties are illustrated in Figure 23.20. The density of lines through
surface A is greater than the density of lines through surface B. Therefore, the magni-
tude of the electric field is larger on surface A than on surface B. Furthermore, the fact
that the lines at different locations point in different directions indicates that the field
is nonuniform.

Is this relationship between strength of the electric field and the density of field
lines consistent with Equation 23.9, the expression we obtained for E using Coulomb’s
law? To answer this question, consider an imaginary spherical surface of radius r con-
centric with a point charge. From symmetry, we see that the magnitude of the electric
field is the same everywhere on the surface of the sphere. The number of lines N that
emerge from the charge is equal to the number that penetrate the spherical surface.
Hence, the number of lines per unit area on the sphere is N/4(r 2 (where the surface
area of the sphere is 4(r 2). Because E is proportional to the number of lines per unit
area, we see that E varies as 1/r 2; this finding is consistent with Equation 23.9.

Representative electric field lines for the field due to a single positive point charge
are shown in Figure 23.21a. This two-dimensional drawing shows only the field lines
that lie in the plane containing the point charge. The lines are actually directed radially
outward from the charge in all directions; thus, instead of the flat “wheel’’ of lines
shown, you should picture an entire spherical distribution of lines. Because a positive
test charge placed in this field would be repelled by the positive source charge, the lines
are directed radially away from the source charge. The electric field lines representing
the field due to a single negative point charge are directed toward the charge (Fig.
23.21b). In either case, the lines are along the radial direction and extend all the way to
infinity. Note that the lines become closer together as they approach the charge; this in-
dicates that the strength of the field increases as we move toward the source charge.

B
A

Figure 23.20 Electric field lines
penetrating two surfaces. The mag-
nitude of the field is greater on sur-
face A than on surface B.

! PITFALL PREVENTION 
23.2 Electric Field Lines

are not Paths of
Particles!

Electric field lines represent the
field at various locations. Except
in very special cases, they do not
represent the path of a charged
particle moving in an electric
field.



724 C H A P T E R  2 3 •  Electric Fields

The rules for drawing electric field lines are as follows:

• The lines must begin on a positive charge and terminate on a negative charge.
In the case of an excess of one type of charge, some lines will begin or end infi-
nitely far away.

• The number of lines drawn leaving a positive charge or approaching a negative
charge is proportional to the magnitude of the charge.

• No two field lines can cross.

We choose the number of field lines starting from any positively charged object to
be Cq and the number of lines ending on any negatively charged object to be C !q !,
where C is an arbitrary proportionality constant. Once C is chosen, the number of lines
is fixed. For example, if object 1 has charge Q 1 and object 2 has charge Q 2, then the
ratio of number of lines is N2/N1 ! Q 2/Q 1. The electric field lines for two point
charges of equal magnitude but opposite signs (an electric dipole) are shown in Figure
23.22. Because the charges are of equal magnitude, the number of lines that begin at
the positive charge must equal the number that terminate at the negative charge. At
points very near the charges, the lines are nearly radial. The high density of lines
between the charges indicates a region of strong electric field.

(a)

+ –

! PITFALL PREVENTION 
23.3 Electric Field Lines

are not Real
Electric field lines are not mater-
ial objects. They are used only as
a pictorial representation to
provide a qualitative description
of the electric field. Only a finite
number of lines from each
charge can be drawn, which
makes it appear as if the field
were quantized and exists only in
certain parts of space. The field,
in fact, is continuous—existing at
every point. You should avoid ob-
taining the wrong impression
from a two-dimensional drawing
of field lines used to describe a
three-dimensional situation.

(b)

Figure 23.22 (a) The electric field lines for two point charges of equal magnitude and
opposite sign (an electric dipole). The number of lines leaving the positive charge
equals the number terminating at the negative charge. (b) The dark lines are small
pieces of thread suspended in oil, which align with the electric field of a dipole. 
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q
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–q
+ –

Figure 23.21 The electric field lines for a point charge. (a) For a positive point charge,
the lines are directed radially outward. (b) For a negative point charge, the lines are di-
rected radially inward. Note that the figures show only those field lines that lie in the
plane of the page. (c) The dark areas are small pieces of thread suspended in oil, which
align with the electric field produced by a small charged conductor at the center. 
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Figure 23.23 shows the electric field lines in the vicinity of two equal positive point
charges. Again, the lines are nearly radial at points close to either charge, and the
same number of lines emerge from each charge because the charges are equal in mag-
nitude. At great distances from the charges, the field is approximately equal to that of
a single point charge of magnitude 2q.

Finally, in Figure 23.24 we sketch the electric field lines associated with a positive
charge # 2q and a negative charge " q. In this case, the number of lines leaving # 2q is
twice the number terminating at " q. Hence, only half of the lines that leave the posi-
tive charge reach the negative charge. The remaining half terminate on a negative
charge we assume to be at infinity. At distances that are much greater than the charge
separation, the electric field lines are equivalent to those of a single charge # q.

(a)

+ +
C

A

B

(b)

Figure 23.23 (a) The electric field lines for two positive point charges. (The locations
A, B, and C are discussed in Quick Quiz 23.7.) (b) Pieces of thread suspended in oil,
which align with the electric field created by two equal-magnitude positive charges.
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Active Figure 23.24 The electric
field lines for a point charge # 2q
and a second point charge " q.
Note that two lines leave # 2q for
every one that terminates on " q.

At the Active Figures link
at http://www.pse6.com, you
can choose the values and
signs for the two charges and
observe the electric field lines
for the configuration that you
have chosen.

Quick Quiz 23.7 Rank the magnitudes of the electric field at points A, B,
and C shown in Figure 23.23a (greatest magnitude first).

Quick Quiz 23.8 Which of the following statements about electric field lines
associated with electric charges is false? (a) Electric field lines can be either straight or
curved. (b) Electric field lines can form closed loops. (c) Electric field lines begin on
positive charges and end on negative charges. (d) Electric field lines can never inter-
sect with one another.

23.7 Motion of Charged Particles in a Uniform
Electric Field

When a particle of charge q and mass m is placed in an electric field E, the electric
force exerted on the charge is q E according to Equation 23.8. If this is the only force
exerted on the particle, it must be the net force and causes the particle to accelerate
according to Newton’s second law. Thus,

The acceleration of the particle is therefore

(23.12)

If E is uniform (that is, constant in magnitude and direction), then the acceleration is
constant. If the particle has a positive charge, its acceleration is in the direction of the

a !
qE
m

Fe ! q E ! ma
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electric field. If the particle has a negative charge, its acceleration is in the direction
opposite the electric field.

Example 23.10 An Accelerating Positive Charge

from which we can find the kinetic energy of the charge 
after it has moved a distance 0x ! xf " xi :

We can also obtain this result from the work–kinetic energy
theorem because the work done by the electric force is 
Fe 0x ! qE0x and W ! 0K.

K ! 1
2mvf 

2 ! 1
2m  & 2q E

m ' 0x ! q E 0x

A positive point charge q of mass m is released from rest in a
uniform electric field E directed along the x axis, as shown
in Figure 23.25. Describe its motion.

Solution The acceleration is constant and is given by
qE/m. The motion is simple linear motion along the x axis.
Therefore, we can apply the equations of kinematics in one
dimension (see Chapter 2):

Choosing the initial position of the charge as xi ! 0 and
assigning vi ! 0 because the particle starts from rest, the
position of the particle as a function of time is

The speed of the particle is given by

The third kinematic equation gives us

v 2
f ! 2axf ! & 2q E

m ' xf

vf ! at !
q E
m

  t

x f ! 1
2at 

2 !
q E
2m

 t 
2

vf
2 ! v 2

i # 2a(xf " xi)

 vf ! vi # at

 xf ! xi # vit # 1
2at2

–

–

–

–

–

–

+

+

+

+

+

+

E

vv = 0

q

x

+ +

Figure 23.25 (Example 23.10) A positive point charge q in a
uniform electric field E undergoes constant acceleration in the
direction of the field.

The electric field in the region between two oppositely charged flat metallic plates
is approximately uniform (Fig. 23.26). Suppose an electron of charge " e is projected
horizontally into this field from the origin with an initial velocity vi î at time t ! 0.
Because the electric field E in Figure 23.26 is in the positive y direction, the accelera-
tion of the electron is in the negative y direction. That is,

(23.13)

Because the acceleration is constant, we can apply the equations of kinematics in two
dimensions (see Chapter 4) with vxi ! vi and vyi ! 0. After the electron has been in the

a ! "
e E
me

  ĵ

(0, 0)

!

E

–

(x, y)

–
v

x

y– – – – – – – – – – – –

+ + + + + + + + + + + +

vi î

Active Figure 23.26 An electron is
projected horizontally into a uniform
electric field produced by two
charged plates. The electron under-
goes a downward acceleration (oppo-
site E), and its motion is parabolic
while it is between the plates.

At the Active Figures link
at http://www.pse6.com, you
can choose the strength of the
electric field and the mass and
charge of the projected
particle.
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electric field for a time interval, the components of its velocity at time t are

(23.14)

(23.15)

Its position coordinates at time t are

(23.16)

(23.17)

Substituting the value t ! xf/vi from Equation 23.16 into Equation 23.17, we see that yf
is proportional to xf

2. Hence, the trajectory is a parabola. This should not be a 
surprise—consider the analogous situation of throwing a ball horizontally in a uniform
gravitational field (Chapter 4). After the electron leaves the field, the electric force 
vanishes and the electron continues to move in a straight line in the direction of v in
Figure 23.26 with a speed v - vi .

Note that we have neglected the gravitational force acting on the electron. This is a
good approximation when we are dealing with atomic particles. For an electric field of
104 N/C, the ratio of the magnitude of the electric force eE to the magnitude of the
gravitational force mg is on the order of 1014 for an electron and on the order of 1011

for a proton.

yf ! 1
2ayt2 ! "1

2 
e E
me

 t2

xf ! vi t

vy ! ayt ! "
eE
me

 t

vx ! vi ! constant 

! PITFALL PREVENTION 
23.4 Just Another Force
Electric forces and fields may
seem abstract to you. However,
once Fe is evaluated, it causes a
particle to move according to our
well-established understanding of
forces and motion from Chapters
5 and 6. Keeping this link with
the past in mind will help you
solve problems in this chapter.

Solution The horizontal distance across the field is ! !
0.100 m. Using Equation 23.16 with xf ! !, we find that the
time at which the electron exits the electric field is

(C) If the vertical position of the electron as it enters the field
is yi ! 0, what is its vertical position when it leaves the field?

Solution Using Equation 23.17 and the results from parts
(A) and (B), we find that

If the electron enters just below the negative plate in Figure
23.26 and the separation between the plates is less than the
value we have just calculated, the electron will strike the pos-
itive plate.

"1.95 cm! "0.019 5 m !

yf ! 1
2ayt  

2 ! "1
2(3.51 & 1013 m/s2)(3.33 & 10"8 s)2

 3.33 & 10"8 st !
!

vi
!

0.100 m
3.00 & 106 m/s

!

An electron enters the region of a uniform electric field
as shown in Figure 23.26, with vi ! 3.00 & 106 m/s and 
E ! 200 N/C. The horizontal length of the plates is
! ! 0.100 m.

(A) Find the acceleration of the electron while it is in the
electric field.

Solution The charge on the electron has an absolute value
of 1.60 & 10"19 C, and me ! 9.11 & 10"31 kg. Therefore,
Equation 23.13 gives

(B) If the electron enters the field at time t ! 0, find the
time at which it leaves the field.

"3.51 & 1013 ĵ m/s2!

a ! "
e E
me

  ĵ ! "
(1.60 & 10"19 C)(200 N/C)

9.11 & 10"31 kg
  ĵ

Example 23.11 An Accelerated Electron

At the Interactive Worked Example link at http://www.pse6.com, you can predict the required initial velocity for the exiting
electron to just miss the right edge of the lower plate, for random values of the electric field.

The Cathode Ray Tube

The example we just worked describes a portion of a cathode ray tube (CRT). This
tube, illustrated in Figure 23.27, is commonly used to obtain a visual display of elec-
tronic information in oscilloscopes, radar systems, television receivers, and computer
monitors. The CRT is a vacuum tube in which a beam of electrons is accelerated
and deflected under the influence of electric or magnetic fields. The electron beam is

Interactive
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produced by an assembly called an electron gun located in the neck of the tube. These
electrons, if left undisturbed, travel in a straight-line path until they strike the front of
the CRT, the “screen,’’ which is coated with a material that emits visible light when
bombarded with electrons.

In an oscilloscope, the electrons are deflected in various directions by two sets of
plates placed at right angles to each other in the neck of the tube. (A television CRT
steers the beam with a magnetic field, as discussed in Chapter 29.) An external electric
circuit is used to control the amount of charge present on the plates. The placing of
positive charge on one horizontal plate and negative charge on the other creates an
electric field between the plates and allows the beam to be steered from side to side.
The vertical deflection plates act in the same way, except that changing the charge on
them deflects the beam vertically.

Electron
gun

Vertical
deflection

plates

Horizontal
deflection

plates

Electron
beam

Fluorescent
screen

Horizontal
input

Vertical
input

C A
Figure 23.27 Schematic diagram of a
cathode ray tube. Electrons leaving the
cathode C are accelerated to the anode A.
In addition to accelerating electrons, the
electron gun is also used to focus the beam
of electrons, and the plates deflect the
beam.

Electric charges have the following important properties:

• Charges of opposite sign attract one another and charges of the same sign repel
one another.

• Total charge in an isolated system is conserved.

• Charge is quantized.

Conductors are materials in which electrons move freely. Insulators are materials
in which electrons do not move freely.

Coulomb’s law states that the electric force exerted by a charge q1 on a second
charge q2 is

(23.6)

where r is the distance between the two charges and r̂ is a unit vector directed from q1
toward q2. The constant ke , which is called the Coulomb constant, has the value
ke ! 8.99 & 109 N ' m2/C2.

The smallest unit of free charge e known to exist in nature is the charge on an
electron (" e) or proton (# e), where e ! 1.602 19 & 10"19 C.

The electric field E at some point in space is defined as the electric force Fe that
acts on a small positive test charge placed at that point divided by the magnitude q0 of
the test charge:

(23.7)

Thus, the electric force on a charge q placed in an electric field E is given by

(23.8)Fe ! qE

E #  
Fe

q  
0

 

F12 ! ke  
q 1q 2

r  
 
2   r̂

S U M M A RY

Take a practice test for
this chapter by clicking on
the Practice Test link at
http://www.pse6.com.
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At a distance r from a point charge q, the electric field due to the charge is given by

(23.9)

where r̂ is a unit vector directed from the charge toward the point in question. The
electric field is directed radially outward from a positive charge and radially inward
toward a negative charge.

The electric field due to a group of point charges can be obtained by using the su-
perposition principle. That is, the total electric field at some point equals the vector
sum of the electric fields of all the charges:

(23.10)

The electric field at some point due to a continuous charge distribution is

(23.11)

where dq is the charge on one element of the charge distribution and r is the distance
from the element to the point in question.

Electric field lines describe an electric field in any region of space. The number
of lines per unit area through a surface perpendicular to the lines is proportional to
the magnitude of E in that region.

A charged particle of mass m and charge q moving in an electric field E has an
acceleration

(23.12)a !
q E
m

E ! ke % 
dq
r  

 2  
 
r̂

E ! ke   $ 
i

qi

r 
i

2   r̂i

E ! ke  
q

r  2   r̂

1. Explain what is meant by the term “a neutral atom.’’
Explain what “a negatively charged atom’’ means.

2. A charged comb often attracts small bits of dry paper that
then fly away when they touch the comb. Explain.

3. Sparks are often seen or heard on a dry day when fabrics
are removed from a clothes dryer in dim light. Explain.

4. Hospital personnel must wear special conducting shoes
while working around oxygen in an operating room. Why?
Contrast with what might happen if people wore rubber-
soled shoes.

5. Explain from an atomic viewpoint why charge is usually
transferred by electrons.

6. A light, uncharged metallic sphere suspended from a
thread is attracted to a charged rubber rod. After it
touches the rod, the sphere is repelled by the rod. Explain.

7. A foreign student who grew up in a tropical country but is
studying in the United States may have had no experience
with static electricity sparks or shocks until he or she first
experiences an American winter. Explain.

8. Explain the similarities and differences between Newton’s
law of universal gravitation and Coulomb’s law.

A balloon is negatively charged by rubbing and then clings
to a wall. Does this mean that the wall is positively
charged? Why does the balloon eventually fall?

9.

10. A light strip of aluminum foil is draped over a horizontal
wooden pencil. When a rod carrying a positive charge is
brought close to the foil, the two parts of the foil stand
apart. Why? What kind of charge is on the foil?

11. When defining the electric field, why is it necessary to
specify that the magnitude of the test charge be very small?

12. How could you experimentally distinguish an electric field
from a gravitational field?

13. A large metallic sphere insulated from ground is charged
with an electrostatic generator while a student standing on
an insulating stool holds the sphere. Why is it safe to do
this? Why would it not be safe for another person to touch
the sphere after it had been charged?

14. Is it possible for an electric field to exist in empty space?
Explain. Consider point A in Figure 23.23(a). Does charge
exist at this point? Does a force exist at this point? Does a
field exist at this point?

15. When is it valid to approximate a charge distribution by a
point charge?

16. Explain why electric field lines never cross. Suggestion:
Begin by explaining why the electric field at a particular
point must have only one direction.

17. Figures 23.14 and 23.15 show three electric field vectors
at the same point. With a little extrapolation, Figure

Q U E S T I O N S
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23.21 would show many electric field lines at the
same point. Is it really true that “no two field lines can
cross’’? Are the diagrams drawn correctly? Explain your
answers.

18. A free electron and a free proton are released in identical
electric fields. Compare the electric forces on the two par-
ticles. Compare their accelerations.

19. Explain what happens to the magnitude of the electric
field created by a point charge as r approaches zero.

20. An object with negative charge is placed in a region of
space where the electric field is directed vertically upward.
What is the direction of the electric force exerted on this
charge?

21. A charge 4q is at a distance r from a charge " q. Compare
the number of electric field lines leaving the charge 4q
with the number entering the charge " q. Where do the
extra lines beginning on 4q end?

22. Consider two equal point charges separated by some
distance d. At what point (other than 4) would a third test
charge experience no net force?

23. Explain the differences between linear, surface, and
volume charge densities, and give examples of when each
would be used.

24. If the electron in Figure 23.26 is projected into the electric
field with an arbitrary velocity vi (at an arbitrary angle to
E), will its trajectory still be parabolic? Explain.

Would life be different if the electron were positively
charged and the proton were negatively charged? Does the
choice of signs have any bearing on physical and chemical
interactions? Explain.

26. Why should a ground wire be connected to the metal
support rod for a television antenna?

27. Suppose someone proposes the idea that people are
bound to the Earth by electric forces rather than by grav-
ity. How could you prove this idea is wrong?

28. Consider two electric dipoles in empty space. Each dipole
has zero net charge. Does an electric force exist between
the dipoles—that is, can two objects with zero net charge
exert electric forces on each other? If so, is the force one
of attraction or of repulsion?

25.

Section 23.1 Properties of Electric Charges
1. (a) Find to three significant digits the charge and the mass

of an ionized hydrogen atom, represented as H#. Sugges-
tion: Begin by looking up the mass of a neutral atom on
the periodic table of the elements. (b) Find the charge
and the mass of Na#, a singly ionized sodium atom.
(c) Find the charge and the average mass of a chloride ion
Cl" that joins with the Na# to make one molecule of table
salt. (d) Find the charge and the mass of Ca## ! Ca2#, a
doubly ionized calcium atom. (e) You can model the
center of an ammonia molecule as an N3" ion. Find its
charge and mass. (f) The plasma in a hot star contains
quadruply ionized nitrogen atoms, N4#. Find their charge
and mass. (g) Find the charge and the mass of the nucleus
of a nitrogen atom. (h) Find the charge and the mass of
the molecular ion H2O".

2. (a) Calculate the number of electrons in a small, electri-
cally neutral silver pin that has a mass of 10.0 g. Silver has
47 electrons per atom, and its molar mass is 107.87 g/mol.
(b) Electrons are added to the pin until the net negative
charge is 1.00 mC. How many electrons are added for
every 109 electrons already present?

Section 23.2 Charging Objects by Induction
Section 23.3 Coulomb’s Law

The Nobel laureate Richard Feynman once said that
if two persons stood at arm’s length from each other and
each person had 1% more electrons than protons, the

3.

force of repulsion between them would be enough to lift
a “weight’’ equal to that of the entire Earth. Carry out an
order-of-magnitude calculation to substantiate this
assertion.

4. Two protons in an atomic nucleus are typically separated
by a distance of 2 & 10"15 m. The electric repulsion force
between the protons is huge, but the attractive nuclear
force is even stronger and keeps the nucleus from bursting
apart. What is the magnitude of the electric force between
two protons separated by 2.00 & 10"15 m?

5. (a) Two protons in a molecule are separated by 3.80 &
10"10 m. Find the electric force exerted by one proton on
the other. (b) How does the magnitude of this force com-
pare to the magnitude of the gravitational force between
the two protons? (c) What If? What must be the charge-
to-mass ratio of a particle if the magnitude of the gravita-
tional force between two of these particles equals the
magnitude of electric force between them?

6. Two small silver spheres, each with a mass of 10.0 g, are
separated by 1.00 m. Calculate the fraction of the electrons
in one sphere that must be transferred to the other in
order to produce an attractive force of 1.00 & 104 N
(about 1 ton) between the spheres. (The number of
electrons per atom of silver is 47, and the number of atoms
per gram is Avogadro’s number divided by the molar mass
of silver, 107.87 g/mol.)

Three point charges are located at the corners of an equi-
lateral triangle as shown in Figure P23.7. Calculate the re-
sultant electric force on the 7.00-*C charge.

7.

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide

= coached solution with hints available at http://www.pse6.com = computer useful in solving problem

= paired numerical and symbolic problems

P R O B L E M S
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8. Suppose that 1.00 g of hydrogen is separated into elec-
trons and protons. Suppose also that the protons are
placed at the Earth’s north pole and the electrons are
placed at the south pole. What is the resulting compres-
sional force on the Earth?

9. Two identical conducting small spheres are placed with their
centers 0.300 m apart. One is given a charge of 12.0 nC
and the other a charge of " 18.0 nC. (a) Find the electric
force exerted by one sphere on the other. (b) What If?
The spheres are connected by a conducting wire. Find
the electric force between the two after they have come to
equilibrium.

10. Two small beads having positive charges 3q and q are fixed
at the opposite ends of a horizontal, insulating rod, ex-
tending from the origin to the point x ! d. As shown in
Figure P23.10, a third small charged bead is free to slide
on the rod. At what position is the third bead in equilib-
rium? Can it be in stable equilibrium?

Section 23.4 The Electric Field
What are the magnitude and direction of the electric field
that will balance the weight of (a) an electron and (b) a
proton? (Use the data in Table 23.1.)

14. An object having a net charge of 24.0 *C is placed in a uni-
form electric field of 610 N/C directed vertically. What is
the mass of this object if it “floats’’ in the field?

15. In Figure P23.15, determine the point (other than infin-
ity) at which the electric field is zero.

13.

Figure P23.7 Problems 7 and 18.

0.50 m

7.00   C

–4.00   C

60°
x

y

+

+ –

µ

µ2.00   Cµ

d

+3q +q

Figure P23.10

11. Review problem. In the Bohr theory of the hydrogen
atom, an electron moves in a circular orbit about a proton,
where the radius of the orbit is 0.529 & 10"10 m. (a) Find
the electric force between the two. (b) If this force causes
the centripetal acceleration of the electron, what is the
speed of the electron?

12. Review problem. Two identical particles, each having
charge # q, are fixed in space and separated by a distance
d. A third point charge " Q is free to move and lies initially
at rest on the perpendicular bisector of the two fixed
charges a distance x from the midpoint between the two
fixed charges (Fig. P23.12). (a) Show that if x is small com-
pared with d, the motion of " Q will be simple harmonic
along the perpendicular bisector. Determine the period of
that motion. (b) How fast will the charge " Q be moving
when it is at the midpoint between the two fixed charges,
if initially it is released at a distance a 55 d from the
midpoint?

Figure P23.12

+q

+q
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–2.50 µC 6.00 µCµ µ
Figure P23.15

16. An airplane is flying through a thundercloud at a height of
2 000 m. (This is a very dangerous thing to do because of
updrafts, turbulence, and the possibility of electric dis-
charge.) If a charge concentration of # 40.0 C is above the
plane at a height of 3 000 m within the cloud and a charge
concentration of " 40.0 C is at height 1 000 m, what is the
electric field at the aircraft?

17. Two point charges are located on the x axis. The first is
a charge # Q at x ! " a. The second is an unknown
charge located at x ! # 3a. The net electric field these
charges produce at the origin has a magnitude of
2keQ /a2. What are the two possible values of the
unknown charge?

18. Three charges are at the corners of an equilateral triangle
as shown in Figure P23.7. (a) Calculate the electric field at
the position of the 2.00-*C charge due to the 7.00-*C and
" 4.00-*C charges. (b) Use your answer to part (a) to de-
termine the force on the 2.00-*C charge.

19. Three point charges are arranged as shown in Figure
P23.19. (a) Find the vector electric field that the 6.00-nC
and " 3.00-nC charges together create at the origin.
(b) Find the vector force on the 5.00-nC charge.
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20. Two 2.00-*C point charges are located on the x axis. One
is at x ! 1.00 m, and the other is at x ! " 1.00 m. (a) De-
termine the electric field on the y axis at y ! 0.500 m.
(b) Calculate the electric force on a " 3.00-*C charge
placed on the y axis at y ! 0.500 m.

21. Four point charges are at the corners of a square of side a
as shown in Figure P23.21. (a) Determine the magnitude
and direction of the electric field at the location of charge
q. (b) What is the resultant force on q?

24. Consider an infinite number of identical charges (each of
charge q) placed along the x axis at distances a, 2a, 3a,
4a, . . . , from the origin. What is the electric field at the
origin due to this distribution? Suggestion: Use the fact that

Section 23.5 Electric Field of a Continuous 
Charge Distribution

25. A rod 14.0 cm long is uniformly charged and has a total
charge of " 22.0 *C. Determine the magnitude and direc-
tion of the electric field along the axis of the rod at a point
36.0 cm from its center.

26. A continuous line of charge lies along the x axis, extend-
ing from x ! # x 0 to positive infinity. The line carries
charge with a uniform linear charge density 30. What are
the magnitude and direction of the electric field at the
origin?

A uniformly charged ring of radius 10.0 cm has a total
charge of 75.0 *C. Find the electric field on the axis of
the ring at (a) 1.00 cm, (b) 5.00 cm, (c) 30.0 cm, and
(d) 100 cm from the center of the ring.

28. A line of charge starts at x ! # x0 and extends to positive
infinity. The linear charge density is 3 ! 30x0/x. Deter-
mine the electric field at the origin.

29. Show that the maximum magnitude Emax of the electric
field along the axis of a uniformly charged ring occurs at

(see Fig. 23.18) and has the value 

30. A uniformly charged disk of radius 35.0 cm carries charge
with a density of 7.90 & 10" 3 C/m2. Calculate the electric
field on the axis of the disk at (a) 5.00 cm, (b) 10.0 cm,
(c) 50.0 cm, and (d) 200 cm from the center of the disk.

31. Example 23.9 derives the exact expression for the electric
field at a point on the axis of a uniformly charged disk.
Consider a disk, of radius R ! 3.00 cm, having a uniformly
distributed charge of # 5.20 *C. (a) Using the result of Ex-
ample 23.9, compute the electric field at a point on the
axis and 3.00 mm from the center. What If? Compare this
answer with the field computed from the near-field ap-
proximation E ! 2/2)0. (b) Using the result of Example
23.9, compute the electric field at a point on the axis and
30.0 cm from the center of the disk. What If? Compare
this with the electric field obtained by treating the disk as a
# 5.20-*C point charge at a distance of 30.0 cm.

32. The electric field along the axis of a uniformly charged
disk of radius R and total charge Q was calculated in Exam-
ple 23.9. Show that the electric field at distances x that are
large compared with R approaches that of a point charge
Q ! 2(R2. (Suggestion: First show that x/(x2 # R2)1/2 !
(1 # R2/x2)"1/2 and use the binomial expansion 
(1 # 6)n " 1 # n6 when 6 55 1.)

A uniformly charged insulating rod of length 14.0 cm
is bent into the shape of a semicircle as shown in Figure
P23.33. The rod has a total charge of " 7.50 *C. Find the
magnitude and direction of the electric field at O, the
center of the semicircle.

33.

Q /(6√3()0a 
2).x ! a/√2

27.

1 #
1
22 #

1
32 #

1
42 # ' ' ' !

(2

6

Figure P23.21

Figure P23.22
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Figure P23.19
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22. Consider the electric dipole shown in Figure P23.22. Show
that the electric field at a distant point on the # x axis is
Ex " 4ke qa/x 3.

23. Consider n equal positive point charges each of magnitude
Q /n placed symmetrically around a circle of radius R .
(a) Calculate the magnitude of the electric field at a point
a distance x on the line passing through the center of the
circle and perpendicular to the plane of the circle. 
(b) Explain why this result is identical to that of the calcu-
lation done in Example 23.8.
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34. (a) Consider a uniformly charged thin-walled right circu-
lar cylindrical shell having total charge Q , radius R , and
height h. Determine the electric field at a point a distance
d from the right side of the cylinder as shown in Figure
P23.34. (Suggestion: Use the result of Example 23.8 and
treat the cylinder as a collection of ring charges.) (b) What
If? Consider now a solid cylinder with the same dimen-
sions and carrying the same charge, uniformly distributed
through its volume. Use the result of Example 23.9 to find
the field it creates at the same point.

36. Three solid plastic cylinders all have radius 2.50 cm and
length 6.00 cm. One (a) carries charge with uniform den-
sity 15.0 nC/m2 everywhere on its surface. Another
(b) carries charge with the same uniform density on its
curved lateral surface only. The third (c) carries charge
with uniform density 500 nC/m3 throughout the plastic.
Find the charge of each cylinder.

37. Eight solid plastic cubes, each 3.00 cm on each edge, are
glued together to form each one of the objects (i, ii, iii, and
iv) shown in Figure P23.37. (a) Assuming each object carries
charge with uniform density 400 nC/m3 throughout its
volume, find the charge of each object. (b) Assuming each
object carries charge with uniform density 15.0 nC/m2

everywhere on its exposed surface, find the charge on each
object. (c) Assuming charge is placed only on the edges
where perpendicular surfaces meet, with uniform density
80.0 pC/m, find the charge of each object.

Figure P23.33

Figure P23.34

Figure P23.35
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A thin rod of length ! and uniform charge per unit length
3 lies along the x axis, as shown in Figure P23.35. (a) Show
that the electric field at P, a distance y from the rod along
its perpendicular bisector, has no x component and is
given by E ! 2ke 3 sin +0/y. (b) What If? Using your result
to part (a), show that the field of a rod of infinite length is
E ! 2ke 3/y. (Suggestion: First calculate the field at P due to
an element of length dx, which has a charge 3 dx. Then
change variables from x to +, using the relationships x !
y tan + and dx ! y sec2 + d+, and integrate over +.)

35.

Figure P23.37

(i) (ii) (iii) (iv)

Section 23.6 Electric Field Lines
38. A positively charged disk has a uniform charge per unit

area as described in Example 23.9. Sketch the electric field
lines in a plane perpendicular to the plane of the disk
passing through its center.

A negatively charged rod of finite length carries charge
with a uniform charge per unit length. Sketch the electric
field lines in a plane containing the rod.

40. Figure P23.40 shows the electric field lines for two point
charges separated by a small distance. (a) Determine the
ratio q1/q2. (b) What are the signs of q1 and q2?

39.

q2

q1

Figure P23.40
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Three equal positive charges q are at the corners of an
equilateral triangle of side a as shown in Figure P23.41.
(a) Assume that the three charges together create an electric
field. Sketch the field lines in the plane of the charges. Find
the location of a point (other than 4) where the electric
field is zero. (b) What are the magnitude and direction of
the electric field at P due to the two charges at the base?

41. and with a positive charge of 1.00 & 10"6 C leaves the
center of the bottom negative plate with an initial speed of
1.00 & 105 m/s at an angle of 37.0° above the horizontal.
Describe the trajectory of the particle. Which plate does it
strike? Where does it strike, relative to its starting point?

49. Protons are projected with an initial speed vi ! 9.55 &
103 m/s into a region where a uniform electric field
E ! " 720 ĵ N/C is present, as shown in Figure P23.49. The
protons are to hit a target that lies at a horizontal distance
of 1.27 mm from the point where the protons cross the
plane and enter the electric field in Figure P23.49. Find
(a) the two projection angles + that will result in a hit and
(b) the total time of flight (the time interval during which
the proton is above the plane in Figure P23.49) for each
trajectory.

Figure P23.52
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Section 23.7 Motion of Charged Particles 
in a Uniform Electric Field

42. An electron and a proton are each placed at rest in an
electric field of 520 N/C. Calculate the speed of each par-
ticle 48.0 ns after being released.

A proton accelerates from rest in a uniform electric field
of 640 N/C. At some later time, its speed is 1.20 & 106 m/s
(nonrelativistic, because v is much less than the speed
of light). (a) Find the acceleration of the proton. (b) How
long does it take the proton to reach this speed? (c) How
far has it moved in this time? (d) What is its kinetic energy
at this time?

44. A proton is projected in the positive x direction into a
region of a uniform electric field E ! " 6.00 & 105î N/C
at t ! 0. The proton travels 7.00 cm before coming to rest.
Determine (a) the acceleration of the proton, (b) its initial
speed, and (c) the time at which the proton comes to rest.

The electrons in a particle beam each have a kinetic
energy K. What are the magnitude and direction of the
electric field that will stop these electrons in a distance d ?

46. A positively charged bead having a mass of 1.00 g falls
from rest in a vacuum from a height of 5.00 m in a uni-
form vertical electric field with a magnitude of 1.00 &
104 N/C. The bead hits the ground at a speed of 21.0 m/s.
Determine (a) the direction of the electric field (up or
down), and (b) the charge on the bead.

A proton moves at 4.50 & 105 m/s in the horizontal direc-
tion. It enters a uniform vertical electric field with a magni-
tude of 9.60 & 103 N/C. Ignoring any gravitational effects,
find (a) the time interval required for the proton to travel
5.00 cm horizontally, (b) its vertical displacement during
the time interval in which it travels 5.00 cm horizontally,
and (c) the horizontal and vertical components of its ve-
locity after it has traveled 5.00 cm horizontally.

48. Two horizontal metal plates, each 100 mm square, are
aligned 10.0 mm apart, with one above the other. They are
given equal-magnitude charges of opposite sign so that a
uniform downward electric field of 2 000 N/C exists in the
region between them. A particle of mass 2.00 & 10"16 kg

47.

45.

43.

Additional Problems

50. Two known charges, " 12.0 *C and 45.0 *C, and an
unknown charge are located on the x axis. The charge
" 12.0 *C is at the origin, and the charge 45.0 *C is at x !
15.0 cm. The unknown charge is to be placed so that each
charge is in equilibrium under the action of the electric
forces exerted by the other two charges. Is this situation pos-
sible? Is it possible in more than one way? Find the required
location, magnitude, and sign of the unknown charge.

51. A uniform electric field of magnitude 640 N/C exists
between two parallel plates that are 4.00 cm apart. A proton
is released from the positive plate at the same instant that
an electron is released from the negative plate. (a) Deter-
mine the distance from the positive plate at which the two
pass each other. (Ignore the electrical attraction between
the proton and electron.) (b) What If? Repeat part (a) for a
sodium ion (Na#) and a chloride ion (Cl").

52. Three point charges are aligned along the x axis as shown
in Figure P23.52. Find the electric field at (a) the position
(2.00, 0) and (b) the position (0, 2.00).
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53. A researcher studying the properties of ions in the upper
atmosphere wishes to construct an apparatus with the fol-
lowing characteristics: Using an electric field, a beam
of ions, each having charge q, mass m, and initial velocity
v î, is turned through an angle of 90° as each ion under-
goes displacement R î # R ĵ. The ions enter a chamber as
shown in Figure P23.53, and leave through the exit port
with the same speed they had when they entered the
chamber. The electric field acting on the ions is to have
constant magnitude. (a) Suppose the electric field is pro-
duced by two concentric cylindrical electrodes not shown
in the diagram, and hence is radial. What magnitude
should the field have? What If? (b) If the field is produced
by two flat plates and is uniform in direction, what value
should the field have in this case?

the angle +. Find (a) the charge on the ball and (b) the
tension in the string.

Figure P23.53

Figure P23.54
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Figure P23.55 Problems 55 and 56.

Figure P23.58

54. A small, 2.00-g plastic ball is suspended by a 20.0-cm-long
string in a uniform electric field as shown in Figure
P23.54. If the ball is in equilibrium when the string makes
a 15.0° angle with the vertical, what is the net charge on
the ball?

q q

q
q

y

x
L

W

Figure P23.57

58. Inez is putting up decorations for her sister’s quinceañera
(fifteenth birthday party). She ties three light silk ribbons
together to the top of a gateway and hangs a rubber bal-
loon from each ribbon (Fig. P23.58). To include the

57. Four identical point charges (q ! # 10.0 *C) are located
on the corners of a rectangle as shown in Figure P23.57.
The dimensions of the rectangle are L ! 60.0 cm and
W ! 15.0 cm. Calculate the magnitude and direction of
the resultant electric force exerted on the charge at the
lower left corner by the other three charges.

A charged cork ball of mass 1.00 g is suspended on a
light string in the presence of a uniform electric field
as shown in Figure P23.55. When  E ! (3.00î # 5.00ĵ) &
105 N/C, the ball is in equilibrium at + ! 37.0°. Find
(a) the charge on the ball and (b) the tension in the string.
A charged cork ball of mass m is suspended on a light
string in the presence of a uniform electric field as shown
in Figure P23.55. When  E ! (Aî # B ĵ) N/C,  where A
and B are positive numbers, the ball is in equilibrium at

56.

55.
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effects of the gravitational and buoyant forces on it, each
balloon can be modeled as a particle of mass 2.00 g, with
its center 50.0 cm from the point of support. To show off
the colors of the balloons, Inez rubs the whole surface of
each balloon with her woolen scarf, to make them hang
separately with gaps between them. The centers of the
hanging balloons form a horizontal equilateral triangle
with sides 30.0 cm long. What is the common charge each
balloon carries?

59. Review problem. Two identical metallic blocks resting on a
frictionless horizontal surface are connected by a light
metallic spring having a spring constant k as shown in 
Figure P23.59a and an unstretched length Li . A total
charge Q is slowly placed on the system, causing the spring
to stretch to an equilibrium length L , as shown in Figure
P23.59b. Determine the value of Q , assuming that all the
charge resides on the blocks and modeling the blocks as
point charges.

62. Two small spheres, each of mass 2.00 g, are suspended by
light strings 10.0 cm in length (Fig. P23.62). A uniform
electric field is applied in the x direction. The spheres
have charges equal to " 5.00 & 10"8 C and # 5.00 &
10"8 C. Determine the electric field that enables the
spheres to be in equilibrium at an angle + ! 10.0°.

Figure P23.59

(a)

(b)

m mk

m mk

60. Consider a regular polygon with 29 sides. The distance
from the center to each vertex is a. Identical charges q are
placed at 28 vertices of the polygon. A single charge Q is
placed at the center of the polygon. What is the magnitude
and direction of the force experienced by the charge
Q ? (Suggestion: You may use the result of Problem 63 in
Chapter 3.)

61. Identical thin rods of length 2a carry equal charges # Q
uniformly distributed along their lengths. The rods lie
along the x axis with their centers separated by a distance
b - 2a (Fig. P23.61). Show that the magnitude of the force
exerted by the left rod on the right one is given by

F ! & keQ 
2

4a 
2 ' ln & b2

b2 " 4a 
2 '

b

y

a–a b – a b + a
x

Figure P23.61

Figure P23.62
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63. A line of positive charge is formed into a semicircle of ra-
dius R ! 60.0 cm as shown in Figure P23.63. The charge
per unit length along the semicircle is described by the ex-
pression 3 ! 30 cos +. The total charge on the semicircle is
12.0 *C. Calculate the total force on a charge of 3.00 *C
placed at the center of curvature.

Figure P23.63
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64. Three charges of equal magnitude q are fixed in posi-
tion at the vertices of an equilateral triangle (Fig. P23.64).
A fourth charge Q is free to move along the positive x axis
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Figure P23.64
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under the influence of the forces exerted by the three
fixed charges. Find a value for s for which Q is in equilib-
rium. You will need to solve a transcendental equation.

Two small spheres of mass m are suspended from strings of
length ! that are connected at a common point. One
sphere has charge Q ; the other has charge 2Q. The strings
make angles +1 and +2 with the vertical. (a) How are +1 and
+2 related? (b) Assume +1 and +2 are small. Show that the
distance r between the spheres is given by

66. Review problem. Four identical particles, each having
charge # q, are fixed at the corners of a square of side L. A
fifth point charge " Q lies a distance z along the line per-
pendicular to the plane of the square and passing through
the center of the square (Fig. P23.66). (a) Show that the
force exerted by the other four charges on " Q is

Note that this force is directed toward the center of the
square whether z is positive (" Q above the square) or neg-
ative (" Q below the square). (b) If z is small compared
with L, the above expression reduces to F ≈ "(constant)z k̂.
Why does this imply that the motion of the charge " Q is
simple harmonic, and what is the period of this motion if
the mass of " Q is m?

F ! "
4k e q Qz

[z2 # (L2/2)]3/2   k̂

r " & 4ke Q  2!

mg '1/3

65.

69. Eight point charges, each of magnitude q, are located on
the corners of a cube of edge s, as shown in Figure P23.69.
(a) Determine the x, y, and z components of the resultant
force exerted by the other charges on the charge located
at point A. (b) What are the magnitude and direction of
this resultant force?

R

R

m

R

m

Figure P23.68

Figure P23.69 Problems 69 and 70.
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Figure P23.66

67. Review problem. A 1.00-g cork ball with charge 2.00 *C is
suspended vertically on a 0.500-m-long light string in the
presence of a uniform, downward-directed electric field of
magnitude E ! 1.00 & 105 N/C. If the ball is displaced
slightly from the vertical, it oscillates like a simple pendu-
lum. (a) Determine the period of this oscillation.
(b) Should gravity be included in the calculation for part
(a)? Explain.

68. Two identical beads each have a mass m and charge q.
When placed in a hemispherical bowl of radius R with fric-
tionless, nonconducting walls, the beads move, and at
equilibrium they are a distance R apart (Fig. P23.68). De-
termine the charge on each bead.

70. Consider the charge distribution shown in Figure P23.69.
(a) Show that the magnitude of the electric field at the
center of any face of the cube has a value of 2.18keq/s2.
(b) What is the direction of the electric field at the center
of the top face of the cube?

Review problem. A negatively charged particle " q is
placed at the center of a uniformly charged ring, where
the ring has a total positive charge Q as shown in Example
23.8. The particle, confined to move along the x axis, is
displaced a small distance x along the axis (where x 55 a)
and released. Show that the particle oscillates in simple
harmonic motion with a frequency given by

72. A line of charge with uniform density 35.0 nC/m lies
along the line y ! " 15.0 cm, between the points with co-
ordinates x ! 0 and x ! 40.0 cm. Find the electric field it
creates at the origin.

73. Review problem. An electric dipole in a uniform electric
field is displaced slightly from its equilibrium position, as
shown in Figure P23.73, where + is small. The separation
of the charges is 2a, and the moment of inertia of the
dipole is I. Assuming the dipole is released from this

f !
1

2(
 & ke q Q

ma3 '1/2

71.
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position, show that its angular orientation exhibits simple
harmonic motion with a frequency

f !
1

2(
 √ 2qa E

I

cannot determine from this information, however,
whether the charges are positive or negative.

23.3 (e). In the first experiment, objects A and B may have
charges with opposite signs, or one of the objects may be
neutral. The second experiment shows that B and C have
charges with the same signs, so that B must be charged.
But we still do not know if A is charged or neutral.

23.4 (e). From Newton’s third law, the electric force exerted by
object B on object A is equal in magnitude to the force ex-
erted by object A on object B.

23.5 (b). From Newton’s third law, the electric force exerted by
object B on object A is equal in magnitude to the force ex-
erted by object A on object B and in the opposite direction.

23.6 (a). There is no effect on the electric field if we assume
that the source charge producing the field is not dis-
turbed by our actions. Remember that the electric field is
created by source charge(s) (unseen in this case), not the
test charge(s).

23.7 A, B, C. The field is greatest at point A because this is
where the field lines are closest together. The absence of
lines near point C indicates that the electric field there is
zero.

23.8 (b). Electric field lines begin and end on charges and
cannot close on themselves to form loops.

Figure P23.73

Eθ
q+

––q

2a

Answers to Quick Quizzes
23.1 (b). The amount of charge present in the isolated system

after rubbing is the same as that before because charge is
conserved; it is just distributed differently.

23.2 (a), (c), and (e). The experiment shows that A and B
have charges of the same sign, as do objects B and C.
Thus, all three objects have charges of the same sign. We
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Gauss’s Law

CHAPTE R OUTL I N E

24.1 Electric Flux

24.2 Gauss’s Law

24.3 Application of Gauss’s Law to
Various Charge Distributions

24.4 Conductors in Electrostatic
Equilibrium

24.5 Formal Derivation of Gauss’s
Law

! In a table-top plasma ball, the colorful lines emanating from the sphere give evidence of
strong electric fields. Using Gauss’s law, we show in this chapter that the electric field
surrounding a charged sphere is identical to that of a point charge. (Getty Images)

Chapter 24
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In the preceding chapter we showed how to calculate the electric field generated by
a given charge distribution. In this chapter, we describe Gauss’s law and an alterna-
tive procedure for calculating electric fields. The law is based on the fact that the
fundamental electrostatic force between point charges exhibits an inverse-square
behavior. Although a consequence of Coulomb’s law, Gauss’s law is more convenient
for calculating the electric fields of highly symmetric charge distributions and
makes possible useful qualitative reasoning when dealing with complicated
problems.

24.1 Electric Flux

The concept of electric field lines was described qualitatively in Chapter 23. We now
treat electric field lines in a more quantitative way.

Consider an electric field that is uniform in both magnitude and direction, as
shown in Figure 24.1. The field lines penetrate a rectangular surface of area A, whose
plane is oriented perpendicular to the field. Recall from Section 23.6 that the number
of lines per unit area (in other words, the line density) is proportional to the magnitude
of the electric field. Therefore, the total number of lines penetrating the surface is
proportional to the product EA. This product of the magnitude of the electric field E
and surface area A perpendicular to the field is called the electric flux !E (uppercase
Greek phi):

(24.1)

From the SI units of E and A, we see that !E has units of newton-meters squared per
coulomb (N " m2/C.) Electric flux is proportional to the number of electric field
lines penetrating some surface.

!E # E A

Example 24.1 Electric Flux Through a Sphere

What is the electric flux through a sphere that has a
radius of 1.00 m and carries a charge of $1.00 %C at its
center?

Solution The magnitude of the electric field 1.00 m
from this charge is found using Equation 23.9:

# 8.99 & 103 N/C

E # ke   
q
r  

2  # (8.99 & 109 N"m2/C2) 
1.00 & 10'6 C

(1.00 m)2

The field points radially outward and is therefore every-
where perpendicular to the surface of the sphere. The flux
through the sphere (whose surface area A # 4(r 2 #
12.6 m2) is thus

# 1.13 & 105 N"m2/C

!E # EA # (8.99 & 103 N/C)(12.6 m2)

Figure 24.1 Field lines
representing a uniform electric
field penetrating a plane of area A
perpendicular to the field. The
electric flux !E through this area is
equal to EA.

Area = A

E



If the surface under consideration is not perpendicular to the field, the flux
through it must be less than that given by Equation 24.1. We can understand this by
considering Figure 24.2, where the normal to the surface of area A is at an angle ) to
the uniform electric field. Note that the number of lines that cross this area A is equal
to the number that cross the area A*, which is a projection of area A onto a plane ori-
ented perpendicular to the field. From Figure 24.2 we see that the two areas are
related by A* # A cos ). Because the flux through A equals the flux through A*, we
conclude that the flux through A is

(24.2)

From this result, we see that the flux through a surface of fixed area A has a maximum
value EA when the surface is perpendicular to the field (when the normal to the
surface is parallel to the field, that is, ) # 0° in Figure 24.2); the flux is zero when
the surface is parallel to the field (when the normal to the surface is perpendicular to
the field, that is, ) # 90°).

We assumed a uniform electric field in the preceding discussion. In more general
situations, the electric field may vary over a surface. Therefore, our definition of flux
given by Equation 24.2 has meaning only over a small element of area. Consider a gen-
eral surface divided up into a large number of small elements, each of area +A. The
variation in the electric field over one element can be neglected if the element is suffi-
ciently small. It is convenient to define a vector +Ai whose magnitude represents the
area of the i th element of the surface and whose direction is defined to be perpendicu-
lar to the surface element, as shown in Figure 24.3. The electric field Ei at the location
of this element makes an angle )i with the vector +Ai. The electric flux +!E through
this element is

where we have used the definition of the scalar product (or dot product; see Chapter
7) of two vectors (A ! B # AB cos )). By summing the contributions of all elements, we
obtain the total flux through the surface. If we let the area of each element approach
zero, then the number of elements approaches infinity and the sum is replaced by an
integral. Therefore, the general definition of electric flux is1

(24.3)

Equation 24.3 is a surface integral, which means it must be evaluated over the surface
in question. In general, the value of !E depends both on the field pattern and on the
surface.

!E # lim
+Ai : 0 

! Ei "+ Ai # "
surface

E"d A

+!E # Ei  +Ai cos )i # Ei "+ Ai

!E # E A* # E A cos )
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Figure 24.2 Field lines representing a uniform electric field penetrating an area A that
is at an angle ) to the field. Because the number of lines that go through the area A* is
the same as the number that go through A, the flux through A* is equal to the flux
through A and is given by !E # EA cos ).

A

θ

θ

A′ = A cos

E

Normal

θ

Figure 24.3 A small element of
surface area +Ai . The electric field
makes an angle )i with the vector
+A i, defined as being normal to
the surface element, and the flux
through the element is equal to
Ei +Ai cos )i .

∆A i

E i
θi

1 Drawings with field lines have their inaccuracies because a limited number of field lines are
typically drawn in a diagram. Consequently, a small area element drawn on a diagram (depending on
its location) may happen to have too few field lines penetrating it to represent the flux accurately. We
stress that the basic definition of electric flux is Equation 24.3. The use of lines is only an aid for
visualizing the concept.

Definition of electric flux



We are often interested in evaluating the flux through a closed surface, which is
defined as one that divides space into an inside and an outside region, so that one
cannot move from one region to the other without crossing the surface. The surface of
a sphere, for example, is a closed surface.

Consider the closed surface in Figure 24.4. The vectors +A i point in different
directions for the various surface elements, but at each point they are normal to the
surface and, by convention, always point outward. At the element labeled !, the field
lines are crossing the surface from the inside to the outside and ) , 90°; hence, the
flux +!E # E " +A1 through this element is positive. For element ", the field lines
graze the surface (perpendicular to the vector +A 2); thus, ) # 90° and the flux is zero.
For elements such as #, where the field lines are crossing the surface from outside to
inside, 180° - ) - 90° and the flux is negative because cos ) is negative. The net flux
through the surface is proportional to the net number of lines leaving the surface,
where the net number means the number leaving the surface minus the number entering the
surface. If more lines are leaving than entering, the net flux is positive. If more lines are
entering than leaving, the net flux is negative. Using the symbol # to represent an
integral over a closed surface, we can write the net flux !E through a closed surface as

(24.4)

where En represents the component of the electric field normal to the surface. If the
field is normal to the surface at each point and constant in magnitude, the calculation
is straightforward, as it was in Example 24.1. Example 24.2 also illustrates this point.

!E # $ E"d A # $ En dA
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Quick Quiz 24.1 Suppose the radius of the sphere in Example 24.1 is
changed to 0.500 m. What happens to the flux through the sphere and the magnitude
of the electric field at the surface of the sphere? (a) The flux and field both increase.
(b) The flux and field both decrease. (c) The flux increases and the field decreases.
(d) The flux decreases and the field increases. (e) The flux remains the same and the
field increases. (f) The flux decreases and the field remains the same.

Active Figure 24.4 A closed
surface in an electric field. The area
vectors +A i are, by convention,
normal to the surface and point
outward. The flux through an area
element can be positive (element
!), zero (element "), or negative
(element #).

At the Active Figures link
at http://www.pse6.com, you
can select any segment on the
surface and see the
relationship between the
electric field vector E and the
area vector "Ai .

∆A1

∆A3

∆A2 !
"

#

E

#
!

"

E
θ

Eθ

En

En

Karl Friedrich Gauss
German mathematician and
astronomer (1777–1855)

Gauss received a doctoral degree
in mathematics from the University
of Helmstedt in 1799. In addition
to his work in electromagnetism,
he made contributions to
mathematics and science in
number theory, statistics, non-
Euclidean geometry, and
cometary orbital mechanics. He
was a founder of the German
Magnetic Union, which studies
the Earth’s magnetic field on a
continual basis.
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24.2 Gauss’s Law

In this section we describe a general relationship between the net electric flux through
a closed surface (often called a gaussian surface) and the charge enclosed by the
surface. This relationship, known as Gauss’s law, is of fundamental importance in the
study of electric fields.

Let us again consider a positive point charge q located at the center of a sphere of
radius r, as shown in Figure 24.6. From Equation 23.9 we know that the magnitude
of the electric field everywhere on the surface of the sphere is E # keq/r 2. As noted in
Example 24.1, the field lines are directed radially outward and hence are perpendicu-
lar to the surface at every point on the surface. That is, at each surface point, E is par-
allel to the vector +Ai representing a local element of area +Ai surrounding the
surface point. Therefore,

and from Equation 24.4 we find that the net flux through the gaussian surface is

!E # $  E"d A # $  E   dA # E  $ dA

E"+ Ai # E  + Ai

Example 24.2 Flux Through a Cube

Consider a uniform electric field E oriented in the x direc-
tion. Find the net electric flux through the surface of a cube
of edge length !, oriented as shown in Figure 24.5.

Solution The net flux is the sum of the fluxes through all
faces of the cube. First, note that the flux through four of

the faces (#, $, and the unnumbered ones) is zero because
E is perpendicular to d A on these faces.

The net flux through faces ! and " is

For face !, E is constant and directed inward but dA1 is
directed outward () # 180°); thus, the flux through this
face is

because the area of each face is A # !2.
For face ", E is constant and outward and in the same

direction as dA2 () # 0°); hence, the flux through this face is

Therefore, the net flux over all six faces is

0!E # 'E !2 $ E !2 $ 0 $ 0 $ 0 $ 0 #

"
2
 E"d A # "

2
 E (cos  0.) dA # E "

2
 dA # $E A # E !2

" 
1
E"d A # "

1
 E (cos 180.) d A # 'E "

1
 d A # 'E A # 'E !2

!E # "
1
 E"d A $ "

2
 E"d A

Quick Quiz 24.2 In a charge-free region of space, a closed container is
placed in an electric field. A requirement for the total electric flux through the surface
of the container to be zero is that (a) the field must be uniform, (b) the container
must be symmetric, (c) the container must be oriented in a certain way, or (d) the
requirement does not exist— the total electric flux is zero no matter what.

Figure 24.5 (Example 24.2) A closed surface in the shape of a
cube in a uniform electric field oriented parallel to the x axis.
Side $ is the bottom of the cube, and side ! is opposite side ".

y

z !

!

!
x

E

dA2

dA1

dA3

!

"

#

$ dA4

Figure 24.6 A spherical gaussian
surface of radius r surrounding a
point charge q. When the charge is
at the center of the sphere, the
electric field is everywhere normal
to the surface and constant in
magnitude.

Gaussian
surface

r

q

dA

E
+ i
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where we have moved E outside of the integral because, by symmetry, E is constant over
the surface and given by E # keq/r 2. Furthermore, because the surface is spherical,
# dA # A # 4(r 2. Hence, the net flux through the gaussian surface is

Recalling from Section 23.3 that ke # 1/4(/0, we can write this equation in the form

(24.5)

We can verify that this expression for the net flux gives the same result as Example
24.1: !E # (1.00 & 10'6 C)/(8.85 & 10'12 C2/N " m2) # 1.13 & 105 N " m2/C.

Note from Equation 24.5 that the net flux through the spherical surface is propor-
tional to the charge inside. The flux is independent of the radius r because the area of
the spherical surface is proportional to r 2, whereas the electric field is proportional to
1/r 2. Thus, in the product of area and electric field, the dependence on r cancels.

Now consider several closed surfaces surrounding a charge q, as shown in Figure
24.7. Surface S1 is spherical, but surfaces S2 and S3 are not. From Equation 24.5, the
flux that passes through S1 has the value q//0. As we discussed in the preceding section,
flux is proportional to the number of electric field lines passing through a surface. The
construction shown in Figure 24.7 shows that the number of lines through S1 is equal to
the number of lines through the nonspherical surfaces S2 and S3. Therefore, we
conclude that the net flux through any closed surface surrounding a point charge
q is given by q/#0 and is independent of the shape of that surface.

Now consider a point charge located outside a closed surface of arbitrary shape, as
shown in Figure 24.8. As you can see from this construction, any electric field line that
enters the surface leaves the surface at another point. The number of electric field
lines entering the surface equals the number leaving the surface. Therefore, we
conclude that the net electric flux through a closed surface that surrounds no
charge is zero. If we apply this result to Example 24.2, we can easily see that the net
flux through the cube is zero because there is no charge inside the cube.

Let us extend these arguments to two generalized cases: (1) that of many point
charges and (2) that of a continuous distribution of charge. We once again use the
superposition principle, which states that the electric field due to many charges is
the vector sum of the electric fields produced by the individual charges.
Therefore, we can express the flux through any closed surface as

where E is the total electric field at any point on the surface produced by the vector
addition of the electric fields at that point due to the individual charges. Consider the
system of charges shown in Figure 24.9. The surface S surrounds only one charge, q1;
hence, the net flux through S is q1//0. The flux through S due to charges q2 , q3 , and
q4 outside it is zero because each electric field line that enters S at one point leaves it at

$ E"d A # $ (E1 $ E2 $ " " ")"d A

!E #
q
/0

!E #
ke q
r  

2  (4(r 
2) # 4(ke q

Figure 24.7 Closed surfaces of various shapes surrounding a
charge q. The net electric flux is the same through all
surfaces.

S3

S2

S1

q

Figure 24.8 A point charge
located outside a closed surface.
The number of lines entering the
surface equals the number leaving
the surface.

q

Active Figure 24.9 The net
electric flux through any closed
surface depends only on the
charge inside that surface. The net
flux through surface S is q1//0,
the net flux through surface S* is
(q 2 $ q3)//0, and the net flux
through surface S 0 is zero. Charge
q4 does not contribute to the flux
through any surface because it is
outside all surfaces.

At the Active Figures link
at http://www.pse6.com, you
can change the size and shape
of a closed surface and see the
effect on the electric flux of
surrounding combinations of
charge with that surface.

S

q1

q2

q3 S ′

S ′′

q4
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Quick Quiz 24.3 If the net flux through a gaussian surface is zero, the follow-
ing four statements could be true. Which of the statements must be true? (a) There are no
charges inside the surface. (b) The net charge inside the surface is zero. (c) The
electric field is zero everywhere on the surface. (d) The number of electric field lines
entering the surface equals the number leaving the surface.

Quick Quiz 24.4 Consider the charge distribution shown in Figure 24.9. The
charges contributing to the total electric flux through surface S * are (a) q1 only (b) q4
only (c) q2 and q3 (d) all four charges (e) none of the charges.

Quick Quiz 24.5 Again consider the charge distribution shown in Figure
24.9. The charges contributing to the total electric field at a chosen point on the
surface S * are (a) q1 only (b) q4 only (c) q2 and q3 (d) all four charges (e) none of the
charges.

Conceptual Example 24.3 Flux Due to a Point Charge

A spherical gaussian surface surrounds a point charge q.
Describe what happens to the total flux through the
surface if 

(A) the charge is tripled, 

(B) the radius of the sphere is doubled, 

(C) the surface is changed to a cube, and 

(D) the charge is moved to another location inside the
surface.

Solution
(A) The flux through the surface is tripled because flux
is proportional to the amount of charge inside the surface.

(B) The flux does not change because all electric field lines
from the charge pass through the sphere, regardless of its
radius.

(C) The flux does not change when the shape of the
gaussian surface changes because all electric field lines
from the charge pass through the surface, regardless of its
shape.

(D) The flux does not change when the charge is moved to
another location inside that surface because Gauss’s law
refers to the total charge enclosed, regardless of where the
charge is located inside the surface.

another. The surface S * surrounds charges q2 and q3; hence, the net flux through it is
(q2 $ q3)//0. Finally, the net flux through surface S 0 is zero because there is no charge
inside this surface. That is, all the electric field lines that enter S 0 at one point leave at
another. Notice that charge q4 does not contribute to the net flux through any of the
surfaces because it is outside all of the surfaces.

Gauss’s law, which is a generalization of what we have just described, states that
the net flux through any closed surface is

(24.6)

where q in represents the net charge inside the surface and E represents the electric
field at any point on the surface.

A formal proof of Gauss’s law is presented in Section 24.5. When using Equation
24.6, you should note that although the charge q in is the net charge inside the gaussian
surface, E represents the total electric field, which includes contributions from charges
both inside and outside the surface.

In principle, Gauss’s law can be solved for E to determine the electric field due to a
system of charges or a continuous distribution of charge. In practice, however, this type of
solution is applicable only in a limited number of highly symmetric situations. In the next
section we use Gauss’s law to evaluate the electric field for charge distributions that have
spherical, cylindrical, or planar symmetry. If one chooses the gaussian surface surround-
ing the charge distribution carefully, the integral in Equation 24.6 can be simplified.

!E # $ E"d A #
q in

/0

! PITFALL PREVENTION
24.1 Zero Flux is not Zero

Field
We see two situations in which
there is zero flux through a
closed surface—either there are
no charged particles enclosed by
the surface or there are charged
particles enclosed, but the net
charge inside the surface is zero.
For either situation, it is incorrect
to conclude that the electric field
on the surface is zero. Gauss’s law
states that the electric flux is pro-
portional to the enclosed charge,
not the electric field.

Gauss’s law
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Example 24.4 The Electric Field Due to a Point Charge

Starting with Gauss’s law, calculate the electric field due to
an isolated point charge q.

Solution A single charge represents the simplest possible
charge distribution, and we use this familiar case to show
how to solve for the electric field with Gauss’s law. Figure
24.10 and our discussion of the electric field due to a point
charge in Chapter 23 help us to conceptualize the physical
situation. Because the space around the single charge has
spherical symmetry, we categorize this problem as one in
which there is enough symmetry to apply Gauss’s law. To
analyze any Gauss’s law problem, we consider the details of
the electric field and choose a gaussian surface that satisfies
some or all of the conditions that we have listed above. We
choose a spherical gaussian surface of radius r centered on
the point charge, as shown in Figure 24.10. The electric field
due to a positive point charge is directed radially outward by

symmetry and is therefore normal to the surface at every
point. Thus, as in condition (2), E is parallel to dA at each
point. Therefore, E " dA # E dA and Gauss’s law gives

By symmetry, E is constant everywhere on the surface, which
satisfies condition (1), so it can be removed from the inte-
gral. Therefore,

where we have used the fact that the surface area of a
sphere is 4(r 2. Now, we solve for the electric field:

To finalize this problem, note that this is the familiar
electric field due to a point charge that we developed from
Coulomb’s law in Chapter 23.

What If? What if the charge in Figure 24.10 were not at the
center of the spherical gaussian surface?

Answer In this case, while Gauss’s law would still be valid,
the situation would not possess enough symmetry to evalu-
ate the electric field. Because the charge is not at the center,
the magnitude of E would vary over the surface of the
sphere and the vector E would not be everywhere perpen-
dicular to the surface.

ke   
q

r  
2E #

q
4(/0r 

2 #

$  E  dA # E  $ d A # E (4( r  
2) #

q 

/0

!E # $  E"d A # $  E  dA #
q 

/0

24.3 Application of Gauss’s Law to Various 
Charge Distributions

As mentioned earlier, Gauss’s law is useful in determining electric fields when the
charge distribution is characterized by a high degree of symmetry. The following exam-
ples demonstrate ways of choosing the gaussian surface over which the surface integral
given by Equation 24.6 can be simplified and the electric field determined. In
choosing the surface, we should always take advantage of the symmetry of the charge
distribution so that we can remove E from the integral and solve for it. The goal in this
type of calculation is to determine a surface that satisfies one or more of the following
conditions:

1. The value of the electric field can be argued by symmetry to be constant over the
surface.

2. The dot product in Equation 24.6 can be expressed as a simple algebraic product
E dA because E and d A are parallel.

3. The dot product in Equation 24.6 is zero because E and d A are perpendicular.

4. The field can be argued to be zero over the surface.

All four of these conditions are used in examples throughout the remainder of this
chapter.

! PITFALL PREVENTION
24.2 Gaussian Surfaces

are not Real
A gaussian surface is an imaginary
surface that you choose to satisfy
the conditions listed here. It does
not have to coincide with a physi-
cal surface in the situation.

Figure 24.10 (Example 24.4) The point charge q is at the
center of the spherical gaussian surface, and E is parallel to d A
at every point on the surface.

Gaussian
surface

r

q

dA

E
+
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Example 24.5 A Spherically Symmetric Charge Distribution

An insulating solid sphere of radius a has a uniform volume
charge density 1 and carries a total positive charge Q (Fig.
24.11).

(A) Calculate the magnitude of the electric field at a point
outside the sphere.

Solution Because the charge distribution is spherically sym-
metric, we again select a spherical gaussian surface of radius
r, concentric with the sphere, as shown in Figure 24.11a. For
this choice, conditions (1) and (2) are satisfied, as they were
for the point charge in Example 24.4. Following the line of
reasoning given in Example 24.4, we find that

Note that this result is identical to the one we obtained for a
point charge. Therefore, we conclude that, for a uniformly
charged sphere, the field in the region external to the
sphere is equivalent to that of a point charge located at
the center of the sphere.

(B) Find the magnitude of the electric field at a point inside
the sphere.

Solution In this case we select a spherical gaussian surface
having radius r , a, concentric with the insulating sphere
(Fig. 24.11b). Let us denote the volume of this smaller
sphere by V *. To apply Gauss’s law in this situation, it is
important to recognize that the charge q in within the gauss-
ian surface of volume V * is less than Q. To calculate q in, we
use the fact that q in # 1V *:

By symmetry, the magnitude of the electric field is
constant everywhere on the spherical gaussian surface and
is normal to the surface at each point — both conditions

q in # 1V * # 1 (4
3 

( r  
3)

  (for r - a)ke  
Q
r 

2(1)   E #

(1) and (2) are satisfied. Therefore, Gauss’s law in the
region r , a gives

Solving for E gives

Because by definition and because ke # 1/4(/0,
this expression for E can be written as

Note that this result for E differs from the one we
obtained in part (A). It shows that E : 0 as r : 0.
Therefore, the result eliminates the problem that would
exist at r # 0 if E varied as 1/r 2 inside the sphere as it does
outside the sphere. That is, if E 2 1/r 2 for r , a, the field
would be infinite at r # 0, which is physically impossible.

What If? Suppose we approach the radial position r $ a
from inside the sphere and from outside. Do we measure the
same value of the electric field from both directions?

Answer From Equation (1), we see that the field
approaches a value from the outside given by

From the inside, Equation (2) gives us

Thus, the value of the field is the same as we approach the
surface from both directions. A plot of E versus r is shown in
Figure 24.12. Note that the magnitude of the field is contin-
uous, but the derivative of the field magnitude is not.

E # lim
r : a %ke  

Q
a 

3   r& # ke  
Q
a 

3  
 a # ke  

Q
a 

2

E # lim
r : a %ke  

Q
r 

2 & # ke  
Q
a 

2

  (for r , a)ke  
Q
a 

3   r(2)   E #
Qr

4(/0a 
3 #

1 # Q /4
3 (a3

E #
q in

4(/0r 
2 #

1(4
3 (r 

3)
4(/0r 

2 #
1

3/0
  r

$  E  dA # E  $ dA # E (4(r 
2) #  

q in
/0

(a)

Gaussian
sphere

(b)

Gaussian
spherer

a

r

a

Figure 24.11 (Example 24.5) A uniformly charged insulating
sphere of radius a and total charge Q. (a) For points outside the
sphere, a large spherical gaussian surface is drawn concentric
with the sphere. In diagrams such as this, the dotted line
represents the intersection of the gaussian surface with the
plane of the page. (b) For points inside the sphere, a spherical
gaussian surface smaller than the sphere is drawn.

a

E

a r

E =
keQ
r2

E =
keQ
a3 r

Figure 24.12 (Example 24.5) A plot of E versus r for a uniformly
charged insulating sphere. The electric field inside the sphere
(r , a) varies linearly with r. The field outside the sphere (r - a)
is the same as that of a point charge Q located at r # 0.

At the Interactive Worked Example link at http://www.pse6.com, you can investigate the electric field inside and outside
the sphere.

Interactive
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Example 24.6 The Electric Field Due to a Thin Spherical Shell

A thin spherical shell of radius a has a total charge Q distrib-
uted uniformly over its surface (Fig. 24.13a). Find the
electric field at points

(A) outside and

(B) inside the shell.

Solution

(A) The calculation for the field outside the shell is identical
to that for the solid sphere shown in Example 24.5a. If we
construct a spherical gaussian surface of radius r - a concen-
tric with the shell (Fig. 24.13b), the charge inside this surface
is Q. Therefore, the field at a point outside the shell is equiv-
alent to that due to a point charge Q located at the center:

(B) The electric field inside the spherical shell is zero. This
follows from Gauss’s law applied to a spherical surface of
radius r , a concentric with the shell (Fig. 24.13c). Because of
the spherical symmetry of the charge distribution and
because the net charge inside the surface is zero—satisfaction
of conditions (1) and (2) again—application of Gauss’s
law shows that E # 0 in the region r , a. We obtain the
same results using Equation 23.11 and integrating over the
charge distribution. This calculation is rather complicated.
Gauss’s law allows us to determine these results in a much
simpler way.

  (for r - a)ke  
Q
r  

2E #

Example 24.7 A Cylindrically Symmetric Charge Distribution

Find the electric field a distance r from a line of positive
charge of infinite length and constant charge per unit
length 3 (Fig. 24.14a).

Solution The symmetry of the charge distribution
requires that E be perpendicular to the line charge and
directed outward, as shown in Figure 24.14a and b. To
reflect the symmetry of the charge distribution, we select a
cylindrical gaussian surface of radius r and length ! that is
coaxial with the line charge. For the curved part of this
surface, E is constant in magnitude and perpendicular to
the surface at each point—satisfaction of conditions
(1) and (2). Furthermore, the flux through the ends of
the gaussian cylinder is zero because E is parallel to
these surfaces—the first application we have seen of
condition (3).

We take the surface integral in Gauss’s law over the
entire gaussian surface. Because of the zero value of E " dA
for the ends of the cylinder, however, we can restrict our
attention to only the curved surface of the cylinder.

The total charge inside our gaussian surface is 3!.
Applying Gauss’s law and conditions (1) and (2), we find
that for the curved surface

The area of the curved surface is A # 2(r!; therefore,

(24.7)

Thus, we see that the electric field due to a cylindrically
symmetric charge distribution varies as 1/r, whereas the
field external to a spherically symmetric charge distribution
varies as 1/r 2. Equation 24.7 was also derived by integra-
tion of the field of a point charge. (See Problem 35 in 
Chapter 23.)

2ke  
3
rE #

3

2(/0r
#

E (2(r !) #
3!

/0

!E # $  E"d A # E  $ dA # E A #
q  in

/0
#

3!

/0

Figure 24.13 (Example 24.6) (a) The electric field inside a uniformly charged
spherical shell is zero. The field outside is the same as that due to a point charge Q
located at the center of the shell. (b) Gaussian surface for r - a. (c) Gaussian surface
for r , a.
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Example 24.8 A Plane of Charge

Find the electric field due to an infinite plane of positive
charge with uniform surface charge density 4.

Solution By symmetry, E must be perpendicular to the
plane and must have the same magnitude at all points
equidistant from the plane. The fact that the direction of
E is away from positive charges indicates that the direction
of E on one side of the plane must be opposite its direc-
tion on the other side, as shown in Figure 24.15. A gauss-
ian surface that reflects the symmetry is a small cylinder
whose axis is perpendicular to the plane and whose ends

each have an area A and are equidistant from the plane.
Because E is parallel to the curved surface—and,
therefore, perpendicular to dA everywhere on the
surface—condition (3) is satisfied and there is no contri-
bution to the surface integral from this surface. For the
flat ends of the cylinder, conditions (1) and (2) are satis-
fied. The flux through each end of the cylinder is EA;
hence, the total flux through the entire gaussian surface is
just that through the ends, !E # 2EA.

Noting that the total charge inside the surface is
q in # 4A , we use Gauss’s law and find that the total flux
through the gaussian surface is

leading to

(24.8)

Because the distance from each flat end of the cylinder
to the plane does not appear in Equation 24.8, we conclude
that E # 4/2/0 at any distance from the plane. That is, the
field is uniform everywhere.

What If? Suppose we place two infinite planes of charge
parallel to each other, one positively charged and the other
negatively charged. Both planes have the same surface
charge density. What does the electric field look like now?

E #
4

2/0

!E # 2E A #
q  in

/0
#

4A
/0

What If? What if the line segment in this example were not
infinitely long?

Answer If the line charge in this example were of finite
length, the result for E would not be that given by Equa-
tion 24.7. A finite line charge does not possess sufficient
symmetry for us to make use of Gauss’s law. This is
because the magnitude of the electric field is no longer
constant over the surface of the gaussian cylinder—
the field near the ends of the line would be different from
that far from the ends. Thus, condition (1) would not be
satisfied in this situation. Furthermore, E is not perpen-
dicular to the cylindrical surface at all points—the field
vectors near the ends would have a component parallel to
the line. Thus, condition (2) would not be satisfied. For
points close to a finite line charge and far from the ends,
Equation 24.7 gives a good approximation of the value of
the field.

It is left for you to show (see Problem 29) that the
electric field inside a uniformly charged rod of finite radius
and infinite length is proportional to r.

Gaussian
surface

+
+
+

+
+
+

E

dA!

r

(a)

E

(b)

Figure 24.14 (Example 24.7) (a) An infinite line of charge
surrounded by a cylindrical gaussian surface concentric with
the line. (b) An end view shows that the electric field at the
cylindrical surface is constant in magnitude and perpendicular
to the surface.

Figure 24.15 (Example 24.8) A cylindrical gaussian surface
penetrating an infinite plane of charge. The flux is EA through
each end of the gaussian surface and zero through its curved
surface.
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24.4 Conductors in Electrostatic Equilibrium

As we learned in Section 23.2, a good electrical conductor contains charges (electrons)
that are not bound to any atom and therefore are free to move about within the mater-
ial. When there is no net motion of charge within a conductor, the conductor is in
electrostatic equilibrium. A conductor in electrostatic equilibrium has the following
properties:

1. The electric field is zero everywhere inside the conductor.

2. If an isolated conductor carries a charge, the charge resides on its surface.

3. The electric field just outside a charged conductor is perpendicular to the surface
of the conductor and has a magnitude 4//0, where 4 is the surface charge density
at that point.

4. On an irregularly shaped conductor, the surface charge density is greatest at loca-
tions where the radius of curvature of the surface is smallest.

We verify the first three properties in the discussion that follows. The fourth prop-
erty is presented here so that we have a complete list of properties for conductors in
electrostatic equilibrium, but cannot be verified until Chapter 25.

We can understand the first property by considering a conducting slab placed in
an external field E (Fig. 24.16). The electric field inside the conductor must be
zero under the assumption that we have electrostatic equilibrium. If the field
were not zero, free electrons in the conductor would experience an electric force
(F # q E) and would accelerate due to this force. This motion of electrons, however,
would mean that the conductor is not in electrostatic equilibrium. Thus, the
existence of electrostatic equilibrium is consistent only with a zero field in the
conductor.

Let us investigate how this zero field is accomplished. Before the external field is
applied, free electrons are uniformly distributed throughout the conductor. When the
external field is applied, the free electrons accelerate to the left in Figure 24.16, caus-
ing a plane of negative charge to be present on the left surface. The movement of elec-
trons to the left results in a plane of positive charge on the right surface. These planes
of charge create an additional electric field inside the conductor that opposes the
external field. As the electrons move, the surface charge densities on the left and right
surfaces increase until the magnitude of the internal field equals that of the external
field, resulting in a net field of zero inside the conductor. The time it takes a good con-
ductor to reach equilibrium is on the order of 10'16 s, which for most purposes can be
considered instantaneous.

Properties of a conductor in
electrostatic equilibrium

Figure 24.16 A conducting slab in
an external electric field E. The
charges induced on the two
surfaces of the slab produce an
electric field that opposes the
external field, giving a resultant
field of zero inside the slab.
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E E

Answer In this situation, the electric fields due to the two
planes add in the region between the planes, resulting in a
uniform field of magnitude 4//0, and cancel elsewhere to

give a field of zero. This is a practical way to achieve uniform
electric fields, such as those needed in the CRT tube
discussed in Section 23.7.

Conceptual Example 24.9 Don’t Use Gauss’s Law Here!

Explain why Gauss’s law cannot be used to calculate
the electric field near an electric dipole, a charged disk, or a
triangle with a point charge at each corner.

Solution The charge distributions of all these configura-
tions do not have sufficient symmetry to make the use of

Gauss’s law practical. We cannot find a closed surface
surrounding any of these distributions that satisfies one or
more of conditions (1) through (4) listed at the beginning
of this section.
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We can use Gauss’s law to verify the second property of a conductor in electrostatic
equilibrium. Figure 24.17 shows an arbitrarily shaped conductor. A gaussian surface is
drawn inside the conductor and can be as close to the conductor’s surface as we wish.
As we have just shown, the electric field everywhere inside the conductor is zero when
it is in electrostatic equilibrium. Therefore, the electric field must be zero at every
point on the gaussian surface, in accordance with condition (4) in Section 24.3. Thus,
the net flux through this gaussian surface is zero. From this result and Gauss’s law, we
conclude that the net charge inside the gaussian surface is zero. Because there can be
no net charge inside the gaussian surface (which is arbitrarily close to the conductor’s
surface), any net charge on the conductor must reside on its surface. Gauss’s law
does not indicate how this excess charge is distributed on the conductor’s surface, only
that it resides exclusively on the surface.

We can also use Gauss’s law to verify the third property. First, note that if the field
vector E had a component parallel to the conductor’s surface, free electrons would
experience an electric force and move along the surface; in such a case, the conduc-
tor would not be in equilibrium. Thus, the field vector must be perpendicular to the
surface. To determine the magnitude of the electric field, we draw a gaussian surface
in the shape of a small cylinder whose end faces are parallel to the surface of the
conductor (Fig. 24.18). Part of the cylinder is just outside the conductor, and part is
inside. The field is perpendicular to the conductor’s surface from the condition of
electrostatic equilibrium. Thus, we satisfy condition (3) in Section 24.3 for the curved
part of the cylindrical gaussian surface—there is no flux through this part of the
gaussian surface because E is parallel to the surface. There is no flux through the flat
face of the cylinder inside the conductor because here E # 0; this satisfies condition
(4). Hence, the net flux through the gaussian surface is that through only the flat face
outside the conductor, where the field is perpendicular to the gaussian surface. Using
conditions (1) and (2) for this face, the flux is EA, where E is the electric field just
outside the conductor and A is the area of the cylinder’s face. Applying Gauss’s law to
this surface, we obtain

where we have used the fact that q in # 4A. Solving for E gives for the electric field just
outside a charged conductor

(24.9)

Figure 24.19 shows electric field lines made visible by pieces of thread floating
in oil. Notice that the field lines are perpendicular to both the cylindrical conducting
surface and the straight conducting surface.

E #
4

/0

!E # $ E dA # EA #
q in

/0
#

4A
/0

Figure 24.17 A conductor of
arbitrary shape. The broken line
represents a gaussian surface that
can be as close to the surface of the
conductor as we wish.

Gaussian
surface

Figure 24.18 A gaussian surface
in the shape of a small cylinder is
used to calculate the electric field
just outside a charged conductor.
The flux through the gaussian
surface is EA. Remember that E is
zero inside the conductor.
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E

Figure 24.19 Electric field pattern
surrounding a charged conducting
plate placed near an oppositely
charged conducting cylinder. Small
pieces of thread suspended in oil
align with the electric field lines.
Note that (1) the field lines are
perpendicular to both conductors
and (2) there are no lines inside
the cylinder (E # 0).

Quick Quiz 24.6 Your little brother likes to rub his feet on the carpet
and then touch you to give you a shock. While you are trying to escape the shock
treatment, you discover a hollow metal cylinder in your basement, large enough to
climb inside. In which of the following cases will you not be shocked? (a) You climb
inside the cylinder, making contact with the inner surface, and your charged
brother touches the outer metal surface. (b) Your charged brother is inside touch-
ing the inner metal surface and you are outside, touching the outer metal surface.
(c) Both of you are outside the cylinder, touching its outer metal surface but not
touching each other directly.
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Explore the electric field of the system in Figure 24.20 at the Interactive Worked Example link at http://www.pse6.com.
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24.5 Formal Derivation of Gauss’s Law

One way of deriving Gauss’s law involves solid angles. Consider a spherical surface of
radius r containing an area element +A. The solid angle +5 (5: uppercase Greek
omega) subtended at the center of the sphere by this element is defined to be

From this equation, we see that +5 has no dimensions because +A and r 2 both have
dimensions L2. The dimensionless unit of a solid angle is the steradian. (You may want
to compare this equation to Equation 10.1b, the definition of the radian.) Because the

+5 ' 
+A
r 

2

Figure 24.20 (Example 24.10) A solid conducting sphere of
radius a and carrying a charge 2Q surrounded by a conducting
spherical shell carrying a charge 'Q.

–Q

r
a

b

c

2Q

!

#"

$

Figure 24.21 (Example 24.10) A plot of E versus r for the two-
conductor system shown in Figure 24.20.

a

E

r
b c

E =
2keQ

r 2

E =
keQ
r2

Example 24.10 A Sphere Inside a Spherical Shell

A solid conducting sphere of radius a carries a net positive
charge 2Q. A conducting spherical shell of inner radius b
and outer radius c is concentric with the solid sphere and
carries a net charge 'Q. Using Gauss’s law, find the electric
field in the regions labeled !, ", #, and $ in Figure 24.20
and the charge distribution on the shell when the entire
system is in electrostatic equilibrium.

Solution First note that the charge distributions on both
the sphere and the shell are characterized by spherical sym-
metry around their common center. To determine the elec-
tric field at various distances r from this center, we construct
a spherical gaussian surface for each of the four regions of
interest. Such a surface for region " is shown in Figure
24.20.

To find E inside the solid sphere (region !), consider a
gaussian surface of radius r , a. Because there can be no
charge inside a conductor in electrostatic equilibrium, we
see that q in # 0; thus, on the basis of Gauss’s law and sym-
metry, E1 # 0 for r , a.

In region "—between the surface of the solid sphere
and the inner surface of the shell—we construct a spherical
gaussian surface of radius r where a , r , b and note that
the charge inside this surface is $ 2Q (the charge on the
solid sphere). Because of the spherical symmetry, the
electric field lines must be directed radially outward and be

constant in magnitude on the gaussian surface. Following
Example 24.4 and using Gauss’s law, we find that

In region $, where r - c, the spherical gaussian surface we
construct surrounds a total charge of q in # 2Q $ ('Q) #
Q. Therefore, application of Gauss’s law to this surface gives

In region #, the electric field must be zero because the
spherical shell is also a conductor in equilibrium. Figure
24.21 shows a graphical representation of the variation of
electric field with r.

If we construct a gaussian surface of radius r where
b , r , c, we see that q in must be zero because E3 # 0. From
this argument, we conclude that the charge on the inner
surface of the spherical shell must be ' 2Q to cancel the
charge $ 2Q on the solid sphere. Because the net charge on
the shell is ' Q , we conclude that its outer surface must
carry a charge $ Q.

  (for r - c)
keQ
r 

2E4 #

  (for a , r , b)
2keQ

r 
2E 2 #

2Q
4(/0r 

2 #

E 2A # E 2(4(r 
2) #

q in

/0
#

2Q
/0

Interactive



surface area of a sphere is 4(r 2, the total solid angle subtended by the sphere is

Now consider a point charge q surrounded by a closed surface of arbitrary shape
(Fig. 24.22). The total electric flux through this surface can be obtained by evaluating
E " +A for each small area element +A and summing over all elements. The flux
through each element is

where r is the distance from the charge to the area element, ) is the angle between the
electric field E and +A for the element, and E # keq/r 2 for a point charge. In Figure
24.23, we see that the projection of the area element perpendicular to the radius
vector is +A cos ). Thus, the quantity (+A cos ))/r 2 is equal to the solid angle +5 that
the surface element +A subtends at the charge q. We also see that +5 is equal to the
solid angle subtended by the area element of a spherical surface of radius r. Because
the total solid angle at a point is 4( steradians, the total flux through the closed
surface is

Thus we have derived Gauss’s law, Equation 24.6. Note that this result is independent
of the shape of the closed surface and independent of the position of the charge
within the surface.

!E # ke q   $  
dA cos )

r 
2 # ke q   $ d 5 # 4(ke q #

q
/0

+!E # E"+ A # (E cos ))+A # ke q   
+A cos )

r  
2

5 #
4(r 

2

r 
2 # 4( steradians

Summary 753

Electric flux is proportional to the number of electric field lines that penetrate a
surface. If the electric field is uniform and makes an angle ) with the normal to a
surface of area A, the electric flux through the surface is

(24.2)

In general, the electric flux through a surface is

(24.3)!E # "
surface

E"d A

!E # EA cos )

S U M M A RY

Figure 24.23 The area element +A subtends a solid angle +5 # (+A cos ))/r 2 at the
charge q.

∆Ω
q

r

∆A

∆A cos θ ∆A

θ
E

θ

Figure 24.22 A closed surface of
arbitrary shape surrounds a point
charge q. The net electric flux
through the surface is independent
of the shape of the surface.
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∆Ω
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Take a practice test for
this chapter by clicking on
the Practice Test link at
http://www.pse6.com.
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1. The Sun is lower in the sky during the winter months than
it is in the summer. How does this change the flux of
sunlight hitting a given area on the surface of the Earth?
How does this affect the weather?

2. If the electric field in a region of space is zero, can you con-
clude that no electric charges are in that region? Explain.

3. If more electric field lines leave a gaussian surface than
enter it, what can you conclude about the net charge
enclosed by that surface?

4. A uniform electric field exists in a region of space in which
there are no charges. What can you conclude about the
net electric flux through a gaussian surface placed in this
region of space?

If the total charge inside a closed surface is known but the
distribution of the charge is unspecified, can you use
Gauss’s law to find the electric field? Explain.

6. Explain why the electric flux through a closed surface with
a given enclosed charge is independent of the size or
shape of the surface.

7. Consider the electric field due to a nonconducting infinite
plane having a uniform charge density. Explain why the
electric field does not depend on the distance from the
plane, in terms of the spacing of the electric field lines.

8. Use Gauss’s law to explain why electric field lines must
begin or end on electric charges. (Suggestion: Change the
size of the gaussian surface.)

5.

Q U E S T I O N S

You should be able to apply Equations 24.2 and 24.3 in a variety of situations, particu-
larly those in which symmetry simplifies the calculation.

Gauss’s law says that the net electric flux !E through any closed gaussian surface
is equal to the net charge q in inside the surface divided by /0:

(24.6)

Using Gauss’s law, you can calculate the electric field due to various symmetric
charge distributions. Table 24.1 lists some typical results.

A conductor in electrostatic equilibrium has the following properties:

1. The electric field is zero everywhere inside the conductor.
2. Any net charge on the conductor resides entirely on its surface.
3. The electric field just outside the conductor is perpendicular to its surface and has a

magnitude 4//0, where 4 is the surface charge density at that point.
4. On an irregularly shaped conductor, the surface charge density is greatest where

the radius of curvature of the surface is the smallest.

!E # $ E"d A #
q in

/0

Charge Distribution Electric Field Location

Insulating sphere of radius R, r - R
uniform charge density, and 
total charge Q r , R

Thin spherical shell of radius R r - R
and total charge Q

r , R

Line charge of infinite length Outside the line
and charge per unit length 3

Infinite charged plane having 
Everywhere outside the planesurface charge density 4

Conductor having surface 
Just outside the conductorcharge density 4

Inside the conductor

Typical Electric Field Calculations Using Gauss’s Law

Table 24.1

(

(

( 0

0

 
4

/0
 

 
4

2/0
 

2k e  
3

r  

k e  
Q
r  2

k e  
Q
R  2  r

k e  
Q
r  2



Problems 755

9. On the basis of the repulsive nature of the force between
like charges and the freedom of motion of charge within a
conductor, explain why excess charge on an isolated con-
ductor must reside on its surface.

A person is placed in a large hollow metallic sphere that
is insulated from ground. If a large charge is placed on
the sphere, will the person be harmed upon touching the
inside of the sphere? Explain what will happen if the
person also has an initial charge whose sign is opposite
that of the charge on the sphere.

11. Two solid spheres, both of radius R , carry identical total
charges, Q. One sphere is a good conductor while the
other is an insulator. If the charge on the insulating sphere
is uniformly distributed throughout its interior volume,

10.

how do the electric fields outside these two spheres
compare? Are the fields identical inside the two spheres?

A common demonstration involves charging a rubber
balloon, which is an insulator, by rubbing it on your hair,
and touching the balloon to a ceiling or wall, which is also
an insulator. The electrical attraction between the charged
balloon and the neutral wall results in the balloon sticking
to the wall. Imagine now that we have two infinitely large
flat sheets of insulating material. One is charged and the
other is neutral. If these are brought into contact, will an
attractive force exist between them, as there was for the
balloon and the wall?

13. You may have heard that one of the safer places to be during
a lightning storm is inside a car. Why would this be the case?

12.

Section 24.1 Electric Flux
1. An electric field with a magnitude of 3.50 kN/C is applied

along the x axis. Calculate the electric flux through a rec-
tangular plane 0.350 m wide and 0.700 m long assuming
that (a) the plane is parallel to the yz plane; (b) the plane
is parallel to the xy plane; (c) the plane contains the y axis,
and its normal makes an angle of 40.0° with the x axis.

2. A vertical electric field of magnitude 2.00 & 104 N/C exists
above the Earth’s surface on a day when a thunderstorm is
brewing. A car with a rectangular size of 6.00 m by 3.00 m
is traveling along a roadway sloping downward at 10.0°.
Determine the electric flux through the bottom of the car.

A 40.0-cm-diameter loop is rotated in a uniform electric field
until the position of maximum electric flux is found. The
flux in this position is measured to be 5.20 & 105 N "m2/C.
What is the magnitude of the electric field?

4. Consider a closed triangular box resting within a horizon-
tal electric field of magnitude E # 7.80 & 104 N/C as
shown in Figure P24.4. Calculate the electric flux through
(a) the vertical rectangular surface, (b) the slanted
surface, and (c) the entire surface of the box.

3.

5. A uniform electric field a î $ b ĵ intersects a surface of area
A. What is the flux through this area if the surface lies
(a) in the yz plane? (b) in the xz plane? (c) in the xy plane?

6. A point charge q is located at the center of a uniform ring
having linear charge density 3 and radius a, as shown in
Figure P24.6. Determine the total electric flux through a
sphere centered at the point charge and having radius R ,
where R , a.

7. A pyramid with horizontal square base, 6.00 m on each
side, and a height of 4.00 m is placed in a vertical electric
field of 52.0 N/C. Calculate the total electric flux through
the pyramid’s four slanted surfaces.

8. A cone with base radius R and height h is located on a
horizontal table. A horizontal uniform field E penetrates
the cone, as shown in Figure P24.8. Determine the electric
flux that enters the left-hand side of the cone.

Section 24.2 Gauss’s Law
The following charges are located inside a submarine:
5.00 %C, ' 9.00 %C, 27.0 %C, and ' 84.0 %C. (a) Calculate

9.

1, 2, 3 # straightforward, intermediate, challenging # full solution available in the Student Solutions Manual and Study Guide

# coached solution with hints available at http://www.pse6.com # computer useful in solving problem             

# paired numerical and symbolic problems

P R O B L E M S
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the net electric flux through the hull of the submarine.
(b) Is the number of electric field lines leaving the
submarine greater than, equal to, or less than the number
entering it?

10. The electric field everywhere on the surface of a thin
spherical shell of radius 0.750 m is measured to be
890 N/C and points radially toward the center of the
sphere. (a) What is the net charge within the sphere’s
surface? (b) What can you conclude about the nature and
distribution of the charge inside the spherical shell?

11. Four closed surfaces, S1 through S4, together with the
charges ' 2Q , Q , and 'Q are sketched in Figure P24.11.
(The colored lines are the intersections of the surfaces
with the page.) Find the electric flux through each
surface.

12. (a) A point charge q is located a distance d from an infi-
nite plane. Determine the electric flux through the
plane due to the point charge. (b) What If? A point
charge q is located a very small distance from the center
of a very large square on the line perpendicular to
the square and going through its center. Determine the
approximate electric flux through the square due to the
point charge. (c) Explain why the answers to parts
(a) and (b) are identical.

13. Calculate the total electric flux through the paraboloidal
surface due to a uniform electric field of magnitude E 0 in
the direction shown in Figure P24.13.

14. A point charge of 12.0 %C is placed at the center of a
spherical shell of radius 22.0 cm. What is the total electric
flux through (a) the surface of the shell and (b) any hemi-
spherical surface of the shell? (c) Do the results depend
on the radius? Explain.

A point charge Q is located just above the center
of the flat face of a hemisphere of radius R as shown in
Figure P24.15. What is the electric flux (a) through the
curved surface and (b) through the flat face?

15.

16. In the air over a particular region at an altitude of 500 m
above the ground the electric field is 120 N/C directed
downward. At 600 m above the ground the electric field is
100 N/C downward. What is the average volume charge
density in the layer of air between these two elevations? Is
it positive or negative?

17. A point charge Q # 5.00 %C is located at the center of a
cube of edge L # 0.100 m. In addition, six other identical
point charges having q # ' 1.00 %C are positioned sym-
metrically around Q as shown in Figure P24.17. Determine
the electric flux through one face of the cube.

18. A positive point charge Q is located at the center of a cube
of edge L. In addition, six other identical negative point
charges q are positioned symmetrically around Q as shown
in Figure P24.17. Determine the electric flux through one
face of the cube.
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19. An infinitely long line charge having a uniform charge per
unit length 3 lies a distance d from point O as shown in
Figure P24.19. Determine the total electric flux through
the surface of a sphere of radius R centered at O resulting
from this line charge. Consider both cases, where R , d
and R - d.

20. An uncharged nonconducting hollow sphere of radius
10.0 cm surrounds a 10.0-%C charge located at the origin
of a cartesian coordinate system. A drill with a radius of
1.00 mm is aligned along the z axis, and a hole is drilled in
the sphere. Calculate the electric flux through the hole.

21. A charge of 170 %C is at the center of a cube of edge
80.0 cm. (a) Find the total flux through each face of the
cube. (b) Find the flux through the whole surface of the
cube. (c) What If? Would your answers to parts (a) or
(b) change if the charge were not at the center? Explain.

22. The line ag in Figure P24.22 is a diagonal of a cube. A
point charge q is located on the extension of line ag , very
close to vertex a of the cube. Determine the electric flux
through each of the sides of the cube which meet at the
point a.

Section 24.3 Application of Gauss’s Law to Various
Charge Distributions

23. Determine the magnitude of the electric field at the
surface of a lead-208 nucleus, which contains 82 protons
and 126 neutrons. Assume the lead nucleus has a volume
208 times that of one proton, and consider a proton to be
a sphere of radius 1.20 & 10'15 m.

24. A solid sphere of radius 40.0 cm has a total positive charge
of 26.0 %C uniformly distributed throughout its volume.
Calculate the magnitude of the electric field (a) 0 cm,
(b) 10.0 cm, (c) 40.0 cm, and (d) 60.0 cm from the center
of the sphere.

25. A 10.0-g piece of Styrofoam carries a net charge of
' 0.700 %C and floats above the center of a large horizon-
tal sheet of plastic that has a uniform charge density on its
surface. What is the charge per unit area on the plastic
sheet?

26. A cylindrical shell of radius 7.00 cm and length 240 cm has
its charge uniformly distributed on its curved surface. The
magnitude of the electric field at a point 19.0 cm radially
outward from its axis (measured from the midpoint of the
shell) is 36.0 kN/C. Find (a) the net charge on the shell
and (b) the electric field at a point 4.00 cm from the axis,
measured radially outward from the midpoint of the shell.

27. A particle with a charge of ' 60.0 nC is placed at the
center of a nonconducting spherical shell of inner radius
20.0 cm and outer radius 25.0 cm. The spherical shell
carries charge with a uniform density of ' 1.33 %C/m3.
A proton moves in a circular orbit just outside the
spherical shell. Calculate the speed of the proton.

28. A nonconducting wall carries a uniform charge density of
8.60 %C/cm2. What is the electric field 7.00 cm in front of
the wall? Does your result change as the distance from the
wall is varied?

Consider a long cylindrical charge distribution of
radius R with a uniform charge density 1. Find the electric
field at distance r from the axis where r , R.

30. A solid plastic sphere of radius 10.0 cm has charge with uni-
form density throughout its volume. The electric field
5.00 cm from the center is 86.0 kN/C radially inward. Find
the magnitude of the electric field 15.0 cm from the center.

Consider a thin spherical shell of radius 14.0 cm with a
total charge of 32.0 %C distributed uniformly on its
surface. Find the electric field (a) 10.0 cm and (b) 20.0 cm
from the center of the charge distribution.

32. In nuclear fission, a nucleus of uranium-238, which
contains 92 protons, can divide into two smaller spheres,
each having 46 protons and a radius of 5.90 & 10'15 m.
What is the magnitude of the repulsive electric force
pushing the two spheres apart?

33. Fill two rubber balloons with air. Suspend both of them
from the same point and let them hang down on strings of
equal length. Rub each with wool or on your hair, so that
they hang apart with a noticeable separation from each
other. Make order-of-magnitude estimates of (a) the force
on each, (b) the charge on each, (c) the field each creates
at the center of the other, and (d) the total flux of electric
field created by each balloon. In your solution state the
quantities you take as data and the values you measure or
estimate for them.

34. An insulating solid sphere of radius a has a uniform
volume charge density and carries a total positive charge
Q. A spherical gaussian surface of radius r, which shares a
common center with the insulating sphere, is inflated
starting from r # 0. (a) Find an expression for the electric
flux passing through the surface of the gaussian sphere as
a function of r for r , a. (b) Find an expression for the
electric flux for r - a. (c) Plot the flux versus r.

A uniformly charged, straight filament 7.00 m in length has
a total positive charge of 2.00 %C. An uncharged cardboard
cylinder 2.00 cm in length and 10.0 cm in radius surrounds
the filament at its center, with the filament as the axis of
the cylinder. Using reasonable approximations, find (a) the
electric field at the surface of the cylinder and (b) the total
electric flux through the cylinder.

36. An insulating sphere is 8.00 cm in diameter and carries
a 5.70-%C charge uniformly distributed throughout its
interior volume. Calculate the charge enclosed by a
concentric spherical surface with radius (a) r # 2.00 cm
and (b) r # 6.00 cm.

A large flat horizontal sheet of charge has a charge per
unit area of 9.00 %C/m2. Find the electric field just above
the middle of the sheet.

37.

35.

31.

29.

Problems 757

d c

a
b

e f

gh

q

Figure P24.22



38. The charge per unit length on a long, straight filament is
' 90.0 %C/m. Find the electric field (a) 10.0 cm,
(b) 20.0 cm, and (c) 100 cm from the filament, where
distances are measured perpendicular to the length of
the filament.

Section 24.4 Conductors in Electrostatic Equilibrium
A long, straight metal rod has a radius of 5.00 cm and a
charge per unit length of 30.0 nC/m. Find the electric
field (a) 3.00 cm, (b) 10.0 cm, and (c) 100 cm from the
axis of the rod, where distances are measured perpendicu-
lar to the rod.

40. On a clear, sunny day, a vertical electric field of about
130 N/C points down over flat ground. What is the surface
charge density on the ground for these conditions?

41. A very large, thin, flat plate of aluminum of area A has a
total charge Q uniformly distributed over its surfaces.
Assuming the same charge is spread uniformly over the
upper surface of an otherwise identical glass plate, compare
the electric fields just above the center of the upper
surface of each plate.

42. A solid copper sphere of radius 15.0 cm carries a charge of
40.0 nC. Find the electric field (a) 12.0 cm, (b) 17.0 cm,
and (c) 75.0 cm from the center of the sphere. (d) What
If? How would your answers change if the sphere were
hollow?

43. A square plate of copper with 50.0-cm sides has no net
charge and is placed in a region of uniform electric field
of 80.0 kN/C directed perpendicularly to the plate. Find
(a) the charge density of each face of the plate and (b) the
total charge on each face.

44. A solid conducting sphere of radius 2.00 cm has a charge
of 8.00 %C. A conducting spherical shell of inner radius
4.00 cm and outer radius 5.00 cm is concentric with the
solid sphere and has a total charge of '4.00 %C. Find the
electric field at (a) r # 1.00 cm, (b) r # 3.00 cm, (c) r #
4.50 cm, and (d) r # 7.00 cm from the center of this
charge configuration.

45. Two identical conducting spheres each having a radius of
0.500 cm are connected by a light 2.00-m-long conduct-
ing wire. A charge of 60.0 %C is placed on one of the con-
ductors. Assume that the surface distribution of charge
on each sphere is uniform. Determine the tension in the
wire.

46. The electric field on the surface of an irregularly shaped
conductor varies from 56.0 kN/C to 28.0 kN/C. Calculate
the local surface charge density at the point on the surface
where the radius of curvature of the surface is (a) greatest
and (b) smallest.

A long, straight wire is surrounded by a hollow metal cylin-
der whose axis coincides with that of the wire. The wire
has a charge per unit length of 3, and the cylinder has a
net charge per unit length of 23. From this information,
use Gauss’s law to find (a) the charge per unit length on
the inner and outer surfaces of the cylinder and (b) the
electric field outside the cylinder, a distance r from the
axis.

47.

39.

48. A conducting spherical shell of radius 15.0 cm carries a
net charge of ' 6.40 %C uniformly distributed on its
surface. Find the electric field at points (a) just outside the
shell and (b) inside the shell.

A thin square conducting plate 50.0 cm on a side lies
in the xy plane. A total charge of 4.00 & 10'8 C is placed
on the plate. Find (a) the charge density on the plate,
(b) the electric field just above the plate, and (c) the
electric field just below the plate. You may assume that the
charge density is uniform.

50. A conducting spherical shell of inner radius a and outer
radius b carries a net charge Q. A point charge q is placed
at the center of this shell. Determine the surface charge
density on (a) the inner surface of the shell and (b) the
outer surface of the shell.

51. A hollow conducting sphere is surrounded by a larger
concentric spherical conducting shell. The inner sphere
has charge 'Q , and the outer shell has net charge $ 3Q .
The charges are in electrostatic equilibrium. Using
Gauss’s law, find the charges and the electric fields
everywhere.

52. A positive point charge is at a distance R/2 from the center
of an uncharged thin conducting spherical shell of radius
R. Sketch the electric field lines set up by this arrangement
both inside and outside the shell.

Section 24.5 Formal Derivation of Gauss’s Law
A sphere of radius R surrounds a point charge Q , located
at its center. (a) Show that the electric flux through a cir-
cular cap of half-angle ) (Fig. P24.53) is

What is the flux for (b) ) # 90° and (c) ) # 180°?

!6 #
Q

2/ 0
  (1 ' cos ))

53.

49.

Additional Problems
54. A nonuniform electric field is given by the expression

E # ay î $ bz ĵ $ cx k̂ , where a, b, and c are constants. 
Determine the electric flux through a rectangular surface
in the xy plane, extending from x # 0 to x # w and from
y # 0 to y # h.
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55. A solid insulating sphere of radius a carries a net positive
charge 3Q , uniformly distributed throughout its volume.
Concentric with this sphere is a conducting spherical shell
with inner radius b and outer radius c, and having a net
charge 'Q , as shown in Figure P24.55. (a) Construct a
spherical gaussian surface of radius r - c and find the net
charge enclosed by this surface. (b) What is the direction
of the electric field at r - c? (c) Find the electric field at
r - c. (d) Find the electric field in the region with radius r
where c - r - b. (e) Construct a spherical gaussian surface
of radius r, where c - r - b, and find the net charge
enclosed by this surface. (f) Construct a spherical gaussian
surface of radius r, where b - r - a, and find the net
charge enclosed by this surface. (g) Find the electric field
in the region b - r - a. (h) Construct a spherical gaussian
surface of radius r , a, and find an expression for the net
charge enclosed by this surface, as a function of r. Note
that the charge inside this surface is less than 3Q. (i) Find
the electric field in the region r , a. ( j) Determine the
charge on the inner surface of the conducting shell.
(k) Determine the charge on the outer surface of the
conducting shell. (l) Make a plot of the magnitude of the
electric field versus r.

56. Consider two identical conducting spheres whose surfaces
are separated by a small distance. One sphere is given a
large net positive charge while the other is given a small
net positive charge. It is found that the force between
them is attractive even though both spheres have net
charges of the same sign. Explain how this is possible.

A solid, insulating sphere of radius a has a uniform
charge density 1 and a total charge Q. Concentric with this
sphere is an uncharged, conducting hollow sphere whose
inner and outer radii are b and c, as shown in Figure
P24.57. (a) Find the magnitude of the electric field in the
regions r , a, a , r , b, b , r , c, and r - c. (b) Deter-
mine the induced charge per unit area on the inner and
outer surfaces of the hollow sphere.

57.

58. For the configuration shown in Figure P24.57, suppose
that a # 5.00 cm, b # 20.0 cm, and c # 25.0 cm. Further-
more, suppose that the electric field at a point 10.0 cm
from the center is measured to be 3.60 & 103 N/C radially
inward while the electric field at a point 50.0 cm from the
center is 2.00 & 102 N/C radially outward. From this infor-
mation, find (a) the charge on the insulating sphere,
(b) the net charge on the hollow conducting sphere, and
(c) the charges on the inner and outer surfaces of the
hollow conducting sphere.

59. A particle of mass m and charge q moves at high speed
along the x axis. It is initially near x # ' 7, and it ends
up near x # $ 7. A second charge Q is fixed at the point
x # 0, y # 'd. As the moving charge passes the stationary
charge, its x component of velocity does not change appre-
ciably, but it acquires a small velocity in the y direction.
Determine the angle through which the moving charge is
deflected. Suggestion: The integral you encounter in deter-
mining vy can be evaluated by applying Gauss’s law to a
long cylinder of radius d, centered on the stationary
charge.

60. Review problem. An early (incorrect) model of the hydro-
gen atom, suggested by J. J. Thomson, proposed that a pos-
itive cloud of charge $ e was uniformly distributed
throughout the volume of a sphere of radius R, with the
electron an equal-magnitude negative point charge ' e at
the center. (a) Using Gauss’s law, show that the electron
would be in equilibrium at the center and, if displaced
from the center a distance r , R , would experience a
restoring force of the form F # 'Kr, where K is a constant.
(b) Show that K # ke e 2/R 3. (c) Find an expression for the
frequency f of simple harmonic oscillations that an
electron of mass me would undergo if displaced a small
distance (,R) from the center and released. (d) Calculate
a numerical value for R that would result in a frequency of
2.47 & 1015 Hz, the frequency of the light radiated in the
most intense line in the hydrogen spectrum.

61. An infinitely long cylindrical insulating shell of inner
radius a and outer radius b has a uniform volume charge
density 1. A line of uniform linear charge density 3 is
placed along the axis of the shell. Determine the electric
field everywhere.

62. Two infinite, nonconducting sheets of charge are parallel
to each other, as shown in Figure P24.62. The sheet on the
left has a uniform surface charge density 4, and the one
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on the right has a uniform charge density '4. Calculate
the electric field at points (a) to the left of, (b) in between,
and (c) to the right of the two sheets.

What If? Repeat the calculations for Problem 62
when both sheets have positive uniform surface charge den-
sities of value 4.

64. A sphere of radius 2a is made of a nonconducting material
that has a uniform volume charge density 1. (Assume that
the material does not affect the electric field.) A spherical
cavity of radius a is now removed from the sphere, as
shown in Figure P24.64. Show that the electric field within
the cavity is uniform and is given by Ex # 0 and Ey #
1a/3/0. (Suggestion: The field within the cavity is the super-
position of the field due to the original uncut sphere, plus
the field due to a sphere the size of the cavity with a uni-
form negative charge density '1.)

63.

65. A uniformly charged spherical shell with surface charge
density 4 contains a circular hole in its surface. The radius
of the hole is small compared with the radius of the
sphere. What is the electric field at the center of the hole?
(Suggestion: This problem, like Problem 64, can be solved
by using the idea of superposition.)

66. A closed surface with dimensions a # b # 0.400 m and
c # 0.600 m is located as in Figure P24.66. The left edge of
the closed surface is located at position x # a. The electric
field throughout the region is nonuniform and given by
E # (3.0 $ 2.0x2)î N/C, where x is in meters. Calculate
the net electric flux leaving the closed surface. What net
charge is enclosed by the surface?

A solid insulating sphere of radius R has a nonuniform
charge density that varies with r according to the expression
1 # Ar 2, where A is a constant and r , R is measured from
the center of the sphere. (a) Show that the magnitude of the
electric field outside (r - R) the sphere is E # AR 5/5/0r 2.
(b) Show that the magnitude of the electric field inside
(r , R) the sphere is E # Ar 3/5/0. (Suggestion: The total
charge Q on the sphere is equal to the integral of 1 dV, where
r extends from 0 to R ; also, the charge q within a radius
r , R is less than Q. To evaluate the integrals, note that the
volume element dV for a spherical shell of radius r and
thickness dr is equal to 4(r 2dr.)

68. A point charge Q is located on the axis of a disk of radius
R at a distance b from the plane of the disk (Fig. P24.68).
Show that if one fourth of the electric flux from the
charge passes through the disk, then R # √3b.

67.

69. A spherically symmetric charge distribution has a charge
density given by 1 # a/r, where a is constant. Find the
electric field as a function of r. (Suggestion: The charge
within a sphere of radius R is equal to the integral of 1 dV,
where r extends from 0 to R. To evaluate the integral, note
that the volume element dV for a spherical shell of radius r
and thickness dr is equal to 4(r 2dr.)

70. An infinitely long insulating cylinder of radius R has a
volume charge density that varies with the radius as

where 10, a, and b are positive constants and r is the
distance from the axis of the cylinder. Use Gauss’s law to
determine the magnitude of the electric field at radial
distances (a) r , R and (b) r - R.

Review problem. A slab of insulating material (infinite in
two of its three dimensions) has a uniform positive charge
density 1. An edge view of the slab is shown in Figure
P24.71. (a) Show that the magnitude of the electric field a
distance x from its center and inside the slab is E # 1x//0.
(b) What If? Suppose an electron of charge 'e and mass
me can move freely within the slab. It is released from rest
at a distance x from the center. Show that the electron
exhibits simple harmonic motion with a frequency

f #
1

2(
  √ 1e

me /0

71.

1 # 10  %a '
r
b &
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72. A slab of insulating material has a nonuniform positive
charge density 1 # Cx 2, where x is measured from the
center of the slab as shown in Figure P24.71, and C is a
constant. The slab is infinite in the y and z directions.
Derive expressions for the electric field in (a) the exterior
regions and (b) the interior region of the slab
('d/2 , x , d/2).

73. (a) Using the mathematical similarity between Coulomb’s
law and Newton’s law of universal gravitation, show that
Gauss’s law for gravitation can be written as

where m in is the net mass inside the gaussian surface and
g # Fg/m represents the gravitational field at any point on

$ g"dA # '4(Gm in

the gaussian surface. (b) Determine the gravitational field
at a distance r from the center of the Earth where r , RE ,
assuming that the Earth’s mass density is uniform.

Answers to Quick Quizzes
24.1 (e). The same number of field lines pass through a

sphere of any size. Because points on the surface of the
sphere are closer to the charge, the field is stronger.

24.2 (d). All field lines that enter the container also leave the
container so that the total flux is zero, regardless of the
nature of the field or the container.

24.3 (b) and (d). Statement (a) is not necessarily true because
an equal number of positive and negative charges could
be present inside the surface. Statement (c) is not neces-
sarily true, as can be seen from Figure 24.8: a nonzero
electric field exists everywhere on the surface, but the
charge is not enclosed within the surface; thus, the net
flux is zero.

24.4 (c). The charges q1 and q4 are outside the surface and
contribute zero net flux through S *.

24.5 (d). We don’t need the surfaces to realize that any given
point in space will experience an electric field due to all
local source charges.

24.6 (a). Charges added to the metal cylinder by your brother
will reside on the outer surface of the conducting cylin-
der. If you are on the inside, these charges cannot
transfer to you from the inner surface. For this same
reason, you are safe in a metal automobile during a
lightning storm.
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! Processes occurring during thunderstorms cause large differences in electric potential
between a thundercloud and the ground. The result of this potential difference is an electrical
discharge that we call lightning, such as this display over Tucson, Arizona. (© Keith Kent/
Photo Researchers, Inc.)

Chapter 25

762



763

The concept of potential energy was introduced in Chapter 8 in connection with such
conservative forces as the gravitational force and the elastic force exerted by a spring. By
using the law of conservation of energy, we were able to avoid working directly with
forces when solving various problems in mechanics. The concept of potential energy is
also of great value in the study of electricity. Because the electrostatic force is conserva-
tive, electrostatic phenomena can be conveniently described in terms of an electric
potential energy. This idea enables us to define a scalar quantity known as electric potential.
Because the electric potential at any point in an electric field is a scalar quantity, we can
use it to describe electrostatic phenomena more simply than if we were to rely only on
the electric field and electric forces. The concept of electric potential is of great practical
value in the operation of electric circuits and devices we will study in later chapters.

25.1 Potential Difference and Electric Potential

When a test charge q0 is placed in an electric field E created by some source charge
distribution, the electric force acting on the test charge is q0E. The force q0E is
conservative because the force between charges described by Coulomb’s law is conserv-
ative. When the test charge is moved in the field by some external agent, the work
done by the field on the charge is equal to the negative of the work done by the exter-
nal agent causing the displacement. This is analogous to the situation of lifting an
object with mass in a gravitational field—the work done by the external agent is mgh
and the work done by the gravitational force is !mgh.

When analyzing electric and magnetic fields, it is common practice to use the
notation ds to represent an infinitesimal displacement vector that is oriented tangent
to a path through space. This path may be straight or curved, and an integral
performed along this path is called either a path integral or a line integral (the two terms
are synonymous).

For an infinitesimal displacement ds of a charge, the work done by the electric
field on the charge is F " ds # q0E " ds. As this amount of work is done by the field, the
potential energy of the charge–field system is changed by an amount dU # ! q0E " ds.
For a finite displacement of the charge from point A to point B, the change in poten-
tial energy of the system $U # UB ! UA is

(25.1)

The integration is performed along the path that q0 follows as it moves from A to B.
Because the force q0E is conservative, this line integral does not depend on the
path taken from A to B.

For a given position of the test charge in the field, the charge–field system has a
potential energy U relative to the configuration of the system that is defined as U # 0.
Dividing the potential energy by the test charge gives a physical quantity that depends
only on the source charge distribution. The potential energy per unit charge U/q0 is

$U # !q 0 !B

A
  E"d s Change in electric potential

energy of a system
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independent of the value of q0 and has a value at every point in an electric field. This
quantity U/q0 is called the electric potential (or simply the potential) V. Thus, the
electric potential at any point in an electric field is

(25.2)

The fact that potential energy is a scalar quantity means that electric potential also is a
scalar quantity.

As described by Equation 25.1, if the test charge is moved between two positions A
and B in an electric field, the charge–field system experiences a change in potential
energy. The potential difference $V # VB ! VA between two points A and B in an
electric field is defined as the change in potential energy of the system when a test
charge is moved between the points divided by the test charge q0:

(25.3)

Just as with potential energy, only differences in electric potential are meaningful. To
avoid having to work with potential differences, however, we often take the value of the
electric potential to be zero at some convenient point in an electric field.

Potential difference should not be confused with difference in potential energy.
The potential difference between A and B depends only on the source charge distribu-
tion (consider points A and B without the presence of the test charge), while the differ-
ence in potential energy exists only if a test charge is moved between the points.
Electric potential is a scalar characteristic of an electric field, independent of
any charges that may be placed in the field.

If an external agent moves a test charge from A to B without changing the kinetic
energy of the test charge, the agent performs work which changes the potential energy
of the system: W # $U. The test charge q0 is used as a mental device to define the elec-
tric potential. Imagine an arbitrary charge q located in an electric field. From Equation
25.3, the work done by an external agent in moving a charge q through an electric
field at constant velocity is

(25.4)

Because electric potential is a measure of potential energy per unit charge, the SI
unit of both electric potential and potential difference is joules per coulomb, which is
defined as a volt (V):

That is, 1 J of work must be done to move a 1-C charge through a potential difference
of 1 V.

Equation 25.3 shows that potential difference also has units of electric field times
distance. From this, it follows that the SI unit of electric field (N/C) can also be
expressed in volts per meter:

Therefore, we can interpret the electric field as a measure of the rate of change
with position of the electric potential.

A unit of energy commonly used in atomic and nuclear physics is the electron volt
(eV), which is defined as the energy a charge–field system gains or loses when
a charge of magnitude e (that is, an electron or a proton) is moved through a
potential difference of 1 V. Because 1 V # 1 J/C and because the fundamental
charge is 1.60 % 10!19 C, the electron volt is related to the joule as follows:

(25.5)1 e V # 1.60 % 10!19 C "V # 1.60 % 10!19 J

1  
N
C

# 1  
V
m

1 V " 1  
J
C

W # q $V

$V " 
$U
q 0

# !!B

A
  E"d s

V #
U
q 0

! PITFALL PREVENTION 
25.1 Potential and

Potential Energy
The potential is characteristic of
the field only, independent of a
charged test particle that may be
placed in the field. Potential energy
is characteristic of the charge–field
system due to an interaction
between the field and a charged
particle placed in the field.

! PITFALL PREVENTION 
25.2 Voltage
A variety of phrases are used to
describe the potential difference
between two points, the most
common being voltage, arising
from the unit for potential. A
voltage applied to a device, such
as a television, or across a device is
the same as the potential differ-
ence across the device. If we say
that the voltage applied to a
lightbulb is 120 volts, we mean
that the potential difference
between the two electrical
contacts on the lightbulb is
120 volts.

Potential difference between
two points

The electron volt
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For instance, an electron in the beam of a typical television picture tube may have a
speed of 3.0 % 107 m/s. This corresponds to a kinetic energy of 4.1 % 10!16 J, which is
equivalent to 2.6 % 103 eV. Such an electron has to be accelerated from rest through a
potential difference of 2.6 kV to reach this speed.

! PITFALL PREVENTION 
25.3 The Electron Volt
The electron volt is a unit of
energy, NOT of potential. The
energy of any system may be
expressed in eV, but this unit is
most convenient for describing
the emission and absorption of
visible light from atoms. Energies
of nuclear processes are often
expressed in MeV.

Quick Quiz 25.1 In Figure 25.1, two points A and B are located within a
region in which there is an electric field. The potential difference $V # VB ! VA is
(a) positive (b) negative (c) zero.

Quick Quiz 25.2 In Figure 25.1, a negative charge is placed at A and then
moved to B. The change in potential energy of the charge–field system for this process
is (a) positive (b) negative (c) zero.

A

B

E

Figure 25.1 (Quick Quiz 25.1)
Two points in an electric field.

25.2 Potential Differences in a Uniform
Electric Field

Equations 25.1 and 25.3 hold in all electric fields, whether uniform or varying, but they
can be simplified for a uniform field. First, consider a uniform electric field directed
along the negative y axis, as shown in Figure 25.2a. Let us calculate the potential differ-
ence between two points A and B separated by a distance #s # # d, where s is parallel to
the field lines. Equation 25.3 gives

Because E is constant, we can remove it from the integral sign; this gives

(25.6)

The negative sign indicates that the electric potential at point B is lower than at point
A; that is, VB & VA. Electric field lines always point in the direction of decreasing
electric potential, as shown in Figure 25.2a.

$V # !E !B

A
  d s # !E d

VB ! VA # $V # !!B

A
 E"d s # !!B

A
 (E  cos  0')d s # !!B

A
 E ds

d

B

A

q

E

(a) (b)

g

d

B

A

m

Figure 25.2 (a) When the electric field E is directed downward, point B is at a lower
electric potential than point A. When a positive test charge moves from point A to
point B, the charge–field system loses electric potential energy. (b) When an object of
mass m moves downward in the direction of the gravitational field g, the object–field
system loses gravitational potential energy.

Potential difference between
two points in a uniform electric
field



Now suppose that a test charge q0 moves from A to B. We can calculate the change
in the potential energy of the charge–field system from Equations 25.3 and 25.6:

(25.7)

From this result, we see that if q0 is positive, then $U is negative. We conclude that a
system consisting of a positive charge and an electric field loses electric poten-
tial energy when the charge moves in the direction of the field. This means that
an electric field does work on a positive charge when the charge moves in the direction
of the electric field. (This is analogous to the work done by the gravitational field on a
falling object, as shown in Figure 25.2b.) If a positive test charge is released from rest
in this electric field, it experiences an electric force q0E in the direction of E
(downward in Fig. 25.2a). Therefore, it accelerates downward, gaining kinetic energy.
As the charged particle gains kinetic energy, the charge–field system loses an
equal amount of potential energy. This should not be surprising—it is simply conser-
vation of energy in an isolated system as introduced in Chapter 8.

If q0 is negative, then $U in Equation 25.7 is positive and the situation is reversed:
A system consisting of a negative charge and an electric field gains electric po-
tential energy when the charge moves in the direction of the field. If a negative
charge is released from rest in an electric field, it accelerates in a direction opposite
the direction of the field. In order for the negative charge to move in the direction of
the field, an external agent must apply a force and do positive work on the charge.

Now consider the more general case of a charged particle that moves between A
and B in a uniform electric field such that the vector s is not parallel to the field lines,
as shown in Figure 25.3. In this case, Equation 25.3 gives

(25.8)

where again we are able to remove E from the integral because it is constant. The
change in potential energy of the charge–field system is

(25.9)

Finally, we conclude from Equation 25.8 that all points in a plane perpendicular to a
uniform electric field are at the same electric potential. We can see this in Figure 25.3,
where the potential difference VB ! VA is equal to the potential difference VC ! VA.
(Prove this to yourself by working out the dot product E !s for sA:B , where the angle (
between E and s is arbitrary as shown in Figure 25.3, and the dot product for sA:C ,
where ( # 0.) Therefore, VB # VC . The name equipotential surface is given to any
surface consisting of a continuous distribution of points having the same electric
potential.

The equipotential surfaces of a uniform electric field consist of a family of parallel
planes that are all perpendicular to the field. Equipotential surfaces for fields with
other symmetries are described in later sections.

$U # q 0  $V # !q 0  E"s

$V # !!B

A
 E"d s # !  E"!B

A

 d s # !  E"s

$U # q 0   $V # !q 0  E d
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E

B

CA

s

θ d

Figure 25.3 A uniform electric
field directed along the positive
x axis. Point B is at a lower electric
potential than point A. Points
B and C are at the same electric
potential.

A

B

C

E
D

9 V

8 V

7 V

6 V
Figure 25.4 (Quick Quiz 25.3)
Four equipotential surfaces.

Quick Quiz 25.3 The labeled points in Figure 25.4 are on a series of equipo-
tential surfaces associated with an electric field. Rank (from greatest to least) the work
done by the electric field on a positively charged particle that moves from A to B ; from
B to C ; from C to D ; from D to E.

Quick Quiz 25.4 For the equipotential surfaces in Figure 25.4, what is
the approximate direction of the electric field? (a) Out of the page (b) Into the page
(c) Toward the right edge of the page (d) Toward the left edge of the page (e) Toward
the top of the page (f) Toward the bottom of the page.

Change in potential energy
when a charged particle is
moved in a uniform electric field
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Example 25.1 The Electric Field Between Two Parallel Plates of Opposite Charge

uniform. (This assumption is reasonable if the plate separa-
tion is small relative to the plate dimensions and if we do not
consider locations near the plate edges.) Find the magnitude
of the electric field between the plates.

Solution The electric field is directed from the positive
plate (A) to the negative one (B), and the positive plate is at
a higher electric potential than the negative plate is. The
potential difference between the plates must equal the
potential difference between the battery terminals. We can
understand this by noting that all points on a conductor in
equilibrium are at the same electric potential1; no potential
difference exists between a terminal and any portion of the
plate to which it is connected. Therefore, the magnitude of
the electric field between the plates is, from Equation 25.6,

The configuration of plates in Figure 25.5 is called a
parallel-plate capacitor, and is examined in greater detail in
Chapter 26.

4.0 % 103  V/mE #
# VB ! VA#

d
#

12 V
0.30 % 10!2 m

#

A battery produces a specified potential difference $V
between conductors attached to the battery terminals. A 12-V
battery is connected between two parallel plates, as shown in
Figure 25.5. The separation between the plates is d # 0.30 cm,
and we assume the electric field between the plates to be

2.8 % 106  m/s#

 # √ !2(1.6 % 10!19 C)(!4.0 % 104 V)
1.67 % 10!27 kg

 v # √ !(2e  $V  )
m

 

(1
2mv 

2 ! 0) ) e  $V # 0 

 $K ) $U # 0

+ –
∆V = 12 V

A

B

d

Figure 25.5 (Example 25.1) A 12-V battery connected to two
parallel plates. The electric field between the plates has a mag-
nitude given by the potential difference $V divided by the plate
separation d .

Example 25.2 Motion of a Proton in a Uniform Electric Field

Solution The charge–field system is isolated, so the mech-
anical energy of the system is conserved:

A proton is released from rest in a uniform electric field that
has a magnitude of 8.0 % 104 V/m (Fig. 25.6). The proton
undergoes a displacement of 0.50 m in the direction of E.

(A) Find the change in electric potential between points A
and B.

Solution Because the positively charged proton moves in
the direction of the field, we expect it to move to a position
of lower electric potential. From Equation 25.6, we have

d

B
A

+
+

+

+

+

+

+

+

–

–

–

–

–

–

–

vvA = 0

E

Figure 25.6 (Example 25.2) A proton accelerates from A to B
in the direction of the electric field.

What If? What if the situation is exactly the same as that
shown in Figure 25.6, but no proton is present? Could both
parts (A) and (B) of this example still be answered?

1 The electric field vanishes within a conductor in electrostatic equilibrium; thus, the path integral
between any two points in the conductor must be zero. A more complete discussion of this point is
given in Section 25.6.

Interactive

!4.0 % 104 V$V # !Ed # !(8.0 % 104 V/m)(0.50 m) #

(B) Find the change in potential energy of the proton–field
system for this displacement.

Solution Using Equation 25.3,

The negative sign means the potential energy of the system
decreases as the proton moves in the direction of the elec-
tric field. As the proton accelerates in the direction of the
field, it gains kinetic energy and at the same time the system
loses electric potential energy.

(C) Find the speed of the proton after completing the
0.50 m displacement in the electric field.

!6.4 % 10!15 J#

 # (1.6 % 10!19 C)(!4.0 % 104 V)

$U # q 0   $V # e   $V



25.3 Electric Potential and Potential Energy
Due to Point Charges

In Section 23.4 we discussed the fact that an isolated positive point charge q produces
an electric field that is directed radially outward from the charge. To find the electric
potential at a point located a distance r from the charge, we begin with the general
expression for potential difference:

where A and B are the two arbitrary points shown in Figure 25.7. At any point in
space, the electric field due to the point charge is (Eq. 23.9), where is
a unit vector directed from the charge toward the point. The quantity E " ds can be
expressed as

Because the magnitude of is 1, the dot product " ds # ds cos (, where ( is the angle
between and ds. Furthermore, ds cos ( is the projection of ds onto r; thus, ds cos ( #
dr. That is, any displacement ds along the path from point A to point B produces a
change dr in the magnitude of r, the position vector of the point relative to the charge
creating the field. Making these substitutions, we find that E " ds # (keq/r2)dr ; hence,
the expression for the potential difference becomes

(25.10)

This equation shows us that the integral of E " ds is independent of the path between
points A and B. Multiplying by a charge q0 that moves between points A and B, we see
that the integral of q0E " ds is also independent of path. This latter integral is the
work done by the electric force, which tells us that the electric force is conservative
(see Section 8.3). We define a field that is related to a conservative force as a conserv-
ative field. Thus, Equation 25.10 tells us that the electric field of a fixed point charge
is conservative. Furthermore, Equation 25.10 expresses the important result that the
potential difference between any two points A and B in a field created by a point
charge depends only on the radial coordinates rA and rB . It is customary to choose the
reference of electric potential for a point charge to be V # 0 at rA # *. With this
reference choice, the electric potential created by a point charge at any distance r
from the charge is

(25.11)V # ke   
q
r

VB ! VA # ke q  $ 1
rB

!
1
rA
%

VB ! VA # !ke q  !rB

rA
 
d r
r 

2 #
ke q
r %rB

rA

r̂
r̂r̂

E"d s # ke   
q
r 2    r̂ "d s

r̂E #  ke q r̂/r 
2

VB ! VA # ! !B

A
  E"d s
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charge. Part (B) of the example would be meaningless if
the proton is not present. A change in potential energy is
related to a change in the charge–field system. In the
absence of the proton, the system of the electric field alone
does not change.

Answer Part (A) of the example would remain exactly the
same because the potential difference between points A
and B is established by the source charges in the parallel
plates. The potential difference does not depend on the
presence of the proton, which plays the role of a test

At the Interactive Worked Example link at http://www.pse6.com, you can predict and observe the speed of the proton as it
arrives at the negative plate for random values of the electric field.

dr ds
θ

r

A

rB

B

q

r
rA

ˆ

Figure 25.7 The potential differ-
ence between points A and B due to
a point charge q depends only on the
initial and final radial coordinates rA
and rB . The two dashed circles rep-
resent intersections of spherical
equipotential surfaces with the page.

! PITFALL PREVENTION 
25.4 Similar Equation

Warning
Do not confuse Equation 25.11
for the electric potential of a
point charge with Equation 23.9
for the electric field of a point
charge. Potential is proportional
to 1/r, while the field is propor-
tional to 1/r 2. The effect of a
charge on the space surrounding
it can be described in two ways.
The charge sets up a vector elec-
tric field E, which is related to
the force experienced by a test
charge placed in the field. It also
sets up a scalar potential V, which
is related to the potential energy
of the two-charge system when a
test charge is placed in the field.
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Figure 25.8 shows a plot of the electric potential on the vertical axis for a positive
charge located in the xy plane. Consider the following analogy to gravitational poten-
tial: imagine trying to roll a marble toward the top of a hill shaped like the surface in
Figure 25.8. Pushing the marble up the hill is analogous to pushing one positively
charged object toward another positively charged object. Similarly, the electric poten-
tial graph of the region surrounding a negative charge is analogous to a “hole’’ with
respect to any approaching positively charged objects. A charged object must be infi-
nitely distant from another charge before the surface in Figure 25.8 is “flat’’ and has an
electric potential of zero.

We obtain the electric potential resulting from two or more point charges by apply-
ing the superposition principle. That is, the total electric potential at some point P due
to several point charges is the sum of the potentials due to the individual charges. For
a group of point charges, we can write the total electric potential at P in the form

(25.12)

where the potential is again taken to be zero at infinity and ri is the distance from the
point P to the charge qi. Note that the sum in Equation 25.12 is an algebraic sum of
scalars rather than a vector sum (which we use to calculate the electric field of a group
of charges). Thus, it is often much easier to evaluate V than to evaluate E. The electric
potential around a dipole is illustrated in Figure 25.9. Notice the steep slope of the
potential between the charges, representing a region of strong electric field.
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Figure 25.8 The electric potential in the
plane around a single positive charge is
plotted on the vertical axis. (The electric
potential function for a negative charge
would look like a hole instead of a hill.) The
red line shows the 1/r nature of the electric
potential, as given by Equation 25.11.
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Figure 25.9 The electric
potential in the plane
containing a dipole.

Electric potential due to several
point charges



We now consider the potential energy of a system of two charged particles. If V2 is
the electric potential at a point P due to charge q2, then the work an external agent
must do to bring a second charge q1 from infinity to P without acceleration is q1V2.
This work represents a transfer of energy into the system and the energy appears in the
system as potential energy U when the particles are separated by a distance r12 (Fig.
25.10a). Therefore, we can express the potential energy of the system as2

(25.13)

Note that if the charges are of the same sign, U is positive. This is consistent with the
fact that positive work must be done by an external agent on the system to bring the
two charges near one another (because charges of the same sign repel). If the charges
are of opposite sign, U is negative; this means that negative work is done by an external
agent against the attractive force between the charges of opposite sign as they are
brought near each other—a force must be applied opposite to the displacement to
prevent q1 from accelerating toward q2.

In Figure 25.10b, we have removed the charge q1. At the position that this charge pre-
viously occupied, point P, we can use Equations 25.2 and 25.13 to define a potential due
to charge q 2 as V # U/q1 # ke q 2/r12. This expression is consistent with Equation 25.11.

If the system consists of more than two charged particles, we can obtain the total
potential energy by calculating U for every pair of charges and summing the terms
algebraically. As an example, the total potential energy of the system of three charges
shown in Figure 25.11 is

(25.14)

Physically, we can interpret this as follows: imagine that q1 is fixed at the position
shown in Figure 25.11 but that q2 and q3 are at infinity. The work an external agent
must do to bring q2 from infinity to its position near q1 is ke q1q2/r 12, which is the first
term in Equation 25.14. The last two terms represent the work required to bring q3
from infinity to its position near q1 and q2. (The result is independent of the order in
which the charges are transported.)

U # ke   ' q 1 q  2

r 12
)

q 1 q 3

r 13
)

q 2 q 3

r  23
(

U # ke   
q 1 q 2

r 12
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Active Figure 25.10 (a) If two
point charges are separated by a
distance r12, the potential energy of
the pair of charges is given by
keq1q2/r12. (b) If charge q1 is
removed, a potential keq2/r12 exists
at point P due to charge q 2.

At the Active Figures link at
http://www.pse6.com, you can
move charge q1 or point P and
see the result on the electric po-
tential energy of the system for
part (a) and the electric poten-
tial due to charge q2 for part (b).

2 The expression for the electric potential energy of a system made up of two point charges, Equa-
tion 25.13, is of the same form as the equation for the gravitational potential energy of a system made
up of two point masses, !Gm1m2/r (see Chapter 13). The similarity is not surprising in view of the fact
that both expressions are derived from an inverse-square force law.

! PITFALL PREVENTION 
25.5 Which Work?
There is a difference between
work done by one member of a
system on another member and work
done on a system by an external
agent. In the present discussion,
we are considering the group of
charges to be the system and an
external agent is doing work on
the system to move the charges
from an infinite separation to a
small separation.

Figure 25.11 Three point charges
are fixed at the positions shown. The
potential energy of this system of
charges is given by Equation 25.14.

Quick Quiz 25.5 A spherical balloon contains a positively charged
object at its center. As the balloon is inflated to a greater volume while the charged
object remains at the center, does the electric potential at the surface of the balloon
(a) increase, (b) decrease, or (c) remain the same? Does the electric flux through the
surface of the balloon (d) increase, (e) decrease, or (f) remain the same?

Quick Quiz 25.6 In Figure 25.10a, take q1 to be a negative source charge
and q2 to be the test charge. If q2 is initially positive and is changed to a charge of the
same magnitude but negative, the potential at the position of q2 due to q1 (a) increases
(b) decreases (c) remains the same.

Quick Quiz 25.7 Consider the situation in Quick Quiz 25.6 again. When q2
is changed from positive to negative, the potential energy of the two-charge system
(a) increases (b) decreases (c) remains the same.

(a)

q1

q2r12

(b)

q2r12

V  = ke
q2
r12

P

q2

q1

q3

r13

r12

r23
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Example 25.3 The Electric Potential Due to Two Point Charges

external agent to remove the charge from point P back to
infinity.

What If? You are working through this example with a
classmate and she says, “Wait a minute! In part (B), we ig-
nored the potential energy associated with the pair of
charges q1 and q2!’’ How would you respond?

Answer Given the statement of the problem, it is not nec-
essary to include this potential energy, because part (B) asks
for the change in potential energy of the system as q3 is
brought in from infinity. Because the configuration of
charges q1 and q2 does not change in the process, there is
no $U associated with these charges. However, if part (B)
had asked to find the change in potential energy when all
three charges start out infinitely far apart and are then
brought to the positions in Figure 25.12b, we would need to
calculate the change as follows, using Equation 25.14:

# !5.48 % 10!2  J

)
(3.00 % 10!6 C)(!6.00 % 10!6 C)

5.00 m ( 

 )
(2.00 % 10!6 C)(3.00 % 10!6 C)

4.00 m

% ' (2.00 % 10!6 C)(!6.00 % 10!6 C)
3.00 m

 # (8.99 % 109 N"m2/C2)

U # ke   ' q 1q 2

r 12
)

q 1q 3

r 13
)

q 2q 3

r  23
( 

A charge q1 # 2.00 +C is located at the origin, and a charge
q2 # ! 6.00 +C is located at (0, 3.00) m, as shown in Figure
25.12a.

(A) Find the total electric potential due to these charges at
the point P, whose coordinates are (4.00, 0) m.

Solution For two charges, the sum in Equation 25.12 gives

(B) Find the change in potential energy of the system of
two charges plus a charge q3 # 3.00 +C as the latter charge
moves from infinity to point P (Fig. 25.12b).

Solution When the charge q3 is at infinity, let us define
Ui # 0 for the system, and when the charge is at P,
Uf # q3VP ; therefore,

Therefore, because the potential energy of the system has
decreased, positive work would have to be done by an

!1.89 % 10!2 J#

$U # q 3VP ! 0 # (3.00 % 10!6 C)(!6.29 % 103 V)

!6.29 % 103  V#

% ' 2.00 % 10!6 C
4.00 m

!
6.00 % 10!6 C

5.00 m (
VP # (8.99 % 109 N"m2/C2)

VP # ke  ' q 1

r 1
)

q 2

r 2
(

Explore the value of the electric potential at point P and the electric potential energy of the system in Figure 25.12b at the
Interactive Worked Example link at http://www.pse6.com.

(a)

4.00 m

x

–6.00   C

y

2.00   C

(b)

x

–6.00   C

y

2.00   C 3.00   C

P

3.00 m 3.00 m

4.00 m

µ

µ

µ

µ µ

Figure 25.12 (Example 25.3) (a) The electric potential at P due to the two charges q1
and q2 is the algebraic sum of the potentials due to the individual charges. (b) A third
charge q3 # 3.00 +C is brought from infinity to a position near the other charges.

Interactive



25.4 Obtaining the Value of the Electric Field
from the Electric Potential

The electric field E and the electric potential V are related as shown in Equation 25.3.
We now show how to calculate the value of the electric field if the electric potential is
known in a certain region.

From Equation 25.3 we can express the potential difference dV between two points
a distance ds apart as

(25.15)

If the electric field has only one component Ex, then E " ds # Ex dx. Therefore, Equa-
tion 25.15 becomes dV # ! Ex dx, or

(25.16)

That is, the x component of the electric field is equal to the negative of the derivative
of the electric potential with respect to x. Similar statements can be made about the y
and z components. Equation 25.16 is the mathematical statement of the fact that the
electric field is a measure of the rate of change with position of the electric potential,
as mentioned in Section 25.1.

Experimentally, electric potential and position can be measured easily with a volt-
meter (see Section 28.5) and a meter stick. Consequently, an electric field can be
determined by measuring the electric potential at several positions in the field and
making a graph of the results. According to Equation 25.16, the slope of a graph of V
versus x at a given point provides the magnitude of the electric field at that point.

When a test charge undergoes a displacement ds along an equipotential surface, then
dV # 0 because the potential is constant along an equipotential surface. From Equation
25.15, we see that dV # ! E "ds # 0; thus, E must be perpendicular to the displacement
along the equipotential surface. This shows that the equipotential surfaces must
always be perpendicular to the electric field lines passing through them.

As mentioned at the end of Section 25.2, the equipotential surfaces for a uniform
electric field consist of a family of planes perpendicular to the field lines. Figure 25.13a
shows some representative equipotential surfaces for this situation.

Ex # !
dV
dx

dV # !E"d s
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(a)

E

(b) (c)

+

Figure 25.13 Equipotential surfaces (the dashed blue lines are intersections of these
surfaces with the page) and electric field lines (red-brown lines) for (a) a uniform
electric field produced by an infinite sheet of charge, (b) a point charge, and (c) an
electric dipole. In all cases, the equipotential surfaces are perpendicular to the electric
field lines at every point.
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If the charge distribution creating an electric field has spherical symmetry such that
the volume charge density depends only on the radial distance r, then the electric field
is radial. In this case, E " ds # Er dr, and we can express dV in the form dV # ! Er dr.
Therefore,

(25.17)

For example, the electric potential of a point charge is V # keq/r. Because V is a func-
tion of r only, the potential function has spherical symmetry. Applying Equation 25.17,
we find that the electric field due to the point charge is Er # keq/r 2, a familiar result.
Note that the potential changes only in the radial direction, not in any direction
perpendicular to r. Thus, V (like Er) is a function only of r. Again, this is consistent with
the idea that equipotential surfaces are perpendicular to field lines. In this case
the equipotential surfaces are a family of spheres concentric with the spherically
symmetric charge distribution (Fig. 25.13b).

The equipotential surfaces for an electric dipole are sketched in Figure 25.13c.
In general, the electric potential is a function of all three spatial coordinates. If

V(r) is given in terms of the Cartesian coordinates, the electric field components Ex, Ey,
and Ez can readily be found from V(x, y, z) as the partial derivatives3

(25.18)

For example, if V # 3x 2y ) y2 ) yz, then
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3 In vector notation, E is often written in Cartesian coordinate systems as

where - is called the gradient operator.
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Quick Quiz 25.8 In a certain region of space, the electric potential is zero
everywhere along the x axis. From this we can conclude that the x component of the
electric field in this region is (a) zero (b) in the ) x direction (c) in the ! x direction.

Quick Quiz 25.9 In a certain region of space, the electric field is zero. From
this we can conclude that the electric potential in this region is (a) zero (b) constant
(c) positive (d) negative.

Example 25.4 The Electric Potential Due to a Dipole

An electric dipole consists of two charges of equal magni-
tude and opposite sign separated by a distance 2a, as shown
in Figure 25.14. The dipole is along the x axis and is
centered at the origin.

(A) Calculate the electric potential at point P.

Solution For point P in Figure 25.14,

2ke  qa
x2 ! a2V # ke  &  

q i

ri
# ke   ' q

x ! a
!

q
x ) a ( #

aa

q

P

x

x

y

–q

Figure 25.14 (Example 25.4) An electric dipole located on the
x axis.

Finding the electric field from
the potential



25.5 Electric Potential Due to Continuous
Charge Distributions

We can calculate the electric potential due to a continuous charge distribution in
two ways. If the charge distribution is known, we can start with Equation 25.11 for
the electric potential of a point charge. We then consider the potential due to a
small charge element dq, treating this element as a point charge (Fig. 25.15). The
electric potential dV at some point P due to the charge element dq is

(25.19)

where r is the distance from the charge element to point P. To obtain the total poten-
tial at point P, we integrate Equation 25.19 to include contributions from all elements
of the charge distribution. Because each element is, in general, a different distance
from point P and because ke is constant, we can express V as

(25.20)

In effect, we have replaced the sum in Equation 25.12 with an integral. Note that this
expression for V uses a particular reference: the electric potential is taken to be zero
when point P is infinitely far from the charge distribution.

If the electric field is already known from other considerations, such as Gauss’s law,
we can calculate the electric potential due to a continuous charge distribution using
Equation 25.3. If the charge distribution has sufficient symmetry, we first evaluate E at
any point using Gauss’s law and then substitute the value obtained into Equation 25.3
to determine the potential difference $V between any two points. We then choose the
electric potential V to be zero at some convenient point.

P R O B L E M - S O LV I N G  H I N T S

V # ke  !  
dq
r

dV # ke   
dq
r
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(B) Calculate V and Ex at a point far from the dipole.

Solution If point P is far from the dipole, such that x .. a,
then a2 can be neglected in the term x2 ! a2 and V becomes

(x .. a)

Using Equation 25.16 and this result, we can calculate the
magnitude of the electric field at a point far from the
dipole:

(x .. a)

(C) Calculate V and Ex if point P is located anywhere
between the two charges.

Solution Using Equation 25.12,

2 ke qx
a 

2 ! x 
2V # ke   &  

q i

ri
# ke   ' q

a ! x
!

q
a ) x ( #

4 ke qa
x 3Ex # !

dV
dx

#

V )
2ke qa

x 
2

We can check these results by considering the situation at
the center of the dipole, where x # 0, V # 0, and
Ex # ! 2keq/a2.

What If? What if point P in Figure 25.14 happens to be
located to the left of the negative charge? Would the answer
to part (A) be the same?

Answer The potential should be negative because a point
to the left of the dipole is closer to the negative charge than
to the positive charge. If we redo the calculation in part (A)
with P on the left side of ! q, we have

Thus, the potential has the same value but is negative for
points on the left of the dipole.

! 
2 k e qa

x2 ! a2V # ke   &  
q i

ri
# ke   ' q

x ) a
!

q
x ! a ( #

r

P

dq

Figure 25.15 The electric poten-
tial at the point P due to a continu-
ous charge distribution can be
calculated by dividing the charge
distribution into elements of
charge dq and summing the
electric potential contributions
over all elements.

Electric potential due to a
continuous charge distribution

!2 ke q   ' a 
2 ) x 

2

(a 
2 ! x 

2)2 (Ex # !
dV
dx

# !
d
dx

  ' 2 ke qx
a 

2 ! x 
2 ( #

and using Equation 25.16,
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Calculating Electric Potential
• Remember that electric potential is a scalar quantity, so vector components do

not exist. Therefore, when using the superposition principle to evaluate the
electric potential at a point due to a system of point charges, simply take the
algebraic sum of the potentials due to the various charges. However, you must
keep track of signs. The potential is positive for positive charges and negative
for negative charges.

• Just as with gravitational potential energy in mechanics, only changes in electric
potential are significant; hence, the point where you choose the potential to be
zero is arbitrary. When dealing with point charges or a charge distribution of
finite size, we usually define V # 0 to be at a point infinitely far from the charges.

• You can evaluate the electric potential at some point P due to a continuous
distribution of charge by dividing the charge distribution into infinitesimal
elements of charge dq located at a distance r from P. Then, treat one charge
element as a point charge, such that the potential at P due to the element is
dV # k edq/r. Obtain the total potential at P by integrating dV over the entire
charge distribution. In performing the integration for most problems, you
must express dq and r in terms of a single variable. To simplify the integration,
consider the geometry involved in the problem carefully. Study Examples 25.5
through 25.7 below for guidance.

• Another method that you can use to obtain the electric potential due to a finite
continuous charge distribution is to start with the definition of potential
difference given by Equation 25.3. If you know or can easily obtain E (from
Gauss’s law), then you can evaluate the line integral of E "ds. This method is
demonstrated in Example 25.8.

Example 25.5 Electric Potential Due to a Uniformly Charged Ring

than a set of discrete charges, we categorize this problem
as one in which we need to use the integration technique
represented by Equation 25.20. To analyze the problem, we
take point P to be at a distance x from the center of the ring,
as shown in Figure 25.16. The charge element dq is at a 
distance from point P. Hence, we can express V as

Because each element dq is at the same distance from point P, 
we can bring in front of the integral sign, and V
reduces to

(25.21)

The only variable in this expression for V is x. This is not
surprising because our calculation is valid only for points
along the x axis, where y and z are both zero.

(B) Find an expression for the magnitude of the electric
field at point P.

ke Q

√x 
2 ) a 

2
V #

ke

√x2 ) a2   ! dq #

√x 
2 ) a 

2

V # ke   ! 
dq
r

# ke  !  
dq

√x 
2 ) a 

2  

√x 
2 ) a 

2

(A) Find an expression for the electric potential at a point
P located on the perpendicular central axis of a uniformly
charged ring of radius a and total charge Q.

Solution Figure 25.16, in which the ring is oriented so that
its plane is perpendicular to the x axis and its center is at the
origin, helps us to conceptualize this problem. Because the
ring consists of a continuous distribution of charge rather

P
x

√x2 + a2

dq

a

Figure 25.16 (Example 25.5) A uniformly charged ring of radius
a lies in a plane perpendicular to the x axis. All elements dq of the
ring are the same distance from a point P lying on the x axis.
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Solution From symmetry, we see that along the x axis E can
have only an x component. Therefore, we can use Equation
25.16:

 # !ke Q(!1
2)(x 

2 ) a 
2)!3/2 (2x)

Ex # !
d V
d x

# !ke Q    
d
dx

  (x 
2 ) a 

2)!1/2

(25.22)

To finalize this problem, we see that this result for the
electric field agrees with that obtained by direct integration
(see Example 23.8). Note that Ex # 0 at x # 0 (the center of
the ring). Could you have guessed this?

k e Qx
(x 

2 ) a 
2)3/2Ex #

Example 25.6 Electric Potential Due to a Uniformly Charged Disk

(25.23)

(B) As in Example 25.5, we can find the electric field at any
axial point using Equation 25.16:

(25.24)

The calculation of V and E for an arbitrary point off the axis
is more difficult to perform, and we do not treat this situa-
tion in this text.

2/ke   0  '1 !
x

√x2 ) a2 (Ex # !
dV
dx

#

 2/ke  0  [(x 
2 ) a 

2)1/2 ! x]V #
A uniformly charged disk has radius a and surface charge
density 0. Find

(A) the electric potential and

(B) the magnitude of the electric field along the perpendic-
ular central axis of the disk.

Solution (A) Again, we choose the point P to be at a
distance x from the center of the disk and take the plane of
the disk to be perpendicular to the x axis. We can simplify
the problem by dividing the disk into a series of charged
rings of infinitesimal width dr. The electric potential due to
each ring is given by Equation 25.21. Consider one such
ring of radius r and width dr, as indicated in Figure 25.17.
The surface area of the ring is dA # 2/r dr. From the
definition of surface charge density (see Section 23.5), we
know that the charge on the ring is dq # 0 dA # 02/r dr.
Hence, the potential at the point P due to this ring is

where x is a constant and r is a variable. To find the total
electric potential at P, we sum over all rings making up the
disk. That is, we integrate dV from r # 0 to r # a:

This integral is of the common form and has the value
un+1/(n ) 1), where n # ! and u # r 2 ) x2. This gives1

2

*un
 du

V # / k e   0 !a

0
 

2r  d r

√r2 ) x2
# / k e   0   !a

0
  (r 2 ) x 2)!1/2 2r  dr

dV #
ke dq

√r2 ) x2
#

ke 0 2/r dr

√r 
2 ) x 

2

dr

dA = 2πrdr

√ r 2 + x 2

x P

r
a

π

Figure 25.17 (Example 25.6) A uniformly charged disk of
radius a lies in a plane perpendicular to the x axis. The calcula-
tion of the electric potential at any point P on the x axis is
simplified by dividing the disk into many rings of radius r and
width dr, with area 2/r dr.

Example 25.7 Electric Potential Due to a Finite Line of Charge

A rod of length ! located along the x axis has a total charge
Q and a uniform linear charge density 1 # Q /!. Find the
electric potential at a point P located on the y axis a distance
a from the origin (Fig. 25.18).

Solution The length element dx has a charge dq # 1 dx.

Because this element is a distance from point
P, we can express the potential at point P due to this
element as

To obtain the total potential at P, we integrate this expres-
sion over the limits x # 0 to x # !. Noting that ke and 1 are

dV # ke   
dq
r

# ke   
1  dx

√x2 ) a2

r # √x 
2 ) a 

2

dx

!

x
x

O

dq

ra

P

y

Figure 25.18 (Example 25.7) A uniform line charge of length
! located along the x axis. To calculate the electric potential at
P, the line charge is divided into segments each of length dx
and each carrying a charge dq # 1 dx.
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Example 25.8 Electric Potential Due to a Uniformly Charged Sphere

We can use this result and Equation 25.3 to evaluate the
potential difference VD ! VC at some interior point D :

VD ! VC # !!r

R
  Er dr # !

ke Q
R3  !r

R
  r dr #

ke Q
2R3  (R 

2 ! r 
2)

An insulating solid sphere of radius R has a uniform positive
volume charge density and total charge Q.

(A) Find the electric potential at a point outside the sphere,
that is, for r . R. Take the potential to be zero at r # *.

Solution In Example 24.5, we found that the magnitude of
the electric field outside a uniformly charged sphere of
radius R is

where the field is directed radially outward when Q is posi-
tive. This is the same as the field due to a point charge,
which we studied in Section 23.4. In this case, to obtain the
electric potential at an exterior point, such as B in Figure
25.19, we use Equation 25.10, choosing point A as r # *:

(for r . R)

Because the potential must be continuous at r # R, we
can use this expression to obtain the potential at the surface
of the sphere. That is, the potential at a point such as C
shown in Figure 25.19 is

(B) Find the potential at a point inside the sphere, that is,
for r & R.

Solution In Example 24.5 we found that the electric field
inside an insulating uniformly charged sphere is

Er #
ke Q
R3  r  (for r & R )

VC # ke   
Q
R
  (for r # R)

ke   
Q
r

VB #

VB ! 0 # ke Q   $ 1
rB

!  0%

VB ! VA # ke Q   $ 1
rB

!
1
rA
%

Er # ke   
Q
r 

2   (for r . R )

constants, we find that

This integral has the following value (see Appendix B):

Evaluating V, we find

(25.25)

What If? What if we were asked to find the electric field at
point P? Would this be a simple calculation?

V #
ke Q
!

   ln  ' ! ) √!2 ) a 
2

a (

! 
dx

√x 2 ) a2
# ln (x ) √x 2 ) a 

2)

V # ke  1  !!

0
  

dx

√x 
2 ) a 

2
# ke   

Q
!

  !!

0
  

dx

√x2 ) a 
2

Answer Calculating the electric field by means of Equation
23.11 would be a little messy. There is no symmetry to appeal
to, and the integration over the line of charge would repre-
sent a vector addition of electric fields at point P. Using
Equation 25.18, we could find Ey by replacing a with y in
Equation 25.25 and performing the differentiation with
respect to y. Because the charged rod in Figure 25.18 lies
entirely to the right of x # 0, the electric field at point P
would have an x component to the left if the rod is charged
positively. We cannot use Equation 25.18 to find the x
component of the field, however, because we evaluated the
potential due to the rod at a specific value of x (x # 0) rather
than a general value of x. We would need to find the poten-
tial as a function of both x and y to be able to find the x and
y components of the electric field using Equation 25.25.

V

V0

V0
2
3

R r

VB =
keQ

r

VD =
keQ
2R 3 –

r 2

R2

V0 =
3keQ
2R

( (

Figure 25.20 (Example 25.8) A plot of electric potential V
versus distance r from the center of a uniformly charged
insulating sphere of radius R. The curve for VD inside the
sphere is parabolic and joins smoothly with the curve for VB
outside the sphere, which is a hyperbola. The potential has a
maximum value V0 at the center of the sphere. We could make
this graph three dimensional (similar to Figures 25.8 and 25.9)
by revolving it around the vertical axis.

R

r
Q

D
C

B

Figure 25.19 (Example 25.8) A uniformly charged insulating
sphere of radius R and total charge Q. The electric potentials at
points B and C are equivalent to those produced by a point
charge Q located at the center of the sphere, but this is not true
for point D.



25.6 Electric Potential Due to a Charged Conductor

In Section 24.4 we found that when a solid conductor in equilibrium carries a net
charge, the charge resides on the outer surface of the conductor. Furthermore, we
showed that the electric field just outside the conductor is perpendicular to the surface
and that the field inside is zero.

We now show that every point on the surface of a charged conductor in equi-
librium is at the same electric potential. Consider two points A and B on the
surface of a charged conductor, as shown in Figure 25.21. Along a surface path
connecting these points, E is always perpendicular to the displacement ds; therefore
E " ds # 0. Using this result and Equation 25.3, we conclude that the potential differ-
ence between A and B is necessarily zero:

This result applies to any two points on the surface. Therefore, V is constant every-
where on the surface of a charged conductor in equilibrium. That is,

V B ! VA # !!B

A
 E"ds # 0
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Substituting VC # keQ /R into this expression and solving
for VD, we obtain

(for r & R) (25.26)
k e Q
2R

   '3 !
r  

2

R2 (V D #

At r # R, this expression gives a result that agrees with
that for the potential at the surface, that is, V C . A plot of
V versus r for this charge distribution is given in Figure
25.20.
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Figure 25.21 An arbitrarily shaped conductor carrying a positive
charge. When the conductor is in electrostatic equilibrium, all of
the charge resides at the surface, E # 0 inside the conductor, and
the direction of E just outside the conductor is perpendicular to
the surface. The electric potential is constant inside the conductor
and is equal to the potential at the surface. Note from the spacing
of the positive signs that the surface charge density is nonuniform.

the surface of any charged conductor in electrostatic equilibrium is an equipoten-
tial surface. Furthermore, because the electric field is zero inside the conductor, we
conclude that the electric potential is constant everywhere inside the conductor and
equal to its value at the surface.

Because this is true, no work is required to move a test charge from the interior of a
charged conductor to its surface.

Consider a solid metal conducting sphere of radius R and total positive charge Q ,
as shown in Figure 25.22a. The electric field outside the sphere is ke Q /r 2 and points
radially outward. From Example 25.8, we know that the electric potential at the
interior and surface of the sphere must be ke Q /R relative to infinity. The potential
outside the sphere is keQ /r. Figure 25.22b is a plot of the electric potential as a
function of r, and Figure 25.22c shows how the electric field varies with r.

(a) + +
+ +

+ +
+ ++

+ +
+ +

+ ++

R

V

keQ
R

keQ
r

(b)

r

E
keQ
r 2

r
R

(c)

Figure 25.22 (a) The excess
charge on a conducting sphere of
radius R is uniformly distributed on
its surface. (b) Electric potential
versus distance r from the center
of the charged conducting sphere.
(c) Electric field magnitude versus
distance r from the center of the
charged conducting sphere.
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! PITFALL PREVENTION 
25.6 Potential May Not

Be Zero
The electric potential inside the
conductor is not necessarily zero
in Figure 25.22, even though the
electric field is zero. From Equa-
tion 25.15, we see that a zero
value of the field results in no
change in the potential from one
point to another inside the con-
ductor. Thus, the potential every-
where inside the conductor,
including the surface, has the
same value, which may or may
not be zero, depending on where
the zero of potential is defined.

When a net charge is placed on a spherical conductor, the surface charge density
is uniform, as indicated in Figure 25.22a. However, if the conductor is nonspherical,
as in Figure 25.21, the surface charge density is high where the radius of curvature is
small (as noted in Section 24.4), and it is low where the radius of curvature is large.
Because the electric field just outside the conductor is proportional to the surface
charge density, we see that the electric field is large near convex points having
small radii of curvature and reaches very high values at sharp points. This is
demonstrated in Figure 25.23, in which small pieces of thread suspended in oil show
the electric field lines. Notice that the density of field lines is highest at the sharp tip
of the left-hand conductor and at the highly curved ends of the right-hand conductor.
In Example 25.9, the relationship between electric field and radius of curvature is
explored mathematically.

Figure 25.24 shows the electric field lines around two spherical conductors: one
carrying a net charge Q , and a larger one carrying zero net charge. In this case, the
surface charge density is not uniform on either conductor. The sphere having zero
net charge has negative charges induced on its side that faces the charged sphere and
positive charges induced on its side opposite the charged sphere. The broken blue
curves in the figure represent the cross sections of the equipotential surfaces for this
charge configuration. As usual, the field lines are perpendicular to the conducting
surfaces at all points, and the equipotential surfaces are perpendicular to the field
lines everywhere.

Figure 25.23 Electric field pattern
of a charged conducting plate
placed near an oppositely charged
pointed conductor. Small pieces of
thread suspended in oil align with
the electric field lines. The field
surrounding the pointed conduc-
tor is most intense near the
pointed end and at other places
where the radius of curvature is
small.
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Figure 25.24 The electric field lines (in red-brown) around two spherical conductors.
The smaller sphere has a net charge Q , and the larger one has zero net charge. The
broken blue curves are intersections of equipotential surfaces with the page.

Quick Quiz 25.10 Consider starting at the center of the left-hand sphere
(sphere 1, of radius a) in Figure 25.24 and moving to the far right of the diagram, pass-
ing through the center of the right-hand sphere (sphere 2, of radius c) along the way.
The centers of the spheres are a distance b apart. Draw a graph of the electric potential
as a function of position relative to the center of the left-hand sphere.
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A Cavity Within a Conductor

Now suppose a conductor of arbitrary shape contains a cavity as shown in Figure 25.26.
Let us assume that no charges are inside the cavity. In this case, the electric field
inside the cavity must be zero regardless of the charge distribution on the outside
surface of the conductor. Furthermore, the field in the cavity is zero even if an electric
field exists outside the conductor.

To prove this point, we use the fact that every point on the conductor is at the same
electric potential, and therefore any two points A and B on the surface of the cavity
must be at the same potential. Now imagine that a field E exists in the cavity and
evaluate the potential difference VB ! VA defined by Equation 25.3:

Because VB ! VA # 0, the integral of E " ds must be zero for all paths between any two
points A and B on the conductor. The only way that this can be true for all paths is if E
is zero everywhere in the cavity. Thus, we conclude that a cavity surrounded by con-
ducting walls is a field-free region as long as no charges are inside the cavity.

Corona Discharge

A phenomenon known as corona discharge is often observed near a conductor such
as a high-voltage power line. When the electric field in the vicinity of the conductor is
sufficiently strong, electrons resulting from random ionizations of air molecules near
the conductor accelerate away from their parent molecules. These rapidly moving
electrons can ionize additional molecules near the conductor, creating more free
electrons. The observed glow (or corona discharge) results from the recombination of

VB ! VA # ! !B

A
  E"d s
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Example 25.9 Two Connected Charged Spheres

Solution Because the spheres are connected by a conduct-
ing wire, they must both be at the same electric potential:

Therefore, the ratio of charges is

Because the spheres are very far apart and their surfaces
uniformly charged, we can express the magnitude of the
electric fields at their surfaces as

Taking the ratio of these two fields and making use of Equa-
tion (1), we find that

Hence, the field is more intense in the vicinity of the smaller
sphere even though the electric potentials of both spheres
are the same.

r 2

r 1
(2)   E1

E 2
#

E1 # ke   
q 1

r 1
2   and  E 2 # ke   

q 2

r 2
2

  (1)   q 1

q 2
#  

r 1

r 2

V # ke   
q 1

r 1
# ke   

q 2

r 2

Two spherical conductors of radii r1 and r 2 are separated by
a distance much greater than the radius of either sphere.
The spheres are connected by a conducting wire, as shown
in Figure 25.25. The charges on the spheres in equilibrium
are q1 and q2, respectively, and they are uniformly charged.
Find the ratio of the magnitudes of the electric fields at the
surfaces of the spheres.

r1

r2

q1

q2

Figure 25.25 (Example 25.9) Two charged spherical conduc-
tors connected by a conducting wire. The spheres are at the
same electric potential V.

A

B

Figure 25.26 A conductor in elec-
trostatic equilibrium containing a
cavity. The electric field in the cav-
ity is zero, regardless of the charge
on the conductor.
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these free electrons with the ionized air molecules. If a conductor has an irregular
shape, the electric field can be very high near sharp points or edges of the conductor;
consequently, the ionization process and corona discharge are most likely to occur
around such points.

Corona discharge is used in the electrical transmission industry to locate broken or
faulty components. For example, a broken insulator on a transmission tower has sharp
edges where corona discharge is likely to occur. Similarly, corona discharge will occur
at the sharp end of a broken conductor strand. Observation of these discharges is diffi-
cult because the visible radiation emitted is weak and most of the radiation is in the
ultraviolet. (We will discuss ultraviolet radiation and other portions of the electromag-
netic spectrum in Section 34.6.) Even use of traditional ultraviolet cameras is of little
help because the radiation from the corona discharge is overwhelmed by ultraviolet
radiation from the Sun. Newly developed dual-spectrum devices combine a narrow-
band ultraviolet camera with a visible light camera to show a daylight view of the
corona discharge in the actual location on the transmission tower or cable. The
ultraviolet part of the camera is designed to operate in a wavelength range in which
radiation from the Sun is very weak.

25.7 The Millikan Oil-Drop Experiment

During the period from 1909 to 1913, Robert Millikan performed a brilliant set of
experiments in which he measured e, the magnitude of the elementary charge on an
electron, and demonstrated the quantized nature of this charge. His apparatus,
diagrammed in Figure 25.27, contains two parallel metallic plates. Oil droplets from
an atomizer are allowed to pass through a small hole in the upper plate. Millikan used
x-rays to ionize the air in the chamber, so that freed electrons would adhere to the oil
drops, giving them a negative charge. A horizontally directed light beam is used to
illuminate the oil droplets, which are viewed through a telescope whose long axis is
perpendicular to the light beam. When the droplets are viewed in this manner, they
appear as shining stars against a dark background, and the rate at which individual
drops fall can be determined.

Let us assume that a single drop having a mass m and carrying a charge q is being
viewed and that its charge is negative. If no electric field is present between the plates,

Telescope

Oil droplets

Illumination

Pin hole

d
q

v

+ –

Active Figure 25.27 Schematic drawing of the Millikan oil-drop apparatus.

At the Active Figures link
at http://www.pse6.com, you
can do a simplified version of
the experiment for yourself. You
will be able to take data on a
number of oil drops and deter-
mine the elementary charge
from your data.



the two forces acting on the charge are the gravitational force mg acting downward4

and a viscous drag force FD acting upward as indicated in Figure 25.28a. The drag
force is proportional to the drop’s speed. When the drop reaches its terminal speed v,
the two forces balance each other (mg # FD).

Now suppose that a battery connected to the plates sets up an electric field between
the plates such that the upper plate is at the higher electric potential. In this case, a third
force q E acts on the charged drop. Because q is negative and E is directed downward,
this electric force is directed upward, as shown in Figure 25.28b. If this force is suffi-
ciently great, the drop moves upward and the drag force FD2 acts downward. When the
upward electric force qE balances the sum of the gravitational force and the downward
drag force FD2, the drop reaches a new terminal speed v2 in the upward direction.

With the field turned on, a drop moves slowly upward, typically at rates of hun-
dredths of a centimeter per second. The rate of fall in the absence of a field is compa-
rable. Hence, one can follow a single droplet for hours, alternately rising and falling,
by simply turning the electric field on and off.

After recording measurements on thousands of droplets, Millikan and his co-workers
found that all droplets, to within about 1% precision, had a charge equal to some integer
multiple of the elementary charge e :

where e # 1.60 % 10!19 C. Millikan’s experiment yields conclusive evidence that
charge is quantized. For this work, he was awarded the Nobel Prize in Physics in 1923.

25.8 Applications of Electrostatics

The practical application of electrostatics is represented by such devices as lightning
rods and electrostatic precipitators and by such processes as xerography and the
painting of automobiles. Scientific devices based on the principles of electrostatics
include electrostatic generators, the field-ion microscope, and ion-drive rocket
engines.

The Van de Graaff Generator

Experimental results show that when a charged conductor is placed in contact with the
inside of a hollow conductor, all of the charge on the charged conductor is transferred
to the hollow conductor. In principle, the charge on the hollow conductor and its
electric potential can be increased without limit by repetition of the process.

In 1929 Robert J. Van de Graaff (1901–1967) used this principle to design and
build an electrostatic generator. This type of generator is used extensively in nuclear
physics research. A schematic representation of the generator is given in Figure 25.29.
Charge is delivered continuously to a high-potential electrode by means of a moving
belt of insulating material. The high-voltage electrode is a hollow metal dome
mounted on an insulating column. The belt is charged at point A by means of a corona
discharge between comb-like metallic needles and a grounded grid. The needles are
maintained at a positive electric potential of typically 104 V. The positive charge on the
moving belt is transferred to the dome by a second comb of needles at point B.
Because the electric field inside the dome is negligible, the positive charge on the belt
is easily transferred to the conductor regardless of its potential. In practice, it is possi-
ble to increase the electric potential of the dome until electrical discharge occurs
through the air. Because the “breakdown’’ electric field in air is about 3 % 106 V/m, a

q # ne  n # 0, !1, !2, !3, . . .
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FD

qE
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v ′

(b) Field on

v
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q

(a) Field off

′

Figure 25.28 The forces acting on
a negatively charged oil droplet in
the Millikan experiment.

4 There is also a buoyant force on the oil drop due to the surrounding air. This force can be incorpo-
rated as a correction in the gravitational force mg on the drop, so we will not consider it in our analysis.
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sphere 1 m in radius can be raised to a maximum potential of 3 % 106 V. The potential
can be increased further by increasing the radius of the dome and by placing the
entire system in a container filled with high-pressure gas.

Van de Graaff generators can produce potential differences as large as 20 million
volts. Protons accelerated through such large potential differences receive enough
energy to initiate nuclear reactions between themselves and various target nuclei.
Smaller generators are often seen in science classrooms and museums. If a person
insulated from the ground touches the sphere of a Van de Graaff generator, his or her
body can be brought to a high electric potential. The hair acquires a net positive
charge, and each strand is repelled by all the others, as in the opening photograph of
Chapter 23.

The Electrostatic Precipitator

One important application of electrical discharge in gases is the electrostatic precipitator.
This device removes particulate matter from combustion gases, thereby reducing air
pollution. Precipitators are especially useful in coal-burning power plants and in indus-
trial operations that generate large quantities of smoke. Current systems are able to
eliminate more than 99% of the ash from smoke.

Figure 25.30a shows a schematic diagram of an electrostatic precipitator. A high
potential difference (typically 40 to 100 kV) is maintained between a wire running
down the center of a duct and the walls of the duct, which are grounded. The wire is
maintained at a negative electric potential with respect to the walls, so the electric
field is directed toward the wire. The values of the field near the wire become high
enough to cause a corona discharge around the wire; the air near the wire contains
positive ions, electrons, and such negative ions as O2

!. The air to be cleaned enters
the duct and moves near the wire. As the electrons and negative ions created by the
discharge are accelerated toward the outer wall by the electric field, the dirt particles
in the air become charged by collisions and ion capture. Because most of the charged
dirt particles are negative, they too are drawn to the duct walls by the electric field.
When the duct is periodically shaken, the particles break loose and are collected at
the bottom.

In addition to reducing the level of particulate matter in the atmosphere (compare
Figs. 25.30b and c), the electrostatic precipitator recovers valuable materials in the
form of metal oxides.

Metal dome

Belt

Ground
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+

+

+
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+

+

+

Figure 25.29 Schematic diagram
of a Van de Graaff generator. Charge
is transferred to the metal dome at
the top by means of a moving belt.
The charge is deposited on the belt
at point A and transferred to the
hollow conductor at point B.

(a)

Insulator

Clean air
out

Weight
Dirty
air in

Dirt out
(c)(b)

Figure 25.30 (a) Schematic diagram of an electrostatic precipitator. The high negative
electric potential maintained on the central coiled wire creates a corona discharge in
the vicinity of the wire. Compare the air pollution when the electrostatic precipitator is
(b) operating and (c) turned off.
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Xerography and Laser Printers

The basic idea of xerography5 was developed by Chester Carlson, who was granted
a patent for the xerographic process in 1940. The unique feature of this process is the
use of a photoconductive material to form an image. (A photoconductor is a material that
is a poor electrical conductor in the dark but becomes a good electrical conductor
when exposed to light.)

The xerographic process is illustrated in Figure 25.31a to d. First, the surface of a
plate or drum that has been coated with a thin film of photoconductive material (usu-
ally selenium or some compound of selenium) is given a positive electrostatic charge
in the dark. An image of the page to be copied is then focused by a lens onto the
charged surface. The photoconducting surface becomes conducting only in areas
where light strikes it. In these areas, the light produces charge carriers in the photo-
conductor that move the positive charge off the drum. However, positive charges
remain on those areas of the photoconductor not exposed to light, leaving a latent
image of the object in the form of a positive surface charge distribution.

Next, a negatively charged powder called a toner is dusted onto the photoconducting
surface. The charged powder adheres only to those areas of the surface that contain the
positively charged image. At this point, the image becomes visible. The toner (and hence
the image) is then transferred to the surface of a sheet of positively charged paper.

Finally, the toner is “fixed’’ to the surface of the paper as the toner melts while passing
through high-temperature rollers. This results in a permanent copy of the original.

A laser printer (Fig. 25.31e) operates by the same principle, with the exception that a
computer-directed laser beam is used to illuminate the photoconductor instead of a lens.

784 C H A P T E R  2 5 •  Electric Potential

5 The prefix xero - is from the Greek word meaning “dry.’’ Note that liquid ink is not used in xerography.

Selenium-coated
drum

(a) Charging the drum (b) Imaging the document

(d) Transferring the
       toner to the paper

Laser
beam

Interlaced pattern
of laser lines

(e) Laser printer drum

Negatively
charged

toner
(c) Applying the toner

Lens

Light causes some areas
of drum to become
electrically conducting,
removing positive charge

Figure 25.31 The xerographic process: (a) The photoconductive surface of the drum
is positively charged. (b) Through the use of a light source and lens, an image is
formed on the surface in the form of positive charges. (c) The surface containing the
image is covered with a negatively charged powder, which adheres only to the image
area. (d) A piece of paper is placed over the surface and given a positive charge. This
transfers the image to the paper as the negatively charged powder particles migrate to
the paper. The paper is then heat-treated to “fix’’ the powder. (e) A laser printer oper-
ates similarly except the image is produced by turning a laser beam on and off as it
sweeps across the selenium-coated drum.
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When a positive test charge q0 is moved between points A and B in an electric field E,
the change in the potential energy of the charge–field system is

(25.1)

The electric potential V # U/q0 is a scalar quantity and has the units of J/C, where
1 J/C " 1 V.

The potential difference $V between points A and B in an electric field E is
defined as

(25.3)

The potential difference between two points A and B in a uniform electric field
E, where s is a vector that points from A to B and is parallel to E is

(25.6)

where .
An equipotential surface is one on which all points are at the same electric poten-

tial. Equipotential surfaces are perpendicular to electric field lines.
If we define V # 0 at rA # *, the electric potential due to a point charge at any

distance r from the charge is

(25.11)

We can obtain the electric potential associated with a group of point charges by
summing the potentials due to the individual charges.

The potential energy associated with a pair of point charges separated by a
distance r12 is

(25.13)

This energy represents the work done by an external agent when the charges are
brought from an infinite separation to the separation r12. We obtain the potential
energy of a distribution of point charges by summing terms like Equation 25.13 over
all pairs of particles.

If we know the electric potential as a function of coordinates x, y, z, we can obtain
the components of the electric field by taking the negative derivative of the electric
potential with respect to the coordinates. For example, the x component of the electric
field is

(25.16)

The electric potential due to a continuous charge distribution is

(25.20)

Every point on the surface of a charged conductor in electrostatic equilibrium is at
the same electric potential. The potential is constant everywhere inside the conductor
and equal to its value at the surface.
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Take a practice test for
this chapter by clicking on
the Practice Test link at
http://www.pse6.com.
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Charge Distribution Electric Potential Location

Uniformly charged Along
ring of radius a perpendicular

central axis of
ring, distance x
from ring center

Uniformly charged Along
disk of radius a perpendicular

central axis of
disk, distance x
from disk center

Uniformly charged,
insulating solid r 3 R
sphere of radius R
and total charge Q r & R

Isolated conducting r . Rsphere of radius R
and total charge Q

r 4 R

Electric Potential Due to Various Charge Distributions

Table 25.1

V # ke   
Q
R

V # ke   
Q
r

V #
ke Q
2R

   '3 !
r 

2

R2 (
V # ke   

Q
r

V # 2/ke 0 [(x2 ) a2)1/2 ! x]

V # ke  
Q

√x2 ) a2

+
+

Table 25.1 lists electric potentials due to several charge distributions.

1. Distinguish between electric potential and electric poten-
tial energy.

2. A negative charge moves in the direction of a uniform
electric field. Does the potential energy of the charge–field
system increase or decrease? Does the charge move to a
position of higher or lower potential?

Give a physical explanation of the fact that the potential
energy of a pair of charges with the same sign is positive
whereas the potential energy of a pair of charges with op-
posite signs is negative.

4. A uniform electric field is parallel to the x axis. In what
direction can a charge be displaced in this field without
any external work being done on the charge?

5. Explain why equipotential surfaces are always perpendicu-
lar to electric field lines.

6. Describe the equipotential surfaces for (a) an infinite line
of charge and (b) a uniformly charged sphere.

7. Explain why, under static conditions, all points in a con-
ductor must be at the same electric potential.

8. The electric field inside a hollow, uniformly charged
sphere is zero. Does this imply that the potential is zero
inside the sphere? Explain.

9. The potential of a point charge is defined to be zero at an
infinite distance. Why can we not define the potential of
an infinite line of charge to be zero at r # *?

10. Two charged conducting spheres of different radii are con-
nected by a conducting wire as shown in Figure 25.25.
Which sphere has the greater charge density?

3.

11. What determines the maximum potential to which the
dome of a Van de Graaff generator can be raised?

12. Explain the origin of the glow sometimes observed around
the cables of a high-voltage power line.

13. Why is it important to avoid sharp edges or points on con-
ductors used in high-voltage equipment?

14. How would you shield an electronic circuit or laboratory
from stray electric fields? Why does this work?

15. Two concentric spherical conducting shells of radii
a # 0.400 m and b # 0.500 m are connected by a thin wire
as shown in Figure Q25.15. If a total charge Q # 10.0 +C is
placed on the system, how much charge settles on each
sphere?

Q U E S T I O N S

a

b

q 1

q 2

Wire

Figure Q25.15

16. Study Figure 23.4 and the accompanying text discussion of
charging by induction. You may also compare to Figure
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25.24. When the grounding wire is touched to the right-
most point on the sphere in Figure 23.4c, electrons are
drained away from the sphere to leave the sphere posi-
tively charged. Suppose instead that the grounding wire is

touched to the leftmost point on the sphere. Will electrons
still drain away, moving closer to the negatively charged
rod as they do so? What kind of charge, if any, will remain
on the sphere?

Section 25.1 Potential Difference and Electric Potential

1. How much work is done (by a battery, generator, or some
other source of potential difference) in moving Avogadro’s
number of electrons from an initial point where the elec-
tric potential is 9.00 V to a point where the potential is
! 5.00 V? (The potential in each case is measured relative
to a common reference point.)

2. An ion accelerated through a potential difference of 115 V
experiences an increase in kinetic energy of 7.37 % 10!17 J.
Calculate the charge on the ion.

(a) Calculate the speed of a proton that is accelerated
from rest through a potential difference of 120 V. (b) Cal-
culate the speed of an electron that is accelerated through
the same potential difference.

4. What potential difference is needed to stop an electron
having an initial speed of 4.20 % 105 m/s?

Section 25.2 Potential Differences in a Uniform 
Electric Field

5. A uniform electric field of magnitude 250 V/m is directed
in the positive x direction. A )12.0-+C charge moves from
the origin to the point (x, y) # (20.0 cm, 50.0 cm).
(a) What is the change in the potential energy of the
charge–field system? (b) Through what potential differ-
ence does the charge move?

6. The difference in potential between the accelerating plates
in the electron gun of a TV picture tube is about 25 000 V. If
the distance between these plates is 1.50 cm, what is the mag-
nitude of the uniform electric field in this region?

An electron moving parallel to the x axis has an initial
speed of 3.70 % 106 m/s at the origin. Its speed is reduced
to 1.40 % 105 m/s at the point x # 2.00 cm. Calculate the
potential difference between the origin and that point.
Which point is at the higher potential?

8. Suppose an electron is released from rest in a uniform
electric field whose magnitude is 5.90 % 103 V/m.
(a) Through what potential difference will it have passed
after moving 1.00 cm? (b) How fast will the electron be
moving after it has traveled 1.00 cm?

9. A uniform electric field of magnitude 325 V/m is directed
in the negative y direction in Figure P25.9. The coordi-
nates of point A are (! 0.200, ! 0.300) m, and those of

7.

3.

point B are (0.400, 0.500) m. Calculate the potential differ-
ence VB ! VA, using the blue path.

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide

= coached solution with hints available at http://www.pse6.com = computer useful in solving problem             

= paired numerical and symbolic problems

P R O B L E M S

x

y

B

A

E

Figure P25.9

k
m, Q

E

x = 0
Figure P25.11

10. Starting with the definition of work, prove that at every
point on an equipotential surface the surface must be per-
pendicular to the electric field there.

11. Review problem. A block having mass m and charge ) Q
is connected to a spring having constant k. The block lies
on a frictionless horizontal track, and the system is
immersed in a uniform electric field of magnitude E,
directed as shown in Figure P25.11. If the block is
released from rest when the spring is unstretched (at
x # 0), (a) by what maximum amount does the spring
expand? (b) What is the equilibrium position of the
block? (c) Show that the block’s motion is simple
harmonic, and determine its period. (d) What If? Repeat
part (a) if the coefficient of kinetic friction between
block and surface is +k.
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12. On planet Tehar, the free-fall acceleration is the same as
that on Earth but there is also a strong downward electric
field that is uniform close to the planet’s surface. A 2.00-kg
ball having a charge of 5.00 +C is thrown upward at a
speed of 20.1 m/s, and it hits the ground after an interval
of 4.10 s. What is the potential difference between the
starting point and the top point of the trajectory?

13. An insulating rod having linear charge density 1 #
40.0 +C/m and linear mass density + # 0.100 kg/m is
released from rest in a uniform electric field E # 100 V/m
directed perpendicular to the rod (Fig. P25.13). (a) Deter-
mine the speed of the rod after it has traveled 2.00 m.
(b) What If? How does your answer to part (a) change if
the electric field is not perpendicular to the rod? Explain.

Section 25.3 Electric Potential and Potential Energy
Due to Point Charges

15. (a) Find the potential at a distance of 1.00 cm from a
proton. (b) What is the potential difference between two
points that are 1.00 cm and 2.00 cm from a proton?
(c) What If? Repeat parts (a) and (b) for an electron.

16. Given two 2.00-+C charges, as shown in Figure P25.16, and
a positive test charge q # 1.28 % 10!18 C at the origin,
(a) what is the net force exerted by the two 2.00-+C
charges on the test charge q? (b) What is the electric field
at the origin due to the two 2.00-+C charges? (c) What is
the electric potential at the origin due to the two 2.00-+C
charges?

Note: Unless stated otherwise, assume the reference level
of potential is V # 0 at r # *.

λ  µ

EE

,

Figure P25.13

14. A particle having charge q # ) 2.00 +C and mass
m # 0.010 0 kg is connected to a string that is L # 1.50 m
long and is tied to the pivot point P in Figure P25.14. The
particle, string and pivot point all lie on a frictionless hori-
zontal table. The particle is released from rest when the
string makes an angle ( # 60.0° with a uniform electric
field of magnitude E # 300 V/m. Determine the speed of
the particle when the string is parallel to the electric field
(point a in Fig. P25.14).

θ

Top View

E
P

a

m
q

L

Figure P25.14

2.00
y

q

0 x = 0.800 mx = –0.800 m
x

C Cµ 2.00 µ

Figure P25.16

2.00 cm

4.00 cm

q

–q –q

Figure P25.19

At a certain distance from a point charge, the magnitude
of the electric field is 500 V/m and the electric potential
is ! 3.00 kV. (a) What is the distance to the charge?
(b) What is the magnitude of the charge?

18. A charge ) q is at the origin. A charge ! 2q is at x # 2.00 m
on the x axis. For what finite value(s) of x is (a) the electric
field zero? (b) the electric potential zero?

The three charges in Figure P25.19 are at the vertices of
an isosceles triangle. Calculate the electric potential at the
midpoint of the base, taking q # 7.00 +C.

19.

17.
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20. Two point charges, Q 1 # ) 5.00 nC and Q 2 # ! 3.00 nC,
are separated by 35.0 cm. (a) What is the potential energy
of the pair? What is the significance of the algebraic sign
of your answer? (b) What is the electric potential at a point
midway between the charges?

21. Compare this problem with Problem 57 in Chapter 23. Four iden-
tical point charges (q # ) 10.0 +C) are located on the
corners of a rectangle as shown in Figure P23.57. The
dimensions of the rectangle are L # 60.0 cm and
W # 15.0 cm. Calculate the change in electric potential en-
ergy of the system as the charge at the lower left corner in
Figure P23.57 is brought to this position from infinitely far
away. Assume that the other three charges in Figure P23.57
remain fixed in position.

22. Compare this problem with Problem 20 in Chapter 23. Two
point charges each of magnitude 2.00 +C are located
on the x axis. One is at x # 1.00 m, and the other is at
x # ! 1.00 m. (a) Determine the electric potential on
the y axis at y # 0.500 m. (b) Calculate the change in
electric potential energy of the system as a third charge
of ! 3.00 +C is brought from infinitely far away to a posi-
tion on the y axis at y # 0.500 m.

Show that the amount of work required to assemble
four identical point charges of magnitude Q at the corners
of a square of side s is 5.41keQ2/s.

24. Compare this problem with Problem 23 in Chapter 23. Five equal
negative point charges ! q are placed symmetrically
around a circle of radius R. Calculate the electric potential
at the center of the circle.

25. Compare this problem with Problem 41 in Chapter 23. Three
equal positive charges q are at the corners of an equilateral
triangle of side a as shown in Figure P23.41. (a) At what
point, if any, in the plane of the charges is the electric
potential zero? (b) What is the electric potential at the
point P due to the two charges at the base of the triangle?

26. Review problem. Two insulating spheres have radii
0.300 cm and 0.500 cm, masses 0.100 kg and 0.700 kg, and
uniformly distributed charges of ! 2.00 +C and 3.00 +C.
They are released from rest when their centers are sepa-
rated by 1.00 m. (a) How fast will each be moving when
they collide? (Suggestion: consider conservation of energy
and of linear momentum.) (b) What If? If the spheres
were conductors, would the speeds be greater or less than
those calculated in part (a)? Explain.

27. Review problem. Two insulating spheres have radii r1 and
r2, masses m1 and m2, and uniformly distributed charges
! q1 and q2. They are released from rest when their centers
are separated by a distance d. (a) How fast is each moving
when they collide? (Suggestion: consider conservation of en-
ergy and conservation of linear momentum.) (b) What If?
If the spheres were conductors, would their speeds be
greater or less than those calculated in part (a)? Explain.

28. Two particles, with charges of 20.0 nC and ! 20.0 nC, are
placed at the points with coordinates (0, 4.00 cm) and
(0, ! 4.00 cm), as shown in Figure P25.28. A particle with
charge 10.0 nC is located at the origin. (a) Find the
electric potential energy of the configuration of the

23.

three fixed charges. (b) A fourth particle, with a mass of
2.00 % 10!13 kg and a charge of 40.0 nC, is released from
rest at the point (3.00 cm, 0). Find its speed after it has
moved freely to a very large distance away.

20.0 nC

10.0 nC

–20.0 nC

40.0 nC

4.00 cm

3.00 cm

4.00 cm

Figure P25.28

a

a

x

y

Q >O

Q

Figure P25.30

31. A small spherical object carries a charge of 8.00 nC. At
what distance from the center of the object is the potential
equal to 100 V? 50.0 V? 25.0 V? Is the spacing of the
equipotentials proportional to the change in potential?

29. Review problem. A light unstressed spring has length d.
Two identical particles, each with charge q, are connected
to the opposite ends of the spring. The particles are held
stationary a distance d apart and then released at the same
time. The system then oscillates on a horizontal frictionless
table. The spring has a bit of internal kinetic friction, so
the oscillation is damped. The particles eventually stop
vibrating when the distance between them is 3d. Find the
increase in internal energy that appears in the spring
during the oscillations. Assume that the system of the
spring and two charges is isolated.

30. Two point charges of equal magnitude are located along
the y axis equal distances above and below the x axis, as
shown in Figure P25.30. (a) Plot a graph of the potential
at points along the x axis over the interval ! 3a & x & 3a.
You should plot the potential in units of keQ /a. (b) Let
the charge located at !a be negative and plot the poten-
tial along the y axis over the interval ! 4a & y & 4a.
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32. In 1911 Ernest Rutherford and his assistants Geiger and
Marsden conducted an experiment in which they scattered
alpha particles from thin sheets of gold. An alpha particle,
having charge ) 2e and mass 6.64 % 10!27 kg, is a product
of certain radioactive decays. The results of the experi-
ment led Rutherford to the idea that most of the mass of
an atom is in a very small nucleus, with electrons in orbit
around it—his planetary model of the atom. Assume an
alpha particle, initially very far from a gold nucleus, is fired
with a velocity of 2.00 % 107 m/s directly toward the
nucleus (charge ) 79e). How close does the alpha particle
get to the nucleus before turning around? Assume the
gold nucleus remains stationary.

33. An electron starts from rest 3.00 cm from the center of a
uniformly charged insulating sphere of radius 2.00 cm and
total charge 1.00 nC. What is the speed of the electron
when it reaches the surface of the sphere?

34. Calculate the energy required to assemble the array of
charges shown in Figure P25.34, where a # 0.200 m,
b # 0.400 m, and q # 6.00 +C.

It is shown in Example 25.7 that the potential at a point P
a distance a above one end of a uniformly charged rod of
length ! lying along the x axis is

Use this result to derive an expression for the y component
of the electric field at P. (Suggestion: Replace a with y.)

Section 25.5 Electric Potential Due to Continuous
Charge Distributions

42. Consider a ring of radius R with the total charge Q spread
uniformly over its perimeter. What is the potential differ-
ence between the point at the center of the ring and a
point on its axis a distance 2R from the center?

A rod of length L (Fig. P25.43) lies along the x axis with its
left end at the origin. It has a nonuniform charge density
1 # 5x, where 5 is a positive constant. (a) What are the
units of 5? (b) Calculate the electric potential at A.

43.

V #
ke Q

!
   ln  ' ! ) √!2 ) a 

2

a (

41.q –2q

2q 3q
b

a

Figure P25.34

35. Four identical particles each have charge q and mass m.
They are released from rest at the vertices of a square of
side L. How fast is each charge moving when their distance
from the center of the square doubles?

36. How much work is required to assemble eight identical
point charges, each of magnitude q, at the corners of a
cube of side s?

Section 25.4 Obtaining the Value of the Electric Field
from the Electric Potential

37. The potential in a region between x # 0 and x # 6.00 m is
V # a ) bx, where a # 10.0 V and b # ! 7.00 V/m. Deter-
mine (a) the potential at x # 0, 3.00 m, and 6.00 m, and
(b) the magnitude and direction of the electric field at
x # 0, 3.00 m, and 6.00 m.

38. The electric potential inside a charged spherical conduc-
tor of radius R is given by V # keQ /R, and the potential
outside is given by V # keQ /r. Using Er # ! dV/dr, derive
the electric field (a) inside and (b) outside this charge
distribution.

Over a certain region of space, the electric potential is
V # 5x ! 3x2y ) 2yz2. Find the expressions for the x, y,
and z components of the electric field over this region.
What is the magnitude of the field at the point P that has
coordinates (1, 0, ! 2) m?

39.
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Figure P25.40

b
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x
L

d

A

Figure P25.43 Problems 43 and 44.

44. For the arrangement described in the previous problem,
calculate the electric potential at point B, which lies on the
perpendicular bisector of the rod a distance b above the x
axis.

40. Figure P25.40 shows several equipotential lines each
labeled by its potential in volts. The distance between the
lines of the square grid represents 1.00 cm. (a) Is the mag-
nitude of the field larger at A or at B? Why? (b) What is E
at B? (c) Represent what the field looks like by drawing at
least eight field lines.
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45. Compare this problem with Problem 33 in Chapter 23. A
uniformly charged insulating rod of length 14.0 cm is bent
into the shape of a semicircle as shown in Figure P23.33.
The rod has a total charge of ! 7.50 +C. Find the electric
potential at O, the center of the semicircle.

46. Calculate the electric potential at point P on the axis of
the annulus shown in Figure P25.46, which has a uniform
charge density 0.

charge is continuously deposited by a moving belt.
Charge can be added until the electric field at the
surface of the dome becomes equal to the dielectric
strength of air. Any more charge leaks off in sparks, as
shown in Figure P25.51. Assume the dome has a diameter
of 30.0 cm and is surrounded by dry air with dielectric
strength 3.00 % 106 V/m. (a) What is the maximum
potential of the dome? (b) What is the maximum charge
on the dome?

2R 2R
O

R

Figure P25.47
Figure P25.51 Problems 51 and 52.
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ts47. A wire having a uniform linear charge density 1 is bent

into the shape shown in Figure P25.47. Find the electric
potential at point O.

a
b

x
P

Figure P25.46

Section 25.6 Electric Potential Due to a 
Charged Conductor

48. How many electrons should be removed from an initially
uncharged spherical conductor of radius 0.300 m to
produce a potential of 7.50 kV at the surface?

A spherical conductor has a radius of 14.0 cm and
charge of 26.0 +C. Calculate the electric field and the
electric potential (a) r # 10.0 cm, (b) r # 20.0 cm, and
(c) r # 14.0 cm from the center.

50. Electric charge can accumulate on an airplane in flight.
You may have observed needle-shaped metal extensions on
the wing tips and tail of an airplane. Their purpose is to
allow charge to leak off before much of it accumulates.
The electric field around the needle is much larger than
the field around the body of the airplane, and can become
large enough to produce dielectric breakdown of the air,
discharging the airplane. To model this process, assume
that two charged spherical conductors are connected by a
long conducting wire, and a charge of 1.20 +C is placed
on the combination. One sphere, representing the body of
the airplane, has a radius of 6.00 cm, and the other, repre-
senting the tip of the needle, has a radius of 2.00 cm.
(a) What is the electric potential of each sphere? (b) What
is the electric field at the surface of each sphere?

Section 25.8 Applications of Electrostatics

Lightning can be studied with a Van de Graaff generator,
essentially consisting of a spherical dome on which

51.

49.

52. The spherical dome of a Van de Graaff generator can be
raised to a maximum potential of 600 kV; then additional
charge leaks off in sparks, by producing dielectric
breakdown of the surrounding dry air, as shown in Figure
P25.51. Determine (a) the charge on the dome and
(b) the radius of the dome.

Additional Problems

The liquid-drop model of the atomic nucleus suggests that
high-energy oscillations of certain nuclei can split the
nucleus into two unequal fragments plus a few neutrons.
The fission products acquire kinetic energy from their mu-
tual Coulomb repulsion. Calculate the electric potential
energy (in electron volts) of two spherical fragments from
a uranium nucleus having the following charges and radii:
38e and 5.50 % 10!15 m; 54e and 6.20 % 10!15 m. Assume
that the charge is distributed uniformly throughout the
volume of each spherical fragment and that just before
separating they are at rest with their surfaces in contact.
The electrons surrounding the nucleus can be ignored.

54. On a dry winter day you scuff your leather-soled shoes
across a carpet and get a shock when you extend the tip of
one finger toward a metal doorknob. In a dark room you
see a spark perhaps 5 mm long. Make order-of-magnitude
estimates of (a) your electric potential and (b) the charge
on your body before you touch the doorknob. Explain
your reasoning.

The Bohr model of the hydrogen atom states that the
single electron can exist only in certain allowed orbits

55.

53.
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around the proton. The radius of each Bohr orbit is r #
n2(0.052 9 nm) where n # 1, 2, 3, . . . . Calculate the elec-
tric potential energy of a hydrogen atom when the electron
(a) is in the first allowed orbit, with n # 1, (b) is in the sec-
ond allowed orbit, n # 2, and (c) has escaped from the
atom, with r # *. Express your answers in electron volts.

56. An electron is released from rest on the axis of a uniform
positively charged ring, 0.100 m from the ring’s center. If
the linear charge density of the ring is ) 0.100 +C/m and
the radius of the ring is 0.200 m, how fast will the electron
be moving when it reaches the center of the ring?

57. As shown in Figure P25.57, two large parallel vertical con-
ducting plates separated by distance d are charged so that
their potentials are ) V0 and ! V0. A small conducting ball of
mass m and radius R (where R && d) is hung midway
between the plates. The thread of length L supporting the
ball is a conducting wire connected to ground, so the poten-
tial of the ball is fixed at V # 0. The ball hangs straight down
in stable equilibrium when V0 is sufficiently small. Show that
the equilibrium of the ball is unstable if V0 exceeds the criti-
cal value ke d 2mg/(4RL). (Suggestion: consider the forces on
the ball when it is displaced a distance x && L.)

60. Two parallel plates having charges of equal magnitude but
opposite sign are separated by 12.0 cm. Each plate has a
surface charge density of 36.0 nC/m2. A proton is released
from rest at the positive plate. Determine (a) the potential
difference between the plates, (b) the kinetic energy of
the proton when it reaches the negative plate, (c) the
speed of the proton just before it strikes the negative plate,
(d) the acceleration of the proton, and (e) the force on
the proton. (f) From the force, find the magnitude of the
electric field and show that it is equal to the electric field
found from the charge densities on the plates.

61. A Geiger tube is a radiation detector that essentially
consists of a closed, hollow metal cylinder (the cathode) of
inner radius ra and a coaxial cylindrical wire (the anode)
of radius rb (Fig. P25.61). The charge per unit length on
the anode is 1, while the charge per unit length on the
cathode is ! 1. A gas fills the space between the electrodes.
When a high-energy elementary particle passes through
this space, it can ionize an atom of the gas. The strong
electric field makes the resulting ion and electron acceler-
ate in opposite directions. They strike other molecules of
the gas to ionize them, producing an avalanche of electri-
cal discharge. The pulse of electric current between the
wire and the cylinder is counted by an external circuit.
(a) Show that the magnitude of the potential difference
between the wire and the cylinder is

(b) Show that the magnitude of the electric field in the
space between cathode and anode is given by

where r is the distance from the axis of the anode to the
point where the field is to be calculated.

E #
$V

ln(ra/rb)
   ' 1

r (

$V # 2ke  1  ln  ' ra

rb
(

+V0 –V0

d

L

Figure P25.57

d

R

h

Figure P25.58

rb
λ

ra –λ

Cathode

Anode

λ

Figure P25.61 Problems 61 and 62.

58. Compare this problem with Problem 34 in Chapter 23. (a) A uni-
formly charged cylindrical shell has total charge Q , radius
R, and height h. Determine the electric potential at a point
a distance d from the right end of the cylinder, as shown in
Figure P25.58. (Suggestion: use the result of Example 25.5
by treating the cylinder as a collection of ring charges.)
(b) What If? Use the result of Example 25.6 to solve the
same problem for a solid cylinder.

62. The results of Problem 61 apply also to an electro-
static precipitator (Figures 25.30 and P25.61). An applied
voltage $V # Va ! Vb # 50.0 kV is to produce an electric
field of magnitude 5.50 MV/m at the surface of the central
wire. Assume the outer cylindrical wall has uniform radius
ra # 0.850 m. (a) What should be the radius rb of the
central wire? You will need to solve a transcendental equa-
tion. (b) What is the magnitude of the electric field at the
outer wall?

Calculate the work that must be done to charge a spherical
shell of radius R to a total charge Q.

59.
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From Gauss’s law, the electric field set up by a uni-
form line of charge is

where is a unit vector pointing radially away from the line
and 1 is the linear charge density along the line. Derive an
expression for the potential difference between r # r1 and
r # r2.

64. Four balls, each with mass m, are connected by four non-
conducting strings to form a square with side a, as shown
in Figure P25.64. The assembly is placed on a horizontal
nonconducting frictionless surface. Balls 1 and 2 each
have charge q, and balls 3 and 4 are uncharged. Find the
maximum speed of balls 1 and 2 after the string connect-
ing them is cut.

r̂

E # ' 1

2/60r (  r̂

63.
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Figure P25.64
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Figure P25.69

65. A point charge q is located at x # ! R, and a point charge
! 2q is located at the origin. Prove that the equipotential
surface that has zero potential is a sphere centered at
(! 4R/3, 0, 0) and having a radius r # 2R/3.

66. Consider two thin, conducting, spherical shells as shown in
Figure P25.66. The inner shell has a radius r1 # 15.0 cm
and a charge of 10.0 nC. The outer shell has a radius
r2 # 30.0 cm and a charge of ! 15.0 nC. Find (a) the
electric field E and (b) the electric potential V in regions
A, B, and C, with V # 0 at r # *.

A point charge Q of mass M is located initially at the center
of the ring. When it is displaced slightly, the point charge
accelerates along the x axis to infinity. Show that the
ultimate speed of the point charge is

v # ' 2ke Q2

MR (1/2

An electric dipole is located along the y axis as shown
in Figure P25.69. The magnitude of its electric dipole
moment is defined as p # 2qa. (a) At a point P, which is far
from the dipole (r .. a), show that the electric potential is

V #
ke  p cos (

r 
2

69.

67. The x axis is the symmetry axis of a stationary uniformly
charged ring of radius R and charge Q (Fig. P25.67).

68. The thin, uniformly charged rod shown in Figure P25.68
has a linear charge density 1. Find an expression for the
electric potential at P.
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(b) Calculate the radial component Er and the perpendic-
ular component E( of the associated electric field. Note
that E( # ! (1/r)(,V/,(). Do these results seem reason-
able for ( # 90° and 0°? for r # 0? (c) For the dipole
arrangement shown, express V in terms of Cartesian coor-
dinates using r # (x2 ) y2)1/2 and

Using these results and again taking r .. a, calculate the
field components Ex and Ey .

70. When an uncharged conducting sphere of radius a is
placed at the origin of an xyz coordinate system that lies in
an initially uniform electric field E # E0 k̂ , the resulting
electric potential is V(x, y, z) # V0 for points inside the
sphere and

for points outside the sphere, where V0 is the (constant)
electric potential on the conductor. Use this equation to
determine the x, y, and z components of the resulting
electric field.

71. A disk of radius R (Fig. P25.71) has a nonuniform surface
charge density 0 # Cr, where C is a constant and r is mea-
sured from the center of the disk. Find (by direct integra-
tion) the potential at P.

V(x, y, z) # V0 ! E  0 z )
E 0a 

3z
(x2 ) y2 ) z2)3/2

cos ( #
y

(x2 ) y2)1/2

Answers to Quick Quizzes

25.1 (b). When moving straight from A to B, E and ds both
point toward the right. Thus, the dot product E "ds in
Equation 25.3 is positive and $V is negative.

25.2 (a). From Equation 25.3, $U # q0 $V, so if a negative
test charge is moved through a negative potential differ-
ence, the potential energy is positive. Work must be
done to move the charge in the direction opposite to
the electric force on it.

25.3 B : C, C : D, A : B, D : E. Moving from B to C
decreases the electric potential by 2 V, so the electric field
performs 2 J of work on each coulomb of positive charge
that moves. Moving from C to D decreases the electric
potential by 1 V, so 1 J of work is done by the field. It takes
no work to move the charge from A to B because the
electric potential does not change. Moving from D to E
increases the electric potential by 1 V, and thus the field
does ! 1 J of work per unit of positive charge that moves.

25.4 (f ). The electric field points in the direction of decreas-
ing electric potential.

25.5 (b) and (f). The electric potential is inversely propor-
tion to the radius (see Eq. 25.11). Because the same
number of field lines passes through a closed surface of
any shape or size, the electric flux through the surface
remains constant.

25.6 (c). The potential is established only by the source
charge and is independent of the test charge.

25.7 (a). The potential energy of the two-charge system is
initially negative, due to the products of charges of
opposite sign in Equation 25.13. When the sign of q2 is
changed, both charges are negative, and the potential
energy of the system is positive.

25.8 (a). If the potential is constant (zero in this case), its
derivative along this direction is zero.

25.9 (b). If the electric field is zero, there is no change in the
electric potential and it must be constant. This constant
value could be zero but does not have to be zero.

25.10 The graph would look like the sketch below. Notice the
flat plateaus at each conductor, representing the
constant electric potential inside a conductor.

R
P

x

Figure P25.71

Right edge
of sphere 1

Left edge
of sphere 2

Right edge
of sphere 2

a b – c b + c x

V

72. A solid sphere of radius R has a uniform charge density 7
and total charge Q. Derive an expression for its total
electric potential energy. (Suggestion: imagine that the
sphere is constructed by adding successive layers of concen-
tric shells of charge dq # (4/r 2 dr)7 and use dU # V dq.)

73. Charge is uniformly distributed with a density of
100.0 +C/m3 throughout the volume of a cube 10.00 cm
on each edge. (a) Find the electric potential at a
distance of 5.000 cm from the center of one face of the
cube, measured along a perpendicular to the face.
Determine the potential to four significant digits. Use a
numerical method that divides the cube into a sufficient
number of smaller cubes, treated as point charges.
Symmetry considerations will reduce the number of
actual calculations. (b) What If? If the charge on the
cube is redistributed into a uniform sphere of charge
with the same center, by how much does the potential
change?
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CHAPTE R OUTL I N E

26.1 Definition of Capacitance

26.2 Calculating Capacitance

26.3 Combinations of Capacitors

26.4 Energy Stored in a Charged
Capacitor

26.5 Capacitors with Dielectrics

26.6 Electric Dipole in an Electric
Field

26.7 An Atomic Description of
Dielectrics

! All of these devices are capacitors, which store electric charge and energy. A capacitor is
one type of circuit element that we can combine with others to make electric circuits.
(Paul Silverman/Fundamental Photographs)

Chapter 26
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In this chapter, we will introduce the first of three simple circuit elements that can be
connected with wires to form an electric circuit. Electric circuits are the basis for the
vast majority of the devices that we use in current society. We shall discuss capacitors—
devices that store electric charge. This discussion will be followed by the study of resis-
tors in Chapter 27 and inductors in Chapter 32. In later chapters, we will study more
sophisticated circuit elements such as diodes and transistors.

Capacitors are commonly used in a variety of electric circuits. For instance, they are
used to tune the frequency of radio receivers, as filters in power supplies, to eliminate
sparking in automobile ignition systems, and as energy-storing devices in electronic
flash units.

A capacitor consists of two conductors separated by an insulator. The capacitance
of a given capacitor depends on its geometry and on the material—called a dielectric—
that separates the conductors.

26.1 Definition of Capacitance

Consider two conductors carrying charges of equal magnitude and opposite sign, as
shown in Figure 26.1. Such a combination of two conductors is called a capacitor.
The conductors are called plates. A potential difference !V exists between the con-
ductors due to the presence of the charges.

What determines how much charge is on the plates of a capacitor for a given
voltage? Experiments show that the quantity of charge Q on a capacitor1 is linearly
proportional to the potential difference between the conductors; that is, Q " !V.
The proportionality constant depends on the shape and separation of the con-
ductors.2 We can write this relationship as Q # C !V if we define capacitance as
follows:

1 Although the total charge on the capacitor is zero (because there is as much excess positive charge
on one conductor as there is excess negative charge on the other), it is common practice to refer to the
magnitude of the charge on either conductor as “the charge on the capacitor.’’
2 The proportionality between !V and Q can be proved from Coulomb’s law or by experiment.

The capacitance C of a capacitor is defined as the ratio of the magnitude of the
charge on either conductor to the magnitude of the potential difference between
the conductors:

(26.1)C  ! 
Q

!V

–Q

+Q

Figure 26.1 A capacitor consists of
two conductors. When the capaci-
tor is charged, the conductors carry
charges of equal magnitude and
opposite sign.

! PITFALL PREVENTION 
26.1 Capacitance Is a

Capacity
To understand capacitance, think
of similar notions that use a simi-
lar word. The capacity of a milk
carton is the volume of milk that
it can store. The heat capacity of
an object is the amount of energy
an object can store per unit
of temperature difference. The
capacitance of a capacitor is the
amount of charge the capacitor
can store per unit of potential
difference.

Definition of capacitance



Note that by definition capacitance is always a positive quantity. Furthermore, the charge
Q and the potential difference !V are always expressed in Equation 26.1 as positive
quantities. Because the potential difference increases linearly with the stored charge,
the ratio Q /!V is constant for a given capacitor. Therefore, capacitance is a measure
of a capacitor’s ability to store charge. Because positive and negative charges are sepa-
rated in the system of two conductors in a capacitor, there is electric potential energy
stored in the system.

From Equation 26.1, we see that capacitance has SI units of coulombs per volt. The
SI unit of capacitance is the farad (F), which was named in honor of Michael Faraday:

The farad is a very large unit of capacitance. In practice, typical devices have capaci-
tances ranging from microfarads (10$6 F) to picofarads (10$12 F). We shall use the
symbol %F to represent microfarads. To avoid the use of Greek letters, in practice,
physical capacitors often are labeled “mF’’ for microfarads and “mmF’’ for micromicro-
farads or, equivalently, “pF’’ for picofarads.

Let us consider a capacitor formed from a pair of parallel plates, as shown in
Figure 26.2. Each plate is connected to one terminal of a battery, which acts as
a source of potential difference. If the capacitor is initially uncharged, the battery
establishes an electric field in the connecting wires when the connections are made.
Let us focus on the plate connected to the negative terminal of the battery. The
electric field applies a force on electrons in the wire just outside this plate; this
force causes the electrons to move onto the plate. This movement continues until
the plate, the wire, and the terminal are all at the same electric potential. Once this
equilibrium point is attained, a potential difference no longer exists between the
terminal and the plate, and as a result no electric field is present in the wire, and
the movement of electrons stops. The plate now carries a negative charge. A similar
process occurs at the other capacitor plate, with electrons moving from the plate to
the wire, leaving the plate positively charged. In this final configuration, the poten-
tial difference across the capacitor plates is the same as that between the terminals
of the battery.

Suppose that we have a capacitor rated at 4 pF. This rating means that the capaci-
tor can store 4 pC of charge for each volt of potential difference between the two
conductors. If a 9-V battery is connected across this capacitor, one of the conductors
ends up with a net charge of $ 36 pC and the other ends up with a net charge of
& 36 pC.

1 F # 1 C/V
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Quick Quiz 26.1 A capacitor stores charge Q at a potential difference !V. If
the voltage applied by a battery to the capacitor is doubled to 2 !V, (a) the capacitance
falls to half its initial value and the charge remains the same (b) the capacitance and
the charge both fall to half their initial values (c) the capacitance and the charge both
double (d) the capacitance remains the same and the charge doubles.

d

–Q
+Q

Area = A

+ –

Figure 26.2 A parallel-plate capac-
itor consists of two parallel con-
ducting plates, each of area A,
separated by a distance d. When
the capacitor is charged by con-
necting the plates to the terminals
of a battery, the plates carry equal
amounts of charge. One plate
carries positive charge, and the
other carries negative charge.

! PITFALL PREVENTION 
26.2 Potential Difference

is !V, not V
We use the symbol !V for 
the potential difference across 
a circuit element or a device
because this is consistent with our
definition of potential difference
and with the meaning of the delta
sign. It is a common, but confus-
ing, practice to use the symbol V
without the delta sign for a poten-
tial difference. Keep this in mind
if you consult other texts.

! PITFALL PREVENTION 
26.3 Too Many C’s
Do not confuse italic C for capac-
itance with non-italic C for the
unit coulomb.

26.2 Calculating Capacitance

We can derive an expression for the capacitance of a pair of oppositely charged con-
ductors in the following manner: assume a charge of magnitude Q , and calculate the
potential difference using the techniques described in the preceding chapter. We
then use the expression C # Q /!V to evaluate the capacitance. As we might expect,
we can perform this calculation relatively easily if the geometry of the capacitor is
simple.



While the most common situation is that of two conductors, a single conductor also
has a capacitance. For example, imagine a spherical charged conductor. The electric
field lines around this conductor are exactly the same as if there were a conducting
shell of infinite radius, concentric with the sphere and carrying a charge of the same
magnitude but opposite sign. Thus, we can identify the imaginary shell as the second
conductor of a two-conductor capacitor. We now calculate the capacitance for this situ-
ation. The electric potential of the sphere of radius R is simply keQ /R , and setting
V # 0 for the infinitely large shell, we have

(26.2)

This expression shows that the capacitance of an isolated charged sphere is propor-
tional to its radius and is independent of both the charge on the sphere and the poten-
tial difference.

The capacitance of a pair of conductors depends on the geometry of the conduc-
tors. Let us illustrate this with three familiar geometries, namely, parallel plates, con-
centric cylinders, and concentric spheres. In these examples, we assume that the
charged conductors are separated by a vacuum. The effect of a dielectric material
placed between the conductors is treated in Section 26.5.

Parallel-Plate Capacitors

Two parallel metallic plates of equal area A are separated by a distance d, as shown
in Figure 26.2. One plate carries a charge Q , and the other carries a charge $ Q .
Let us consider how the geometry of these conductors influences the capacity of the
combination to store charge. Recall that charges of the same sign repel one
another. As a capacitor is being charged by a battery, electrons flow into the nega-
tive plate and out of the positive plate. If the capacitor plates are large, the accumu-
lated charges are able to distribute themselves over a substantial area, and the
amount of charge that can be stored on a plate for a given potential difference
increases as the plate area is increased. Thus, we expect the capacitance to be pro-
portional to the plate area A.

Now let us consider the region that separates the plates. If the battery has a
constant potential difference between its terminals, then the electric field between
the plates must increase as d is decreased. Let us imagine that we move the plates
closer together and consider the situation before any charges have had a chance
to move in response to this change. Because no charges have moved, the electric
field between the plates has the same value but extends over a shorter distance.
Thus, the magnitude of the potential difference between the plates !V # Ed (Eq.
25.6) is now smaller. The difference between this new capacitor voltage and the
terminal voltage of the battery now exists as a potential difference across the wires
connecting the battery to the capacitor. This potential difference results in the
electric field in the wires that drives more charge onto the plates, increasing the
potential difference between the plates. When the potential difference between
the plates again matches that of the battery, the potential difference across the wires
falls back to zero, and the flow of charge stops. Thus, moving the plates closer
together causes the charge on the capacitor to increase. If d is increased, the charge
decreases. As a result, we expect the capacitance of the pair of plates to be inversely
proportional to d.

We can verify these physical arguments with the following derivation. The
surface charge density on either plate is ' # Q /A. If the plates are very close
together (in comparison with their length and width), we can assume that the
electric field is uniform between the plates and is zero elsewhere. According
to the What If? feature in Example 24.8, the value of the electric field between

C #
Q

!V
#

Q
ke Q  /R

#
R
ke

# 4()0R
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Capacitance of an isolated
charged sphere



the plates is

Because the field between the plates is uniform, the magnitude of the potential differ-
ence between the plates equals Ed (see Eq. 25.6); therefore,

Substituting this result into Equation 26.1, we find that the capacitance is

(26.3)

That is, the capacitance of a parallel-plate capacitor is proportional to the area
of its plates and inversely proportional to the plate separation, just as we ex-
pected from our conceptual argument.

A careful inspection of the electric field lines for a parallel-plate capacitor
reveals that the field is uniform in the central region between the plates, as shown
in Figure 26.3a. However, the field is nonuniform at the edges of the plates. Figure
26.3b is a photograph of the electric field pattern of a parallel-plate capacitor. Note
the nonuniform nature of the electric field at the ends of the plates. Such end
effects can be neglected if the plate separation is small compared with the length of
the plates.

Figure 26.4 shows a battery connected to a single parallel-plate capacitor with a
switch in the circuit. Let us identify the circuit as a system. When the switch is closed,
the battery establishes an electric field in the wires and charges flow between the wires
and the capacitor. As this occurs, there is a transformation of energy within the system.
Before the switch is closed, energy is stored as chemical energy in the battery. This
energy is transformed during the chemical reaction that occurs within the battery
when it is operating in an electric circuit. When the switch is closed, some of the
chemical energy in the battery is converted to electric potential energy related to the
separation of positive and negative charges on the plates. As a result, we can describe a
capacitor as a device that stores energy as well as charge. We will explore this energy
storage in more detail in Section 26.4.

C #
)0A
d

C #
Q

!V
#

Q
Qd/)0A

!V # Ed #
Qd
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'
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Q
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Figure 26.3 (a) The electric field between the plates of a parallel-plate capacitor is
uniform near the center but nonuniform near the edges. (b) Electric field pattern of
two oppositely charged conducting parallel plates. Small pieces of thread on an oil
surface align with the electric field.

Capacitance of parallel plates

(b)
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Example 26.1 Parallel-Plate Capacitor

A parallel-plate capacitor with air between the plates has an
area A # 2.00 * 10$4 m2 and a plate separation d # 1.00 mm.
Find its capacitance.

Solution From Equation 26.3, we find that
1.77 pF # 1.77 * 10$12  F #

C #
)0A
d

#
(8.85 * 10$12 C2/N+m2)(2.00 * 10$4 m2)

1.00 * 10$3 m

+ –

(b)

+ –

+ –

+ –

+ –

+ –

+ –

∆V

Chemical
energy in
battery is
reduced

Electric
field in
wire

Electric
field in
wire

Electric
field between
plates

E

Electrons
move
from the
wire to
the plate

Separation
of charges
represents
potential
energyElectrons move

from the plate
to the wire,
leaving the plate
positively
charged

+ –

(a)

∆V

Active Figure 26.4 (a) A circuit consisting of a capacitor, a battery, and a switch.
(b) When the switch is closed, the battery establishes an electric field in the wire
that causes electrons to move from the left plate into the wire and into the right plate
from the wire. As a result, a separation of charge exists on the plates, which represents
an increase in electric potential energy of the system of the circuit. This energy in the
system has been transformed from chemical energy in the battery.

At the Active Figures link
at http://www.pse6.com, you
can adjust the battery voltage
and see the resulting charge on
the plates and the electric field
between the plates.

Quick Quiz 26.2 Many computer keyboard buttons are constructed of
capacitors, as shown in Figure 26.5. When a key is pushed down, the soft insulator
between the movable plate and the fixed plate is compressed. When the key is pressed,
the capacitance (a) increases, (b) decreases, or (c) changes in a way that we cannot
determine because the complicated electric circuit connected to the keyboard button
may cause a change in !V.

Figure 26.5 (Quick Quiz 26.2) One type of com-
puter keyboard button.

Key

Movable
plate

Soft
insulator

Fixed
plate

B
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Example 26.2 The Cylindrical Capacitor

A solid cylindrical conductor of radius a and charge Q is
coaxial with a cylindrical shell of negligible thickness, radius
b , a, and charge $ Q (Fig. 26.6a). Find the capacitance of
this cylindrical capacitor if its length is !.

Solution It is difficult to apply physical arguments to this
configuration, although we can reasonably expect the capac-
itance to be proportional to the cylinder length ! for the
same reason that parallel-plate capacitance is proportional
to plate area: stored charges have more room in which to be
distributed. If we assume that ! is much greater than a and
b, we can neglect end effects. In this case, the electric field
is perpendicular to the long axis of the cylinders and is
confined to the region between them (Fig. 26.6b). We must
first calculate the potential difference between the two cylin-
ders, which is given in general by

where E is the electric field in the region between the
cylinders. In Chapter 24, we showed using Gauss’s law that
the magnitude of the electric field of a cylindrical charge
distribution having linear charge density - is E # 2ke-/r
(Eq. 24.7). The same result applies here because, accord-
ing to Gauss’s law, the charge on the outer cylinder does

Vb $ Va # $"b

a
 E+d s

Figure 26.6 (Example 26.2) (a) A cylindrical capacitor consists
of a solid cylindrical conductor of radius a and length !
surrounded by a coaxial cylindrical shell of radius b. (b) End
view. The electric field lines are radial. The dashed line
represents the end of the cylindrical gaussian surface of radius
r and length !.

b
a

!

(a) (b)

Gaussian
surface

–Q
a

Q

b

r

not contribute to the electric field inside it. Using this re-
sult and noting from Figure 26.6b that E is along r, we find
that

Substituting this result into Equation 26.1 and using the fact
that - # Q /!, we obtain

(26.4)

where !V is the magnitude of the potential difference
between the cylinders, given by !V # #Va $ Vb # #
2ke -ln(b/a), a positive quantity. As predicted, the capaci-
tance is proportional to the length of the cylinders. As we
might expect, the capacitance also depends on the radii of
the two cylindrical conductors. From Equation 26.4, we
see that the capacitance per unit length of a combination
of concentric cylindrical conductors is

(26.5)

An example of this type of geometric arrangement is a coax-
ial cable, which consists of two concentric cylindrical conduc-
tors separated by an insulator. You are likely to have a
coaxial cable attached to your television set or VCR if you
are a subscriber to cable television. The cable carries electri-
cal signals in the inner and outer conductors. Such a geom-
etry is especially useful for shielding the signals from any
possible external influences.

What If? Suppose b " 2.00a for the cylindrical capacitor.
We would like to increase the capacitance, and we can do
so by choosing to increase ! by 10% or by increasing a
by 10%. Which choice is more effective at increasing the
capacitance?

Answer According to Equation 26.4, C is proportional to !,
so increasing ! by 10% results in a 10% increase in C. For
the result of the change in a, let us first evaluate C for
b # 2.00a:

# 0.721  
!

ke

C #
!

2ke  ln(b/a)
#

!

2ke  ln(2.00)
#

!

2ke (0.693)

C
!

#
1

2ke  ln(b/a)

!

2ke ln(b/a)
C #

Q
!V

#
Q

(2ke Q  /!)ln(b/a)
#

Vb $ Va # $"b

a
 Er dr # $2ke - "b

a
  

dr
r

# $2ke - ln  $ b
a %

Cylindrical and Spherical Capacitors

From the definition of capacitance, we can, in principle, find the capacitance of any
geometric arrangement of conductors. The following examples demonstrate the use of
this definition to calculate the capacitance of the other familiar geometries that we
mentioned: cylinders and spheres.
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Now, for a 10% increase in a, the new value is a. # 1.10a, so

The ratio of the new and old capacitances is

C .

C
#

0.836  !/ke

0.721 !/ke
# 1.16

#
!

2ke  ln(2.00/1.10)
#

!

2ke (0.598)
# 0.836  

!

ke

C . #
!

2ke  ln(b/a.)
#

!

2ke  ln(2.00a/1.10a)

corresponding to a 16% increase in capacitance. Thus, it is
more effective to increase a than to increase !.

Note two more extensions of this problem. First, the
advantage goes to increasing a only for a range of relation-
ships between a and b. It is a valuable exercise to show that if
b , 2.85a, increasing ! by 10% is more effective than
increasing a (Problem 77). Second, if we increase b, we
reduce the capacitance, so we would need to decrease b to
increase the capacitance. Increasing a and decreasing b both
have the effect of bringing the plates closer together, which
increases the capacitance.

Example 26.3 The Spherical Capacitor

A spherical capacitor consists of a spherical conducting shell
of radius b and charge $ Q concentric with a smaller con-
ducting sphere of radius a and charge Q (Fig. 26.7). Find
the capacitance of this device.

Solution As we showed in Chapter 24, the field outside a
spherically symmetric charge distribution is radial and given
by the expression keQ /r 2. In this case, this result applies to
the field between the spheres (a / r / b). From Gauss’s law
we see that only the inner sphere contributes to this field.
Thus, the potential difference between the spheres is

The magnitude of the potential difference is

Substituting this value for !V into Equation 26.1, we obtain

(26.6)

What If? What if the radius b of the outer sphere
approaches infinity? What does the capacitance become?

Answer In Equation 26.6, we let b : 0:

Note that this is the same expression as Equation 26.2, the
capacitance of an isolated spherical conductor.

C # lim
b : 0

 
ab

ke(b $ a)
#

ab
ke(b)

#
a
ke

 # 4()0a

 
ab

ke(b $ a)
C #

Q
∆V

#

∆V # & Vb $ Va & # keQ  
(b $ a)

ab

 # ke Q  $ 1
b

$
1
a %

Vb $ Va # $"b

a
 E r dr # $ke Q "b

a
 
dr
r 

2 # ke Q ' 1
r (

b

a

Figure 26.7 (Example 26.3) A spherical capacitor consists of an
inner sphere of radius a surrounded by a concentric spherical
shell of radius b. The electric field between the spheres is
directed radially outward when the inner sphere is positively
charged.

a

b

– Q

+Q

26.3 Combinations of Capacitors

Two or more capacitors often are combined in electric circuits. We can calculate the
equivalent capacitance of certain combinations using methods described in this
section. Throughout this section, we assume that the capacitors to be combined are
initially uncharged.

In studying electric circuits, we use a simplified pictorial representation called
a circuit diagram. Such a diagram uses circuit symbols to represent various
circuit elements. The circuit symbols are connected by straight lines that represent
the wires between the circuit elements. The circuit symbols for capacitors and
batteries, as well as the color codes used for them in this text, are given in Figure
26.8. The symbol for the capacitor reflects the geometry of the most common
model for a capacitor—a pair of parallel plates. The positive terminal of the battery
is at the higher potential and is represented in the circuit symbol by the longer line.

Capacitor
symbol

Battery
symbol +–

Switch
symbol

Figure 26.8 Circuit symbols for
capacitors, batteries, and switches.
Note that capacitors are in blue and
batteries and switches are in red.



Parallel Combination

Two capacitors connected as shown in Figure 26.9a are known as a parallel combination
of capacitors. Figure 26.9b shows a circuit diagram for this combination of capacitors.
The left plates of the capacitors are connected by a conducting wire to the positive
terminal of the battery and are therefore both at the same electric potential as the
positive terminal. Likewise, the right plates are connected to the negative terminal and
are therefore both at the same potential as the negative terminal. Thus, the individual
potential differences across capacitors connected in parallel are the same and
are equal to the potential difference applied across the combination.

In a circuit such as that shown in Figure 26.9, the voltage applied across the combi-
nation is the terminal voltage of the battery. Situations can occur in which the parallel
combination is in a circuit with other circuit elements; in such situations, we must deter-
mine the potential difference across the combination by analyzing the entire circuit.

When the capacitors are first connected in the circuit shown in Figure 26.9, elec-
trons are transferred between the wires and the plates; this transfer leaves the left
plates positively charged and the right plates negatively charged. The flow of charge
ceases when the voltage across the capacitors is equal to that across the battery termi-
nals. The capacitors reach their maximum charge when the flow of charge ceases. Let
us call the maximum charges on the two capacitors Q 1 and Q 2. The total charge Q
stored by the two capacitors is

(26.7)

That is, the total charge on capacitors connected in parallel is the sum of the
charges on the individual capacitors. Because the voltages across the capacitors are
the same, the charges that they carry are

Suppose that we wish to replace these two capacitors by one equivalent capacitor
having a capacitance Ceq, as in Figure 26.9c. The effect this equivalent capacitor has
on the circuit must be exactly the same as the effect of the combination of the two

Q 1 # C 1  ∆V  Q  2 # C 2  ∆V

Q # Q 1 & Q  2
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(a)

+ –

C2

+ –

C1

+ –

(b)

∆V

+ –

Q2

C2

Q1

C1

∆V1 = ∆V2 = ∆V

∆V

+ –

Ceq = C1 + C2

(c)

∆V

Active Figure 26.9 (a) A parallel combination of two capacitors in an electric circuit
in which the potential difference across the battery terminals is !V. (b) The circuit dia-
gram for the parallel combination. (c) The equivalent capacitance is Ceq # C1 & C2.

At the Active Figures link
at http://www.pse6.com, you
can adjust the battery voltage
and the individual capacitances
to see the resulting charges
and voltages on the capacitors.
You can combine up to four
capacitors in parallel.



individual capacitors. That is, the equivalent capacitor must store Q units of charge
when connected to the battery. We can see from Figure 26.9c that the voltage across
the equivalent capacitor also is !V because the equivalent capacitor is connected
directly across the battery terminals. Thus, for the equivalent capacitor,

Substituting these three relationships for charge into Equation 26.7, we have

If we extend this treatment to three or more capacitors connected in parallel, we find
the equivalent capacitance to be

(26.8)

Thus, the equivalent capacitance of a parallel combination of capacitors is the
algebraic sum of the individual capacitances and is greater than any of the indi-
vidual capacitances. This makes sense because we are essentially combining the areas
of all the capacitor plates when we connect them with conducting wire, and capaci-
tance of parallel plates is proportional to area (Eq. 26.3).

Series Combination

Two capacitors connected as shown in Figure 26.10a and the equivalent circuit
diagram in Figure 26.10b are known as a series combination of capacitors. The left plate
of capacitor 1 and the right plate of capacitor 2 are connected to the terminals of a
battery. The other two plates are connected to each other and to nothing else; hence,
they form an isolated conductor that is initially uncharged and must continue to
have zero net charge. To analyze this combination, let us begin by considering the
uncharged capacitors and follow what happens just after a battery is connected to the
circuit. When the battery is connected, electrons are transferred out of the left plate of
C1 and into the right plate of C 2. As this negative charge accumulates on the right
plate of C 2, an equivalent amount of negative charge is forced off the left plate of C2,
and this left plate therefore has an excess positive charge. The negative charge leaving

Ceq # C 1 & C 2 & C 3 & + + +  (parallel combination)

Ceq # C1 & C 2  (parallel combination)

C eq ∆V # C 1 ∆V &C 2 !V

Q # C eq ∆V

804 C H A P T E R  2 6 •  Capacitance and Dielectrics

(b)
∆V

Q1 = Q2 = Q
C1 C2

∆V1 ∆V2

–+ + –

(c)
∆V

Ceq    C1    C2

1 1 1=       +

(a)

+ –

C2

∆V

C1
∆V1 ∆V2

+Q – Q +Q – Q

Active Figure 26.10 (a) A series combination of two capacitors. The charges on 
the two capacitors are the same. (b) The circuit diagram for the series combination.
(c) The equivalent capacitance can be calculated from the relationship 

1
Ceq

#
1

C 1
&

1
C 2

.

At the Active Figures link
at http://www.pse6.com, you
can adjust the battery voltage
and the individual capacitances
to see the resulting charges
and voltages on the capacitors.
You can combine up to four
capacitors in series.

Capacitors in parallel



the left plate of C 2 causes negative charges to accumulate on the right plate of C1. As a
result, all the right plates end up with a charge $ Q , and all the left plates end up with
a charge & Q . Thus, the charges on capacitors connected in series are the same.

From Figure 26.10a, we see that the voltage !V across the battery terminals is split
between the two capacitors:

(26.9)

where !V1 and !V2 are the potential differences across capacitors C1 and C2, respectively.
In general, the total potential difference across any number of capacitors connected
in series is the sum of the potential differences across the individual capacitors.

Suppose that the equivalent single capacitor in Figure 26.10c has the same effect
on the circuit as the series combination when it is connected to the battery. After it is
fully charged, the equivalent capacitor must have a charge of $ Q on its right plate and
a charge of & Q on its left plate. Applying the definition of capacitance to the circuit in
Figure 26.10c, we have

Because we can apply the expression Q # C !V to each capacitor shown in Figure
26.10b, the potential differences across them are

Substituting these expressions into Equation 26.9, we have

Canceling Q , we arrive at the relationship

When this analysis is applied to three or more capacitors connected in series, the
relationship for the equivalent capacitance is

(26.10)

This shows that the inverse of the equivalent capacitance is the algebraic sum of the
inverses of the individual capacitances and the equivalent capacitance of a series
combination is always less than any individual capacitance in the combination.

1
C eq

#
1

C 1
&

1
C 2

&
1

C 3
& + + +  (series combination)

1
C eq

#
1

C 1
&

1
C 2

  (series combination)

Q
Ceq

#
Q
C1

&
Q
C 2

∆V1 #
Q
C1

  ∆V2 #
Q
C 2

∆V #
Q

Ceq

∆V # ∆V1 & ∆V2
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Quick Quiz 26.3 Two capacitors are identical. They can be connected in
series or in parallel. If you want the smallest equivalent capacitance for the combina-
tion, do you connect them in (a) series, in (b) parallel, or (c) do the combinations
have the same capacitance?

Quick Quiz 26.4 Consider the two capacitors in Quick Quiz 26.3 again.
Each capacitor is charged to a voltage of 10 V. If you want the largest combined poten-
tial difference across the combination, do you connect them in (a) series, in (b) paral-
lel, or (c) do the combinations have the same potential difference?

Capacitors in series
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P R O B L E M - S O LV I N G  H I N T S

Capacitors
• Be careful with units. When you calculate capacitance in farads, make 

sure that distances are expressed in meters. When checking consistency 
of units, remember that the unit for electric fields can be either N/C or 
V/m.

• When two or more capacitors are connected in parallel, the potential
difference across each is the same. The charge on each capacitor is
proportional to its capacitance; hence, the capacitances can be added
directly to give the equivalent capacitance of the parallel combination. 
The equivalent capacitance is always larger than the individual
capacitances.

• When two or more capacitors are connected in series, they carry the 
same charge, and the sum of the potential differences equals the total
potential difference applied to the combination. The sum of the
reciprocals of the capacitances equals the reciprocal of the equivalent
capacitance, which is always less than the capacitance of the smallest
individual capacitor.

Example 26.4 Equivalent Capacitance

Find the equivalent capacitance between a and b for the
combination of capacitors shown in Figure 26.11a. All
capacitances are in microfarads.

Solution Using Equations 26.8 and 26.10, we reduce the
combination step by step as indicated in the figure. The 1.0-%F
and 3.0-%F capacitors are in parallel and combine according
to the expression Ceq # C1 & C2 # 4.0 %F. The 2.0-%F and
6.0-%F capacitors also are in parallel and have an equivalent
capacitance of 8.0 %F. Thus, the upper branch in Figure
26.11b consists of two 4.0-%F capacitors in series, which
combine as follows:

The lower branch in Figure 26.11b consists of two 8.0-%F
capacitors in series, which combine to yield an equiva-
lent capacitance of 4.0 %F. Finally, the 2.0-%F and 4.0-%F
capacitors in Figure 26.11c are in parallel and thus have an

equivalent capacitance of 6.0 %F.

C eq # 2.0 %F 

 
1

C eq
#

1
C 1

&
1

C 2
#

1
4.0 %F

&
1

4.0 %F
#

1
2.0 %F

Figure 26.11 (Example 26.4) To find the equivalent capacitance of the capacitors in
part (a), we reduce the various combinations in steps as indicated in parts (b), (c), and
(d), using the series and parallel rules described in the text.

4.0
4.0

8.0
8.0

ba

(b)

4.0

ba

(c)

2.0

6.0 ba

(d)

4.0

8.0

ba

(a)

2.0

6.0

3.0

1.0

Practice reducing a combination of capacitors to a single equivalent capacitance at the Interactive Worked Example link at
http://www.pse6.com.

Interactive
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3 We shall use lowercase q for the time-varying charge on the capacitor while it is charging, to distin-
guish it from uppercase Q , which is the total charge on the capacitor after it is completely charged.

26.4 Energy Stored in a Charged Capacitor

Almost everyone who works with electronic equipment has at some time verified that a
capacitor can store energy. If the plates of a charged capacitor are connected by a con-
ductor, such as a wire, charge moves between each plate and its connecting wire until
the capacitor is uncharged. The discharge can often be observed as a visible spark. If
you should accidentally touch the opposite plates of a charged capacitor, your fingers
act as a pathway for discharge, and the result is an electric shock. The degree of shock
you receive depends on the capacitance and on the voltage applied to the capacitor.
Such a shock could be fatal if high voltages are present, such as in the power supply of
a television set. Because the charges can be stored in a capacitor even when the set is
turned off, unplugging the television does not make it safe to open the case and touch
the components inside.

To calculate the energy stored in the capacitor, we shall assume a charging process
that is different from the actual process described in Section 26.1 but which gives the
same final result. We can make this assumption because the energy in the final configu-
ration does not depend on the actual charge-transfer process. We imagine that the
charge is transferred mechanically through the space between the plates. We reach
in and grab a small amount of positive charge on the plate connected to the negative
terminal and apply a force that causes this positive charge to move over to the plate
connected to the positive terminal. Thus, we do work on the charge as we transfer it
from one plate to the other. At first, no work is required to transfer a small amount of
charge dq from one plate to the other.3 However, once this charge has been trans-
ferred, a small potential difference exists between the plates. Therefore, work must be
done to move additional charge through this potential difference. As more and more
charge is transferred from one plate to the other, the potential difference increases in
proportion, and more work is required.

Suppose that q is the charge on the capacitor at some instant during the charging
process. At the same instant, the potential difference across the capacitor is !V # q/C.
From Section 25.2, we know that the work necessary to transfer an increment of charge
dq from the plate carrying charge $ q to the plate carrying charge q (which is at the
higher electric potential) is

This is illustrated in Figure 26.12. The total work required to charge the capacitor
from q # 0 to some final charge q # Q is

The work done in charging the capacitor appears as electric potential energy U stored
in the capacitor. Using Equation 26.1, we can express the potential energy stored in a
charged capacitor in the following forms:

(26.11)

This result applies to any capacitor, regardless of its geometry. We see that for a given
capacitance, the stored energy increases as the charge increases and as the potential
difference increases. In practice, there is a limit to the maximum energy (or charge)
that can be stored because, at a sufficiently great value of !V, discharge ultimately
occurs between the plates. For this reason, capacitors are usually labeled with a
maximum operating voltage.

U #
Q 

2

2C
# 1

2Q  ∆V # 1
2C (∆V  )2

W # "Q

0
  

q
C

 dq #
1
C

 "Q

0
 q dq #

Q 
2

2C

dW # ∆V dq #
q
C

 dq

V

dq

q

∆

Q

Figure 26.12 A plot of potential
difference versus charge for a
capacitor is a straight line having a
slope 1/C. The work required to
move charge dq through the
potential difference !V existing
at the time across the capacitor
plates is given approximately by
the area of the shaded rectangle.
The total work required to charge
the capacitor to a final charge Q
is the triangular area under the
straight line, . (Don’t
forget that 1 V # J/C; hence, the
unit for the triangular area is the
joule.)

W # 1
2Q !V

Energy stored in a charged
capacitor
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We can consider the energy stored in a capacitor as being stored in the electric
field created between the plates as the capacitor is charged. This description is reason-
able because the electric field is proportional to the charge on the capacitor. For a
parallel-plate capacitor, the potential difference is related to the electric field through
the relationship !V # Ed. Furthermore, its capacitance is C # )0A/d (Eq. 26.3). Substi-
tuting these expressions into Equation 26.11, we obtain

(26.12)

Because the volume occupied by the electric field is Ad, the energy per unit volume
uE # U/Ad, known as the energy density, is

(26.13)

Although Equation 26.13 was derived for a parallel-plate capacitor, the expression
is generally valid, regardless of the source of the electric field. That is, the energy
density in any electric field is proportional to the square of the magnitude of
the electric field at a given point.

uE # 1
2 

) 0 E 2

U # 1
2 

) 0A
d

 (E2d2) # 1
2()0Ad )E2

Quick Quiz 26.5 You have three capacitors and a battery. In which of the
following combinations of the three capacitors will the maximum possible energy be
stored when the combination is attached to the battery? (a) series (b) parallel (c) Both
combinations will store the same amount of energy.

Quick Quiz 26.6 You charge a parallel-plate capacitor, remove it from the
battery, and prevent the wires connected to the plates from touching each other. When
you pull the plates apart to a larger separation, do the following quantities increase,
decrease, or stay the same? (a) C ; (b) Q ; (c) E between the plates; (d) !V ; (e) energy
stored in the capacitor.

Quick Quiz 26.7 Repeat Quick Quiz 26.6, but this time answer the ques-
tions for the situation in which the battery remains connected to the capacitor while
you pull the plates apart.

Example 26.5 Rewiring Two Charged Capacitors

Two capacitors C1 and C 2 (where C1 , C 2) are charged
to the same initial potential difference !V i . The charged
capacitors are removed from the battery, and their plates
are connected with opposite polarity as in Figure 26.13a.
The switches S1 and S2 are then closed, as in Figure
26.13b.

(A) Find the final potential difference !Vf between a and b
after the switches are closed.

Solution Figure 26.13 helps us conceptualize the initial
and final configurations of the system. In Figure 26.13b, it
might appear as if the capacitors are connected in parallel,
but there is no battery in this circuit that is applying a volt-
age across the combination. Thus, we cannot categorize this
as a problem in which capacitors are connected in parallel.
We can categorize this as a problem involving an isolated
system for electric charge—the left-hand plates of the capac-

Figure 26.13 (Example 26.5) (a) Two capacitors are charged to
the same initial potential difference and connected together with
plates of opposite sign to be in contact when the switches are
closed. (b) When the switches are closed, the charges redistribute.

+ –

Q1i
+

ba

(a)

–
C1

Q 2i
– +

C2

S1 S2

+

ba

(b)

–

S1 S2

Q1f
C1

Q 2f C2

Interactive

! PITFALL PREVENTION 
26.4 Not a New Kind of

Energy
The energy given by Equation
26.13 is not a new kind of energy.
It is familiar electric potential
energy associated with a system of
separated source charges. Equa-
tion 26.13 provides a new interpre-
tation, or a new way of modeling
the energy, as energy associated
with the electric field, regardless
of the source of the field.

itors form an isolated system because they are not con-
nected to the right-hand plates by conductors. To analyze

Energy density in an electric
field
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the problem, note that the charges on the left-hand plates
before the switches are closed are

The negative sign for Q 2i is necessary because the charge on
the left plate of capacitor C2 is negative. The total charge Q
in the system is

After the switches are closed, the total charge Q in the
system remains the same but the charges on the individual
capacitors change to new values Q 1f and Q 2f . Because the
system is isolated,

The charges redistribute until the potential difference is the
same across both capacitors, !Vf . To satisfy this requirement,
the charges on the capacitors after the switches are closed are

Dividing the first equation by the second, we have

Combining Equations (2) and (3), we obtain

Using Equations (3) and (4) to find Q1f in terms of Q , we have

Finally, using Equation 26.1 to find the voltage across each
capacitor, we find that

As noted earlier, !V1f # !V 2f # !Vf .
To express !Vf in terms of the given quantities C1, C2,

and !Vi , we substitute the value of Q from Equation (1) into
either Equation (6) or (7) to obtain

 $ C1 $ C 2

C1 & C 2
% ∆Vi∆Vf #

(7)   ∆V2f #
Q  2f

C 2
#

Q [C 2/(C1 & C 2)]
C 2

#
Q

C1 & C 2

(6)   ∆V1f #
Q 1f

C1
#

Q [C1/(C1 & C 2)]
C1

#
Q

C1 & C 2

  # Q   $ C 1

C1 & C 2
%

(5)   Q 1f #
C1

C 2
 Q  2f #

C1

C 2
 Q   $ C 2

C1 & C 2
%

(4)   Q  2f # Q  $ C 2

C1 & C 2
%

Q # Q 1f & Q  2f #
C 1

 C 2
 Q  2f & Q  2f # Q  2f  $1 &

C 1

C 2
%

(3)   Q 1f #
C1

C 2
 Q  2f

Q 1f # C1 ∆Vf  and  Q  2f # C 2 ∆Vf

(2)   Q # Q 1f & Q  2f

(1)   Q # Q 1i & Q  2i # (C1 $ C 2)∆Vi

Q 1i # C1 ∆Vi  and  Q  2i # $C 2  ∆Vi

(B) Find the total energy stored in the capacitors before and
after the switches are closed and the ratio of the final energy
to the initial energy.

Solution Before the switches are closed, the total energy
stored in the capacitors is

After the switches are closed, the total energy stored in the
capacitors is

Using the results of part (A), we can express this as

Therefore, the ratio of the final energy stored to the initial
energy stored is

To finalize this problem, note that this ratio is less than unity,
indicating that the final energy is less than the initial energy.
At first, you might think that the law of energy conservation
has been violated, but this is not the case. The “missing’’ en-
ergy is transferred out of the system of the capacitors by the
mechanism of electromagnetic waves, as we shall see in
Chapter 34.

What If? What if the two capacitors have the same capaci-
tance? What would we expect to happen when the switches
are closed?

Answer The equal-magnitude charges on the two capaci-
tors should simply cancel each other and the capacitors will
be uncharged afterward.

Let us test our results to see if this is the case mathemati-
cally. In Equation (1), because the charges are of equal mag-
nitude and opposite sign, we see that Q # 0. Thus,
Equations (4) and (5) show us that Q1f # Q 2f # 0, consis-
tent with our prediction. Furthermore, Equations (6) and
(7) show us that !V1f # !V2f # 0, which is consistent
with uncharged capacitors. Finally, if C1 # C2, Equation
(8) shows us that Uf # 0, which is also consistent with
uncharged capacitors.

$ C 1 $ C 2

C 1 & C 2
%2

#

(8)   Uf

Ui
#

1
2 (C 1 $ C 2)2(∆Vi)2/(C1 & C 2)

1
2(C1 & C2)(∆Vi)2

 12 
(C 1 $ C 2)2(∆Vi)2

(C 1 & C 2)
Uf #

Uf # 1
2C 1(∆Vf )2 & 1

2C 2(∆Vf )2 # 1
2(C 1 & C 2)(!Vf )2

 12(C1 & C 2)(∆Vi)2Ui #  12C 1(∆Vi)2 & 1
2C 2(∆Vi)2 #

At the Interactive Worked Example link at http://www.pse6.com, explore this situation for various initial values of the volt-
age and the capacitances.



One device in which capacitors have an important role is the defibrillator (Fig. 26.14).
Up to 360 J is stored in the electric field of a large capacitor in a defibrillator when it is
fully charged. The defibrillator can deliver all this energy to a patient in about 2 ms. (This
is roughly equivalent to 3 000 times the power delivered to a 60-W lightbulb!) Under the
proper conditions, the defibrillator can be used to stop cardiac fibrillation (random con-
tractions) in heart attack victims. When fibrillation occurs, the heart produces a rapid,
irregular pattern of beats. A fast discharge of energy through the heart can return the
organ to its normal beat pattern. Emergency medical teams use portable defibrillators
that contain batteries capable of charging a capacitor to a high voltage. (The circuitry
actually permits the capacitor to be charged to a much higher voltage than that of the
battery.) The stored energy is released through the heart by conducting electrodes, called
paddles, that are placed on both sides of the victim’s chest. The paramedics must wait be-
tween applications of the energy due to the time necessary for the capacitors to become
fully charged. In this case and others (e.g., camera flash units and lasers used for fusion
experiments), capacitors serve as energy reservoirs which can be slowly charged and then
discharged quickly to provide large amounts of energy in a short pulse.

A camera’s flash unit also uses a capacitor, although the total amount of energy
stored is much less than that stored in a defibrillator. After the flash unit’s capacitor is
charged, tripping the camera’s shutter causes the stored energy to be sent through a
special lightbulb that briefly illuminates the subject being photographed.

26.5 Capacitors with Dielectrics

A dielectric is a nonconducting material, such as rubber, glass, or waxed paper. When
a dielectric is inserted between the plates of a capacitor, the capacitance increases. If
the dielectric completely fills the space between the plates, the capacitance increases
by a dimensionless factor 1, which is called the dielectric constant of the material.
The dielectric constant varies from one material to another. In this section, we analyze
this change in capacitance in terms of electrical parameters such as electric charge,
electric field, and potential difference; in Section 26.7, we shall discuss the microscopic
origin of these changes.
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Figure 26.14 In a hospital or at an emergency scene, you might see a patient being
revived with a defibrillator. The defibrillator’s paddles are applied to the patient’s chest,
and an electric shock is sent through the chest cavity. The aim of this technique is to
restore the heart’s normal rhythm pattern.

Ad
am

 H
ar

t-D
av

is/
SP

L/
Cu

st
om

 M
ed

ica
l S

to
ck



S ECT I O N  26 . 5 •  Capacitors with Dielectrics 811

4 If the dielectric is introduced while the potential difference is held constant by a battery, the
charge increases to a value Q # 1Q 0. The additional charge comes from the wires attached to the
capacitor, and the capacitance again increases by the factor 1.

We can perform the following experiment to illustrate the effect of a dielectric in
a capacitor. Consider a parallel-plate capacitor that without a dielectric has a charge
Q 0 and a capacitance C0. The potential difference across the capacitor is !V0 #
Q 0/C 0. Figure 26.15a illustrates this situation. The potential difference is measured by
a voltmeter, which we shall study in greater detail in Chapter 28. Note that no battery is
shown in the figure; also, we must assume that no charge can flow through an ideal
voltmeter. Hence, there is no path by which charge can flow and alter the charge on
the capacitor. If a dielectric is now inserted between the plates, as in Figure 26.15b,
the voltmeter indicates that the voltage between the plates decreases to a value !V.
The voltages with and without the dielectric are related by the factor 1 as follows:

Because !V / !V0, we see that 1 , 1.
Because the charge Q 0 on the capacitor does not change, we conclude that the

capacitance must change to the value

(26.14)

That is, the capacitance increases by the factor 1 when the dielectric completely fills the
region between the plates.4 For a parallel-plate capacitor, where C0 # )0 A/d (Eq. 26.3),
we can express the capacitance when the capacitor is filled with a dielectric as

(26.15)

From Equations 26.3 and 26.15, it would appear that we could make the capaci-
tance very large by decreasing d, the distance between the plates. In practice, the
lowest value of d is limited by the electric discharge that could occur through the
dielectric medium separating the plates. For any given separation d, the maximum volt-
age that can be applied to a capacitor without causing a discharge depends on the

C # 1 
)0A
d

C # 1C 0

C #
Q 0

∆V
 #

Q 0

∆V0/1
# 1 

Q 0

∆V0

∆V #
∆V0

1

C0 Q 0

+
–

C Q 0

Dielectric

∆V∆V0

+
–

(a) (b)

Figure 26.15 A charged capacitor (a) before and (b) after insertion of a dielectric 
between the plates. The charge on the plates remains unchanged, but the potential
difference decreases from !V0 to !V # !V0/1. Thus, the capacitance increases from
C0 to 1C0.

Capacitance of a capacitor filled
with a material of dielectric
constant #

! PITFALL PREVENTION 
26.5 Is the Capacitor

Connected to a
Battery?

In problems in which you are
modifying a capacitor (by inser-
tion of a dielectric, for example),
you must note whether modi-
fications to the capacitor are
being made while the capacitor is
connected to a battery or after it is
disconnected. If the capacitor
remains connected to the battery,
the voltage across the capacitor
necessarily remains the same. If
you disconnect the capacitor from
the battery before making any
modifications to the capacitor, the
capacitor is an isolated system and
its charge remains the same.



dielectric strength (maximum electric field) of the dielectric. If the magnitude of the
electric field in the dielectric exceeds the dielectric strength, then the insulating prop-
erties break down and the dielectric begins to conduct. Figure 26.16 shows the effect of
exceeding the dielectric strength of air. Sparks appear between the two wires, due to
ionization of atoms and recombination with electrons in the air, similar to the process
that produced corona discharge in Section 25.6.

Physical capacitors have a specification called by a variety of names, including work-
ing voltage, breakdown voltage, and rated voltage. This parameter represents the largest
voltage that can be applied to the capacitor without exceeding the dielectric strength
of the dielectric material in the capacitor. Consequently, when selecting a capacitor
for a given application, you must consider the capacitance of the device along with the
expected voltage across the capacitor in the circuit, making sure that the expected
voltage will be smaller than the rated voltage of the capacitor. You can see the rated
voltage on several of the capacitors in the opening photograph for this chapter.

Insulating materials have values of 1 greater than unity and dielectric strengths
greater than that of air, as Table 26.1 indicates. Thus, we see that a dielectric provides
the following advantages:

• Increase in capacitance

• Increase in maximum operating voltage

• Possible mechanical support between the plates, which allows the plates to be close
together without touching, thereby decreasing d and increasing C.

Types of Capacitors

Commercial capacitors are often made from metallic foil interlaced with thin sheets of
either paraffin-impregnated paper or Mylar as the dielectric material. These alternate
layers of metallic foil and dielectric are rolled into a cylinder to form a small package
(Fig. 26.17a). High-voltage capacitors commonly consist of a number of interwoven
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Figure 26.16 Dielectric breakdown
in air. Sparks are produced when
the high voltage between the wires
causes the electric field to exceed
the dielectric strength of air.
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a The dielectric strength equals the maximum electric field that can exist in a dielectric without
electrical breakdown. Note that these values depend strongly on the presence of impurities and
flaws in the materials.

Dielectric Strengtha

Material Dielectric Constant # (106 V/m)

Air (dry) 1.000 59 3
Bakelite 4.9 24
Fused quartz 3.78 8
Mylar 3.2 7
Neoprene rubber 6.7 12
Nylon 3.4 14
Paper 3.7 16
Paraffin-impregnated 3.5 11

paper
Polystyrene 2.56 24
Polyvinyl chloride 3.4 40
Porcelain 6 12
Pyrex glass 5.6 14
Silicone oil 2.5 15
Strontium titanate 233 8
Teflon 2.1 60
Vacuum 1.000 00 —
Water 80 —

Approximate Dielectric Constants and Dielectric Strengths of Various Materials 
at Room Temperature

Table 26.1



metallic plates immersed in silicone oil (Fig. 26.17b). Small capacitors are often con-
structed from ceramic materials.

Often, an electrolytic capacitor is used to store large amounts of charge at relatively low
voltages. This device, shown in Figure 26.17c, consists of a metallic foil in contact with
an electrolyte—a solution that conducts electricity by virtue of the motion of ions con-
tained in the solution. When a voltage is applied between the foil and the electrolyte, a
thin layer of metal oxide (an insulator) is formed on the foil, and this layer serves as the
dielectric. Very large values of capacitance can be obtained in an electrolytic capacitor
because the dielectric layer is very thin, and thus the plate separation is very small.

Electrolytic capacitors are not reversible as are many other capacitors—they have a
polarity, which is indicated by positive and negative signs marked on the device. When
electrolytic capacitors are used in circuits, the polarity must be aligned properly. If the
polarity of the applied voltage is opposite that which is intended, the oxide layer is
removed and the capacitor conducts electricity instead of storing charge.

Variable capacitors (typically 10 to 500 pF) usually consist of two interwoven sets of
metallic plates, one fixed and the other movable, and contain air as the dielectric (Fig.
26.18). These types of capacitors are often used in radio tuning circuits.
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Metal foil

Paper

Plates

Oil

Electrolyte

Case

Metallic foil + oxide layer

Contacts

(a) (b) (c)

Figure 26.17 Three commercial capacitor designs. (a) A tubular capacitor, whose plates
are separated by paper and then rolled into a cylinder. (b) A high-voltage capacitor
consisting of many parallel plates separated by insulating oil. (c) An electrolytic capacitor.

Figure 26.18 A variable capacitor.
When one set of metal plates is
rotated so as to lie between a fixed
set of plates, the capacitance of the
device changes.
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Quick Quiz 26.8 If you have ever tried to hang a picture or a mirror, you
know it can be difficult to locate a wooden stud in which to anchor your nail or screw.
A carpenter’s stud-finder is basically a capacitor with its plates arranged side by side
instead of facing one another, as shown in Figure 26.19. When the device is moved over
a stud, does the capacitance increase or decrease?

Capacitor
plates

Stud-finder

Wall board

Stud

(b)(a)

Figure 26.19 (Quick Quiz 26.8) A stud-finder. (a) The materials between the plates of
the capacitor are the wallboard and air. (b) When the capacitor moves across a stud in
the wall, the materials between the plates are the wallboard and the wood. The change
in the dielectric constant causes a signal light to illuminate.
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Quick Quiz 26.9 A fully charged parallel-plate capacitor remains con-
nected to a battery while you slide a dielectric between the plates. Do the following
quantities increase, decrease, or stay the same? (a) C ; (b) Q ; (c) E between the plates;
(d) !V.

Example 26.6 A Paper-Filled Capacitor

A parallel-plate capacitor has plates of dimensions 2.0 cm by
3.0 cm separated by a 1.0-mm thickness of paper.

(A) Find its capacitance.

Solution Because 1 # 3.7 for paper (see Table 26.1), we have

(B) What is the maximum charge that can be placed on the
capacitor?

20 pF# 20 * 10$12 F #

 # 3.7 $ (8.85 * 10$12 C2/N+m2)(6.0 * 10$4  m2)
1.0 * 10$3 m %

C # 1  
)0A
d

Solution From Table 26.1 we see that the dielectric
strength of paper is 16 * 106 V/m. Because the thickness of
the paper is 1.0 mm, the maximum voltage that can be
applied before breakdown is

Hence, the maximum charge is

0.32 %C#

Q max # C  !Vmax # (20 * 10$12 F )(16 * 103 V  )

 # 16 * 103 V
∆Vmax # Emax d # (16 * 106 V/m)(1.0 * 10$3 m)

Example 26.7 Energy Stored Before and After

A parallel-plate capacitor is charged with a battery to a
charge Q 0, as shown in Figure 26.20a. The battery is then
removed, and a slab of material that has a dielectric
constant 1 is inserted between the plates, as shown in Figure
26.20b. Find the energy stored in the capacitor before and
after the dielectric is inserted.

Solution From Equation 26.11, we see that the energy stored
in the absence of the dielectric is

After the battery is removed and the dielectric inserted, the
charge on the capacitor remains the same. Hence, the energy
stored in the presence of the dielectric is

But the capacitance in the presence of the dielectric is
C # 1C0, so U becomes

Because 1 , 1, the final energy is less than the initial
energy. We can account for the “missing’’ energy by noting
that the dielectric, when inserted, is pulled into the
device (see Section 26.7). An external agent must do neg-
ative work to keep the dielectric from accelerating. This
work is simply the difference U $ U 0. (Alternatively, the
positive work done by the system on the external agent is
U 0 $ U.)

U0

1
U #

Q 0
2

21C 0
#

U #
Q 0

2

2C 

Q 0
2

2C 0
U0 #

–+

Q 0
C 0

∆V 0

(a)

Dielectric

–+
Q 0

(b)

Figure 26.20 (Example 26.7) (a) A battery charges up a paral-
lel-plate capacitor. (b) The battery is removed and a slab of di-
electric material is inserted between the plates.



26.6 Electric Dipole in an Electric Field

We have discussed the effect on the capacitance of placing a dielectric between the plates
of a capacitor. In Section 26.7, we shall describe the microscopic origin of this effect.
Before we can do so, however, we need to expand upon the discussion of the electric
dipole that we began in Section 23.4 (see Example 23.6). The electric dipole consists of
two charges of equal magnitude and opposite sign separated by a distance 2a, as shown in
Figure 26.21. The electric dipole moment of this configuration is defined as the vector p
directed from $q toward &q along the line joining the charges and having magnitude
2aq :

(26.16)

Now suppose that an electric dipole is placed in a uniform electric field E, as
shown in Figure 26.22. We identify E as the field external to the dipole, distinguishing it
from the field due to the dipole, which we discussed in Section 23.4. The field E is
established by some other charge distribution, and we place the dipole into this field.
Let us imagine that the dipole moment makes an angle 2 with the field.

The electric forces acting on the two charges are equal in magnitude (F # qE ) and
opposite in direction as shown in Figure 26.22. Thus, the net force on the dipole is
zero. However, the two forces produce a net torque on the dipole; as a result, the
dipole rotates in the direction that brings the dipole moment vector into greater
alignment with the field. The torque due to the force on the positive charge about an
axis through O in Figure 26.22 has magnitude Fa sin 2, where a sin 2 is the moment
arm of F about O. This force tends to produce a clockwise rotation. The torque about
O on the negative charge is also of magnitude Fa sin 2; here again, the force tends to
produce a clockwise rotation. Thus, the magnitude of the net torque about O is

Because F # qE and p # 2aq, we can express 3 as

(26.17)

It is convenient to express the torque in vector form as the cross product of the vectors
p and E:

(26.18)

We can determine the potential energy of the system—an electric dipole in an exter-
nal electric field—as a function of the orientation of the dipole with respect to the field.
To do this, we recognize that work must be done by an external agent to rotate the dipole
through an angle so as to cause the dipole moment vector to become less aligned with the
field. The work done is then stored as potential energy in the system. The work dW
required to rotate the dipole through an angle d2 is dW # 3 d2 (Eq. 10.22). Because
3 # pE sin 2 and because the work results in an increase in the potential energy U, we find
that for a rotation from 2i to 2f the change in potential energy of the system is

The term that contains cos 2i is a constant that depends on the initial orientation of
the dipole. It is convenient for us to choose a reference angle of 2i # 90°, so that
cos 2i # cos 90° # 0. Furthermore, let us choose Ui # 0 at 2i # 90° as our reference
of potential energy. Hence, we can express a general value of U # Uf as

(26.19)

We can write this expression for the potential energy of a dipole in an electric field as
the dot product of the vectors p and E:

U # $pE cos 2

# pE [$cos 2]
2i

2f # pE(cos 2i $ cos 2f )

Uf $ Ui # "2f

2i
  3 d2 # "2f

2i

pE  sin 2 d2 # pE"2f

2i

sin 2 d2

$ " p % E

3 # 2aqE  sin 2 # p4 sin 2

3 # 2Fa sin 2

p ! 2aq

S ECT I O N  26 . 6 •  Electric Dipole in an Electric Field 815

+ q

– q

2a

p–

+

Figure 26.21 An electric dipole
consists of two charges of equal
magnitude and opposite sign
separated by a distance of 2a. The
electric dipole moment p is
directed from $ q toward & q.

+ q

θ

– q

F

E
– F

O

–

+

Figure 26.22 An electric dipole in
a uniform external electric field.
The dipole moment p is at an
angle 2 to the field, causing the
dipole to experience a torque.

Torque on an electric dipole in
an external electric field



(26.20)

To develop a conceptual understanding of Equation 26.19, compare this expres-
sion with the expression for the potential energy of the system of an object in the gravi-
tational field of the Earth, U # mgh (see Chapter 8). The gravitational expression
includes a parameter associated with the object we place in the field—its mass m.
Likewise, Equation 26.19 includes a parameter of the object in the electric field—its
dipole moment p. The gravitational expression includes the magnitude of the gravita-
tional field g. Similarly, Equation 26.19 includes the magnitude of the electric field E.
So far, these two contributions to the potential energy expressions appear analogous.
However, the final contribution is somewhat different in the two cases. In the gravita-
tional expression, the potential energy depends on how high we lift the object, mea-
sured by h. In Equation 26.19, the potential energy depends on the angle 2 through
which we rotate the dipole. In both cases, we are making a change in the configuration
of the system. In the gravitational case, the change involves moving an object in a trans-
lational sense, whereas in the electrical case, the change involves moving an object in a
rotational sense. In both cases, however, once the change is made, the system tends to
return to the original configuration when the object is released: the object of mass m
falls back to the ground, and the dipole begins to rotate back toward the configuration
in which it is aligned with the field. Thus, apart from the type of motion, the expres-
sions for potential energy in these two cases are similar.

Molecules are said to be polarized when a separation exists between the average
position of the negative charges and the average position of the positive charges in the
molecule. In some molecules, such as water, this condition is always present—such
molecules are called polar molecules. Molecules that do not possess a permanent
polarization are called nonpolar molecules.

We can understand the permanent polarization of water by inspecting the geome-
try of the water molecule. In the water molecule, the oxygen atom is bonded to the
hydrogen atoms such that an angle of 105° is formed between the two bonds (Fig.
26.23). The center of the negative charge distribution is near the oxygen atom, and
the center of the positive charge distribution lies at a point midway along the line
joining the hydrogen atoms (the point labeled * in Fig. 26.23). We can model the
water molecule and other polar molecules as dipoles because the average positions of
the positive and negative charges act as point charges. As a result, we can apply our
discussion of dipoles to the behavior of polar molecules.

Microwave ovens take advantage of the polar nature of the water molecule. When
in operation, microwave ovens generate a rapidly changing electric field that causes
the polar molecules to swing back and forth, absorbing energy from the field in the
process. Because the jostling molecules collide with each other, the energy they absorb
from the field is converted to internal energy, which corresponds to an increase in
temperature of the food.

Another household scenario in which the dipole structure of water is exploited is
washing with soap and water. Grease and oil are made up of nonpolar molecules, which
are generally not attracted to water. Plain water is not very useful for removing this type of
grime. Soap contains long molecules called surfactants. In a long molecule, the polarity
characteristics of one end of the molecule can be different from those at the other end.
In a surfactant molecule, one end acts like a nonpolar molecule and the other acts like a
polar molecule. The nonpolar end can attach to a grease or oil molecule, and the polar
end can attach to a water molecule. Thus, the soap serves as a chain, linking the dirt and
water molecules together. When the water is rinsed away, the grease and oil go with it.

A symmetric molecule (Fig. 26.24a) has no permanent polarization, but polariza-
tion can be induced by placing the molecule in an electric field. A field directed to the
left, as shown in Figure 26.24b, would cause the center of the positive charge distribu-
tion to shift to the left from its initial position and the center of the negative charge
distribution to shift to the right. This induced polarization is the effect that predominates
in most materials used as dielectrics in capacitors.

U # $p+E
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O

HH 105°

−−

+ +*

Figure 26.23 The water molecule,
H2O, has a permanent polarization
resulting from its nonlinear
geometry. The center of the
positive charge distribution is at
the point *.

E

(a)

(b)

++ −

−+ − +

Figure 26.24 (a) A linear symmet-
ric molecule has no permanent
polarization. (b) An external
electric field induces a polarization
in the molecule.

Potential energy of the system
of an electric dipole in an
external electric field
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Example 26.8 The H2O Molecule

The water (H2O) molecule has an electric dipole moment
of 6.3 * 10$30 C + m. A sample contains 1021 water mole-
cules, with the dipole moments all oriented in the direction
of an electric field of magnitude 2.5 * 105 N/C. How much
work is required to rotate the dipoles from this orientation
(2 # 0°) to one in which all the moments are perpendicular
to the field (2 # 90°)?

Solution The work required to rotate one molecule 90° is
equal to the difference in potential energy between the 90°
orientation and the 0° orientation. Using Equation 26.19,

we obtain

Because there are 1021 molecules in the sample, the total
work required is

1.6 * 10$3  JWtotal # (1021)(1.6 * 10$24  J) #

 # 1.6 * 10$24 J

 # pE # (6.3 * 10$30 C+m)(2.5 * 105 N/C)

W # U905 $ U05 # ($pE cos 905) $ ($pE cos 05)

26.7 An Atomic Description of Dielectrics

In Section 26.5 we found that the potential difference !V0 between the plates of a
capacitor is reduced to !V0/1 when a dielectric is introduced. The potential difference
is reduced because the magnitude of the electric field decreases between the plates. In
particular, if E0 is the electric field without the dielectric, the field in the presence of a
dielectric is

(26.21)

Let us first consider a dielectric made up of polar molecules placed in the electric
field between the plates of a capacitor. The dipoles (that is, the polar molecules mak-
ing up the dielectric) are randomly oriented in the absence of an electric field, as
shown in Figure 26.25a. When an external field E0 due to charges on the capacitor
plates is applied, a torque is exerted on the dipoles, causing them to partially align with
the field, as shown in Figure 26.25b. We can now describe the dielectric as being polar-
ized. The degree of alignment of the molecules with the electric field depends on
temperature and on the magnitude of the field. In general, the alignment increases
with decreasing temperature and with increasing electric field.

If the molecules of the dielectric are nonpolar, then the electric field due to the
plates produces some charge separation and an induced dipole moment. These induced
dipole moments tend to align with the external field, and the dielectric is polarized.
Thus, we can polarize a dielectric with an external field regardless of whether the
molecules are polar or nonpolar.
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Figure 26.25 (a) Polar molecules are randomly oriented in the absence of an external
electric field. (b) When an external electric field is applied, the molecules partially
align with the field. (c) The charged edges of the dielectric can be modeled as an
additional pair of parallel plates establishing an electric field E ind in the direction
opposite to that of E0.
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With these ideas in mind, consider a slab of dielectric material placed between the
plates of a capacitor so that it is in a uniform electric field E0, as shown in Figure
26.25b. The electric field due to the plates is directed to the right and polarizes the
dielectric. The net effect on the dielectric is the formation of an induced positive
surface charge density ' ind on the right face and an equal-magnitude negative surface
charge density $ ' ind on the left face, as shown in Figure 26.25c. Because we can
model these surface charge distributions as being due to parallel plates, the induced
surface charges on the dielectric give rise to an induced electric field Eind in the
direction opposite the external field E0. Therefore, the net electric field E in the
dielectric has a magnitude

(26.22)

In the parallel-plate capacitor shown in Figure 26.26, the external field E0 is related
to the charge density ' on the plates through the relationship E0 # '/)0. The induced
electric field in the dielectric is related to the induced charge density 'ind through the
relationship E ind # ' ind/)0. Because E # E0/1 # '/1)0, substitution into Equation
26.22 gives

(26.23)

Because 1 , 1, this expression shows that the charge density ' ind induced on the
dielectric is less than the charge density ' on the plates. For instance, if 1 # 3 we see
that the induced charge density is two-thirds the charge density on the plates. If no
dielectric is present, then 1 # 1 and ' ind # 0 as expected. However, if the dielectric is
replaced by an electrical conductor, for which E # 0, then Equation 26.22 indicates
that E0 # E ind; this corresponds to ' ind # '. That is, the surface charge induced on
the conductor is equal in magnitude but opposite in sign to that on the plates, result-
ing in a net electric field of zero in the conductor (see Fig. 24.16).

We can use the existence of the induced surface charge distributions on the dielec-
tric to explain the result of Example 26.7. As we saw there, the energy of a capacitor not
connected to a battery is lowered when a dielectric is inserted between the plates; this
means that negative work is done on the dielectric by the external agent inserting the
dielectric into the capacitor. This, in turn, implies that a force must be acting on the
dielectric that draws it into the capacitor. This force originates from the nonuniform
nature of the electric field of the capacitor near its edges, as indicated in Figure 26.27.
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Figure 26.26 Induced charge on a
dielectric placed between the
plates of a charged capacitor. Note
that the induced charge density on
the dielectric is less than the charge
density on the plates.
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Figure 26.27 The nonuniform electric field near the edges of a parallel-plate
capacitor causes a dielectric to be pulled into the capacitor. Note that the field acts on
the induced surface charges on the dielectric, which are nonuniformly distributed.



S ECT I O N  26 . 7 •  An Atomic Description of Dielectrics 819

(b)

(d – a)/2

(d – a)/2

(a)

d a

(d – a)/2

(d – a)/2
σ
–

σ

–– – – – –

– – – – –

+ + + + +

+ + + + +

σ

σ Figure 26.28 (Example 26.9) (a) A parallel-plate capacitor of
plate separation d partially filled with a metallic slab of thick-
ness a. (b) The equivalent circuit of the device in part (a) con-
sists of two capacitors in series, each having a plate separation
(d $ a)/2.

Example 26.9 Effect of a Metallic Slab

A parallel-plate capacitor has a plate separation d and plate
area A. An uncharged metallic slab of thickness a is inserted
midway between the plates.

(A) Find the capacitance of the device.

Solution We can solve this problem by noting that any
charge that appears on one plate of the capacitor must
induce a charge of equal magnitude and opposite sign
on the near side of the slab, as shown in Figure 26.28a.
Consequently, the net charge on the slab remains zero,
and the electric field inside the slab is zero. Hence, the
capacitor is equivalent to two capacitors in series, each
having a plate separation (d $ a)/2, as shown in Figure
26.28b.

Using Eq. 26.3 and the rule for adding two capacitors in
series (Eq. 26.10), we obtain

Note that C approaches infinity as a approaches d. Why?

)0A
d $ a

C #

1
C

#
1
C1

&
1
C2

#
1

' )0A
(d $ a)/2 (

&
1

' )0A
(d $ a)/2 (

(B) Show that the capacitance of the original capacitor is
unaffected by the insertion of the metallic slab if the slab is
infinitesimally thin.

Solution In the result for part (A), we let a : 0:

which is the original capacitance.

What If? What if the metallic slab in part (A) is not
midway between the plates? How does this affect the
capacitance?

Answer Let us imagine that the slab in Figure 26.27a is
moved upward so that the distance between the upper edge
of the slab and the upper plate is b. Then, the distance
between the lower edge of the slab and the lower plate is
d $ b $ a. As in part (A), we find the total capacitance of
the series combination:

This is the same result as in part (A). It is independent of
the value of b, so it does not matter where the slab is located.
In Figure 26.28b, when the central structure is moved up or
down, the decrease in plate separation of one capacitor is
compensated by the increase in plate separation for the
other.

C #
) 0 A
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#  
b

) 0 A
&

d $ b $ a
) 0 A

#
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) 0 A

1
C

#
1

C 1
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1
C 2

#
1

 () 0 A/b)
&

1
) 0 A/(d $ b $ a) 

C #  lim
a : 0

 
) 0 A

d $ a
#

) 0 A
d

Example 26.10 A Partially Filled Capacitor

A parallel-plate capacitor with a plate separation d has a
capacitance C0 in the absence of a dielectric. What is the
capacitance when a slab of dielectric material of dielectric
constant 1 and thickness is inserted between the plates
(Fig. 26.29a)?

1
3 d

Solution In Example 26.9, we found that we could insert a
metallic slab between the plates of a capacitor and consider
the combination as two capacitors in series. The resulting
capacitance was independent of the location of the slab.
Furthermore, if the thickness of the slab approaches zero,

The horizontal component of this fringe field acts on the induced charges on the surface
of the dielectric, producing a net horizontal force directed into the space between the
capacitor plates.
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Figure 26.29 (Example 26.10) (a) A parallel-plate capacitor of
plate separation d partially filled with a dielectric of thickness
d/3. (b) The equivalent circuit of the capacitor consists of two
capacitors connected in series.

then the capacitance of the system approaches the capaci-
tance when the slab is absent. From this, we conclude that
we can insert an infinitesimally thin metallic slab anywhere
between the plates of a capacitor without affecting the
capacitance. Thus, let us imagine sliding an infinitesimally
thin metallic slab along the bottom face of the dielectric
shown in Figure 26.29a. We can then consider this system to
be the series combination of the two capacitors shown in
Figure 26.29b: one having a plate separation d/3 and filled
with a dielectric, and the other having a plate separation
2d/3 and air between its plates.

From Equations 26.15 and 26.3, the two capacitances
are

Using Equation 26.10 for two capacitors combined in series,
we have

Because the capacitance without the dielectric is C0 # )0 A/d,
we see that

 $ 31

21 & 1 % C 0C #

C # $ 31

21 & 1 % 
) 0A

d
 

1
C

#
d

3 ) 0 A
 $ 1

1
& 2% #

d
3 ) 0 A

 $ 1 & 21

1 %

1
C

#
1

C 1
&

1
C 2

#
d/3

1) 0 A
&

2d/3
) 0 A

  

C 1 #
1) 0 A
d/3

  and  C 2 #
) 0 A
2d/3

A capacitor consists of two conductors carrying charges of equal magnitude and
opposite sign. The capacitance C of any capacitor is the ratio of the charge Q on
either conductor to the potential difference !V between them:

(26.1)

The capacitance depends only on the geometry of the conductors and not on an exter-
nal source of charge or potential difference.

The SI unit of capacitance is coulombs per volt, or the farad (F), and 1 F #
1 C/V.

Capacitance expressions for various geometries are summarized in Table 26.2.
If two or more capacitors are connected in parallel, then the potential difference is

the same across all of them. The equivalent capacitance of a parallel combination of
capacitors is

(26.8)

If two or more capacitors are connected in series, the charge is the same on all of
them, and the equivalent capacitance of the series combination is given by

C  eq # C 1 & C 2 & C 3 & + + +

C ! 
Q

∆V

S U M M A RY

Take a practice test for
this chapter by clicking on
the Practice Test link at
http://www.pse6.com.
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(26.10)

These two equations enable you to simplify many electric circuits by replacing multiple
capacitors with a single equivalent capacitance.

Energy is stored in a capacitor because the charging process is equivalent to the
transfer of charges from one conductor at a lower electric potential to another conduc-
tor at a higher potential. The energy stored in a capacitor with charge Q is

(26.11)

When a dielectric material is inserted between the plates of a capacitor, the capaci-
tance increases by a dimensionless factor 1, called the dielectric constant:

(26.14)

where C0 is the capacitance in the absence of the dielectric. The increase in capaci-
tance is due to a decrease in the magnitude of the electric field in the presence of the
dielectric. The decrease in the magnitude of E arises from an internal electric field
produced by aligned dipoles in the dielectric.

The electric dipole moment p of an electric dipole has a magnitude

(26.16)

The direction of the electric dipole moment vector is from the negative charge toward
the positive charge.

The torque acting on an electric dipole in a uniform electric field E is

(26.18)

The potential energy of the system of an electric dipole in a uniform external 
electric field E is

(26.20)U # $p & E

$ " p % E

p ! 2aq

C # 1C 0

U #
Q2

2C
# 1

2Q ∆V # 1
2C(∆V  )2

1
C eq

#
1

C1
&

1
C2

&
1

C 3
& + + +

Geometry Capacitance Equation

Isolated sphere of radius R 26.2
(second spherical conductor 
assumed to have infinite radius)

Parallel-plate capacitor of plate 26.3
area A and plate separation d

Cylindrical capacitor of length 26.4
! and inner and outer radii a
and b, respectively

Spherical capacitor with inner 26.6
and outer radii a and b,
respectively

C # 4()0R

C #
ab

k  e (b $ a)

C #
!

2k e  ln(b/a)

C # ) 0 
A
d

Capacitance and Geometry

Table 26.2

1. The plates of a capacitor are connected to a battery. What
happens to the charge on the plates if the connecting
wires are removed from the battery? What happens to the
charge if the wires are removed from the battery and con-
nected to each other?

2. A farad is a very large unit of capacitance. Calculate the
length of one side of a square, air-filled capacitor that has
a capacitance of 1 F and a plate separation of 1 m.

3. A pair of capacitors are connected in parallel while an
identical pair are connected in series. Which pair would be

Q U E S T I O N S
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more dangerous to handle after being connected to the
same battery? Explain.

4. If you are given three different capacitors C 1, C 2, C 3,
how many different combinations of capacitance can you
produce?

5. What advantage might there be in using two identical
capacitors in parallel connected in series with another
identical parallel pair, rather than using a single capacitor?

6. Is it always possible to reduce a combination of capacitors
to one equivalent capacitor with the rules we have devel-
oped? Explain.

7. The sum of the charges on both plates of a capacitor is
zero. What does a capacitor store?

8. Because the charges on the plates of a parallel-plate
capacitor are opposite in sign, they attract each other.
Hence, it would take positive work to increase the plate
separation. What type of energy in the system changes
due to the external work done in this process?

9. Why is it dangerous to touch the terminals of a high-
voltage capacitor even after the applied potential differ-
ence has been turned off? What can be done to make the
capacitor safe to handle after the voltage source has been
removed?

10. Explain why the work needed to move a charge Q
through a potential difference !V is W # Q !V whereas
the energy stored in a charged capacitor is 
Where does the factor come from?

If the potential difference across a capacitor is doubled,
by what factor does the energy stored change?

12. It is possible to obtain large potential differences by first
charging a group of capacitors connected in parallel and
then activating a switch arrangement that in effect dis-

11.

1
2

U # 1
2 Q  !V.

connects the capacitors from the charging source and
from each other and reconnects them in a series arrange-
ment. The group of charged capacitors is then
discharged in series. What is the maximum potential
difference that can be obtained in this manner by using
ten capacitors each of 500 %F and a charging source of
800 V?

13. Assume you want to increase the maximum operating
voltage of a parallel-plate capacitor. Describe how you
can do this for a fixed plate separation.

14. An air-filled capacitor is charged, then disconnected
from the power supply, and finally connected to a
voltmeter. Explain how and why the potential difference
changes when a dielectric is inserted between the plates
of the capacitor.

15. Using the polar molecule description of a dielectric,
explain how a dielectric affects the electric field inside a
capacitor.

16. Explain why a dielectric increases the maximum operat-
ing voltage of a capacitor although the physical size of
the capacitor does not change.

17. What is the difference between dielectric strength and
the dielectric constant?

18. Explain why a water molecule is permanently polarized.
What type of molecule has no permanent polarization?

19. If a dielectric-filled capacitor is heated, how will its
capacitance change? (Ignore thermal expansion and
assume that the dipole orientations are temperature-
dependent.)

If you were asked to design a capacitor where small size
and large capacitance were required, what factors would
be important in your design?

20.

Section 26.1 Definition of Capacitance

1. (a) How much charge is on each plate of a 4.00-%F capaci-
tor when it is connected to a 12.0-V battery? (b) If this
same capacitor is connected to a 1.50-V battery, what
charge is stored?

2. Two conductors having net charges of & 10.0 %C and
$ 10.0 %C have a potential difference of 10.0 V between
them. (a) Determine the capacitance of the system.
(b) What is the potential difference between the two con-
ductors if the charges on each are increased to & 100 %C
and $ 100 %C?

Section 26.2 Calculating Capacitance

An isolated charged conducting sphere of radius 12.0 cm
creates an electric field of 4.90 * 104 N/C at a distance

3.

21.0 cm from its center. (a) What is its surface charge den-
sity? (b) What is its capacitance?

4. (a) If a drop of liquid has capacitance 1.00 pF, what is its
radius? (b) If another drop has radius 2.00 mm, what is its
capacitance? (c) What is the charge on the smaller drop if
its potential is 100 V?

5. Two conducting spheres with diameters of 0.400 m and
1.00 m are separated by a distance that is large compared
with the diameters. The spheres are connected by a thin
wire and are charged to 7.00 %C. (a) How is this total
charge shared between the spheres? (Ignore any charge
on the wire.) (b) What is the potential of the system of
spheres when the reference potential is taken to be V # 0
at r # 0?

6. Regarding the Earth and a cloud layer 800 m above
the Earth as the “plates’’ of a capacitor, calculate the

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide

= coached solution with hints available at http://www.pse6.com = computer useful in solving problem

= paired numerical and symbolic problems

P R O B L E M S
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d

θ

R

Figure P26.10

CC

C

C CC

Figure P26.18

capacitance. Assume the cloud layer has an area of
1.00 km2 and that the air between the cloud and the
ground is pure and dry. Assume charge builds up on the
cloud and on the ground until a uniform electric field of
3.00 * 106 N/C throughout the space between them
makes the air break down and conduct electricity as a
lightning bolt. What is the maximum charge the cloud
can hold?

An air-filled capacitor consists of two parallel plates,
each with an area of 7.60 cm2, separated by a distance of
1.80 mm. A 20.0-V potential difference is applied to these
plates. Calculate (a) the electric field between the plates,
(b) the surface charge density, (c) the capacitance, and
(d) the charge on each plate.

8. A 1-megabit computer memory chip contains many 60.0-f F
capacitors. Each capacitor has a plate area of
21.0 * 10$12 m2. Determine the plate separation of such a
capacitor (assume a parallel-plate configuration). The
order of magnitude of the diameter of an atom is
10$10 m # 0.1 nm. Express the plate separation in
nanometers.

When a potential difference of 150 V is applied to the
plates of a parallel-plate capacitor, the plates carry a surface
charge density of 30.0 nC/cm2. What is the spacing
between the plates?

10. A variable air capacitor used in a radio tuning circuit is
made of N semicircular plates each of radius R and posi-
tioned a distance d from its neighbors, to which it is elec-
trically connected. As shown in Figure P26.10, a second
identical set of plates is enmeshed with its plates halfway
between those of the first set. The second set can rotate
as a unit. Determine the capacitance as a function of the
angle of rotation 2, where 2 # 0 corresponds to the maxi-
mum capacitance.

9.

7.

other. The region between the spheres is a vacuum. Deter-
mine the volume of this region.

An air-filled spherical capacitor is constructed with inner
and outer shell radii of 7.00 and 14.0 cm, respectively.
(a) Calculate the capacitance of the device. (b) What
potential difference between the spheres results in a
charge of 4.00 %C on the capacitor?

14. A small object of mass m carries a charge q and is sus-
pended by a thread between the vertical plates of a
parallel-plate capacitor. The plate separation is d. If the
thread makes an angle 2 with the vertical, what is the
potential difference between the plates?

15. Find the capacitance of the Earth. (Suggestion: The outer
conductor of the “spherical capacitor’’ may be considered
as a conducting sphere at infinity where V approaches
zero.)

Section 26.3 Combinations of Capacitors

16. Two capacitors, C1 # 5.00 %F and C 2 # 12.0 %F, are
connected in parallel, and the resulting combination is
connected to a 9.00-V battery. (a) What is the equivalent
capacitance of the combination? What are (b) the poten-
tial difference across each capacitor and (c) the charge
stored on each capacitor?

17. What If? The two capacitors of Problem 16 are now
connected in series and to a 9.00-V battery. Find (a) the
equivalent capacitance of the combination, (b) the poten-
tial difference across each capacitor, and (c) the charge on
each capacitor.

18. Evaluate the equivalent capacitance of the configuration
shown in Figure P26.18. All the capacitors are identical,
and each has capacitance C.

13.

A 50.0-m length of coaxial cable has an inner conduc-
tor that has a diameter of 2.58 mm and carries a charge of
8.10 %C. The surrounding conductor has an inner diame-
ter of 7.27 mm and a charge of $ 8.10 %C. (a) What is the
capacitance of this cable? (b) What is the potential differ-
ence between the two conductors? Assume the region
between the conductors is air.

12. A 20.0-%F spherical capacitor is composed of two concen-
tric metal spheres, one having a radius twice as large as the

11.

19. Two capacitors when connected in parallel give an equiva-
lent capacitance of 9.00 pF and give an equivalent capaci-
tance of 2.00 pF when connected in series. What is the
capacitance of each capacitor?

20. Two capacitors when connected in parallel give an equiva-
lent capacitance of C p and an equivalent capacitance of Cs
when connected in series. What is the capacitance of each
capacitor?

Four capacitors are connected as shown in Figure
P26.21. (a) Find the equivalent capacitance between
points a and b. (b) Calculate the charge on each capacitor
if !Vab # 15.0 V.

21.
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22. Three capacitors are connected to a battery as shown in
Figure P26.22. Their capacitances are C 1 # 3C, C 2 # C,
and C 3 # 5C. (a) What is the equivalent capacitance of
this set of capacitors? (b) State the ranking of the capaci-
tors according to the charge they store, from largest to
smallest. (c) Rank the capacitors according to the poten-
tial differences across them, from largest to smallest.
(d) What If? If C 3 is increased, what happens to the
charge stored by each of the capacitors?

line with capacitance 29.8 %F between A and B. What addi-
tional capacitor should be installed in series or in parallel
in that circuit, to meet the specification?

A group of identical capacitors is connected first in series
and then in parallel. The combined capacitance in parallel
is 100 times larger than for the series connection. How
many capacitors are in the group?

26. Consider three capacitors C1, C 2, C 3, and a battery. If C1 is
connected to the battery, the charge on C1 is 30.8 %C. Now
C1 is disconnected, discharged, and connected in series
with C 2. When the series combination of C 2 and C1 is con-
nected across the battery, the charge on C 1 is 23.1 %C. The
circuit is disconnected and the capacitors discharged.
Capacitor C 3, capacitor C1, and the battery are connected
in series, resulting in a charge on C1 of 25.2 %C. If, after
being disconnected and discharged, C 1, C 2, and C3 are
connected in series with one another and with the battery,
what is the charge on C 1?

27. Find the equivalent capacitance between points a and b for
the group of capacitors connected as shown in Figure
P26.27. Take C1 # 5.00 %F, C2 # 10.0 %F, and C 3 # 2.00 %F.

25.

6.00 µF

20.0 µF

3.00 µF15.0 µF

a b

µ µ

µ

µ
Figure P26.21

C2 C3

C1

Figure P26.22

C1 C2

S2S1

∆V

Figure P26.23

C2 C2

C1 C1

C2 C2

C3

b

a

Figure P26.27 Problems 27 and 28.
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µ

µ

µ

Figure P26.29

Consider the circuit shown in Figure P26.23, where
C 1 # 6.00 %F, C 2 # 3.00 %F, and !V # 20.0 V. Capacitor
C 1 is first charged by the closing of switch S1. Switch S1 is
then opened, and the charged capacitor is connected to
the uncharged capacitor by the closing of S2. Calculate
the initial charge acquired by C 1 and the final charge on
each capacitor.

23.

24. According to its design specification, the timer circuit
delaying the closing of an elevator door is to have a capaci-
tance of 32.0 %F between two points A and B. (a) When
one circuit is being constructed, the inexpensive but
durable capacitor installed between these two points is
found to have capacitance 34.8 %F. To meet the specifica-
tion, one additional capacitor can be placed between the
two points. Should it be in series or in parallel with the
34.8-%F capacitor? What should be its capacitance?
(b) What If? The next circuit comes down the assembly

28. For the network described in the previous problem, if the
potential difference between points a and b is 60.0 V, what
charge is stored on C3?

29. Find the equivalent capacitance between points a and b in
the combination of capacitors shown in Figure P26.29.

30. Some physical systems possessing capacitance continuously
distributed over space can be modeled as an infinite array
of discrete circuit elements. Examples are a microwave
waveguide and the axon of a nerve cell. To practice analy-
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sis of an infinite array, determine the equivalent capaci-
tance C between terminals X and Y of the infinite set of
capacitors represented in Figure P26.30. Each capacitor
has capacitance C 0. Suggestion: Imagine that the ladder is
cut at the line AB, and note that the equivalent capaci-
tance of the infinite section to the right of AB is also C.

person. A particular device can be destroyed by a
discharge releasing an energy of 250 %J. To what voltage
on the body does this correspond?

36. A uniform electric field E # 3 000 V/m exists within a
certain region. What volume of space contains an energy
equal to 1.00 * 10$7 J? Express your answer in cubic
meters and in liters.

A parallel-plate capacitor has a charge Q and plates of
area A. What force acts on one plate to attract it toward
the other plate? Because the electric field between the
plates is E # Q /A)0, you might think that the force is
F # QE # Q 2/A)0. This is wrong, because the field E in-
cludes contributions from both plates, and the field cre-
ated by the positive plate cannot exert any force on the
positive plate. Show that the force exerted on each plate is
actually F # Q 2/2)0A. (Suggestion: Let C # )0A/x for an
arbitrary plate separation x ; then require that the work
done in separating the two charged plates be W # )F dx.)
The force exerted by one charged plate on another is
sometimes used in a machine shop to hold a workpiece
stationary.

38. The circuit in Figure P26.38 consists of two identical paral-
lel metal plates connected by identical metal springs to a
100-V battery. With the switch open, the plates are
uncharged, are separated by a distance d # 8.00 mm, and
have a capacitance C # 2.00 %F. When the switch is closed,
the distance between the plates decreases by a factor of
0.500. (a) How much charge collects on each plate and
(b) what is the spring constant for each spring? (Sugges-
tion: Use the result of Problem 37.)

37.
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Section 26.4 Energy Stored in a Charged Capacitor

31. (a) A 3.00-%F capacitor is connected to a 12.0-V battery.
How much energy is stored in the capacitor? (b) If the
capacitor had been connected to a 6.00-V battery, how
much energy would have been stored?

32. The immediate cause of many deaths is ventricular fibrilla-
tion, uncoordinated quivering of the heart as opposed to
proper beating. An electric shock to the chest can cause
momentary paralysis of the heart muscle, after which the
heart will sometimes start organized beating again. A defib-
rillator (Fig. 26.14) is a device that applies a strong electric
shock to the chest over a time interval of a few milliseconds.
The device contains a capacitor of several microfarads,
charged to several thousand volts. Electrodes called pad-
dles, about 8 cm across and coated with conducting paste,
are held against the chest on both sides of the heart. Their
handles are insulated to prevent injury to the operator, who
calls, “Clear!’’ and pushes a button on one paddle to dis-
charge the capacitor through the patient’s chest. Assume
that an energy of 300 J is to be delivered from a 30.0-%F ca-
pacitor. To what potential difference must it be charged?

33. Two capacitors, C1 # 25.0 %F and C2 # 5.00 %F, are con-
nected in parallel and charged with a 100-V power supply.
(a) Draw a circuit diagram and calculate the total energy
stored in the two capacitors. (b) What If? What potential
difference would be required across the same two capaci-
tors connected in series in order that the combination
stores the same amount of energy as in (a)? Draw a circuit
diagram of this circuit.

34. A parallel-plate capacitor is charged and then discon-
nected from a battery. By what fraction does the stored
energy change (increase or decrease) when the plate sepa-
ration is doubled?

35. As a person moves about in a dry environment, electric
charge accumulates on his body. Once it is at high voltage,
either positive or negative, the body can discharge via
sometimes noticeable sparks and shocks. Consider a
human body well separated from ground, with the typical
capacitance 150 pF. (a) What charge on the body will
produce a potential of 10.0 kV? (b) Sensitive electronic
devices can be destroyed by electrostatic discharge from a

39. Review problem. A certain storm cloud has a potential of
1.00 * 108 V relative to a tree. If, during a lightning storm,
50.0 C of charge is transferred through this potential dif-
ference and 1.00% of the energy is absorbed by the tree,
how much sap in the tree can be boiled away? Model the
sap as water initially at 30.0°C. Water has a specific heat of
4 186 J/kg°C, a boiling point of 100°C, and a latent heat of
vaporization of 2.26 * 106 J/kg.

40. Two identical parallel-plate capacitors, each with capaci-
tance C , are charged to potential difference !V and con-
nected in parallel. Then the plate separation in one of the
capacitors is doubled. (a) Find the total energy of the
system of two capacitors before the plate separation is
doubled. (b) Find the potential difference across each
capacitor after the plate separation is doubled. (c) Find the
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total energy of the system after the plate separation is dou-
bled. (d) Reconcile the difference in the answers to parts
(a) and (c) with the law of conservation of energy.

41. Show that the energy associated with a conducting sphere
of radius R and charge Q surrounded by a vacuum is
U # ke Q 2/2R .

42. Consider two conducting spheres with radii R1 and R2.
They are separated by a distance much greater than either
radius. A total charge Q is shared between the spheres,
subject to the condition that the electric potential energy
of the system has the smallest possible value. The total
charge Q is equal to q1 & q2, where q1 represents the
charge on the first sphere and q 2 the charge on the sec-
ond. Because the spheres are very far apart, you can
assume that the charge of each is uniformly distributed
over its surface. You may use the result of Problem 41.
(a) Determine the values of q1 and q2 in terms of Q , R1,
and R2. (b) Show that the potential difference between
the spheres is zero. (We saw in Chapter 25 that two con-
ductors joined by a conducting wire will be at the same
potential in a static situation. This problem illustrates the
general principle that static charge on a conductor will
distribute itself so that the electric potential energy of the
system is a minimum.)

Section 26.5 Capacitors with Dielectrics 

43. Determine (a) the capacitance and (b) the maximum
potential difference that can be applied to a Teflon-filled
parallel-plate capacitor having a plate area of 1.75 cm2 and
plate separation of 0.040 0 mm.

44. (a) How much charge can be placed on a capacitor with
air between the plates before it breaks down, if the area of
each of the plates is 5.00 cm2? (b) What If? Find the maxi-
mum charge if polystyrene is used between the plates
instead of air.

A commercial capacitor is to be constructed as shown in
Figure 26.17a. This particular capacitor is made from two
strips of aluminum separated by a strip of paraffin-coated
paper. Each strip of foil and paper is 7.00 cm wide. The
foil is 0.004 00 mm thick, and the paper is 0.025 0 mm
thick and has a dielectric constant of 3.70. What length
should the strips have, if a capacitance of 9.50 * 10$8 F is
desired before the capacitor is rolled up? (Adding a
second strip of paper and rolling the capacitor effectively
doubles its capacitance, by allowing charge storage on
both sides of each strip of foil.)

46. The supermarket sells rolls of aluminum foil, of plastic
wrap, and of waxed paper. Describe a capacitor made from
supermarket materials. Compute order-of-magnitude esti-
mates for its capacitance and its breakdown voltage.

47. A parallel-plate capacitor in air has a plate separation of
1.50 cm and a plate area of 25.0 cm2. The plates
are charged to a potential difference of 250 V and
disconnected from the source. The capacitor is then
immersed in distilled water. Determine (a) the charge
on the plates before and after immersion, (b) the capaci-
tance and potential difference after immersion, and
(c) the change in energy of the capacitor. Assume the
liquid is an insulator.

45.

48. A wafer of titanium dioxide (1 # 173) of area 1.00 cm2 has
a thickness of 0.100 mm. Aluminum is evaporated on the
parallel faces to form a parallel-plate capacitor. (a) Calcu-
late the capacitance. (b) When the capacitor is charged
with a 12.0-V battery, what is the magnitude of charge de-
livered to each plate? (c) For the situation in part (b),
what are the free and induced surface charge densities?
(d) What is the magnitude of the electric field?

49. Each capacitor in the combination shown in Figure P26.49
has a breakdown voltage of 15.0 V. What is the breakdown
voltage of the combination?

20.0 µF

10.0 µF

20.0 µF

20.0 µF

20.0 µF

µ

µ

µ

µ

µ

Figure P26.49

Section 26.6 Electric Dipole in an Electric Field

50. A small rigid object carries positive and negative 3.50-nC
charges. It is oriented so that the positive charge has coor-
dinates ($ 1.20 mm, 1.10 mm) and the negative charge is
at the point (1.40 mm, $ 1.30 mm). (a) Find the electric
dipole moment of the object. The object is placed in an
electric field E # (7 800 î $ 4 900 ĵ) N/C. (b) Find the
torque acting on the object. (c) Find the potential energy
of the object–field system when the object is in this orien-
tation. (d) If the orientation of the object can change, find
the difference between the maximum and minimum
potential energies of the system.

51. A small object with electric dipole moment p is placed in a
nonuniform electric field  E # E(x) î. That is, the field is in
the x direction and its magnitude depends on the coordi-
nate x. Let 2 represent the angle between the dipole
moment and the x direction. (a) Prove that the dipole
feels a net force

in the direction toward which the field increases. (b) Con-
sider a spherical balloon centered at the origin, with
radius 15.0 cm and carrying charge 2.00 %C. Evaluate
dE/dx at the point (16 cm, 0, 0). Assume a water droplet at
this point has an induced dipole moment of 6.30 î nC + m.
Find the force on it.

Section 26.7 An Atomic Description of Dielectrics

52. A detector of radiation called a Geiger tube consists of a
closed, hollow, conducting cylinder with a fine wire along its
axis. Suppose that the internal diameter of the cylinder is
2.50 cm and that the wire along the axis has a diameter of
0.200 mm. The dielectric strength of the gas between the
central wire and the cylinder is 1.20 * 106 V/m. Calculate
the maximum potential difference that can be applied
between the wire and the cylinder before breakdown occurs
in the gas.

F # p $ dE
dx % cos 2
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53. The general form of Gauss’s law describes how a charge
creates an electric field in a material, as well as in vacuum.
It is

where ) # 1)0 is the permittivity of the material. (a) A
sheet with charge Q uniformly distributed over its area A is
surrounded by a dielectric. Show that the sheet creates a
uniform electric field at nearby points, with magnitude
E # Q /2A). (b) Two large sheets of area A, carrying oppo-
site charges of equal magnitude Q , are a small distance
d apart. Show that they create uniform electric field in
the space between them, with magnitude E # Q /A).
(c) Assume that the negative plate is at zero potential.
Show that the positive plate is at potential Q d/A).
(d) Show that the capacitance of the pair of plates is
A)/d # 1A)0/d.

Additional Problems

54. For the system of capacitors shown in Figure P26.54, find
(a) the equivalent capacitance of the system, (b) the
potential across each capacitor, (c) the charge on each
capacitor, and (d) the total energy stored by the group.

* E+d A #
q
)

capacitance of the three-plate system P1P2P3? (b) What is
the charge on P2? (c) If P4 is now connected to the positive
terminal of the battery, what is the capacitance of the four-
plate system P1P2P3P4? (d) What is the charge on P4?

56. One conductor of an overhead electric transmission line is
a long aluminum wire 2.40 cm in radius. Suppose that at a
particular moment it carries charge per length 1.40 %C/m
and is at potential 345 kV. Find the potential 12.0 m below
the wire. Ignore the other conductors of the transmission
line and assume the electric field is everywhere purely
radial.

57. Two large parallel metal plates are oriented horizontally
and separated by a distance 3d. A grounded conducting
wire joins them, and initially each plate carries no charge.
Now a third identical plate carrying charge Q is inserted
between the two plates, parallel to them and located a dis-
tance d from the upper plate, as in Figure P26.57. 
(a) What induced charge appears on each of the two origi-
nal plates? (b) What potential difference appears between
the middle plate and each of the other plates? Each plate
has area A.

4.00 µF2.00 µF

6.00 µF3.00 µF

90.0 V

µ µ

µ µ

Figure P26.54

12.0 V

P2 P3 P4P1

d d d

Figure P26.55

2d

d

Figure P26.57

55. Four parallel metal plates P1, P2, P3, and P4, each of area
7.50 cm2, are separated successively by a distance d #
1.19 mm, as shown in Figure P26.55. P1 is connected to the
negative terminal of a battery, and P2 to the positive termi-
nal. The battery maintains a potential difference of 12.0 V.
(a) If P3 is connected to the negative terminal, what is the

58. A 2.00-nF parallel-plate capacitor is charged to an initial
potential difference !Vi # 100 V and then isolated. The
dielectric material between the plates is mica, with a
dielectric constant of 5.00. (a) How much work is required
to withdraw the mica sheet? (b) What is the potential
difference of the capacitor after the mica is withdrawn?

A parallel-plate capacitor is constructed using a
dielectric material whose dielectric constant is 3.00
and whose dielectric strength is 2.00 * 108 V/m. The
desired capacitance is 0.250 %F, and the capacitor must
withstand a maximum potential difference of 4 000 V. Find
the minimum area of the capacitor plates.

60. A 10.0-%F capacitor has plates with vacuum between them.
Each plate carries a charge of magnitude 1 000 %C. A
particle with charge $ 3.00 %C and mass 2.00 * 10$16 kg
is fired from the positive plate toward the negative plate
with an initial speed of 2.00 * 106 m/s. Does it reach the
negative plate? If so, find its impact speed. If not, what
fraction of the way across the capacitor does it travel?

61. A parallel-plate capacitor is constructed by filling
the space between two square plates with blocks of three
dielectric materials, as in Figure P26.61. You may assume
that ! ,, d. (a) Find an expression for the capacitance of
the device in terms of the plate area A and d, 11, 12, and
13. (b) Calculate the capacitance using the values
A # 1.00 cm2, d # 2.00 mm, 11 # 4.90, 12 # 5.60, and
13 # 2.10.

59.
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62. A 10.0-%F capacitor is charged to 15.0 V. It is next
connected in series with an uncharged 5.00-%F capacitor.
The series combination is finally connected across a 50.0-V
battery, as diagrammed in Figure P26.62. Find the new
potential differences across the 5-%F and 10-%F capacitors.

sent the potential difference. (c) Find the direction and
magnitude of the force exerted on the dielectric, assuming
a constant potential difference !V. Ignore friction. 
(d) Obtain a numerical value for the force assuming that
! # 5.00 cm, !V # 2 000 V, d # 2.00 mm, and the dielec-
tric is glass (1 # 4.50). (Suggestion: The system can be con-
sidered as two capacitors connected in parallel.)

65. A capacitor is constructed from two square plates of sides !
and separation d, as suggested in Figure P26.64. You may
assume that d is much less than !. The plates carry charges
& Q 0 and $ Q 0. A block of metal has a width !, a length !,
and a thickness slightly less than d. It is inserted a distance
x into the capacitor. The charges on the plates are not
disturbed as the block slides in. In a static situation, a
metal prevents an electric field from penetrating inside it.
The metal can be thought of as a perfect dielectric, with
1 : 0. (a) Calculate the stored energy as a function of x.
(b) Find the direction and magnitude of the force that
acts on the metallic block. (c) The area of the advancing
front face of the block is essentially equal to !d. Consider-
ing the force on the block as acting on this face, find the
stress (force per area) on it. (d) For comparison, express
the energy density in the electric field between the capaci-
tor plates in terms of Q 0 , !, d , and )0.

66. When considering the energy supply for an automobile,
the energy per unit mass of the energy source is an impor-
tant parameter. Using the following data, compare the
energy per unit mass ( J/kg) for gasoline, lead–acid batter-
ies, and capacitors. (The ampere A will be introduced in
the next chapter as the SI unit of electric current.
1 A # 1 C/s.)
Gasoline: 126 000 Btu/gal; density # 670 kg/m3.
Lead–acid battery: 12.0 V; 100 A + h; mass # 16.0 kg.
Capacitor: potential difference at full charge # 12.0 V;
capacitance # 0.100 F; mass # 0.100 kg.

An isolated capacitor of unknown capacitance has been
charged to a potential difference of 100 V. When the
charged capacitor is then connected in parallel to an
uncharged 10.0-%F capacitor, the potential difference
across the combination is 30.0 V. Calculate the unknown
capacitance.

68. To repair a power supply for a stereo amplifier, an elec-
tronics technician needs a 100-%F capacitor capable of
withstanding a potential difference of 90 V between the
plates. The only available supply is a box of five 100-%F
capacitors, each having a maximum voltage capability of
50 V. Can the technician substitute a combination of these
capacitors that has the proper electrical characteristics? If
so, what will be the maximum voltage across any of the
capacitors used? (Suggestion: The technician may not have
to use all the capacitors in the box.)

A parallel-plate capacitor of plate separation d is charged
to a potential difference !V0. A dielectric slab of thickness
d and dielectric constant 1 is introduced between the
plates while the battery remains connected to the plates.
(a) Show that the ratio of energy stored after the dielectric
is introduced to the energy stored in the empty capacitor
is U/U0 # 1. Give a physical explanation for this increase
in stored energy. (b) What happens to the charge on the
capacitor? (Note that this situation is not the same as in

69.

67.

d/2

!/2

d

!

1κ
2κ

3κ

Figure P26.61

5.00   Fµ

50.0 V

∆Vi = 15.0 V

–+
10.0   Fµ

Figure P26.62

x
d

!

κ

Figure P26.64 Problems 64 and 65.

63. (a) Two spheres have radii a and b and their centers are a
distance d apart. Show that the capacitance of this system is

provided that d is large compared with a and b. (Suggestion:
Because the spheres are far apart, assume that the poten-
tial of each equals the sum of the potentials due to each
sphere, and when calculating those potentials assume that
V # keQ /r applies.) (b) Show that as d approaches infinity
the above result reduces to that of two spherical capacitors
in series.

64. A capacitor is constructed from two square plates of sides !
and separation d. A material of dielectric constant 1
is inserted a distance x into the capacitor, as shown in
Figure P26.64. Assume that d is much smaller than x.
(a) Find the equivalent capacitance of the device. (b) Cal-
culate the energy stored in the capacitor, letting !V repre-

C #
4()0

1
a

&
1
b

$
2
d
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Example 26.7, in which the battery was removed from the
circuit before the dielectric was introduced.)

70. A vertical parallel-plate capacitor is half filled with a dielec-
tric for which the dielectric constant is 2.00 (Fig. P26.70a).
When this capacitor is positioned horizontally, what
fraction of it should be filled with the same dielectric (Fig.
P26.70b) in order for the two capacitors to have equal
capacitance?

75. Determine the equivalent capacitance of the combination
shown in Figure P26.75. (Suggestion: Consider the symme-
try involved.)

(b)(a)

Figure P26.70

a

b2.00 µF

4.00 µF

2.00 µF 4.00 µF8.00 µF

µ

µ µ

µ

µ

Figure P26.72

C

C

3C

2C

2C
Figure P26.75

71. Capacitors C1 # 6.00 %F and C2 # 2.00 %F are charged as
a parallel combination across a 250-V battery. The capaci-
tors are disconnected from the battery and from each
other. They are then connected positive plate to negative
plate and negative plate to positive plate. Calculate the
resulting charge on each capacitor.

72. Calculate the equivalent capacitance between the points a
and b in Figure P26.72. Note that this is not a simple series
or parallel combination. (Suggestion: Assume a potential
difference !V between points a and b. Write expressions
for !V ab in terms of the charges and capacitances for the
various possible pathways from a to b, and require conser-
vation of charge for those capacitor plates that are con-
nected to each other.)

The inner conductor of a coaxial cable has a radius of
0.800 mm, and the outer conductor’s inside radius is
3.00 mm. The space between the conductors is filled with
polyethylene, which has a dielectric constant of 2.30 and a
dielectric strength of 18.0 * 106 V/m. What is the maxi-
mum potential difference that this cable can withstand?

74. You are optimizing coaxial cable design for a major manu-
facturer. Show that for a given outer conductor radius b,
maximum potential difference capability is attained when
the radius of the inner conductor is a # b/e where e is the
base of natural logarithms.

73.

76. Consider two long, parallel, and oppositely charged wires
of radius d with their centers separated by a distance D.
Assuming the charge is distributed uniformly on the
surface of each wire, show that the capacitance per unit
length of this pair of wires is

77. Example 26.2 explored a cylindrical capacitor of length !
and radii a and b of the two conductors. In the What If?
section, it was claimed that increasing ! by 10% is more
effective in terms of increasing the capacitance than increas-
ing a by 10% if b , 2.85a. Verify this claim mathematically.

Answers to Quick Quizzes

26.1 (d). The capacitance is a property of the physical system
and does not vary with applied voltage. According to
Equation 26.1, if the voltage is doubled, the charge is
doubled.

26.2 (a). When the key is pressed, the plate separation is
decreased and the capacitance increases. Capacitance
depends only on how a capacitor is constructed and not
on the external circuit.

26.3 (a). When connecting capacitors in series, the inverses
of the capacitances add, resulting in a smaller overall
equivalent capacitance.

26.4 (a). When capacitors are connected in series, the volt-
ages add, for a total of 20 V in this case. If they are com-
bined in parallel, the voltage across the combination is
still 10 V.

26.5 (b). For a given voltage, the energy stored in a capacitor
is proportional to C : U # C(!V )2/2. Thus, you want to
maximize the equivalent capacitance. You do this by
connecting the three capacitors in parallel, so that the
capacitances add.

26.6 (a) C decreases (Eq. 26.3). (b) Q stays the same because
there is no place for the charge to flow. (c) E remains
constant (see Eq. 24.8 and the paragraph following it).
(d) !V increases because !V # Q /C, Q is constant (part
b), and C decreases (part a). (e) The energy stored in
the capacitor is proportional to both Q and !V (Eq.

C
!

#
()0

ln[(D $ d)/d]
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26.11) and thus increases. The additional energy comes
from the work you do in pulling the two plates apart.

26.7 (a) C decreases (Eq. 26.3). (b) Q decreases. The battery
supplies a constant potential difference !V ; thus, charge
must flow out of the capacitor if C # Q /!V is to
decrease. (c) E decreases because the charge density on
the plates decreases. (d) !V remains constant because of
the presence of the battery. (e) The energy stored in the
capacitor decreases (Eq. 26.11).

26.8 Increase. The dielectric constant of wood (and of all
other insulating materials, for that matter) is greater than
1; therefore, the capacitance increases (Eq. 26.14). This

increase is sensed by the stud-finder’s special circuitry,
which causes an indicator on the device to light up.

26.9 (a) C increases (Eq. 26.14). (b) Q increases. Because the
battery maintains a constant !V, Q must increase if C
increases. (c) E between the plates remains constant
because !V # Ed and neither !V nor d changes. The
electric field due to the charges on the plates increases
because more charge has flowed onto the plates. The
induced surface charges on the dielectric create a field
that opposes the increase in the field caused by the
greater number of charges on the plates (see Section
26.7). (d) The battery maintains a constant !V.



Current and Resistance

! These power lines transfer energy from the power company to homes and businesses.
The energy is transferred at a very high voltage, possibly hundreds of thousands of volts in
some cases. Despite the fact that this makes power lines very dangerous, the high voltage
results in less loss of power due to resistance in the wires. (Telegraph Colour Library/FPG)
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Thus far our treatment of electrical phenomena has been confined to the study of
charges in equilibrium situations, or electrostatics. We now consider situations involving
electric charges that are not in equilibrium. We use the term electric current, or simply
current, to describe the rate of flow of charge through some region of space. Most prac-
tical applications of electricity deal with electric currents. For example, the battery in a
flashlight produces a current in the filament of the bulb when the switch is turned on.
A variety of home appliances operate on alternating current. In these common situa-
tions, current exists in a conductor, such as a copper wire. It also is possible for
currents to exist outside a conductor. For instance, a beam of electrons in a television
picture tube constitutes a current.

This chapter begins with the definition of current. A microscopic description of cur-
rent is given, and some of the factors that contribute to the opposition to the flow of
charge in conductors are discussed. A classical model is used to describe electrical con-
duction in metals, and some of the limitations of this model are cited. We also define
electrical resistance and introduce a new circuit element, the resistor. We conclude by
discussing the rate at which energy is transferred to a device in an electric circuit.

27.1 Electric Current

In this section, we study the flow of electric charges through a piece of material. The
amount of flow depends on the material through which the charges are passing and the
potential difference across the material. Whenever there is a net flow of charge through
some region, an electric current is said to exist.

It is instructive to draw an analogy between water flow and current. In many
localities it is common practice to install low-flow showerheads in homes as a water-
conservation measure. We quantify the flow of water from these and similar devices by
specifying the amount of water that emerges during a given time interval, which is
often measured in liters per minute. On a grander scale, we can characterize a river
current by describing the rate at which the water flows past a particular location. For
example, the flow over the brink at Niagara Falls is maintained at rates between
1 400 m3/s and 2 800 m3/s.

There is also an analogy between thermal conduction and current. In Section 20.7,
we discussed the flow of energy by heat through a sample of material. The rate of
energy flow is determined by the material as well as the temperature difference across
the material, as described by Equation 20.14.

To define current more precisely, suppose that charges are moving perpendicular to
a surface of area A, as shown in Figure 27.1. (This area could be the cross-sectional area
of a wire, for example.) The current is the rate at which charge flows through this
surface. If !Q is the amount of charge that passes through this area in a time interval
!t, the average current Iav is equal to the charge that passes through A per unit time:

(27.1)Iav "
∆Q
∆t

A

I

+

+

+
+

+

Figure 27.1 Charges in motion
through an area A. The time rate at
which charge flows through the
area is defined as the current I.
The direction of the current is the
direction in which positive charges
flow when free to do so.



If the rate at which charge flows varies in time, then the current varies in time; we
define the instantaneous current I as the differential limit of average current:

(27.2)

The SI unit of current is the ampere (A):

(27.3)

That is, 1 A of current is equivalent to 1 C of charge passing through the surface area
in 1 s.

The charges passing through the surface in Figure 27.1 can be positive or negative,
or both. It is conventional to assign to the current the same direction as the flow
of positive charge. In electrical conductors, such as copper or aluminum, the current
is due to the motion of negatively charged electrons. Therefore, when we speak of
current in an ordinary conductor, the direction of the current is opposite the
direction of flow of electrons. However, if we are considering a beam of positively
charged protons in an accelerator, the current is in the direction of motion of the
protons. In some cases—such as those involving gases and electrolytes, for instance—
the current is the result of the flow of both positive and negative charges.

If the ends of a conducting wire are connected to form a loop, all points on the
loop are at the same electric potential, and hence the electric field is zero within and
at the surface of the conductor. Because the electric field is zero, there is no net
transport of charge through the wire, and therefore there is no current. However, if
the ends of the conducting wire are connected to a battery, all points on the loop are
not at the same potential. The battery sets up a potential difference between the ends
of the loop, creating an electric field within the wire. The electric field exerts forces on
the conduction electrons in the wire, causing them to move in the wire, thus creating a
current.

It is common to refer to a moving charge (positive or negative) as a mobile charge
carrier. For example, the mobile charge carriers in a metal are electrons.

Microscopic Model of Current

We can relate current to the motion of the charge carriers by describing a microscopic
model of conduction in a metal. Consider the current in a conductor of cross-sectional
area A (Fig. 27.2). The volume of a section of the conductor of length !x (the gray
region shown in Fig. 27.2) is A !x. If n represents the number of mobile charge
carriers per unit volume (in other words, the charge carrier density), the number of
carriers in the gray section is nA !x. Therefore, the total charge !Q in this section is

!Q " number of carriers in section # charge per carrier " (nA !x)q

where q is the charge on each carrier. If the carriers move with a speed vd, the displace-
ment they experience in the x direction in a time interval !t is !x " vd !t. Let us
choose !t to be the time interval required for the charges in the cylinder to move
through a displacement whose magnitude is equal to the length of the cylinder. This
time interval is also that required for all of the charges in the cylinder to pass through
the circular area at one end. With this choice, we can write !Q in the form

!Q " (nAvd !t)q

If we divide both sides of this equation by !t, we see that the average current in the
conductor is

(27.4)Iav "
∆Q
∆t

" nqvdA

1 A "
1 C
1 s

I ! 
dQ
dt

S ECT I O N  27. 1 •  Electric Current 833

! PITFALL PREVENTION
27.1 “Current Flow” Is

Redundant
The phrase current flow is com-
monly used, although it is strictly
incorrect, because current is a
flow (of charge). This is similar
to the phrase heat transfer, which
is also redundant because heat is
a transfer (of energy). We will
avoid this phrase and speak of
flow of charge or charge flow.

Electric current

∆x

A
q

vd

vd ∆t

Figure 27.2 A section of a uniform
conductor of cross-sectional area A.
The mobile charge carriers move
with a speed vd, and the displace-
ment they experience in the x
direction in a time interval !t is
!x " vd !t. If we choose !t to
be the time interval during which
the charges are displaced, on
the average, by the length of the
cylinder, the number of carriers in
the section of length !x is nAvd !t,
where n is the number of carriers
per unit volume.

Current in a conductor in terms
of microscopic quantities



The speed of the charge carriers vd is an average speed called the drift speed. To
understand the meaning of drift speed, consider a conductor in which the charge car-
riers are free electrons. If the conductor is isolated—that is, the potential difference
across it is zero—then these electrons undergo random motion that is analogous to the
motion of gas molecules. As we discussed earlier, when a potential difference is applied
across the conductor (for example, by means of a battery), an electric field is set up in
the conductor; this field exerts an electric force on the electrons, producing a current.
However, the electrons do not move in straight lines along the conductor. Instead, they
collide repeatedly with the metal atoms, and their resultant motion is complicated and
zigzag (Fig. 27.3). Despite the collisions, the electrons move slowly along the conduc-
tor (in a direction opposite that of E) at the drift velocity vd.

We can think of the atom–electron collisions in a conductor as an effective internal
friction (or drag force) similar to that experienced by the molecules of a liquid flowing
through a pipe stuffed with steel wool. The energy transferred from the electrons to
the metal atoms during collisions causes an increase in the vibrational energy of the
atoms and a corresponding increase in the temperature of the conductor.

834 CHAPTE R  27 •  Current and Resistance

Figure 27.3 A schematic
representation of the zigzag
motion of an electron in a
conductor. The changes in
direction are the result of collisions
between the electron and atoms in
the conductor. Note that the net
motion of the electron is opposite
the direction of the electric field.
Because of the acceleration of the
charge carriers due to the electric
force, the paths are actually
parabolic. However, the drift speed
is much smaller than the average
speed, so the parabolic shape is not
visible on this scale.

Quick Quiz 27.1 Consider positive and negative charges moving horizon-
tally through the four regions shown in Figure 27.4. Rank the current in these four
regions, from lowest to highest.

Quick Quiz 27.2 Electric charge is conserved. As a consequence, when current
arrives at a junction of wires, the charges can take either of two paths out of the junction
and the numerical sum of the currents in the two paths equals the current that entered
the junction. Thus, current is (a) a vector (b) a scalar (c) neither a vector nor a scalar.

vd

E

–

Figure 27.4 (Quick Quiz 27.1) Charges move through four regions.
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(b) (c) (d)

Example 27.1 Drift Speed in a Copper Wire

The 12-gauge copper wire in a typical residential building
has a cross-sectional area of 3.31 # 10$6 m2. If it carries a
current of 10.0 A, what is the drift speed of the electrons?
Assume that each copper atom contributes one free
electron to the current. The density of copper is 8.95 g/cm3.

Solution From the periodic table of the elements in
Appendix C, we find that the molar mass of copper is 
63.5 g/mol. Recall that 1 mol of any substance contains
Avogadro’s number of atoms (6.02 # 1023). Knowing the
density of copper, we can calculate the volume occupied by
63.5 g (" 1 mol) of copper:

Because each copper atom contributes one free electron to
the current, we have

V "
m
%

"
63.5 g

8.95 g/cm3 " 7.09 cm3

From Equation 27.4, we find that the drift speed is

where q is the absolute value of the charge on each electron.
Thus,

2.22 # 10$4 m/s"

 "
10.0 C/s

(8.49 # 1028 m$3)(1.60 # 10$19 C)(3.31 # 10$6 m2)

vd "
I

nqA

vd "
I

nqA

 " 8.49 # 1028 electrons/m3

n "
6.02 # 1023 electrons

7.09 cm3
 " 1.00 # 106 cm3

1 m3 #



Example 27.1 shows that typical drift speeds are very low. For instance, electrons
traveling with a speed of 2.22 # 10$4 m/s would take about 75 min to travel 1 m! In
view of this, you might wonder why a light turns on almost instantaneously when a
switch is thrown. In a conductor, changes in the electric field that drives the free
electrons travel through the conductor with a speed close to that of light. Thus,
when you flip on a light switch, electrons already in the filament of the lightbulb
experience electric forces and begin moving after a time interval on the order of
nanoseconds.

27.2 Resistance

In Chapter 24 we found that the electric field inside a conductor is zero. However, this
statement is true only if the conductor is in static equilibrium. The purpose of this
section is to describe what happens when the charges in the conductor are not in equi-
librium, in which case there is an electric field in the conductor.

Consider a conductor of cross-sectional area A carrying a current I. The current
density J in the conductor is defined as the current per unit area. Because the current
I " nqvdA, the current density is

(27.5)

where J has SI units of A/m2. This expression is valid only if the current density is uni-
form and only if the surface of cross-sectional area A is perpendicular to the direction
of the current. In general, current density is a vector quantity:

(27.6)

From this equation, we see that current density is in the direction of charge motion
for positive charge carriers and opposite the direction of motion for negative
charge carriers.

A current density J and an electric field E are established in a conductor
whenever a potential difference is maintained across the conductor. In some
materials, the current density is proportional to the electric field:

J " &E (27.7)

where the constant of proportionality & is called the conductivity of the conductor.1

Materials that obey Equation 27.7 are said to follow Ohm’s law, named after Georg
Simon Ohm (1789–1854). More specifically, Ohm’s law states that

J " nq vd

J  !  
I
A

" nqvd
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! PITFALL PREVENTION
27.2 Electrons Are

Available Everywhere
Electrons do not have to travel from
the light switch to the light in order
for the light to operate. Electrons
already in the filament of the
lightbulb move in response to the
electric field set up by the battery.
Notice also that a battery does
not provide electrons to the 
circuit. It establishes the electric
field that exerts a force on 
electrons already in the wires and
elements of the circuit.

Current density

for many materials (including most metals), the ratio of the current density to the
electric field is a constant & that is independent of the electric field producing the
current.

Materials that obey Ohm’s law and hence demonstrate this simple relationship
between E and J are said to be ohmic. Experimentally, however, it is found that not all
materials have this property. Materials and devices that do not obey Ohm’s law are said
to be nonohmic. Ohm’s law is not a fundamental law of nature but rather an empirical
relationship valid only for certain materials.

We can obtain an equation useful in practical applications by considering a
segment of straight wire of uniform cross-sectional area A and length !, as shown in

Georg Simon Ohm
German physicist (1789–1854)

Ohm, a high school teacher and
later a professor at the University
of Munich, formulated the
concept of resistance and
discovered the proportionalities
expressed in Equations 27.7 and
27.8. (© Bettmann/Corbis)

1 Do not confuse conductivity & with surface charge density, for which the same symbol is used.



Figure 27.5. A potential difference !V " Vb $ Va is maintained across the wire, creat-
ing in the wire an electric field and a current. If the field is assumed to be uniform, the
potential difference is related to the field through the relationship2

!V " E!

Therefore, we can express the magnitude of the current density in the wire as

Because J " I/A, we can write the potential difference as

The quantity R " !/&A is called the resistance of the conductor. We can define the
resistance as the ratio of the potential difference across a conductor to the current in
the conductor:

(27.8)

We will use this equation over and over again when studying electric circuits. From this
result we see that resistance has SI units of volts per ampere. One volt per ampere is
defined to be one ohm ('):

(27.9)

This expression shows that if a potential difference of 1 V across a conductor causes a
current of 1 A, the resistance of the conductor is 1 '. For example, if an electrical
appliance connected to a 120-V source of potential difference carries a current of 6 A,
its resistance is 20 '.

The inverse of conductivity is resistivity3 %:

(27.10)

where % has the units ohm-meters (' ( m). Because R " !/&A, we can express the
resistance of a uniform block of material along the length ! as

(27.11)R " %  
!

A

% "
1
&

1 '  !  
1 V
1 A

R  !  
∆V
I

∆V "
!

&
  J " " !

&A # I " R I

J " & E " &  
∆V
!
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!

E

Vb Va

IA

Resistivity is the inverse of
conductivity

Resistance of a uniform
material along the length !

Figure 27.5 A uniform conductor of length ! and cross-sectional area A. A potential
difference !V " Vb $ Va maintained across the conductor sets up an electric field E,
and this field produces a current I that is proportional to the potential difference.

2 This result follows from the definition of potential difference:

3 Do not confuse resistivity % with mass density or charge density, for which the same symbol is used.

Vb $ Va " $ $b

a
  E(d s " E $!

0
 dx " E !

! PITFALL PREVENTION
27.3 We’ve Seen

Something Like
Equation 27.8 Before

In Chapter 5, we introduced
Newton’s second law, )F " ma,
for a net force on an object of
mass m. This can be written as

In that chapter, we defined mass
as resistance to a change in motion in
response to an external force. Mass as
resistance to changes in motion is
analogous to electrical resistance
to charge flow, and Equation 27.8
is analogous to the form of
Newton’s second law shown here.

m " %F
a

! PITFALL PREVENTION
27.4 Equation 27.8 Is Not

Ohm’s Law
Many individuals call Equation
27.8 Ohm’s law, but this is incor-
rect. This equation is simply the
definition of resistance, and pro-
vides an important relationship
between voltage, current, and
resistance. Ohm’s law is related
to a linear relationship between J
and E (Eq. 27.7) or, equivalently,
between I and !V, which, from
Equation 27.8, indicates that the
resistance is constant, indepen-
dent of the applied voltage.



Every ohmic material has a characteristic resistivity that depends on the properties of
the material and on temperature. Additionally, as you can see from Equation 27.11, the
resistance of a sample depends on geometry as well as on resistivity. Table 27.1 gives
the resistivities of a variety of materials at 20°C. Note the enormous range, from very
low values for good conductors such as copper and silver, to very high values for good
insulators such as glass and rubber. An ideal conductor would have zero resistivity, and
an ideal insulator would have infinite resistivity.

Equation 27.11 shows that the resistance of a given cylindrical conductor such as a
wire is proportional to its length and inversely proportional to its cross-sectional area.
If the length of a wire is doubled, then its resistance doubles. If its cross-sectional area
is doubled, then its resistance decreases by one half. The situation is analogous to the
flow of a liquid through a pipe. As the pipe’s length is increased, the resistance to flow
increases. As the pipe’s cross-sectional area is increased, more liquid crosses a given
cross section of the pipe per unit time interval. Thus, more liquid flows for the same
pressure differential applied to the pipe, and the resistance to flow decreases.
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! PITFALL PREVENTION
27.5 Resistance and

Resistivity
Resistivity is property of a sub-
stance, while resistance is a prop-
erty of an object. We have seen
similar pairs of variables before.
For example, density is a prop-
erty of a substance, while mass is
a property of an object. Equation
27.11 relates resistance to resistiv-
ity, and we have seen a previous
equation (Equation 1.1) which
relates mass to density.

Temperature
Material Resistivitya(' ( m) Coefficientb ![(!C)$1]

Silver 1.59 # 10$ 8 3.8 # 10$ 3

Copper 1.7 # 10$ 8 3.9 # 10$ 3

Gold 2.44 # 10$ 8 3.4 # 10$ 3

Aluminum 2.82 # 10$ 8 3.9 # 10$ 3

Tungsten 5.6 # 10$ 8 4.5 # 10$ 3

Iron 10 # 10$ 8 5.0 # 10$ 3

Platinum 11 # 10$ 8 3.92 # 10$ 3

Lead 22 # 10$ 8 3.9 # 10$ 3

Nichromec 1.50 # 10$ 6 0.4 # 10$ 3

Carbon 3.5 # 10$ 5 $ 0.5 # 10$ 3

Germanium 0.46 $ 48 # 10$ 3

Silicon 640 $ 75 # 10$ 3

Glass 1010 to 1014

Hard rubber &1013

Sulfur 1015

Quartz (fused) 75 # 1016

Resistivities and Temperature Coefficients of Resistivity
for Various Materials

Table 27.1

a All values at 20°C.
b See Section 27.4.
c A nickel–chromium alloy commonly used in heating elements.

An assortment of resistors used in electrical circuits.
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Most electric circuits use circuit elements called resistors to control the current
level in the various parts of the circuit. Two common types of resistors are the composi-
tion resistor, which contains carbon, and the wire-wound resistor, which consists of a coil of
wire. Values of resistors in ohms are normally indicated by color-coding, as shown in
Figure 27.6 and Table 27.2.

Ohmic materials and devices have a linear current–potential difference relation-
ship over a broad range of applied potential differences (Fig. 27.7a). The slope of the
I-versus-!V curve in the linear region yields a value for 1/R. Nonohmic materials have
a nonlinear current–potential difference relationship. One common semiconducting
device that has nonlinear I-versus-!V characteristics is the junction diode (Fig. 27.7b).
The resistance of this device is low for currents in one direction (positive !V ) and
high for currents in the reverse direction (negative !V ). In fact, most modern
electronic devices, such as transistors, have nonlinear current–potential difference
relationships; their proper operation depends on the particular way in which they
violate Ohm’s law.
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Color Number Multiplier Tolerance

Black 0 1
Brown 1 101

Red 2 102

Orange 3 103

Yellow 4 104

Green 5 105

Blue 6 106

Violet 7 107

Gray 8 108

White 9 109

Gold 10$ 1 5%
Silver 10$ 2 10%
Colorless 20%

Color Coding for Resistors

Table 27.2

(a)

I

Slope = 1
R

!V

(b)

I

!V

Figure 27.7 (a) The current–potential difference curve for an ohmic material. The
curve is linear, and the slope is equal to the inverse of the resistance of the conductor.
(b) A nonlinear current–potential difference curve for a junction diode. This device
does not obey Ohm’s law.

Figure 27.6 The colored bands on a resistor represent a code for
determining resistance. The first two colors give the first two digits in the
resistance value. The third color represents the power of ten for the
multiplier of the resistance value. The last color is the tolerance of the
resistance value. As an example, the four colors on the circled resistors are
red (" 2), black (" 0), orange (" 103), and gold (" 5%), and so the
resistance value is 20 # 103 ' " 20 k' with a tolerance value of 5% " 1 k'.
(The values for the colors are from Table 27.2.)
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Quick Quiz 27.3 Suppose that a current-carrying ohmic metal wire has a
cross-sectional area that gradually becomes smaller from one end of the wire to the
other. The current must have the same value in each section of the wire so that charge
does not accumulate at any one point. How do the drift velocity and the resistance per
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unit length vary along the wire as the area becomes smaller? (a) The drift velocity and
resistance both increase. (b) The drift velocity and resistance both decrease. (c) The
drift velocity increases and the resistance decreases. (d) The drift velocity decreases
and the resistance increases.

Quick Quiz 27.4 A cylindrical wire has a radius r and length !. If both r and !
are doubled, the resistance of the wire (a) increases (b) decreases (c) remains the same.

Quick Quiz 27.5 In Figure 27.7b, as the applied voltage increases, the resis-
tance of the diode (a) increases (b) decreases (c) remains the same.

Example 27.2 The Resistance of a Conductor

Example 27.3 The Resistance of Nichrome Wire

Example 27.4 The Radial Resistance of a Coaxial Cable

Calculate the resistance of an aluminum cylinder that
has a length of 10.0 cm and a cross-sectional area of
2.00 # 10$4 m2. Repeat the calculation for a cylinder of the
same dimensions and made of glass having a resistivity of
3.0 # 1010 ' ( m.

Solution From Equation 27.11 and Table 27.1, we can cal-
culate the resistance of the aluminum cylinder as follows:

1.41 # 10$5 '"

R " %  
!

A
" (2.82 # 10$8 '(m) " 0.100 m

2.00 # 10$4  m2 #

Similarly, for glass we find that

As you might guess from the large difference in resistivities,
the resistances of identically shaped cylinders of aluminum
and glass differ widely. The resistance of the glass cylinder is
18 orders of magnitude greater than that of the aluminum
cylinder.

1.5 # 1013 '"

R " % 
!

A
" (3.0 # 1010 '(m) " 0.100 m

2.00 # 10$4 m2 #

(A) Calculate the resistance per unit length of a 22-gauge
Nichrome wire, which has a radius of 0.321 mm.

Solution The cross-sectional area of this wire is

The resistivity of Nichrome is 1.5 # 10$ 6 ' ( m (see
Table 27.1). Thus, we can use Equation 27.11 to find the
resistance per unit length:

(B) If a potential difference of 10 V is maintained across a
1.0-m length of the Nichrome wire, what is the current in
the wire?

4.6 '/m
R
!

"
%

A
"

1.5 # 10$6 '(m
3.24 # 10$7 m2 "

A " *r 
2 " *(0.321 # 10$3 m)2 " 3.24 # 10$7 m2

Solution Because a 1.0-m length of this wire has a resis-
tance of 4.6 ', Equation 27.8 gives

Note from Table 27.1 that the resistivity of Nichrome wire is
about 100 times that of copper. A copper wire of the same
radius would have a resistance per unit length of only
0.052 '/m. A 1.0-m length of copper wire of the same
radius would carry the same current (2.2 A) with an applied
potential difference of only 0.11 V.

Because of its high resistivity and its resistance to
oxidation, Nichrome is often used for heating elements in
toasters, irons, and electric heaters.

2.2 AI "
∆V
R

"
10 V
4.6 '

"

silicon, in the radial direction, is unwanted. (The cable is 
designed to conduct current along its length—this is not
the current we are considering here.) The radius of the 
inner conductor is a " 0.500 cm, the radius of the outer
one is b " 1.75 cm, and the length is L " 15.0 cm. 

Coaxial cables are used extensively for cable television and
other electronic applications. A coaxial cable consists of 
two concentric cylindrical conductors. The region 
between the conductors is completely filled with silicon, as
shown in Figure 27.8a, and current leakage through the 

Interactive

Explore the resistance of different materials at the Interactive Worked Example link at http://www.pse6.com.
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Figure 27.8 (Example 27.4) A coaxial cable. (a) Silicon fills the gap between the two
conductors. (b) End view, showing current leakage.

Calculate the resistance of the silicon between the two
conductors.

Solution Conceptualize by imagining two currents, as
suggested in the text of the problem. The desired current is
along the cable, carried within the conductors. The
undesired current corresponds to charge leakage through
the silicon and its direction is radial. Because we know the
resistivity and the geometry of the silicon, we categorize this
as a problem in which we find the resistance of the silicon
from these parameters, using Equation 27.11. Because the
area through which the charges pass depends on the radial
position, we must use integral calculus to determine the
answer.

To analyze the problem, we divide the silicon into con-
centric elements of infinitesimal thickness dr (Fig. 27.8b).
We start by using the differential form of Equation 27.11,
replacing ! with r for the distance variable: dR " % dr/A,
where dR is the resistance of an element of silicon of 
thickness dr and surface area A. In this example, we take as
our representative concentric element a hollow silicon cylin-
der of radius r, thickness dr, and length L, as in Figure 27.8.
Any charge that passes from the inner conductor to the
outer one must pass radially through this concentric ele-
ment, and the area through which this charge passes is 
A " 2*rL. (This is the curved surface area—circumference
multiplied by length—of our hollow silicon cylinder of
thickness dr.) Hence, we can write the resistance of our 
hollow cylinder of silicon as

Because we wish to know the total resistance across the
entire thickness of the silicon, we must integrate this expres-
sion from r " a to r " b:

(1)   R " $b

a
 dR "

%

2*L
 $b

a
  

dr
r

"
%

2*L
  ln " b

a #

dR "
%

2*rL
 dr

Substituting in the values given, and using % " 640 ' ( m for
silicon, we obtain

To finalize this problem, let us compare this resistance to
that of the inner conductor of the cable along the 15.0-cm
length. Assuming that the conductor is made of copper, we
have

This resistance is much smaller than the radial resistance. As
a consequence, almost all of the current corresponds to
charge moving along the length of the cable, with a very
small fraction leaking in the radial direction.

What If? Suppose the coaxial cable is enlarged to twice the
overall diameter with two possibilities: (1) the ratio b/a is
held fixed, or (2) the difference b " a is held fixed. For which
possibility does the leakage current between the inner and
outer conductors increase when the voltage is applied
between the two conductors?

Answer In order for the current to increase, the resistance
must decrease. For possibility (1), in which b/a is held fixed,
Equation (1) tells us that the resistance is unaffected. For
possibility (2), we do not have an equation involving the dif-
ference b $ a to inspect. Looking at Figure 27.8b, however,
we see that increasing b and a while holding the voltage 
constant results in charge flowing through the same 
thickness of silicon but through a larger overall area perpen-
dicular to the flow. This larger area will result in lower resis-
tance and a higher current.

 " 3.2 # 10$5 '

R " %  
!

A
" (1.7 # 10$8 '(m) " 0.150 m

*(5.00 # 10$3 m)2 #

851 'R "
640 '(m

2*(0.150 m)
  ln " 1.75 cm

0.500 cm # "

(a)

L

Outer
conductor

Inner
conductor

Silicon

a

b

Current
direction

End view
(b)

dr

r



27.3 A Model for Electrical Conduction

In this section we describe a classical model of electrical conduction in metals that was
first proposed by Paul Drude (1863–1906) in 1900. This model leads to Ohm’s law and
shows that resistivity can be related to the motion of electrons in metals. Although the
Drude model described here does have limitations, it nevertheless introduces concepts
that are still applied in more elaborate treatments.

Consider a conductor as a regular array of atoms plus a collection of free electrons,
which are sometimes called conduction electrons. The conduction electrons, although
bound to their respective atoms when the atoms are not part of a solid, gain mobility
when the free atoms condense into a solid. In the absence of an electric field, the conduc-
tion electrons move in random directions through the conductor with average speeds on
the order of 106 m/s. The situation is similar to the motion of gas molecules confined in a
vessel. In fact, some scientists refer to conduction electrons in a metal as an electron gas.
There is no current in the conductor in the absence of an electric field because the drift
velocity of the free electrons is zero. That is, on the average, just as many electrons move
in one direction as in the opposite direction, and so there is no net flow of charge.

This situation changes when an electric field is applied. Now, in addition to under-
going the random motion just described, the free electrons drift slowly in a direction
opposite that of the electric field, with an average drift speed vd that is much smaller
(typically 10$4 m/s) than their average speed between collisions (typically 106 m/s).

Figure 27.9 provides a crude description of the motion of free electrons in a
conductor. In the absence of an electric field, there is no net displacement after many
collisions (Fig. 27.9a). An electric field E modifies the random motion and causes the
electrons to drift in a direction opposite that of E (Fig. 27.9b).

In our model, we assume that the motion of an electron after a collision is indepen-
dent of its motion before the collision. We also assume that the excess energy acquired
by the electrons in the electric field is lost to the atoms of the conductor when the 
electrons and atoms collide. The energy given up to the atoms increases their vibra-
tional energy, and this causes the temperature of the conductor to increase. The tem-
perature increase of a conductor due to resistance is utilized in electric toasters and
other familiar appliances.

We are now in a position to derive an expression for the drift velocity. When a free
electron of mass me and charge q(" $ e) is subjected to an electric field E, it
experiences a force F " qE. Because this force is related to the acceleration of the
electron through Newton’s second law, F " mea, we conclude that the acceleration of
the electron is

(27.12)a "
q E
me
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At the Active Figures link
at http://www.pse6.com, you
can adjust the electric field to
see the resulting effect on the
motion of an electron.

Active Figure 27.9 (a) A schematic diagram of the random motion of two charge
carriers in a conductor in the absence of an electric field. The drift velocity is zero.
(b) The motion of the charge carriers in a conductor in the presence of an electric
field. Note that the random motion is modified by the field, and the charge carriers
have a drift velocity.

(a)

–

–

––

–

–

–

–

E

(b)



This acceleration, which occurs for only a short time interval between collisions,
enables the electron to acquire a small drift velocity. If vi is the electron’s initial velocity
the instant after a collision (which occurs at a time that we define as t " 0), then the
velocity of the electron at time t (at which the next collision occurs) is

(27.13)

We now take the average value of vf over all possible collision times t and all possible
values of vi. If we assume that the initial velocities are randomly distributed over all
possible values, we see that the average value of vi is zero. The term (qE/me)t is the
velocity change of the electron due to the electric field during one trip between atoms.
The average value of the second term of Equation 27.13 is (qE/me)+, where + is the
average time interval between successive collisions. Because the average value of vf is equal to
the drift velocity, we have

(27.14)

We can relate this expression for drift velocity to the current in the conductor.
Substituting Equation 27.14 into Equation 27.6, we find that the magnitude of the
current density is

(27.15)

where n is the number of charge carriers per unit volume. Comparing this expression
with Ohm’s law, J " &E, we obtain the following relationships for conductivity and
resistivity of a conductor:

(27.16)

(27.17)

According to this classical model, conductivity and resistivity do not depend on the
strength of the electric field. This feature is characteristic of a conductor obeying
Ohm’s law.

The average time interval + between collisions is related to the average distance
between collisions ! (that is, the mean free path; see Section 21.7) and the average speed

through the expression

(27.18)+ "
!

v

v

% "
1
&

"
me

nq 
2+

& "
nq 

2+

me

J " nqvd "
nq 

2E
me

  +

vf " vd "
q E
me

  +

vf " vi , at " vi ,
q E
me

 t
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Drift velocity in terms of
microscopic quantities

Current density in terms of
microscopic quantities

Conductivity in terms of micro-
scopic quantities

Resistivity in terms of micro-
scopic quantities

Example 27.5 Electron Collisions in a Wire

(A) Using the data and results from Example 27.1 and the
classical model of electron conduction, estimate the average
time interval between collisions for electrons in household
copper wiring.

Solution From Equation 27.17, we see that

where % " 1.7 # 10$8 ' ( m for copper and the carrier den-
sity is n " 8.49 # 1028 electrons/m3 for the wire described

+ "
me

nq 
2%

in Example 27.1. Substitution of these values into the
expression above gives

2.5 # 10$14 s"

+ "
9.11 # 10$31 kg

(8.49 # 1028 m$3)(1.6 # 10$19 C)2 (1.7 # 10$8 '(m )

(B) Assuming that the average speed for free electrons in
copper is 1.6 # 106 m/s and using the result from part (A),
calculate the mean free path for electrons in copper.



27.4 Resistance and Temperature

Over a limited temperature range, the resistivity of a conductor varies approximately
linearly with temperature according to the expression

(27.19)

where % is the resistivity at some temperature T (in degrees Celsius), %0 is the resistivity
at some reference temperature T0 (usually taken to be 20°C), and - is the tempera-
ture coefficient of resistivity. From Equation 27.19, we see that the temperature
coefficient of resistivity can be expressed as

(27.20)

where !% " % $ %0 is the change in resistivity in the temperature interval !T " T $ T0.
The temperature coefficients of resistivity for various materials are given in

Table 27.1. Note that the unit for - is degrees Celsius$ 1 [(°C)$ 1]. Because resistance
is proportional to resistivity (Eq. 27.11), we can write the variation of resistance as

(27.21)

Use of this property enables us to make precise temperature measurements, as shown
in Example 27.6.

R " R 0[1 , -(T $ T0)]

- "
1
%0

 
∆%

∆T

% " %0[1 , -(T $ T0)]
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Quick Quiz 27.6 When does a lightbulb carry more current: (a) just after it
is turned on and the glow of the metal filament is increasing, or (b) after it has been
on for a few milliseconds and the glow is steady?

which is equivalent to 40 nm (compared with atomic 
spacings of about 0.2 nm). Thus, although the time interval
between collisions is very short, an electron in the wire
travels about 200 atomic spacings between collisions.

Solution From Equation 27.18,

4.0 # 10$8 m"

! " v+ " (1.6 # 106 m/s)(2.5 # 10$14 s)

Example 27.6 A Platinum Resistance Thermometer

A resistance thermometer, which measures temperature by
measuring the change in resistance of a conductor, is made
from platinum and has a resistance of 50.0 ' at 20.0°C.
When immersed in a vessel containing melting indium, its
resistance increases to 76.8 '. Calculate the melting point
of the indium.

Solution Solving Equation 27.21 for !T and using the -
value for platinum given in Table 27.1, we obtain

Because T0 " 20.0°C, we find that T, the temperature of the

melting indium sample, is 157.C.

 " 137.C

∆T "
R $ R 0

-R 0
"

76.8 ' $ 50.0 '
[3.92 # 10$3(.C )$1](50.0 ')

For metals like copper, resistivity is nearly proportional to temperature, as shown
in Figure 27.10. However, a nonlinear region always exists at very low temperatures,
and the resistivity usually reaches some finite value as the temperature approaches
absolute zero. This residual resistivity near absolute zero is caused primarily by the

Variation of # with temperature

Temperature coefficient of
resistivity



collision of electrons with impurities and imperfections in the metal. In contrast, high-
temperature resistivity (the linear region) is predominantly characterized by collisions
between electrons and metal atoms.

Notice that three of the - values in Table 27.1 are negative; this indicates that the
resistivity of these materials decreases with increasing temperature (Fig. 27.11), which
is indicative of a class of materials called semiconductors. This behavior is due to an
increase in the density of charge carriers at higher temperatures.

Because the charge carriers in a semiconductor are often associated with impurity
atoms, the resistivity of these materials is very sensitive to the type and concentration of
such impurities. We shall return to the study of semiconductors in Chapter 43.

27.5 Superconductors

There is a class of metals and compounds whose resistance decreases to zero when they
are below a certain temperature Tc , known as the critical temperature. These
materials are known as superconductors. The resistance–temperature graph for a
superconductor follows that of a normal metal at temperatures above Tc (Fig. 27.12).
When the temperature is at or below Tc , the resistivity drops suddenly to zero. This
phenomenon was discovered in 1911 by the Dutch physicist Heike Kamerlingh-Onnes
(1853–1926) as he worked with mercury, which is a superconductor below 4.2 K.
Recent measurements have shown that the resistivities of superconductors below their
Tc values are less than 4 # 10$ 25 ' ( m—around 1017 times smaller than the resistivity
of copper and in practice considered to be zero.

Today thousands of superconductors are known, and as Table 27.3 illustrates, the
critical temperatures of recently discovered superconductors are substantially higher
than initially thought possible. Two kinds of superconductors are recognized. The
more recently identified ones are essentially ceramics with high critical temperatures,
whereas superconducting materials such as those observed by Kamerlingh-Onnes are
metals. If a room-temperature superconductor is ever identified, its impact on
technology could be tremendous.

The value of Tc is sensitive to chemical composition, pressure, and molecular
structure. It is interesting to note that copper, silver, and gold, which are excellent
conductors, do not exhibit superconductivity.
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Material Tc(K)

HgBa2Ca2Cu3O8 134
Tl–Ba–Ca–Cu–O 125
Bi–Sr–Ca–Cu–O 105
YBa2Cu3O7 92
Nb3Ge 23.2
Nb3Sn 18.05
Nb 9.46
Pb 7.18
Hg 4.15
Sn 3.72
Al 1.19
Zn 0.88

Critical Temperatures for
Various Superconductors

Table 27.3

Figure 27.11 Resistivity versus
temperature for a pure
semiconductor, such as silicon or
germanium.

Figure 27.12 Resistance versus temperature for a
sample of mercury (Hg). The graph follows that of a
normal metal above the critical temperature Tc . The
resistance drops to zero at Tc , which is 4.2 K for mercury.

T

ρ

0

T
ρ0

0
ρ

ρ

Figure 27.10 Resistivity versus
temperature for a metal such as
copper. The curve is linear over a
wide range of temperatures, and %
increases with increasing
temperature. As T approaches
absolute zero (inset), the resistivity
approaches a finite value %0.
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T
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One of the truly remarkable features of superconductors is that once a current is
set up in them, it persists without any applied potential difference (because R " 0). Steady
currents have been observed to persist in superconducting loops for several years with
no apparent decay!

An important and useful application of superconductivity is in the development of
superconducting magnets, in which the magnitudes of the magnetic field are about
ten times greater than those produced by the best normal electromagnets. Such
superconducting magnets are being considered as a means of storing energy.
Superconducting magnets are currently used in medical magnetic resonance imaging
(MRI) units, which produce high-quality images of internal organs without the need
for excessive exposure of patients to x-rays or other harmful radiation.

For further information on superconductivity, see Section 43.8.

27.6 Electrical Power

If a battery is used to establish an electric current in a conductor, there is a continuous
transformation of chemical energy in the battery to kinetic energy of the electrons to
internal energy in the conductor, resulting in an increase in the temperature of the
conductor.

In typical electric circuits, energy is transferred from a source such as a battery, to
some device, such as a lightbulb or a radio receiver. Let us determine an expression
that will allow us to calculate the rate of this energy transfer. First, consider the simple
circuit in Figure 27.13, where we imagine energy is being delivered to a resistor.
(Resistors are designated by the circuit symbol .) Because the connecting
wires also have resistance, some energy is delivered to the wires and some energy to the
resistor. Unless noted otherwise, we shall assume that the resistance of the wires is so
small compared to the resistance of the circuit element that we ignore the energy
delivered to the wires.

Imagine following a positive quantity of charge Q that is moving clockwise around
the circuit in Figure 27.13 from point a through the battery and resistor back to point a.
We identify the entire circuit as our system. As the charge moves from a to b through
the battery, the electric potential energy of the system increases by an amount Q !V while
the chemical potential energy in the battery decreases by the same amount. (Recall from
Eq. 25.9 that !U " q !V.) However, as the charge moves from c to d through the
resistor, the system loses this electric potential energy during collisions of electrons with
atoms in the resistor. In this process, the energy is transformed to internal energy
corresponding to increased vibrational motion of the atoms in the resistor. Because we
have neglected the resistance of the interconnecting wires, no energy transformation
occurs for paths bc and da. When the charge returns to point a, the net result is that
some of the chemical energy in the battery has been delivered to the resistor and
resides in the resistor as internal energy associated with molecular vibration.

The resistor is normally in contact with air, so its increased temperature will result
in a transfer of energy by heat into the air. In addition, the resistor emits thermal
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A small permanent magnet
levitated above a disk of the
superconductor YBa2Cu3O7, which
is at 77 K.
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At the Active Figures link
at http://www.pse6.com, you
can adjust the battery voltage
and the resistance to see the
resulting current in the circuit
and power delivered to the
resistor.

Active Figure 27.13 A circuit consisting of a resistor of
resistance R and a battery having a potential difference !V across
its terminals. Positive charge flows in the clockwise direction.

b

a

c

d

R

I

∆V
+
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! PITFALL PREVENTION
27.6 Misconceptions

About Current
There are several common
misconceptions associated with
current in a circuit like that in
Figure 27.13. One is that current
comes out of one terminal of the
battery and is then “used up” as it
passes through the resistor,
leaving current in only one part
of the circuit. The truth is that
the current is the same everywhere
in the circuit. A related miscon-
ception has the current coming
out of the resistor being smaller
than that going in, because some
of the current is “used up.”
Another misconception has
current coming out of both
terminals of the battery, in
opposite directions, and then
“clashing” in the resistor, deliver-
ing the energy in this manner.
This is not the case—the charges
flow in the same rotational sense
at all points in the circuit.



radiation, representing another means of escape for the energy. After some time
interval has passed, the resistor reaches a constant temperature, at which time the
input of energy from the battery is balanced by the output of energy by heat and
radiation. Some electrical devices include heat sinks4 connected to parts of the circuit
to prevent these parts from reaching dangerously high temperatures. These are pieces
of metal with many fins. The high thermal conductivity of the metal provides a rapid
transfer of energy by heat away from the hot component, while the large number of
fins provides a large surface area in contact with the air, so that energy can transfer by
radiation and into the air by heat at a high rate.

Let us consider now the rate at which the system loses electric potential energy as
the charge Q passes through the resistor:

where I is the current in the circuit. The system regains this potential energy when the
charge passes through the battery, at the expense of chemical energy in the battery.
The rate at which the system loses potential energy as the charge passes through the
resistor is equal to the rate at which the system gains internal energy in the resistor.
Thus, the power ", representing the rate at which energy is delivered to the resistor, is

(27.22)

We derived this result by considering a battery delivering energy to a resistor. However,
Equation 27.22 can be used to calculate the power delivered by a voltage source to any
device carrying a current I and having a potential difference !V between its terminals.

Using Equation 27.22 and the fact that !V " IR for a resistor, we can express the
power delivered to the resistor in the alternative forms

(27.23)

When I is expressed in amperes, !V in volts, and R in ohms, the SI unit of power is the
watt, as it was in Chapter 7 in our discussion of mechanical power. The process by
which power is lost as internal energy in a conductor of resistance R is often called joule
heating 5; this transformation is also often referred to as an I 2R loss.

When transporting energy by electricity through power lines, such as those
shown in the opening photograph for this chapter, we cannot make the simplifying
assumption that the lines have zero resistance. Real power lines do indeed have
resistance, and power is delivered to the resistance of these wires. Utility companies
seek to minimize the power transformed to internal energy in the lines and maxi-
mize the energy delivered to the consumer. Because " " I !V, the same amount of
power can be transported either at high currents and low potential differences or at
low currents and high potential differences. Utility companies choose to transport
energy at low currents and high potential differences primarily for economic
reasons. Copper wire is very expensive, and so it is cheaper to use high-resistance
wire (that is, wire having a small cross-sectional area; see Eq. 27.11). Thus, in the
expression for the power delivered to a resistor, " " I 2R , the resistance of the wire
is fixed at a relatively high value for economic considerations. The I 2R loss can be
reduced by keeping the current I as low as possible, which means transferring the
energy at a high voltage. In some instances, power is transported at potential
differences as great as 765 kV. Once the electricity reaches your city, the potential
difference is usually reduced to 4 kV by a device called a transformer. Another

" " I  
2R "

(!V  )2

R

" " I !V

dU
dt

"
d
dt

 (Q ∆V ) "
dQ
dt

 ∆V " I ∆V
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! PITFALL PREVENTION
27.7 Charges Do Not

Move All the Way
Around a Circuit in a
Short Time

Due to the very small magnitude
of the drift velocity, it might take
hours for a single electron to
make one complete trip around
the circuit. In terms of under-
standing the energy transfer in a
circuit, however, it is useful to
imagine a charge moving all the
way around the circuit.

! PITFALL PREVENTION
27.8 Energy Is Not

“Dissipated”
In some books, you may see
Equation 27.23 described as the
power “dissipated in” a resistor,
suggesting that energy disappears.
Instead we say energy is “delivered
to” a resistor. The notion of
dissipation arises because a warm
resistor will expel energy by
radiation and heat, so that energy
delivered by the battery leaves the
circuit. (It does not disappear!)

4 This is another misuse of the word heat that is ingrained in our common language.
5 It is commonly called joule heating even though the process of heat does not occur. This is another

example of incorrect usage of the word heat that has become entrenched in our language.

Power delivered to a device

Power delivered to a resistor



transformer drops the potential difference to 240 V before the electricity finally
reaches your home. Of course, each time the potential difference decreases, the
current increases by the same factor, and the power remains the same. We shall
discuss transformers in greater detail in Chapter 33.

Demands on our dwindling energy supplies have made it necessary for us to be
aware of the energy requirements of our electrical devices. Every electrical
appliance carries a label that contains the information you need to calculate the
appliance’s power requirements. In many cases, the power consumption in watts is
stated directly, as it is on a lightbulb. In other cases, the amount of current used by
the device and the potential difference at which it operates are given. This
information and Equation 27.22 are sufficient for calculating the power require-
ment of any electrical device.
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Quick Quiz 27.7 The same potential difference is applied to the two
lightbulbs shown in Figure 27.14. Which one of the following statements is true?
(a) The 30-W bulb carries the greater current and has the higher resistance.
(b) The 30-W bulb carries the greater current, but the 60-W bulb has the higher
resistance. (c) The 30-W bulb has the higher resistance, but the 60-W bulb carries
the greater current. (d) The 60-W bulb carries the greater current and has the
higher resistance.

Quick Quiz 27.8 For the two lightbulbs shown in Figure 27.15, rank the
current values at points a through f, from greatest to least.

Figure 27.14 (Quick Quiz 27.7) These lightbulbs operate at their rated power only
when they are connected to a 120-V source.

Figure 27.15 (Quick Quiz 27.8)
Two lightbulbs connected across
the same potential difference.
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Example 27.7 Power in an Electric Heater

An electric heater is constructed by applying a potential
difference of 120 V to a Nichrome wire that has a total
resistance of 8.00 '. Find the current carried by the wire
and the power rating of the heater.

Solution Because !V " IR , we have

We can find the power rating using the expression 
" " I 2R :

" " I  
2R " (15.0 A)2(8.00 ') " 1.80 # 103 W

15.0 AI "
∆V
R

"
120 V
8.00 '

"

What If? What if the heater were accidentally connected to a
240-V supply? (This is difficult to do because the shape and
orientation of the metal contacts in 240-V plugs are different
from those in 120-V plugs.) How would this affect the current
carried by the heater and the power rating of the heater?

Answer If we doubled the applied potential difference,
Equation 27.8 tells us that the current would double.
According to Equation 27.23, " " (!V )2/R, the power
would be four times larger.

1.80 kW" "
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Example 27.8 Linking Electricity and Thermodynamics

Example 27.9 Current in an Electron Beam

(A) What is the required resistance of an immersion heater
that will increase the temperature of 1.50 kg of water from
10.0°C to 50.0°C in 10.0 min while operating at 110 V?

(B) Estimate the cost of heating the water.

Solution This example allows us to link our new under-
standing of power in electricity with our experience with
specific heat in thermodynamics (Chapter 20). An immer-
sion heater is a resistor that is inserted into a container of
water. As energy is delivered to the immersion heater,
raising its temperature, energy leaves the surface of the
resistor by heat, going into the water. When the immersion
heater reaches a constant temperature, the rate of energy
delivered to the resistance by electrical transmission is equal
to the rate of energy delivered by heat to the water.

(A) To simplify the analysis, we ignore the initial period
during which the temperature of the resistor increases, and
also ignore any variation of resistance with temperature. Thus,
we imagine a constant rate of energy transfer for the entire
10.0 min. Setting the rate of energy delivered to the resistor
equal to the rate of energy entering the water by heat, we have

where Q represents an amount of energy transfer by heat
into the water and we have used Equation 27.23 to express

" "
(∆V )2

R
"

Q
∆t

the electrical power. The amount of energy transfer by heat
necessary to raise the temperature of the water is given by
Equation 20.4, Q " mc !T. Thus,

Substituting the values given in the statement of the 
problem, we have

(B) Because the energy transferred equals power multiplied
by time interval, the amount of energy transferred is

If the energy is purchased at an estimated price of 10.0¢ per
kilowatt-hour, the cost is

0.7 ¢'

Cost " (0.069 8 kWh)($0.100/kWh) " $0.006  98

" 69.8 Wh " 0.069 8 kWh

" ∆t "
(∆V  )2

R
 ∆t "

(110 V )2

28.9 '
 (10.0 min) " 1 h

60.0 min #

28.9 '"

R "
(110 V )2(600 s)

(1.50 kg)(4186 J/kg (.C)(50.0.C $ 10.0.C)

(∆V )2

R
"

mc ∆T
∆t

 9:  R "
(∆V )2 ∆t

mc ∆T

Solution We use Equation 27.2 in the form dQ " I dt and
integrate to find the charge per pulse. While the pulse is on,
the current is constant; thus,

Dividing this quantity of charge per pulse by the electronic
charge gives the number of electrons per pulse:

 " 5.00 # 10$8 C

Q pulse " I $ dt " I ∆t " (250 # 10$3 A)(200 # 10$9 s)

In a certain particle accelerator, electrons emerge with
an energy of 40.0 MeV (1 MeV " 1.60 # 10$ 13 J). The
electrons emerge not in a steady stream but rather in pulses
at the rate of 250 pulses/s. This corresponds to a time
interval between pulses of 4.00 ms (Fig. 27.16). Each pulse
has a duration of 200 ns, and the electrons in the pulse
constitute a current of 250 mA. The current is zero between
pulses.

(A) How many electrons are delivered by the accelerator
per pulse?

Interactive

At the Interactive Worked Example link at http://www.pse6.com, you can explore the heating of the water.

I 2.00 × 10–7 s

t (s)

4.00 ms

Figure 27.16 (Example 27.9) Current versus time for a pulsed beam of electrons.
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(B) What is the average current per pulse delivered by the
accelerator?

Solution Average current is given by Equation 27.1,
Iav " !Q /!t. Because the time interval between pulses is
4.00 ms, and because we know the charge per pulse from
part (A), we obtain

This represents only 0.005% of the peak current, which is
250 mA.

(C) What is the peak power delivered by the electron beam?

Solution By definition, power is energy delivered per unit
time interval. Thus, the peak power is equal to the energy
delivered by a pulse divided by the pulse duration:

10.0 MW" 1.00 # 107 W "

# " 1.60 # 10$13 J
1 MeV

#

"
(3.13 # 1011 electrons/pulse)(40.0 MeV/electron)

2.00 # 10$7 s/pulse

(1)   "peak "
pulse energy

pulse duration

12.5 /AIav "
Q pulse

∆t
"

5.00 # 10$8 C
4.00 # 10$3 s

"

3.13 # 1011 electrons/pulse"

Electrons per pulse "
5.00 # 10$8 C/pulse

1.60 # 10$19 C/electron

We could also compute this power directly. We assume that
each electron has zero energy before being accelerated.
Thus, by definition, each electron must go through a
potential difference of 40.0 MV to acquire a final energy of
40.0 MeV. Hence, we have

What If? What if the requested quantity in part (C) were the
average power rather than the peak power?

Answer Instead of Equation (1), we would use the time
interval between pulses rather than the duration of a pulse:

Instead of Equation (2), we would use the average current
found in part (B):

Notice that these two calculations agree with each other and
that the average power is much lower than the peak power.

 " 500 W

"av " Iav ∆V " (12.5 # 10$6 A)(40.0 # 106 V )

" 500 W

# " 1.60 # 10$13 J
1 MeV

#

"
(3.13 # 1011 electrons/pulse)(40.0 MeV/electron)

4.00 # 10$3 s/pulse

"av "
pulse energy

time interval between pulses

10.0 MW"

" (250 # 10$3 A)(40.0 # 106 V )

(2)   "peak " Ipeak ∆V

The electric current I in a conductor is defined as

(27.2)

where dQ is the charge that passes through a cross section of the conductor in a time
interval dt. The SI unit of current is the ampere (A), where 1 A " 1 C/s.

The average current in a conductor is related to the motion of the charge carriers
through the relationship

(27.4)

where n is the density of charge carriers, q is the charge on each carrier, vd is the drift
speed, and A is the cross-sectional area of the conductor.

The magnitude of the current density J in a conductor is the current per
unit area:

(27.5)J  !  
I
A

" nqvd

Iav " nqvd A

I  !  
dQ
dt

S U M M A RY

Take a practice test for
this chapter by clicking on
the Practice Test link at
http://www.pse6.com.
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The current density in an ohmic conductor is proportional to the electric field
according to the expression

(27.7)

The proportionality constant & is called the conductivity of the material of which the
conductor is made. The inverse of & is known as resistivity % (that is, % " 1/&).
Equation 27.7 is known as Ohm’s law, and a material is said to obey this law if the ratio
of its current density J to its applied electric field E is a constant that is independent of
the applied field.

The resistance R of a conductor is defined as

(27.8)

where !V is the potential difference across it, and I is the current it carries.
The SI unit of resistance is volts per ampere, which is defined to be 1 ohm (');

that is, 1 ' " 1 V/A. If the resistance is independent of the applied potential
difference, the conductor obeys Ohm’s law.

For a uniform block of material of cross sectional area A and length !, the
resistance over the length ! is

(27.11)

where % is the resistivity of the material.
In a classical model of electrical conduction in metals, the electrons are treated as

molecules of a gas. In the absence of an electric field, the average velocity of the
electrons is zero. When an electric field is applied, the electrons move (on the average)
with a drift velocity vd that is opposite the electric field and given by the expression

(27.14)

where + is the average time interval between electron–atom collisions, me is the mass
of the electron, and q is its charge. According to this model, the resistivity of the
metal is

(27.17)

where n is the number of free electrons per unit volume.
The resistivity of a conductor varies approximately linearly with temperature

according to the expression

(27.19)

where - is the temperature coefficient of resistivity and %0 is the resistivity at some
reference temperature T0.

If a potential difference !V is maintained across a circuit element, the power, or
rate at which energy is supplied to the element, is

(27.22)

Because the potential difference across a resistor is given by !V " IR, we can express
the power delivered to a resistor in the form

(27.23)

The energy delivered to a resistor by electrical transmission appears in the form of
internal energy in the resistor.

" " I  
2R "

(∆V )2

R

 " " I !V

% " % 0[1 , -(T $ T0)]

% "
me

nq 
2+

vd "
q E
me

 +

R " % 
!

A

R  !  
∆V
I

J " & E
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1. In an analogy between electric current and automobile
traffic flow, what would correspond to charge? What would
correspond to current?

2. Newspaper articles often contain a statement such as
“10 000 volts of electricity surged through the victim’s
body.’’ What is wrong with this statement?

3. What factors affect the resistance of a conductor?

4. What is the difference between resistance and resistivity?

Two wires A and B of circular cross section are made of the
same metal and have equal lengths, but the resistance of
wire A is three times greater than that of wire B. What is
the ratio of their cross-sectional areas? How do their radii
compare?

6. Do all conductors obey Ohm’s law? Give examples to
justify your answer.

7. We have seen that an electric field must exist inside a
conductor that carries a current. How is it possible in view
of the fact that in electrostatics we concluded that the
electric field must be zero inside a conductor?

8. A very large potential difference is not necessarily
required to produce long sparks in air. With a device
called Jacob’s ladder, a potential difference of about 10 kV
produces an electric arc a few millimeters long between
the bottom ends of two curved rods that project upward
from the power supply. (The device is seen in classic
mad-scientist horror movies and in Figure Q27.8.) The
arc rises, climbing the rods and getting longer and
longer. It disappears when it reaches the top; then a new
spark immediately forms at the bottom and the process
repeats. Explain these phenomena. Why does the arc
rise? Why does a new arc appear only after the previous
one is gone?

5.

9. When the voltage across a certain conductor is doubled,
the current is observed to increase by a factor of three.
What can you conclude about the conductor?

10. In the water analogy of an electric circuit, what corre-
sponds to the power supply, resistor, charge, and potential
difference?

Use the atomic theory of matter to explain why the
resistance of a material should increase as its temperature
increases.

12. Why might a “good” electrical conductor also be a “good”
thermal conductor?

13. How does the resistance for copper and for silicon change
with temperature? Why are the behaviors of these two
materials different?

14. Explain how a current can persist in a superconductor
without any applied voltage.

15. What single experimental requirement makes supercon-
ducting devices expensive to operate? In principle, can
this limitation be overcome?

16. What would happen to the drift velocity of the electrons in
a wire and to the current in the wire if the electrons could
move freely without resistance through the wire?

If charges flow very slowly through a metal, why does it not
require several hours for a light to come on when you
throw a switch?

18. In a conductor, changes in the electric field that drives the
electrons through the conductor propagate with a speed
close to the speed of light, although the drift velocity of
the electrons is very small. Explain how these statements
can both be true. Does one particular electron move from
one end of the conductor to the other?

19. Two conductors of the same length and radius are
connected across the same potential difference. One
conductor has twice the resistance of the other. To which
conductor is more power delivered?

20. Two lightbulbs both operate from 120 V. One has a power
of 25 W and the other 100 W. Which bulb has higher
resistance? Which bulb carries more current?

21. Car batteries are often rated in ampere-hours. Does this
designate the amount of current, power, energy, or charge
that can be drawn from the battery?

22. If you were to design an electric heater using Nichrome
wire as the heating element, what parameters of the wire
could you vary to meet a specific power output, such as
1 000 W?

17.

11.

Q U E S T I O N S

Figure Q27.8



852 CHAPTE R  27 •  Current and Resistance

Section 27.1 Electric Current
1. In a particular cathode ray tube, the measured beam

current is 30.0 /A. How many electrons strike the tube
screen every 40.0 s?

2. A teapot with a surface area of 700 cm2 is to be silver
plated. It is attached to the negative electrode of an
electrolytic cell containing silver nitrate (Ag, NO3

$). If
the cell is powered by a 12.0-V battery and has a resistance
of 1.80 ', how long does it take for a 0.133-mm layer of
silver to build up on the teapot? (The density of silver is
10.5 # 103 kg/m3.)

Suppose that the current through a conductor
decreases exponentially with time according to the
equation I(t ) " I0e$t/+ where I0 is the initial current (at
t " 0), and + is a constant having dimensions of time.
Consider a fixed observation point within the conductor.
(a) How much charge passes this point between t " 0 and
t " +? (b) How much charge passes this point between
t " 0 and t " 10+? (c) What If? How much charge passes
this point between t " 0 and t " 0?

4. In the Bohr model of the hydrogen atom, an electron
in the lowest energy state follows a circular path
5.29 # 10$11 m from the proton. (a) Show that the speed
of the electron is 2.19 # 106 m/s. (b) What is the effective
current associated with this orbiting electron?

5. A small sphere that carries a charge q is whirled in a circle
at the end of an insulating string. The angular frequency
of rotation is 1. What average current does this rotating
charge represent?

6. The quantity of charge q (in coulombs) that has passed
through a surface of area 2.00 cm2 varies with time
according to the equation q " 4t3 , 5t , 6, where t is in
seconds. (a) What is the instantaneous current through
the surface at t " 1.00 s? (b) What is the value of the
current density?

7. An electric current is given by the expression I(t) "
100 sin(120*t), where I is in amperes and t is in seconds.
What is the total charge carried by the current from t " 0
to t " (1/240) s?

8. Figure P27.8 represents a section of a circular conductor
of nonuniform diameter carrying a current of 5.00 A. The

3.

radius of cross section A1 is 0.400 cm. (a) What is the
magnitude of the current density across A1? (b) If the
current density across A2 is one-fourth the value across A1,
what is the radius of the conductor at A2?

The electron beam emerging from a certain high-energy
electron accelerator has a circular cross section of radius
1.00 mm. (a) The beam current is 8.00 /A. Find the current
density in the beam, assuming that it is uniform throughout.
(b) The speed of the electrons is so close to the speed of
light that their speed can be taken as c " 3.00 # 108 m/s
with negligible error. Find the electron density in the beam.
(c) How long does it take for Avogadro’s number of
electrons to emerge from the accelerator?

10. A Van de Graaff generator produces a beam of 2.00-MeV
deuterons, which are heavy hydrogen nuclei containing a
proton and a neutron. (a) If the beam current is 10.0 /A,
how far apart are the deuterons? (b) Is the electric force
of repulsion among them a significant factor in beam
stability? Explain.

11. An aluminum wire having a cross-sectional area of 
4.00 # 10$ 6 m2 carries a current of 5.00 A. Find the drift
speed of the electrons in the wire. The density of 
aluminum is 2.70 g/cm3. Assume that one conduction
electron is supplied by each atom.

Section 27.2 Resistance
12. Calculate the current density in a gold wire at 20°C, if an

electric field of 0.740 V/m exists in the wire.

13. A lightbulb has a resistance of 240 ' when operating with
a potential difference of 120 V across it. What is the
current in the lightbulb?

14. A resistor is constructed of a carbon rod that has a
uniform cross-sectional area of 5.00 mm2. When a
potential difference of 15.0 V is applied across the ends of
the rod, the rod carries a current of 4.00 # 10$3 A. Find
(a) the resistance of the rod and (b) the rod’s length.

A 0.900-V potential difference is maintained across a
1.50-m length of tungsten wire that has a cross-sectional
area of 0.600 mm2. What is the current in the wire?

16. A conductor of uniform radius 1.20 cm carries a current
of 3.00 A produced by an electric field of 120 V/m. What
is the resistivity of the material?

Suppose that you wish to fabricate a uniform wire out of
1.00 g of copper. If the wire is to have a resistance of
R " 0.500 ', and if all of the copper is to be used, what
will be (a) the length and (b) the diameter of this wire?

18. Gold is the most ductile of all metals. For example, one
gram of gold can be drawn into a wire 2.40 km long. What
is the resistance of such a wire at 20°C? You can find the
necessary reference information in this textbook.

17.

15.

9.

1, 2, 3 " straightforward, intermediate, challenging " full solution available in the Student Solutions Manual and Study Guide

" coached solution with hints available at http://www.pse6.com " computer useful in solving problem             

" paired numerical and symbolic problems
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19. (a) Make an order-of-magnitude estimate of the resis-
tance between the ends of a rubber band. (b) Make an
order-of-magnitude estimate of the resistance between
the ‘heads’ and ‘tails’ sides of a penny. In each case state
what quantities you take as data and the values you
measure or estimate for them. (c) WARNING! Do not try
this at home! What is the order of magnitude of the
current that each would carry if it were connected across
a 120-V power supply?

20. A solid cube of silver (density " 10.5 g/cm3) has a mass of
90.0 g. (a) What is the resistance between opposite faces of
the cube? (b) Assume each silver atom contributes one
conduction electron. Find the average drift speed of
electrons when a potential difference of 1.00 # 10$5 V is
applied to opposite faces. The atomic number of silver is
47, and its molar mass is 107.87 g/mol.

21. A metal wire of resistance R is cut into three equal pieces
that are then connected side by side to form a new wire
the length of which is equal to one-third the original
length. What is the resistance of this new wire?

22. Aluminum and copper wires of equal length are found to
have the same resistance. What is the ratio of their radii?

23. A current density of 6.00 # 10$13 A/m2 exists in the at-
mosphere at a location where the electric field is 100 V/m.
Calculate the electrical conductivity of the Earth’s atmos-
phere in this region.

24. The rod in Figure P27.24 is made of two materials. The fig-
ure is not drawn to scale. Each conductor has a square
cross section 3.00 mm on a side. The first material has a
resistivity of 4.00 # 10$3 ' ( m and is 25.0 cm long, while
the second material has a resistivity of 6.00 # 10$3 ' ( m
and is 40.0 cm long. What is the resistance between the
ends of the rod?

same voltage to the same wire. What current does he
register there if the temperature is $ 88.0°C? Assume that
no change occurs in the wire’s shape and size.

29. A certain lightbulb has a tungsten filament with a
resistance of 19.0 ' when cold and 140 ' when hot.
Assume that the resistivity of tungsten varies linearly with
temperature even over the large temperature range
involved here, and find the temperature of the hot
filament. Assume the initial temperature is 20.0°C.

30. A carbon wire and a Nichrome wire are connected in
series, so that the same current exists in both wires. If the
combination has a resistance of 10.0 k' at 0°C, what is the
resistance of each wire at 0°C so that the resistance of
the combination does not change with temperature? The
total or equivalent resistance of resistors in series is
the sum of their individual resistances.

An aluminum wire with a diameter of 0.100 mm has a
uniform electric field of 0.200 V/m imposed along its
entire length. The temperature of the wire is 50.0°C.
Assume one free electron per atom. (a) Use the informa-
tion in Table 27.1 and determine the resistivity. (b) What is
the current density in the wire? (c) What is the total
current in the wire? (d) What is the drift speed of the
conduction electrons? (e) What potential difference must
exist between the ends of a 2.00-m length of the wire to
produce the stated electric field?

32. Review problem. An aluminum rod has a resistance of
1.234 ' at 20.0°C. Calculate the resistance of the rod at
120°C by accounting for the changes in both the resistivity
and the dimensions of the rod.

What is the fractional change in the resistance of an iron
filament when its temperature changes from 25.0°C to
50.0°C?

34. The resistance of a platinum wire is to be calibrated for
low-temperature measurements. A platinum wire with
resistance 1.00 ' at 20.0°C is immersed in liquid nitrogen
at 77 K ($ 196°C). If the temperature response of the plat-
inum wire is linear, what is the expected resistance of the
platinum wire at $ 196°C? (-platinum " 3.92 # 10$3/°C)

35. The temperature of a sample of tungsten is raised while a
sample of copper is maintained at 20.0°C. At what temper-
ature will the resistivity of the tungsten be four times that
of the copper?

Section 27.6 Electrical Power
36. A toaster is rated at 600 W when connected to a 120-V

source. What current does the toaster carry, and what is its
resistance?

37. A Van de Graaff generator (see Figure 25.29) is operating
so that the potential difference between the high-voltage
electrode B and the charging needles at A is 15.0 kV.
Calculate the power required to drive the belt against
electrical forces at an instant when the effective current
delivered to the high-voltage electrode is 500 /A.

38. In a hydroelectric installation, a turbine delivers 1 500 hp
to a generator, which in turn transfers 80.0% of the
mechanical energy out by electrical transmission. Under

33.

31.
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Figure P27.24

25.0 cm 40.0 cm

Section 27.3 A Model for Electrical Conduction
If the magnitude of the drift velocity of free electrons

in a copper wire is 7.84 # 10$4 m/s, what is the electric
field in the conductor?

26. If the current carried by a conductor is doubled, what
happens to the (a) charge carrier density? (b) current
density? (c) electron drift velocity? (d) average time
interval between collisions?

27. Use data from Example 27.1 to calculate the collision
mean free path of electrons in copper. Assume the average
thermal speed of conduction electrons is 8.60 # 105 m/s.

Section 27.4 Resistance and Temperature
28. While taking photographs in Death Valley on a day when

the temperature is 58.0°C, Bill Hiker finds that a certain
voltage applied to a copper wire produces a current of
1.000 A. Bill then travels to Antarctica and applies the

25.



these conditions, what current does the generator deliver
at a terminal potential difference of 2 000 V?

What is the required resistance of an immersion heater
that increases the temperature of 1.50 kg of water from
10.0°C to 50.0°C in 10.0 min while operating at 110 V?

40. One rechargeable battery of mass 15.0 g delivers to a CD
player an average current of 18.0 mA at 1.60 V for 2.40 h
before the battery needs to be recharged. The recharger
maintains a potential difference of 2.30 V across the battery
and delivers a charging current of 13.5 mA for 4.20 h.
(a) What is the efficiency of the battery as an energy storage
device? (b) How much internal energy is produced in the
battery during one charge–discharge cycle? (b) If the battery
is surrounded by ideal thermal insulation and has an overall
effective specific heat of 975 J/kg°C, by how much will its
temperature increase during the cycle?

Suppose that a voltage surge produces 140 V for a
moment. By what percentage does the power output of a
120-V, 100-W lightbulb increase? Assume that its resistance
does not change.

42. A 500-W heating coil designed to operate from 110 V is
made of Nichrome wire 0.500 mm in diameter. (a) Assum-
ing that the resistivity of the Nichrome remains constant at
its 20.0°C value, find the length of wire used. (b) What If?
Now consider the variation of resistivity with temperature.
What power will the coil of part (a) actually deliver when it
is heated to 1 200°C?

43. A coil of Nichrome wire is 25.0 m long. The wire has a
diameter of 0.400 mm and is at 20.0°C. If it carries a
current of 0.500 A, what are (a) the magnitude of the
electric field in the wire, and (b) the power delivered to it?
(c) What If? If the temperature is increased to 340°C and
the voltage across the wire remains constant, what is the
power delivered?

44. Batteries are rated in terms of ampere-hours (A ( h). For
example, a battery that can produce a current of 2.00 A
for 3.00 h is rated at 6.00 A ( h. (a) What is the total
energy, in kilowatt-hours, stored in a 12.0-V battery rated
at 55.0 A ( h? (b) At $0.060 0 per kilowatt-hour, what is the
value of the electricity produced by this battery?

45. A 10.0-V battery is connected to a 120-' resistor. Ignoring
the internal resistance of the battery, calculate the power
delivered to the resistor.

46. Residential building codes typically require the use of
12-gauge copper wire (diameter 0.205 3 cm) for wiring
receptacles. Such circuits carry currents as large as 20 A.
A wire of smaller diameter (with a higher gauge number)
could carry this much current, but the wire could rise to a
high temperature and cause a fire. (a) Calculate the rate
at which internal energy is produced in 1.00 m of 12-gauge
copper wire carrying a current of 20.0 A. (b) What If?
Repeat the calculation for an aluminum wire. Would a
12-gauge aluminum wire be as safe as a copper wire?

47. An 11.0-W energy-efficient fluorescent lamp is designed to
produce the same illumination as a conventional 40.0-W
incandescent lightbulb. How much money does the user
of the energy-efficient lamp save during 100 hours of use?
Assume a cost of $0.080 0/kWh for energy from the power
company.

41.

39.

48. We estimate that 270 million plug-in electric clocks are in
the United States, approximately one clock for each
person. The clocks convert energy at the average rate
2.50 W. To supply this energy, how many metric tons of
coal are burned per hour in coal-fired electric generating
plants that are, on average, 25.0% efficient? The heat of
combustion for coal is 33.0 MJ/kg.

Compute the cost per day of operating a lamp that draws a
current of 1.70 A from a 110-V line. Assume the cost of
energy from the power company is $0.060 0/kWh.

50. Review problem. The heating element of a coffee maker
operates at 120 V and carries a current of 2.00 A.
Assuming that the water absorbs all of the energy deliv-
ered to the resistor, calculate how long it takes to raise the
temperature of 0.500 kg of water from room temperature
(23.0°C) to the boiling point.

A certain toaster has a heating element made of Nichrome
wire. When the toaster is first connected to a 120-V source
(and the wire is at a temperature of 20.0°C), the initial 
current is 1.80 A. However, the current begins to decrease
as the heating element warms up. When the toaster
reaches its final operating temperature, the current drops
to 1.53 A. (a) Find the power delivered to the toaster when
it is at its operating temperature. (b) What is the final
temperature of the heating element?

52. The cost of electricity varies widely through the United
States; $0.120/kWh is one typical value. At this unit
price, calculate the cost of (a) leaving a 40.0-W porch
light on for two weeks while you are on vacation,
(b) making a piece of dark toast in 3.00 min with a
970-W toaster, and (c) drying a load of clothes in
40.0 min in a 5 200-W dryer.

53. Make an order-of-magnitude estimate of the cost of one
person’s routine use of a hair dryer for 1 yr. If you do 
not use a blow dryer yourself, observe or interview 
someone who does. State the quantities you estimate and
their values.

Additional Problems
54. One lightbulb is marked ‘25 W 120 V,’ and another ‘100 W

120 V’; this means that each bulb has its respective power
delivered to it when plugged into a constant 120-V
potential difference. (a) Find the resistance of each bulb.
(b) How long does it take for 1.00 C to pass through the
dim bulb? Is the charge different in any way upon its exit
from the bulb versus its entry? (c) How long does it take
for 1.00 J to pass through the dim bulb? By what mecha-
nisms does this energy enter and exit the bulb? (d) Find
how much it costs to run the dim bulb continuously for
30.0 days if the electric company sells its product at 
$0.070 0 per kWh. What product does the electric company
sell? What is its price for one SI unit of this quantity?

55. A charge Q is placed on a capacitor of capacitance C. The
capacitor is connected into the circuit shown in Figure
P27.55, with an open switch, a resistor, and an initially un-
charged capacitor of capacitance 3C. The switch is then
closed and the circuit comes to equilibrium. In terms of Q
and C, find (a) the final potential difference between the
plates of each capacitor, (b) the charge on each capacitor,

51.

49.
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Problems 855

and (c) the final energy stored in each capacitor. (d) Find
the internal energy appearing in the resistor.

Figure P27.55

C 3C

R

56. A high-voltage transmission line with a diameter of 2.00 cm
and a length of 200 km carries a steady current of 1 000 A.
If the conductor is copper wire with a free charge density
of 8.49 # 1028 electrons/m3, how long does it take one
electron to travel the full length of the line?

A more general definition of the temperature coefficient
of resistivity is

where % is the resistivity at temperature T. (a) Assuming
that - is constant, show that

where %0 is the resistivity at temperature T0. (b) Using
the series expansion ex ' 1 , x for x 22 1, show that
the resistivity is given approximately by the expression
% " %0[1 , -(T $ T0)] for -(T $ T0) 22 1.

58. A high-voltage transmission line carries 1 000 A starting at
700 kV for a distance of 100 mi. If the resistance in the
wire is 0.500 '/mi, what is the power loss due to resistive
losses?

An experiment is conducted to measure the
electrical resistivity of Nichrome in the form of wires with
different lengths and cross-sectional areas. For one set of
measurements, a student uses 30-gauge wire, which has a
cross-sectional area of 7.30 # 10$8 m2. The student
measures the potential difference across the wire and the
current in the wire with a voltmeter and an ammeter,
respectively. For each of the measurements given in the
table taken on wires of three different lengths, calculate
the resistance of the wires and the corresponding values of
the resistivity. What is the average value of the resistivity,
and how does this value compare with the value given in
Table 27.1?

L (m) $V (V) I (A) R (%) #(% & m)

0.540 5.22 0.500
1.028 5.82 0.276
1.543 5.94 0.187

60. An electric utility company supplies a customer’s house
from the main power lines (120 V) with two copper wires,
each of which is 50.0 m long and has a resistance of
0.108 ' per 300 m. (a) Find the voltage at the customer’s

59.

% " %0e 
-(T$T0)

 - "
1
%

 
d%

dT

57.

house for a load current of 110 A. For this load current,
find (b) the power the customer is receiving and (c) the
electric power lost in the copper wires.

61. A straight cylindrical wire lying along the x axis has a
length of 0.500 m and a diameter of 0.200 mm. It is made
of a material that obeys Ohm’s law with a resistivity of % "
4.00 # 10$8 ' ( m. Assume that a potential of 4.00 V is
maintained at x " 0, and that V " 0 at x " 0.500 m. Find
(a) the electric field E in the wire, (b) the resistance of the
wire, (c) the electric current in the wire, and (d) the
current density J in the wire. Express vectors in vector
notation. (e) Show that E " %J.

62. A straight cylindrical wire lying along the x axis has a
length L and a diameter d. It is made of a material that
obeys Ohm’s law with a resistivity %. Assume that potential
V is maintained at x " 0, and that the potential is zero at
x " L . In terms of L, d, V, %, and physical constants, derive
expressions for (a) the electric field in the wire, (b) the
resistance of the wire, (c) the electric current in the wire,
and (d) the current density in the wire. Express vectors in
vector notation. (e) Prove that E " %J.

63. The potential difference across the filament of a lamp is
maintained at a constant level while equilibrium tempera-
ture is being reached. It is observed that the steady-state
current in the lamp is only one tenth of the current drawn
by the lamp when it is first turned on. If the temperature
coefficient of resistivity for the lamp at 20.0°C is
0.004 50 (°C)$1, and if the resistance increases linearly
with increasing temperature, what is the final operating
temperature of the filament?

64. The current in a resistor decreases by 3.00 A when the
voltage applied across the resistor decreases from 12.0 V to
6.00 V. Find the resistance of the resistor.

An electric car is designed to run off a bank of 12.0-V bat-
teries with total energy storage of 2.00 # 107 J. (a) If the
electric motor draws 8.00 kW, what is the current delivered
to the motor? (b) If the electric motor draws 8.00 kW as
the car moves at a steady speed of 20.0 m/s, how far will
the car travel before it is “out of juice”?

66. Review problem. When a straight wire is heated, its
resistance is given by R " R0[1 , -(T $ T0)] according to
Equation 27.21, where - is the temperature coefficient of
resistivity. (a) Show that a more precise result, one that
includes the fact that the length and area of the wire
change when heated, is

where -3 is the coefficient of linear expansion (see
Chapter 19). (b) Compare these two results for a 
2.00-m-long copper wire of radius 0.100 mm, first at
20.0°C and then heated to 100.0°C.

67. The temperature coefficients of resistivity in Table 27.1 were
determined at a temperature of 20°C. What would they be at
0°C? Note that the temperature coefficient of resistivity at
20°C satisfies % " %0[1 , -(T $ T0)], where %0 is the
resistivity of the material at T0 " 20°C. The temperature

R "
R 0[1 , -(T $ T0)][1 , -3(T $ T0)]

[1 , 2-3(T $ T0)]

65.



coefficient of resistivity -3 at 0°C must satisfy the expression
% " %30[1 , -3T ], where %30 is the resistivity of the material
at 0°C.

68. An oceanographer is studying how the ion concentration
in sea water depends on depth. She does this by lowering
into the water a pair of concentric metallic cylinders
(Fig. P27.68) at the end of a cable and taking data to
determine the resistance between these electrodes as a
function of depth. The water between the two cylinders
forms a cylindrical shell of inner radius ra , outer radius rb ,
and length L much larger than rb . The scientist applies a
potential difference !V between the inner and outer
surfaces, producing an outward radial current I. Let %
represent the resistivity of the water. (a) Find the
resistance of the water between the cylinders in terms of L,
%, ra , and rb . (b) Express the resistivity of the water in
terms of the measured quantities L, ra , rb , !V, and I.

Material with uniform resistivity % is formed into a wedge
as shown in Figure P27.71. Show that the resistance
between face A and face B of this wedge is

R " % 
L

w(y2 $ y1)
 ln " y 2

y 1
#

71.
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Figure P27.72
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b

69. In a certain stereo system, each speaker has a resistance of
4.00 '. The system is rated at 60.0 W in each channel, and
each speaker circuit includes a fuse rated 4.00 A. Is this
system adequately protected against overload? Explain
your reasoning.

70. A close analogy exists between the flow of energy by heat
because of a temperature difference (see Section 20.7)
and the flow of electric charge because of a potential
difference. The energy dQ and the electric charge dq can
both be transported by free electrons in the conducting
material. Consequently, a good electrical conductor is
usually a good thermal conductor as well. Consider a thin
conducting slab of thickness dx, area A, and electrical
conductivity &, with a potential difference dV between
opposite faces. Show that the current I " dq/dt is given by
the equation on the left below:

Thermal Conduction
Charge Conduction (Eq. 20.14)

In the analogous thermal conduction equation on the
right, the rate of energy flow dQ /dt (in SI units of joules
per second) is due to a temperature gradient dT/dx, in a
material of thermal conductivity k. State analogous rules
relating the direction of the electric current to the change
in potential, and relating the direction of energy flow to
the change in temperature.

dQ
dt

" kA ( dT
dx (dq

dt
" &A ( dV

dx (

Figure P27.68

L

ra
r b

72. A material of resistivity % is formed into the shape of a
truncated cone of altitude h as shown in Figure P27.72.
The bottom end has radius b, and the top end has radius
a. Assume that the current is distributed uniformly over
any circular cross section of the cone, so that the current
density does not depend on radial position. (The current
density does vary with position along the axis of the cone.)
Show that the resistance between the two ends is described
by the expression

R "
%

*
 " h

ab #

73. The dielectric material between the plates of a parallel-
plate capacitor always has some nonzero conductivity &.
Let A represent the area of each plate and d the distance
between them. Let 4 represent the dielectric constant of
the material. (a) Show that the resistance R and the
capacitance C of the capacitor are related by

(b) Find the resistance between the plates of a 14.0-nF
capacitor with a fused quartz dielectric.

74. The current–voltage characteristic curve for a semi-
conductor diode as a function of temperature T is given by
the equation

 I " I0(e e  ∆V/kBT $ 1)

RC "
450

&



Answers to Quick Quizzes 857

Here the first symbol e represents Euler’s number, the base
of natural logarithms. The second e is the charge on the
electron. The kB stands for Boltzmann’s constant, and T is
the absolute temperature. Set up a spreadsheet to
calculate I and R " !V/I for !V " 0.400 V to 0.600 V in
increments of 0.005 V. Assume I0 " 1.00 nA. Plot R versus
!V for T " 280 K, 300 K, and 320 K.

75. Review problem. A parallel-plate capacitor consists of
square plates of edge length ! that are separated by a
distance d, where d 22 !. A potential difference !V is
maintained between the plates. A material of dielectric
constant 4 fills half of the space between the plates. The
dielectric slab is now withdrawn from the capacitor, as
shown in Figure P27.75. (a) Find the capacitance when
the left edge of the dielectric is at a distance x from the
center of the capacitor. (b) If the dielectric is removed at a
constant speed v, what is the current in the circuit as the
dielectric is being withdrawn?

the junction. This is indicative of scalar addition. Even
though we can assign a direction to a current, it is not a
vector. This suggests a deeper meaning for vectors
besides that of a quantity with magnitude and direction.

27.3 (a). The current in each section of the wire is the same
even though the wire constricts. As the cross-sectional
area A decreases, the drift velocity must increase in order
for the constant current to be maintained, in accordance
with Equation 27.4. As A decreases, Equation 27.11 tells
us that R increases.

27.4 (b). The doubling of the radius causes the area A to be
four times as large, so Equation 27.11 tells us that the
resistance decreases.

27.5 (b). The slope of the tangent to the graph line at a point
is the reciprocal of the resistance at that point. Because
the slope is increasing, the resistance is decreasing.

27.6 (a). When the filament is at room temperature, its
resistance is low, and hence the current is relatively large.
As the filament warms up, its resistance increases, and
the current decreases. Older lightbulbs often fail just as
they are turned on because this large initial current
“spike” produces rapid temperature increase and
mechanical stress on the filament, causing it to break.

27.7 (c). Because the potential difference !V is the same
across the two bulbs and because the power delivered to
a conductor is " " I !V, the 60-W bulb, with its higher
power rating, must carry the greater current. The 30-W
bulb has the higher resistance because it draws less 
current at the same potential difference.

27.8 Ia " Ib 6 Ic " Id 6 Ie " If . The current Ia leaves the
positive terminal of the battery and then splits to flow
through the two bulbs; thus, Ia " Ic , Ie . From Quick
Quiz 27.7, we know that the current in the 60-W bulb is
greater than that in the 30-W bulb. Because charge does
not build up in the bulbs, we know that the same amount
of charge flowing into a bulb from the left must flow out
on the right; consequently, Ic " Id and Ie " If . The two
currents leaving the bulbs recombine to form the current
back into the battery, If , Id " Ib .

Figure P27.75

!

!
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d

v ∆V

Answers to Quick Quizzes
27.1 d, b " c, a. The current in part (d) is equivalent to two

positive charges moving to the left. Parts (b) and (c)
each represent four positive charges moving in the same
direction because negative charges moving to the left are
equivalent to positive charges moving to the right. The
current in part (a) is equivalent to five positive charges
moving to the right.

27.2 (b). The currents in the two paths add numerically to
equal the current coming into the junction, without
regard for the directions of the two wires coming out of
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Direct Current Circuits

CHAPTE R OUTL I N E

28.1 Electromotive Force

28.2 Resistors in Series and
Parallel

28.3 Kirchhoff’s Rules

28.4 RC Circuits

28.5 Electrical Meters

28.6 Household Wiring and
Electrical Safety

! An assortment of batteries that can be used to provide energy for various devices.
Batteries provide a voltage with a fixed polarity, resulting in a direct current in a circuit, that
is, a current for which the drift velocity of the charges is always in the same direction.
(George Semple)
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This chapter is concerned with the analysis of simple electric circuits that contain
batteries, resistors, and capacitors in various combinations. We will see some circuits in
which resistors can be combined using simple rules. The analysis of more complicated
circuits is simplified using two rules known as Kirchhoff’s rules, which follow from the
laws of conservation of energy and conservation of electric charge for isolated systems.
Most of the circuits analyzed are assumed to be in steady state, which means that
currents in the circuit are constant in magnitude and direction. A current that is
constant in direction is called a direct current (DC). We will study alternating current
(AC), in which the current changes direction periodically, in Chapter 33. Finally, we
describe electrical meters for measuring current and potential difference, and discuss
electrical circuits in the home.

28.1 Electromotive Force

In Section 27.6 we discussed a closed circuit in which a battery produces a potential
difference and causes charges to move. We will generally use a battery in our discus-
sion and in our circuit diagrams as a source of energy for the circuit. Because the
potential difference at the battery terminals is constant in a particular circuit, the
current in the circuit is constant in magnitude and direction and is called direct
current. A battery is called either a source of electromotive force or, more commonly, a
source of emf. (The phrase electromotive force is an unfortunate historical term, describ-
ing not a force but rather a potential difference in volts.) The emf of a battery
is the maximum possible voltage that the battery can provide between its
terminals. You can think of a source of emf as a “charge pump.” When an electric
potential difference exists between two points, the source moves charges “uphill”
from the lower potential to the higher.

Consider the circuit shown in Figure 28.1, consisting of a battery connected to
a resistor. We shall generally assume that the connecting wires have no resistance.

!
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+

Resistor

Battery
–

Figure 28.1 A circuit consisting of a resistor
connected to the terminals of a battery.



The positive terminal of the battery is at a higher potential than the negative termi-
nal. Because a real battery is made of matter, there is resistance to the flow of charge
within the battery. This resistance is called internal resistance r. For an idealized bat-
tery with zero internal resistance, the potential difference across the battery (called its
terminal voltage) equals its emf. However, for a real battery, the terminal voltage is not
equal to the emf for a battery in a circuit in which there is a current. To understand
why this is so, consider the circuit diagram in Figure 28.2a, where the battery of
Figure 28.1 is represented by the dashed rectangle containing an ideal, resistance-free
emf in series with an internal resistance r. Now imagine moving through the battery
from a to b and measuring the electric potential at various locations. As we pass from
the negative terminal to the positive terminal, the potential increases by an amount .
However, as we move through the resistance r, the potential decreases by an amount
Ir, where I is the current in the circuit. Thus, the terminal voltage of the battery
"V # Vb $ Va is1

"V # $ Ir (28.1)

From this expression, note that is equivalent to the open-circuit voltage—that is,
the terminal voltage when the current is zero. The emf is the voltage labeled on a battery—
for example, the emf of a D cell is 1.5 V. The actual potential difference between the
terminals of the battery depends on the current in the battery, as described by Equa-
tion 28.1.

Figure 28.2b is a graphical representation of the changes in electric potential as the
circuit is traversed in the clockwise direction. By inspecting Figure 28.2a, we see that
the terminal voltage "V must equal the potential difference across the external resis-
tance R, often called the load resistance. The load resistor might be a simple resistive
circuit element, as in Figure 28.1, or it could be the resistance of some electrical device
(such as a toaster, an electric heater, or a lightbulb) connected to the battery (or, in
the case of household devices, to the wall outlet). The resistor represents a load on the
battery because the battery must supply energy to operate the device. The potential dif-
ference across the load resistance is "V # IR. Combining this expression with Equation
28.1, we see that

# IR % Ir (28.2)

Solving for the current gives

(28.3)

This equation shows that the current in this simple circuit depends on both the load
resistance R external to the battery and the internal resistance r. If R is much greater
than r, as it is in many real-world circuits, we can neglect r.

If we multiply Equation 28.2 by the current I, we obtain

I # I 2R % I 2r (28.4)

This equation indicates that, because power ! # I "V (see Eq. 27.22), the total power
output I of the battery is delivered to the external load resistance in the amount I 2R
and to the internal resistance in the amount I 2r. 

!

!

& #
!

R % r

!

!
!

!

!

1 The terminal voltage in this case is less than the emf by an amount Ir. In some situations, the
terminal voltage may exceed the emf by an amount Ir. This happens when the direction of the current is
opposite that of the emf, as in the case of charging a battery with another source of emf.
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(b)

Rr

db

V

IR
Ir

ε

ε

ε
a

d R

I
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– +

c

(a)

I

Active Figure 28.2 (a) Circuit
diagram of a source of emf (in
this case, a battery), of internal
resistance r, connected to an
external resistor of resistance R.
(b) Graphical representation
showing how the electric potential
changes as the circuit in part (a) is
traversed clockwise.

At the Active Figures link
at http://www.pse6.com, you
can adjust the emf and
resistances r and R to see the
effect on the current and on the
graph in part (b).

!

! PITFALL PREVENTION
28.1 What Is Constant in a

Battery?
It is a common misconception
that a battery is a source of
constant current. Equation 28.3
clearly shows that this is not true.
The current in the circuit
depends on the resistance
connected to the battery. It is also
not true that a battery is a source
of constant terminal voltage,
as shown by Equation 28.1. A
battery is a source of constant
emf.

Quick Quiz 28.1 In order to maximize the percentage of the power that is
delivered from a battery to a device, the internal resistance of the battery should be 
(a) as low as possible (b) as high as possible (c) The percentage does not depend on
the internal resistance.
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Example 28.1 Terminal Voltage of a Battery

A battery has an emf of 12.0 V and an internal resistance of
0.05 '. Its terminals are connected to a load resistance of
3.00 '.

(A) Find the current in the circuit and the terminal voltage
of the battery.

Solution Equation 28.3 gives us the current:

and from Equation 28.1, we find the terminal voltage:

"V # $ Ir # 12.0 V $ (3.93 A)(0.05 ') #

To check this result, we can calculate the voltage across the
load resistance R :

"V # IR # (3.93 A)(3.00 ') # 11.8 V

(B) Calculate the power delivered to the load resistor, the
power delivered to the internal resistance of the battery, and
the power delivered by the battery.

Solution The power delivered to the load resistor is

!R # I 2R # (3.93 A)2 (3.00 ') #

The power delivered to the internal resistance is

!r # I 2r # (3.93 A)2 (0.05 ') # 0.772 W

46.3 W

11.8 V!

3.93 AI #
!

R % r
#

12.0 V
3.05 '

#

Hence, the power delivered by the battery is the sum
of these quantities, or 47.1 W. You should check this result,
using the expression ! # I .

What If? As a battery ages, its internal resistance
increases. Suppose the internal resistance of this battery
rises to 2.00 ! toward the end of its useful life. How does
this alter the ability of the battery to deliver energy?

Answer Let us connect the same 3.00-' load resistor to the
battery. The current in the battery now is

and the terminal voltage is

"V # $ Ir # 12.0 V $ (2.40 A) (2.00 ') # 7.2 V

Notice that the terminal voltage is only 60% of the emf. The
powers delivered to the load resistor and internal resistance
are

!R # I 2R # (2.40 A)2 (3.00 ') #

!r # I 2r # (2.40 A)2 (2.00 ') # 11.5 W

Notice that 40% of the power from the battery is delivered
to the internal resistance. In part (B), this percentage is
1.6%. Consequently, even though the emf remains fixed,
the increasing internal resistance significantly reduces the
ability of the battery to deliver energy.

17.3 W

!

I #
!

R % r
#

12.0 V
(3.00 ' % 2.00 ')

# 2.40 A

!

Interactive

Example 28.2 Matching the Load

Show that the maximum power delivered to the load resis-
tance R in Figure 28.2a occurs when the load resistance
matches the internal resistance—that is, when R # r.

Solution The power delivered to the load resistance is
equal to I 2R, where I is given by Equation 28.3:

When ! is plotted versus R as in Figure 28.3, we find that
! reaches a maximum value of 2/4r at R # r. When R is
large, there is very little current, so that the power I 2R
delivered to the load resistor is small. When R is small,
the current is large and there is significant loss of power
I 2r as energy is delivered to the internal resistance. When
R # r, these effects balance to give a maximum transfer of
power.

We can also prove that the power maximizes at R # r by
differentiating ! with respect to R, setting the result equal

!

! # I 2R #
!2R

(R % r)2

to zero, and solving for R. The details are left as a problem
for you to solve (Problem 57).

At the Interactive Worked Example link at http://www.pse6.com, you can vary the load resistance and internal resistance,
observing the power delivered to each.

r 2r 3r
R

!max

!

Figure 28.3 (Example 28.2) Graph of the power ! delivered
by a battery to a load resistor of resistance R as a function of R.
The power delivered to the resistor is a maximum when the
load resistance equals the internal resistance of the battery.



2 The term voltage drop is synonymous with a decrease in electric potential across a resistor and is
used often by individuals working with electric circuits.

28.2 Resistors in Series and Parallel

Suppose that you and your friends are at a crowded basketball game in a sports arena and
decide to leave early. You have two choices: (1) your group can exit through a single door
and push your way down a long hallway containing several concession stands, each sur-
rounded by a large crowd of people waiting to buy food or souvenirs; or (2) each member
of your group can exit through a separate door in the main hall of the arena, where each
will have to push his or her way through a single group of people standing by the door. In
which scenario will less time be required for your group to leave the arena?

It should be clear that your group will be able to leave faster through the separate
doors than down the hallway where each of you has to push through several groups of
people. We could describe the groups of people in the hallway as being in series, because
each of you must push your way through all of the groups. The groups of people
around the doors in the arena can be described as being in parallel. Each member of
your group must push through only one group of people, and each member pushes
through a different group of people. This simple analogy will help us understand the
behavior of currents in electric circuits containing more than one resistor.

When two or more resistors are connected together as are the lightbulbs in Figure
28.4a, they are said to be in series. Figure 28.4b is the circuit diagram for the lightbulbs,
which are shown as resistors, and the battery. In a series connection, if an amount of
charge Q exits resistor R1, charge Q must also enter the second resistor R2. (This is
analogous to all members of your group pushing through each crowd in the single
hallway of the sports arena.) Otherwise, charge will accumulate on the wire between
the resistors. Thus, the same amount of charge passes through both resistors in a given
time interval. Hence,

The potential difference applied across the series combination of resistors will divide
between the resistors. In Figure 28.4b, because the voltage drop2 from a to b equals IR1
and the voltage drop from b to c equals IR2, the voltage drop from a to c is

"V # IR1 % IR2 # I(R1 % R2)

for a series combination of two resistors, the currents are the same in both resis-
tors because the amount of charge that passes through R1 must also pass through
R2 in the same time interval.
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+ –

(a)

Battery

R1 R2

∆V

(c)

I

+ –

a c

(b)

I

R1 R2

I

+ –

a b c

I1 = I2 = I Req = R1 + R2

∆V

Active Figure 28.4 (a) A series connection of two lightbulbs with resistances R1 and
R2. (b) Circuit diagram for the two-resistor circuit. The current in R1 is the same as that
in R2. (c) The resistors replaced with a single resistor having an equivalent resistance
Req # R1 % R2.

At the Active Figures link
at http://www.pse6.com, you
can adjust the battery voltage
and resistances R1 and R2 to
see the effect on the currents
and voltages in the individual
resistors.



The potential difference across the battery is also applied to the equivalent resistance
Req in Figure 28.4c:

"V # IReq

where we have indicated that the equivalent resistance has the same effect on the
circuit because it results in the same current in the battery as the combination of resis-
tors. Combining these equations, we see that we can replace the two resistors in series
with a single equivalent resistance whose value is the sum of the individual resistances:

"V # IReq # I(R1 % R2) 9: R eq # R1 % R2 (28.5)

The resistance Req is equivalent to the series combination R1 % R2 in the sense that
the circuit current is unchanged when Req replaces R1 % R2.

The equivalent resistance of three or more resistors connected in series is

(28.6)

This relationship indicates that the equivalent resistance of a series connection of
resistors is the numerical sum of the individual resistances and is always
greater than any individual resistance.

Looking back at Equation 28.3, the denominator is the simple algebraic sum of the
external and internal resistances. This is consistent with the fact that internal and
external resistances are in series in Figure 28.2a.

Note that if the filament of one lightbulb in Figure 28.4 were to fail, the circuit
would no longer be complete (resulting in an open-circuit condition) and the second
bulb would also go out. This is a general feature of a series circuit—if one device in the
series creates an open circuit, all devices are inoperative.

R eq # R1 % R2 % R3 % ( ( (
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The equivalent resistance of
several resistors in series

! PITFALL PREVENTION
28.2 Lightbulbs Don’t

Burn
We will describe the end of the
life of a lightbulb by saying that
the filament fails, rather than by
saying that the lightbulb “burns
out.” The word burn suggests a
combustion process, which is not
what occurs in a lightbulb.

Quick Quiz 28.2 In Figure 28.4, imagine positive charges pass first through
R1 and then through R2. Compared to the current in R1, the current in R2 is
(a) smaller, (b) larger, or (c) the same.

Quick Quiz 28.3 If a piece of wire is used to connect points b and c in Figure
28.4b, does the brightness of bulb R1 (a) increase, (b) decrease, or (c) remain the same?

Quick Quiz 28.4 With the switch in the circuit of Figure 28.5 closed (left),
there is no current in R2, because the current has an alternate zero-resistance path
through the switch. There is current in R1 and this current is measured with the amme-
ter (a device for measuring current) at the right side of the circuit. If the switch is
opened (Fig. 28.5, right), there is current in R2 . What happens to the reading on the
ammeter when the switch is opened? (a) the reading goes up; (b) the reading goes
down; (c) the reading does not change.

A

R1

Switch closed

R2 A

R1

Switch open

R2

Figure 28.5 (Quick Quiz 28.4) What happens when the switch is opened?



(c)

I

∆V
+ –

b

(b)

I1

R1

R2

∆V
+ –

a

I
I2

+ –

(a)

R1

R2

Battery

∆V1 = ∆V2 = ∆V

Req      R1    R2

1 1 1=        +

Active Figure 28.6 (a) A parallel connection of two lightbulbs with resistances R1 and
R2. (b) Circuit diagram for the two-resistor circuit. The potential difference across R1 is
the same as that across R2. (c) The resistors replaced with a single resistor having an
equivalent resistance given by Equation 28.7.

Now consider two resistors connected in parallel, as shown in Figure 28.6. When
charges reach point a in Figure 28.6b, called a junction, they split into two parts, with some
going through R1 and the rest going through R2. A junction is any point in a circuit
where a current can split (just as your group might split up and leave the sports arena
through several doors, as described earlier.) This split results in less current in each indi-
vidual resistor than the current leaving the battery. Because electric charge is conserved,
the current I that enters point a must equal the total current leaving that point:

I # I1 % I2

where I1 is the current in R1 and I2 is the current in R2.
As can be seen from Figure 28.6, both resistors are connected directly across the

terminals of the battery. Therefore,

when resistors are connected in parallel, the potential differences across the resis-
tors is the same.
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! PITFALL PREVENTION
28.3 Local and Global

Changes
A local change in one part of a
circuit may result in a global
change throughout the circuit.
For example, if a single resistance
is changed in a circuit containing
several resistors and batteries, the
currents in all resistors and batter-
ies, the terminal voltages of all bat-
teries, and the voltages across all
resistors may change as a result.

! PITFALL PREVENTION
28.4 Current Does Not

Take the Path of
Least Resistance

You may have heard a phrase like
“current takes the path of least
resistance” in reference to a par-
allel combination of current
paths, such that there are two or
more paths for the current to
take. The phrase is incorrect.
The current takes all paths.
Those paths with lower resistance
will have large currents, but even
very high-resistance paths will
carry some of the current.

Because the potential differences across the resistors are the same, the expression
"V # IR gives

where Req is an equivalent single resistance which will have the same effect on the
circuit as the two resistors in parallel; that is, it will draw the same current from the
battery (Fig. 28.6c). From this result, we see that the equivalent resistance of two resis-
tors in parallel is given by

(28.7)

or

R eq #
1

1
R1

%
1

R 2

#
R1R 2

R1 % R2

1
R eq

#
1

R1
%

1
R2

I # I   1 % I  2 #
"V
R1

%
"V
R 2

# "V  ! 1
R1

%
1

R2
" #

"V
R eq

At the Active Figures link
at http://www.pse6.com, you
can adjust the battery voltage
and resistances R1 and R2 to
see the effect on the currents
and voltages in the individual
resistors.



An extension of this analysis to three or more resistors in parallel gives

(28.8)

We can see from this expression that the inverse of the equivalent resistance of two
or more resistors connected in parallel is equal to the sum of the inverses of the
individual resistances. Furthermore, the equivalent resistance is always less
than the smallest resistance in the group.

Household circuits are always wired such that the appliances are connected in par-
allel. Each device operates independently of the others so that if one is switched off,
the others remain on. In addition, in this type of connection, all of the devices operate
on the same voltage.

1
R eq

#
1

R1
%

1
R2

%
1

R3
% ( ( (
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The equivalent resistance of
several resistors in parallel

Quick Quiz 28.5 In Figure 28.4, imagine that we add a third resistor in series
with the first two. Does the current in the battery (a) increase, (b) decrease, or 
(c) remain the same? Does the terminal voltage of the battery (d) increase, 
(e) decrease, or (f) remain the same?

Quick Quiz 28.6 In Figure 28.6, imagine that we add a third resistor in
parallel with the first two. Does the current in the battery (a) increase, (b) decrease,
or (c) remain the same? Does the terminal voltage of the battery (d) increase, 
(e) decrease, or (f) remain the same?

Quick Quiz 28.7 With the switch in the circuit of Figure 28.7 open (left),
there is no current in R2. There is current in R1 and this current is measured with the
ammeter at the right side of the circuit. If the switch is closed (Fig. 28.7, right), there is
current in R2. What happens to the reading on the ammeter when the switch is closed?
(a) the reading goes up; (b) the reading goes down; (c) the reading does not change.

Switch open

R1

R2

Switch closed

A

R1

R2

A

Figure 28.7 (Quick Quiz 28.7) What happens when the switch is closed?

Conceptual Example 28.3 Landscape Lights

A homeowner wishes to install 12-volt landscape lighting
in his back yard. To save money, he purchases inexpensive
18-gauge cable, which has a relatively high resistance per
unit length. This cable consists of two side-by-side wires
separated by insulation, like the cord on an appliance.
He runs a 200-foot length of this cable from the power
supply to the farthest point at which he plans to position a
light fixture. He attaches light fixtures across the two wires

on the cable at 10-foot intervals, so the light fixtures are in
parallel. Because of the cable’s resistance, the brightness
of the bulbs in the light fixtures is not as desired. Which
problem does the homeowner have? (a) All of the bulbs
glow equally less brightly than they would if lower-
resistance cable had been used. (b) The brightness of the
bulbs decreases as you move farther from the power
supply.
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Solution A circuit diagram for the system appears in
Figure 28.8. The horizontal resistors (such as RA and RB)
represent the resistance of the wires in the cable between
the light fixtures while the vertical resistors (such as RC)
represent the resistance of the light fixtures themselves.
Part of the terminal voltage of the power supply is dropped
across resistors RA and RB. Thus, the voltage across light

fixture RC is less than the terminal voltage. There is a
further voltage drop across resistors RD and RE. Conse-
quently, the voltage across light fixture RF is smaller than
that across RC . This continues on down the line of light
fixtures, so the correct choice is (b). Each successive light
fixture has a smaller voltage across it and glows less brightly
than the one before.

RA RD

RC RF

RB RE

Resistance of
light fixtures

Resistance in
wires of cable

Power
supply

Figure 28.8 (Conceptual Example 28.3) The circuit diagram for a set of landscape
light fixtures connected in parallel across the two wires of a two-wire cable. The
horizontal resistors represent resistance in the wires of the cable. The vertical resistors
represent the light fixtures.

Example 28.4 Find the Equivalent Resistance

Four resistors are connected as shown in Figure 28.9a.

(A) Find the equivalent resistance between points a and c.

Solution The combination of resistors can be reduced in
steps, as shown in Figure 28.9. The 8.0-' and 4.0-' resistors
are in series; thus, the equivalent resistance between a and b
is 12.0 ' (see Eq. 28.5). The 6.0-' and 3.0-' resistors are in
parallel, so from Equation 28.7 we find that the equivalent
resistance from b to c is 2.0 '. Hence, the equivalent resis-
tance from a to c is 14.0 '.

(B) What is the current in each resistor if a potential differ-
ence of 42 V is maintained between a and c?

Solution The currents in the 8.0-' and 4.0-' resistors are
the same because they are in series. In addition, this is the
same as the current that would exist in the 14.0-' equivalent
resistor subject to the 42-V potential difference. Therefore,
using Equation 27.8 (R # "V/I ) and the result from part
(A), we obtain

This is the current in the 8.0-' and 4.0-' resistors. When
this 3.0-A current enters the junction at b, however, it splits,
with part passing through the 6.0-' resistor (I1) and part
through the 3.0-' resistor (I2). Because the potential differ-
ence is "Vbc across each of these parallel resistors, we see
that (6.0 ')I1 # (3.0 ')I2, or I2 # 2I1. Using this result and
the fact that I1 % I2 # 3.0 A, we find that I1 # 1.0 A and

I #
"Vac

R eq
#

42 V
14.0 '

# 3.0 A

I2 # 2.0 A. We could have guessed this at the start by noting
that the current in the 3.0-' resistor has to be twice that in
the 6.0-' resistor, in view of their relative resistances and the
fact that the same voltage is applied to each of them.

As a final check of our results, note that "Vbc #
(6.0 ')I1 # (3.0 ')I2 # 6.0 V and "Vab # (12.0 ')I # 36 V;
therefore, "Vac # "Vab % "Vbc # 42 V, as it must.

6.0 Ω

3.0 Ω

c
b

I1

I2

4.0 Ω8.0 Ω

a

c

2.0 Ω12.0 Ω

ba

14.0 Ω

ca

(a)

(b)

(c)

I

Figure 28.9 (Example 28.4) The original network of resistors
is reduced to a single equivalent resistance.

Example 28.5 Finding Req by Symmetry Arguments

Consider five resistors connected as shown in Figure 28.10a.
Find the equivalent resistance between points a and b.

Solution If we inspect this system of resistors, we realize that
we cannot reduce it by using our rules for series and parallel

connections. We can, however, assume a current entering
junction a and then apply symmetry arguments. Because of
the symmetry in the circuit (all 1-' resistors in the outside
loop), the currents in branches ac and ad must be equal;
hence, the electric potentials at points c and d must be equal.



Example 28.6 Three Resistors in Parallel

Three resistors are connected in parallel as shown in Figure
28.11a. A potential difference of 18.0 V is maintained
between points a and b.

(A) Find the current in each resistor.

Solution The resistors are in parallel, and so the potential
difference across each must be 18.0 V. Applying the relation-
ship "V # IR to each resistor gives

2.00 AI3 #
"V
R3

#
18.0 V
9.00 '

#

3.00 AI2 #
"V
R2

#
18.0 V
6.00 '

#

6.00 AI1 #
"V
R1

#
18.0 V
3.00 '

#

(B) Calculate the power delivered to each resistor and the
total power delivered to the combination of resistors.

Solution We apply the relationship ! # I 2R to each resis-
tor and obtain

This shows that the smallest resistor receives the most
power. Summing the three quantities gives a total power of
198 W.

36.0 W9.00-':  !3 # I3 

2R3 # (2.00 A)2(9.00 ') #

54.0 W6.00-':  !2 # I2 

2R2 # (3.00 A)2(6.00 ') #

108 W3.00-':  !1 # I1 

2R1 # (6.00 A)2(3.00 ') #
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Figure 28.11 (Example 28.6) (a) Three
resistors connected in parallel. The
voltage across each resistor is 18.0 V.
(b) Another circuit with three resistors
and a battery. Is this equivalent to the
circuit in part (a) of the figure?

Interactive

I1 I2 I3

I
a

b

18.0 V 3.00 Ω 6.00 Ω 9.00 Ω

I1 I2 I3

a

b

3.00 Ω 6.00 Ω 9.00 Ω18.0 V

I

(a)

(b)

This means that "Vcd # 0 and there is no current between
points c and d. As a result, points c and d may be connected
together without affecting the circuit, as in Figure 28.10b.
Thus, the 5-' resistor may be removed from the circuit and

the remaining circuit then reduced as in Figures 28.10c and
d. From this reduction we see that the equivalent resistance
of the combination is 1 '. Note that the result is 1 ' regard-
less of the value of the resistor connected between c and d.

(c)

0.5 Ω

ba c,d

0.5 Ω

(a)

1 Ω1 Ω

1 Ω1 Ω

5 Ω
ba

c

d

1 Ω

5 Ω

1 Ω
ba c,d

1 Ω

1 Ω

(b) (d)

1 Ω

ba

Figure 28.10 (Example 28.5) Because of the symmetry in this circuit, the 5-' resistor
does not contribute to the resistance between points a and b and therefore can be
disregarded when we calculate the equivalent resistance.
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Conceptual Example 28.7 Operation of a Three-Way Lightbulb

Figure 28.12 illustrates how a three-way lightbulb is con-
structed to provide three levels of light intensity. The socket
of the lamp is equipped with a three-way switch for selecting
different light intensities. The bulb contains two filaments.
When the lamp is connected to a 120-V source, one filament
receives 100 W of power, and the other receives 75 W.
Explain how the two filaments are used to provide three
different light intensities.

Solution The three light intensities are made possible by
applying the 120 V to one filament alone, to the other fila-
ment alone, or to the two filaments in parallel. When switch
S1 is closed and switch S2 is opened, current exists only in
the 75-W filament. When switch S1 is open and switch S2 is
closed, current exists only in the 100-W filament. When both
switches are closed, current exists in both filaments, and the
total power is 175 W.

If the filaments were connected in series and one of
them were to break, no charges could pass through the
bulb, and the bulb would give no illumination, regardless of
the switch position. However, with the filaments connected

in parallel, if one of them (for example, the 75-W filament)
breaks, the bulb will still operate in two of the switch posi-
tions as current exists in the other (100-W) filament.

120 V

100-W filament

75-W filament

S1

S2

Figure 28.12 (Conceptual Example 28.7) A three-way
lightbulb.

Application Strings of Lights

Strings of lights are used for many ornamental purposes,
such as decorating Christmas trees.3 Over the years, both
parallel and series connections have been used for strings
of lights powered by 120 V. Series-wired bulbs are safer than
parallel-wired bulbs for indoor Christmas-tree use because
series-wired bulbs operate with less energy per bulb and at a
lower temperature. However, if the filament of a single bulb
fails (or if the bulb is removed from its socket), all the
lights on the string go out. The popularity of series-wired
light strings diminished because troubleshooting a failed
bulb was a tedious, time-consuming chore that involved
trial-and-error substitution of a good bulb in each socket
along the string until the defective bulb was found.

In a parallel-wired string, each bulb operates at 120 V.
By design, the bulbs are brighter and hotter than those on

a series-wired string. As a result, these bulbs are inherently
more dangerous (more likely to start a fire, for instance),
but if one bulb in a parallel-wired string fails or is removed,
the rest of the bulbs continue to glow. (A 25-bulb string of
4-W bulbs results in a power of 100 W; the total power
becomes substantial when several strings are used.)

A new design was developed for so-called “miniature”
lights wired in series, to prevent the failure of one bulb from
causing the entire string to go out. This design creates a
connection (called a jumper) across the filament after it
fails. When the filament breaks in one of these miniature
lightbulbs, the break in the filament represents the largest
resistance in the series, much larger than that of the intact
filaments. As a result, most of the applied 120 V appears
across the bulb with the broken filament. Inside the

3 These and other household devices, such as the three-way lightbulb in Conceptual Example 28.7
and the kitchen appliances discussed in Section 28.6, actually operate on alternating current (AC), to
be introduced in Chapter 33.

(C) Calculate the equivalent resistance of the circuit.

Solution We can use Equation 28.8 to find Req:

1.64 'R eq #
18.0 '
11.0

#

1
R eq

#
1

3.00 '
%

1
6.00 '

%
1

9.00 '

What If? What if the circuit is as shown in Figure 28.11b
instead of as in Figure 28.11a? How does this affect the
calculation?

Answer There is no effect on the calculation. The physical
placement of the battery is not important. In Figure 28.11b,
the battery still applies a potential difference of 18.0 V
between points a and b, so the two circuits in Figure 28.11
are electrically identical.

At the Interactive Worked Example link at http://www.pse6.com, you can explore different configurations of the battery
and resistors.



28.3 Kirchhoff’s Rules

As we saw in the preceding section, simple circuits can be analyzed using the expres-
sion "V # IR and the rules for series and parallel combinations of resistors. Very
often, however, it is not possible to reduce a circuit to a single loop. The procedure
for analyzing more complex circuits is greatly simplified if we use two principles called
Kirchhoff ’s rules:
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lightbulb, a small jumper loop covered by an insulating
material is wrapped around the filament leads. When the
filament fails and 120 V appears across the bulb, an arc
burns the insulation on the jumper and connects the
filament leads. This connection now completes the circuit
through the bulb even though its filament is no longer
active (Fig. 28.13).

Suppose that all the bulbs in a 50-bulb miniature-light
string are operating. A 2.40-V potential drop occurs across
each bulb because the bulbs are in series. A typical power
input to this style of bulb is 0.340 W. The filament resis-
tance of each bulb at the operating temperature is
(2.40 V)2/(0.340 W) # 16.9 '. The current in each bulb is
2.40 V/16.9 ' # 0.142 A. When a bulb fails, the resistance
across its terminals is reduced to zero because of the alternate

jumper connection mentioned in the preceding paragraph.
All the other bulbs not only stay on but glow more brightly
because the total resistance of the string is reduced and con-
sequently the current in each bulb increases.

Let us assume that the resistance of a bulb remains at
16.9 ' even though its temperature rises as a result of the
increased current. If one bulb fails, the potential difference
across each of the remaining bulbs increases to 120 V/49 #
2.45 V, the current increases from 0.142 A to 0.145 A, and the
power increases to 0.355 W. As more bulbs fail, the current
keeps rising, the filament of each bulb operates at a higher
temperature, and the lifetime of the bulb is reduced. For this
reason, you should check for failed (nonglowing) bulbs in
such a series-wired string and replace them as soon as possible,
in order to maximize the lifetimes of all the bulbs.

Figure 28.13 (a) Schematic diagram of a modern “miniature” holiday lightbulb, with a
jumper connection to provide a current path if the filament breaks. When the filament
is intact, charges flow in the filament. (b) A holiday lightbulb with a broken filament.
In this case, charges flow in the jumper connection. (c) A Christmas-tree lightbulb.

Ge
or

ge
 S

em
pl

e

Filament

Jumper

Glass insulator

(b)(a)

I I

I

1. Junction rule. The sum of the currents entering any junction in a circuit must
equal the sum of the currents leaving that junction:

(28.9)

2. Loop rule. The sum of the potential differences across all elements around any
closed circuit loop must be zero:

(28.10)#
closed
loop

 "V # 0

# I in # # I out

(c)



Kirchhoff’s first rule is a statement of conservation of electric charge. All charges
that enter a given point in a circuit must leave that point because charge cannot build
up at a point. If we apply this rule to the junction shown in Figure 28.14a, we obtain

I1 # I2 % I3

Figure 28.14b represents a mechanical analog of this situation, in which water flows
through a branched pipe having no leaks. Because water does not build up anywhere
in the pipe, the flow rate into the pipe equals the total flow rate out of the two
branches on the right.

Kirchhoff’s second rule follows from the law of conservation of energy. Let us
imagine moving a charge around a closed loop of a circuit. When the charge
returns to the starting point, the charge–circuit system must have the same total
energy as it had before the charge was moved. The sum of the increases in energy as
the charge passes through some circuit elements must equal the sum of the
decreases in energy as it passes through other elements. The potential energy
decreases whenever the charge moves through a potential drop $ IR across a resis-
tor or whenever it moves in the reverse direction through a source of emf. The
potential energy increases whenever the charge passes through a battery from the
negative terminal to the positive terminal.

When applying Kirchhoff’s second rule in practice, we imagine traveling around the
loop and consider changes in electric potential, rather than the changes in potential energy
described in the preceding paragraph. You should note the following sign conventions
when using the second rule:

• Because charges move from the high-potential end of a resistor toward the low-
potential end, if a resistor is traversed in the direction of the current, the poten-
tial difference "V across the resistor is $ IR (Fig. 28.15a).

• If a resistor is traversed in the direction opposite the current, the potential differ-
ence "V across the resistor is % IR (Fig. 28.15b).

• If a source of emf (assumed to have zero internal resistance) is traversed in the
direction of the emf (from $ to %), the potential difference "V is % (Fig.
28.15c). The emf of the battery increases the electric potential as we move
through it in this direction.

• If a source of emf (assumed to have zero internal resistance) is traversed in the
direction opposite the emf (from % to $ ), the potential difference "V is $
(Fig. 28.15d). In this case the emf of the battery reduces the electric potential as
we move through it.

Limitations exist on the numbers of times you can usefully apply Kirchhoff’s rules
in analyzing a circuit. You can use the junction rule as often as you need, so long as
each time you write an equation you include in it a current that has not been used in
a preceding junction-rule equation. In general, the number of times you can use the
junction rule is one fewer than the number of junction points in the circuit. You can
apply the loop rule as often as needed, as long as a new circuit element (resistor or
battery) or a new current appears in each new equation. In general, in order to
solve a particular circuit problem, the number of independent equations you
need to obtain from the two rules equals the number of unknown currents.

Complex networks containing many loops and junctions generate great numbers
of independent linear equations and a correspondingly great number of unknowns.
Such situations can be handled formally through the use of matrix algebra. Computer
software can also be used to solve for the unknowns.

The following examples illustrate how to use Kirchhoff’s rules. In all cases, it is
assumed that the circuits have reached steady-state conditions—that is, the currents
in the various branches are constant. Any capacitor acts as an open branch in a
circuit; that is, the current in the branch containing the capacitor is zero under
steady-state conditions.

!

!
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(a)

I

a b∆V =  –IR

(b)

I

a b∆V =  +IR

(c)

ε
a b

∆V =  +ε
– +

(d)
a b

∆V =  –ε
–+

ε

ε

ε

Figure 28.15 Rules for
determining the potential
differences across a resistor and a
battery. (The battery is assumed to
have no internal resistance.) Each
circuit element is traversed from
left to right.

(a)

I1

I2

I3

(b)

Flow in
Flow out

Figure 28.14 (a) Kirchhoff’s
junction rule. Conservation of
charge requires that all charges
entering a junction must leave that
junction. Therefore, I1 # I2 % I3.
(b) A mechanical analog of the
junction rule: the amount of water
flowing out of the branches on the
right must equal the amount
flowing into the single branch on
the left.



S ECT I O N  28 . 3 •  Kirchhoff’s Rules 871

Gustav Kirchhoff
German Physicist (1824–1887)

Kirchhoff, a professor at
Heidelberg, and Robert Bunsen
invented the spectroscope and
founded the science of
spectroscopy, which we shall
study in Chapter 42. They
discovered the elements cesium
and rubidium and invented
astronomical spectroscopy. (AIP
ESVA/W.F. Meggers Collection)

P R O B L E M - S O LV I N G  H I N T S

Kirchhoff’s Rules
• Draw a circuit diagram, and label all the known and unknown quantities. You

must assign a direction to the current in each branch of the circuit. Although
the assignment of current directions is arbitrary, you must adhere rigorously to
the assigned directions when applying Kirchhoff’s rules.

• Apply the junction rule to any junctions in the circuit that provide new
relationships among the various currents.

• Apply the loop rule to as many loops in the circuit as are needed to solve for
the unknowns. To apply this rule, you must correctly identify the potential
difference as you imagine crossing each element while traversing the closed
loop (either clockwise or counterclockwise). Watch out for errors in sign!

• Solve the equations simultaneously for the unknown quantities. Do not be
alarmed if a current turns out to be negative; its magnitude will be correct and the
direction is opposite to that which you assigned.

Quick Quiz 28.8 In using Kirchhoff’s rules, you generally assign a separate
unknown current to (a) each resistor in the circuit (b) each loop in the circuit (c) each
branch in the circuit (d) each battery in the circuit.

Example 28.8 A Single-Loop Circuit

A single-loop circuit contains two resistors and two batteries,
as shown in Figure 28.16. (Neglect the internal resistances
of the batteries.)

(A) Find the current in the circuit.

Solution We do not need Kirchhoff’s rules to analyze this
simple circuit, but let us use them anyway just to see how
they are applied. There are no junctions in this single-loop
circuit; thus, the current is the same in all elements. Let us
assume that the current is clockwise, as shown in Figure
28.16. Traversing the circuit in the clockwise direction,
starting at a, we see that a : b represents a potential differ-
ence of % 1, b : c represents a potential difference of
$ IR1, c : d represents a potential difference of $ 2, and!

!

d : a represents a potential difference of $ IR2. Applying
Kirchhoff’s loop rule gives

Solving for I and using the values given in Figure 28.16, we
obtain

The negative sign for I indicates that the direction of the
current is opposite the assumed direction. Notice that the
emfs in the numerator subtract because the batteries have
opposite polarities in Figure 28.16. In the denominator, the
resistances add because the two resistors are in series.

(B) What power is delivered to each resistor? What power is
delivered by the 12-V battery?

Solution Using Equation 27.23,

Hence, the total power delivered to the resistors is
!1 % !2 # 2.0 W.

The 12-V battery delivers power I 2 # 4.0 W. Half of this
power is delivered to the two resistors, as we just calculated.
The other half is delivered to the 6-V battery, which is being

!

1.1 W!2 # I 2R2 # (0.33 A)2(10 ') #

0.87 W!1 # I 2R1 # (0.33 A)2(8.0 ') #

$0.33 A(1)  I #
!1 $ !2

R1 % R2
#

6.0 V $ 12 V
8.0 ' % 10 '

#

!1 $ IR 1 $ !2 $ IR 2 # 0

# "V # 0

a b
I

cd

  1 = 6.0 V

+–

R 1 = 8.0 ΩR 2 = 10 Ω

  2 = 12 V

+–
ε

ε
Figure 28.16 (Example 28.8) A series circuit containing two
batteries and two resistors, where the polarities of the batteries
are in opposition.
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charged by the 12-V battery. If we had included the internal
resistances of the batteries in our analysis, some of the power
would appear as internal energy in the batteries; as a result,
we would have found that less power was being delivered to
the 6-V battery.

What If? What if the polarity of the 12.0-V battery were
reversed? How would this affect the circuit?

Answer While we could repeat the Kirchhoff’s rules
calculation, let us examine Equation (1) and modify it
accordingly. Because the polarities of the two batteries are

now in the same direction, the signs of 1 and 2 are the
same and Equation (1) becomes

The new powers delivered to the resistors are

!1 # I 2R1 # (1.0 A)2(8.0 ') # 8.0 W

!2 # I 2R2 # (1.0 A)2(10 ') # 10 W

This totals 18 W, nine times as much as in the original circuit,
in which the batteries were opposing each other.

I #
!1 % !2

R1 % R2
#

6.0 V % 12 V
8.0 ' % 10 '

# 1.0 A

!!

Example 28.9 Applying Kirchhoff’s Rules

Find the currents I1, I2, and I3 in the circuit shown in Figure
28.17.

Solution Conceptualize by noting that we cannot simplify
the circuit by the rules of adding resistances in series and
in parallel. (If the 10.0-V battery were taken away, we could
reduce the remaining circuit with series and parallel com-
binations.) Thus, we categorize this problem as one in
which we must use Kirchhoff’s rules. To analyze the circuit,
we arbitrarily choose the directions of the currents as la-
beled in Figure 28.17. Applying Kirchhoff’s junction rule
to junction c gives

(1) I1 % I2 # I3

We now have one equation with three unknowns—I1, I2, and
I3. There are three loops in the circuit—abcda, befcb, and
aefda. We therefore need only two loop equations to deter-
mine the unknown currents. (The third loop equation
would give no new information.) Applying Kirchhoff’s loop
rule to loops abcda and befcb and traversing these loops
clockwise, we obtain the expressions

(2) abcda 10.0 V $ (6.0 ')I1 $ (2.0 ')I3 # 0

(3) befcb $14.0 V % (6.0 ')I1 $ 10.0 V $ (4.0 ') I2 # 0

Note that in loop befcb we obtain a positive value when
traversing the 6.0-' resistor because our direction of travel
is opposite the assumed direction of I1. Expressions (1), (2),
and (3) represent three independent equations with three
unknowns. Substituting Equation (1) into Equation (2)
gives

10.0 V $ (6.0 ')I1 $ (2.0 ') (I1 % I2) # 0

(4) 10.0 V # (8.0 ')I1 % (2.0 ')I2

Dividing each term in Equation (3) by 2 and rearranging
gives

(5) $ 12.0 V # $ (3.0 ')I1 % (2.0 ')I2

Subtracting Equation (5) from Equation (4) eliminates I2,
giving

22.0 V # (11.0 ')I1

I1 #

Using this value of I1 in Equation (5) gives a value for I2:

(2.0 ')I2 # (3.0 ')I1 $ 12.0 V

# (3.0 ')(2.0 A) $ 12.0 V # $ 6.0 V

I2 #

Finally,

I3 # I1 % I2 #

To finalize the problem, note that I2 and I3 are both nega-
tive. This indicates only that the currents are opposite the
direction we chose for them. However, the numerical values
are correct. What would have happened had we left the
current directions as labeled in Figure 28.17 but traversed
the loops in the opposite direction?

$1.0 A

$3.0 A

2.0 A

14.0 V
e

b

4.0 Ω

– +

10.0 V 6.0 Ω

–+ f

I2

c

I3

I1

2.0 Ω
da

Figure 28.17 (Example 28.9) A circuit containing different
branches.

Interactive

Practice applying Kirchhoff’s rules at the Interactive Worked Example link at http://www.pse6.com.



28.4 RC Circuits

So far we have analyzed direct current circuits in which the current is constant. In DC
circuits containing capacitors, the current is always in the same direction but may vary
in time. A circuit containing a series combination of a resistor and a capacitor is called
an RC circuit.

Charging a Capacitor

Figure 28.19 shows a simple series RC circuit. Let us assume that the capacitor in this
circuit is initially uncharged. There is no current while switch S is open (Fig. 28.19b).
If the switch is closed at t # 0, however, charge begins to flow, setting up a current in
the circuit, and the capacitor begins to charge.4 Note that during charging, charges do

4 In previous discussions of capacitors, we assumed a steady-state situation, in which no current was
present in any branch of the circuit containing a capacitor. Now we are considering the case before the
steady-state condition is realized; in this situation, charges are moving and a current exists in the wires
connected to the capacitor.
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Example 28.10 A Multiloop Circuit

(A) Under steady-state conditions, find the unknown currents
I1, I2, and I3 in the multiloop circuit shown in Figure 28.18.

Solution First note that because the capacitor represents
an open circuit, there is no current between g and b along
path ghab under steady-state conditions. Therefore, when
the charges associated with I1 reach point g, they all go
toward point b through the 8.00-V battery; hence, Igb # I1.
Labeling the currents as shown in Figure 28.18 and applying
Equation 28.9 to junction c, we obtain

(1) I1 % I2 # I3

Equation 28.10 applied to loops defcd and cfgbc, traversed
clockwise, gives

(2) defcd 4.00 V $ (3.00 ')I2 $ (5.00 ')I3 # 0

(3) cfgbc (3.00 ')I2 $ (5.00 ')I1 % 8.00 V # 0

From Equation (1) we see that I1 # I3 $ I2, which, when
substituted into Equation (3), gives

(4) (8.00 ')I2 $ (5.00 ')I3 % 8.00 V # 0

Subtracting Equation (4) from Equation (2), we eliminate I3
and find that

Because our value for I2 is negative, we conclude that the di-
rection of I2 is from c to f in the 3.00-' resistor. Despite this
interpretation of the direction, however, we must continue
to use this negative value for I2 in subsequent calculations
because our equations were established with our original
choice of direction.

Using I2 # $ 0.364 A in Equations (3) and (1) gives

(B) What is the charge on the capacitor?

Solution We can apply Kirchhoff’s loop rule to loop bghab
(or any other loop that contains the capacitor) to find the
potential difference "Vcap across the capacitor. We use this
potential difference in the loop equation without reference
to a sign convention because the charge on the capacitor
depends only on the magnitude of the potential difference.
Moving clockwise around this loop, we obtain

$ 8.00 V % "Vcap $ 3.00 V # 0

"Vcap # 11.0 V

Because Q # C "Vcap (see Eq. 26.1), the charge on the
capacitor is

Q # (6.00 )F)(11.0 V) #

Why is the left side of the capacitor positively charged?

66.0 )C

1.02 AI3 #1.38 AI1 #

$0.364 AI2 # $
4.00 V
11.0 '

#

4.00 V

d

c

5.00 Ω

–+
8.00 V

3.00 Ω

– + e

I3

f

I1

I2
5.00 Ω

ha

g

– +

3.00 V

–+

6.00   F

I = 0

b

I3

I1

µ
Figure 28.18 (Example 28.10) A multiloop circuit. Kirchhoff’s
loop rule can be applied to any closed loop, including the one
containing the capacitor.



not jump across the capacitor plates because the gap between the plates represents an
open circuit. Instead, charge is transferred between each plate and its connecting wires
due to the electric field established in the wires by the battery, until the capacitor is
fully charged. As the plates are being charged, the potential difference across the
capacitor increases. The value of the maximum charge on the plates depends on the
voltage of the battery. Once the maximum charge is reached, the current in the circuit
is zero because the potential difference across the capacitor matches that supplied by
the battery.

To analyze this circuit quantitatively, let us apply Kirchhoff’s loop rule to the circuit
after the switch is closed. Traversing the loop in Fig. 28.19c clockwise gives

(28.11)

where q/C is the potential difference across the capacitor and IR is the potential differ-
ence across the resistor. We have used the sign conventions discussed earlier for the
signs on and IR. For the capacitor, notice that we are traveling in the direction from
the positive plate to the negative plate; this represents a decrease in potential. Thus, we
use a negative sign for this potential difference in Equation 28.11. Note that q and I are
instantaneous values that depend on time (as opposed to steady-state values) as the
capacitor is being charged.

We can use Equation 28.11 to find the initial current in the circuit and the maxi-
mum charge on the capacitor. At the instant the switch is closed (t # 0), the charge on
the capacitor is zero, and from Equation 28.11 we find that the initial current I0 in the
circuit is a maximum and is equal to

(28.12)

At this time, the potential difference from the battery terminals appears entirely across
the resistor. Later, when the capacitor is charged to its maximum value Q , charges
cease to flow, the current in the circuit is zero, and the potential difference from the
battery terminals appears entirely across the capacitor. Substituting I # 0 into Equation
28.11 gives the charge on the capacitor at this time:

(maximum charge) (28.13)

To determine analytical expressions for the time dependence of the charge and
current, we must solve Equation 28.11—a single equation containing two variables, q
and I. The current in all parts of the series circuit must be the same. Thus, the current
in the resistance R must be the same as the current between the capacitor plates and the

Q # C !

 I0 #
!
R
  (current at t # 0)

!

! $
q
C

$ IR # 0
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+ –

Resistor

Battery

Capacitor

Switch

(a)

ε
(b)

S

t < 0

R

C

(c) t > 0

ε

R

S

I
q–

+ q

Active Figure 28.19 (a) A capacitor in series with a resistor, switch, and battery.
(b) Circuit diagram representing this system at time t * 0, before the switch is closed.
(c) Circuit diagram at time t + 0, after the switch has been closed.

At the Active Figures link
at http://www.pse6.com, you
can adjust the values of R and
C to see the effect on the
charging of the capacitor.



wires. This current is equal to the time rate of change of the charge on the capacitor
plates. Thus, we substitute I # dq/dt into Equation 28.11 and rearrange the equation:

To find an expression for q, we solve this separable differential equation. We first
combine the terms on the right-hand side:

Now we multiply by dt and divide by q $ C to obtain

Integrating this expression, using the fact that q # 0 at t # 0, we obtain

From the definition of the natural logarithm, we can write this expression as

(28.14)

where e is the base of the natural logarithm and we have made the substitution from
Equation 28.13.

We can find an expression for the charging current by differentiating Equation
28.14 with respect to time. Using I # dq/dt, we find that

(28.15)

Plots of capacitor charge and circuit current versus time are shown in Figure 28.20.
Note that the charge is zero at t # 0 and approaches the maximum value C as t : ,.
The current has its maximum value I0 # /R at t # 0 and decays exponentially to zero
as t : ,. The quantity RC, which appears in the exponents of Equations 28.14 and
28.15, is called the time constant - of the circuit. It represents the time interval
during which the current decreases to 1/e of its initial value; that is, in a time interval
-, I # e$1I0 # 0.368I 0. In a time interval 2-, I # e$ 2I 0 # 0.135I0, and so forth.
Likewise, in a time interval -, the charge increases from zero to C [1 $ e$1] # 0.632C .!!

!
!

I(t) #
!
R

 e$t/RC

q(t ) # C!(1 $ e$t/RC) # Q(1 $ e$t/RC)

ln ! q $ C!
$C! " # $

t
RC

$q

0
  

dq
(q $ C!)

 # $
1

RC
  $t

0
  dt

dq
q $ C ! # $

1
RC

 dt

!

dq
dt

#
C!
RC

$
q

RC
# $

q $ C!
RC

dq
dt

#
!
R

$
q

RC
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Charge as a function of time for
a capacitor being charged

Current as a function of time for
a capacitor being charged

q

τ t

C

0.632C

(a)

I

τ t

0.368I0

(b)

I0 I0 = R

ε

ε
ε

=RCτ

Figure 28.20 (a) Plot of capacitor charge versus time for the circuit shown in Figure
28.19. After a time interval equal to one time constant - has passed, the charge is 63.2%
of the maximum value C . The charge approaches its maximum value as t approaches
infinity. (b) Plot of current versus time for the circuit shown in Figure 28.19. The
current has its maximum value I0 # /R at t # 0 and decays to zero exponentially as t
approaches infinity. After a time interval equal to one time constant - has passed, the
current is 36.8% of its initial value.

!

!



The following dimensional analysis shows that - has the units of time:

Because - # RC has units of time, the combination -/RC is dimensionless, as it must be
in order to be an exponent of e in Equations 28.14 and 28.15.

The energy output of the battery as the capacitor is fully charged is Q # C 2.
After the capacitor is fully charged, the energy stored in the capacitor is Q # C 2,
which is just half the energy output of the battery. It is left as a problem (Problem 64)
to show that the remaining half of the energy supplied by the battery appears as inter-
nal energy in the resistor.

Discharging a Capacitor

Now consider the circuit shown in Figure 28.21, which consists of a capacitor carrying
an initial charge Q , a resistor, and a switch. When the switch is open, a potential differ-
ence Q /C exists across the capacitor and there is zero potential difference across the
resistor because I # 0. If the switch is closed at t # 0, the capacitor begins to discharge
through the resistor. At some time t during the discharge, the current in the circuit is I
and the charge on the capacitor is q (Fig. 28.21b). The circuit in Figure 28.21 is the
same as the circuit in Figure 28.19 except for the absence of the battery. Thus, we elim-
inate the emf from Equation 28.11 to obtain the appropriate loop equation for the
circuit in Figure 28.21:

(28.16)

When we substitute I # dq/dt into this expression, it becomes

Integrating this expression, using the fact that q # Q at t # 0 gives

(28.17)

Differentiating this expression with respect to time gives the instantaneous current as a
function of time:

(28.18)

where Q /RC # I0 is the initial current. The negative sign indicates that as the capaci-
tor discharges, the current direction is opposite its direction when the capacitor was
being charged. (Compare the current directions in Figs. 28.19c and 28.21b.) We see
that both the charge on the capacitor and the current decay exponentially at a rate
characterized by the time constant - # RC.
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(a)

S

RC

t < 0

–Q

+Q

R

S

I
–q

+q
C

(b)
t > 0

Active Figure 28.21 (a) A
charged capacitor connected to a
resistor and a switch, which is open
for t * 0. (b) After the switch is
closed at t # 0, a current that
decreases in magnitude with time is
set up in the direction shown, and
the charge on the capacitor
decreases exponentially with time.

At the Active Figures link
at http://www.pse6.com, you
can adjust the values of R and
C to see the effect on the
discharging of the capacitor.

Charge as a function of time for
a discharging capacitor

Current as a function of time for
a discharging capacitor

Quick Quiz 28.9 Consider the circuit in Figure 28.19 and assume that the
battery has no internal resistance. Just after the switch is closed, the potential differ-
ence across which of the following is equal to the emf of the battery? (a) C (b) R
(c) neither C nor R. After a very long time, the potential difference across which of the
following is equal to the emf of the battery? (d) C (e) R (f) neither C nor R.
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Quick Quiz 28.10 Consider the circuit in Figure 28.22 and assume that the
battery has no internal resistance. Just after the switch is closed, the current in the bat-
tery is (a) zero (b) /2R (c) 2 /R (d) /R (e) impossible to determine. After a very
long time, the current in the battery is (f) zero (g) /2R (h) 2 /R (i) /R (j) impos-
sible to determine.

!!!
!!!

ε

C

R R

Figure 28.22 (Quick Quiz 28.10) How does the current
vary after the switch is closed?

Conceptual Example 28.11 Intermittent Windshield Wipers

Many automobiles are equipped with windshield wipers that
can operate intermittently during a light rainfall. How does
the operation of such wipers depend on the charging and
discharging of a capacitor?

Solution The wipers are part of an RC circuit whose time
constant can be varied by selecting different values of R

through a multiposition switch. As it increases with time, the
voltage across the capacitor reaches a point at which it
triggers the wipers and discharges, ready to begin another
charging cycle. The time interval between the individual
sweeps of the wipers is determined by the value of the time
constant.

Example 28.12 Charging a Capacitor in an RC Circuit

An uncharged capacitor and a resistor are connected in
series to a battery, as shown in Figure 28.23. If # 12.0 V,
C # 5.00 )F, and R # 8.00 . 105 ', find the time constant
of the circuit, the maximum charge on the capacitor, the
maximum current in the circuit, and the charge and current
as functions of time.

Solution The time constant of the circuit is - # RC #
(8.00 . 105 ')(5.00 . 10$6 F) # 4.00 s. The maximum
charge on the capacitor is Q # C # (5.00 )F)(12.0 V) #
60.0 )C. The maximum current in the circuit is I 0 #

/R # (12.0 V)/(8.00 . 105 ') # 15.0 )A. Using these
values and Equations 28.14 and 28.15, we find that

Graphs of these functions are provided in Figure 28.24.

(15.0 )A)e$t/4.00 sI(t ) #

(60.0 )C)(1 $ e$t/4.00 s)q(t ) #
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Q = 60.0 µCµ

I 0 = 15.0 µAµ
t   = τ

At the Interactive Worked Example link at http://www.pse6.com, you can vary R, C, and ! and observe the charge and
current as functions of time while charging or discharging the capacitor.

Figure 28.23 (Example 28.12) The switch in this series RC
circuit, open for times t * 0, is closed at t # 0.

Figure 28.24 (Example 28.12) Plots of (a) charge versus time
and (b) current versus time for the RC circuit shown in Figure
28.23, with # 12.0 V, R # 8.00 . 105 ', and C # 5.00 )F.!
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Example 28.13 Discharging a Capacitor in an RC Circuit

Consider a capacitor of capacitance C that is being dis-
charged through a resistor of resistance R , as shown in
Figure 28.21.

(A) After how many time constants is the charge on the
capacitor one-fourth its initial value?

Solution The charge on the capacitor varies with time
according to Equation 28.17, q(t) # Qe$t/RC. To find the time
interval during which q drops to one-fourth its initial value,
we substitute q(t) # Q /4 into this expression and solve for t :

Taking logarithms of both sides, we find

(B) The energy stored in the capacitor decreases with time
as the capacitor discharges. After how many time constants
is this stored energy one-fourth its initial value?

Solution Using Equations 26.11 (U # Q2/2C) and 28.17, we
can express the energy stored in the capacitor at any time t as

U #
q 2

2C
#

Q 2

2C
 e$2t/RC # U0e$2t/RC

1.39-t # RC (ln 4) # 1.39RC #

$ln 4 # $
t

RC

 14 # e$t/RC

Q
4

 # Qe$t/RC

where U0 # Q2/2C is the initial energy stored in the capaci-
tor. As in part (A), we now set U # U0/4 and solve for t :

Again, taking logarithms of both sides and solving for t gives

What If? What if we wanted to describe the circuit in terms
of the time interval required for the charge to fall to one-half
its original value, rather than by the time constant "? This
would give a parameter for the circuit called its half-life t1/2.
How is the half-life related to the time constant?

Answer After one half-life, the charge has fallen from Q to
Q /2. Thus, from Equation 28.17,

leading to

t1/2 # 0.693-

The concept of half-life will be important to us when we
study nuclear decay in Chapter 44. The radioactive decay of
an unstable sample behaves in a mathematically similar
manner to a discharging capacitor in an RC circuit.

 12 # e$t1/2/RC

Q
2

 # Qe$t 1/2/RC

0.693-t # 1
2 RC ln 4 # 0.693RC #

 14 # e$2t/RC

U0

4
 # U0e$2t/RC

Example 28.14 Energy Delivered to a Resistor

A 5.00-)F capacitor is charged to a potential difference of
800 V and then discharged through a 25.0-kV resistor. How
much energy is delivered to the resistor in the time interval
required to fully discharge the capacitor?

Solution We shall solve this problem in two ways. The first
way is to note that the initial energy in the circuit equals the
energy stored in the capacitor, C 2/2 (see Eq. 26.11). Once
the capacitor is fully discharged, the energy stored in it is
zero. Because energy in an isolated system is conserved, the
initial energy stored in the capacitor is transformed into in-
ternal energy in the resistor. Using the given values of C and

, we find

The second way, which is more difficult but perhaps more
instructive, is to note that as the capacitor discharges
through the resistor, the rate at which energy is delivered to
the resistor is given by I 2R, where I is the instantaneous
current given by Equation 28.18. Because power is defined
as the rate at which energy is transferred, we conclude that

1.60 JEnergy # 1
2C!2 # 1

2(5.00 . 10$6 F)(800 V)2 #

!

!

the energy delivered to the resistor must equal the time inte-
gral of I 2R dt :

To evaluate this integral, we note that the initial current I0 is
equal to /R and that all parameters except t are constant.
Thus, we find

This integral has a value of RC/2 (see Problem 35); hence,
we find

which agrees with the result we obtained using the simpler
approach, as it must. Note that we can use this second
approach to find the total energy delivered to the resistor at
any time after the switch is closed by simply replacing the
upper limit in the integral with that specific value of t.

Energy # 1
2C!2

(1)   Energy #
!2

R
 $,

0
 e$2t/RC dt

!

Energy # $,

0
 I 2R  dt # $,

0
 ($I0e$t/RC )2 R dt



28.5 Electrical Meters

The Galvanometer

The galvanometer is the main component in analog meters for measuring current and
voltage. (Many analog meters are still in use although digital meters, which operate on a
different principle, are currently in wide use.) Figure 28.25 illustrates the essential
features of a common type called the D’Arsonval galvanometer. It consists of a coil of wire
mounted so that it is free to rotate on a pivot in a magnetic field provided by a perma-
nent magnet. The basic operation of the galvanometer uses the fact that a torque acts
on a current loop in the presence of a magnetic field (Chapter 29). The torque experi-
enced by the coil is proportional to the current in it: the larger the current, the greater
the torque and the more the coil rotates before the spring tightens enough to stop the
rotation. Hence, the deflection of a needle attached to the coil is proportional to the
current. Once the instrument is properly calibrated, it can be used in conjunction with
other circuit elements to measure either currents or potential differences.

The Ammeter

A device that measures current is called an ammeter. The charges constituting the
current to be measured must pass directly through the ammeter, so the ammeter
must be connected in series with other elements in the circuit, as shown in Figure
28.26. When using an ammeter to measure direct currents, you must connect it so
that charges enter the instrument at the positive terminal and exit at the negative
terminal.

Ideally, an ammeter should have zero resistance so that the current being
measured is not altered. In the circuit shown in Figure 28.26, this condition requires
that the resistance of the ammeter be much less than R1 % R2. Because any ammeter
always has some internal resistance, the presence of the ammeter in the circuit slightly
reduces the current from the value it would have in the meter’s absence.

A typical off-the-shelf galvanometer is often not suitable for use as an ammeter,
primarily because it has a resistance of about 60 '. An ammeter resistance this great
considerably alters the current in a circuit. You can understand this by considering
the following example. The current in a simple series circuit containing a 3-V
battery and a 3-' resistor is 1 A. If you insert a 60-' galvanometer in this circuit to
measure the current, the total resistance becomes 63 ' and the current is reduced
to 0.048 A!

A second factor that limits the use of a galvanometer as an ammeter is the fact that
a typical galvanometer gives a full-scale deflection for currents on the order of 1 mA or
less. Consequently, such a galvanometer cannot be used directly to measure currents
greater than this value. However, it can be converted to a useful ammeter by placing a
shunt resistor Rp in parallel with the galvanometer, as shown in Figure 28.27. The value
of Rp must be much less than the galvanometer resistance so that most of the current
to be measured is directed to the shunt resistor.

The Voltmeter

A device that measures potential difference is called a voltmeter. The potential differ-
ence between any two points in a circuit can be measured by attaching the terminals of
the voltmeter between these points without breaking the circuit, as shown in Figure
28.28. The potential difference across resistor R2 is measured by connecting the volt-
meter in parallel with R2. Again, it is necessary to observe the polarity of the instru-
ment. The positive terminal of the voltmeter must be connected to the end of the
resistor that is at the higher potential, and the negative terminal to the end of the resis-
tor at the lower potential.
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Spring
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Coil

Scale

N

Figure 28.25 The principal compo-
nents of a D’Arsonval galvanometer.
When the coil situated in a magnetic
field carries a current, the magnetic
torque causes the coil to twist. The
angle through which the coil rotates
is proportional to the current in the
coil because of the counteracting
torque of the spring.

R1

ε

–

+

R2

A

Figure 28.26 Current can be mea-
sured with an ammeter connected in
series with the elements in which the
measurement of a current is desired.
An ideal ammeter has zero resistance.

Rp

Galvanometer

60 Ω

Active Figure 28.27 A galva-
nometer is represented here by its
internal resistance of 60 '. When a
galvanometer is to be used as an
ammeter, a shunt resistor Rp is
connected in parallel with the
galvanometer.

At the Active Figures link
at http://www.pse6.com, you can
predict the value of Rp needed
to cause full-scale deflection in
the circuit of Figure 28.26, and
test your result.



An ideal voltmeter has infinite resistance so that no current exists in it. In
Figure 28.28, this condition requires that the voltmeter have a resistance much greater
than R2. In practice, if this condition is not met, corrections should be made for the
known resistance of the voltmeter.

A galvanometer can also be used as a voltmeter by adding an external resistor Rs in
series with it, as shown in Figure 28.29. In this case, the external resistor must have a
value much greater than the resistance of the galvanometer to ensure that the gal-
vanometer does not significantly alter the voltage being measured.

28.6 Household Wiring and Electrical Safety

Household circuits represent a practical application of some of the ideas presented in
this chapter. In our world of electrical appliances, it is useful to understand the power
requirements and limitations of conventional electrical systems and the safety
measures that prevent accidents.

In a conventional installation, the utility company distributes electric power to indi-
vidual homes by means of a pair of wires, with each home connected in parallel to
these wires. One wire is called the live wire,5 as illustrated in Figure 28.30, and the other
is called the neutral wire. The neutral wire is grounded; that is, its electric potential is
taken to be zero. The potential difference between the live and neutral wires is about
120 V. This voltage alternates in time, and the potential of the live wire oscillates rela-
tive to ground. Much of what we have learned so far for the constant-emf situation
(direct current) can also be applied to the alternating current that power companies
supply to businesses and households. (Alternating voltage and current are discussed in
Chapter 33.)

A meter is connected in series with the live wire entering the house to record the
household’s energy consumption. After the meter, the wire splits so that there are
several separate circuits in parallel distributed throughout the house. Each circuit
contains a circuit breaker (or, in older installations, a fuse). The wire and circuit
breaker for each circuit are carefully selected to meet the current demands for that
circuit. If a circuit is to carry currents as large as 30 A, a heavy wire and an appropriate
circuit breaker must be selected to handle this current. A circuit used to power only
lamps and small appliances often requires only 20 A. Each circuit has its own circuit
breaker to provide protection for that part of the entire electrical system of the house.
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Galvanometer

Rs

60 Ω

Active Figure 28.29 When the galvanometer
is used as a voltmeter, a resistor Rs is
connected in series with the galvanometer.

At the Active Figures link at
http://www.pse6.com, you can predict
the value of Rs needed to cause full-
scale deflection in the circuit of Figure
28.28, and test your result.

R1

ε

V

R2

Figure 28.28 The potential difference across
a resistor can be measured with a voltmeter
connected in parallel with the resistor. An
ideal voltmeter has infinite resistance.

5 Live wire is a common expression for a conductor whose electric potential is above or below ground
potential.

R1

Live
120 V

Neutral

0 V

R2

Circuit
breaker

Meter

R3

Figure 28.30 Wiring diagram for a
household circuit. The resistances
represent appliances or other
electrical devices that operate with
an applied voltage of 120 V.



As an example, consider a circuit in which a toaster oven, a microwave oven, and a
coffee maker are connected (corresponding to R1, R2, and R3 in Fig. 28.30). We can
calculate the current in each appliance by using the expression ! # I "V. The toaster
oven, rated at 1 000 W, draws a current of 1 000 W/120 V # 8.33 A. The microwave
oven, rated at 1 300 W, draws 10.8 A, and the coffee maker, rated at 800 W, draws
6.67 A. If the three appliances are operated simultaneously, they draw a total current of
25.8 A. Therefore, the circuit should be wired to handle at least this much current. If
the rating of the circuit breaker protecting the circuit is too small—say, 20 A—the
breaker will be tripped when the third appliance is turned on, preventing all three
appliances from operating. To avoid this situation, the toaster oven and coffee maker
can be operated on one 20-A circuit and the microwave oven on a separate 20-A circuit.

Many heavy-duty appliances, such as electric ranges and clothes dryers, require 240 V
for their operation. The power company supplies this voltage by providing a third wire
that is 120 V below ground potential (Fig. 28.31). The potential difference between
this live wire and the other live wire (which is 120 V above ground potential) is 240 V.
An appliance that operates from a 240-V line requires half as much current compared to
operating it at 120 V; therefore, smaller wires can be used in the higher-voltage circuit
without overheating.

Electrical Safety

When the live wire of an electrical outlet is connected directly to ground, the circuit is
completed and a short-circuit condition exists. A short circuit occurs when almost zero
resistance exists between two points at different potentials; this results in a very large
current. When this happens accidentally, a properly operating circuit breaker opens
the circuit and no damage is done. However, a person in contact with ground can be
electrocuted by touching the live wire of a frayed cord or other exposed conductor. An
exceptionally effective (and dangerous!) ground contact is made when the person
either touches a water pipe (normally at ground potential) or stands on the ground
with wet feet. The latter situation represents effective ground contact because normal,
nondistilled water is a conductor due to the large number of ions associated with
impurities. This situation should be avoided at all cost.

Electric shock can result in fatal burns, or it can cause the muscles of vital organs,
such as the heart, to malfunction. The degree of damage to the body depends on the
magnitude of the current, the length of time it acts, the part of the body touched by
the live wire, and the part of the body in which the current exists. Currents of 5 mA or
less cause a sensation of shock but ordinarily do little or no damage. If the current is
larger than about 10 mA, the muscles contract and the person may be unable to
release the live wire. If a current of about 100 mA passes through the body for only a
few seconds, the result can be fatal. Such a large current paralyzes the respiratory
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Figure 28.31 (a) An outlet for connection to a 240-V supply. (b) The connections for
each of the openings in a 240-V outlet.
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(a)

Motor
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Wall
outlet

Circuit
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120 V

“Neutral”

Ground

“Ouch!”
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(b)

Motor
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Figure 28.32 (a) A diagram of the circuit for an electric drill with only two connecting
wires. The normal current path is from the live wire through the motor connections
and back to ground through the neutral wire. In the situation shown, the live wire has
come into contact with the drill case. As a result, the person holding the drill acts as a
current path to ground and receives an electric shock. (b) This shock can be avoided
by connecting the drill case to ground through a third ground wire. In this situation,
the drill case remains at ground potential and no current exists in the person.

muscles and prevents breathing. In some cases, currents of about 1 A can produce
serious (and sometimes fatal) burns. In practice, no contact with live wires is regarded
as safe whenever the voltage is greater than 24 V.

Many 120-V outlets are designed to accept a three-pronged power cord. (This
feature is required in all new electrical installations.) One of these prongs is the live
wire at a nominal potential of 120 V. The second is the neutral wire, nominally at 0 V,
and carries current to ground. The third, round prong is a safety ground wire that
normally carries no current but is both grounded and connected directly to the casing
of the appliance (see Figure 28.32). If the live wire is accidentally shorted to the casing
(which can occur if the wire insulation wears off), most of the current takes the low-
resistance path through the appliance to ground. In contrast, if the casing of the appli-
ance is not properly grounded and a short occurs, anyone in contact with the
appliance experiences an electric shock because the body provides a low-resistance
path to ground.

Special power outlets called ground-fault interrupters (GFIs) are now used in
kitchens, bathrooms, basements, exterior outlets, and other hazardous areas of new
homes. These devices are designed to protect persons from electric shock by sensing
small currents (' 5 mA) leaking to ground. (The principle of their operation is
described in Chapter 31.) When an excessive leakage current is detected, the current is
shut off in less than 1 ms.
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The emf of a battery is equal to the voltage across its terminals when the current is
zero. That is, the emf is equivalent to the open-circuit voltage of the battery.

The equivalent resistance of a set of resistors connected in series is

Req # R1 % R2 % R3 % … (28.6)

The equivalent resistance of a set of resistors connected in parallel is found
from the relationship

(28.8)

If it is possible to combine resistors into series or parallel equivalents, the preceding
two equations make it easy to determine how the resistors influence the rest of the
circuit.

Circuits involving more than one loop are conveniently analyzed with the use of
Kirchhoff’s rules:

1. Junction rule. The sum of the currents entering any junction in an electric circuit
must equal the sum of the currents leaving that junction:

(28.9)

2. Loop rule. The sum of the potential differences across all elements around any
circuit loop must be zero:

(28.10)

The first rule is a statement of conservation of charge; the second is equivalent to a
statement of conservation of energy.

When a resistor is traversed in the direction of the current, the potential difference
"V across the resistor is $ IR . When a resistor is traversed in the direction opposite the
current, "V # % IR. When a source of emf is traversed in the direction of the emf
(negative terminal to positive terminal), the potential difference is % . When a
source of emf is traversed opposite the emf (positive to negative), the potential differ-
ence is $ . The use of these rules together with Equations 28.9 and 28.10 allows you
to analyze electric circuits.

If a capacitor is charged with a battery through a resistor of resistance R , the
charge on the capacitor and the current in the circuit vary in time according to the
expressions

(28.14)

(28.15)

where Q # C is the maximum charge on the capacitor. The product RC is called the
time constant - of the circuit. If a charged capacitor is discharged through a resistor
of resistance R , the charge and current decrease exponentially in time according to
the expressions

(28.17)

(28.18)

where Q is the initial charge on the capacitor and I0 # Q /RC is the initial current in
the circuit.

I(t ) # $I0e$t/RC

q(t ) # Qe$t/RC

!

I(t ) #
!
R

 e$t/RC

q(t ) # Q(1 $ e$t/RC )
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Take a practice test for
this chapter by clicking on
the Practice Test link at
http://www.pse6.com.
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1. Explain the difference between load resistance in a circuit
and internal resistance in a battery.

2. Under what condition does the potential difference across
the terminals of a battery equal its emf? Can the terminal
voltage ever exceed the emf? Explain.

Is the direction of current through a battery always from
the negative terminal to the positive terminal? Explain.

4. How would you connect resistors so that the equivalent
resistance is larger than the greatest individual resistance?
Give an example involving three resistors.

5. How would you connect resistors so that the equivalent
resistance is smaller than the least individual resistance?
Give an example involving three resistors.

6. Given three lightbulbs and a battery, sketch as many differ-
ent electric circuits as you can.

7. When resistors are connected in series, which of the follow-
ing would be the same for each resistor: potential differ-
ence, current, power?

8. When resistors are connected in parallel, which of the fol-
lowing would be the same for each resistor: potential dif-
ference, current, power?

9. What advantage might there be in using two identical
resistors in parallel connected in series with another
identical parallel pair, rather than just using a single
resistor?

10. An incandescent lamp connected to a 120-V source with a
short extension cord provides more illumination than the
same lamp connected to the same source with a very long
extension cord. Explain.

Why is it possible for a bird to sit on a high-voltage wire
without being electrocuted?

12. When can the potential difference across a resistor be
positive?

Referring to Figure Q28.13, describe what happens to the
lightbulb after the switch is closed. Assume that the capaci-
tor has a large capacitance and is initially uncharged, and
assume that the light illuminates when connected directly
across the battery terminals.

13.

11.

3.

14. What is the internal resistance of an ideal ammeter? Of
an ideal voltmeter? Do real meters ever attain these
ideals?

15. A “short circuit” is a path of very low resistance in a circuit
in parallel with some other part of the circuit. Discuss the
effect of the short circuit on the portion of the circuit it
parallels. Use a lamp with a frayed cord as an example.

16. If electric power is transmitted over long distances, the
resistance of the wires becomes significant. Why? Which
method of transmission would result in less energy
wasted—high current and low voltage or low current and
high voltage? Explain your answer.

17. Are the two headlights of a car wired in series or in paral-
lel? How can you tell?

18. Embodied in Kirchhoff’s rules are two conservation laws.
What are they?

19. Figure Q28.19 shows a series combination of three
lightbulbs, all rated at 120 V with power ratings of 60 W,
75 W, and 200 W. Why is the 60-W lamp the brightest and
the 200-W lamp the dimmest? Which bulb has the greatest
resistance? How would their intensities differ if they were
connected in parallel?

Q U E S T I O N S

20. A student claims that the second lightbulb in series is less
bright than the first, because the first bulb uses up some of
the current. How would you respond to this statement?

21. Is a circuit breaker wired in series or in parallel with the
device it is protecting?

22. So that your grandmother can listen to A Prairie Home Com-
panion, you take her bedside radio to the hospital where
she is staying. You are required to have a maintenance
worker test it for electrical safety. Finding that it develops
120 V on one of its knobs, he does not let you take it up to
your grandmother’s room. She complains that she has had
the radio for many years and nobody has ever gotten
a shock from it. You end up having to buy a new plastic
radio. Is this fair? Will the old radio be safe back in her
bedroom?
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A

S

B C

ε

Figure Q28.29

Section 28.1 Electromotive Force

A battery has an emf of 15.0 V. The terminal voltage
of the battery is 11.6 V when it is delivering 20.0 W of
power to an external load resistor R. (a) What is the value
of R? (b) What is the internal resistance of the battery?

2. (a) What is the current in a 5.60-' resistor connected to a
battery that has a 0.200-' internal resistance if the termi-
nal voltage of the battery is 10.0 V? (b) What is the emf of
the battery?

3. Two 1.50-V batteries — with their positive terminals in the
same direction — are inserted in series into the barrel of a
flashlight. One battery has an internal resistance of 0.255 ',
the other an internal resistance of 0.153 '. When the
switch is closed, a current of 600 mA occurs in the lamp.
(a) What is the lamp’s resistance? (b) What fraction of the
chemical energy transformed appears as internal energy in
the batteries?

4. An automobile battery has an emf of 12.6 V and an inter-
nal resistance of 0.080 0 '. The headlights together
present equivalent resistance 5.00 ' (assumed constant).
What is the potential difference across the headlight bulbs
(a) when they are the only load on the battery and

1.

(b) when the starter motor is operated, taking an addi-
tional 35.0 A from the battery?

Section 28.2 Resistors in Series and Parallel
5. The current in a loop circuit that has a resistance of R1 is

2.00 A. The current is reduced to 1.60 A when an addi-
tional resistor R 2 # 3.00 ' is added in series with R1.
What is the value of R1?

6. (a) Find the equivalent resistance between points a and b
in Figure P28.6. (b) A potential difference of 34.0 V is
applied between points a and b. Calculate the current in
each resistor.

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide

= coached solution with hints available at http://www.pse.com = computer useful in solving problem

= paired numerical and symbolic problems

P R O B L E M S

9.00 Ω4.00 Ω

10.0 Ω

7.00 Ω

ba
Figure P28.6

23. Suppose you fall from a building and on the way down
grab a high-voltage wire. If the wire supports you as you
hang from it, will you be electrocuted? If the wire then
breaks, should you continue to hold onto an end of the
wire as you fall?

What advantage does 120-V operation offer over 240 V?
What disadvantages?

25. When electricians work with potentially live wires, they
often use the backs of their hands or fingers to move wires.
Why do you suppose they use this technique?

26. What procedure would you use to try to save a person who
is “frozen” to a live high-voltage wire without endangering
your own life?

27. If it is the current through the body that determines
how serious a shock will be, why do we see warnings of
high voltage rather than high current near electrical
equipment?

28. Suppose you are flying a kite when it strikes a high-voltage
wire. What factors determine how great a shock you
receive?

29. A series circuit consists of three identical lamps connected
to a battery as shown in Figure Q28.29. When the switch S
is closed, what happens (a) to the intensities of lamps A
and B; (b) to the intensity of lamp C; (c) to the current in
the circuit; and (d) to the voltage across the three lamps?
(e) Does the power delivered to the circuit increase,
decrease, or remain the same?

24.

30. If your car’s headlights are on when you start the ignition,
why do they dim while the car is starting?

31. A ski resort consists of a few chair lifts and several inter-
connected downhill runs on the side of a mountain, with a
lodge at the bottom. The lifts are analogous to batteries,
and the runs are analogous to resistors. Describe how two
runs can be in series. Describe how three runs can be in
parallel. Sketch a junction of one lift and two runs. State
Kirchhoff’s junction rule for ski resorts. One of the skiers
happens to be carrying a skydiver’s altimeter. She never
takes the same set of lifts and runs twice, but keeps passing
you at the fixed location where you are working. State
Kirchhoff’s loop rule for ski resorts.



7. A lightbulb marked “75 W [at] 120 V” is screwed into a
socket at one end of a long extension cord, in which each
of the two conductors has resistance 0.800 '. The other
end of the extension cord is plugged into a 120-V outlet.
Draw a circuit diagram and find the actual power deliv-
ered to the bulb in this circuit.

8. Four copper wires of equal length are connected in
series. Their cross-sectional areas are 1.00 cm2, 2.00 cm2,
3.00 cm2, and 5.00 cm2. A potential difference of 120 V is
applied across the combination. Determine the voltage
across the 2.00-cm2 wire.

Consider the circuit shown in Figure P28.9. Find
(a) the current in the 20.0-' resistor and (b) the potential
difference between points a and b.

9.

10. For the purpose of measuring the electric resistance of
shoes through the body of the wearer to a metal ground
plate, the American National Standards Institute (ANSI)
specifies the circuit shown in Figure P28.10. The potential
difference "V across the 1.00-M' resistor is measured with
a high-resistance voltmeter. (a) Show that the resistance of
the footwear is given by

(b) In a medical test, a current through the human body
should not exceed 150 )A. Can the current delivered by
the ANSI-specified circuit exceed 150 )A? To decide,
consider a person standing barefoot on the ground plate.

R shoes # 1.00 M' ! 50.0 V $ "V
"V "

12. Using only three resistors—2.00 ', 3.00 ', and 4.00 '—
find 17 resistance values that may be obtained by various
combinations of one or more resistors. Tabulate the com-
binations in order of increasing resistance.

13. The current in a circuit is tripled by connecting a 500-'
resistor in parallel with the resistance of the circuit. Deter-
mine the resistance of the circuit in the absence of the
500-' resistor.

14. A 6.00-V battery supplies current to the circuit shown in
Figure P28.14. When the double-throw switch S is open, as
shown in the figure, the current in the battery is 1.00 mA.
When the switch is closed in position 1, the current in the
battery is 1.20 mA. When the switch is closed in position 2,
the current in the battery is 2.00 mA. Find the resistances
R1, R2, and R3.
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V

1.00 MΩ

50.0 V

Figure P28.10

a

100 Ω

100 Ω

100 Ω

b

Figure P28.11

2.00 Ω

18.0 V
3.00 Ω

4.00 Ω

1.00 Ω

Figure P28.15

R1 R2

R3

6.00 V S

R2

1

2

Figure P28.14

11. Three 100-' resistors are connected as shown in Figure
P28.11. The maximum power that can safely be deliv-
ered to any one resistor is 25.0 W. (a) What is the maxi-
mum voltage that can be applied to the terminals a and
b? For the voltage determined in part (a), what is the
power delivered to each resistor? What is the total power
delivered?

20.0 Ω

a 10.0 Ω

10.0 Ω 25.0 V

5.00 Ω

b

5.00 Ω

Figure P28.9

Calculate the power delivered to each resistor in the
circuit shown in Figure P28.15.

15.
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16. Two resistors connected in series have an equivalent resis-
tance of 690 '. When they are connected in parallel, their
equivalent resistance is 150 '. Find the resistance of each
resistor.

17. An electric teakettle has a multiposition switch and two
heating coils. When only one of the coils is switched on, the
well-insulated kettle brings a full pot of water to a boil over
the time interval "t. When only the other coil is switched
on, it requires a time interval of 2"t to boil the same
amount of water. Find the time interval required to boil the
same amount of water if both coils are switched on (a) in a
parallel connection and (b) in a series connection.

18. In Figures 28.4 and 28.6, let R1 # 11.0 ', R2 # 22.0 ',
and let the battery have a terminal voltage of 33.0 V. (a) In
the parallel circuit shown in Figure 28.6, to which resistor
is more power delivered? (b) Verify that the sum of the
power (I 2R) delivered to each resistor equals the power
supplied by the battery (! # I"V ). (c) In the series
circuit, which resistor uses more power? (d) Verify that the
sum of the power (I 2R) used by each resistor equals the
power supplied by the battery (! # I"V ). (e) Which
circuit configuration uses more power?

19. Four resistors are connected to a battery as shown in
Figure P28.19. The current in the battery is I, the battery
emf is , and the resistor values are R1 # R , R2 # 2R ,
R3 # 4R, R4 # 3R. (a) Rank the resistors according to the
potential difference across them, from largest to smallest.
Note any cases of equal potential differences. (b) Deter-
mine the potential difference across each resistor in terms
of . (c) Rank the resistors according to the current in
them, from largest to smallest. Note any cases of equal
currents. (d) Determine the current in each resistor in
terms of I. (e) What If? If R3 is increased, what happens to
the current in each of the resistors? (f) In the limit that
R3 : ,, what are the new values of the current in each
resistor in terms of I, the original current in the battery?

!

!

Determine the current in each branch of the circuit
shown in Figure P28.21.

21.

22. In Figure P28.21, show how to add just enough ammeters
to measure every different current. Show how to add just
enough voltmeters to measure the potential difference
across each resistor and across each battery.

23. The circuit considered in Problem 21 and shown in Figure
P28.21 is connected for 2.00 min. (a) Find the energy
delivered by each battery. (b) Find the energy delivered to
each resistor. (c) Identify the types of energy transformations
that occur in the operation of the circuit and the total
amount of energy involved in each type of transformation.

24. Using Kirchhoff’s rules, (a) find the current in each resistor
in Figure P28.24. (b) Find the potential difference between
points c and f. Which point is at the higher potential?

7.00 Ω 15.0 V

5.00 Ω

2.00 Ω ε
I2

I1

A

Figure P28.20

60.0 V70.0 V 80.0 V

R2

a f e

R3

3.00 kΩ

2.00 kΩ

4.00 kΩcb d

ε1ε ε2ε ε3ε

R1

Figure P28.24

3.00 Ω

1.00 Ω

5.00 Ω

1.00 Ω

4.00 V
+

8.00 Ω

12.0 V
+

$

$

Figure P28.21 Problems 21, 22, and 23.

R2 = 2R

R3 = 4R

R1 = R

ε

R4 = 3R

I

Figure P28.19

Section 28.3 Kirchhoff’s Rules

20. The ammeter shown in Figure P28.20 reads 2.00 A. Find
I1, I2, and .!

Note: The currents are not necessarily in the direction
shown for some circuits.
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25. Taking R # 1.00 k' and # 250 V in Figure P28.25,
determine the direction and magnitude of the current in
the horizontal wire between a and e.

!

26. In the circuit of Figure P28.26, determine the current in
each resistor and the voltage across the 200-' resistor.

27. A dead battery is charged by connecting it to the live battery
of another car with jumper cables (Fig. P28.27). Determine
the current in the starter and in the dead battery.

28. For the network shown in Figure P28.28, show that the
resistance Rab # (27/17) '.

30. Calculate the power delivered to each resistor shown in
Figure P28.30.

Section 28.4 RC Circuits
Consider a series RC circuit (see Fig. 28.19) for which

R # 1.00 M', C # 5.00 )F, and # 30.0 V. Find (a) the
time constant of the circuit and (b) the maximum charge
on the capacitor after the switch is closed. (c) Find the
current in the resistor 10.0 s after the switch is closed.

32. A 2.00-nF capacitor with an initial charge of 5.10 )C is
discharged through a 1.30-k' resistor. (a) Calculate the
current in the resistor 9.00 )s after the resistor is con-
nected across the terminals of the capacitor. (b) What
charge remains on the capacitor after 8.00 )s? (c) What is
the maximum current in the resistor?

33. A fully charged capacitor stores energy U0. How much
energy remains when its charge has decreased to half its
original value?

34. A capacitor in an RC circuit is charged to 60.0% of its
maximum value in 0.900 s. What is the time constant of
the circuit?

35. Show that the integral in Equation (1) of Example 28.14
has the value RC/2.

36. In the circuit of Figure P28.36, the switch S has been open
for a long time. It is then suddenly closed. Determine the
time constant (a) before the switch is closed and (b) after
the switch is closed. (c) Let the switch be closed at t # 0.
Determine the current in the switch as a function of time.

!
31.

1.0 Ω

1.0 Ω 1.0 Ω

5.0 Ω3.0 Ω

a b

Figure P28.28

4.00 Ω

b

a

2.00 Ω

6.00 Ω8.00 V

12.0 V

Figure P28.29

50.0 kΩ

100 kΩ

10.0 V
S

10.0 Fµ

Figure P28.36

2.0 Ω

20 V50 V

2.0 Ω

4.0 Ω 4.0 Ω

Figure P28.30
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+
–

+
–

1.00 Ω
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Figure P28.27

ε

R
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b
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Figure P28.25

80 Ω200 Ω 20 Ω 70 Ω

40 V 360 V 80 V

Figure P28.26

For the circuit shown in Figure P28.29, calculate (a) the
current in the 2.00-' resistor and (b) the potential differ-
ence between points a and b.

29.
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The circuit in Figure P28.37 has been connected for a long
time. (a) What is the voltage across the capacitor? (b) If the
battery is disconnected, how long does it take the capacitor
to discharge to one tenth of its initial voltage?

37. Section 28.5 Electrical Meters
Assume that a galvanometer has an internal resistance of
60.0 ' and requires a current of 0.500 mA to produce full-
scale deflection. What resistance must be connected in
parallel with the galvanometer if the combination is to
serve as an ammeter that has a full-scale deflection for
a current of 0.100 A?

42. A typical galvanometer, which requires a current of
1.50 mA for full-scale deflection and has a resistance of
75.0 ', may be used to measure currents of much greater
values. To enable an operator to measure large currents
without damage to the galvanometer, a relatively small
shunt resistor is wired in parallel with the galvanometer,
as suggested in Figure 28.27. Most of the current then
goes through the shunt resistor. Calculate the value of the
shunt resistor that allows the galvanometer to be used to
measure a current of 1.00 A at full-scale deflection.
(Suggestion: use Kirchhoff’s rules.)

The same galvanometer described in the previous problem
may be used to measure voltages. In this case a large resis-
tor is wired in series with the galvanometer, as suggested in
Figure 28.29. The effect is to limit the current in the
galvanometer when large voltages are applied. Most of the
potential drop occurs across the resistor placed in series.
Calculate the value of the resistor that allows the
galvanometer to measure an applied voltage of 25.0 V at
full-scale deflection.

44. Meter loading. Work this problem to five-digit precision.
Refer to Figure P28.44. (a) When a 180.00-' resistor is
connected across a battery of emf 6.000 0 V and internal
resistance 20.000 ', what is the current in the resistor?
What is the potential difference across it? (b) Suppose
now an ammeter of resistance 0.500 00 ' and a voltmeter
of resistance 20 000 ' are added to the circuit as shown in
Figure P28.44b. Find the reading of each. (c) What If?
Now one terminal of one wire is moved, as shown in
Figure P28.44c. Find the new meter readings.

45. Design a multirange ammeter capable of full-scale deflec-
tion for 25.0 mA, 50.0 mA, and 100 mA. Assume the meter
movement is a galvanometer that has a resistance of
25.0 ' and gives a full-scale deflection for 1.00 mA.

46. Design a multirange voltmeter capable of full-scale
deflection for 20.0 V, 50.0 V, and 100 V. Assume the
meter movement is a galvanometer that has a resistance
of 60.0 ' and gives a full-scale deflection for a current of
1.00 mA.

43.

41.

10.0 V

1.00 Ω 8.00 Ω

2.00 Ω4.00 Ω

1.00 µFµ

Figure P28.37

(a)
180.00 Ω

20.000 Ω
6.000 0 V

(b)

AV

(c)

AV

Figure P28.44

38. In places such as a hospital operating room and a factory
for electronic circuit boards, electric sparks must be
avoided. A person standing on a grounded floor and
touching nothing else can typically have a body capaci-
tance of 150 pF, in parallel with a foot capacitance of
80.0 pF produced by the dielectric soles of his or her
shoes. The person acquires static electric charge from
interactions with furniture, clothing, equipment, packag-
ing materials, and essentially everything else. The static
charge is conducted to ground through the equivalent
resistance of the two shoe soles in parallel with each other.
A pair of rubber-soled street shoes can present an equiva-
lent resistance of 5 000 M'. A pair of shoes with special
static-dissipative soles can have an equivalent resistance of
1.00 M'. Consider the person’s body and shoes as
forming an RC circuit with the ground. (a) How long does
it take the rubber-soled shoes to reduce a 3 000-V static
charge to 100 V? (b) How long does it take the static-
dissipative shoes to do the same thing?

39. A 4.00-M' resistor and a 3.00-)F capacitor are connected
in series with a 12.0-V power supply. (a) What is the time
constant for the circuit? (b) Express the current in the
circuit and the charge on the capacitor as functions of
time.

40. Dielectric materials used in the manufacture of capacitors
are characterized by conductivities that are small but not
zero. Therefore, a charged capacitor slowly loses its charge
by “leaking” across the dielectric. If a capacitor having
capacitance C leaks charge such that the potential differ-
ence has decreased to half its initial (t # 0) value at a time
t, what is the equivalent resistance of the dielectric?
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47. A particular galvanometer serves as a 2.00-V full-scale volt-
meter when a 2 500-' resistor is connected in series with
it. It serves as a 0.500-A full-scale ammeter when a 0.220-'
resistor is connected in parallel with it. Determine the
internal resistance of the galvanometer and the current
required to produce full-scale deflection.

Section 28.6 Household Wiring and Electrical 
Safety

48. An 8.00-ft extension cord has two 18-gauge copper wires,
each having a diameter of 1.024 mm. At what rate is
energy delivered to the resistance in the cord when it is
carrying a current of (a) 1.00 A and (b) 10.0 A?

An electric heater is rated at 1 500 W, a toaster at
750 W, and an electric grill at 1 000 W. The three
appliances are connected to a common 120-V household
circuit. (a) How much current does each draw? (b) Is a
circuit with a 25.0-A circuit breaker sufficient in this
situation? Explain your answer.

50. Aluminum wiring has sometimes been used instead of
copper for economy. According to the National Electrical
Code, the maximum allowable current for 12-gauge
copper wire with rubber insulation is 20 A. What should
be the maximum allowable current in a 12-gauge
aluminum wire if the power per unit length delivered to
the resistance in the aluminum wire is the same as that
delivered in the copper wire?

51. Turn on your desk lamp. Pick up the cord, with your
thumb and index finger spanning the width of the cord.
(a) Compute an order-of-magnitude estimate for the
current in your hand. You may assume that at a typical
instant the conductor inside the lamp cord next to your
thumb is at potential ( 102 V and that the conductor next
to your index finger is at ground potential (0 V). The
resistance of your hand depends strongly on the thickness
and the moisture content of the outer layers of your skin.
Assume that the resistance of your hand between finger-
tip and thumb tip is ( 104 '. You may model the cord as
having rubber insulation. State the other quantities you
measure or estimate and their values. Explain your rea-
soning. (b) Suppose that your body is isolated from any
other charges or currents. In order-of-magnitude terms
describe the potential of your thumb where it contacts the
cord, and the potential of your finger where it touches
the cord.

Additional Problems
52. Four 1.50-V AA batteries in series are used to power a tran-

sistor radio. If the batteries can move a charge of 240 C,
how long will they last if the radio has a resistance of
200 '?

53. A battery has an emf of 9.20 V and an internal resistance
of 1.20 '. (a) What resistance across the battery will
extract from it a power of 12.8 W? (b) a power of 21.2 W?

54. Calculate the potential difference between points a and b
in Figure P28.54 and identify which point is at the higher
potential.

49.
55. Assume you have a battery of emf and three identical

lightbulbs, each having constant resistance R. What is the
total power delivered by the battery if the bulbs are con-
nected (a) in series? (b) in parallel? (c) For which connec-
tion will the bulbs shine the brightest?

56. A group of students on spring break manages to reach a
deserted island in their wrecked sailboat. They splash
ashore with fuel, a European gasoline-powered 240-V gen-
erator, a box of North American 100-W 120-V lightbulbs, a
500-W 120-V hot pot, lamp sockets, and some insulated
wire. While waiting to be rescued, they decide to use the
generator to operate some lightbulbs. (a) Draw a diagram
of a circuit they can use, containing the minimum number
of lightbulbs with 120 V across each bulb, and no higher
voltage. Find the current in the generator and its power
output. (b) One student catches a fish and wants to cook
it in the hot pot. Draw a diagram of a circuit containing
the hot pot and the minimum number of lightbulbs with
120 V across each device, and not more. Find the current
in the generator and its power output.

A battery has an emf and internal resistance r. A variable
load resistor R is connected across the terminals of the bat-
tery. (a) Determine the value of R such that the potential
difference across the terminals is a maximum. (b) Deter-
mine the value of R so that the current in the circuit is a
maximum. (c) Determine the value of R so that the power
delivered to the load resistor is a maximum. Choosing the
load resistance for maximum power transfer is a case of
what is called impedance matching in general. Impedance
matching is important in shifting gears on a bicycle, in
connecting a loudspeaker to an audio amplifier, in con-
necting a battery charger to a bank of solar photoelectric
cells, and in many other applications.

58. A 10.0-)F capacitor is charged by a 10.0-V battery through
a resistance R. The capacitor reaches a potential difference
of 4.00 V in a time 3.00 s after charging begins. Find R.

59. When two unknown resistors are connected in series with
a battery, the battery delivers 225 W and carries a total
current of 5.00 A. For the same total current, 50.0 W is
delivered when the resistors are connected in parallel.
Determine the values of the two resistors.

60. When two unknown resistors are connected in series with
a battery, the battery delivers total power !s and carries a
total current of I. For the same total current, a total power

!57.

!

2.00 Ω

4.00 Ω

10.0 Ω

4.00 V

12.0 V

a

b

Figure P28.54
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!p is delivered when the resistors are connected in paral-
lel. Determine the values of the two resistors.

61. A power supply has an open-circuit voltage of 40.0 V and
an internal resistance of 2.00 '. It is used to charge two
storage batteries connected in series, each having an emf
of 6.00 V and internal resistance of 0.300 '. If the
charging current is to be 4.00 A, (a) what additional
resistance should be added in series? (b) At what rate does
the internal energy increase in the supply, in the batteries,
and in the added series resistance? (c) At what rate does
the chemical energy increase in the batteries?

62. Two resistors R1 and R2 are in parallel with each other.
Together they carry total current I. (a) Determine the
current in each resistor. (b) Prove that this division of the
total current I between the two resistors results in less
power delivered to the combination than any other
division. It is a general principle that current in a direct
current circuit distributes itself so that the total power delivered to
the circuit is a minimum.

The value of a resistor R is to be determined using the
ammeter–voltmeter setup shown in Figure P28.63. The
ammeter has a resistance of 0.500 ', and the voltmeter has
a resistance of 20 000 '. Within what range of actual
values of R will the measured values be correct to within
5.00% if the measurement is made using the circuit shown
in (a) Figure P28.63a and (b) Figure P28.63b?

63.
Three 60.0-W, 120-V lightbulbs are connected across a
120-V power source, as shown in Figure P28.67. Find
(a) the total power delivered to the three bulbs and
(b) the voltage across each. Assume that the resistance of
each bulb is constant (even though in reality the resis-
tance might increase markedly with current).

67.

69. Four resistors are connected in parallel across a 9.20-V
battery. They carry currents of 150 mA, 45.0 mA,
14.00 mA, and 4.00 mA. (a) If the resistor with the largest
resistance is replaced with one having twice the resis-
tance, what is the ratio of the new current in the battery

(a)

V

R
A

V

A
R

(b)

Figure P28.63
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Figure P28.66

68. Switch S has been closed for a long time, and the electric
circuit shown in Figure P28.68 carries a constant current.
Take C1 # 3.00 )F, C2 # 6.00 )F, R1 # 4.00 k', and
R2 # 7.00 k'. The power delivered to R2 is 2.40 W.
(a) Find the charge on C1. (b) Now the switch is opened.
After many milliseconds, by how much has the charge on
C2 changed?

64. A battery is used to charge a capacitor through a resistor,
as shown in Figure 28.19. Show that half the energy sup-
plied by the battery appears as internal energy in the resis-
tor and that half is stored in the capacitor.

The values of the components in a simple series RC circuit
containing a switch (Fig. 28.19) are C # 1.00 )F, R # 2.00 .
106 ', and # 10.0 V. At the instant 10.0 s after the switch
is closed, calculate (a) the charge on the capacitor, (b) the
current in the resistor, (c) the rate at which energy is being
stored in the capacitor, and (d) the rate at which energy is
being delivered by the battery.

66. The switch in Figure P28.66a closes when "Vc + 2 "V/3
and opens when "Vc * "V/3. The voltmeter reads a
voltage as plotted in Figure P28.66b. What is the period T
of the waveform in terms of R1, R2, and C ?

!

65.
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to the original current? (b) What If? If instead the resis-
tor with the smallest resistance is replaced with one
having twice the resistance, what is the ratio of the new
total current to the original current? (c) On a February
night, energy leaves a house by several heat leaks, includ-
ing the following: 1 500 W by conduction through the
ceiling; 450 W by infiltration (air flow) around the
windows; 140 W by conduction through the basement
wall above the foundation sill; and 40.0 W by conduction
through the plywood door to the attic. To produce the
biggest saving in heating bills, which one of these energy
transfers should be reduced first?

70. Figure P28.70 shows a circuit model for the transmission
of an electrical signal, such as cable TV, to a large
number of subscribers. Each subscriber connects a load
resistance RL between the transmission line and the
ground. The ground is assumed to be at zero potential
and able to carry any current between any ground
connections with negligible resistance. The resistance of
the transmission line itself between the connection
points of different subscribers is modeled as the constant
resistance RT. Show that the equivalent resistance across
the signal source is

Suggestion: Because the number of subscribers is large,
the equivalent resistance would not change noticeably if
the first subscriber cancelled his service. Consequently, the
equivalent resistance of the section of the circuit to the
right of the first load resistor is nearly equal to Req.

Req # 1
2 [(4RTRL % RT 

2)1/2 % RT]

In Figure P28.71, suppose the switch has been closed for a
time sufficiently long for the capacitor to become fully
charged. Find (a) the steady-state current in each resistor
and (b) the charge Q on the capacitor. (c) The switch is
now opened at t # 0. Write an equation for the current 
through R2 as a function of time and (d) find the time
interval required for the charge on the capacitor to fall to
one-fifth its initial value.

IR 2

71.

72. A regular tetrahedron is a pyramid with a triangular base.
Six 10.0-' resistors are placed along its six edges, with
junctions at its four vertices. A 12.0-V battery is connected
to any two of the vertices. Find (a) the equivalent
resistance of the tetrahedron between these vertices and
(b) the current in the battery.

73. The circuit shown in Figure P28.73 is set up in the
laboratory to measure an unknown capacitance C with the
use of a voltmeter of resistance R # 10.0 M' and a battery
whose emf is 6.19 V. The data given in the table are the
measured voltages across the capacitor as a function of
time, where t # 0 represents the instant at which the switch
is opened. (a) Construct a graph of ln( /"V ) versus t, and
perform a linear least-squares fit to the data. (b) From the
slope of your graph, obtain a value for the time constant of
the circuit and a value for the capacitance.

!

74. The student engineer of a campus radio station wishes to
verify the effectiveness of the lightning rod on the antenna
mast (Fig. P28.74). The unknown resistance Rx is between
points C and E. Point E is a true ground but is inaccessible
for direct measurement since this stratum is several meters
below the Earth’s surface. Two identical rods are driven
into the ground at A and B, introducing an unknown resis-
tance Ry . The procedure is as follows. Measure resistance
R1 between points A and B, then connect A and B with a
heavy conducting wire and measure resistance R2 between

3.00 kΩ

S

R2 =15.0 kΩ

12.0 kΩ

10.0 µF

9.00 V

µ

Figure P28.71

S

C

R

Voltmeter

ε

Figure P28.73

Ry Rx

A BC

Ry

E

Figure P28.74

RT RT RT

RL RL RL
Signal
source

Figure P28.70

"V (V) t (s) ln( /"V )

6.19 0
5.55 4.87
4.93 11.1
4.34 19.4
3.72 30.8
3.09 46.6
2.47 67.3
1.83 102.2

!
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6 After Joseph Priest, "Meter Resistance: Don't Forget It!" The Physics
Teacher, January 2003, p. 40.

points A and C. (a) Derive an equation for Rx in terms of
the observable resistances, R1 and R2. (b) A satisfactory
ground resistance would be Rx * 2.00 '. Is the grounding
of the station adequate if measurements give R1 # 13.0 '
and R2 # 6.00 '?

75. The circuit in Figure P28.75 contains two resistors,
R1 # 2.00 k' and R 2 # 3.00 k', and two capacitors,
C1 # 2.00 )F and C 2 # 3.00 )F, connected to a battery with
emf # 120 V. No charge is on either capacitor before
switch S is closed. Determine the charges q1 and q2 on
capacitors C1 and C2, respectively, after the switch is closed.
(Suggestion: First reconstruct the circuit so that it becomes a
simple RC circuit containing a single resistor and single
capacitor in series, connected to the battery, and then deter-
mine the total charge q stored in the equivalent circuit.)

!

and that the voltage across the capacitor as a function of
time is

(c) What If? If the capacitor is fully charged, and the
switch is then opened, how does the voltage across the
capacitor behave in this case?

Answers to Quick Quizzes
28.1 (a). Power is delivered to the internal resistance of a bat-

tery, so decreasing the internal resistance will decrease
this “lost” power and increase the percentage of the
power delivered to the device.

28.2 (c). In a series circuit, the current is the same in all resis-
tors in series. Current is not “used up” as charges pass
through a resistor.

28.3 (a). Connecting b to c “shorts out” bulb R2 and changes
the total resistance of the circuit from R1 % R2 to just R1.
Because the resistance of the circuit has decreased (and
the emf supplied by the battery does not change), the
current in the circuit increases.

28.4 (b). When the switch is opened, resistors R1 and R2 are in
series, so that the total circuit resistance is larger than when
the switch was closed. As a result, the current decreases.

28.5 (b), (d). Adding another series resistor increases the total
resistance of the circuit and thus reduces the current in
the circuit. The potential difference across the battery ter-
minals increases because the reduced current results in a
smaller voltage decrease across the internal resistance.

28.6 (a), (e). If the second resistor were connected in paral-
lel, the total resistance of the circuit would decrease,
and the current in the battery would increase. The po-
tential difference across the terminals would decrease
because the increased current results in a greater volt-
age drop across the internal resistance.

28.7 (a). When the switch is closed, resistors R1 and R2 are
in parallel, so that the total circuit resistance is smaller
than when the switch was open. As a result, the current
increases.

28.8 (c). A current is assigned to a given branch of a circuit.
There may be multiple resistors and batteries in a given
branch.

28.9 (b), (d). Just after the switch is closed, there is no
charge on the capacitor, so there is no voltage across it.
Charges begin to flow in the circuit to charge up the ca-
pacitor, so that all of the voltage "V # IR appears across
the resistor. After a long time, the capacitor is fully
charged and the current drops to zero. Thus, the bat-
tery voltage is now entirely across the capacitor.

28.10 (c), (i). Just after the switch is closed, there is no charge
on the capacitor. Current exists in both branches of the
circuit as the capacitor begins to charge, so the right
half of the circuit is equivalent to two resistances R in
parallel for an equivalent resistance of R . After a long
time, the capacitor is fully charged and the current in
the right-hand branch drops to zero. Now, current
exists only in a resistance R across the battery.

1
2

VC #
r

r % R
  !(1 $ e$t/R eqC)

ε
+    –

R2

R1 C1

C2

a

b c

f

S

d e

Figure P28.75

Voltmeter

S

R

C

r

ε
Figure P28.76

76. This problem6 illustrates how a digital voltmeter affects the
voltage across a capacitor in an RC circuit. A digital
voltmeter of internal resistance r is used to measure the
voltage across a capacitor after the switch in Figure P28.76
is closed. Because the meter has finite resistance, part of
the current supplied by the battery passes through the
meter. (a) Apply Kirchhoff’s rules to this circuit, and use
the fact that iC # dq/dt to show that this leads to the
differential equation

where Req # rR/(r % R). (b) Show that the solution to this
differential equation is

q #
r

r % R
 C! (1 $ e$t/ReqC)

R eq 
dq
dt

%
q
C

#
r

r % R
 !
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! Magnetic fingerprinting allows fingerprints to be seen on surfaces that otherwise would
not allow prints to be lifted. The powder spread on the surface is coated with an organic
material that adheres to the greasy residue in a fingerprint. A magnetic “brush” removes the
excess powder and makes the fingerprint visible. (James King-Holmes/Photo Researchers,
Inc.)
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Many historians of science believe that the compass, which uses a magnetic needle,
was used in China as early as the 13th century B.C., its invention being of Arabic or
Indian origin. The early Greeks knew about magnetism as early as 800 B.C. They discov-
ered that the stone magnetite (Fe3O4) attracts pieces of iron. Legend ascribes the
name magnetite to the shepherd Magnes, the nails of whose shoes and the tip of whose
staff stuck fast to chunks of magnetite while he pastured his flocks.

In 1269 a Frenchman named Pierre de Maricourt found that the directions of a
needle near a spherical natural magnet formed lines that encircled the sphere and
passed through two points diametrically opposite each other, which he called the poles
of the magnet. Subsequent experiments showed that every magnet, regardless of its
shape, has two poles, called north (N) and south (S) poles, that exert forces on other
magnetic poles similar to the way that electric charges exert forces on one another.
That is, like poles (N–N or S–S) repel each other, and opposite poles (N–S) attract
each other.

The poles received their names because of the way a magnet, such as that in a
compass, behaves in the presence of the Earth’s magnetic field. If a bar magnet is sus-
pended from its midpoint and can swing freely in a horizontal plane, it will rotate until
its north pole points to the Earth’s geographic North Pole and its south pole points to
the Earth’s geographic South Pole.1

In 1600 William Gilbert (1540–1603) extended de Maricourt’s experiments to a
variety of materials. Using the fact that a compass needle orients in preferred directions,
he suggested that the Earth itself is a large permanent magnet. In 1750 experimenters
used a torsion balance to show that magnetic poles exert attractive or repulsive forces 
on each other and that these forces vary as the inverse square of the distance between in-
teracting poles. Although the force between two magnetic poles is otherwise similar to
the force between two electric charges, electric charges can be isolated (witness the
electron and proton) whereas a single magnetic pole has never been isolated. That
is, magnetic poles are always found in pairs. All attempts thus far to detect an
isolated magnetic pole have been unsuccessful. No matter how many times a permanent
magnet is cut in two, each piece always has a north and a south pole.2

The relationship between magnetism and electricity was discovered in 1819 when,
during a lecture demonstration, the Danish scientist Hans Christian Oersted found
that an electric current in a wire deflected a nearby compass needle.3 In the 1820s,

1 Note that the Earth’s geographic North Pole is magnetically a south pole, whereas its geo-
graphic South Pole is magnetically a north pole. Because opposite magnetic poles attract each
other, the pole on a magnet that is attracted to the Earth’s geographic North Pole is the magnet’s
north pole and the pole attracted to the Earth’s geographic South Pole is the magnet’s south pole.
2 There is some theoretical basis for speculating that magnetic monopoles—isolated north or
south poles—may exist in nature, and attempts to detect them are an active experimental field of
investigation.
3 The same discovery was reported in 1802 by an Italian jurist, Gian Dominico Romognosi, but
was overlooked, probably because it was published in an obscure journal.

Hans Christian
Oersted
Danish Physicist and Chemist
(1777–1851)

Oersted is best known for
observing that a compass needle
deflects when placed near a wire
carrying a current. This important
discovery was the first evidence
of the connection between
electric and magnetic
phenomena. Oersted was also
the first to prepare pure
aluminum. (North Wind Picture
Archives)



further connections between electricity and magnetism were demonstrated indepen-
dently by Faraday and Joseph Henry (1797–1878). They showed that an electric
current can be produced in a circuit either by moving a magnet near the circuit or by
changing the current in a nearby circuit. These observations demonstrate that a
changing magnetic field creates an electric field. Years later, theoretical work by
Maxwell showed that the reverse is also true: a changing electric field creates a mag-
netic field.

This chapter examines the forces that act on moving charges and on current-
carrying wires in the presence of a magnetic field. The source of the magnetic field is
described in Chapter 30.

29.1 Magnetic Fields and Forces

In our study of electricity, we described the interactions between charged objects in
terms of electric fields. Recall that an electric field surrounds any electric charge. In
addition to containing an electric field, the region of space surrounding any moving
electric charge also contains a magnetic field. A magnetic field also surrounds a mag-
netic substance making up a permanent magnet.

Historically, the symbol B has been used to represent a magnetic field, and this
is the notation we use in this text. The direction of the magnetic field B at any loca-
tion is the direction in which a compass needle points at that location. As with the
electric field, we can represent the magnetic field by means of drawings with mag-
netic field lines.

Figure 29.1 shows how the magnetic field lines of a bar magnet can be traced with
the aid of a compass. Note that the magnetic field lines outside the magnet point away
from north poles and toward south poles. One can display magnetic field patterns of a
bar magnet using small iron filings, as shown in Figure 29.2.

We can define a magnetic field B at some point in space in terms of the magnetic
force FB that the field exerts on a charged particle moving with a velocity v, which we
call the test object. For the time being, let us assume that no electric or gravitational
fields are present at the location of the test object. Experiments on various charged
particles moving in a magnetic field give the following results:

• The magnitude FB of the magnetic force exerted on the particle is proportional to
the charge q and to the speed v of the particle.

• The magnitude and direction of FB depend on the velocity of the particle and on
the magnitude and direction of the magnetic field B.

• When a charged particle moves parallel to the magnetic field vector, the magnetic
force acting on the particle is zero.

Properties of the magnetic force
on a charge moving in a mag-
netic field B

N S

Active Figure 29.1 Compass needles can be used to
trace the magnetic field lines in the region outside a
bar magnet.

At the Active Figures link
at http://www.pse6.com, you
can move the compass around
and trace the magnetic field
lines for yourself.
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• When the particle’s velocity vector makes any angle ! ! 0 with the magnetic field,
the magnetic force acts in a direction perpendicular to both v and B; that is, FB is
perpendicular to the plane formed by v and B (Fig. 29.3a).

• The magnetic force exerted on a positive charge is in the direction opposite the
direction of the magnetic force exerted on a negative charge moving in the same
direction (Fig. 29.3b).

• The magnitude of the magnetic force exerted on the moving particle is propor-
tional to sin !, where ! is the angle the particle’s velocity vector makes with the
direction of B.

We can summarize these observations by writing the magnetic force in the form

(29.1)FB " q v ! B

(a) (b) (c)

Figure 29.2 (a) Magnetic field pattern surrounding a bar magnet as displayed with
iron filings. (b) Magnetic field pattern between opposite poles (N–S) of two bar magnets.
(c) Magnetic field pattern between like poles (N–N) of two bar magnets.

(a)

FB

B
+ q

v

θ

(b)

FB

B
–

v

v FB

+

Figure 29.3 The direction of the magnetic force FB acting on a charged particle
moving with a velocity v in the presence of a magnetic field B. (a) The magnetic force is
perpendicular to both v and B. (b) Oppositely directed magnetic forces FB are exerted
on two oppositely charged particles moving at the same velocity in a magnetic field. The
dashed lines show the paths of the particles, which we will investigate in Section 29.4.
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Vector expression for the
magnetic force on a charged
particle moving in a magnetic
field



which by definition of the cross product (see Section 11.1) is perpendicular to both v
and B. We can regard this equation as an operational definition of the magnetic field
at some point in space. That is, the magnetic field is defined in terms of the force
acting on a moving charged particle.

Figure 29.4 reviews two right-hand rules for determining the direction of the cross
product v ! B and determining the direction of FB . The rule in Figure 29.4a 
depends on our right-hand rule for the cross product in Figure 11.2. Point the four
fingers of your right hand along the direction of v with the palm facing B and curl
them toward B. The extended thumb, which is at a right angle to the fingers, points
in the direction of v ! B. Because FB " q v ! B, FB is in the direction of your thumb
if q is positive and opposite the direction of your thumb if q is negative. (If you need
more help understanding the cross product, you should review pages 337 to 339, in-
cluding Fig. 11.2.)

An alternative rule is shown in Figure 29.4b. Here the thumb points in the direc-
tion of v and the extended fingers in the direction of B. Now, the force FB on a posi-
tive charge extends outward from your palm. The advantage of this rule is that the
force on the charge is in the direction that you would push on something with your
hand—outward from your palm. The force on a negative charge is in the opposite
direction. Feel free to use either of these two right-hand rules.

The magnitude of the magnetic force on a charged particle is

(29.2)

where ! is the smaller angle between v and B. From this expression, we see that FB is
zero when v is parallel or antiparallel to B (! " 0 or 180°) and maximum when v is
perpendicular to B (! " 90°).

There are several important differences between electric and magnetic forces:

• The electric force acts along the direction of the electric field, whereas the mag-
netic force acts perpendicular to the magnetic field.

• The electric force acts on a charged particle regardless of whether the particle is
moving, whereas the magnetic force acts on a charged particle only when the parti-
cle is in motion.

FB " ! q !vB  sin !

898 C H A P T E R  2 9 •  Magnetic Fields

B
FB

B

v

(a)

v

(b)

FB

Figure 29.4 Two right-hand rules for determining the direction of the magnetic force
FB " q v ! B acting on a particle with charge q moving with a velocity v in a magnetic
field B. (a) In this rule, the fingers point in the direction of v, with B coming out of
your palm, so that you can curl your fingers in the direction of B. The direction of 
v ! B, and the force on a positive charge, is the direction in which the thumb points.
(b) In this rule, the vector v is in the direction of your thumb and B in the direction of
your fingers. The force FB on a positive charge is in the direction of your palm, as if you
are pushing the particle with your hand.

Magnitude of the magnetic
force on a charged particle
moving in a magnetic field
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• The electric force does work in displacing a charged particle, whereas the magnetic
force associated with a steady magnetic field does no work when a particle is dis-
placed because the force is perpendicular to the displacement.

From the last statement and on the basis of the work–kinetic energy theorem, we
conclude that the kinetic energy of a charged particle moving through a magnetic
field cannot be altered by the magnetic field alone. In other words, when a charged
particle moves with a velocity v through a magnetic field, the field can alter the
direction of the velocity vector but cannot change the speed or kinetic energy of the
particle.

From Equation 29.2, we see that the SI unit of magnetic field is the newton per
coulomb-meter per second, which is called the tesla (T):

Because a coulomb per second is defined to be an ampere, we see that

A non-SI magnetic-field unit in common use, called the gauss (G), is related to the
tesla through the conversion 1 T " 104 G. Table 29.1 shows some typical values of mag-
netic fields.

1 T " 1 
N

A #m

1 T " 1 
N

C#m/s

Source of Field Field Magnitude (T)

Strong superconducting laboratory magnet 30
Strong conventional laboratory magnet 2
Medical MRI unit 1.5
Bar magnet 10$2

Surface of the Sun 10$2

Surface of the Earth 0.5 % 10$4

Inside human brain (due to nerve impulses) 10$13

Some Approximate Magnetic Field Magnitudes

Table 29.1

Quick Quiz 29.1 The north-pole end of a bar magnet is held near a posi-
tively charged piece of plastic. Is the plastic (a) attracted, (b) repelled, or (c) unaf-
fected by the magnet?

Quick Quiz 29.2 A charged particle moves with velocity v in a magnetic
field B. The magnetic force on the particle is a maximum when v is (a) parallel to B,
(b) perpendicular to B, (c) zero.

Quick Quiz 29.3 An electron moves in the plane of this paper toward the
top of the page. A magnetic field is also in the plane of the page and directed
toward the right. The direction of the magnetic force on the electron is (a) toward
the top of the page, (b) toward the bottom of the page, (c) toward the left edge of
the page, (d) toward the right edge of the page, (e) upward out of the page,
(f) downward into the page.

The tesla
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29.2 Magnetic Force Acting on a Current-Carrying
Conductor

If a magnetic force is exerted on a single charged particle when the particle moves
through a magnetic field, it should not surprise you that a current-carrying wire also
experiences a force when placed in a magnetic field. This follows from the fact that the
current is a collection of many charged particles in motion; hence, the resultant force
exerted by the field on the wire is the vector sum of the individual forces exerted on all
the charged particles making up the current. The force exerted on the particles is
transmitted to the wire when the particles collide with the atoms making up the wire.

Before we continue our discussion, some explanation of the notation used in 
this book is in order. To indicate the direction of B in illustrations, we sometimes 
present perspective views, such as those in Figure 29.5. If B lies in the plane of the
page or is present in a perspective drawing, we use blue vectors or blue field lines 
with arrowheads. In non-perspective illustrations, we depict a magnetic field

Example 29.1 An Electron Moving in a Magnetic Field

An electron in a television picture tube moves toward the
front of the tube with a speed of 8.0 % 106 m/s along the x
axis (Fig. 29.5). Surrounding the neck of the tube are coils
of wire that create a magnetic field of magnitude 0.025 T,
directed at an angle of 60° to the x axis and lying in the xy
plane.

(A) Calculate the magnetic force on the electron using
Equation 29.2.

Solution Using Equation 29.2, we find the magnitude of
the magnetic force:

2.8 % 10$14 N"

 " (1.6 % 10$19 C)(8.0 % 106 m/s)(0.025 T)(sin 60&)

FB " ! q !vB  sin !

Because v ! B is in the positive z direction (from the right-
hand rule) and the charge is negative, FB is in the negative z
direction.

(B) Find a vector expression for the magnetic force on the
electron using Equation 29.1.

Solution We begin by writing a vector expression for the
velocity of the electron:

and one for the magnetic field:

The force on the electron, using Equation 29.1, is

where we have used Equations 11.7a and 11.7b to eva-
luate and . Carrying out the multiplication, we
find,

This expression agrees with the result in part (A). The mag-
nitude is the same as we found there, and the force vector is
in the negative z direction.

 ($2.8 % 10$14 N)k̂FB "

î ! ĵî ! î

" ($1.6 % 10$19 C)(8.0 % 106 m/s)(0.022 T) k̂
' ($e)(8.0 % 106 m/s)(0.022 T)( î ! ĵ)

" ($e)(8.0 % 106 m/s)(0.013 T)( î ! î )

' ($e)[(8.0 % 106 î) m/s] % [(0.022 ĵ )T]

" ($e)[(8.0 % 106 î) m/s] % [(0.013 î)T]
 " ($e)[(8.0 % 106 î) m/s] % [(0.013 î ' 0.022 ĵ )T]

FB " q v % B 

 " (0.013 î ' 0.022 ĵ)T
B " (0.025 cos 60& î ' 0.025 sin 60& ĵ)T

v " (8.0 % 106 î) m/s

z

B

v

y

x

FB

60°

–e

Figure 29.5 (Example 29.1) The magnetic force FB acting on
the electron is in the negative z direction when v and B lie in
the xy plane.
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perpendicular to and directed out of the page with a series of blue dots, which
represent the tips of arrows coming toward you (see Fig. 29.6a). In this case, we label
the field Bout. If B is directed perpendicularly into the page, we use blue crosses, which
represent the feathered tails of arrows fired away from you, as in Figure 29.6b. In this
case, we label the field Bin, where the subscript “in” indicates “into the page.” The
same notation with crosses and dots is also used for other quantities that might be per-
pendicular to the page, such as forces and current directions.

One can demonstrate the magnetic force acting on a current-carrying conductor
by hanging a wire between the poles of a magnet, as shown in Figure 29.7a. For ease in
visualization, part of the horseshoe magnet in part (a) is removed to show the end face
of the south pole in parts (b), (c), and (d) of Figure 29.7. The magnetic field is
directed into the page and covers the region within the shaded squares. When the
current in the wire is zero, the wire remains vertical, as shown in Figure 29.7b.
However, when the wire carries a current directed upward, as shown in Figure 29.7c,
the wire deflects to the left. If we reverse the current, as shown in Figure 29.7d, the
wire deflects to the right.

Let us quantify this discussion by considering a straight segment of wire of length L
and cross-sectional area A, carrying a current I in a uniform magnetic field B, as shown
in Figure 29.8. The magnetic force exerted on a charge q moving with a drift velocity
vd is q vd ! B. To find the total force acting on the wire, we multiply the force q vd ! B
exerted on one charge by the number of charges in the segment. Because the volume
of the segment is AL, the number of charges in the segment is nAL, where n is the
number of charges per unit volume. Hence, the total magnetic force on the wire of
length L is

We can write this expression in a more convenient form by noting that, from Equation
27.4, the current in the wire is I " nqvdA. Therefore,

(29.3)

where L is a vector that points in the direction of the current I and has a magnitude
equal to the length L of the segment. Note that this expression applies only to a
straight segment of wire in a uniform magnetic field.

FB " I  L ! B

FB " (q vd ! B)nAL

(a)

(b)
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B into page:
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Figure 29.6 (a) Magnetic field
lines coming out of the paper are
indicated by dots, representing the
tips of arrows coming outward. 
(b) Magnetic field lines going into
the paper are indicated by crosses,
representing the feathers of arrows
going inward.
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(c) (d)(a)

Figure 29.7 (a) A wire suspended vertically between the poles of a magnet. (b) The
setup shown in part (a) as seen looking at the south pole of the magnet, so that the
magnetic field (blue crosses) is directed into the page. When there is no current in
the wire, it remains vertical. (c) When the current is upward, the wire deflects to the
left. (d) When the current is downward, the wire deflects to the right.

q
vd

A
Bin

+

FB

× × × × ×

× × × × ×

×

×
L

Figure 29.8 A segment of a
current-carrying wire in a magnetic
field B. The magnetic force
exerted on each charge making up
the current is q vd ! B and the net
force on the segment of length 
L is I L ! B.

Force on a segment of 
current-carrying wire in a 
uniform magnetic field



Now consider an arbitrarily shaped wire segment of uniform cross section in
a magnetic field, as shown in Figure 29.9. It follows from Equation 29.3 that the
magnetic force exerted on a small segment of vector length ds in the presence of a
field B is

(29.4)

where d FB is directed out of the page for the directions of B and ds in Figure 29.9. We
can consider Equation 29.4 as an alternative definition of B. That is, we can define the
magnetic field B in terms of a measurable force exerted on a current element, where
the force is a maximum when B is perpendicular to the element and zero when B is
parallel to the element.

To calculate the total force FB acting on the wire shown in Figure 29.9, we integrate
Equation 29.4 over the length of the wire:

(29.5)

where a and b represent the end points of the wire. When this integration is carried
out, the magnitude of the magnetic field and the direction the field makes with the
vector ds may differ at different points.

We now treat two interesting special cases involving Equation 29.5. In both cases,
the magnetic field is assumed to be uniform in magnitude and direction.

Case 1. A curved wire carries a current I and is located in a uniform magnetic field B,
as shown in Figure 29.10a. Because the field is uniform, we can take B outside the
integral in Equation 29.5, and we obtain

(29.6)

But the quantity ds represents the vector sum of all the length elements from a to b.
From the law of vector addition, the sum equals the vector L(, directed from a to b.
Therefore, Equation 29.6 reduces to

(29.7)

From this we conclude that the magnetic force on a curved current-carrying wire
in a uniform magnetic field is equal to that on a straight wire connecting the
end points and carrying the same current.

FB " I  L( ! B

"b
a

FB " I  #"b

a
 d s$ ! B

FB " I "b

a
 d s ! B

d FB " I ds ! B
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B
ds

I

Figure 29.9 A wire segment of
arbitrary shape carrying a current I
in a magnetic field B experiences a
magnetic force. The magnetic
force on any segment ds is I ds ! B
and is directed out of the page. You
should use the right-hand rule to
confirm this force direction.

(b)

d s

B

I

I

b

a

d s

L′

B

(a)

Figure 29.10 (a) A curved wire carrying a current I in a uniform magnetic field. 
The total magnetic force acting on the wire is equivalent to the force on a straight wire
of length L( running between the ends of the curved wire. (b) A current-carrying loop
of arbitrary shape in a uniform magnetic field. The net magnetic force on the loop 
is zero.
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Case 2. An arbitrarily shaped closed loop carrying a current I is placed in a uniform
magnetic field, as shown in Figure 29.10b. We can again express the magnetic force
acting on the loop in the form of Equation 29.6, but this time we must take the vector
sum of the length elements ds over the entire loop:

Because the set of length elements forms a closed polygon, the vector sum must be
zero. This follows from the procedure for adding vectors by the graphical method.
Because % ds " 0, we conclude that FB " 0; that is, the net magnetic force acting on
any closed current loop in a uniform magnetic field is zero.

FB " I   # & d s$ ! B

Quick Quiz 29.4 The four wires shown in Figure 29.11 all carry the same
current from point A to point B through the same magnetic field. In all four parts of
the figure, the points A and B are 10 cm apart. Rank the wires according to the magni-
tude of the magnetic force exerted on them, from greatest to least.

Quick Quiz 29.5 A wire carries current in the plane of this paper toward
the top of the page. The wire experiences a magnetic force toward the right edge of
the page. The direction of the magnetic field causing this force is (a) in the plane
of the page and toward the left edge, (b) in the plane of the page and toward the
bottom edge, (c) upward out of the page, (d) downward into the page.

A B

A

B

25°

A

B

25°

B

A

(a) (b)

(c) (d)

Figure 29.11 (Quick Quiz 29.4) Which wire experiences the greatest magnetic force?

Example 29.2 Force on a Semicircular Conductor

A wire bent into a semicircle of radius R forms a closed
circuit and carries a current I. The wire lies in the xy
plane, and a uniform magnetic field is directed along
the positive y axis, as shown in Figure 29.12. Find the
magnitude and direction of the magnetic force acting

on the straight portion of the wire and on the curved
portion.

Solution The magnetic force F1 acting on the straight por-
tion has a magnitude F1 " ILB " 2IRB because L " 2R and



29.3 Torque on a Current Loop in a Uniform 
Magnetic Field

In the preceding section, we showed how a magnetic force is exerted on a current-
carrying conductor placed in a magnetic field. With this as a starting point, we now
show that a torque is exerted on a current loop placed in a magnetic field. The results
of this analysis will be of great value when we discuss motors in Chapter 31.

Consider a rectangular loop carrying a current I in the presence of a uniform mag-
netic field directed parallel to the plane of the loop, as shown in Figure 29.13a. No
magnetic forces act on sides ! and " because these wires are parallel to the field;
hence, L ! B " 0 for these sides. However, magnetic forces do act on sides # and $
because these sides are oriented perpendicular to the field. The magnitude of these
forces is, from Equation 29.3,

The direction of F2, the magnetic force exerted on wire #, is out of the page in the view
shown in Figure 29.13a, and that of F4, the magnetic force exerted on wire $, is into the
page in the same view. If we view the loop from side " and sight along sides # and $,
we see the view shown in Figure 29.13b, and the two magnetic forces F2 and F4 are di-
rected as shown. Note that the two forces point in opposite directions but are not di-
rected along the same line of action. If the loop is pivoted so that it can rotate about
point O, these two forces produce about O a torque that rotates the loop clockwise. The
magnitude of this torque )max is

where the moment arm about O is b/2 for each force. Because the area enclosed by the
loop is A " ab, we can express the maximum torque as

(29.8)

This maximum-torque result is valid only when the magnetic field is parallel to the plane
of the loop. The sense of the rotation is clockwise when viewed from side ", as indicated
in Figure 29.13b. If the current direction were reversed, the force directions would also
reverse, and the rotational tendency would be counterclockwise.

)max " IAB

)max " F2  
b
2

' F4  
b
2

" (IaB) 
b
2

' (IaB) 
b
2

" IabB

F2 " F4 " IaB
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the wire is oriented perpendicular to B. The direction of F1
is out of the page based on the right-hand rule for the cross
product L ! B.

To find the magnetic force F2 acting on the curved part,
we use the results of Case 1. The magnetic force on the
curved portion is the same as that on a straight wire of
length 2R carrying current I to the left. Thus, F2 " ILB "
2IRB. The direction of F2 is into the page based on the
right-hand rule for the cross product L ! B.

Because the wire lies in the xy plane, the two forces on
the loop can be expressed as

The net magnetic force on the loop is

Note that this is consistent with Case 2, because the wire
forms a closed loop in a uniform magnetic field.

 '  F " F1 ' F2 " 2IR B  ̂k $ 2IR B k̂ " 0

$2IR B k̂F2 "

 2IR B k̂F1 "

R

I

B

I

Figure 29.12 (Example 29.2) The net magnetic force acting
on a closed current loop in a uniform magnetic field is zero. In
the setup shown here, the magnetic force on the straight 
portion of the loop is 2IRB and directed out of the page, and
the magnetic force on the curved portion is 2IRB directed into
the page.

(a)

b

a

I

B

(b)

B

F2

O

F4

b
2

!

"

# $

# $×

I

I

I

Figure 29.13 (a) Overhead view
of a rectangular current loop in a
uniform magnetic field. No mag-
netic forces are acting on sides !
and " because these sides are paral-
lel to B. Forces are acting on sides
# and $, however. (b) Edge view of
the loop sighting down sides # and
$ shows that the magnetic forces F2
and F4 exerted on these sides create
a torque that tends to twist the loop
clockwise. The purple dot in the left
circle represents current in wire #
coming toward you; the purple cross
in the right circle represents current
in wire $ moving away from you.
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Now suppose that the uniform magnetic field makes an angle ! * 90° with a line
perpendicular to the plane of the loop, as in Figure 29.14. For convenience, we assume
that B is perpendicular to sides # and $. In this case, the magnetic forces F1 and F3
exerted on sides ! and " cancel each other and produce no torque because they pass
through a common origin. However, the magnetic forces F2 and F4 acting on sides #
and $ produce a torque about any point. Referring to the end view shown in Figure
29.14, we note that the moment arm of F2 about the point O is equal to (b/2) sin !.
Likewise, the moment arm of F4 about O is also (b/2) sin !. Because F2 " F4 " IaB, the
magnitude of the net torque about O is

where A " ab is the area of the loop. This result shows that the torque has its
maximum value IAB when the field is perpendicular to the normal to the plane of the
loop (! " 90°), as we saw when discussing Figure 29.13, and is zero when the field is
parallel to the normal to the plane of the loop (! " 0).

A convenient expression for the torque exerted on a loop placed in a uniform
magnetic field B is

(29.9)

where A, the vector shown in Figure 29.14, is perpendicular to the plane of the loop and
has a magnitude equal to the area of the loop. We determine the direction of A using the
right-hand rule described in Figure 29.15. When you curl the fingers of your right hand
in the direction of the current in the loop, your thumb points in the direction of A. As
we see in Figure 29.14, the loop tends to rotate in the direction of decreasing values of !
(that is, such that the area vector A rotates toward the direction of the magnetic field).

The product I A is defined to be the magnetic dipole moment " (often simply
called the “magnetic moment”) of the loop:

(29.10)

The SI unit of magnetic dipole moment is ampere-meter2 (A #m2). Using this definition,
we can express the torque exerted on a current-carrying loop in a magnetic field B as

(29.11)

Note that this result is analogous to Equation 26.18, # " p ! E, for the torque exerted
on an electric dipole in the presence of an electric field E, where p is the electric
dipole moment.

# $ " ! B

" " I A

# " I A ! B

 " IAB sin !

 " IaB  # b
2

 sin !$ ' IaB  # b
2

 sin !$ " IabB sin !

) " F2  
b
2

 sin ! ' F4  
b
2

 sin !  

F2

F4

O
B

A

b
2
– sin θ

b
2
–

θ θ

θ

#

$×
Active Figure 29.14 An end view of the loop in
Figure 29.13b rotated through an angle with
respect to the magnetic field. If B is at an angle !
with respect to vector A, which is perpendicular to
the plane of the loop, the torque is IAB sin ! where
the magnitude of A is A, the area of the loop.

At the Active Figures link
at http://www.pse6.com, you
can choose the current in the
loop, the magnetic field, and
the initial orientation of the loop
and observe the subsequent
motion.

Torque on a current loop in a
magnetic field

Magnetic dipole moment of a
current loop

Torque on a magnetic moment
in a magnetic field

A

I

µ

Figure 29.15 Right-hand rule
for determining the direction of
the vector A. The direction of the
magnetic moment " is the same as
the direction of A.
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Although we obtained the torque for a particular orientation of B with respect to
the loop, the equation # " " ! B is valid for any orientation. Furthermore, although
we derived the torque expression for a rectangular loop, the result is valid for a loop of
any shape.

If a coil consists of N turns of wire, each carrying the same current and enclosing
the same area, the total magnetic dipole moment of the coil is N times the magnetic
dipole moment for one turn. The torque on an N-turn coil is N times that on a one-
turn coil. Thus, we write # " N"loop ! B " "coil ! B.

In Section 26.6, we found that the potential energy of a system of an electric dipole
in an electric field is given by U " $ p ! E. This energy depends on the orientation of
the dipole in the electric field. Likewise, the potential energy of a system of a magnetic
dipole in a magnetic field depends on the orientation of the dipole in the magnetic
field and is given by

(29.12)

From this expression, we see that the system has its lowest energy Umin " $ +B when "
points in the same direction as B. The system has its highest energy Umax " ' +B when
" points in the direction opposite B.

U " $" % B

Example 29.3 The Magnetic Dipole Moment of a Coil

A rectangular coil of dimensions 5.40 cm % 8.50 cm consists
of 25 turns of wire and carries a current of 15.0 mA. A 0.350-T
magnetic field is applied parallel to the plane of the loop.

(A) Calculate the magnitude of its magnetic dipole moment.

Solution Because the coil has 25 turns, we modify Equation
29.10 to obtain

1.72 % 10$3 A#m2"

+coil " NIA " (25)(15.0 % 10$3 A)(0.054 0 m)(0.085 0 m)

(B) What is the magnitude of the torque acting on the
loop?

Solution Because B is perpendicular to "coil, Equation
29.11 gives

6.02 % 10$4 N#m"

) " +coil B " (1.72 % 10$3 A#m2)(0.350 T)

Potential energy of a system
of a magnetic moment in a
magnetic field

Quick Quiz 29.6 Rank the magnitudes of the torques acting on the rectan-
gular loops shown edge-on in Figure 29.16, from highest to lowest. All loops are identi-
cal and carry the same current.

Quick Quiz 29.7 Rank the magnitudes of the net forces acting on the rec-
tangular loops shown in Figure 29.16, from highest to lowest. All loops are identical
and carry the same current.

(a) (b) (c)

×
×

×

Figure 29.16 (Quick Quiz 29.6) Which current loop (seen edge-on) experiences the
greatest torque? (Quick Quiz 29.7) Which current loop (seen edge-on) experiences the
greatest net force?
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Example 29.4 Satellite Attitude Control

Many satellites use coils called torquers to adjust their orien-
tation. These devices interact with the Earth’s magnetic field
to create a torque on the spacecraft in the x, y, or z direc-
tion. The major advantage of this type of attitude-control
system is that it uses solar-generated electricity and so does
not consume any thruster fuel.

If a typical device has a magnetic dipole moment of
250 A # m2, what is the maximum torque applied to a satellite
when its torquer is turned on at an altitude where the mag-
nitude of the Earth’s magnetic field is 3.0 % 10$ 5 T?

Solution We once again apply Equation 29.11, recognizing
that the maximum torque is obtained when the magnetic
dipole moment of the torquer is perpendicular to the
Earth’s magnetic field:

7.5 % 10$3 N#m"

)max " +B " (250 A#m2)(3.0 % 10$5 T)

Example 29.5 The D’Arsonval Galvanometer

An end view of a D’Arsonval galvanometer (see Section
28.5) is shown in Figure 29.17. When the turns of wire mak-
ing up the coil carry a current, the magnetic field created by
the magnet exerts on the coil a torque that turns it (along
with its attached pointer) against the spring. Show that the
angle of deflection of the pointer is directly proportional to
the current in the coil.

Solution We can use Equation 29.11 to find the torque )m
that the magnetic field exerts on the coil. If we assume that
the magnetic field through the coil is perpendicular to the
normal to the plane of the coil, Equation 29.11 becomes

(This is a reasonable assumption because the circular cross
section of the magnet ensures radial magnetic field lines.)
This magnetic torque is opposed by the torque due to the
spring, which is given by the rotational version of Hooke’s
law, )s " $ ,-, where , is the torsional spring constant and
- is the angle through which the spring turns. Because the
coil does not have an angular acceleration when the pointer
is at rest, the sum of these torques must be zero:

Equation 29.10 allows us to relate the magnetic moment of
the N turns of wire to the current through them:

+ " NIA

(1)   )m ' )s " +B $ ,- " 0

)m " +B

We can substitute this expression for + in Equation (1) to
obtain

Thus, the angle of deflection of the pointer is directly pro-
portional to the current in the loop. The factor NAB/, tells
us that deflection also depends on the design of the meter.

NAB
,

 I- "

(NIA)B $ ,- " 0

S

Coil

N

Spring

Figure 29.17 (Example 29.5) Structure of a moving-coil
galvanometer.

29.4 Motion of a Charged Particle in a Uniform 
Magnetic Field

In Section 29.1 we found that the magnetic force acting on a charged particle
moving in a magnetic field is perpendicular to the velocity of the particle and that
consequently the work done by the magnetic force on the particle is zero. Now
consider the special case of a positively charged particle moving in a uniform
magnetic field with the initial velocity vector of the particle perpendicular to the
field. Let us assume that the direction of the magnetic field is into the page, as in
Figure 29.18. As the particle changes the direction of its velocity in response to the
magnetic force, the magnetic force remains perpendicular to the velocity. As we
found in Section 6.1, if the force is always perpendicular to the velocity, the path of



the particle is a circle! Figure 29.18 shows the particle moving in a circle in a plane
perpendicular to the magnetic field.

The particle moves in a circle because the magnetic force FB is perpendicular to v
and B and has a constant magnitude qvB. As Figure 29.18 illustrates, the rotation is
counterclockwise for a positive charge. If q were negative, the rotation would be
clockwise. We can use Equation 6.1 to equate this magnetic force to the product of the
particle mass and the centripetal acceleration:

(29.13)

That is, the radius of the path is proportional to the linear momentum mv of the parti-
cle and inversely proportional to the magnitude of the charge on the particle and to
the magnitude of the magnetic field. The angular speed of the particle (from Eq.
10.10) is

(29.14)

The period of the motion (the time interval the particle requires to complete one rev-
olution) is equal to the circumference of the circle divided by the linear speed of the
particle:

(29.15)

These results show that the angular speed of the particle and the period of the circular
motion do not depend on the linear speed of the particle or on the radius of the orbit.
The angular speed . is often referred to as the cyclotron frequency because charged
particles circulate at this angular frequency in the type of accelerator called a cyclotron,
which is discussed in Section 29.5.

If a charged particle moves in a uniform magnetic field with its velocity at some
arbitrary angle with respect to B, its path is a helix. For example, if the field is directed
in the x direction, as shown in Figure 29.19, there is no component of force in the x
direction. As a result, ax " 0, and the x component of velocity remains constant.
However, the magnetic force q v ! B causes the components vy and vz to change in
time, and the resulting motion is a helix whose axis is parallel to the magnetic field.
The projection of the path onto the yz plane (viewed along the x axis) is a circle. (The
projections of the path onto the xy and xz planes are sinusoids!) Equations 29.13 to
29.15 still apply provided that v is replaced by v! ." √v 
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FB

FB

FB

Active Figure 29.18 When the
velocity of a charged particle is
perpendicular to a uniform
magnetic field, the particle moves
in a circular path in a plane
perpendicular to B. The magnetic
force FB acting on the charge is
always directed toward the center
of the circle.

At the Active Figures link
at http://www.pse6.com, you
can adjust the mass, speed,
and charge of the particle and
the magnitude of the magnetic
field to observe the resulting
circular motion.

Helical
path

B

x

+q

z

y

+

Active Figure 29.19 A charged
particle having a velocity vector
that has a component parallel to
a uniform magnetic field moves in
a helical path.

At the Active Figures link
at http://www.pse6.com, you
can adjust the x component of
the velocity of the particle and
observe the resulting helical
motion.

Quick Quiz 29.8 A charged particle is moving perpendicular to a magnetic
field in a circle with a radius r. An identical particle enters the field, with v perpendicu-
lar to B, but with a higher speed v than the first particle. Compared to the radius of the
circle for the first particle, the radius of the circle for the second particle is (a) smaller
(b) larger (c) equal in size.

Quick Quiz 29.9 A charged particle is moving perpendicular to a magnetic
field in a circle with a radius r. The magnitude of the magnetic field is increased. Com-
pared to the initial radius of the circular path, the radius of the new path is (a) smaller
(b) larger (c) equal in size.
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Example 29.7 Bending an Electron Beam

In an experiment designed to measure the magnitude of a
uniform magnetic field, electrons are accelerated from rest
through a potential difference of 350 V. The electrons travel
along a curved path because of the magnetic force exerted
on them, and the radius of the path is measured to be 7.5 cm.
(Fig. 29.20 shows such a curved beam of electrons.) If the
magnetic field is perpendicular to the beam,

(A) what is the magnitude of the field?

Solution Conceptualize the circular motion of the
electrons with the help of Figures 29.18 and 29.20. We
categorize this problem as one involving both uniform
circular motion and a magnetic force. Looking at Equation
29.13, we see that we need the speed v of the electron if we
are to find the magnetic field magnitude, and v is not given.
Consequently, we must find the speed of the electron based
on the potential difference through which it is accelerated.
Therefore, we also categorize this as a problem in conserva-
tion of mechanical energy for an isolated system. To begin
analyzing the problem, we find the electron speed. For the
isolated electron–electric field system, the loss of potential
energy as the electron moves through the 350-V potential
difference appears as an increase in the kinetic energy of
the electron. Because Ki " 0 and , we have

Now, using Equation 29.13, we find

(B) What is the angular speed of the electrons?

Solution Using Equation 29.14, we find that

8.4 % 10$4 T"

B "
me v
e r

"
(9.11 % 10$31 kg)(1.11 % 107 m/s)

(1.60 % 10$19 C)(0.075 m)

 " 1.11 % 107 m/s 

 v " √ 2e ∆V
me

" √ 2(1.60 % 10$19 C)(350 V)
9.11 % 10$31 kg

∆K ' ∆U " 0 9: 1
2me v2 ' ($e) ∆V " 0 

Kf " 1
2 me v 

2

To finalize this problem, note that the angular speed can
be represented as . " (1.5 % 108 rad/s)(1 rev/2/ rad) "
2.4 % 107 rev/s. The electrons travel around the circle 24
million times per second! This is consistent with the very
high speed that we found in part (A).

What If? What if a sudden voltage surge causes the accel-
erating voltage to increase to 400 V? How does this affect
the angular speed of the electrons, assuming that the
magnetic field remains constant?

Answer The increase in accelerating voltage 0V will cause
the electrons to enter the magnetic field with a higher speed
v. This will cause them to travel in a circle with a larger
radius r. The angular speed is the ratio of v to r. Both v and
r increase by the same factor, so that the effects cancel and
the angular speed remains the same. Equation 29.14 is an
expression for the cyclotron frequency, which is the same as
the angular speed of the electrons. The cyclotron frequency
depends only on the charge q, the magnetic field B, and the
mass me , none of which have changed. Thus, the voltage
surge has no effect on the angular speed. (However, in real-
ity, the voltage surge may also increase the magnetic field if
the magnetic field is powered by the same source as the
accelerating voltage. In this case, the angular speed will
increase according to Equation 29.14.)

1.5 % 108 rad/s. "
v
r

"
1.11 % 107 m/s

0.075 m
"

Example 29.6 A Proton Moving Perpendicular to a Uniform Magnetic Field

A proton is moving in a circular orbit of radius 14 cm in a
uniform 0.35-T magnetic field perpendicular to the velocity
of the proton. Find the linear speed of the proton.

Solution From Equation 29.13, we have

4.7 % 106 m/s"

v "
qBr
mp

"
(1.60 % 10$19 C)(0.35 T)(0.14 m)

1.67 % 10$27 kg

What If? What if an electron, rather than a proton, moves in
a direction perpendicular to the same magnetic field with this
same linear speed? Will the radius of its orbit be different?

Answer An electron has a much smaller mass than a proton,
so the magnetic force should be able to change its velocity
much easier than for the proton. Thus, we should expect the
radius to be smaller. Looking at Equation 29.13, we see that r
is proportional to m with q, B, and v the same for the electron
as for the proton. Consequently, the radius will be smaller by
the same factor as the ratio of masses me/mp .

At the Interactive Worked Example link at http://www.pse6.com, you can investigate the relationship between the radius
of the circular path of the electrons and the magnetic field.

Interactive

Figure 29.20 (Example 29.7) The bending of an electron
beam in a magnetic field.
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When charged particles move in a nonuniform magnetic field, the motion is complex.
For example, in a magnetic field that is strong at the ends and weak in the middle, such as
that shown in Figure 29.21, the particles can oscillate back and forth between two
positions. A charged particle starting at one end spirals along the field lines until it
reaches the other end, where it reverses its path and spirals back. This configuration is
known as a magnetic bottle because charged particles can be trapped within it. The
magnetic bottle has been used to confine a plasma, a gas consisting of ions and electrons.
Such a plasma-confinement scheme could fulfill a crucial role in the control of nuclear
fusion, a process that could supply us with an almost endless source of energy.
Unfortunately, the magnetic bottle has its problems. If a large number of particles are
trapped, collisions between them cause the particles to eventually leak from the system.

The Van Allen radiation belts consist of charged particles (mostly electrons and
protons) surrounding the Earth in doughnut-shaped regions (Fig. 29.22). The parti-
cles, trapped by the Earth’s nonuniform magnetic field, spiral around the field lines
from pole to pole, covering the distance in just a few seconds. These particles originate
mainly from the Sun, but some come from stars and other heavenly objects. For this
reason, the particles are called cosmic rays. Most cosmic rays are deflected by the Earth’s
magnetic field and never reach the atmosphere. However, some of the particles
become trapped; it is these particles that make up the Van Allen belts. When the parti-
cles are located over the poles, they sometimes collide with atoms in the atmosphere,
causing the atoms to emit visible light. Such collisions are the origin of the beautiful
Aurora Borealis, or Northern Lights, in the northern hemisphere and the Aurora
Australis in the southern hemisphere. Auroras are usually confined to the polar
regions because the Van Allen belts are nearest the Earth’s surface there. Occasionally,
though, solar activity causes larger numbers of charged particles to enter the belts and
significantly distort the normal magnetic field lines associated with the Earth. In these
situations an aurora can sometimes be seen at lower latitudes.

29.5 Applications Involving Charged Particles 
Moving in a Magnetic Field

A charge moving with a velocity v in the presence of both an electric field E and a mag-
netic field B experiences both an electric force qE and a magnetic force q v ! B. The
total force (called the Lorentz force) acting on the charge is

(29.16)F " q E ' q v ! B

Path of
particle

+

Figure 29.21 A charged particle
moving in a nonuniform
magnetic field (a magnetic bottle)
spirals about the field and 
oscillates between the end points.
The magnetic force exerted on 
the particle near either end of the
bottle has a component that causes
the particle to spiral back toward
the center.

S

N
Figure 29.22 The Van Allen
belts are made up of charged
particles trapped by the
Earth’s nonuniform magnetic
field. The magnetic field lines
are in blue and the particle
paths in red.

Lorentz force
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Velocity Selector

In many experiments involving moving charged particles, it is important that the particles
all move with essentially the same velocity. This can be achieved by applying a combina-
tion of an electric field and a magnetic field oriented as shown in Figure 29.23. A uniform
electric field is directed vertically downward (in the plane of the page in Fig. 29.23a), and
a uniform magnetic field is applied in the direction perpendicular to the electric field
(into the page in Fig. 29.23a). If q is positive and the velocity v is to the right, the magnetic
force q v ! B is upward and the electric force q E is downward. When the magnitudes of
the two fields are chosen so that qE " qvB, the particle moves in a straight horizontal line
through the region of the fields. From the expression qE " qvB, we find that

(29.17)

Only those particles having speed v pass undeflected through the mutually perpendic-
ular electric and magnetic fields. The magnetic force exerted on particles moving at
speeds greater than this is stronger than the electric force, and the particles are
deflected upward. Those moving at speeds less than this are deflected downward.

The Mass Spectrometer

A mass spectrometer separates ions according to their mass-to-charge ratio. In one
version of this device, known as the Bainbridge mass spectrometer, a beam of ions first
passes through a velocity selector and then enters a second uniform magnetic field B0
that has the same direction as the magnetic field in the selector (Fig. 29.24). Upon
entering the second magnetic field, the ions move in a semicircle of radius r before
striking a detector array at P. If the ions are positively charged, the beam deflects
upward, as Figure 29.24 shows. If the ions are negatively charged, the beam deflects

v "
E
B

Bin

+

E

Source

Slit
–

(a)

++++++

––––––

v

(b)

+ q

qv × B

qE

× × × × × × ×

× × × × × × ×
× × × × × × ×
× × × × × × ×
× × × × × × ×
× × × × × × ×
× × × × × × ×

Active Figure 29.23 (a) A velocity selector. When a positively charged particle is
moving with velocity v in the presence of a magnetic field directed into the page and an
electric field directed downward, it experiences a downward electric force qE and an
upward magnetic force q v ! B. (b) When these forces balance, the particle moves in a
horizontal line through the fields.
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Active Figure 29.24 A mass spectrometer. Positively charged particles are sent first
through a velocity selector and then into a region where the magnetic field B0 causes
the particles to move in a semicircular path and strike a detector array at P.

At the Active Figures link
at http://www.pse6.com, you
can adjust the electric and
magnetic fields to try to
achieve straight line motion for
the charge.

At the Active Figures link
at http://www.pse6.com, you
can predict where particles will
strike the detector array.
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downward. From Equation 29.13, we can express the ratio m/q as

Using Equation 29.17, we find that

(29.18)

Therefore, we can determine m/q by measuring the radius of curvature and knowing
the field magnitudes B, B0, and E. In practice, one usually measures the masses of vari-
ous isotopes of a given ion, with the ions all carrying the same charge q. In this way, the
mass ratios can be determined even if q is unknown.

A variation of this technique was used by J. J. Thomson (1856–1940) in 1897 to
measure the ratio e/me for electrons. Figure 29.25a shows the basic apparatus he used.
Electrons are accelerated from the cathode and pass through two slits. They then drift
into a region of perpendicular electric and magnetic fields. The magnitudes of the two
fields are first adjusted to produce an undeflected beam. When the magnetic field is
turned off, the electric field produces a measurable beam deflection that is recorded
on the fluorescent screen. From the size of the deflection and the measured values of
E and B, the charge-to-mass ratio can be determined. The results of this crucial experi-
ment represent the discovery of the electron as a fundamental particle of nature.

m
q

"
rB 0B

E

m
q

"
rB 0

v

Fluorescent
coating

–

SlitsCathode

–

+

+

+

Deflection
plates

Magnetic field coil

Deflected electron beam

Undeflected
electron
beam

(a)
Figure 29.25 (a) Thomson’s apparatus for measuring e/me . Electrons are accelerated
from the cathode, pass through two slits, and are deflected by both an electric field and
a magnetic field (directed perpendicular to the electric field). The beam of electrons
then strikes a fluorescent screen. (b) J. J. Thomson (left) in the Cavendish Laboratory,
University of Cambridge. The man on the right, Frank Baldwin Jewett, is a distant rela-
tive of John W. Jewett, Jr., co-author of this text.
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Quick Quiz 29.10 Three types of particles enter a mass spectrometer like
the one shown in Figure 29.24. Figure 29.26 shows where the particles strike the
detector array. Rank the particles that arrive at a, b, and c by speed and m/q ratio.

Figure 29.26 (Quick Quiz 29.10) Which particles have the highest speed and which
have the highest ratio of m/q?

cba

Gap for particles
from velocity

selector

(b)
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The Cyclotron

A cyclotron is a device that can accelerate charged particles to very high speeds. The
energetic particles produced are used to bombard atomic nuclei and thereby produce
nuclear reactions of interest to researchers. A number of hospitals use cyclotron facili-
ties to produce radioactive substances for diagnosis and treatment.

Both electric and magnetic forces have a key role in the operation of a cyclotron. A
schematic drawing of a cyclotron is shown in Figure 29.27a. The charges move inside
two semicircular containers D1 and D2, referred to as dees, because of their shape like
the letter D. A high-frequency alternating potential difference is applied to the dees,
and a uniform magnetic field is directed perpendicular to them. A positive ion
released at P near the center of the magnet in one dee moves in a semicircular path
(indicated by the dashed red line in the drawing) and arrives back at the gap in a time
interval T/2, where T is the time interval needed to make one complete trip around
the two dees, given by Equation 29.15. The frequency of the applied potential differ-
ence is adjusted so that the polarity of the dees is reversed in the same time interval
during which the ion travels around one dee. If the applied potential difference is
adjusted such that D2 is at a lower electric potential than D1 by an amount 0V, the ion
accelerates across the gap to D2 and its kinetic energy increases by an amount q 0V. It
then moves around D2 in a semicircular path of greater radius (because its speed has
increased). After a time interval T/2, it again arrives at the gap between the dees. By
this time, the polarity across the dees has again been reversed, and the ion is given
another “kick” across the gap. The motion continues so that for each half-circle trip
around one dee, the ion gains additional kinetic energy equal to q 0V. When the
radius of its path is nearly that of the dees, the energetic ion leaves the system through
the exit slit. Note that the operation of the cyclotron is based on the fact that T is inde-
pendent of the speed of the ion and of the radius of the circular path (Eq. 29.15).

We can obtain an expression for the kinetic energy of the ion when it exits the
cyclotron in terms of the radius R of the dees. From Equation 29.13 we know that
v " qBR/m. Hence, the kinetic energy is

(29.19)

When the energy of the ions in a cyclotron exceeds about 20 MeV, relativistic
effects come into play. (Such effects are discussed in Chapter 39.) We observe that T
increases and that the moving ions do not remain in phase with the applied potential

K " 1
2mv 

2 "
q 

2B 
2R 

2

2m

B

P

D1

D2

(a)

North pole of magnet

Particle exits here

Alternating ∆V

! PITFALL PREVENTION 
29.1 The Cyclotron Is Not

State-of-the-Art
Technology

The cyclotron is important histori-
cally because it was the first
particle accelerator to achieve very
high particle speeds. Cyclotrons
are still in use in medical appli-
cations, but most accelerators
currently in research use are not
cyclotrons. Research accelerators
work on a different principle and
are generally called synchrotrons.

Figure 29.27 (a) A cyclotron consists of an ion source at P, two dees D1 and D2 across
which an alternating potential difference is applied, and a uniform magnetic field.
(The south pole of the magnet is not shown.) The red dashed curved lines represent
the path of the particles. (b) The first cyclotron, invented by E. O. Lawrence and M. S.
Livingston in 1934.
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difference. Some accelerators overcome this problem by modifying the period of the
applied potential difference so that it remains in phase with the moving ions.

29.6 The Hall Effect

When a current-carrying conductor is placed in a magnetic field, a potential difference
is generated in a direction perpendicular to both the current and the magnetic field.
This phenomenon, first observed by Edwin Hall (1855–1938) in 1879, is known as the
Hall effect. It arises from the deflection of charge carriers to one side of the conductor
as a result of the magnetic force they experience. The Hall effect gives information
regarding the sign of the charge carriers and their density; it can also be used to
measure the magnitude of magnetic fields.

The arrangement for observing the Hall effect consists of a flat conductor carrying
a current I in the x direction, as shown in Figure 29.28. A uniform magnetic field B is
applied in the y direction. If the charge carriers are electrons moving in the negative
x direction with a drift velocity vd, they experience an upward magnetic force FB "
q vd ! B, are deflected upward, and accumulate at the upper edge of the flat conduc-
tor, leaving an excess of positive charge at the lower edge (Fig. 29.29a). This accumula-
tion of charge at the edges establishes an electric field in the conductor and increases
until the electric force on carriers remaining in the bulk of the conductor balances the
magnetic force acting on the carriers. When this equilibrium condition is reached, the
electrons are no longer deflected upward. A sensitive voltmeter or potentiometer
connected across the sample, as shown in Figure 29.29, can measure the potential
difference—known as the Hall voltage 0VH—generated across the conductor.

If the charge carriers are positive and hence move in the positive x direction (for
rightward current), as shown in Figures 29.28 and 29.29b, they also experience an
upward magnetic force q vd ! B. This produces a buildup of positive charge on the
upper edge and leaves an excess of negative charge on the lower edge. Hence, the sign
of the Hall voltage generated in the sample is opposite the sign of the Hall voltage
resulting from the deflection of electrons. The sign of the charge carriers can
therefore be determined from a measurement of the polarity of the Hall voltage.

In deriving an expression for the Hall voltage, we first note that the magnetic force
exerted on the carriers has magnitude qvdB. In equilibrium, this force is balanced by
the electric force qEH, where EH is the magnitude of the electric field due to the
charge separation (sometimes referred to as the Hall field). Therefore,

EH " vd B

qvdB " qEH

vd

y

vd

x

z

a

I

t

d

c

+

–

I

B

B
FB

FB

Figure 29.28 To observe the Hall effect, a magnetic field is applied to a current-
carrying conductor. When I is in the x direction and B in the y direction, both positive
and negative charge carriers are deflected upward in the magnetic field. The Hall
voltage is measured between points a and c.
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c

qvd × B

qEH

B

vd

a

+ ∆VH

Figure 29.29 (a) When the charge carriers in a Hall-effect apparatus are negative, the
upper edge of the conductor becomes negatively charged, and c is at a lower electric
potential than a. (b) When the charge carriers are positive, the upper edge becomes
positively charged, and c is at a higher potential than a. In either case, the charge carri-
ers are no longer deflected when the edges become sufficiently charged that there is a
balance on the charge carriers between the electrostatic force qEH and the magnetic
deflection force qvB.

If d is the width of the conductor, the Hall voltage is

(29.20)

Thus, the measured Hall voltage gives a value for the drift speed of the charge carriers
if d and B are known.

We can obtain the charge carrier density n by measuring the current in the sample.
From Equation 27.4, we can express the drift speed as

(29.21)

where A is the cross-sectional area of the conductor. Substituting Equation 29.21 into
Equation 29.20, we obtain

(29.22)

Because A " td, where t is the thickness of the conductor, we can also express Equation
29.22 as

(29.23)

where RH " 1/nq is the Hall coefficient. This relationship shows that a properly cali-
brated conductor can be used to measure the magnitude of an unknown magnetic field.

Because all quantities in Equation 29.23 other than nq can be measured, a value for
the Hall coefficient is readily obtainable. The sign and magnitude of RH give the sign
of the charge carriers and their number density. In most metals, the charge carriers are
electrons, and the charge-carrier density determined from Hall-effect measurements is
in good agreement with calculated values for such metals as lithium (Li), sodium (Na),
copper (Cu), and silver (Ag), whose atoms each give up one electron to act as a
current carrier. In this case, n is approximately equal to the number of conducting
electrons per unit volume. However, this classical model is not valid for metals such as
iron (Fe), bismuth (Bi), and cadmium (Cd) or for semiconductors. These discrepan-
cies can be explained only by using a model based on the quantum nature of solids.

An interesting medical application related to the Hall effect is the electromagnetic
blood flowmeter, first developed in the 1950s and continually improved since then.
Imagine that we replace the conductor in Figure 29.29 with an artery carrying blood.
The blood contains charged ions that experience electric and magnetic forces like the
charge carriers in the conductor. The speed of flow of these ions can be related to the
volume rate of flow of blood. Solving Equation 29.20 for the speed vd of the ions in

∆VH "
IB
nqt

"
RHIB

t

∆VH "
IBd
nqA

vd "
I

nqA

∆VH " EHd " vd Bd

The Hall voltage
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the blood, we obtain

Thus, by measuring the voltage across the artery, the diameter of the artery, and the
applied magnetic field, the speed of the blood can be calculated.

vd "
∆VH

Bd

Example 29.8 The Hall Effect for Copper

A rectangular copper strip 1.5 cm wide and 0.10 cm thick
carries a current of 5.0 A. Find the Hall voltage for a 1.2-T
magnetic field applied in a direction perpendicular to the
strip.

Solution If we assume that one electron per atom is available
for conduction, we can take the charge carrier density to be
8.49 % 1028 electrons/m3 (see Example 27.1). Substituting
this value and the given data into Equation 29.23 gives

0.44 +V∆VH "

 "
(5.0 A)(1.2 T)

(8.49 % 1028 m$3)(1.6 % 10$19 C)(0.001 0 m)

∆VH "
IB
nqt

 

Such an extremely small Hall voltage is expected in good
conductors. (Note that the width of the conductor is not
needed in this calculation.)

What If? What if the strip has the same dimensions but is
made of a semiconductor? Will the Hall voltage be smaller or
larger?

Answer In semiconductors, n is much smaller than it is in
metals that contribute one electron per atom to the current;
hence, the Hall voltage is usually larger because it varies as
the inverse of n. Currents on the order of 0.1 mA are gener-
ally used for such materials. Consider a piece of silicon that
has the same dimensions as the copper strip in this example
and whose value for n is 1.0 % 1020 electrons/m3. Taking
B " 1.2 T and I " 0.10 mA, we find that 0VH " 7.5 mV. A
potential difference of this magnitude is readily measured.

The magnetic force that acts on a charge q moving with a velocity v in a magnetic field
B is

(29.1)

The direction of this magnetic force is perpendicular both to the velocity of the parti-
cle and to the magnetic field. The magnitude of this force is

(29.2)

where ! is the smaller angle between v and B. The SI unit of B is the tesla (T), where
1 T " 1 N/A # m.

When a charged particle moves in a magnetic field, the work done by the magnetic
force on the particle is zero because the displacement is always perpendicular to the
direction of the force. The magnetic field can alter the direction of the particle’s
velocity vector, but it cannot change its speed.

If a straight conductor of length L carries a current I, the force exerted on that
conductor when it is placed in a uniform magnetic field B is

(29.3)

where the direction of L is in the direction of the current and ! L ! " L.
If an arbitrarily shaped wire carrying a current I is placed in a magnetic field, the

magnetic force exerted on a very small segment ds is

(29.4)

To determine the total magnetic force on the wire, one must integrate Equation 29.4,
keeping in mind that both B and ds may vary at each point. Integration gives for the

d  FB " I d s ! B

FB " I  L ! B

FB " ! q !vB sin !

FB " q  v ! B

S U M M A RY

Take a practice test for
this chapter by clicking on
the Practice Test link at
http://www.pse6.com.
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force exerted on a current-carrying conductor of arbitrary shape in a uniform mag-
netic field

(29.7)

where L( is a vector directed from one end of the conductor to the opposite end. Be-
cause integration of Equation 29.4 for a closed loop yields a zero result, the net mag-
netic force on any closed loop carrying a current in a uniform magnetic field is zero.

The magnetic dipole moment " of a loop carrying a current I is

(29.10)

where the area vector A is perpendicular to the plane of the loop and ! A ! is equal to
the area of the loop. The SI unit of " is A # m2.

The torque # on a current loop placed in a uniform magnetic field B is

(29.11)

The potential energy of the system of a magnetic dipole in a magnetic field is

(29.12)

If a charged particle moves in a uniform magnetic field so that its initial velocity is
perpendicular to the field, the particle moves in a circle, the plane of which is perpen-
dicular to the magnetic field. The radius of the circular path is

(29.13)

where m is the mass of the particle and q is its charge. The angular speed of the
charged particle is

(29.14). "
qB
m

r "
mv
qB

U " $" % B

# " " ! B

" " I A

FB " I  L( ! B

1. At a given instant, a proton moves in the positive x direction
through a magnetic field in the negative z direction. What
is the direction of the magnetic force? Does the proton
continue to move in the positive x direction? Explain.

Two charged particles are projected into a magnetic field
perpendicular to their velocities. If the charges are deflected
in opposite directions, what can you say about them?

3. If a charged particle moves in a straight line through some
region of space, can you say that the magnetic field in that
region is zero?

4. Suppose an electron is chasing a proton up this page when
they suddenly enter a magnetic field perpendicular to the
page. What happens to the particles?

5. How can the motion of a moving charged particle be used
to distinguish between a magnetic field and an electric
field? Give a specific example to justify your argument.

6. List several similarities and differences between electric
and magnetic forces.

7. Justify the following statement: “It is impossible for a
constant (in other words, a time-independent) magnetic
field to alter the speed of a charged particle.”

8. In view of your answer to Question 7, what is the role of a
magnetic field in a cyclotron?

2.

9. The electron beam in Figure Q29.9 is projected to the
right. The beam deflects downward in the presence of a
magnetic field produced by a pair of current-carrying coils.
(a) What is the direction of the magnetic field? (b) What
would happen to the beam if the magnetic field were
reversed in direction?

Q U E S T I O N S

Figure Q29.9
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10. A current-carrying conductor experiences no magnetic
force when placed in a certain manner in a uniform mag-
netic field. Explain.

Is it possible to orient a current loop in a uniform
magnetic field such that the loop does not tend to rotate?
Explain.

12. Explain why it is not possible to determine the
charge and the mass of a charged particle separately
by measuring accelerations produced by electric and
magnetic forces on the particle.

How can a current loop be used to determine the
presence of a magnetic field in a given region of 
space?

14. Charged particles from outer space, called cosmic rays,
strike the Earth more frequently near the poles than near
the equator. Why?

15. What is the net force on a compass needle in a uniform
magnetic field?

16. What type of magnetic field is required to exert a resultant
force on a magnetic dipole? What is the direction of the
resultant force?

17. A proton moving horizontally enters a uniform magnetic
field perpendicular to the proton’s velocity, as shown in
Figure Q29.17. Describe the subsequent motion of the
proton. How would an electron behave under the same
circumstances?

13.

11.

18. In the cyclotron, why do particles having different speeds
take the same amount of time to complete a one-half circle
trip around one dee?

19. The bubble chamber is a device used for observing tracks of
particles that pass through the chamber, which is immersed
in a magnetic field. If some of the tracks are spirals and
others are straight lines, what can you say about the
particles?

20. Can a constant magnetic field set into motion an electron
initially at rest? Explain your answer.

21. You are designing a magnetic probe that uses the Hall
effect to measure magnetic fields. Assume that you are
restricted to using a given material and that you have
already made the probe as thin as possible. What, if
anything, can be done to increase the Hall voltage
produced for a given magnitude of magnetic field?

v
+

× × ×

× × ×

× × ×

× × ×

× ××

Figure Q29.17

Section 29.1 Magnetic Fields and Forces

Determine the initial direction of the deflection of
charged particles as they enter the magnetic fields as
shown in Figure P29.1.

1.

(a) downward, (b) northward, (c) westward, or (d) south-
eastward?

3. An electron moving along the positive x axis perpendicu-
lar to a magnetic field experiences a magnetic deflection
in the negative y direction. What is the direction of the
magnetic field?

4. A proton travels with a speed of 3.00 % 106 m/s at an angle
of 37.0° with the direction of a magnetic field of 0.300 T
in the ' y direction. What are (a) the magnitude of the
magnetic force on the proton and (b) its acceleration?

A proton moves perpendicular to a uniform magnetic field
B at 1.00 % 107 m/s and experiences an acceleration of
2.00 % 1013 m/s2 in the ' x direction when its velocity is in
the ' z direction. Determine the magnitude and direction
of the field.

6. An electron is accelerated through 2 400 V from rest and
then enters a uniform 1.70-T magnetic field. What are
(a) the maximum and (b) the minimum values of the
magnetic force this charge can experience?

A proton moving at 4.00 % 106 m/s through a magnetic
field of 1.70 T experiences a magnetic force of magnitude
8.20 % 10$13 N. What is the angle between the proton’s
velocity and the field?

7.

5.

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide

= coached solution with hints available at http://www.pse6.com = computer useful in solving problem

= paired numerical and symbolic problems

P R O B L E M S
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Figure P29.1

2. Consider an electron near the Earth’s equator. In which di-
rection does it tend to deflect if its velocity is directed
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Figure P29.15 Problems 15 and 16.
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Figure P29.17

8. At the equator, near the surface of the Earth, the magnetic
field is approximately 50.0 +T northward, and the electric
field is about 100 N/C downward in fair weather. Find the
gravitational, electric, and magnetic forces on an electron
in this environment, assuming the electron has an instan-
taneous velocity of 6.00 % 106 m/s directed to the east.

A proton moves with a velocity of v " (2î $ 4 ĵ ' k̂) m/s in
a region in which the magnetic field is B " (î ' 2 ĵ $ 3k̂) T.
What is the magnitude of the magnetic force this charge
experiences?

10. An electron has a velocity of 1.20 % 104 m/s (in the posi-
tive x direction), and an acceleration of 2.00 % 1012 m/s2

(in the positive z direction) in a uniform electric and mag-
netic field. If the electric field has a magnitude of
20.0 N/C (in the positive z direction), what can you deter-
mine about the magnetic field in the region? What can
you not determine?

Section 29.2 Magnetic Force Acting on a Current-
Carrying Conductor

A wire having a mass per unit length of 0.500 g/cm
carries a 2.00-A current horizontally to the south. What are
the direction and magnitude of the minimum magnetic
field needed to lift this wire vertically upward?

12. A wire carries a steady current of 2.40 A. A straight section
of the wire is 0.750 m long and lies along the x axis within
a uniform magnetic field, B " 1.60k̂ T. If the current is 
in the ' x direction, what is the magnetic force on the
section of wire?

13. A wire 2.80 m in length carries a current of 5.00 A in a
region where a uniform magnetic field has a magnitude of
0.390 T. Calculate the magnitude of the magnetic force on
the wire assuming the angle between the magnetic field
and the current is (a) 60.0°, (b) 90.0°, (c) 120°.

14. A conductor suspended by two flexible wires as shown in
Figure P29.14 has a mass per unit length of 0.040 0 kg/m.
What current must exist in the conductor in order for
the tension in the supporting wires to be zero when the
magnetic field is 3.60 T into the page? What is the required
direction for the current?

11.

9.

15. Review Problem. A rod of mass 0.720 kg and radius
6.00 cm rests on two parallel rails (Fig. P29.15) that are
d " 12.0 cm apart and L " 45.0 cm long. The rod carries a
current of I " 48.0 A (in the direction shown) and rolls
along the rails without slipping. A uniform magnetic field

16. Review Problem. A rod of mass m and radius R rests on
two parallel rails (Fig. P29.15) that are a distance d apart
and have a length L. The rod carries a current I (in the
direction shown) and rolls along the rails without slipping.
A uniform magnetic field B is directed perpendicular to
the rod and the rails. If it starts from rest, what is the speed
of the rod as it leaves the rails?

A nonuniform magnetic field exerts a net force on a mag-
netic dipole. A strong magnet is placed under a horizontal
conducting ring of radius r that carries current I as
shown in Figure P29.17. If the magnetic field B makes an
angle ! with the vertical at the ring’s location, what are
the magnitude and direction of the resultant force on
the ring?

17.

18. In Figure P29.18, the cube is 40.0 cm on each edge. Four
straight segments of wire—ab, bc, cd, and da—form a
closed loop that carries a current I " 5.00 A, in the direc-
tion shown. A uniform magnetic field of magnitude
B " 0.020 0 T is in the positive y direction. Determine the
magnitude and direction of the magnetic force on each
segment.

of magnitude 0.240 T is directed perpendicular to the rod
and the rails. If it starts from rest, what is the speed of the
rod as it leaves the rails?
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19. Assume that in Atlanta, Georgia, the Earth’s magnetic field
is 52.0 +T northward at 60.0° below the horizontal. A tube
in a neon sign carries current 35.0 mA, between two diago-
nally opposite corners of a shop window, which lies in a
north–south vertical plane. The current enters the tube at
the bottom south corner of the window. It exits at the oppo-
site corner, which is 1.40 m farther north and 0.850 m
higher up. Between these two points, the glowing tube spells
out DONUTS. Use the theorem proved as Case 1 in the text
to determine the total vector magnetic force on the tube.

Section 29.3 Torque on a Current Loop in a Uniform
Magnetic Field

20. A current of 17.0 mA is maintained in a single circular loop
of 2.00 m circumference. A magnetic field of 0.800 T is
directed parallel to the plane of the loop. (a) Calculate the
magnetic moment of the loop. (b) What is the magnitude
of the torque exerted by the magnetic field on the loop?

21. A small bar magnet is suspended in a uniform 0.250-T
magnetic field. The maximum torque experienced by the
bar magnet is 4.60 % 10$3 N # m. Calculate the magnetic
moment of the bar magnet.

22. A long piece of wire with a mass of 0.100 kg and a total
length of 4.00 m is used to make a square coil with a side of
0.100 m. The coil is hinged along a horizontal side, carries
a 3.40-A current, and is placed in a vertical magnetic field
with a magnitude of 0.010 0 T. (a) Determine the angle
that the plane of the coil makes with the vertical when the
coil is in equilibrium. (b) Find the torque acting on the coil
due to the magnetic force at equilibrium.

A rectangular coil consists of N " 100 closely wrapped
turns and has dimensions a " 0.400 m and b " 0.300 m.
The coil is hinged along the y axis, and its plane makes an
angle ! " 30.0° with the x axis (Fig. P29.23). What is the

23.

magnitude of the torque exerted on the coil by a uniform
magnetic field B " 0.800 T directed along the x axis when
the current is I " 1.20 A in the direction shown? What is
the expected direction of rotation of the coil?

24. A 40.0-cm length of wire carries a current of 20.0 A. It is
bent into a loop and placed with its normal perpendicular
to a magnetic field with a magnitude of 0.520 T. What is
the torque on the loop if it is bent into (a) an equilateral
triangle? What If? What is the torque if the loop is (b) a
square or (c) a circle? (d) Which torque is greatest?

25. A current loop with magnetic dipole moment " is placed
in a uniform magnetic field B, with its moment making
angle ! with the field. With the arbitrary choice of U " 0
for ! " 90°, prove that the potential energy of the
dipole–field system is U " $ " ! B. You may imitate the
discussion in Chapter 26 of the potential energy of an
electric dipole in an electric field.

26. The needle of a magnetic compass has magnetic moment
9.70 mA # m2. At its location, the Earth’s magnetic field is
55.0 +T north at 48.0° below the horizontal. (a) Identify
the orientations of the compass needle that represent min-
imum potential energy and maximum potential energy of
the needle–field system. (b) How much work must be
done on the needle to move it from the former to the
latter orientation?

27. A wire is formed into a circle having a diameter of 10.0 cm
and placed in a uniform magnetic field of 3.00 mT. The
wire carries a current of 5.00 A. Find (a) the maximum
torque on the wire and (b) the range of potential energies
of the wire–field system for different orientations of the
circle.

28. The rotor in a certain electric motor is a flat rectangular
coil with 80 turns of wire and dimensions 2.50 cm by
4.00 cm. The rotor rotates in a uniform magnetic field of
0.800 T. When the plane of the rotor is perpendicular to
the direction of the magnetic field, it carries a current of
10.0 mA. In this orientation, the magnetic moment
of the rotor is directed opposite the magnetic field. The
rotor then turns through one-half revolution. This
process is repeated to cause the rotor to turn steadily at
3 600 rev/min. (a) Find the maximum torque acting on
the rotor. (b) Find the peak power output of the motor.
(c) Determine the amount of work performed by the
magnetic field on the rotor in every full revolution.
(d) What is the average power of the motor?

Section 29.4 Motion of a Charged Particle in a Uniform
Magnetic Field

29. The magnetic field of the Earth at a certain location
is directed vertically downward and has a magnitude of
50.0 +T. A proton is moving horizontally toward the west
in this field with a speed of 6.20 % 106 m/s. (a) What
are the direction and magnitude of the magnetic force
the field exerts on this charge? (b) What is the radius of
the circular arc followed by this proton?

30. A singly charged positive ion has a mass of 3.20 % 10$26 kg.
After being accelerated from rest through a potential
difference of 833 V, the ion enters a magnetic field of
0.920 T along a direction perpendicular to the direction
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of the field. Calculate the radius of the path of the ion in
the field.

31. Review Problem. One electron collides elastically with a
second electron initially at rest. After the collision, the
radii of their trajectories are 1.00 cm and 2.40 cm. The tra-
jectories are perpendicular to a uniform magnetic field of
magnitude 0.044 0 T. Determine the energy (in keV) of
the incident electron.

32. A proton moving in a circular path perpendicular to a 
constant magnetic field takes 1.00 +s to complete one 
revolution. Determine the magnitude of the magnetic
field.

A proton (charge ' e, mass mp), a deuteron (charge ' e,
mass 2mp), and an alpha particle (charge ' 2e, mass 4mp)
are accelerated through a common potential difference
0V. Each of the particles enters a uniform magnetic field
B, with its velocity in a direction perpendicular to B. The
proton moves in a circular path of radius rp . Determine
the radii of the circular orbits for the deuteron, rd , and 
the alpha particle, r1 , in terms of rp .

34. Review Problem. An electron moves in a circular path
perpendicular to a constant magnetic field of magnitude
1.00 mT. The angular momentum of the electron about
the center of the circle is 4.00 % 10$ 25 J # s. Determine
(a) the radius of the circular path and (b) the speed of the
electron.

35. Calculate the cyclotron frequency of a proton in a mag-
netic field of magnitude 5.20 T.

36. A singly charged ion of mass m is accelerated from rest by a
potential difference 0V. It is then deflected by a uniform
magnetic field (perpendicular to the ion’s velocity) into a
semicircle of radius R. Now a doubly charged ion of mass
m( is accelerated through the same potential difference
and deflected by the same magnetic field into a semicircle
of radius R( " 2R . What is the ratio of the masses of the
ions?

A cosmic-ray proton in interstellar space has an energy of
10.0 MeV and executes a circular orbit having a radius
equal to that of Mercury’s orbit around the Sun (5.80 %
1010 m). What is the magnetic field in that region of
space?

38. Figure 29.21 shows a charged particle traveling in a
nonuniform magnetic field forming a magnetic bottle.
(a) Explain why the positively charged particle in the
figure must be moving clockwise. The particle travels
along a helix whose radius decreases and whose pitch
decreases as the particle moves into a stronger magnetic
field. If the particle is moving to the right along the x axis,
its velocity in this direction will be reduced to zero and it
will be reflected from the right-hand side of the bottle,
acting as a “magnetic mirror.” The particle ends up
bouncing back and forth between the ends of the bottle.
(b) Explain qualitatively why the axial velocity is reduced
to zero as the particle moves into the region of strong
magnetic field at the end of the bottle. (c) Explain why the
tangential velocity increases as the particle approaches the
end of the bottle. (d) Explain why the orbiting particle has
a magnetic dipole moment. (e) Sketch the magnetic
moment and use the result of Problem 17 to explain again

37.

33.

how the nonuniform magnetic field exerts a force on the
orbiting particle along the x axis.

39. A singly charged positive ion moving at 4.60 % 105 m/s
leaves a circular track of radius 7.94 mm along a direction
perpendicular to the 1.80-T magnetic field of a bubble
chamber. Compute the mass (in atomic mass units) of this
ion, and, from that value, identify it.

Section 29.5 Applications Involving Charged Particles
Moving in a Magnetic Field

40. A velocity selector consists of electric and magnetic fields
described by the expressions E " E k̂ and B " B ĵ, with
B " 15.0 mT. Find the value of E such that a 750-eV
electron moving along the positive x axis is undeflected.

41. Singly charged uranium-238 ions are accelerated through
a potential difference of 2.00 kV and enter a uniform
magnetic field of 1.20 T directed perpendicular to their
velocities. (a) Determine the radius of their circular path.
(b) Repeat for uranium-235 ions. What If? How does the
ratio of these path radii depend on the accelerating
voltage and on the magnitude of the magnetic field?

42. Consider the mass spectrometer shown schematically in
Figure 29.24. The magnitude of the electric field between
the plates of the velocity selector is 2 500 V/m, and
the magnetic field in both the velocity selector and the
deflection chamber has a magnitude of 0.035 0 T.
Calculate the radius of the path for a singly charged ion
having a mass m " 2.18 % 10$26 kg.

A cyclotron designed to accelerate protons has a magnetic
field of magnitude 0.450 T over a region of radius 1.20 m.
What are (a) the cyclotron frequency and (b) the maxi-
mum speed acquired by the protons?

44. What is the required radius of a cyclotron designed to
accelerate protons to energies of 34.0 MeV using a
magnetic field of 5.20 T?

45. A cyclotron designed to accelerate protons has an outer
radius of 0.350 m. The protons are emitted nearly at rest
from a source at the center and are accelerated through
600 V each time they cross the gap between the dees. The
dees are between the poles of an electromagnet where the
field is 0.800 T. (a) Find the cyclotron frequency. (b) Find
the speed at which protons exit the cyclotron and
(c) their maximum kinetic energy. (d) How many revolu-
tions does a proton make in the cyclotron? (e) For what
time interval does one proton accelerate?

46. At the Fermilab accelerator in Batavia, Illinois, protons
having momentum 4.80 % 10$ 16 kg # m/s are held in a cir-
cular orbit of radius 1.00 km by an upward magnetic field.
What is the magnitude of this field?

The picture tube in a television uses magnetic deflec-
tion coils rather than electric deflection plates. Suppose an
electron beam is accelerated through a 50.0-kV potential
difference and then through a region of uniform magnetic
field 1.00 cm wide. The screen is located 10.0 cm from the
center of the coils and is 50.0 cm wide. When the field is
turned off, the electron beam hits the center of the screen.
What field magnitude is necessary to deflect the beam to
the side of the screen? Ignore relativistic corrections.

47.

43.
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Section 29.6 The Hall Effect

48. A flat ribbon of silver having a thickness t " 0.200 mm is
used in a Hall-effect measurement of a uniform magnetic
field perpendicular to the ribbon, as shown in Figure
P29.48. The Hall coefficient for silver is RH " 0.840 %
10$10 m3/C. (a) What is the density of charge carriers in
silver? (b) If a current I " 20.0 A produces a Hall voltage
0VH " 15.0 +V, what is the magnitude of the applied mag-
netic field?

liquid metal to be in an electrically insulating pipe having
a rectangular cross section of width w and height h. A uni-
form magnetic field perpendicular to the pipe affects a
section of length L (Fig. P29.53). An electric current
directed perpendicular to the pipe and to the magnetic
field produces a current density J in the liquid sodium.
(a) Explain why this arrangement produces on the liquid a
force that is directed along the length of the pipe.
(b) Show that the section of liquid in the magnetic field
experiences a pressure increase JLB.
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Figure P29.53

Figure P29.55

49. A flat copper ribbon 0.330 mm thick carries a steady
current of 50.0 A and is located in a uniform 1.30-T
magnetic field directed perpendicular to the plane of the
ribbon. If a Hall voltage of 9.60 +V is measured across the
ribbon, what is the charge density of the free electrons?
What effective number of free electrons per atom does this
result indicate?

50. A Hall-effect probe operates with a 120-mA current. When
the probe is placed in a uniform magnetic field of magni-
tude 0.080 0 T, it produces a Hall voltage of 0.700 +V.
(a) When it is measuring an unknown magnetic field,
the Hall voltage is 0.330 +V. What is the magnitude of the
unknown field? (b) The thickness of the probe in the direc-
tion of B is 2.00 mm. Find the density of the charge carriers,
each of which has charge of magnitude e.

In an experiment that is designed to measure the Earth’s
magnetic field using the Hall effect, a copper bar 0.500 cm
thick is positioned along an east–west direction. If a
current of 8.00 A in the conductor results in a Hall voltage
of 5.10 % 10$12 V, what is the magnitude of the Earth’s mag-
netic field? (Assume that n " 8.49 % 1028 electrons/m3

and that the plane of the bar is rotated to be perpendicular
to the direction of B.)

Additional Problems

52. Assume that the region to the right of a certain vertical
plane contains a vertical magnetic field of magnitude
1.00 mT, and the field is zero in the region to the left of the
plane. An electron, originally traveling perpendicular to
the boundary plane, passes into the region of the field.
(a) Determine the time interval required for the electron to
leave the “field-filled” region, noting that its path is a semi-
circle. (b) Find the kinetic energy of the electron if the
maximum depth of penetration into the field is 2.00 cm.

Sodium melts at 99°C. Liquid sodium, an excellent ther-
mal conductor, is used in some nuclear reactors to cool 
the reactor core. The liquid sodium is moved through
pipes by pumps that exploit the force on a moving charge
in a magnetic field. The principle is as follows. Assume the

53.

51.

54. A 0.200-kg metal rod carrying a current of 10.0 A glides on
two horizontal rails 0.500 m apart. What vertical magnetic
field is required to keep the rod moving at a constant
speed if the coefficient of kinetic friction between the rod
and rails is 0.100?

55. Protons having a kinetic energy of 5.00 MeV are moving in
the positive x direction and enter a magnetic field
B " 0.050 0k̂ T directed out of the plane of the page and
extending from x " 0 to x " 1.00 m, as shown in Figure
P29.55. (a) Calculate the y component of the protons’
momentum as they leave the magnetic field. (b) Find the
angle 1 between the initial velocity vector of the proton
beam and the velocity vector after the beam emerges
from the field. Ignore relativistic effects and note that
1 eV " 1.60 % 10$19 J.

56. (a) A proton moving in the ' x direction with velocity 
v " vi î experiences a magnetic force F " Fi ĵ in the ' y
direction. Explain what you can and cannot infer about B
from this information. (b) What If ? In terms of Fi , what
would be the force on a proton in the same field moving
with velocity v " $vi î? (c) What would be the force on an
electron in the same field moving with velocity v " vi î?
A positive charge q " 3.20 % 10$19 C moves with a velocity
v " (2î ' 3ĵ $ k̂) m/s through a region where both a uni-
form magnetic field and a uniform electric field exist.
(a) Calculate the total force on the moving charge 
(in unit-vector notation), taking B " (2î ' 4ĵ ' k̂) T and
E " (4î $ ĵ $ 2k̂) V/m. (b) What angle does the force
vector make with the positive x axis?

57.
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58. Review Problem. A wire having a linear mass density of
1.00 g/cm is placed on a horizontal surface that has a
coefficient of kinetic friction of 0.200. The wire carries a
current of 1.50 A toward the east and slides horizontally to
the north. What are the magnitude and direction of the
smallest magnetic field that enables the wire to move in
this fashion?

59. Electrons in a beam are accelerated from rest through a
potential difference 0V. The beam enters an experimental
chamber through a small hole. As shown in Figure P29.59,
the electron velocity vectors lie within a narrow cone of
half angle - oriented along the beam axis. We wish to use
a uniform magnetic field directed parallel to the axis to
focus the beam, so that all of the electrons can pass
through a small exit port on the opposite side of the
chamber after they travel the length d of the chamber.
What is the required magnitude of the magnetic field?
Hint: Because every electron passes through the same
potential difference and the angle - is small, they all
require the same time interval to travel the axial distance d.

long. The springs stretch 0.500 cm under the weight of the
wire and the circuit has a total resistance of 12.0 2. When
a magnetic field is turned on, directed out of the page, the
springs stretch an additional 0.300 cm. What is the magni-
tude of the magnetic field?

62. A hand-held electric mixer contains an electric motor.
Model the motor as a single flat compact circular coil carry-
ing electric current in a region where a magnetic field is
produced by an external permanent magnet. You need con-
sider only one instant in the operation of the motor. (We
will consider motors again in Chapter 31.) The coil moves
because the magnetic field exerts torque on the coil, as
described in Section 29.3. Make order-of-magnitude esti-
mates of the magnetic field, the torque on the coil, the
current in it, its area, and the number of turns in the coil, so
that they are related according to Equation 29.11. Note that
the input power to the motor is electric, given by ! " I 0V,
and the useful output power is mechanical, ! " )..

63. A nonconducting sphere has mass 80.0 g and radius
20.0 cm. A flat compact coil of wire with 5 turns is wrapped
tightly around it, with each turn concentric with the
sphere. As shown in Figure P29.63, the sphere is placed on
an inclined plane that slopes downward to the left, making
an angle ! with the horizontal, so that the coil is parallel to
the inclined plane. A uniform magnetic field of 0.350 T
vertically upward exists in the region of the sphere. What
current in the coil will enable the sphere to rest in equilib-
rium on the inclined plane? Show that the result does not
depend on the value of !.
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60. Review Problem. A proton is at rest at the plane vertical
boundary of a region containing a uniform vertical mag-
netic field B. An alpha particle moving horizontally makes
a head-on elastic collision with the proton. Immediately
after the collision, both particles enter the magnetic field,
moving perpendicular to the direction of the field. The
radius of the proton’s trajectory is R . Find the radius of the
alpha particle’s trajectory. The mass of the alpha particle is
four times that of the proton, and its charge is twice that of
the proton.

61. The circuit in Figure P29.61 consists of wires at the top
and bottom and identical metal springs in the left and
right sides. The upper portion of the circuit is fixed. The
wire at the bottom has a mass of 10.0 g and is 5.00 cm

64. A metal rod having a mass per unit length 3 carries a
current I. The rod hangs from two vertical wires in a
uniform vertical magnetic field as shown in Figure P29.64.
The wires make an angle ! with the vertical when in equi-
librium. Determine the magnitude of the magnetic field.
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65. A cyclotron is sometimes used for carbon dating, as
described in Chapter 44. Carbon-14 and carbon-12 ions
are obtained from a sample of the material to be dated,
and accelerated in the cyclotron. If the cyclotron has a
magnetic field of magnitude 2.40 T, what is the difference
in cyclotron frequencies for the two ions?

66. A uniform magnetic field of magnitude 0.150 T is directed
along the positive x axis. A positron moving at 5.00 %
106 m/s enters the field along a direction that makes an
angle of 85.0° with the x axis (Fig. P29.66). The motion of
the particle is expected to be a helix, as described in
Section 29.4. Calculate (a) the pitch p and (b) the radius r
of the trajectory.

70. Table P29.70 shows measurements of a Hall voltage
and corresponding magnetic field for a probe used to
measure magnetic fields. (a) Plot these data, and deduce a
relationship between the two variables. (b) If the measure-
ments were taken with a current of 0.200 A and the sample
is made from a material having a charge-carrier density of
1.00 % 1026/m3, what is the thickness of the sample?
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Consider an electron orbiting a proton and maintained in
a fixed circular path of radius R " 5.29 % 10$11 m by the
Coulomb force. Treating the orbiting charge as a current
loop, calculate the resulting torque when the system is in a
magnetic field of 0.400 T directed perpendicular to the
magnetic moment of the electron.

68. A singly charged ion completes five revolutions in a uni-
form magnetic field of magnitude 5.00 % 10$2 T in
1.50 ms. Calculate the mass of the ion in kilograms.

69. A proton moving in the plane of the page has a kinetic
energy of 6.00 MeV. A magnetic field of magnitude
B " 1.00 T is directed into the page. The proton enters
the magnetic field with its velocity vector at an angle
! " 45.0° to the linear boundary of the field as shown in
Figure P29.69. (a) Find x, the distance from the
point of entry to where the proton will leave the field.
(b) Determine !(, the angle between the boundary and
the proton’s velocity vector as it leaves the field.

67.

&VH ("V) B (T)

0 0.00
11 0.10
19 0.20
28 0.30
42 0.40
50 0.50
61 0.60
68 0.70
79 0.80
90 0.90

102 1.00

Table P29.70

71. A heart surgeon monitors the flow rate of blood through
an artery using an electromagnetic flowmeter (Fig.
P29.71). Electrodes A and B make contact with the outer
surface of the blood vessel, which has interior diameter
3.00 mm. (a) For a magnetic field magnitude of 0.040 0 T,
an emf of 160 +V appears between the electrodes. Calcu-
late the speed of the blood. (b) Verify that electrode A is
positive, as shown. Does the sign of the emf depend on
whether the mobile ions in the blood are predominantly
positively or negatively charged? Explain.

72. As shown in Figure P29.72, a particle of mass m having
positive charge q is initially traveling with velocity v ĵ. At
the origin of coordinates it enters a region between y " 0
and y " h containing a uniform magnetic field B k̂
directed perpendicularly out of the page. (a) What is the
critical value of v such that the particle just reaches y " h?
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Describe the path of the particle under this condition, and
predict its final velocity. (b) Specify the path the particle
takes and its final velocity, if v is less than the critical value.
(c) What If? Specify the path the particle takes and its
final velocity if v is greater than the critical value.

Answers to Quick Quizzes

29.1 (c). The magnetic force exerted by a magnetic field on a
charge is proportional to the charge’s velocity relative to
the field. If the charge is stationary, as in this situation,
there is no magnetic force.

29.2 (b). The maximum value of sin ! occurs for ! " 90°.

29.3 (e). The right-hand rule gives the direction. Be sure to
account for the negative charge on the electron.

29.4 (a), (b) " (c), (d). The magnitude of the force depends
on the value of sin !. The maximum force occurs when
the wire is perpendicular to the field (a), and there is

zero force when the wire is parallel (d). Choices (b) and
(c) represent the same force because Case 1 tells us that
a straight wire between A and B will have the same force
on it as the curved wire.

29.5 (c). Use the right-hand rule to determine the direction
of the magnetic field.

29.6 (c), (b), (a). Because all loops enclose the same area
and carry the same current, the magnitude of " is the
same for all. For (c), " points upward and is perpendi-
cular to the magnetic field and ) " +B, the maximum
torque possible. For the loop in (a), " points along the
direction of B and the torque is zero. For (b), the
torque is intermediate between zero and the maximum
value.

29.7 (a) " (b) " (c). Because the magnetic field is uniform,
there is zero net force on all three loops.

29.8 (b). The magnetic force on the particle increases in pro-
portion to v, but the centripetal acceleration increases
according to the square of v. The result is a larger
radius, as we can see from Equation 29.13.

29.9 (a). The magnetic force on the particle increases in pro-
portion to B. The result is a smaller radius, as we can see
from Equation 29.13.

29.10 Speed: (a) " (b) " (c). m/q ratio, from greatest to least:
(c), (b), (a). The velocity selector ensures that all three
types of particles have the same speed. We cannot deter-
mine individual masses or charges, but we can rank the
particles by m/q ratio. Equation 29.18 indicates that
those particles traveling through the circle of greatest ra-
dius have the greatest m/q ratio.
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! A proposed method for launching future payloads into space is the use of rail guns, in
which projectiles are accelerated by means of magnetic forces. This photo shows the firing
of a projectile at a speed of over 3 km/s from an experimental rail gun at Sandia National
Research Laboratories, Albuquerque, New Mexico. (Defense Threat Reduction Agency
[DTRA])
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In the preceding chapter, we discussed the magnetic force exerted on a charged
particle moving in a magnetic field. To complete the description of the magnetic
interaction, this chapter explores the origin of the magnetic field—moving charges.
We begin by showing how to use the law of Biot and Savart to calculate the magnetic
field produced at some point in space by a small current element. Using this formalism
and the principle of superposition, we then calculate the total magnetic field due to
various current distributions. Next, we show how to determine the force between two
current-carrying conductors, which leads to the definition of the ampere. We also
introduce Ampère’s law, which is useful in calculating the magnetic field of a highly
symmetric configuration carrying a steady current.

This chapter is also concerned with the complex processes that occur in magnetic
materials. All magnetic effects in matter can be explained on the basis of atomic
magnetic moments, which arise both from the orbital motion of electrons and from an
intrinsic property of electrons known as spin.

30.1 The Biot–Savart Law

Shortly after Oersted’s discovery in 1819 that a compass needle is deflected by a
current-carrying conductor, Jean-Baptiste Biot (1774–1862) and Félix Savart
(1791–1841) performed quantitative experiments on the force exerted by an
electric current on a nearby magnet. From their experimental results, Biot and
Savart arrived at a mathematical expression that gives the magnetic field at some
point in space in terms of the current that produces the field. That expression is
based on the following experimental observations for the magnetic field dB at a
point P associated with a length element ds of a wire carrying a steady current I
(Fig. 30.1):

• The vector dB is perpendicular both to ds (which points in the direction of the
current) and to the unit vector r̂ directed from ds toward P.

• The magnitude of dB is inversely proportional to r 2, where r is the distance from
ds to P.

• The magnitude of dB is proportional to the current and to the magnitude ds of the
length element ds.

• The magnitude of dB is proportional to sin !, where ! is the angle between the
vectors ds and r̂ .

These observations are summarized in the mathematical expression known today
as the Biot–Savart law:

(30.1)d B "  
#0

4$
  

I d s ! r̂
r 

2

PdBout

r

θ ds

P ′
dBin

I
r̂

×r̂

Figure 30.1 The magnetic field
dB at a point due to the current I
through a length element ds is
given by the Biot–Savart law. The
direction of the field is out of the
page at P and into the page at P%.

! PITFALL PREVENTION 
30.1 The Biot–Savart Law
The magnetic field described by
the Biot–Savart law is the field
due to a given current-carrying
conductor. Do not confuse this
field with any external field that
may be applied to the conductor
from some other source.

Biot–Savart law
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where #0 is a constant called the permeability of free space:

(30.2)

Note that the field dB in Equation 30.1 is the field created by the current in only a
small length element ds of the conductor. To find the total magnetic field B created at
some point by a current of finite size, we must sum up contributions from all current
elements I ds that make up the current. That is, we must evaluate B by integrating
Equation 30.1:

(30.3)

where the integral is taken over the entire current distribution. This expression
must be handled with special care because the integrand is a cross product
and therefore a vector quantity. We shall see one case of such an integration in
Example 30.1.

Although we developed the Biot–Savart law for a current-carrying wire, it is also
valid for a current consisting of charges flowing through space, such as the electron
beam in a television set. In that case, ds represents the length of a small segment of
space in which the charges flow.

Interesting similarities exist between Equation 30.1 for the magnetic field due
to a current element and Equation 23.9 for the electric field due to a point charge.
The magnitude of the magnetic field varies as the inverse square of the distance
from the source, as does the electric field due to a point charge. However, the direc-
tions of the two fields are quite different. The electric field created by a point
charge is radial, but the magnetic field created by a current element is
perpendicular to both the length element ds and the unit vector r̂ , as described
by the cross product in Equation 30.1. Hence, if the conductor lies in the plane
of the page, as shown in Figure 30.1, dB points out of the page at P and into the
page at P %.

Another difference between electric and magnetic fields is related to the source
of the field. An electric field is established by an isolated electric charge. The
Biot–Savart law gives the magnetic field of an isolated current element at some
point, but such an isolated current element cannot exist the way an isolated electric
charge can. A current element must be part of an extended current distribution
because we must have a complete circuit in order for charges to flow. Thus,
the Biot–Savart law (Eq. 30.1) is only the first step in a calculation of a magnetic
field; it must be followed by an integration over the current distribution, as in
Equation 30.3.

B "
# 0I
4$

 ! 
d s ! r̂

r 
2

 

#0 " 4$ & 10'7 T(m/A

Quick Quiz 30.1 Consider the current in the length of wire shown in
Figure 30.2. Rank the points A, B, and C, in terms of magnitude of the magnetic field
due to the current in the length element shown, from greatest to least.

Permeability of free space

Figure 30.2 (Quick Quiz 30.1) Where is the magnetic field the greatest?

A
ds

CB

I
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Figure 30.3 (Example 30.1) (a) A thin, straight wire carrying a
current I. The magnetic field at point P due to the current in
each element ds of the wire is out of the page, so the net field at
point P is also out of the page. (b) The angles !1 and !2 used
for determining the net field. When the wire is infinitely long,
!1 " 0 and !2 " 180°.

(a)

O
x

ds
I

θ
r̂

r a

Pds  = dx

x

(b)

θ1

P

θ2θ
θ

y

At the Interactive Worked Example link at http://www.pse6.com, you can explore the field for different lengths of wire.

Example 30.1 Magnetic Field Surrounding a Thin, Straight Conductor

Consider a thin, straight wire carrying a constant current
I and placed along the x axis as shown in Figure 30.3.
Determine the magnitude and direction of the magnetic
field at point P due to this current.

Solution From the Biot–Savart law, we expect that the
magnitude of the field is proportional to the current in
the wire and decreases as the distance a from the wire to
point P increases. We start by considering a length
element ds located a distance r from P. The direction of
the magnetic field at point P due to the current in this
element is out of the page because ds ! r̂ is out of the
page. In fact, because all of the current elements I ds lie
in the plane of the page, they all produce a magnetic field
directed out of the page at point P. Thus, we have the
direction of the magnetic field at point P, and we need
only find the magnitude. Taking the origin at O and
letting point P be along the positive y axis, with k̂ being a
unit vector pointing out of the page, we see that

where represents the magnitude of ds ! r̂ .
Because r̂ is a unit vector, the magnitude of the cross

"ds ! r̂ "

ds ! r̂ " "ds ! r̂ " k̂ " (dx sin !)k̂

product is simply the magnitude of ds, which is the length
dx. Substitution into Equation 30.1 gives

Because all current elements produce a magnetic field
in the k̂ direction, let us restrict our attention to the
magnitude of the field due to one current element, which is

To integrate this expression, we must relate the variables !,
x, and r. One approach is to express x and r in terms of !.
From the geometry in Figure 30.3a, we have

Because tan ! " a/(' x) from the right triangle in Figure
30.3a (the negative sign is necessary because ds is located at
a negative value of x), we have

x " 'a cot !

Taking the derivative of this expression gives

(3) dx " a csc2 ! d!

Substitution of Equations (2) and (3) into Equation (1) gives

an expression in which the only variable is !. We now obtain
the magnitude of the magnetic field at point P by integrat-
ing Equation (4) over all elements, where the subtending
angles range from !1 to !2 as defined in Figure 30.3b:

(30.4)

We can use this result to find the magnetic field of any
straight current-carrying wire if we know the geometry and
hence the angles !1 and !2. Consider the special case of an
infinitely long, straight wire. If we let the wire in Figure
30.3b become infinitely long, we see that !1 " 0 and !2 " $
for length elements ranging between positions x " ' ) and
x " * ). Because (cos !1 ' cos !2) " (cos 0 ' cos $) " 2,
Equation 30.4 becomes

(30.5)

Equations 30.4 and 30.5 both show that the magnitude of
the magnetic field is proportional to the current and
decreases with increasing distance from the wire, as we
expected. Notice that Equation 30.5 has the same mathe-
matical form as the expression for the magnitude of the
electric field due to a long charged wire (see Eq. 24.7).

#0I
2$a

B "

#0I
4$a

 (cos !1 ' cos !2)B "
#0I
4$a

 !!2

!1

 sin ! d! "

(4)   dB "
#0I
4$

 
a csc2 ! sin ! d!

a 
2 csc2 !

"
 #0I
4$a

  sin ! d!

(2)   r "
a

sin !
" a csc !

(1)   dB "
#0 I
4$

 
dx sin !

r 
2

d B " (dB)k̂ "
#0I
4$

 
dx sin !

r 
2  k̂

Interactive
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Figure 30.5 (Example 30.2) The magnetic field at O due to
the current in the curved segment AC is into the page. The
contribution to the field at O due to the current in the two
straight segments is zero.

Calculate the magnetic field at point O for the current-
carrying wire segment shown in Figure 30.5. The wire
consists of two straight portions and a circular arc of radius
R, which subtends an angle !. The arrowheads on the wire
indicate the direction of the current.

Solution The magnetic field at O due to the current in the
straight segments AA% and CC% is zero because ds is parallel
to r̂ along these paths; this means that ds ! r̂ " 0. Each
length element ds along path AC is at the same distance R
from O, and the current in each contributes a field element
dB directed into the page at O. Furthermore, at every
point on AC, ds is perpendicular to r̂; hence, 
Using this information and Equation 30.1, we can find the
magnitude of the field at O due to the current in an element

"ds ! r̂ " " ds.

Consider a circular wire loop of radius R located in the yz
plane and carrying a steady current I, as in Figure 30.6.
Calculate the magnetic field at an axial point P a distance x
from the center of the loop.

of length ds:

Because I and R are constants in this situation, we can easily
integrate this expression over the curved path AC :

(30.6)

where we have used the fact that s " R! with ! measured in
radians. The direction of B is into the page at O because
ds ! r̂ is into the page for every length element.

What If? What if you were asked to find the magnetic field
at the center of a circular wire loop of radius R that carries a
current I? Can we answer this question at this point in our
understanding of the source of magnetic fields?

Answer Yes, we can. We argued that the straight wires in
Figure 30.5 do not contribute to the magnetic field. The
only contribution is from the curved segment. If we imagine
increasing the angle !, the curved segment will become a
full circle when ! " 2$. Thus, we can find the magnetic
field at the center of a wire loop by letting ! " 2$ in
Equation 30.6:

We will confirm this result as a limiting case of a more
general result in Example 30.3.

B "
#0I
4$R

  2$ "
#0I
2R

 
#0I
4$R

 !B "
#0I

4$R 2  ! ds "
#0I

4$R 
2

 s "

 dB "
#0I
4$

 
ds
R2

Solution In this situation, every length element ds is per-
pendicular to the vector r̂ at the location of the element.
Thus, for any element, (1)sin 90+ " ds. Fur-
thermore, all length elements around the loop are at the

"ds ! r̂ " " (ds)

Example 30.3 Magnetic Field on the Axis of a Circular Current Loop

Example 30.2 Magnetic Field Due to a Curved Wire Segment

The result of Example 30.1 is important because a current in the form of a
long, straight wire occurs often. Figure 30.4 is a perspective view of the magnetic
field surrounding a long, straight current-carrying wire. Because of the symmetry of
the wire, the magnetic field lines are circles concentric with the wire and lie in
planes perpendicular to the wire. The magnitude of B is constant on any circle of
radius a and is given by Equation 30.5. A convenient rule for determining the
direction of B is to grasp the wire with the right hand, positioning the thumb along
the direction of the current. The four fingers wrap in the direction of the magnetic
field.

Another observation we can make in Figure 30.4 is that the magnetic field line
shown has no beginning and no end. It forms a closed loop. This is a major difference
between magnetic field lines and electric field lines, which begin on positive charges
and end on negative charges. We will explore this feature of magnetic field lines
further in Section 30.6.

a

I

B

Figure 30.4 The right-hand rule
for determining the direction of the
magnetic field surrounding a long,
straight wire carrying a current.
Note that the magnetic field lines
form circles around the wire.

ds

θO

A

r̂

C

I
C ′

A ′

R

R

Interactive
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Figure 30.6 (Example 30.3) Geometry for calculating the
magnetic field at a point P lying on the axis of a current loop.
By symmetry, the total field B is along this axis.

Figure 30.7 (Example 30.3) (a) Magnetic field lines surrounding a current loop.
(b) Magnetic field lines surrounding a current loop, displayed with iron filings.
(c) Magnetic field lines surrounding a bar magnet. Note the similarity between this
line pattern and that of a current loop.
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same distance r from P, where r 2 " x2 * R2. Hence, the
magnitude of dB due to the current in any length element
d s is

The direction of dB is perpendicular to the plane formed
by r̂ and ds, as shown in Figure 30.6. We can resolve this
vector into a component dBx along the x axis and a
component dBy perpendicular to the x axis. When the
components dBy are summed over all elements around
the loop, the resultant component is zero. That is, by sym-
metry the current in any element on one side of the loop
sets up a perpendicular component of dB that cancels the
perpendicular component set up by the current through
the element diametrically opposite it. Therefore, the resul-
tant field at P must be along the x axis and we can find it
by integrating the components dBx " dB cos !. That is,

dB "
#0I
4$

 
" d s ! r̂ "

r 
2 "

#0I
4$

 
ds

(x 
2 * R 

2)

B " Bx î where

and we must take the integral over the entire loop. Because
!, x, and R are constants for all elements of the loop and
because cos ! " R/(x 2 * R2)1/2, we obtain

(30.7)

where we have used the fact that # ds " 2$R (the circumfer-
ence of the loop).

To find the magnetic field at the center of the loop, we set
x " 0 in Equation 30.7. At this special point, therefore,

(30.8)

which is consistent with the result of the What If? feature
in Example 30.2.

The pattern of magnetic field lines for a circular current
loop is shown in Figure 30.7a. For clarity, the lines are drawn
for only one plane—one that contains the axis of the loop.
Note that the field-line pattern is axially symmetric and looks
like the pattern around a bar magnet, shown in Figure 30.7c.

What If? What if we consider points on the x axis very far
from the loop? How does the magnetic field behave at these
distant points?

Answer In this case, in which x ,, R, we can neglect the
term R2 in the denominator of Equation 30.7 and obtain

(30.9)

Because the magnitude of the magnetic moment # of the
loop is defined as the product of current and loop area (see

B $
# 0IR 

2

2x 
3   (for x  ,, R)

B "
#0I
2R

  (at x " 0)
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2)3/2Bx "
#0IR

4$(x 2 * R2)3/2   % ds "

Bx " % dB cos ! "
#0I
4$

  %  
ds cos !
x 

2 * R 
2

(a) (b) (c)

S

N

I
S

N



932 CHAPTE R  3 0 •  Sources of the Magnetic Field

30.2 The Magnetic Force Between
Two Parallel Conductors

In Chapter 29 we described the magnetic force that acts on a current-carrying conduc-
tor placed in an external magnetic field. Because a current in a conductor sets up its
own magnetic field, it is easy to understand that two current-carrying conductors exert
magnetic forces on each other. Such forces can be used as the basis for defining the
ampere and the coulomb.

Consider two long, straight, parallel wires separated by a distance a and carrying
currents I1 and I2 in the same direction, as in Figure 30.8. We can determine the force
exerted on one wire due to the magnetic field set up by the other wire. Wire 2, which
carries a current I2 and is identified arbitrarily as the source wire, creates a magnetic field
B2 at the location of wire 1, the test wire. The direction of B2 is perpendicular to wire 1, as
shown in Figure 30.8. According to Equation 29.3, the magnetic force on a length ! of
wire 1 is F1 " I1" ! B2. Because " is perpendicular to B2 in this situation, the magnitude
of F1 is F1 " I1!B 2. Because the magnitude of B2 is given by Equation 30.5, we see that

(30.11)

The direction of F1 is toward wire 2 because " ! B2 is in that direction. If the field set
up at wire 2 by wire 1 is calculated, the force F2 acting on wire 2 is found to be equal in
magnitude and opposite in direction to F1. This is what we expect because Newton’s
third law must be obeyed.1 When the currents are in opposite directions (that is, when
one of the currents is reversed in Fig. 30.8), the forces are reversed and the wires repel
each other. Hence, parallel conductors carrying currents in the same direction
attract each other, and parallel conductors carrying currents in opposite direc-
tions repel each other.

Because the magnitudes of the forces are the same on both wires, we denote the
magnitude of the magnetic force between the wires as simply FB. We can rewrite this
magnitude in terms of the force per unit length:

(30.12)

The force between two parallel wires is used to define the ampere as follows:

FB

!
"

#0I1I2

2$a

F1 " I1!B 2 " I1! & #0I2

2$a ' "
#0I1I2

2$a
  !

Eq. 29.10), # " I($R2) for our circular loop. We can
express Equation 30.9 as

(30.10)B $
#0

2$
 

#

x 
3

This result is similar in form to the expression for the
electric field due to an electric dipole, E " ke(2qa/y3) (see
Example 23.6), where 2qa " p is the electric dipole moment
as defined in Equation 26.16.

At the Interactive Worked Example link at http://www.pse6.com, you can explore the field for different loop radii.

Active Figure 30.8 Two parallel
wires that each carry a steady
current exert a magnetic force on
each other. The field B2 due to the
current in wire 2 exerts a magnetic
force of magnitude F1 " I1!B2 on
wire 1. The force is attractive if the
currents are parallel (as shown)
and repulsive if the currents are
antiparallel.

At the Active Figures link
at http://www.pse6.com, you
can adjust the currents in the
wires and the distance between
them to see the effect on the
force.

2

1

B2

!

a

I1

I2

F1

a

When the magnitude of the force per unit length between two long parallel wires
that carry identical currents and are separated by 1 m is 2 & 10'7 N/m, the current
in each wire is defined to be 1 A.

Definition of the ampere

1 Although the total force exerted on wire 1 is equal in magnitude and opposite in direction to
the total force exerted on wire 2, Newton’s third law does not apply when one considers two
small elements of the wires that are not exactly opposite each other. This apparent violation of
Newton’s third law and of the law of conservation of momentum is described in more advanced
treatments on electricity and magnetism.



30.3 Ampère’s Law

Oersted’s 1819 discovery about deflected compass needles demonstrates that a
current-carrying conductor produces a magnetic field. Figure 30.9a shows how
this effect can be demonstrated in the classroom. Several compass needles
are placed in a horizontal plane near a long vertical wire. When no current is
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Quick Quiz 30.2 For I1 " 2 A and I2 " 6 A in Figure 30.8, which is true:
(a) F1 " 3F2, (b) F1 " F2/3, (c) F1 " F2?

Quick Quiz 30.3 A loose spiral spring carrying no current is hung from the
ceiling. When a switch is thrown so that a current exists in the spring, do the coils move
(a) closer together, (b) farther apart, or (c) do they not move at all?

When a conductor carries a steady current of 1 A, the quantity of charge that flows
through a cross section of the conductor in 1 s is 1 C.

The value 2 & 10'7 N/m is obtained from Equation 30.12 with I1 " I2 " 1 A and
a " 1 m. Because this definition is based on a force, a mechanical measurement can be
used to standardize the ampere. For instance, the National Institute of Standards and
Technology uses an instrument called a current balance for primary current measure-
ments. The results are then used to standardize other, more conventional instruments,
such as ammeters.

The SI unit of charge, the coulomb, is defined in terms of the ampere:

Andre-Marie Ampère
French Physicist (1775–1836)

Ampère is credited with the
discovery of electromagnetism—
the relationship between electric
currents and magnetic fields.
Ampère’s genius, particularly in
mathematics, became evident
by the time he was 12 years old;
his personal life, however, was
filled with tragedy. His father,
a wealthy city official, was
guillotined during the French
Revolution, and his wife died
young, in 1803. Ampère died at
the age of 61 of pneumonia. His
judgment of his life is clear from
the epitaph he chose for his
gravestone: Tandem Felix
(Happy at Last). (Leonard de
Selva/CORBIS)

In deriving Equations 30.11 and 30.12, we assumed that both wires are long
compared with their separation distance. In fact, only one wire needs to be long. The
equations accurately describe the forces exerted on each other by a long wire and a
straight parallel wire of limited length !.

Active Figure 30.9 (a) When no current is present in the wire, all compass needles
point in the same direction (toward the Earth’s north pole). (b) When the wire carries
a strong current, the compass needles deflect in a direction tangent to the circle, which
is the direction of the magnetic field created by the current. (c) Circular magnetic field
lines surrounding a current-carrying conductor, displayed with iron filings.
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At the Active Figures link
at http://www.pse6.com, you
can change the value of the
current to see the effect on the
compasses.

(c)



present in the wire, all the needles point in the same direction (that of
the Earth’s magnetic field), as expected. When the wire carries a strong, steady
current, the needles all deflect in a direction tangent to the circle, as in Figure
30.9b. These observations demonstrate that the direction of the magnetic field
produced by the current in the wire is consistent with the right-hand rule described
in Figure 30.4. When the current is reversed, the needles in Figure 30.9b also
reverse.

Because the compass needles point in the direction of B, we conclude that
the lines of B form circles around the wire, as discussed in the preceding section.
By symmetry, the magnitude of B is the same everywhere on a circular path
centered on the wire and lying in a plane perpendicular to the wire. By varying the
current and distance a from the wire, we find that B is proportional to the
current and inversely proportional to the distance from the wire, as Equation 30.5
describes.

Now let us evaluate the product B ( ds for a small length element ds on the
circular path defined by the compass needles, and sum the products for all elements
over the closed circular path.2 Along this path, the vectors ds and B are parallel
at each point (see Fig. 30.9b), so B ( ds " B ds. Furthermore, the magnitude
of B is constant on this circle and is given by Equation 30.5. Therefore, the sum of
the products B ds over the closed path, which is equivalent to the line integral
of B ( ds, is

where #ds " 2$r is the circumference of the circular path. Although this result was
calculated for the special case of a circular path surrounding a wire, it holds
for a closed path of any shape (an amperian loop) surrounding a current that exists
in an unbroken circuit. The general case, known as Ampère’s law, can be stated
as follows:

%  B (ds " B  %  ds "
#0I
2$r

 (2$ r) " #0I
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! PITFALL PREVENTION 
30.2 Avoiding Problems

with Signs
When using Ampère’s law, apply
the following right-hand rule.
Point your thumb in the direction
of the current through the amper-
ian loop. Your curled fingers then
point in the direction that you
should integrate around the loop
in order to avoid having to define
the current as negative.

Ampère’s law

The line integral of B ( ds around any closed path equals #0I, where I is the total
steady current passing through any surface bounded by the closed path.

(30.13)%  B (d s " #0I

Ampère’s law describes the creation of magnetic fields by all continuous current
configurations, but at our mathematical level it is useful only for calculating the
magnetic field of current configurations having a high degree of symmetry. Its use is
similar to that of Gauss’s law in calculating electric fields for highly symmetric charge
distributions.

Quick Quiz 30.4 Rank the magnitudes of # B ( ds for the closed paths in
Figure 30.10, from least to greatest.

×

1 A
5 A

b

a

d

c

2 A

Figure 30.10 (Quick Quiz 30.4)
Four closed paths around three
current-carrying wires.

2 You may wonder why we would choose to do this. The origin of Ampère’s law is in nineteenth
century science, in which a “magnetic charge” (the supposed analog to an isolated electric
charge) was imagined to be moved around a circular field line. The work done on the charge was
related to B ( ds, just as the work done moving an electric charge in an electric field is related to
E ( ds. Thus, Ampère’s law, a valid and useful principle, arose from an erroneous and abandoned
work calculation!
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A long, straight wire of radius R carries a steady current I
that is uniformly distributed through the cross section of
the wire (Fig. 30.12). Calculate the magnetic field a
distance r from the center of the wire in the regions r - R
and r . R.

Solution Figure 30.12 helps us to conceptualize the wire
and the current. Because the wire has a high degree of
symmetry, we categorize this as an Ampère’s law problem.
For the r - R case, we should arrive at the same result
we obtained in Example 30.1, in which we applied
the Biot–Savart law to the same situation. To analyze the
problem, let us choose for our path of integration circle 1
in Figure 30.12. From symmetry, B must be constant in
magnitude and parallel to ds at every point on this circle.
Because the total current passing through the plane of the

Quick Quiz 30.5 Rank the magnitudes of # B ( ds for the closed paths in
Figure 30.11, from least to greatest.

a

b

c

d

Figure 30.11 (Quick Quiz 30.5) Several closed paths near a single current-carrying wire.

Example 30.4 The Magnetic Field Created by a Long Current-Carrying Wire

circle is I, Ampère’s law gives

(for r - R) (30.14)

which is identical in form to Equation 30.5. Note how
much easier it is to use Ampère’s law than to use the
Biot–Savart law. This is often the case in highly symmetric
situations.

Now consider the interior of the wire, where r . R .
Here the current I % passing through the plane of circle 2 is
less than the total current I. Because the current is uniform
over the cross section of the wire, the fraction of the current
enclosed by circle 2 must equal the ratio of the area $r 2

enclosed by circle 2 to the cross-sectional area $R 2 of the
wire:3

Following the same procedure as for circle 1, we apply
Ampère’s law to circle 2:

%  B (d s " B(2$r) " #0I % " #0 & r 2

R2  I'

I % "
r 

2

R 
2   I

 
I %

I
"

$r 
2

$R 
2  

#0I
2$r

B "

%  B (ds " B % ds " B(2$r) " #0I

Figure 30.12 (Example 30.4) A long, straight wire of radius R
carrying a steady current I uniformly distributed across the
cross section of the wire. The magnetic field at any point can be
calculated from Ampère’s law using a circular path of radius r,
concentric with the wire.

2
R

r

1 I

ds

3 Another way to look at this problem is to realize that the current enclosed by circle 2 must
equal the product of the current density J " I/$R2 and the area $r 2 of this circle.
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due to an infinite sheet of charge does not depend on
distance from the sheet. Thus, we might expect a similar
result here for the magnetic field.

To evaluate the line integral in Ampère’s law, we
construct a rectangular path through the sheet, as in Figure
30.15. The rectangle has dimensions ! and w, with the sides
of length ! parallel to the sheet surface. The net current in
the plane of the rectangle is Js!. We apply Ampère’s law over
the rectangle and note that the two sides of length w do not
contribute to the line integral because the component of B

So far we have imagined currents carried by wires of small
cross section. Let us now consider an example in which a
current exists in an extended object. A thin, infinitely large
sheet lying in the yz plane carries a current of linear current
density Js. The current is in the y direction, and Js represents
the current per unit length measured along the z axis. Find
the magnetic field near the sheet.

Solution This situation is similar to those involving Gauss’s
law (see Example 24.8). You may recall that the electric field

A device called a toroid (Fig. 30.14) is often used to create an
almost uniform magnetic field in some enclosed area. The
device consists of a conducting wire wrapped around a ring
(a torus) made of a nonconducting material. For a toroid
having N closely spaced turns of wire, calculate the magnetic
field in the region occupied by the torus, a distance r from
the center.

Solution To calculate this field, we must evaluate #B ( ds
over the circular amperian loop of radius r in the plane of
Figure 30.14. By symmetry, we see that the magnitude of the
field is constant on this circle and tangent to it, so B ( ds "
B ds. Furthermore, the wire passes through the loop N times,

so that the total current through the loop is NI. Therefore,
the right side of Equation 30.13 is #0NI in this case.

Ampère’s law applied to the circle gives

(30.16)

This result shows that B varies as 1/r and hence is nonuniform
in the region occupied by the torus. However, if r is very
large compared with the cross-sectional radius a of the torus,
then the field is approximately uniform inside the torus.

For an ideal toroid, in which the turns are closely spaced,
the external magnetic field is close to zero. It is not exactly
zero, however. In Figure 30.14, imagine the radius r of the
amperian loop to be either smaller than b or larger than c. In
either case, the loop encloses zero net current, so # B (ds " 0.
We might be tempted to claim that this proves that B " 0, but
it does not. Consider the amperian loop on the right side
of the toroid in Figure 30.14. The plane of this loop is perpen-
dicular to the page, and the toroid passes through the loop. As
charges enter the toroid as indicated by the current directions
in Figure 30.14, they work their way counterclockwise around
the toroid. Thus, a current passes through the perpendicular
amperian loop! This current is small, but it is not zero. As a
result, the toroid acts as a current loop and produces a weak
external field of the form shown in Figure 30.7. The reason
that # B (d s " 0 for the amperian loops of radius r . b and
r , c in the plane of the page is that the field lines are perpen-
dicular to ds, not because B " 0.

#0NI
2$r

B "

%  B (d s " B  % ds " B(2$r) " #0NI

Figure 30.14 (Example 30.5) A toroid consisting of many
turns of wire. If the turns are closely spaced, the magnetic field
in the interior of the torus (the gold-shaded region) is tangent
to the dashed circle and varies as 1/r. The dimension a is the
cross-sectional radius of the torus. The field outside the toroid
is very small and can be described by using the amperian loop
at the right side, perpendicular to the page.

Figure 30.13 (Example 30.4) Magnitude of the magnetic field
versus r for the wire shown in Figure 30.12. The field is propor-
tional to r inside the wire and varies as 1/r outside the wire.

R
r

B ∝ 1/r

B ∝ r

B

B

c
a

ds

I

I

r

b

Example 30.5 The Magnetic Field Created by a Toroid

Example 30.6 Magnetic Field Created by an Infinite Current Sheet

(30.15)

To finalize this problem, note that this result is similar
in form to the expression for the electric field inside a
uniformly charged sphere (see Example 24.5). The magni-
tude of the magnetic field versus r for this configuration
is plotted in Figure 30.13. Note that inside the wire, B : 0
as r : 0. Furthermore, we see that Equations 30.14 and
30.15 give the same value of the magnetic field at r " R ,
demonstrating that the magnetic field is continuous at the
surface of the wire.

(for r  . R)& #0I
2$R 

2 ' rB "
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Wire 1 in Figure 30.16 is oriented along the y axis and
carries a steady current I1. A rectangular loop located to the
right of the wire and in the xy plane carries a current I2.
Find the magnetic force exerted by wire 1 on the top wire of
length b in the loop, labeled “Wire 2” in the figure.

Solution You may be tempted to use Equation 30.12
to obtain the force exerted on a small segment of length
dx of wire 2. However, this equation applies only to two
parallel wires and cannot be used here. The correct
approach is to consider the force exerted by wire 1 on a
small segment ds of wire 2 by using Equation 29.4. This
force is given by dFB " I ds ! B, where I " I 2 and B is
the magnetic field created by the current in wire 1 at the
position of ds. From Ampère’s law, the field at a distance x

Figure 30.15 (Example 30.6) End view of an infinite current
sheet lying in the yz plane, where the current is in the y direc-
tion (out of the page). This view shows the direction of B on
both sides of the sheet.

Figure 30.16 (Example 30.7) A wire on one side of a rectangu-
lar loop lying near a current-carrying wire experiences a force.

from wire 1 (see Eq. 30.14) is

where the unit vector ' k̂ is used to indicate that the field
due to the current in wire 1 at the position of ds points into
the page. Because wire 2 is along the x axis, ds " dx î, and
we find that

Integrating over the limits x " a to x " a * b gives

(1)

The force on wire 2 points in the positive y direction, as
indicated by the unit vector ĵ and as shown in Figure 30.16.

What If? What if the wire loop is moved to the left in Figure
30.16 until a " 0? What happens to the magnitude of the
force on the wire?

Answer The force should become stronger because the
loop is moving into a region of stronger magnetic field.
Equation (1) shows that the force not only becomes
stronger but the magnitude of the force becomes infinite as
a : 0! Thus, as the loop is moved to the left in Figure 30.16,
the loop should be torn apart by the infinite upward force
on the top side and the corresponding downward force on
the bottom side! Furthermore, the force on the left side is

#0 I 1I 2

2$
 ln & 1 *

b
a ' ĵFB "

FB "
#0I1I2

2$
  ln x(

a

a*b
ĵ

d FB "
#0I1I2

2$x
 [ î ! (' k̂ )] dx "

#0I1I2

2$
 
dx
x

  ĵ

B "
#0I 1

2$x
 ('ˆ

 k )  

!

w

x

z
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Example 30.7 The Magnetic Force on a Current Segment

hence the field should not vary from point to point. The
only choices of field direction that are reasonable in this
situation are either perpendicular or parallel to the sheet.
However, a perpendicular field would pass through the
current, which is inconsistent with the Biot–Savart law.
Assuming a field that is constant in magnitude and parallel
to the plane of the sheet, we obtain

This result shows that the magnetic field is independent of
distance from the current sheet, as we suspected. The
expression for the magnitude of the magnetic field is similar
in form to that for the magnitude of the electric field due to
an infinite sheet of charge (Example 24.8):

E "
/

200

#0  
Js
2

B "

2B! " #0 Js !

%  B (ds " # 0I " #0 Js !

along the direction of these paths is zero. By symmetry, the
magnetic field is constant over the sides of length ! because
every point on the infinitely large sheet is equivalent, and



30.4 The Magnetic Field of a Solenoid

A solenoid is a long wire wound in the form of a helix. With this configuration, a
reasonably uniform magnetic field can be produced in the space surrounded by the
turns of wire—which we shall call the interior of the solenoid—when the solenoid
carries a current. When the turns are closely spaced, each can be approximated as a
circular loop, and the net magnetic field is the vector sum of the fields resulting from
all the turns.

Figure 30.17 shows the magnetic field lines surrounding a loosely wound solenoid.
Note that the field lines in the interior are nearly parallel to one another, are
uniformly distributed, and are close together, indicating that the field in this space is
strong and almost uniform.

If the turns are closely spaced and the solenoid is of finite length, the magnetic
field lines are as shown in Figure 30.18a. This field line distribution is similar to that
surrounding a bar magnet (see Fig. 30.18b). Hence, one end of the solenoid behaves
like the north pole of a magnet, and the opposite end behaves like the south pole. As
the length of the solenoid increases, the interior field becomes more uniform and the
exterior field becomes weaker. An ideal solenoid is approached when the turns are
closely spaced and the length is much greater than the radius of the turns. Figure
30.19 shows a longitudinal cross section of part of such a solenoid carrying a current I.
In this case, the external field is close to zero, and the interior field is uniform over a
great volume.

938 CHAPTE R  3 0 •  Sources of the Magnetic Field

toward the left and should also become infinite. This is
larger than the force toward the right on the right side
because this side is still far from the wire, so the loop should
be pulled into the wire with infinite force!

Does this really happen? In reality, it is impossible for
a : 0 because both wire 1 and wire 2 have finite sizes, so
that the separation of the centers of the two wires is at least
the sum of their radii.

A similar situation occurs when we re-examine the
magnetic field due to a long straight wire, given by Equation
30.5. If we could move our observation point infinitesimally
close to the wire, the magnetic field would become infinite!
But in reality, the wire has a radius, and as soon as we enter
the wire, the magnetic field starts to fall off as described by
Equation 30.15 — approaching zero as we approach the
center of the wire.

Exterior

Interior

(a)

S

N

Figure 30.17 The magnetic field
lines for a loosely wound solenoid.

Figure 30.18 (a) Magnetic field lines for a tightly wound solenoid of finite length,
carrying a steady current. The field in the interior space is strong and nearly uniform.
Note that the field lines resemble those of a bar magnet, meaning that the solenoid
effectively has north and south poles. (b) The magnetic field pattern of a bar magnet,
displayed with small iron filings on a sheet of paper.
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If we consider the amperian loop perpendicular to the page in Figure 30.19,
surrounding the ideal solenoid, we see that it encloses a small current as the charges in
the wire move coil by coil along the length of the solenoid. Thus, there is a nonzero
magnetic field outside the solenoid. It is a weak field, with circular field lines, like
those due to a line of current as in Figure 30.4. For an ideal solenoid, this is the only
field external to the solenoid. We can eliminate this field in Figure 30.19 by adding a
second layer of turns of wire outside the first layer, with the current carried along the
axis of the solenoid in the opposite direction compared to the first layer. Then the net
current along the axis is zero.

We can use Ampère’s law to obtain a quantitative expression for the interior
magnetic field in an ideal solenoid. Because the solenoid is ideal, B in the interior
space is uniform and parallel to the axis, and the magnetic field lines in the
exterior space form circles around the solenoid. The planes of these circles are
perpendicular to the page. Consider the rectangular path of length ! and width
w shown in Figure 30.19. We can apply Ampère’s law to this path by evaluating
the integral of B ( ds over each side of the rectangle. The contribution along
side 3 is zero because the magnetic field lines are perpendicular to the
path in this region. The contributions from sides 2 and 4 are both zero, again
because B is perpendicular to ds along these paths, both inside and outside the
solenoid. Side 1 gives a contribution to the integral because along this path B is
uniform and parallel to ds. The integral over the closed rectangular path is
therefore

The right side of Ampère’s law involves the total current I through the area
bounded by the path of integration. In this case, the total current through the rectan-
gular path equals the current through each turn multiplied by the number of turns. If
N is the number of turns in the length !, the total current through the rectangle is NI.
Therefore, Ampère’s law applied to this path gives

(30.17)

where n " N/! is the number of turns per unit length.

B " #0  
N
!

  I " #0nI

% B (d s " B! " #0NI

% B (ds " !
path 1

B (d s " B !
path 1

ds " B!
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Figure 30.19 Cross-sectional view of an ideal solenoid,
where the interior magnetic field is uniform and the
exterior field is close to zero. Ampère’s law applied to
the circular path near the bottom whose plane is
perpendicular to the page can be used to show that
there is a weak field outside the solenoid. Ampère’s law
applied to the rectangular dashed path in the plane of
the page can be used to calculate the magnitude of the
interior field.

Magnetic field inside a solenoid



30.5 Magnetic Flux

The flux associated with a magnetic field is defined in a manner similar to that used to
define electric flux (see Eq. 24.3). Consider an element of area dA on an arbitrarily
shaped surface, as shown in Figure 30.20. If the magnetic field at this element is B, the
magnetic flux through the element is B ( dA, where dA is a vector that is perpendicular
to the surface and has a magnitude equal to the area dA. Therefore, the total magnetic
flux 1B through the surface is

(30.18)

Consider the special case of a plane of area A in a uniform field B that makes an
angle ! with dA. The magnetic flux through the plane in this case is

(30.19)

If the magnetic field is parallel to the plane, as in Figure 30.21a, then ! " 90° and the
flux through the plane is zero. If the field is perpendicular to the plane, as in Figure
30.21b, then ! " 0 and the flux through the plane is BA (the maximum value).

The unit of magnetic flux is T ( m2, which is defined as a weber (Wb); 1 Wb "
1 T ( m2.

1B " BA cos !

1B "  ! B (d A
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We also could obtain this result by reconsidering the magnetic field of a toroid
(see Example 30.5). If the radius r of the torus in Figure 30.14 containing N turns is
much greater than the toroid’s cross-sectional radius a, a short section of the toroid
approximates a solenoid for which n " N/2$r. In this limit, Equation 30.16 agrees with
Equation 30.17.

Equation 30.17 is valid only for points near the center (that is, far from the ends)
of a very long solenoid. As you might expect, the field near each end is smaller than
the value given by Equation 30.17. At the very end of a long solenoid, the magnitude of
the field is half the magnitude at the center (see Problem 32).

Quick Quiz 30.6 Consider a solenoid that is very long compared to the
radius. Of the following choices, the most effective way to increase the magnetic field
in the interior of the solenoid is to (a) double its length, keeping the number of turns
per unit length constant, (b) reduce its radius by half, keeping the number of turns per
unit length constant, (c) overwrapping the entire solenoid with an additional layer of
current-carrying wire.

B

d A
θ

Figure 30.20 The magnetic flux
through an area element dA is
B ( dA " B dA cos !, where dA is a
vector perpendicular to the
surface.

(a) (b)

B

dA

B

dA

Active Figure 30.21 Magnetic flux through a plane lying in a magnetic field.
(a) The flux through the plane is zero when the magnetic field is parallel to the plane
surface. (b) The flux through the plane is a maximum when the magnetic field is
perpendicular to the plane.

At the Active Figures link
at http://www.pse6.com, you
can rotate the plane and
change the value of the field to
see the effect on the flux.

Definition of magnetic flux



30.6 Gauss’s Law in Magnetism

In Chapter 24 we found that the electric flux through a closed surface surrounding a net
charge is proportional to that charge (Gauss’s law). In other words, the number of electric
field lines leaving the surface depends only on the net charge within it. This property is
based on the fact that electric field lines originate and terminate on electric charges.

The situation is quite different for magnetic fields, which are continuous and form
closed loops. In other words, magnetic field lines do not begin or end at any point—as
illustrated in Figures 30.4 and 30.23. Figure 30.23 shows the magnetic field lines of a bar
magnet. Note that for any closed surface, such as the one outlined by the dashed line in
Figure 30.23, the number of lines entering the surface equals the number leaving the
surface; thus, the net magnetic flux is zero. In contrast, for a closed surface surrounding
one charge of an electric dipole (Fig. 30.24), the net electric flux is not zero.

Gauss’s law in magnetism states that
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A rectangular loop of width a and length b is located near a
long wire carrying a current I (Fig. 30.22). The distance
between the wire and the closest side of the loop is c. The
wire is parallel to the long side of the loop. Find the total
magnetic flux through the loop due to the current in the
wire.

Solution From Equation 30.14, we know that the magni-
tude of the magnetic field created by the wire at a distance r
from the wire is

B "
#0I
2$r

The factor 1/r indicates that the field varies over the loop,
and Figure 30.22 shows that the field is directed into the
page at the location of the loop. Because B is parallel to dA
at any point within the loop, the magnetic flux through an
area element dA is

To integrate, we first express the area element (the tan
region in Fig. 30.22) as dA " b dr. Because r is now the only
variable in the integral, we have

What If? Suppose we move the loop in Figure 30.22 very
far away from the wire. What happens to the magnetic flux? 

Answer The flux should become smaller as the loop moves
into weaker and weaker fields.

As the loop moves far away, the value of c is much larger
than that of a, so that a/c : 0. Thus, the natural logarithm
in Equation (1) approaches the limit

and we find that 1B : 0 as we expected.

ln &1 *
a
c ' 9:  ln(1 * 0) " ln(1) " 0

#0Ib
2$

  ln &1 *
a
c '(1)   "

#0Ib
2$

  ln & a * c
c ' "

 1B "
#0Ib
2$

  !a*c

c
  

dr
r

"
#0Ib
2$

  ln r (
a*c

c

1B " ! B dA " !  
#0I
2$r

  dA

Example 30.8 Magnetic Flux Through a Rectangular Loop Interactive

b
rI

c a

dr
× × × × × ×

× × × × × ×

× × × × × ×

× × × × × ×

× × × × × ×

× × × × × ×

× × × × × ×

× × × × × ×

Figure 30.22 (Example 30.8) The magnetic field due to the wire
carrying a current I is not uniform over the rectangular loop.

At the Interactive Worked Example link at http://www.pse6.com, you can investigate the flux as the loop parameters change.

the net magnetic flux through any closed surface is always zero:

(30.20)%  B (d A " 0 Gauss’s law in magnetism



This statement is based on the experimental fact, mentioned in the opening of
Chapter 29, that isolated magnetic poles (monopoles) have never been detected and
perhaps do not exist. Nonetheless, scientists continue the search because certain theo-
ries that are otherwise successful in explaining fundamental physical behavior suggest
the possible existence of monopoles.

30.7 Displacement Current and the General
Form of Ampère’s Law

We have seen that charges in motion produce magnetic fields. When a current-
carrying conductor has high symmetry, we can use Ampère’s law to calculate the
magnetic field it creates. In Equation 30.13, # B ( ds " #0I, the line integral is over
any closed path through which the conduction current passes, where the conduction
current is defined by the expression I " dq/dt. (In this section we use the term
conduction current to refer to the current carried by the wire, to distinguish it from a
new type of current that we shall introduce shortly.) We now show that Ampère’s law
in this form is valid only if any electric fields present are constant in time.
Maxwell recognized this limitation and modified Ampère’s law to include time-varying
electric fields.

We can understand the problem by considering a capacitor that is being charged as
illustrated in Figure 30.25. When a conduction current is present, the charge on the
positive plate changes but no conduction current exists in the gap between the plates. Now
consider the two surfaces S1 and S2 in Figure 30.25, bounded by the same path P.
Ampère’s law states that # B ( ds around this path must equal #0I, where I is the total
current through any surface bounded by the path P.

When the path P is considered as bounding S1, # B ( ds " #0I because the
conduction current passes through S1. When the path is considered as bounding S2,
however, # B ( ds " 0 because no conduction current passes through S2. Thus, we
have a contradictory situation that arises from the discontinuity of the current!
Maxwell solved this problem by postulating an additional term on the right side

942 CHAPTE R  3 0 •  Sources of the Magnetic Field

N

S

Figure 30.23 The magnetic field lines of a bar magnet form
closed loops. Note that the net magnetic flux through a closed
surface surrounding one of the poles (or any other closed surface)
is zero. (The dashed line represents the intersection of the surface
with the page.)

–

+

Figure 30.24 The electric field lines surrounding an electric
dipole begin on the positive charge and terminate on the negative
charge. The electric flux through a closed surface surrounding one
of the charges is not zero.

Path P

A

–q

S1

S2

q

I

Figure 30.25 Two surfaces S1 and
S2 near the plate of a capacitor are
bounded by the same path P. The
conduction current in the wire
passes only through S1. This leads
to a contradiction in Ampère’s law
that is resolved only if one postu-
lates a displacement current
through S2.



of Equation 30.13, which includes a factor called the displacement current Id ,
defined as4

(30.21)

where 00 is the permittivity of free space (see Section 23.3) and is the
electric flux (see Eq. 24.3).

As the capacitor is being charged (or discharged), the changing electric field
between the plates may be considered equivalent to a current that acts as a
continuation of the conduction current in the wire. When the expression for the
displacement current given by Equation 30.21 is added to the conduction current
on the right side of Ampère’s law, the difficulty represented in Figure 30.25 is
resolved. No matter which surface bounded by the path P is chosen, either a
conduction current or a displacement current passes through it. With this new term
Id, we can express the general form of Ampère’s law (sometimes called the
Ampère–Maxwell law) as5

(30.22)

We can understand the meaning of this expression by referring to Figure 30.26. The
electric flux through surface S2 is , where A is the area of the
capacitor plates and E is the magnitude of the uniform electric field between
the plates. If q is the charge on the plates at any instant, then E " q/(00A). (See
Section 26.2.) Therefore, the electric flux through S2 is simply

Hence, the displacement current through S2 is

(30.23)

That is, the displacement current Id through S2 is precisely equal to the conduction
current I through S1!

Id " 00  
d1E

dt
"

dq
dt

1E " EA "
q
00

12 " !E(d A " 23

% B (d s " #0(I * Id) " #0I * #000 
d 1E

dt

12 " !E(d A

Id ) 00 
d1E

dt
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Ampère–Maxwell law

Displacement current

4 Displacement in this context does not have the meaning it does in Chapter 2. Despite the
inaccurate implications, the word is historically entrenched in the language of physics, so we
continue to use it.
5 Strictly speaking, this expression is valid only in a vacuum. If a magnetic material is present,
one must change #0 and 00 on the right-hand side of Equation 30.22 to the permeability #m (see
Section 30.8) and permittivity 0 characteristic of the material. Alternatively, one may include a
magnetizing current Im on the right hand side of Equation 30.22 to make Ampère’s law fully
general. On a microscopic scale, Im is as real as I.

E–q

S2
S1

q

II

Figure 30.26 Because it exists only in the wires attached to the capacitor plates, the
conduction current I " dq/dt passes through S1 but not through S2. Only the
displacement current Id " 00d1E/dt passes through S2. The two currents must be equal
for continuity.
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A sinusoidally varying voltage is applied across an 8.00-#F
capacitor. The frequency of the voltage is 3.00 kHz, and the
voltage amplitude is 30.0 V. Find the displacement current
in the capacitor.

Solution The angular frequency of the source, from
Equation 15.12, is given by 4 " 2$f " 2$(3.00 & 103 Hz) "
1.88 & 104 s'1. Hence, the voltage across the capacitor in
terms of t is

5V " 5Vmax sin 4t " (30.0 V) sin(1.88 & 104 t)

We can use Equation 30.23 and the fact that the charge
on the capacitor is q " C 5V to find the displacement

By considering surface S2, we can identify the displacement current as the source of
the magnetic field on the surface boundary. The displacement current has its physical
origin in the time-varying electric field. The central point of this formalism is that

Quick Quiz 30.7 In an RC circuit, the capacitor begins to discharge. During
the discharge, in the region of space between the plates of the capacitor, there is
(a) conduction current but no displacement current, (b) displacement current but no
conduction current, (c) both conduction and displacement current, (d) no current of
any type.

Quick Quiz 30.8 The capacitor in an RC circuit begins to discharge. During
the discharge, in the region of space between the plates of the capacitor, there is (a) an
electric field but no magnetic field, (b) a magnetic field but no electric field, (c) both
electric and magnetic fields, (d) no fields of any type.

magnetic fields are produced both by conduction currents and by time-varying
electric fields.

current:

The displacement current varies sinusoidally with time and
has a maximum value of 4.52 A.

(4.52 A) cos(1.88 & 104 t)"

" (8.00 & 10'6 F) 
d
dt

 [(30.0 V) sin(1.88 & 104 t)]

Id "
dq
dt

"
d
dt

 (C ∆V ) " C  
d
dt

 (∆V )

Example 30.9 Displacement Current in a Capacitor

This result was a remarkable example of theoretical work by Maxwell, and it
contributed to major advances in the understanding of electromagnetism.

30.8 Magnetism in Matter

The magnetic field produced by a current in a coil of wire gives us a hint as to what
causes certain materials to exhibit strong magnetic properties. Earlier we found that a
coil like the one shown in Figure 30.18 has a north pole and a south pole. In general,
any current loop has a magnetic field and thus has a magnetic dipole moment, includ-
ing the atomic-level current loops described in some models of the atom.

The Magnetic Moments of Atoms

We begin our discussion with a classical model of the atom in which electrons move
in circular orbits around the much more massive nucleus. In this model, an
orbiting electron constitutes a tiny current loop (because it is a moving charge),
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and the magnetic moment of the electron is associated with this orbital motion.
Although this model has many deficiencies, some of its predictions are in 
good agreement with the correct theory, which is expressed in terms of quantum
physics.

In our classical model, we assume that an electron moves with constant speed v in a
circular orbit of radius r about the nucleus, as in Figure 30.27. Because the electron
travels a distance of 2$r (the circumference of the circle) in a time interval T, its
orbital speed is v " 2$r/T. The current I associated with this orbiting electron is its
charge e divided by T. Using T " 2$/4 and 4 " v/r, we have

The magnitude of the magnetic moment associated with this current loop is # " IA,
where A " $r 2 is the area enclosed by the orbit. Therefore,

(30.24)

Because the magnitude of the orbital angular momentum of the electron is L " mevr
(Eq. 11.12 with 6 " 90°), the magnetic moment can be written as

(30.25)

This result demonstrates that the magnetic moment of the electron is proportional
to its orbital angular momentum. Because the electron is negatively charged,
the vectors " and L point in opposite directions. Both vectors are perpendicular to the
plane of the orbit, as indicated in Figure 30.27.

A fundamental outcome of quantum physics is that orbital angular momentum
is quantized and is equal to multiples of " h/2$ " 1.05 & 10'34 J ( s, where h is
Planck’s constant (introduced in Section 11.6). The smallest nonzero value of the
electron’s magnetic moment resulting from its orbital motion is

(30.26)

We shall see in Chapter 42 how expressions such as Equation 30.26 arise.
Because all substances contain electrons, you may wonder why most substances

are not magnetic. The main reason is that in most substances, the magnetic
moment of one electron in an atom is canceled by that of another electron orbiting
in the opposite direction. The net result is that, for most materials, the magnetic
effect produced by the orbital motion of the electrons is either zero or very
small.

In addition to its orbital magnetic moment, an electron (as well as protons,
neutrons, and other particles) has an intrinsic property called spin that also
contributes to its magnetic moment. Classically, the electron might be viewed as

# " √2 
e

2me
  7

7

# " & e
2me

'  L

# " IA " & ev
2$r ' $r 

2 " 1
2evr

I "
e
T

"
e4

2$
"
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2$r

Orbital magnetic moment

r

µ

L

Figure 30.27 An electron moving in the direction of the gray
arrow in a circular orbit of radius r has an angular momentum
L in one direction and a magnetic moment " in the opposite
direction. Because the electron carries a negative charge, the
direction of the current due to its motion about the nucleus is
opposite the direction of that motion.

! PITFALL PREVENTION 
30.3 The Electron Does

Not Spin
Do not be misled; the electron is
not physically spinning. It has an
intrinsic angular momentum as if
it were spinning, but the notion of
rotation for a point particle is
meaningless. Rotation applies
only to a rigid object, with an
extent in space, as in Chapter 10.
Spin angular momentum is actu-
ally a relativistic effect.



spinning about its axis as shown in Figure 30.28, but you should be very careful with
the classical interpretation. The magnitude of the angular momentum S associated
with spin is on the same order of magnitude as the magnitude of the angular momen-
tum L due to the orbital motion. The magnitude of the spin angular momentum of an
electron predicted by quantum theory is

The magnetic moment characteristically associated with the spin of an electron has the
value

(30.27)

This combination of constants is called the Bohr magneton "B:

(30.28)

Thus, atomic magnetic moments can be expressed as multiples of the Bohr magneton.
(Note that 1 J/T " 1 A ( m2.)

In atoms containing many electrons, the electrons usually pair up with their
spins opposite each other; thus, the spin magnetic moments cancel. However, atoms
containing an odd number of electrons must have at least one unpaired electron and
therefore some spin magnetic moment. The total magnetic moment of an atom is the
vector sum of the orbital and spin magnetic moments, and a few examples are given in
Table 30.1. Note that helium and neon have zero moments because their individual
spin and orbital moments cancel.

The nucleus of an atom also has a magnetic moment associated with its constituent
protons and neutrons. However, the magnetic moment of a proton or neutron is much
smaller than that of an electron and can usually be neglected. We can understand this
by inspecting Equation 30.28 and replacing the mass of the electron with the mass of a
proton or a neutron. Because the masses of the proton and neutron are much greater
than that of the electron, their magnetic moments are on the order of 103 times
smaller than that of the electron.

Magnetization Vector and Magnetic Field Strength

The magnetic state of a substance is described by a quantity called the magnetization
vector M. The magnitude of this vector is defined as the magnetic moment per
unit volume of the substance. As you might expect, the total magnetic field B at a
point within a substance depends on both the applied (external) field B0 and the
magnetization of the substance.

Consider a region in which a magnetic field B0 is produced by a current-carrying
conductor. If we now fill that region with a magnetic substance, the total magnetic field
B in the region is B " B0 * Bm, where Bm is the field produced by the magnetic
substance.

Let us determine the relationship between Bm and M. Imagine that the field Bm is
created by a solenoid rather than by the magnetic material. Then, Bm " #0nI, where I
is the current in the imaginary solenoid and n is the number of turns per unit length.
Let us manipulate this expression as follows:

where N is the number of turns in length !, and we have multiplied the numerator
and denominator by A, the cross sectional area of the solenoid in the last step. We
recognize the numerator NIA as the total magnetic moment of all the loops in

Bm " #0nI " #0 
N
!

 I " #0 
NIA
!A

#B "
e 7

2me
" 9.27 & 10'24  J/T

# spin "
e 7

2me

S "
√3
2

   7

946 CHAPTE R  3 0 •  Sources of the Magnetic Field

Magnetization vector M

spinµ

Figure 30.28 Classical model of a
spinning electron. We can adopt
this model to remind ourselves that
electrons have an intrinsic angular
momentum. The model should not
be pushed too far, however—it
gives an incorrect magnitude for
the magnetic moment, incorrect
quantum numbers, and too many
degrees of freedom.

Magnetic
Moment

Atom or Ion (10#24 J/T)

H 9.27
He 0
Ne 0
Ce3* 19.8
Yb3* 37.1

Magnetic Moments of Some
Atoms and Ions

Table 30.1



length ! and the denominator !A as the volume of the solenoid associated with this
length:

The ratio of total magnetic moment to volume is what we have defined as magnetiza-
tion in the case where the field is due to a material rather than a solenoid. Thus, we
can express the contribution Bm to the total field in terms of the magnetization vector
of the substance as Bm " #0M. When a substance is placed in a magnetic field, the
total magnetic field in the region is expressed as

(30.29)

When analyzing magnetic fields that arise from magnetization, it is convenient to
introduce a field quantity called the magnetic field strength H within the substance.
The magnetic field strength is related to the magnetic field due to the conduction
currents in wires. To emphasize the distinction between the field strength H and the
field B, the latter is often called the magnetic flux density or the magnetic induction. The
magnetic field strength is the magnetic moment per unit volume due to currents; thus,
it is similar to the vector M and has the same units.

Recognizing the similarity between M and H, we can define H as H ) B0/#0.
Thus, Equation 30.29 can be written

(30.30)

The quantities H and M have the same units. Because M is magnetic moment per unit
volume, its SI units are (ampere)(meter)2/(meter)3, or amperes per meter.

To better understand these expressions, consider the torus region of a toroid that
carries a current I. If this region is a vacuum, M " 0 (because no magnetic material is
present), the total magnetic field is that arising from the current alone, and B " B0 "
#0H. Because B0 " #0nI in the torus region, where n is the number of turns per unit
length of the toroid, H " B0/#0 " #0nI/#0 or

(30.31)

In this case, the magnetic field in the torus region is due only to the current in the
windings of the toroid.

If the torus is now made of some substance and the current I is kept constant,
H in the torus region remains unchanged (because it depends on the current only)
and has magnitude nI. The total field B, however, is different from that
when the torus region was a vacuum. From Equation 30.30, we see that part of
B arises from the term #0H associated with the current in the toroid, and part arises
from the term #0M due to the magnetization of the substance of which the torus
is made.

Classification of Magnetic Substances

Substances can be classified as belonging to one of three categories, depending on
their magnetic properties. Paramagnetic and ferromagnetic materials are those
made of atoms that have permanent magnetic moments. Diamagnetic materials are
those made of atoms that do not have permanent magnetic moments.

For paramagnetic and diamagnetic substances, the magnetization vector M is
proportional to the magnetic field strength H. For these substances placed in an
external magnetic field, we can write

(30.32)

where 8 (Greek letter chi) is a dimensionless factor called the magnetic susceptibil-
ity. It can be considered a measure of how susceptible a material is to being magnetized.
For paramagnetic substances, 8 is positive and M is in the same direction as H. For

M " 8 H

H " nI

B " #0(H * M)

B " B0 * #0M

Bm " #0 
#

V
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Magnetic field strength H

Magnetic susceptibility #



diamagnetic substances, 8 is negative and M is opposite H. The susceptibilities of some
substances are given in Table 30.2.

Substituting Equation 30.32 for M into Equation 30.30 gives

or

(30.33)

where the constant #m is called the magnetic permeability of the substance and is
related to the susceptibility by

(30.34)

Substances may be classified in terms of how their magnetic permeability #m
compares with #0 (the permeability of free space), as follows:

Paramagnetic #m , #0

Diamagnetic #m . #0

Because 8 is very small for paramagnetic and diamagnetic substances (see Table 30.2),
#m is nearly equal to #0 for these substances. For ferromagnetic substances, however,
#m is typically several thousand times greater than #0 (meaning that 8 is very large for
ferromagnetic substances).

Although Equation 30.33 provides a simple relationship between B and H, we must
interpret it with care when dealing with ferromagnetic substances. We find that M is not a
linear function of H for ferromagnetic substances. This is because the value of #m is not
only a characteristic of the ferromagnetic substance but also depends on the previous
state of the substance and on the process it underwent as it moved from its previous state
to its present one. We shall investigate this more deeply after the following example.

#m " #0(1 * 8)

B " #m H

B " #0(H * M) " #0(H * 8H) " #0(1 * 8)H

948 CHAPTE R  3 0 •  Sources of the Magnetic Field

Paramagnetic Diamagnetic
Substance # Substance #

Aluminum 2.3 & 10'5 Bismuth ' 1.66 & 10'5

Calcium 1.9 & 10'5 Copper ' 9.8 & 10'6

Chromium 2.7 & 10'4 Diamond ' 2.2 & 10'5

Lithium 2.1 & 10'5 Gold ' 3.6 & 10'5

Magnesium 1.2 & 10'5 Lead ' 1.7 & 10'5

Niobium 2.6 & 10'4 Mercury ' 2.9 & 10'5

Oxygen 2.1 & 10'6 Nitrogen ' 5.0 & 10'9

Platinum 2.9 & 10'4 Silver ' 2.6 & 10'5

Tungsten 6.8 & 10'5 Silicon ' 4.2 & 10'6

Magnetic Susceptibilities of Some Paramagnetic
and Diamagnetic Substances at 300 K

Table 30.2

Magnetic permeability

A toroid wound with 60.0 turns/m of wire carries a current
of 5.00 A. The torus is iron, which has a magnetic perme-
ability of #m " 5 000#0 under the given conditions. Find H
and B inside the iron.

Solution Using Equations 30.31 and 30.33, we obtain

300 A( turns/m"H " nI " (60.0 turns/m)(5.00 A)

This value of B is 5 000 times the value in the absence
of iron!

1.88 T"

" 5 000(4$ & 10'7 T(m/A)(300 A( turns/m)

B " #mH " 5 000#0H

Example 30.10 An Iron-Filled Toroid



Ferromagnetism

A small number of crystalline substances exhibit strong magnetic effects called
ferromagnetism. Some examples of ferromagnetic substances are iron, cobalt, nickel,
gadolinium, and dysprosium. These substances contain permanent atomic magnetic
moments that tend to align parallel to each other even in a weak external magnetic
field. Once the moments are aligned, the substance remains magnetized after the
external field is removed. This permanent alignment is due to a strong coupling
between neighboring moments, a coupling that can be understood only in quantum-
mechanical terms.

All ferromagnetic materials are made up of microscopic regions called domains,
regions within which all magnetic moments are aligned. These domains have volumes
of about 10'12 to 10'8 m3 and contain 1017 to 1021 atoms. The boundaries between
the various domains having different orientations are called domain walls. In an
unmagnetized sample, the magnetic moments in the domains are randomly oriented
so that the net magnetic moment is zero, as in Figure 30.29a. When the sample is
placed in an external magnetic field B0, the size of those domains with magnetic
moments aligned with the field grows, which results in a magnetized sample, as in
Figure 30.29b. As the external field becomes very strong, as in Figure 30.29c, the
domains in which the magnetic moments are not aligned with the field become very
small. When the external field is removed, the sample may retain a net magnetization
in the direction of the original field. At ordinary temperatures, thermal agitation is not
sufficient to disrupt this preferred orientation of magnetic moments.

A typical experimental arrangement that is used to measure the magnetic proper-
ties of a ferromagnetic material consists of a torus made of the material wound with N
turns of wire, as shown in Figure 30.30, where the windings are represented in black
and are referred to as the primary coil. This apparatus is sometimes referred to as a
Rowland ring. A secondary coil (the red wires in Fig. 30.30) connected to a galvanome-
ter is used to measure the total magnetic flux through the torus. The magnetic field B
in the torus is measured by increasing the current in the toroid from zero to I. As the
current changes, the magnetic flux through the secondary coil changes by an amount
BA, where A is the cross-sectional area of the toroid. As shown in Chapter 31, because
of this changing flux, an emf that is proportional to the rate of change in magnetic
flux is induced in the secondary coil. If the galvanometer is properly calibrated, a value
for B corresponding to any value of the current in the primary coil can be obtained.
The magnetic field B is measured first in the absence of the torus and then with the
torus in place. The magnetic properties of the torus material are then obtained from a
comparison of the two measurements.

Now consider a torus made of unmagnetized iron. If the current in the primary
coil is increased from zero to some value I, the magnitude of the magnetic field
strength H increases linearly with I according to the expression H " nI. Furthermore,
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(c)
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(b)
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(a)

Figure 30.29 (a) Random orienta-
tion of atomic magnetic dipoles in
the domains of an unmagnetized
substance. (b) When an external
field B0 is applied, the domains
with components of magnetic
moment in the same direction as
B0 grow larger, giving the sample a
net magnetization. (c) As the field
is made even stronger, the domains
with magnetic moment vectors not
aligned with the external field
become very small.

Figure 30.30 A toroidal winding arrangement used to measure the
magnetic properties of a material. The torus is made of the material
under study, and the circuit containing the galvanometer measures
the magnetic flux.



the magnitude of the total field B also increases with increasing current, as shown by
the curve from point O to point a in Figure 30.31. At point O, the domains in the iron
are randomly oriented, corresponding to Bm " 0. As the increasing current in the
primary coil causes the external field B0 to increase, the aligned domains grow in size
until nearly all magnetic moments are aligned at point a. At this point the iron core is
approaching saturation, which is the condition in which all magnetic moments in the
iron are aligned.

Next, suppose that the current is reduced to zero, and the external field is
consequently eliminated. The B-versus-H curve, called a magnetization curve, now
follows the path ab in Figure 30.31. Note that at point b, B is not zero even though the
external field B0 is zero. The reason is that the iron is now magnetized due to the
alignment of a large number of its magnetic moments (that is, B " Bm). At this point,
the iron is said to have a remanent magnetization.

If the current in the primary coil is reversed so that the direction of the external
magnetic field is reversed, the magnetic moments reorient until the sample is again
unmagnetized at point c, where B " 0. An increase in the reverse current causes the
iron to be magnetized in the opposite direction, approaching saturation at point d
in Figure 30.31. A similar sequence of events occurs as the current is reduced
to zero and then increased in the original (positive) direction. In this case the
magnetization curve follows the path def. If the current is increased sufficiently,
the magnetization curve returns to point a, where the sample again has its
maximum magnetization.

The effect just described, called magnetic hysteresis, shows that the magnetiza-
tion of a ferromagnetic substance depends on the history of the substance as well as
on the magnitude of the applied field. (The word hysteresis means “lagging behind.”)
It is often said that a ferromagnetic substance has a “memory” because it remains
magnetized after the external field is removed. The closed loop in Figure 30.31 is
referred to as a hysteresis loop. Its shape and size depend on the properties of 
the ferromagnetic substance and on the strength of the maximum applied field. The
hysteresis loop for “hard” ferromagnetic materials is characteristically wide like the
one shown in Figure 30.32a, corresponding to a large remanent magnetization. Such
materials cannot be easily demagnetized by an external field. “Soft” ferromagnetic
materials, such as iron, have a very narrow hysteresis loop and a small remanent
magnetization (Fig. 30.32b.) Such materials are easily magnetized and demagne-
tized. An ideal soft ferromagnet would exhibit no hysteresis and hence would have
no remanent magnetization. A ferromagnetic substance can be demagnetized by
carrying it through successive hysteresis loops, due to a decreasing applied magnetic
field, as shown in Figure 30.33.
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Figure 30.32 Hysteresis loops for (a) a hard ferromagnetic
material and (b) a soft ferromagnetic material.

Figure 30.31 Magnetization curve
for a ferromagnetic material.

Figure 30.33 Demagnetizing a
ferromagnetic material by carrying
it through successive hysteresis
loops.



The magnetization curve is useful for another reason: the area enclosed by the
magnetization curve represents the energy input required to take the material
through the hysteresis cycle. The energy acquired by the material in the
magnetization process originates from the source of the external field—that is, the emf
in the circuit of the toroidal coil. When the magnetization cycle is repeated, dissipative
processes within the material due to realignment of the magnetic moments result in an
increase in internal energy, made evident by an increase in the temperature of the
substance. For this reason, devices subjected to alternating fields (such as AC adapters
for cell phones, power tools, and so on) use cores made of soft ferromagnetic
substances, which have narrow hysteresis loops and correspondingly little energy loss
per cycle.

Magnetic computer disks store information by alternating the direction of B
for portions of a thin layer of ferromagnetic material. Floppy disks have the layer
on a circular sheet of plastic. Hard disks have several rigid platters with magnetic
coatings on each side. Audio tapes and videotapes work the same way as floppy disks
except that the ferromagnetic material is on a very long strip of plastic. Tiny coils
of wire in a recording head are placed close to the magnetic material (which is
moving rapidly past the head). Varying the current in the coils creates a magnetic
field that magnetizes the recording material. To retrieve the information, the
magnetized material is moved past a playback coil. The changing magnetism of
the material induces a current in the coil, as shown in Chapter 31. This current
is then amplified by audio or video equipment, or it is processed by computer
circuitry.

When the temperature of a ferromagnetic substance reaches or exceeds a
critical temperature called the Curie temperature, the substance loses its
residual magnetization and becomes paramagnetic (Fig. 30.34). Below the
Curie temperature, the magnetic moments are aligned and the substance is
ferromagnetic. Above the Curie temperature, the thermal agitation is great enough
to cause a random orientation of the moments, and the substance becomes
paramagnetic. Curie temperatures for several ferromagnetic substances are given
in Table 30.3.

Paramagnetism

Paramagnetic substances have a small but positive magnetic susceptibility
(0 . 8 .. 1) resulting from the presence of atoms (or ions) that have permanent
magnetic moments. These moments interact only weakly with each other and
are randomly oriented in the absence of an external magnetic field. When a
paramagnetic substance is placed in an external magnetic field, its atomic
moments tend to line up with the field. However, this alignment process must
compete with thermal motion, which tends to randomize the magnetic moment
orientations.

Pierre Curie (1859–1906) and others since him have found experimentally that,
under a wide range of conditions, the magnetization of a paramagnetic substance is
proportional to the applied magnetic field and inversely proportional to the absolute
temperature:

(30.35) M " C   
B 0

T
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Substance TCurie(K)

Iron 1 043
Cobalt 1 394
Nickel 631
Gadolinium 317
Fe2O3 893

Curie Temperatures for
Several Ferromagnetic
Substance

Table 30.3

Quick Quiz 30.9 Which material would make a better permanent magnet,
(a) one whose hysteresis loop looks like Figure 30.32a or (b) one whose hysteresis loop
looks like Figure 30.32b?

Paramagnetic

Ferromagnetic

M

T
TCurie

Ms

0

Figure 30.34 Magnetization versus
absolute temperature for a ferro-
magnetic substance. The magnetic
moments are aligned below the
Curie temperature TCurie, where
the substance is ferromagnetic.
The substance becomes paramag-
netic (magnetic moments
unaligned) above TCurie.



This relationship is known as Curie’s law after its discoverer, and the constant C is
called Curie’s constant. The law shows that when B0 " 0, the magnetization is zero,
corresponding to a random orientation of magnetic moments. As the ratio of magnetic
field to temperature becomes great, the magnetization approaches its saturation value,
corresponding to a complete alignment of its moments, and Equation 30.35 is no
longer valid.

Diamagnetism

When an external magnetic field is applied to a diamagnetic substance, a weak
magnetic moment is induced in the direction opposite the applied field. This
causes diamagnetic substances to be weakly repelled by a magnet. Although
diamagnetism is present in all matter, its effects are much smaller than those of
paramagnetism or ferromagnetism, and are evident only when those other effects
do not exist.

We can attain some understanding of diamagnetism by considering a classical
model of two atomic electrons orbiting the nucleus in opposite directions but with
the same speed. The electrons remain in their circular orbits because of the
attractive electrostatic force exerted by the positively charged nucleus. Because
the magnetic moments of the two electrons are equal in magnitude and opposite
in direction, they cancel each other, and the magnetic moment of the atom is
zero. When an external magnetic field is applied, the electrons experience an
additional magnetic force qv ! B. This added magnetic force combines with the
electrostatic force to increase the orbital speed of the electron whose magnetic 
moment is antiparallel to the field and to decrease the speed of the electron whose
magnetic moment is parallel to the field. As a result, the two magnetic moments of
the electrons no longer cancel, and the substance acquires a net magnetic moment
that is opposite the applied field.

As you recall from Chapter 27, a superconductor is a substance in which the
electrical resistance is zero below some critical temperature. Certain types of supercon-
ductors also exhibit perfect diamagnetism in the superconducting state. As a result, an
applied magnetic field is expelled by the superconductor so that the field is zero in its
interior. This phenomenon is known as the Meissner effect. If a permanent magnet is
brought near a superconductor, the two objects repel each other. This is illustrated in
Figure 30.35, which shows a small permanent magnet levitated above a superconductor
maintained at 77 K.
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(Left) Paramagnetism: liquid oxygen, a paramagnetic material, is attracted to the poles
of a magnet. (Right) Diamagnetism: a frog is levitated in a 16-T magnetic field at the
Nijmegen High Field Magnet Laboratory, Netherlands. The levitation force is exerted
on the diamagnetic water molecules in the frog’s body. The frog suffered no ill effects
from the levitation experience.
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Figure 30.35 An illustration of the
Meissner effect, shown by this mag-
net suspended above a cooled ce-
ramic superconductor disk, has
become our most visual image of
high-temperature superconductivity.
Superconductivity is the loss of all 
resistance to electrical current, and
is a key to more efficient energy use.
In the Meissner effect, the magnet
induces superconducting current in
the disk, which is cooled to ' 321+F
(77 K). The currents create a 
magnetic force that repels and 
levitates the disk.
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Estimate the saturation magnetization in a long cylinder of
iron, assuming one unpaired electron spin per atom.

Solution The saturation magnetization is obtained when
all the magnetic moments in the sample are aligned. If
the sample contains n atoms per unit volume, then the
saturation magnetization Ms has the value

where # is the magnetic moment per atom. Because the
molar mass of iron is 55 g/mol and its density is 7.9 g/cm3,

Ms " n#

Example 30.11 Saturation Magnetization

the value of n for iron is 8.6 & 1028 atoms/m3. Assuming
that each atom contributes one Bohr magneton (due to one
unpaired spin) to the magnetic moment, we obtain

This is about half the experimentally determined saturation
magnetization for iron, which indicates that actually two
unpaired electron spins are present per atom.

8.0 & 105 A/m"

Ms " (8.6 & 1028 atoms/m3)(9.27 & 10'24 A(m2/atom)

30.9 The Magnetic Field of the Earth

When we speak of a compass magnet having a north pole and a south pole, we should
say more properly that it has a “north-seeking” pole and a “south-seeking” pole. By this
we mean that one pole of the magnet seeks, or points to, the north geographic pole of
the Earth. Because the north pole of a magnet is attracted toward the north
geographic pole of the Earth, we conclude that the Earth’s south magnetic pole is
located near the north geographic pole, and the Earth’s north magnetic pole is
located near the south geographic pole. In fact, the configuration of the Earth’s
magnetic field, pictured in Figure 30.36, is very much like the one that would be
achieved by burying a gigantic bar magnet deep in the interior of the Earth.

If a compass needle is suspended in bearings that allow it to rotate in the vertical
plane as well as in the horizontal plane, the needle is horizontal with respect to the
Earth’s surface only near the equator. As the compass is moved northward, the
needle rotates so that it points more and more toward the surface of the Earth.
Finally, at a point near Hudson Bay in Canada, the north pole of the needle points
directly downward. This site, first found in 1832, is considered to be the location of
the south magnetic pole of the Earth. It is approximately 1 300 mi from the Earth’s
geographic North Pole, and its exact position varies slowly with time. Similarly, the
north magnetic pole of the Earth is about 1 200 mi away from the Earth’s geographic
South Pole.

Figure 30.36 The Earth’s
magnetic field lines. Note that a
south magnetic pole is near the
north geographic pole, and a
north magnetic pole is near the
south geographic pole.
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Although the magnetic field pattern of the Earth is similar to the one that would be
set up by a bar magnet deep within the Earth, it is easy to understand why the source of
the Earth’s magnetic field cannot be large masses of permanently magnetized material.
The Earth does have large deposits of iron ore deep beneath its surface, but the high
temperatures in the Earth’s core prevent the iron from retaining any permanent
magnetization. Scientists consider it more likely that the true source of the Earth’s
magnetic field is convection currents in the Earth’s core. Charged ions or electrons
circulating in the liquid interior could produce a magnetic field just as a current loop
does. There is also strong evidence that the magnitude of a planet’s magnetic field is
related to the planet’s rate of rotation. For example, Jupiter rotates faster than the
Earth, and space probes indicate that Jupiter’s magnetic field is stronger than ours.
Venus, on the other hand, rotates more slowly than the Earth, and its magnetic field is
found to be weaker. Investigation into the cause of the Earth’s magnetism is ongoing.

There is an interesting sidelight concerning the Earth’s magnetic field. It has been
found that the direction of the field has been reversed several times during the last
million years. Evidence for this is provided by basalt, a type of rock that contains iron
and that forms from material spewed forth by volcanic activity on the ocean floor. As
the lava cools, it solidifies and retains a picture of the Earth’s magnetic field direction.
The rocks are dated by other means to provide a timeline for these periodic reversals
of the magnetic field.

Figure 30.37 A map of the continental United States showing several lines of constant
magnetic declination.
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Quick Quiz 30.10 If we wanted to cancel the Earth’s magnetic field by
running an enormous current loop around the equator, which way would the current
have to to be directed: (a) east to west or (b) west to east?

Because of this distance between the north geographic and south magnetic poles, it
is only approximately correct to say that a compass needle points north. The difference
between true north, defined as the geographic North Pole, and north indicated by a
compass varies from point to point on the Earth, and the difference is referred to as
magnetic declination. For example, along a line through Florida and the Great Lakes, a
compass indicates true north, whereas in the state of Washington, it aligns 25° east of
true north. Figure 30.37 shows some representative values of the magnetic declination
for the continental United States.
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The Biot–Savart law says that the magnetic field dB at a point P due to a length
element ds that carries a steady current I is

(30.1)

where #0 is the permeability of free space, r is the distance from the element to the
point P, and r̂ is a unit vector pointing from ds toward point P. We find the total field
at P by integrating this expression over the entire current distribution.

The magnetic force per unit length between two parallel wires separated by a
distance a and carrying currents I1 and I2 has a magnitude

(30.12)

The force is attractive if the currents are in the same direction and repulsive if they
are in opposite directions.

Ampère’s law says that the line integral of B ( ds around any closed path equals #0I,
where I is the total steady current through any surface bounded by the closed path:

(30.13)

Using Ampère’s law, one finds that the magnitude of the magnetic field at a
distance r from a long, straight wire carrying an electric current I is

(30.14)

The field lines are circles concentric with the wire.
The magnitudes of the fields inside a toroid and solenoid are

(30.16)

(30.17)

where N is the total number of turns.
The magnetic flux 1B through a surface is defined by the surface integral

(30.18)

Gauss’s law of magnetism states that the net magnetic flux through any closed
surface is zero.

The general form of Ampère’s law, which is also called the Ampère–Maxwell law, is

(30.22)

This law describes the fact that magnetic fields are produced both by conduction
currents and by changing electric fields.

When a substance is placed in an external magnetic field B0, the total magnetic
field B is a combination of the external field and a magnetic field due to magnetic
moments of atoms and electrons within the substance:

(30.29)B " B0 * #0M

% B (ds " #0I * #000 
d1E

dt

1B " ! B (d A

B " #0 
N
!

 I " #0nI  (solenoid )

B "
#0NI
2$r

  (toroid)

B "
#0I
2$r

% B (d s " #0I

FB

!
"

#0I1I2

2$a

d B "
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I ds ! r̂
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this chapter by clicking on
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where M is the magnetization vector. The magnetization vector is the magnetic
moment per unit volume in the substance.

The effect of external currents on the magnetic field in a substance is described by
the magnetic field strength H " B0/#0. The magnetization vector is related to the
magnetic field strength as follows:

(30.32)

where 8 is the magnetic susceptibility.
Substances can be classified into one of three categories that describe their

magnetic behavior. Diamagnetic substances are those in which the magnetization is
weak and opposite the field B0, so that the susceptibility is negative. Paramagnetic
substances are those in which the magnetization is weak and in the same direction
as the field B0, so that the susceptibility is positive. In ferromagnetic substances,
interactions between atoms cause magnetic moments to align and create a strong
magnetization that remains after the external field is removed.

M " 8H

1. Is the magnetic field created by a current loop uniform?
Explain.

2. A current in a conductor produces a magnetic field that
can be calculated using the Biot–Savart law. Because
current is defined as the rate of flow of charge, what can
you conclude about the magnetic field produced by
stationary charges? What about that produced by moving
charges?

Explain why two parallel wires carrying currents in
opposite directions repel each other.

4. Parallel current-carrying wires exert magnetic forces on each
other. What about perpendicular wires? Imagine two such
wires oriented perpendicular to each other, and almost
touching. Does a magnetic force exist between the wires?

5. Is Ampère’s law valid for all closed paths surrounding a
conductor? Why is it not useful for calculating B for all
such paths?

6. Compare Ampère’s law with the Biot–Savart law. Which is
more generally useful for calculating B for a current-
carrying conductor?

7. Is the magnetic field inside a toroid uniform? Explain.

8. Describe the similarities between Ampère’s law in magnet-
ism and Gauss’s law in electrostatics.

A hollow copper tube carries a current along its length. Why
is B " 0 inside the tube? Is B nonzero outside the tube?

10. Describe the change in the magnetic field in the space
enclosed by a solenoid carrying a steady current I if (a) the
length of the solenoid is doubled but the number of turns
remains the same and (b) the number of turns is doubled
but the length remains the same.

11. A flat conducting loop is located in a uniform magnetic
field directed along the x axis. For what orientation of the
loop is the flux through it a maximum? A minimum?

12. What new concept did Maxwell’s generalized form of
Ampère’s law include?

9.

3.

13. Many loops of wire are wrapped around a nail and the
ends of the wire are connected to a battery. Identify the
source of M, of H, and of B.

14. A magnet attracts a piece of iron. The iron can then attract
another piece of iron. On the basis of domain alignment,
explain what happens in each piece of iron.

15. Why does hitting a magnet with a hammer cause the
magnetism to be reduced?

16. A Hindu ruler once suggested that he be entombed in a
magnetic coffin with the polarity arranged so that he
would be forever suspended between heaven and Earth. Is
such magnetic levitation possible? Discuss.

17. Why is M " 0 in a vacuum? What is the relationship
between B and H in a vacuum?

18. Explain why some atoms have permanent magnetic dipole
moments and others do not.

19. What factors contribute to the total magnetic dipole
moment of an atom?

20. Why is the susceptibility of a diamagnetic substance
negative?

21. Why can the effect of diamagnetism be neglected in a
paramagnetic substance?

22. Explain the significance of the Curie temperature for a
ferromagnetic substance.

23. Discuss the difference among ferromagnetic, paramag-
netic, and diamagnetic substances.

24. A current in a solenoid having air in the interior creates
a magnetic field B " #0H. Describe qualitatively what
happens to the magnitude of B as (a) aluminum,
(b) copper, and (c) iron are placed in the interior.

25. What is the difference between hard and soft ferromag-
netic materials?

26. Should the surface of a computer disk be made from a
hard or a soft ferromagnetic substance?

Q U E S T I O N S
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27. Explain why it is desirable to use hard ferromagnetic
materials to make permanent magnets.

28. Would you expect the tape from a tape recorder to be
attracted to a magnet? (Try it, but not with a recording you
wish to save.)

29. Given only a strong magnet and a screwdriver, how would
you first magnetize and then demagnetize the screwdriver?

30. Which way would a compass point if you were at the north
magnetic pole of the Earth?

31. Figure Q30.31 shows two permanent magnets, each having
a hole through its center. Note that the upper magnet is
levitated above the lower one. (a) How does this occur?
(b) What purpose does the pencil serve? (c) What can you
say about the poles of the magnets from this observation?
(d) If the upper magnet were inverted, what do you
suppose would happen? Figure Q30.31
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Section 30.1 The Biot–Savart Law
1. In Niels Bohr’s 1913 model of the hydrogen atom, an

electron circles the proton at a distance of 5.29 & 10'11 m
with a speed of 2.19 & 106 m/s. Compute the magnitude
of the magnetic field that this motion produces at the
location of the proton.

2. A lightning bolt may carry a current of 1.00 & 104 A for a
short period of time. What is the resulting magnetic field
100 m from the bolt? Suppose that the bolt extends far
above and below the point of observation.

(a) A conductor in the shape of a square loop of edge
length ! " 0.400 m carries a current I " 10.0 A as in
Fig. P30.3. Calculate the magnitude and direction of the
magnetic field at the center of the square. (b) What If? If
this conductor is formed into a single circular turn and
carries the same current, what is the value of the magnetic
field at the center?

3.

4. Calculate the magnitude of the magnetic field at a point
100 cm from a long, thin conductor carrying a current of
1.00 A.

Determine the magnetic field at a point P located a
distance x from the corner of an infinitely long wire bent
at a right angle, as shown in Figure P30.5. The wire carries
a steady current I.

5.

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide

= coached solution with hints available at http://www.pse6.com = computer useful in solving problem

= paired numerical and symbolic problems

P R O B L E M S

I

!

Figure P30.3

Figure P30.5

x

P

I

I

6. A conductor consists of a circular loop of radius R and two
straight, long sections, as shown in Figure P30.6. The wire

Figure P30.6

I = 7.00 A
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10. A very long straight wire carries current I. In the middle of
the wire a right-angle bend is made. The bend forms

Figure P30.7

Figure P30.9

Figure P30.10

Figure P30.12

I

R

x×
I2 I1

2a–2a 0

r

I

60°

b

a
P

I

lies in the plane of the paper and carries a current I. Find
an expression for the vector magnetic field at the center of
the loop.

7. The segment of wire in Figure P30.7 carries a current
of I " 5.00 A, where the radius of the circular arc is
R " 3.00 cm. Determine the magnitude and direction of
the magnetic field at the origin.

8. Consider a flat circular current loop of radius R carry-
ing current I. Choose the x axis to be along the axis of the
loop, with the origin at the center of the loop. Plot a
graph of the ratio of the magnitude of the magnetic field
at coordinate x to that at the origin, for x " 0 to x " 5R. It
may be useful to use a programmable calculator or a
computer to solve this problem.

9. Two very long, straight, parallel wires carry currents that
are directed perpendicular to the page, as in Figure P30.9.
Wire 1 carries a current I1 into the page (in the ' z
direction) and passes through the x axis at x " * a. Wire 2
passes through the x axis at x " ' 2a and carries an
unknown current I2. The total magnetic field at the origin
due to the current-carrying wires has the magnitude
2#0I1/(2$a). The current I2 can have either of two
possible values. (a) Find the value of I2 with the smaller
magnitude, stating it in terms of I1 and giving its direction.
(b) Find the other possible value of I2.

an arc of a circle of radius r, as shown in Figure P30.10.
Determine the magnetic field at the center of the arc.

11. One very long wire carries current 30.0 A to the left
along the x axis. A second very long wire carries current
50.0 A to the right along the line (y " 0.280 m, z " 0).
(a) Where in the plane of the two wires is the total
magnetic field equal to zero? (b) A particle with
a charge of ' 2.00 #C is moving with a velocity of
150 î Mm/s along the line (y " 0.100 m, z " 0).
Calculate the vector magnetic force acting on the
particle. (c) What If? A uniform electric field is applied
to allow this particle to pass through this region
undeflected. Calculate the required vector electric field.

12. Consider the current-carrying loop shown in Figure
P30.12, formed of radial lines and segments of circles
whose centers are at point P. Find the magnitude and
direction of B at P.

13. A wire carrying a current I is bent into the shape of an
equilateral triangle of side L. (a) Find the magnitude of
the magnetic field at the center of the triangle. (b) At a
point halfway between the center and any vertex, is the
field stronger or weaker than at the center?

14. Determine the magnetic field (in terms of I, a, and d) at
the origin due to the current loop in Figure P30.14.

15. Two long, parallel conductors carry currents I1 " 3.00 A
and I2 " 3.00 A, both directed into the page in Figure
P30.15. Determine the magnitude and direction of the
resultant magnetic field at P.

– a + aO

d

I

I

y

x

Figure P30.14
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Wire 3 is located such that when it carries a certain
current, each wire experiences no net force. Find (a) the
position of wire 3, and (b) the magnitude and direction of
the current in wire 3.

20. The unit of magnetic flux is named for Wilhelm Weber.
The practical-size unit of magnetic field is named for
Johann Karl Friedrich Gauss. Both were scientists at
Göttingen, Germany. Along with their individual
accomplishments, together they built a telegraph in 1833.
It consisted of a battery and switch, at one end of a
transmission line 3 km long, operating an electromagnet at
the other end. (André Ampère suggested electrical
signaling in 1821; Samuel Morse built a telegraph line
between Baltimore and Washington in 1844.) Suppose that
Weber and Gauss’s transmission line was as diagrammed in
Figure P30.20. Two long, parallel wires, each having a mass
per unit length of 40.0 g/m, are supported in a horizontal
plane by strings 6.00 cm long. When both wires carry the
same current I, the wires repel each other so that the angle
! between the supporting strings is 16.0°. (a) Are the
currents in the same direction or in opposite directions?
(b) Find the magnitude of the current.

Section 30.2 The Magnetic Force Between Two
Parallel Conductors

16. Two long, parallel conductors, separated by 10.0 cm, carry
currents in the same direction. The first wire carries
current I1 " 5.00 A and the second carries I 2 " 8.00 A.
(a) What is the magnitude of the magnetic field created by
I1 at the location of I 2? (b) What is the force per unit
length exerted by I1 on I 2? (c) What is the magnitude of
the magnetic field created by I2 at the location of I1?
(d) What is the force per length exerted by I2 on I1?

In Figure P30.17, the current in the long, straight wire is
I1 " 5.00 A and the wire lies in the plane of the rectangu-
lar loop, which carries the current I2 " 10.0 A. The dimen-
sions are c " 0.100 m, a " 0.150 m, and ! " 0.450 m. Find
the magnitude and direction of the net force exerted on
the loop by the magnetic field created by the wire.

17.

Section 30.3 Ampère’s Law
Four long, parallel conductors carry equal currents of

I " 5.00 A. Figure P30.21 is an end view of the conductors.
The current direction is into the page at points A and B
(indicated by the crosses) and out of the page at C and D
(indicated by the dots). Calculate the magnitude and
direction of the magnetic field at point P, located at the
center of the square of edge length 0.200 m.

21.

18. Two long, parallel wires are attracted to each other by a
force per unit length of 320 #N/m when they are sepa-
rated by a vertical distance of 0.500 m. The current in the
upper wire is 20.0 A to the right. Determine the location
of the line in the plane of the two wires along which the
total magnetic field is zero.

19. Three long wires (wire 1, wire 2, and wire 3) hang verti-
cally. The distance between wire 1 and wire 2 is 20.0 cm.
On the left, wire 1 carries an upward current of 1.50 A. To
the right, wire 2 carries a downward current of 4.00 A.

Figure P30.15
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22. A long straight wire lies on a horizontal table and carries a
current of 1.20 #A. In a vacuum, a proton moves parallel
to the wire (opposite the current) with a constant speed of
2.30 & 104 m/s at a distance d above the wire. Determine
the value of d. You may ignore the magnetic field due to
the Earth.
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of the can and I the upward current, uniformly distributed
over its curved wall. Determine the magnetic field (a) just
inside the wall and (b) just outside. (c) Determine the
pressure on the wall.

28. Niobium metal becomes a superconductor when cooled
below 9 K. Its superconductivity is destroyed when the
surface magnetic field exceeds 0.100 T. Determine the
maximum current a 2.00-mm-diameter niobium wire can
carry and remain superconducting, in the absence of any
external magnetic field.

A long cylindrical conductor of radius R carries a current I
as shown in Figure P30.29. The current density J , however,
is not uniform over the cross section of the conductor but
is a function of the radius according to J " br, where b is a
constant. Find an expression for the magnetic field B
(a) at a distance r1 . R and (b) at a distance r 2 , R,
measured from the axis.

29.

23. Figure P30.23 is a cross-sectional view of a coaxial cable.
The center conductor is surrounded by a rubber layer,
which is surrounded by an outer conductor, which is
surrounded by another rubber layer. In a particular
application, the current in the inner conductor is 1.00 A
out of the page and the current in the outer conductor is
3.00 A into the page. Determine the magnitude and
direction of the magnetic field at points a and b.

30. In Figure P30.30, both currents in the infinitely long wires
are in the negative x direction. (a) Sketch the magnetic
field pattern in the yz plane. (b) At what distance d along
the z axis is the magnetic field a maximum?

Section 30.4 The Magnetic Field of a Solenoid
What current is required in the windings of a long

solenoid that has 1 000 turns uniformly distributed over a
length of 0.400 m, to produce at the center of the solenoid
a magnetic field of magnitude 1.00 & 10'4 T?

32. Consider a solenoid of length ! and radius R , containing
N closely spaced turns and carrying a steady current
I. (a) In terms of these parameters, find the magnetic
field at a point along the axis as a function of distance
a from the end of the solenoid. (b) Show that as !
becomes very long, B approaches #0NI/2! at each end of
the solenoid.

31.

ba
1.00 A

1 mm 1 mm 1 mm

3.00 A

. .

×
×

×

×
×

×

×

×

Figure P30.23

Figure P30.29
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24. The magnetic field 40.0 cm away from a long straight wire
carrying current 2.00 A is 1.00 #T. (a) At what distance is
it 0.100 #T? (b) What If? At one instant, the two
conductors in a long household extension cord carry
equal 2.00-A currents in opposite directions. The two wires
are 3.00 mm apart. Find the magnetic field 40.0 cm away
from the middle of the straight cord, in the plane of the
two wires. (c) At what distance is it one tenth as large?
(d) The center wire in a coaxial cable carries current
2.00 A in one direction and the sheath around it carries
current 2.00 A in the opposite direction. What magnetic
field does the cable create at points outside?

A packed bundle of 100 long, straight, insulated wires
forms a cylinder of radius R " 0.500 cm. (a) If each wire
carries 2.00 A, what are the magnitude and direction of the
magnetic force per unit length acting on a wire located
0.200 cm from the center of the bundle? (b) What If ? Would
a wire on the outer edge of the bundle experience a force
greater or smaller than the value calculated in part (a)?

26. The magnetic coils of a tokamak fusion reactor are in the
shape of a toroid having an inner radius of 0.700 m and an
outer radius of 1.30 m. The toroid has 900 turns of large-
diameter wire, each of which carries a current of 14.0 kA.
Find the magnitude of the magnetic field inside the toroid
along (a) the inner radius and (b) the outer radius.

27. Consider a column of electric current passing through
plasma (ionized gas). Filaments of current within the
column are magnetically attracted to one another. They
can crowd together to yield a very great current density
and a very strong magnetic field in a small region.
Sometimes the current can be cut off momentarily by this
pinch effect. (In a metallic wire a pinch effect is not
important, because the current-carrying electrons repel
one another with electric forces.) The pinch effect can be
demonstrated by making an empty aluminum can carry a
large current parallel to its axis. Let R represent the radius

25.
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33. A single-turn square loop of wire, 2.00 cm on each edge,
carries a clockwise current of 0.200 A. The loop is inside a
solenoid, with the plane of the loop perpendicular to
the magnetic field of the solenoid. The solenoid has
30 turns/cm and carries a clockwise current of 15.0 A.
Find the force on each side of the loop and the torque
acting on the loop.

Section 30.5 Magnetic Flux
34. Consider the hemispherical closed surface in Figure

P30.34. The hemisphere is in a uniform magnetic field
that makes an angle ! with the vertical. Calculate the
magnetic flux through (a) the flat surface S1 and (b) the
hemispherical surface S2.

Figure P30.35

Figure P30.36

Figure P30.34
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A cube of edge length ! " 2.50 cm is positioned as shown
in Figure P30.35. A uniform magnetic field given
by B " (5 î * 4 ĵ * 3k̂)T exists throughout the region.
(a) Calculate the flux through the shaded face. (b) What is
the total flux through the six faces?

35.

36. A solenoid 2.50 cm in diameter and 30.0 cm long has
300 turns and carries 12.0 A. (a) Calculate the flux
through the surface of a disk of radius 5.00 cm that is
positioned perpendicular to and centered on the axis of

the solenoid, as shown in Figure P30.36a. (b) Figure
P30.36b shows an enlarged end view of the same solenoid.
Calculate the flux through the blue area, which is defined
by an annulus that has an inner radius of 0.400 cm and
outer radius of 0.800 cm.

Section 30.7 Displacement Current and the General
Form of Ampère’s Law

A 0.100-A current is charging a capacitor that has square
plates 5.00 cm on each side. The plate separation is
4.00 mm. Find (a) the time rate of change of electric flux
between the plates and (b) the displacement current
between the plates.

38. A 0.200-A current is charging a capacitor that has circular
plates 10.0 cm in radius. If the plate separation is
4.00 mm, (a) what is the time rate of increase of electric
field between the plates? (b) What is the magnetic field
between the plates 5.00 cm from the center?

Section 30.8 Magnetism in Matter
39. In Bohr’s 1913 model of the hydrogen atom, the electron is

in a circular orbit of radius 5.29 & 10'11 m and its speed is
2.19 & 106 m/s. (a) What is the magnitude of the magnetic
moment due to the electron’s motion? (b) If the electron
moves in a horizontal circle, counterclockwise as seen from
above, what is the direction of this magnetic moment vector?

40. A magnetic field of 1.30 T is to be set up in an iron-core
toroid. The toroid has a mean radius of 10.0 cm, and
magnetic permeability of 5 000 #0. What current is
required if the winding has 470 turns of wire? The
thickness of the iron ring is small compared to 10 cm, so
the field in the material is nearly uniform.

A toroid with a mean radius of 20.0 cm and 630 turns (see
Fig. 30.30) is filled with powdered steel whose magnetic

41.

37.
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susceptibility 8 is 100. The current in the windings is
3.00 A. Find B (assumed uniform) inside the toroid.

42. A particular paramagnetic substance achieves 10.0% of
its saturation magnetization when placed in a magnetic
field of 5.00 T at a temperature of 4.00 K. The density of
magnetic atoms in the sample is 8.00 & 1027 atoms/m3, and
the magnetic moment per atom is 5.00 Bohr magnetons.
Calculate the Curie constant for this substance.

43. Calculate the magnetic field strength H of a magnetized
substance in which the magnetization is 0.880 & 106 A/m
and the magnetic field has magnitude 4.40 T.

44. At saturation, when nearly all of the atoms have their mag-
netic moments aligned, the magnetic field in a sample
of iron can be 2.00 T. If each electron contributes a
magnetic moment of 9.27 & 10'24 A ( m2 (one Bohr
magneton), how many electrons per atom contribute to
the saturated field of iron? Iron contains approximately
8.50 & 1028 atoms/m3.

45. (a) Show that Curie’s law can be stated in the following
way: The magnetic susceptibility of a paramagnetic
substance is inversely proportional to the absolute temper-
ature, according to 8 " C#0/T, where C is Curie’s
constant. (b) Evaluate Curie’s constant for chromium.

Section 30.9 The Magnetic Field of the Earth
46. A circular coil of 5 turns and a diameter of 30.0 cm is ori-

ented in a vertical plane with its axis perpendicular to the
horizontal component of the Earth’s magnetic field. A
horizontal compass placed at the center of the coil is made
to deflect 45.0° from magnetic north by a current of
0.600 A in the coil. (a) What is the horizontal component
of the Earth’s magnetic field? (b) The current in the coil is
switched off. A “dip needle” is a magnetic compass
mounted so that it can rotate in a vertical north–south
plane. At this location a dip needle makes an angle of
13.0° from the vertical. What is the total magnitude of the
Earth’s magnetic field at this location?

The magnetic moment of the Earth is approximately
8.00 & 1022 A ( m2. (a) If this were caused by the complete
magnetization of a huge iron deposit, how many unpaired
electrons would this correspond to? (b) At two unpaired
electrons per iron atom, how many kilograms of iron would
this correspond to? (Iron has a density of 7 900 kg/m3, and
approximately 8.50 & 1028 iron atoms/m3.)

Additional Problems
48. The magnitude of the Earth’s magnetic field at either pole

is approximately 7.00 & 10'5 T. Suppose that the field
fades away, before its next reversal. Scouts, sailors, and
conservative politicians around the world join together in
a program to replace the field. One plan is to use a
current loop around the equator, without relying on
magnetization of any materials inside the Earth.
Determine the current that would generate such a field if
this plan were carried out. (Take the radius of the Earth as
RE " 6.37 & 106 m.)

A very long, thin strip of metal of width w carries a current
I along its length as shown in Figure P30.49. Find the

49.

47.

magnetic field at the point P in the diagram. The point P
is in the plane of the strip at distance b away from it.
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b
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50. Suppose you install a compass on the center of the
dashboard of a car. Compute an order-of-magnitude
estimate for the magnetic field at this location produced
by the current when you switch on the headlights. How
does it compare with the Earth’s magnetic field? You may
suppose the dashboard is made mostly of plastic.

51. For a research project, a student needs a solenoid that 
produces an interior magnetic field of 0.030 0 T. She
decides to use a current of 1.00 A and a wire 0.500 mm in
diameter. She winds the solenoid in layers on an insulating
form 1.00 cm in diameter and 10.0 cm long. Determine
the number of layers of wire needed and the total length
of the wire.

52. A thin copper bar of length ! " 10.0 cm is supported hori-
zontally by two (nonmagnetic) contacts. The bar carries
current I1 " 100 A in the ' x direction, as shown in
Figure P30.52. At a distance h " 0.500 cm below one end
of the bar, a long straight wire carries a current I2 " 200 A
in the z direction. Determine the magnetic force exerted
on the bar.

A nonconducting ring of radius 10.0 cm is uniformly
charged with a total positive charge 10.0 #C. The ring
rotates at a constant angular speed 20.0 rad/s about an

53.
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Figure P30.55 Problems 55 and 56.

Figure P30.57 (a) General view of one turn of each saddle coil.
(b) End view of the coils carrying current into the paper on the
left and out of the paper on the right.
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axis through its center, perpendicular to the plane of the
ring. What is the magnitude of the magnetic field on the
axis of the ring 5.00 cm from its center?

A nonconducting ring of radius R is uniformly charged
with a total positive charge q. The ring rotates at a constant
angular speed 4 about an axis through its center, perpen-
dicular to the plane of the ring. What is the magnitude of
the magnetic field on the axis of the ring a distance R/2
from its center?

55. Two circular coils of radius R , each with N turns, are
perpendicular to a common axis. The coil centers are a
distance R apart. Each coil carries a steady current I in the
same direction, as shown in Figure P30.55. (a) Show that
the magnetic field on the axis at a distance x from the
center of one coil is

(b) Show that dB/dx and d 2B/dx 2 are both zero at the
point midway between the coils. This means the magnetic
field in the region midway between the coils is uniform.
Coils in this configuration are called Helmholtz coils.

B "
N#0IR 

2

2
 * 1

(R 
2 * x 

2)3/2 *
1

(2R 
2 * x 

2 ' 2Rx)3/2 (

54.

58. A very large parallel-plate capacitor carries charge with
uniform charge per unit area * / on the upper plate and
' / on the lower plate. The plates are horizontal and both
move horizontally with speed v to the right. (a) What
is the magnetic field between the plates? (b) What is
the magnetic field close to the plates but outside of the
capacitor? (c) What is the magnitude and direction of the
magnetic force per unit area on the upper plate? (d) At
what extrapolated speed v will the magnetic force on a
plate balance the electric force on the plate? Calculate this
speed numerically.

59. Two circular loops are parallel, coaxial, and almost in
contact, 1.00 mm apart (Fig. P30.59). Each loop is 10.0 cm
in radius. The top loop carries a clockwise current of
140 A. The bottom loop carries a counterclockwise current
of 140 A. (a) Calculate the magnetic force exerted by the
bottom loop on the top loop. (b) The upper loop has a
mass of 0.021 0 kg. Calculate its acceleration, assuming
that the only forces acting on it are the force in part
(a) and the gravitational force. Suggestion: Think about
how one loop looks to a bug perched on the other loop.

60. What objects experience a force in an electric field?
Chapter 23 gives the answer: any electric charge, stationary
or moving, other than the charge that created the
field. What creates an electric field? Any electric charge,
stationary or moving, as you studied in Chapter 23. What
objects experience a force in a magnetic field? An electric
current or a moving electric charge, other than the
current or charge that created the field, as discussed in
Chapter 29. What creates a magnetic field? An electric
current, as you studied in Section 30.1, or a moving
electric charge, as shown in this problem. (a) To display
how a moving charge creates a magnetic field, consider a
charge q moving with velocity v. Define the vector r " r r̂

56. Two identical, flat, circular coils of wire each have
100 turns and a radius of 0.500 m. The coils are arranged
as a set of Helmholtz coils (see Fig. P30.55), parallel and
with separation 0.500 m. Each coil carries a current of
10.0 A. Determine the magnitude of the magnetic field at
a point on the common axis of the coils and halfway
between them.

57. We have seen that a long solenoid produces a uniform
magnetic field directed along the axis of a cylindrical
region. However, to produce a uniform magnetic field
directed parallel to a diameter of a cylindrical region, one
can use the saddle coils illustrated in Figure P30.57. The
loops are wrapped over a somewhat flattened tube.
Assume the straight sections of wire are very long. The end
view of the tube shows how the windings are applied. The
overall current distribution is the superposition of two
overlapping circular cylinders of uniformly distributed
current, one toward you and one away from you. The
current density J is the same for each cylinder. The
position of the axis of one cylinder is described by a
position vector a relative to the other cylinder. Prove that
the magnetic field inside the hollow tube is #0 Ja/2
downward. Suggestion: The use of vector methods
simplifies the calculation.

140 A

140 A
Figure P30.59
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Figure P30.61

Figure P30.63

Figure P30.64

Figure P30.65
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to lead from the charge to some location. Show that the
magnetic field at that location is

(b) Find the magnitude of the magnetic field 1.00 mm to
the side of a proton moving at 2.00 & 107 m/s. (c) Find
the magnetic force on a second proton at this point,
moving with the same speed in the opposite direction.
(d) Find the electric force on the second proton.

61. Rail guns have been suggested for launching projectiles
into space without chemical rockets, and for ground-to-air
antimissile weapons of war. A tabletop model rail gun
(Fig. P30.61) consists of two long parallel horizontal rails
3.50 cm apart, bridged by a bar BD of mass 3.00 g. The bar
is originally at rest at the midpoint of the rails and is free
to slide without friction. When the switch is closed, electric
current is quickly established in the circuit ABCDEA. The
rails and bar have low electric resistance, and the current
is limited to a constant 24.0 A by the power supply.
(a) Find the magnitude of the magnetic field 1.75 cm
from a single very long straight wire carrying current
24.0 A. (b) Find the magnitude and direction of the
magnetic field at point C in the diagram, the midpoint of
the bar, immediately after the switch is closed. Suggestion:
Consider what conclusions you can draw from the
Biot–Savart law. (c) At other points along the bar BD, the
field is in the same direction as at point C, but larger in
magnitude. Assume that the average effective magnetic
field along BD is five times larger than the field at C. With
this assumption, find the magnitude and direction of the
force on the bar. (d) Find the acceleration of the bar when
it is in motion. (e) Does the bar move with constant
acceleration? (f) Find the velocity of the bar after it has
traveled 130 cm to the end of the rails.

B "
#0

4$
 
q v & r̂

r 
2

62. Fifty turns of insulated wire 0.100 cm in diameter
are tightly wound to form a flat spiral. The spiral fills a
disk surrounding a circle of radius 5.00 cm and extend-
ing to a radius 10.00 cm at the outer edge. Assume the
wire carries current I at the center of its cross section.
Approximate each turn of wire as a circle. Then a loop
of current exists at radius 5.05 cm, another at 5.15 cm,
and so on. Numerically calculate the magnetic field at
the center of the coil.

63. Two long, parallel conductors carry currents in the same
direction as shown in Figure P30.63. Conductor A carries a
current of 150 A and is held firmly in position. Conductor
B carries a current IB and is allowed to slide freely up and
down (parallel to A) between a set of nonconducting
guides. If the mass per unit length of conductor B

is 0.100 g/cm, what value of current IB will result in
equilibrium when the distance between the two conduc-
tors is 2.50 cm?

64. Charge is sprayed onto a large nonconducting belt above
the left-hand roller in Figure P30.64. The belt carries the
charge with a uniform surface charge density / as it moves
with a speed v between the rollers as shown. The charge is
removed by a wiper at the right-hand roller. Consider a
point just above the surface of the moving belt. (a) Find
an expression for the magnitude of the magnetic field B
at this point. (b) If the belt is positively charged, what is
the direction of B? (Note that the belt may be considered
as an infinite sheet.)

65. An infinitely long straight wire carrying a current I1 is
partially surrounded by a loop as shown in Figure P30.65.
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B (T) B0 (T)

0.2 4.8 & 10'5

0.4 7.0 & 10'5

0.6 8.8 & 10'5

0.8 1.2 & 10'4

1.0 1.8 & 10'4

1.2 3.1 & 10'4

1.4 8.7 & 10'4

1.6 3.4 & 10'3

1.8 1.2 & 10'1

Table P30.70

Figure P30.69

Figure P30.67
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The loop has a length L, radius R, and carries a current I2.
The axis of the loop coincides with the wire. Calculate the
force exerted on the loop.

66. Measurements of the magnetic field of a large tornado
were made at the Geophysical Observatory in Tulsa,
Oklahoma, in 1962. The tornado’s field was measured to
be B " 1.50 & 10'8 T pointing north when the tornado
was 9.00 km east of the observatory. What current was
carried up or down the funnel of the tornado, modeled as
a long straight wire?

A wire is formed into the shape of a square of edge length
L (Fig. P30.67). Show that when the current in the loop is
I, the magnetic field at point P, a distance x from the
center of the square along its axis is

B "
#0IL2

2$(x 
2 * L2/4)√x 

2 * L2/2

67.

68. The force on a magnetic dipole " aligned with a nonuni-
form magnetic field in the x direction is given by
Fx " """dB/dx. Suppose that two flat loops of wire each
have radius R and carry current I. (a) The loops
are arranged coaxially and separated by a variable
distance x, large compared to R. Show that the magnetic
force between them varies as 1/x4. (b) Evaluate the
magnitude of this force if I " 10.0 A, R " 0.500 cm, and
x " 5.00 cm.

69. A wire carrying a current I is bent into the shape of an
exponential spiral, r " e!, from ! " 0 to ! " 2$ as sug-
gested in Figure P30.69. To complete a loop, the ends of
the spiral are connected by a straight wire along the x axis.
Find the magnitude and direction of B at the origin.
Suggestions: Use the Biot–Savart law. The angle 9 between a
radial line and its tangent line at any point on the curve
r " f (!) is related to the function in the following way:

Thus in this case r " e !, tan 9 " 1 and 9 " $/4.
Therefore, the angle between ds and r̂ is $ ' 9 " 3$/4.
Also

ds "
dr

sin($/4)
" √2 dr

tan 9 "
r

dr/d!

70. Table P30.70 contains data taken for a ferromagnetic
material. (a) Construct a magnetization curve from the
data. Remember that B " B0 * #0M. (b) Determine the
ratio B/B0 for each pair of values of B and B0, and
construct a graph of B/B0 versus B0. (The fraction B/B0 is
called the relative permeability, and it is a measure of the
induced magnetic field.)

71. A sphere of radius R has a uniform volume charge density
:. Determine the magnetic field at the center of the
sphere when it rotates as a rigid object with angular speed
4 about an axis through its center (Fig. P30.71).

Figure P30.71 Problems 71 and 72.

R

4



72. A sphere of radius R has a uniform volume charge density
:. Determine the magnetic dipole moment of the sphere
when it rotates as a rigid body with angular speed 4 about
an axis through its center (Fig. P30.71).

73. A long cylindrical conductor of radius a has two cylindrical
cavities of diameter a through its entire length, as shown
in Figure P30.73. A current I is directed out of the page
and is uniform through a cross section of the conductor.
Find the magnitude and direction of the magnetic field in
terms of #0, I, r, and a at (a) point P1 and (b) point P 2.

Answers to Quick Quizzes
30.1 B, C, A. Point B is closest to the current element. Point C

is farther away and the field is further reduced by the
sin ! factor in the cross product ds ! r̂. The field at A is
zero because ! " 0.

30.2 (c). F1 " F2 as required by Newton’s third law. Another
way to arrive at this answer is to realize that Equation

30.11 gives the same result whether the multiplication of
currents is (2 A)(6 A) or (6 A)(2 A).

30.3 (a). The coils act like wires carrying parallel currents in
the same direction and hence attract one another.

30.4 b, d, a, c. Equation 30.13 indicates that the value of the
line integral depends only on the net current through
each closed path. Path b encloses 1 A, path d encloses
3 A, path a encloses 4 A, and path c encloses 6 A.

30.5 b, then a " c " d. Paths a, c, and d all give the same
nonzero value #0I because the size and shape of the
paths do not matter. Path b does not enclose the current,
and hence its line integral is zero.

30.6 (c). The magnetic field in a very long solenoid is inde-
pendent of its length or radius. Overwrapping with an
additional layer of wire increases the number of turns
per unit length.

30.7 (b). There can be no conduction current because there
is no conductor between the plates. There is a time-
varying electric field because of the decreasing charge
on the plates, and the time-varying electric flux
represents a displacement current.

30.8 (c). There is a time-varying electric field because of the
decreasing charge on the plates. This time-varying
electric field produces a magnetic field.

30.9 (a). The loop that looks like Figure 30.32a is better
because the remanent magnetization at the point corre-
sponding to point b in Figure 30.31 is greater.

30.10 (b). The lines of the Earth’s magnetic field enter the
planet in Hudson Bay and emerge from Antarctica; thus,
the field lines resulting from the current would have to
go in the opposite direction. Compare Figure 30.7a with
Figure 30.36.
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Figure P30.73
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! In a commercial electric power plant, large generators produce energy that is transferred
out of the plant by electrical transmission. These generators use magnetic induction to
generate a potential difference when coils of wire in the generator are rotated in a magnetic
field. The source of energy to rotate the coils might be falling water, burning fossil fuels, or a
nuclear reaction. (Michael Melford/Getty Images)
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The focus of our studies in electricity and magnetism so far has been the electric fields
produced by stationary charges and the magnetic fields produced by moving charges.
This chapter explores the effects produced by magnetic fields that vary in time.

Experiments conducted by Michael Faraday in England in 1831 and indepen-
dently by Joseph Henry in the United States that same year showed that an emf can
be induced in a circuit by a changing magnetic field. The results of these experi-
ments led to a very basic and important law of electromagnetism known as Faraday’s
law of induction. An emf (and therefore a current as well) can be induced in various
processes that involve a change in a magnetic flux.

With the treatment of Faraday’s law, we complete our introduction to the funda-
mental laws of electromagnetism. These laws can be summarized in a set of four equa-
tions called Maxwell’s equations. Together with the Lorentz force law, they represent a
complete theory for describing the interaction of charged objects.

31.1 Faraday’s Law of Induction

To see how an emf can be induced by a changing magnetic field, consider a loop of
wire connected to a sensitive ammeter, as illustrated in Figure 31.1. When a magnet is
moved toward the loop, the galvanometer needle deflects in one direction, arbitrarily
shown to the right in Figure 31.1a. When the magnet is brought to rest and held
stationary relative to the loop (Fig. 31.1b), no deflection is observed. When the magnet
is moved away from the loop, the needle deflects in the opposite direction, as shown in
Figure 31.1c. Finally, if the magnet is held stationary and the loop is moved either
toward or away from it, the needle deflects. From these observations, we conclude that
the loop detects that the magnet is moving relative to it and we relate this detection to
a change in magnetic field. Thus, it seems that a relationship exists between current
and changing magnetic field.

These results are quite remarkable in view of the fact that a current is set up even
though no batteries are present in the circuit! We call such a current an induced
current and say that it is produced by an induced emf.

Now let us describe an experiment conducted by Faraday and illustrated in Figure
31.2. A primary coil is connected to a switch and a battery. The coil is wrapped around
an iron ring, and a current in the coil produces a magnetic field when the switch is
closed. A secondary coil also is wrapped around the ring and is connected to a sensitive
ammeter. No battery is present in the secondary circuit, and the secondary coil is not
electrically connected to the primary coil. Any current detected in the secondary
circuit must be induced by some external agent.

Initially, you might guess that no current is ever detected in the secondary circuit.
However, something quite amazing happens when the switch in the primary circuit is
either opened or thrown closed. At the instant the switch is closed, the galvanometer
needle deflects in one direction and then returns to zero. At the instant the switch is
opened, the needle deflects in the opposite direction and again returns to zero.

Michael Faraday
British Physicist and Chemist
(1791–1867)

Faraday is often regarded as the
greatest experimental scientist of
the 1800s. His many
contributions to the study of
electricity include the invention of
the electric motor, electric
generator, and transformer, as
well as the discovery of
electromagnetic induction and
the laws of electrolysis. Greatly
influenced by religion, he refused
to work on the development of
poison gas for the British military.
(By kind permission of the
President and Council of the
Royal Society)
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Finally, the galvanometer reads zero when there is either a steady current or no
current in the primary circuit. The key to understanding what happens in this experi-
ment is to note first that when the switch is closed, the current in the primary circuit
produces a magnetic field that penetrates the secondary circuit. Furthermore, when

Active Figure 31.1 (a) When a magnet is moved toward a loop of wire connected to a
sensitive ammeter, the ammeter deflects as shown, indicating that a current is induced
in the loop. (b) When the magnet is held stationary, there is no induced current in the
loop, even when the magnet is inside the loop. (c) When the magnet is moved away
from the loop, the ammeter deflects in the opposite direction, indicating that the
induced current is opposite that shown in part (a). Changing the direction of the
magnet’s motion changes the direction of the current induced by that motion.
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At the Active Figures link
at http://www.pse6.com, you
can move the magnet and
observe the current in the
ammeter.

At the Active Figures link
at http://www.pse6.com, you
can open and close the switch
and observe the current in the
ammeter.

Active Figure 31.2 Faraday’s experiment. When the switch in the primary circuit is
closed, the ammeter in the secondary circuit deflects momentarily. The emf induced in
the secondary circuit is caused by the changing magnetic field through the secondary coil.
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This statement, known as Faraday’s law of induction, can be written

(31.1)

where !B " ∫ B ! dA is the magnetic flux through the circuit. (See Section 30.5.)
If the circuit is a coil consisting of N loops all of the same area and if !B is the

magnetic flux through one loop, an emf is induced in every loop. The loops are in series,
so their emfs add; thus, the total induced emf in the coil is given by the expression

(31.2)

The negative sign in Equations 31.1 and 31.2 is of important physical significance, as
discussed in Section 31.3.

Suppose that a loop enclosing an area A lies in a uniform magnetic field B, as in
Figure 31.3. The magnetic flux through the loop is equal to BA cos # ; hence, the
induced emf can be expressed as

(31.3)

From this expression, we see that an emf can be induced in the circuit in several ways:

• The magnitude of B can change with time.

• The area enclosed by the loop can change with time.

• The angle # between B and the normal to the loop can change with time.

• Any combination of the above can occur.

$ " %
d
dt

 (BA cos #)

$ " %N  
d!B

dt

$ " %
d!B

dt

the switch is closed, the magnetic field produced by the current in the primary circuit
changes from zero to some value over some finite time, and this changing field induces
a current in the secondary circuit.

As a result of these observations, Faraday concluded that an electric current can
be induced in a circuit (the secondary circuit in our setup) by a changing
magnetic field. The induced current exists for only a short time while the magnetic
field through the secondary coil is changing. Once the magnetic field reaches a steady
value, the current in the secondary coil disappears. In effect, the secondary circuit
behaves as though a source of emf were connected to it for a short time. It is customary
to say that an induced emf is produced in the secondary circuit by the changing
magnetic field.

The experiments shown in Figures 31.1 and 31.2 have one thing in common: in
each case, an emf is induced in the circuit when the magnetic flux through the circuit
changes with time. In general,

The emf induced in a circuit is directly proportional to the time rate of change of
the magnetic flux through the circuit.

! PITFALL PREVENTION
31.1 Induced emf

Requires a Change
The existence of a magnetic flux
through an area is not sufficient
to create an induced emf. There
must be a change in the magnetic
flux in order for an emf to be
induced.

Faraday’s law

B

θ

θ

Loop of
area A

Figure 31.3 A conducting loop
that encloses an area A in the
presence of a uniform magnetic
field B. The angle between B and
the normal to the loop is #.

Quick Quiz 31.1 A circular loop of wire is held in a uniform magnetic field,
with the plane of the loop perpendicular to the field lines. Which of the following will
not cause a current to be induced in the loop? (a) crushing the loop; (b) rotating the
loop about an axis perpendicular to the field lines; (c) keeping the orientation of the
loop fixed and moving it along the field lines; (d) pulling the loop out of the field.
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Some Applications of Faraday’s Law

The ground fault interrupter (GFI) is an interesting safety device that protects users of
electrical appliances against electric shock. Its operation makes use of Faraday’s law. In
the GFI shown in Figure 31.5, wire 1 leads from the wall outlet to the appliance to be
protected, and wire 2 leads from the appliance back to the wall outlet. An iron ring
surrounds the two wires, and a sensing coil is wrapped around part of the ring. Because
the currents in the wires are in opposite directions, the net magnetic flux through the
sensing coil due to the currents is zero. However, if the return current in wire 2
changes, the net magnetic flux through the sensing coil is no longer zero. (This can
happen, for example, if the appliance becomes wet, enabling current to leak to
ground.) Because household current is alternating (meaning that its direction keeps
reversing), the magnetic flux through the sensing coil changes with time, inducing an
emf in the coil. This induced emf is used to trigger a circuit breaker, which stops the
current before it is able to reach a harmful level.

Another interesting application of Faraday’s law is the production of sound in an
electric guitar (Fig. 31.6). The coil in this case, called the pickup coil, is placed near the
vibrating guitar string, which is made of a metal that can be magnetized. A permanent

Quick Quiz 31.2 Figure 31.4 shows a graphical representation of the field
magnitude versus time for a magnetic field that passes through a fixed loop and is ori-
ented perpendicular to the plane of the loop. The magnitude of the magnetic field at
any time is uniform over the area of the loop. Rank the magnitudes of the emf gener-
ated in the loop at the five instants indicated, from largest to smallest.

Quick Quiz 31.3 Suppose you would like to steal power for your home from
the electric company by placing a loop of wire near a transmission cable, so as to
induce an emf in the loop (an illegal procedure). Should you (a) place your loop so
that the transmission cable passes through your loop, or (b) simply place your loop
near the transmission cable?

Figure 31.4 (Quick Quiz 31.2) The time behavior of a magnetic field through a loop.
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Figure 31.5 Essential components of a ground
fault interrupter.
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magnet inside the coil magnetizes the portion of the string nearest the coil. When the
string vibrates at some frequency, its magnetized segment produces a changing
magnetic flux through the coil. The changing flux induces an emf in the coil that is
fed to an amplifier. The output of the amplifier is sent to the loudspeakers, which
produce the sound waves we hear.

(b)

Figure 31.6 (a) In an electric guitar, a vibrating magnetized string induces an emf in a
pickup coil. (b) The pickups (the circles beneath the metallic strings) of this electric
guitar detect the vibrations of the strings and send this information through an
amplifier and into speakers. (A switch on the guitar allows the musician to select which
set of six pickups is used.)
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Example 31.1 One Way to Induce an emf in a Coil

A coil consists of 200 turns of wire. Each turn is a square of
side 18 cm, and a uniform magnetic field directed perpendic-
ular to the plane of the coil is turned on. If the field changes
linearly from 0 to 0.50 T in 0.80 s, what is the magnitude of
the induced emf in the coil while the field is changing?

Solution The area of one turn of the coil is (0.18 m)2 "
0.032 4 m2 . The magnetic flux through the coil at t " 0 is
zero because B " 0 at that time. At t " 0.80 s, the magnetic
flux through one turn is !B " BA " (0.50 T)(0.032 4 m2) "
0.016 2 T & m2. Therefore, the magnitude of the induced emf
is, from Equation 31.2,

4.1 V" 4.1 T&m2/s "

&$&" N  
'!B

't
" 200  

(0.016 2 T&m2 % 0)
0.80 s

You should be able to show that 1 T & m2/s " 1 V.

What If? What if you were asked to find the magnitude of
the induced current in the coil while the field is changing?
Can you answer this question?

Answer If the ends of the coil are not connected to a
circuit, the answer to this question is easy—the current is
zero! (Charges will move within the wire of the coil, but they
cannot move into or out of the ends of the coil.) In order
for a steady current to exist, the ends of the coil must be
connected to an external circuit. Let us assume that the coil
is connected to a circuit and that the total resistance of the
coil and the circuit is 2.0 (. Then, the current in the coil is

I "
$
R

"
4.1 V
2.0 (

" 2.0 A

Example 31.2 An Exponentially Decaying B Field

A loop of wire enclosing an area A is placed in a region
where the magnetic field is perpendicular to the plane of
the loop. The magnitude of B varies in time according to
the expression B " Bmaxe%at, where a is some constant. That
is, at t " 0 the field is Bmax, and for t ) 0, the field decreases

exponentially (Fig. 31.7). Find the induced emf in the loop
as a function of time.

Solution Because B is perpendicular to the plane of the
loop, the magnetic flux through the loop at time t ) 0 is
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31.2 Motional emf

In Examples 31.1 and 31.2, we considered cases in which an emf is induced in a
stationary circuit placed in a magnetic field when the field changes with time. In this
section we describe what is called motional emf, which is the emf induced in a
conductor moving through a constant magnetic field.

The straight conductor of length ! shown in Figure 31.9 is moving through a
uniform magnetic field directed into the page. For simplicity, we assume that the
conductor is moving in a direction perpendicular to the field with constant velocity
under the influence of some external agent. The electrons in the conductor experi-
ence a force FB " q v " B that is directed along the length !, perpendicular to both
v and B (Eq. 29.1). Under the influence of this force, the electrons move to the
lower end of the conductor and accumulate there, leaving a net positive charge at
the upper end. As a result of this charge separation, an electric field E is produced

t

B

Bmax

Figure 31.7 (Example 31.2) Exponential decrease in the
magnitude of the magnetic field with time. The induced emf
and induced current vary with time in the same way.

Conceptual Example 31.3 Which Bulb Is Shorted Out?

Two bulbs are connected to opposite sides of a circular loop
of wire, as shown in Figure 31.8a. A changing magnetic field
(confined to the smaller circular area shown in the figure)
induces an emf in the loop that causes the two bulbs to
light. When the switch is closed, the resistance-free wires
connected to the switch short out bulb 2 and it goes out.
What happens if the wires containing the closed switch
remain connected at points a and b, but the switch and the
wires are lifted up and moved to the other side of the field,
as in Figure 3.18b? The wire is still connected to bulb 2 as it
was before, so does it continue to stay dark?

Solution When the wire is moved to the other side, even
though the connections have not changed, bulb 1 goes out
and bulb 2 glows. The bulb that is shorted depends on
which side of the changing field the switch is positioned! In
Figure 31.8a, because the branch containing bulb 2 is infi-
nitely more resistant than the branch containing the
resistance-free switch, we can imagine removing the branch
with the bulb without altering the circuit. Then we have a
simple loop containing only bulb 1, which glows.

When the wire is moved, as in Figure 31.8b, there are
two possible paths for current below points a and b. We can
imagine removing the branch with bulb 1, leaving only a
single loop with bulb 2.

× × × × × × ×
× × × × × × ×
× × × × × × ×
× × × × × × ×

× × × × ×

× × × × ×
× × × × × × ×
× × × × × × ×
× × × × × × ×
× × × × × × ×

× × × × ×

× × × × ×

Bulb 1 Bulb 1

Bulb 2 Bulb 2

Switch

Switch

a b aa b

(b)(a)

Figure 31.8 (Conceptual Example 31.3) (a) When the wire
with the switch is located as shown, bulb 2 goes out when the
switch is closed. (b) What happens when the switch and the
wires are moved to the other side of the magnetic field?

!B " BA cos 0 " ABmaxe%at

Because ABmax and a are constants, the induced emf calcu-
lated from Equation 31.1 is

"

This expression indicates that the induced emf decays
exponentially in time. Note that the maximum emf occurs
at t " 0, where $max " aABmax. The plot of $ versus t is
similar to the B-versus-t curve shown in Figure 31.7.

aABmaxe%at

$ " %
d!B

dt
" %ABmax 

d
dt

 e%at



inside the conductor. The charges accumulate at both ends until the downward
magnetic force qvB on charges remaining in the conductor is balanced by the
upward electric force qE. At this point, electrons move only with random thermal
motion. The condition for equilibrium requires that

qE " qvB or E " vB

The electric field produced in the conductor is related to the potential difference
across the ends of the conductor according to the relationship 'V " E! (Eq. 25.6).
Thus, for the equilibrium condition,

'V " E! " B !v (31.4)

where the upper end of the conductor in Figure 31.9 is at a higher electric potential
than the lower end. Thus, a potential difference is maintained between the ends
of the conductor as long as the conductor continues to move through the 
uniform magnetic field. If the direction of the motion is reversed, the polarity of the
potential difference is also reversed.

A more interesting situation occurs when the moving conductor is part of a closed
conducting path. This situation is particularly useful for illustrating how a changing
magnetic flux causes an induced current in a closed circuit. Consider a circuit consist-
ing of a conducting bar of length ! sliding along two fixed parallel conducting rails, as
shown in Figure 31.10a.

For simplicity, we assume that the bar has zero resistance and that the stationary
part of the circuit has a resistance R. A uniform and constant magnetic field B is
applied perpendicular to the plane of the circuit. As the bar is pulled to the right with
a velocity v under the influence of an applied force Fapp, free charges in the bar
experience a magnetic force directed along the length of the bar. This force sets up
an induced current because the charges are free to move in the closed conducting
path. In this case, the rate of change of magnetic flux through the loop and the corre-
sponding induced motional emf across the moving bar are proportional to the
change in area of the loop. If the bar is pulled to the right with a constant velocity, the
work done by the applied force appears as internal energy in the resistor R . (See
Section 27.6.)

Because the area enclosed by the circuit at any instant is !x, where x is the position
of the bar, the magnetic flux through that area is

!B " B !x

Using Faraday’s law, and noting that x changes with time at a rate dx/dt " v, we find
that the induced motional emf is

(31.5)

Because the resistance of the circuit is R , the magnitude of the induced current is

(31.6)

The equivalent circuit diagram for this example is shown in Figure 31.10b.

I "
&$&

R
"

B!v
R

 $ " %B!v

$ " %
d!B

dt
" %

d
dt

 (B!x) " %B! 
dx
dt
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Figure 31.9 A straight electrical conductor of length ! moving
with a velocity v through a uniform magnetic field B directed
perpendicular to v. Due to the magnetic force on electrons, the
ends of the conductor become oppositely charged. This establishes
an electric field in the conductor. In steady state, the electric and
magnetic forces on an electron in the wire are balanced.
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Active Figure 31.10 (a) A conduct-
ing bar sliding with a velocity v along
two conducting rails under the
action of an applied force Fapp. The
magnetic force FB opposes the
motion, and a counterclockwise
current I is induced in the loop.
(b) The equivalent circuit diagram
for the setup shown in part (a).

At the Active Figures link
at http://www.pse6.com, you
can adjust the applied force,
the magnetic field, and the
resistance to see the effects on
the motion of the bar.
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Let us examine the system using energy considerations. Because no battery is in the
circuit, we might wonder about the origin of the induced current and the energy deliv-
ered to the resistor. We can understand the source of this current and energy by noting
that the applied force does work on the conducting bar, thereby moving charges
through a magnetic field. Their movement through the field causes the charges to
move along the bar with some average drift velocity, and hence a current is established.
The change in energy in the system during some time interval must be equal to the
transfer of energy into the system by work, consistent with the general principle of
conservation of energy described by Equation 7.17.

Let us verify this mathematically. As the bar moves through the uniform magnetic
field B, it experiences a magnetic force FB of magnitude I!B (see Section 29.2). The
direction of this force is opposite the motion of the bar, to the left in Figure 31.10a.
Because the bar moves with constant velocity, the applied force must be equal in
magnitude and opposite in direction to the magnetic force, or to the right in Figure
31.10a. (If FB acted in the direction of motion, it would cause the bar to accelerate,
violating the principle of conservation of energy.) Using Equation 31.6 and the fact
that Fapp " I!B, we find that the power delivered by the applied force is

(31.7)

From Equation 27.23, we see that this power input is equal to the rate at which energy
is delivered to the resistor, so that Equation 7.17 is confirmed in this situation.

" " Fappv " (I!B)v "
B2 !2v2

R
"

$2

R
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Example 31.4 Motional emf Induced in a Rotating Bar

A conducting bar of length ! rotates with a constant angular
speed * about a pivot at one end. A uniform magnetic field
B is directed perpendicular to the plane of rotation, as
shown in Figure 31.11. Find the motional emf induced
between the ends of the bar.

Solution Consider a segment of the bar of length dr having
a velocity v. According to Equation 31.5, the magnitude of

the emf induced in this segment is

d$ " Bv dr

Because every segment of the bar is moving perpendicular
to B, an emf d$ of the same form is generated across each
segment. Summing the emfs induced across all segments,
which are in series, gives the total emf between the ends

Interactive

Quick Quiz 31.4 As an airplane flies from Los Angeles to Seattle, it passes
through the Earth’s magnetic field. As a result, a motional emf is developed between
the wingtips. Which wingtip is positively charged? (a) the left wing (b) the right
wing.

Quick Quiz 31.5 In Figure 31.10, a given applied force of magnitude Fapp
results in a constant speed v and a power input ". Imagine that the force is increased
so that the constant speed of the bar is doubled to 2v. Under these conditions, the new
force and the new power input are (a) 2F and 2" (b) 4F and 2" (c) 2F and 4" (d) 4F
and 4".

Quick Quiz 31.6 You wish to move a rectangular loop of wire into a region
of uniform magnetic field at a given speed so as to induce an emf in the loop. The
plane of the loop remains perpendicular to the magnetic field lines. In which orienta-
tion should you hold the loop while you move it into the region of magnetic field in
order to generate the largest emf? (a) with the long dimension of the loop parallel to
the velocity vector (b) with the short dimension of the loop parallel to the velocity
vector (c) either way—the emf is the same regardless of orientation.
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Example 31.5 Magnetic Force Acting on a Sliding Bar

The conducting bar illustrated in Figure 31.12 moves on two
frictionless parallel rails in the presence of a uniform mag-
netic field directed into the page. The bar has mass m and
its length is !. The bar is given an initial velocity vi to the
right and is released at t " 0.

(A) Using Newton’s laws, find the velocity of the bar as a
function of time.

(B) Show that the same result is reached by using an energy
approach.

Solution (A) Conceptualize this situation as follows. As the
bar slides to the right in Figure 31.12, a counterclockwise
current is established in the circuit consisting of the bar,
the rails, and the resistor. The upward current in the bar
results in a magnetic force to the left on the bar as shown in
the figure. As a result, the bar will slow down, so our
mathematical solution should demonstrate this. The text of
part (A) already categorizes this as a problem in using
Newton’s laws. To analyze the problem, we determine from

Equation 29.3 that the magnetic force is FB " % I!B, where
the negative sign indicates that the retarding force is to
the left. Because this is the only horizontal force acting
on the bar, Newton’s second law applied to motion in the

Interactive

of the bar:

To integrate this expression, note that the linear speed v of
an element is related to the angular speed * through the
relationship v " r* (Eq. 10.10). Therefore, because B and *
are constants, we find that

What If? Suppose, after reading through this example, you
come up with a brilliant idea. A Ferris wheel has radial metal-
lic spokes between the hub and the circular rim. These
spokes move in the magnetic field of the Earth, so each

1
2 B*!2$ " B ! v dr " B* !!

0
 r dr "

$ " ! Bv dr

spoke acts like the bar in Figure 31.11. You plan to use the
emf generated by the rotation of the Ferris wheel to power
the lightbulbs on the wheel! Will this idea work?

Answer The fact that this is not done in practice suggests
that others may have thought of this idea and rejected it. Let
us estimate the emf that is generated in this situation. We
know the magnitude of the magnetic field of the Earth from
Table 29.1, B " 0.5 + 10%4 T. A typical spoke on a Ferris
wheel might have a length on the order of 10 m. Suppose
the period of rotation is on the order of 10 s. This gives an
angular speed of

Assuming that the magnetic field lines of the Earth are
horizontal at the location of the Ferris wheel and perpendic-
ular to the spokes, the emf generated is

This is a tiny emf, far smaller than that required to operate
lightbulbs.

An additional difficulty is related to energy. Assuming
you could find lightbulbs that operate using a potential dif-
ference on the order of millivolts, a spoke must be part of a
circuit in order to provide a voltage to the bulbs. Conse-
quently, the spoke must carry a current. Because this
current-carrying spoke is in a magnetic field, a magnetic
force is exerted on the spoke and the direction of the force
is opposite to its direction of motion. As a result, the motor
of the Ferris wheel must supply more energy to perform
work against this magnetic drag force. The motor must ulti-
mately provide the energy that is operating the lightbulbs
and you have not gained anything for free!

" 2.5 + 10%3 V " 1 mV

$ " 1
2 B*!2 " 1

2 (0.5 + 10%4 T)(1 s%1)(10 m)2

* "
2,

T
"

2,

10 s
" 0.63 s%1 " 1 s%1

v
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Figure 31.11 (Example 31.4) A conducting bar rotating
around a pivot at one end in a uniform magnetic field that is
perpendicular to the plane of rotation. A motional emf is
induced across the ends of the bar.

At the Interactive Worked Example link at http://www.pse6.com, you can explore the induced emf for different angular
speeds and field magnitudes.
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Figure 31.12 (Example 31.5) A conducting bar of length ! on
two fixed conducting rails is given an initial velocity vi to the right.
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31.3 Lenz’s Law

Faraday’s law (Eq. 31.1) indicates that the induced emf and the change in flux have
opposite algebraic signs. This has a very real physical interpretation that has come to
be known as Lenz’s law1:

The induced current in a loop is in the direction that creates a magnetic field that
opposes the change in magnetic flux through the area enclosed by the loop.

1 Developed by the German physicist Heinrich Lenz (1804–1865).

horizontal direction gives

From Equation 31.6, we know that I " B!v/R, and so we
can write this expression as

Integrating this equation using the initial condition that
v " vi at t " 0, we find that

where the constant - " mR/B 2!2. From this result, we see
that the velocity can be expressed in the exponential form

(1)

To finalize the problem, note that this expression for v indi-
cates that the velocity of the bar decreases with time under
the action of the magnetic retarding force, as we expect
from our conceptualization of the problem.

(B) The text of part (B) immediately categorizes this as a
problem in energy conservation. Consider the sliding bar as
one system possessing kinetic energy, which decreases because
energy is transferring out of the system by electrical transmis-
sion through the rails. The resistor is another system possess-
ing internal energy, which rises because energy is transferring
into this system. Because energy is not leaving the combination
of two systems, the rate of energy transfer out of the bar equals
the rate of energy transfer into the resistor. Thus,

"resistor " % "bar

where the negative sign is necessary because energy is
leaving the bar and "bar is a negative number. Substituting
for the electrical power delivered to the resistor and the

v " vie%t/-

ln # v
vi
$ " %# B 2!2

mR $ t " %
t
-

!v

vi

  
dv
v

"
%B 2!2

mR
 !t

0
  dt

 
dv
v

" %# B 2!2

mR $ dt

m  
dv
dt

 " %
B 2!2

R
 v

Fx " ma " m  
dv
dt

" %I!B

time rate of change of kinetic energy for the bar, we have

Using Equation 31.6 for the current and carrying out the
derivative, we find

Rearranging terms gives

To finalize this part of the problem, note that this is the
same expression that we obtained in part (A).

What If? Suppose you wished to increase the distance
through which the bar moves between the time when it is ini-
tially projected and the time when it essentially comes to rest.
You can do this by changing one of three variables: vi, R, or B,
by a factor of 2 or . Which variable should you change in order
to maximize the distance, and would you double it or halve it?

Answer Increasing vi would make the bar move farther.
Increasing R would decrease the current and, therefore, the
magnetic force, making the bar move farther. Decreasing B
would decrease the magnetic force and make the bar move
farther. But which is most effective?

We use Equation (1) to find the distance that the bar
moves by integration:

From this expression, we see that doubling vi or R will
double the distance. But changing B by a factor of causes
the distance to be four times as great!

1
2

 " %vi -(0 % 1) " vi- " vi  # mR
B 2!2 $

 x " !.

0
 vie%t/- dt " %vi -e%t/- %.

0

 v "
dx
dt

" vie%t/-

1
2

dv
v

" %# B 2!2

mR $ dt 

B 2!2v2

R
" %mv  

dv
dt

I 2R " %
d
dt

 (1
2 mv2)

At the Interactive Worked Example link at http://www.pse6.com, you can study the motion of the bar after it is released.

Lenz’s law



That is, the induced current tends to keep the original magnetic flux through the
circuit from changing. We shall show that this law is a consequence of the law of
conservation of energy.

To understand Lenz’s law, let us return to the example of a bar moving to the
right on two parallel rails in the presence of a uniform magnetic field (the external
magnetic field, Fig. 31.13a.) As the bar moves to the right, the magnetic flux
through the area enclosed by the circuit increases with time because the area
increases. Lenz’s law states that the induced current must be directed so that the
magnetic field it produces opposes the change in the external magnetic flux.
Because the magnetic flux due to an external field directed into the page is increas-
ing, the induced current, if it is to oppose this change, must produce a field
directed out of the page. Hence, the induced current must be directed counter-
clockwise when the bar moves to the right. (Use the right-hand rule to verify this
direction.) If the bar is moving to the left, as in Figure 31.13b, the external mag-
netic flux through the area enclosed by the loop decreases with time. Because the
field is directed into the page, the direction of the induced current must be
clockwise if it is to produce a field that also is directed into the page. In either case,
the induced current tends to maintain the original flux through the area enclosed
by the current loop.

Let us examine this situation using energy considerations. Suppose that the bar is
given a slight push to the right. In the preceding analysis, we found that this motion
sets up a counterclockwise current in the loop. What happens if we assume that the
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Figure 31.13 (a) As the
conducting bar slides on the two
fixed conducting rails, the
magnetic flux due to the external
magnetic field into the page
through the area enclosed by the
loop increases in time. By Lenz’s
law, the induced current must be
counterclockwise so as to produce
a counteracting magnetic field
directed out of the page. (b) When
the bar moves to the left, the
induced current must be clockwise.
Why?
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Figure 31.14 (a) When the magnet is moved toward the stationary conducting 
loop, a current is induced in the direction shown. The magnetic field lines shown 
are those due to the bar magnet. (b) This induced current produces its own 
magnetic field directed to the left that counteracts the increasing external flux. The
magnetic field lines shown are those due to the induced current in the ring. 
(c) When the magnet is moved away from the stationary conducting loop, a current 
is induced in the direction shown. The magnetic field lines shown are those due to 
the bar magnet. (d) This induced current produces a magnetic field directed to the
right and so counteracts the decreasing external flux. The magnetic field lines 
shown are those due to the induced current in the ring.
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current is clockwise, such that the direction of the magnetic force exerted on the bar is
to the right? This force would accelerate the rod and increase its velocity. This, in turn,
would cause the area enclosed by the loop to increase more rapidly; this would result
in an increase in the induced current, which would cause an increase in the force,
which would produce an increase in the current, and so on. In effect, the system would
acquire energy with no input of energy. This is clearly inconsistent with all experience
and violates the law of conservation of energy. Thus, we are forced to conclude that the
current must be counterclockwise.

Let us consider another situation, one in which a bar magnet moves toward a
stationary metal loop, as in Figure 31.14a. As the magnet moves to the right toward the
loop, the external magnetic flux through the loop increases with time. To counteract
this increase in flux due to a field toward the right, the induced current produces its
own magnetic field to the left, as illustrated in Figure 31.14b; hence, the induced
current is in the direction shown. Knowing that like magnetic poles repel each other,
we conclude that the left face of the current loop acts like a north pole and that the
right face acts like a south pole.

If the magnet moves to the left, as in Figure 31.14c, its flux through the area
enclosed by the loop decreases in time. Now the induced current in the loop is in the
direction shown in Figure 31.14d because this current direction produces a magnetic
field in the same direction as the external field. In this case, the left face of the loop is
a south pole and the right face is a north pole.

S ECT I O N  31 . 3 •  Lenz’s Law 979

Quick Quiz 31.7 Figure 31.15 shows a magnet being moved in the vicinity
of a solenoid connected to a sensitive ammeter. The south pole of the magnet is the
pole nearest the solenoid, and the ammeter indicates a clockwise (viewed from
above) current in the solenoid. Is the person (a) inserting the magnet or (b) pulling
it out?

Quick Quiz 31.8 Figure 31.16 shows a circular loop of wire being dropped
toward a wire carrying a current to the left. The direction of the induced current in
the loop of wire is (a) clockwise (b) counterclockwise (c) zero (d) impossible to
determine.

Figure 31.15 (Quick Quiz 31.7)
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Figure 31.16 (Quick Quiz 31.8)
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Conceptual Example 31.6 Application of Lenz’s Law

A metal ring is placed near a solenoid, as shown in Figure
31.17a. Find the direction of the induced current in the ring

(A) at the instant the switch in the circuit containing the
solenoid is thrown closed,

(B) after the switch has been closed for several seconds, and

(C) at the instant the switch is thrown open.

Solution (A) At the instant the switch is thrown closed, the
situation changes from one in which no magnetic flux exists
in the ring to one in which flux exists and the magnetic field
is to the left as shown in Figure 31.17b. To counteract this
change in the flux, the current induced in the ring must set
up a magnetic field directed from left to right in Figure
31.17b. This requires a current directed as shown.

(B) After the switch has been closed for several seconds,
no change in the magnetic flux through the loop occurs;
hence, the induced current in the ring is zero.

(C) Opening the switch changes the situation from one in
which magnetic flux exists in the ring to one in which there is
no magnetic flux. The direction of the induced current is as
shown in Figure 31.17c because current in this direction

produces a magnetic field that is directed right to left and so
counteracts the decrease in the flux produced by the solenoid.

ε
(c)

(a) (b)
ε εSwitch

Figure 31.17 (Example 31.6) A current is induced in a metal
ring near a solenoid when the switch is opened or thrown
closed.

Conceptual Example 31.7 A Loop Moving Through a Magnetic Field

A rectangular metallic loop of dimensions ! and w and
resistance R moves with constant speed v to the right, as in
Figure 31.18a. The loop passes through a uniform magnetic
field B directed into the page and extending a distance 3w
along the x axis. Defining x as the position of the right side
of the loop along the x axis, plot as functions of x

(A) the magnetic flux through the area enclosed by the loop,

(B) the induced motional emf, and

(C) the external applied force necessary to counter the
magnetic force and keep v constant.

Solution (A) Figure 31.18b shows the flux through the
area enclosed by the loop as a function of x. Before the loop
enters the field, the flux is zero. As the loop enters the field,
the flux increases linearly with position until the left edge of

the loop is just inside the field. Finally, the flux through the
loop decreases linearly to zero as the loop leaves the field.

(B) Before the loop enters the field, no motional emf is
induced in it because no field is present (Fig. 31.18c). As the
right side of the loop enters the field, the magnetic flux
directed into the page increases. Hence, according to Lenz’s
law, the induced current is counterclockwise because it must
produce its own magnetic field directed out of the page. The
motional emf % B!v (from Eq. 31.5) arises from the magnetic
force experienced by charges in the right side of the loop.
When the loop is entirely in the field, the change in magnetic
flux is zero, and hence the motional emf vanishes. This
happens because, once the left side of the loop enters the
field, the motional emf induced in it cancels the motional emf
present in the right side of the loop. As the right side of the
loop leaves the field, the flux begins to decrease, a clockwise

(d)
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Figure 31.18 (Conceptual Example 31.7) (a) A
conducting rectangular loop of width w and length !
moving with a velocity v through a uniform magnetic field
extending a distance 3w. (b) Magnetic flux through the
area enclosed by the loop as a function of loop position.
(c) Induced emf as a function of loop position.
(d) Applied force required for constant velocity as a
function of loop position.
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31.4 Induced emf and Electric Fields

We have seen that a changing magnetic flux induces an emf and a current in a
conducting loop. In our study of electricity, we related a current to an electric field
that applies electric forces on charged particles. In the same way, we can relate an
induced current in a conducting loop to an electric field by claiming that an electric
field is created in the conductor as a result of the changing magnetic flux.

We also noted in our study of electricity that the existence of an electric field is
independent of the presence of any test charges. This suggests that even in the absence
of a conducting loop, a changing magnetic field would still generate an electric field in
empty space.

This induced electric field is nonconservative, unlike the electrostatic field produced
by stationary charges. We can illustrate this point by considering a conducting loop of
radius r situated in a uniform magnetic field that is perpendicular to the plane of the
loop, as in Figure 31.19. If the magnetic field changes with time, then, according to
Faraday’s law (Eq. 31.1), an emf $ " % d!B/dt is induced in the loop. The induction
of a current in the loop implies the presence of an induced electric field E, which must
be tangent to the loop because this is the direction in which the charges in the wire
move in response to the electric force. The work done by the electric field in moving a
test charge q once around the loop is equal to q$. Because the electric force acting on
the charge is qE, the work done by the electric field in moving the charge once around
the loop is qE(2,r), where 2,r is the circumference of the loop. These two expressions
for the work done must be equal; therefore, we see that

Using this result, along with Equation 31.1 and the fact that !B " BA " ,r2B for a
circular loop, we find that the induced electric field can be expressed as

(31.8)

If the time variation of the magnetic field is specified, we can easily calculate the in-
duced electric field from Equation 31.8.

The emf for any closed path can be expressed as the line integral of E & ds over that
path: $ " &E & ds. In more general cases, E may not be constant, and the path may not
be a circle. Hence, Faraday’s law of induction, $ " % d!B/dt, can be written in the
general form 

(31.9)

The induced electric field E in Equation 31.9 is a nonconservative field that
is generated by a changing magnetic field. The field E that satisfies Equation 31.9

' E&ds " %
d!B

dt

E " %
1

2,r
 
d!B

dt
" %

r
2

 
dB
dt

 E "
$

2,r

q$ " qE(2,r)

current is induced, and the induced emf is B!v. As soon as the
left side leaves the field, the emf decreases to zero.

(C) The external force that must be applied to the loop to
maintain this motion is plotted in Figure 31.18d. Before the
loop enters the field, no magnetic force acts on it; hence, the
applied force must be zero if v is constant. When the right side
of the loop enters the field, the applied force necessary to
maintain constant speed must be equal in magnitude and op-
posite in direction to the magnetic force exerted on that side.
When the loop is entirely in the field, the flux through the
loop is not changing with time. Hence, the net emf induced in

the loop is zero, and the current also is zero. Therefore, no ex-
ternal force is needed to maintain the motion. Finally, as the
right side leaves the field, the applied force must be equal in
magnitude and opposite in direction to the magnetic force
acting on the left side of the loop.

From this analysis, we conclude that power is supplied
only when the loop is either entering or leaving the field.
Furthermore, this example shows that the motional emf
induced in the loop can be zero even when there is motion
through the field! A motional emf is induced only when the
magnetic flux through the loop changes in time.

Figure 31.19 A conducting loop
of radius r in a uniform magnetic
field perpendicular to the plane of
the loop. If B changes in time, an
electric field is induced in a
direction tangent to the
circumference of the loop.
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Faraday’s law in general form

! PITFALL PREVENTION
31.2 Induced Electric

Fields
The changing magnetic field
does not need to be in existence
at the location of the induced
electric field. In Figure 31.19,
even a loop outside the region of
magnetic field will experience
an induced electric field. For
another example, consider 
Figure 31.8. The light bulbs glow
(if the switch is open) even
though the wires are outside the
region of the magnetic field.
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31.5 Generators and Motors

Electric generators take in energy by work and transfer it out by electrical transmission.
To understand how they operate, let us consider the alternating current (AC) gener-
ator. In its simplest form, it consists of a loop of wire rotated by some external means
in a magnetic field (Fig. 31.21a).

cannot possibly be an electrostatic field because if the field were electrostatic, and
hence conservative, the line integral of E & ds over a closed loop would be zero
(Section 25.1); this would be in contradiction to Equation 31.9.

Quick Quiz 31.9 In a region of space, the magnetic field increases at a
constant rate. This changing magnetic field induces an electric field that (a) increases in
time (b) is conservative (c) is in the direction of the magnetic field (d) has a constant
magnitude.

Example 31.8 Electric Field Induced by a Changing Magnetic Field in a Solenoid

A long solenoid of radius R has n turns of wire per unit
length and carries a time-varying current that varies
sinusoidally as I " Imax cos *t, where Imax is the maximum
current and * is the angular frequency of the alternating
current source (Fig. 31.20).

(A) Determine the magnitude of the induced electric field
outside the solenoid at a distance r ) R from its long central
axis.

Solution First let us consider an external point and take
the path for our line integral to be a circle of radius r
centered on the solenoid, as illustrated in Figure 31.20. By
symmetry we see that the magnitude of E is constant on this
path and that E is tangent to it. The magnetic flux through
the area enclosed by this path is BA " B,R 2; hence, Equa-
tion 31.9 gives

(1)

The magnetic field inside a long solenoid is given by
Equation 30.17, B " /0nI. When we substitute the expres-
sion I " Imax cos *t into this equation for B and then substi-
tute the result into Equation (1), we find that

(2) (for r ) R )E "
/0nI max*R2

2r
  sin *t

" ,R 2
 /0nImax * sin *t

E(2,r) " %,R 2
 /0 nImax 

d
dt

 (cos *t)

' E&ds " E(2,r) " %,R 2 
dB
dt

' E&ds " %
d
dt

 (B,R 2) " %,R 2 
dB
dt

Hence, the amplitude of the electric field outside the sole-
noid falls off as 1/r and varies sinusoidally with time.

(B) What is the magnitude of the induced electric field
inside the solenoid, a distance r from its axis?

Solution For an interior point (r 0 R), the flux through an
integration loop is given by B,r 2. Using the same proce-
dure as in part (A), we find that

(3) (for r 0 R )

This shows that the amplitude of the electric field induced
inside the solenoid by the changing magnetic flux through
the solenoid increases linearly with r and varies sinusoidally
with time.

E "
/0nI max*

2
 r sin *t

E(2,r) " %,r 2
 
 dB

dt
 " ,r 2 /0nImax * sin *t

Path of
integration

R

r

Imax cos    tω

Figure 31.20 (Example 31.8) A long solenoid carrying a time-
varying current given by I " Imax cos *t. An electric field is
induced both inside and outside the solenoid.



In commercial power plants, the energy required to rotate the loop can be derived
from a variety of sources. For example, in a hydroelectric plant, falling water directed
against the blades of a turbine produces the rotary motion; in a coal-fired plant, the
energy released by burning coal is used to convert water to steam, and this steam is
directed against the turbine blades. As a loop rotates in a magnetic field, the magnetic
flux through the area enclosed by the loop changes with time; this induces an emf and
a current in the loop according to Faraday’s law. The ends of the loop are connected
to slip rings that rotate with the loop. Connections from these slip rings, which act as
output terminals of the generator, to the external circuit are made by stationary
brushes in contact with the slip rings.

Suppose that, instead of a single turn, the loop has N turns (a more practical
situation), all of the same area A, and rotates in a magnetic field with a constant
angular speed *. If # is the angle between the magnetic field and the normal to the
plane of the loop, as in Figure 31.22, then the magnetic flux through the loop at
any time t is

!B " BA cos # " BA cos *t

where we have used the relationship # " *t between angular position and angular
speed (see Eq. 10.3). (We have set the clock so that t " 0 when # " 0.) Hence, the
induced emf in the coil is

(31.10)

This result shows that the emf varies sinusoidally with time, as plotted in Figure 31.21b.
From Equation 31.10 we see that the maximum emf has the value

$max " NAB* (31.11)

which occurs when *t " 90° or 270°. In other words, $ " $max when the magnetic
field is in the plane of the coil and the time rate of change of flux is a maximum. Fur-
thermore, the emf is zero when *t " 0 or 180°, that is, when B is perpendicular to the
plane of the coil and the time rate of change of flux is zero.

The frequency for commercial generators in the United States and Canada is 60 Hz,
whereas in some European countries it is 50 Hz. (Recall that * " 2,f, where f is the
frequency in hertz.)

$ " %N  
d!B

dt
 " %NAB  

d
dt

 (cos *t) " NAB* sin *t
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(a)

Slip rings N

Brushes

External
circuit

Loop

S

t

ε

(b)

εmax

External
rotator

Active Figure 31.21 (a) Schematic diagram of an AC generator. An emf is induced in
a loop that rotates in a magnetic field. (b) The alternating emf induced in the loop
plotted as a function of time.

At the Active Figures link
at http://www.pse6.com, you
can adjust the speed of
rotation and the strength of the
field to see the effects on the
emf generated.

Normal

θ

B

Figure 31.22 A loop enclosing an
area A and containing N turns,
rotating with constant angular
speed * in a magnetic field. The
emf induced in the loop varies
sinusoidally in time.
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The direct current (DC) generator is illustrated in Figure 31.23a. Such genera-
tors are used, for instance, in older cars to charge the storage batteries. The compo-
nents are essentially the same as those of the AC generator except that the contacts to
the rotating loop are made using a split ring called a commutator.

In this configuration, the output voltage always has the same polarity and pulsates
with time, as shown in Figure 31.23b. We can understand the reason for this by noting
that the contacts to the split ring reverse their roles every half cycle. At the same time,
the polarity of the induced emf reverses; hence, the polarity of the split ring (which is
the same as the polarity of the output voltage) remains the same.

A pulsating DC current is not suitable for most applications. To obtain a more
steady DC current, commercial DC generators use many coils and commutators distrib-
uted so that the sinusoidal pulses from the various coils are out of phase. When these
pulses are superimposed, the DC output is almost free of fluctuations.

Motors are devices into which energy is transferred by electrical transmission
while energy is transferred out by work. Essentially, a motor is a generator operating

Quick Quiz 31.10 In an AC generator, a coil with N turns of wire spins in a
magnetic field. Of the following choices, which will not cause an increase in the emf
generated in the coil? (a) replacing the coil wire with one of lower resistance 
(b) spinning the coil faster (c) increasing the magnetic field (d) increasing the
number of turns of wire on the coil.

Example 31.9 emf Induced in a Generator

An AC generator consists of 8 turns of wire, each of area
A " 0.090 0 m 2 , and the total resistance of the wire is 12.0 (.
The loop rotates in a 0.500-T magnetic field at a constant
frequency of 60.0 Hz.

(A) Find the maximum induced emf.

Solution First, note that * " 2,f " 2,(60.0 Hz) " 377 s%1.
Thus, Equation 31.11 gives

$max " NAB* " 8(0.090 0 m2)(0.500 T)(377 s%1)

" 136 V

(B) What is the maximum induced current when the output
terminals are connected to a low-resistance conductor?

Solution From Equation 27.8 and the results to part (A),
we have

11.3 AImax "
$max

R
"

136 V
12.0 (

"

Commutator

(a)

Brush

N

S

t

ε

(b)

Armature

Active Figure 31.23 (a) Schematic diagram of a DC generator. (b) The magnitude of
the emf varies in time but the polarity never changes.

At the Active Figures link
at http://www.pse6.com, you
can adjust the speed of
rotation and the strength of the
field to see the effects on the
emf generated.
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in reverse. Instead of generating a current by rotating a coil, a current is supplied to
the coil by a battery, and the torque acting on the current-carrying coil causes it to
rotate.

Useful mechanical work can be done by attaching the rotating coil to some exter-
nal device. However, as the coil rotates in a magnetic field, the changing magnetic flux
induces an emf in the coil; this induced emf always acts to reduce the current in the
coil. If this were not the case, Lenz’s law would be violated. The back emf increases in
magnitude as the rotational speed of the coil increases. (The phrase back emf is used to
indicate an emf that tends to reduce the supplied current.) Because the voltage avail-
able to supply current equals the difference between the supply voltage and the back
emf, the current in the rotating coil is limited by the back emf.

When a motor is turned on, there is initially no back emf; thus, the current is very
large because it is limited only by the resistance of the coil. As the coil begins to rotate,
the induced back emf opposes the applied voltage, and the current in the coil is
reduced. If the mechanical load increases, the motor slows down; this causes the back
emf to decrease. This reduction in the back emf increases the current in the coil and
therefore also increases the power needed from the external voltage source. For this
reason, the power requirements for starting a motor and for running it are greater for
heavy loads than for light ones. If the motor is allowed to run under no mechanical
load, the back emf reduces the current to a value just large enough to overcome
energy losses due to internal energy and friction. If a very heavy load jams the motor so
that it cannot rotate, the lack of a back emf can lead to dangerously high current in
the motor’s wire. This is a dangerous situation, and is explored in the What If? section
of Example 31.10.

A current application of motors in automobiles is seen in the development of
hybrid drive systems. In these automobiles, a gasoline engine and an electric motor are
combined to increase the fuel economy of the vehicle and reduce its emissions. Figure
31.24 shows the engine compartment of the Toyota Prius, which is one of a small
number of hybrids available in the United States. In this automobile, power to the
wheels can come from either the gasoline engine or the electric motor. In normal
driving, the electric motor accelerates the vehicle from rest until it is moving at a speed
of about 15 mi/h (24 km/h). During this acceleration period, the engine is not 
running, so that gasoline is not used and there is no emission. When a hybrid vehicle
brakes, the motor acts as a generator and returns some of the kinetic energy of the ve-
hicle back to the battery as stored energy. In a normal vehicle, this kinetic energy is
simply lost as it is transformed to internal energy in the brakes and roadway.

Figure 31.24 The engine compartment of the Toyota Prius, a hybrid vehicle.
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31.6 Eddy Currents

As we have seen, an emf and a current are induced in a circuit by a changing
magnetic flux. In the same manner, circulating currents called eddy currents are
induced in bulk pieces of metal moving through a magnetic field. This can easily be
demonstrated by allowing a flat copper or aluminum plate attached at the end of a
rigid bar to swing back and forth through a magnetic field (Fig. 31.25). As the plate
enters the field, the changing magnetic flux induces an emf in the plate, which in
turn causes the free electrons in the plate to move, producing the swirling eddy
currents. According to Lenz’s law, the direction of the eddy currents is such that
they create magnetic fields that oppose the change that causes the currents. For this
reason, the eddy currents must produce effective magnetic poles on the plate,
which are repelled by the poles of the magnet; this gives rise to a repulsive force
that opposes the motion of the plate. (If the opposite were true, the plate would
accelerate and its energy would increase after each swing, in violation of the law of
conservation of energy.)

As indicated in Figure 31.26a, with B directed into the page, the induced eddy
current is counterclockwise as the swinging plate enters the field at position 1. This is
because the flux due to the external magnetic field into the page through the plate is
increasing, and hence by Lenz’s law the induced current must provide its own
magnetic field out of the page. The opposite is true as the plate leaves the field at
position 2, where the current is clockwise. Because the induced eddy current always
produces a magnetic retarding force FB when the plate enters or leaves the field, the
swinging plate eventually comes to rest.

If slots are cut in the plate, as shown in Figure 31.26b, the eddy currents and
the corresponding retarding force are greatly reduced. We can understand this
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Example 31.10 The Induced Current in a Motor

Assume that a motor in which the coil has a total resistance
of 10 ( is supplied by a voltage of 120 V. When the motor is
running at its maximum speed, the back emf is 70 V. Find
the current in the coil

(A) when the motor is turned on and

(B) when it has reached maximum speed.

Solution (A) When the motor is first turned on, the back
emf is zero (because the coil is motionless). Thus, the
current in the coil is a maximum and equal to

(B) At the maximum speed, the back emf has its maximum
value. Thus, the effective supply voltage is that of the exter-
nal source minus the back emf. Hence, the current is
reduced to

What If? Suppose that this motor is in a circular saw. You
are operating the saw and the blade becomes jammed in a

5.0 AI "
$ % $back

R
"

120 V % 70 V
10 (

"
50 V
10 (

"

12 AI "
$
R

"
120 V
10 (

"

piece of wood so that the motor cannot turn. By what
percentage does the power input to the motor increase when
it is jammed?

Answer You may have everyday experiences with motors
becoming warm when they are prevented from turning.
This is due to the increased power input to the motor. The
higher rate of energy transfer results in an increase in the
internal energy of the coil, an undesirable effect. When the
motor is jammed, the current is that given in part (A). Let
us set up the ratio of power input to the motor when
jammed to that when it is not jammed:

where the subscripts (A) and (B) refer to the currents in
parts (A) and (B) of the example. Substituting these values,

This represents a 476% increase in the input power! Such a
high power input can cause the coil to become so hot that it
is damaged.

"jammed

"not jammed
"

(12 A)2

(5.0 A)2 " 5.76

"jammed

"not jammed
"

I (A)
2 R

I (B)
2 R

"
I (A)

2

I (B)
2

v

Pivot

S

N

Figure 31.25 Formation of eddy
currents in a conducting plate
moving through a magnetic field.
As the plate enters or leaves the
field, the changing magnetic flux
induces an emf, which causes eddy
currents in the plate.



by realizing that the cuts in the plate prevent the formation of any large current
loops.

The braking systems on many subway and rapid-transit cars make use of electro-
magnetic induction and eddy currents. An electromagnet attached to the train is posi-
tioned near the steel rails. (An electromagnet is essentially a solenoid with an iron
core.) The braking action occurs when a large current is passed through the electro-
magnet. The relative motion of the magnet and rails induces eddy currents in the rails,
and the direction of these currents produces a drag force on the moving train. Because
the eddy currents decrease steadily in magnitude as the train slows down, the braking
effect is quite smooth. As a safety measure, some power tools use eddy currents to stop
rapidly spinning blades once the device is turned off.

Eddy currents are often undesirable because they represent a transformation of
mechanical energy to internal energy. To reduce this energy loss, conducting parts
are often laminated—that is, they are built up in thin layers separated by a noncon-
ducting material such as lacquer or a metal oxide. This layered structure increases
the resistance of eddy current paths and effectively confines the currents to individ-
ual layers. Such a laminated structure is used in transformer cores (see Section
33.8) and motors to minimize eddy currents and thereby increase the efficiency of
these devices.
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Active Figure 31.26 (a) As the conducting plate enters the field (position 1), the eddy
currents are counterclockwise. As the plate leaves the field (position 2), the currents
are clockwise. In either case, the force on the plate is opposite the velocity, and
eventually the plate comes to rest. (b) When slots are cut in the conducting plate, the
eddy currents are reduced and the plate swings more freely through the magnetic field.
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Choose to let a solid or a
slotted plate swing through the
magnetic field and observe the
effect at the Active Figures link
at http://www.pse6.com.

Quick Quiz 31.11 In equal-arm balances from the early twentieth century
(Fig. 31.27), it is sometimes observed that an aluminum sheet hangs from one of the
arms and passes between the poles of a magnet. This causes the oscillations of the
equal-arm balance to decay rapidly. In the absence of such magnetic braking, the oscil-
lation might continue for a very long time, so that the experimenter would have to wait
to take a reading. The oscillations decay because (a) the aluminum sheet is attracted to
the magnet; (b) currents in the aluminum sheet set up a magnetic field that opposes
the oscillations; (c) aluminum is paramagnetic.



31.7 Maxwell’s Equations

We conclude this chapter by presenting four equations that are regarded as the basis of
all electrical and magnetic phenomena. These equations, developed by James Clerk
Maxwell, are as fundamental to electromagnetic phenomena as Newton’s laws are to
mechanical phenomena. In fact, the theory that Maxwell developed was more far-
reaching than even he imagined because it turned out to be in agreement with the
special theory of relativity, as Einstein showed in 1905.

Maxwell’s equations represent the laws of electricity and magnetism that we have
already discussed, but they have additional important consequences. In Chapter 34 we
shall show that these equations predict the existence of electromagnetic waves
(traveling patterns of electric and magnetic fields), which travel with a speed

the speed of light. Furthermore, the theory shows that
such waves are radiated by accelerating charges.

For simplicity, we present Maxwell’s equations as applied to free space, that is, in
the absence of any dielectric or magnetic material. The four equations are

(31.12)'
S

 E&dA "
q
10

c " 1/√/010 " 3.00 + 108 m/s,
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Figure 31.27 (Quick Quiz 31.11) In an old-fashioned equal-arm balance, an
aluminum sheet hangs between the poles of a magnet.
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(31.13)

(31.14)

(31.15)

Equation 31.12 is Gauss’s law: the total electric flux through any closed surface
equals the net charge inside that surface divided by #0. This law relates an electric
field to the charge distribution that creates it.

Equation 31.13, which can be considered Gauss’s law in magnetism, states that the
net magnetic flux through a closed surface is zero. That is, the number of
magnetic field lines that enter a closed volume must equal the number that leave that
volume. This implies that magnetic field lines cannot begin or end at any point. If they
did, it would mean that isolated magnetic monopoles existed at those points. The fact
that isolated magnetic monopoles have not been observed in nature can be taken as a
confirmation of Equation 31.13.

Equation 31.14 is Faraday’s law of induction, which describes the creation of an
electric field by a changing magnetic flux. This law states that the emf, which is the
line integral of the electric field around any closed path, equals the rate of
change of magnetic flux through any surface area bounded by that path. One
consequence of Faraday’s law is the current induced in a conducting loop placed in a
time-varying magnetic field.

Equation 31.15, usually called the Ampère–Maxwell law, is the generalized form of
Ampère’s law, and describes the creation of a magnetic field by an electric field and
electric currents: the line integral of the magnetic field around any closed path is
the sum of $0 times the net current through that path and #0$0 times the rate of
change of electric flux through any surface bounded by that path.

Once the electric and magnetic fields are known at some point in space, the force
acting on a particle of charge q can be calculated from the expression

F " qE 2 qv " B (31.16)

This relationship is called the Lorentz force law. (We saw this relationship earlier as
Equation 29.16.) Maxwell’s equations, together with this force law, completely describe
all classical electromagnetic interactions.

It is interesting to note the symmetry of Maxwell’s equations. Equations 31.12 and
31.13 are symmetric, apart from the absence of the term for magnetic monopoles in
Equation 31.13. Furthermore, Equations 31.14 and 31.15 are symmetric in that the line
integrals of E and B around a closed path are related to the rate of change of magnetic
flux and electric flux, respectively. Maxwell’s equations are of fundamental importance
not only to electromagnetism but to all of science. Heinrich Hertz once wrote, “One
cannot escape the feeling that these mathematical formulas have an independent exis-
tence and an intelligence of their own, that they are wiser than we are, wiser even than
their discoverers, that we get more out of them than we put into them.”

' B &ds " /0I 2 10 /0 
d!E

dt

' E&ds " %
d!B

dt

'
S

 B &dA " 0

Summary 989

Faraday’s law of induction states that the emf induced in a circuit is directly
proportional to the time rate of change of magnetic flux through the circuit:

(31.1)

where !B " &B & d A is the magnetic flux.

$ " %
d!B

dt

S U M M A RY

Take a practice test for
this chapter by clicking on the
Practice Test link at
http://www.pse6.com.
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The Lorentz force law

Gauss’s law in magnetism



When a conducting bar of length ! moves at a velocity v through a magnetic
field B , where B is perpendicular to the bar and to v, the motional emf induced in
the bar is

$ " %B!v (31.5)

Lenz’s law states that the induced current and induced emf in a conductor are in
such a direction as to set up a magnetic field that opposes the change that produced
them.

A general form of Faraday’s law of induction is

(31.9)

where E is the nonconservative electric field that is produced by the changing
magnetic flux.

When used with the Lorentz force law, F " qE 2 q v " B, Maxwell’s equations
describe all electromagnetic phenomena:

(31.12)

(31.13)

(31.14)

(31.15)' B &ds " /0I 2 10/0 
d!E

dt

 ' E&ds " %
d!B

dt

 '
S

 B &d A " 0

 '
S

 E&d A "
q
10

$ " ' E&ds " %
d!B

dt
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1. What is the difference between magnetic flux and magnetic
field?

2. A loop of wire is placed in a uniform magnetic field. For
what orientation of the loop is the magnetic flux a maxi-
mum? For what orientation is the flux zero?

3. As the bar in Figure Q31.3 moves to the right, an electric
field is set up directed downward in the bar. Explain why
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the electric field would be upward if the bar were moving
to the left.

4. As the bar in Figure Q31.3 moves perpendicular to the
field, is an external force required to keep it moving with
constant speed?

The bar in Figure Q31.5 moves on rails to the right with a
velocity v, and the uniform, constant magnetic field is
directed out of the page. Why is the induced current
clockwise? If the bar were moving to the left, what would
be the direction of the induced current?

5.

Q U E S T I O N S

Figure Q31.5 Questions 5 and 6.Figure Q31.3 Questions 3 and 4.
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6. Explain why an applied force is necessary to keep the bar
in Figure Q31.5 moving with a constant speed.

7. Wearing a metal bracelet in a region of strong magnetic
field could be hazardous. Explain.

8. When a small magnet is moved toward a solenoid, an emf is
induced in the coil. However, if the magnet is moved
around inside a toroid, no measurable emf is induced.
Explain.

How is energy produced in dams that is then transferred
out by electrical transmission? (That is, how is the energy
of motion of the water converted to energy that is trans-
mitted by AC electricity?)

10. Will dropping a magnet down a long copper tube produce
a current in the walls of the tube? Explain.

11. A piece of aluminum is dropped vertically downward
between the poles of an electromagnet. Does the magnetic
field affect the velocity of the aluminum?

12. What happens when the rotational speed of a generator
coil is increased?

13. When the switch in Figure Q31.13a is closed, a current is
set up in the coil and the metal ring springs upward (Fig.
Q31.13b). Explain this behavior.

9.

14. Assume that the battery in Figure Q31.13a is replaced
by an AC source and the switch is held closed. If held
down, the metal ring on top of the solenoid becomes
hot. Why?

15. A bar magnet is held above a loop of wire in a horizontal
plane, as shown in Figure Q31.15. The south end of the
magnet is toward the loop of wire. The magnet is dropped
toward the loop. Find the direction of the current through
the resistor (a) while the magnet is falling toward the loop
and (b) after the magnet has passed through the loop and
moves away from it.

16. Find the direction of the current in the resistor in Figure
Q31.16 (a) at the instant the switch is closed, (b) after the
switch has been closed for several minutes, and (c) at the
instant the switch is opened.

17. Quick Quiz 31.4 describes the emf induced between the
wingtips of an airplane by its motion in the Earth’s
magnetic field. Can this emf be used to power a light in
the passenger compartment? Explain your answer.

18. Do Maxwell’s equations allow for the existence of magnetic
monopoles? Explain.

19. Induction welding has many important industrial applica-
tions. One example is the manufacture of airtight tubes,
represented in Figure Q31.19. A sheet of metal is rolled
into a cylinder and forced between compression rollers to
bring its edges into contact. The tube then enters a coil
carrying a time-varying current. The seam is welded when
induced currents around the tube raise its temperature.
Typically, a sinusoidal current with a frequency of 10 kHz
is used. (a) What causes a current in the tube? (b) Why is a
high frequency like 10 kHz chosen, rather than the 120 Hz
commonly used for power transmission? (c) Why do the
induced currents raise the temperature mainly of the
seam, rather than all of the metal of the tube? (d) Why is it
necessary to bring the edges of the sheet together with the
compression rollers before the seam can be welded?
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produced by the solenoid is half as strong as at the center
of the solenoid. Assume the solenoid produces negligible
field outside its cross-sectional area. The current in the
solenoid is increasing at a rate of 270 A/s. (a) What is
the induced current in the ring? At the center of the ring,
what are (b) the magnitude and (c) the direction of the
magnetic field produced by the induced current in the
ring?

8. An aluminum ring of radius r1 and resistance R is placed
around the top of a long air-core solenoid with n turns per
meter and smaller radius r 2 as shown in Figure P31.7.
Assume that the axial component of the field produced by
the solenoid over the area of the end of the solenoid is
half as strong as at the center of the solenoid. Assume that
the solenoid produces negligible field outside its cross-
sectional area. The current in the solenoid is increasing at
a rate of 'I/'t. (a) What is the induced current in the
ring? (b) At the center of the ring, what is the magnetic
field produced by the induced current in the ring?
(c) What is the direction of this field?

9. (a) A loop of wire in the shape of a rectangle of width w
and length L and a long, straight wire carrying a current I
lie on a tabletop as shown in Figure P31.9. (a) Determine
the magnetic flux through the loop due to the current I.
(b) Suppose the current is changing with time according
to I " a 2 bt, where a and b are constants. Determine the
emf that is induced in the loop if b " 10.0 A/s, h "
1.00 cm, w " 10.0 cm, and L " 100 cm. What is the direc-
tion of the induced current in the rectangle?

Section 31.1 Faraday’s Law of Induction
Section 31.3 Lenz’s Law
1. A 50-turn rectangular coil of dimensions 5.00 cm +

10.0 cm is allowed to fall from a position where B " 0 to a
new position where B " 0.500 T and the magnetic field is
directed perpendicular to the plane of the coil. Calculate
the magnitude of the average emf that is induced in the
coil if the displacement occurs in 0.250 s.

2. A flat loop of wire consisting of a single turn of cross-
sectional area 8.00 cm2 is perpendicular to a magnetic
field that increases uniformly in magnitude from 0.500 T
to 2.50 T in 1.00 s. What is the resulting induced current if
the loop has a resistance of 2.00 (?

3. A 25-turn circular coil of wire has diameter 1.00 m. It is
placed with its axis along the direction of the Earth’s
magnetic field of 50.0 /T, and then in 0.200 s it is flipped
180°. An average emf of what magnitude is generated in
the coil?

4. A rectangular loop of area A is placed in a region where
the magnetic field is perpendicular to the plane of the
loop. The magnitude of the field is allowed to vary in
time according to B " Bmaxe%t/-, where Bmax and - are
constants. The field has the constant value Bmax for t 0 0.
(a) Use Faraday’s law to show that the emf induced in the
loop is given by

(b) Obtain a numerical value for $ at t " 4.00 s when
A " 0.160 m2, Bmax " 0.350 T, and - " 2.00 s. (c) For the
values of A, Bmax, and - given in (b), what is the maximum
value of $?

A strong electromagnet produces a uniform mag-
netic field of 1.60 T over a cross-sectional area of
0.200 m2. We place a coil having 200 turns and a total
resistance of 20.0 ( around the electromagnet. We then
smoothly reduce the current in the electromagnet until it
reaches zero in 20.0 ms. What is the current induced in
the coil?

6. A magnetic field of 0.200 T exists within a solenoid of
500 turns and a diameter of 10.0 cm. How rapidly (that is,
within what period of time) must the field be reduced to
zero, if the average induced emf within the coil during this
time interval is to be 10.0 kV?

An aluminum ring of radius 5.00 cm and resistance
3.00 + 10%4 ( is placed on top of a long air-core sole-
noid with 1 000 turns per meter and radius 3.00 cm, as
shown in Figure P31.7. Over the area of the end of the
solenoid, assume that the axial component of the field

7.

5.

$ "
AB max

-  e%t/-

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide

= coached solution with hints available at http://www.pse.com = computer useful in solving problem

= paired numerical and symbolic problems

P R O B L E M S

5.00 cm

3.00 cm

I

I

Figure P31.7 Problems 7 and 8.
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10. A coil of 15 turns and radius 10.0 cm surrounds a long
solenoid of radius 2.00 cm and 1.00 + 103 turns/meter
(Fig. P31.10). The current in the solenoid changes as
I " (5.00 A) sin(120t). Find the induced emf in the 
15-turn coil as a function of time.

11. Find the current through section PQ of length a " 65.0 cm
in Figure P31.11. The circuit is located in a magnetic field
whose magnitude varies with time according to the expres-
sion B " (1.00 + 10%3 T/s)t. Assume the resistance per
length of the wire is 0.100 (/m.

12. A 30-turn circular coil of radius 4.00 cm and resistance
1.00 ( is placed in a magnetic field directed perpen-
dicular to the plane of the coil. The magnitude of the
magnetic field varies in time according to the expression
B " 0.010 0t 2 0.040 0t 2, where t is in seconds and
B is in tesla. Calculate the induced emf in the coil at
t " 5.00 s.

A long solenoid has n " 400 turns per meter and carries a
current given by I " (30.0 A)(1 % e%1.60t ). Inside the sole-
noid and coaxial with it is a coil that has a radius of
6.00 cm and consists of a total of N " 250 turns of fine
wire (Fig. P31.13). What emf is induced in the coil by the
changing current?

13.

14. An instrument based on induced emf has been used to
measure projectile speeds up to 6 km/s. A small magnet is
imbedded in the projectile, as shown in Figure P31.14.
The projectile passes through two coils separated by a
distance d. As the projectile passes through each coil a
pulse of emf is induced in the coil. The time interval
between pulses can be measured accurately with an oscillo-
scope, and thus the speed can be determined. (a) Sketch a
graph of 'V versus t for the arrangement shown. Consider
a current that flows counterclockwise as viewed from the
starting point of the projectile as positive. On your graph,
indicate which pulse is from coil 1 and which is from coil
2. (b) If the pulse separation is 2.40 ms and d " 1.50 m,
what is the projectile speed?

A coil formed by wrapping 50 turns of wire in the shape of
a square is positioned in a magnetic field so that the
normal to the plane of the coil makes an angle of 30.0°
with the direction of the field. When the magnetic field is
increased uniformly from 200 /T to 600 /T in 0.400 s, an
emf of magnitude 80.0 mV is induced in the coil. What is
the total length of the wire?

16. When a wire carries an AC current with a known frequency,
you can use a Rogowski coil to determine the amplitude I max
of the current without disconnecting the wire to shunt the

15.

I
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L

Figure P31.9 Problems 9 and 71.
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current in a meter. The Rogowski coil, shown in Figure
P31.16, simply clips around the wire. It consists of a
toroidal conductor wrapped around a circular return cord.
The toroid has n turns per unit length and a cross-sectional
area A. The current to be measured is given by I(t) "
I max sin *t. (a) Show that the amplitude of the emf
induced in the Rogowski coil is $max " /0nA* Imax. 
(b) Explain why the wire carrying the unknown current
need not be at the center of the Rogowski coil, and why the
coil will not respond to nearby currents that it does not
enclose.

17. A toroid having a rectangular cross section (a " 2.00 cm
by b " 3.00 cm) and inner radius R " 4.00 cm consists
of 500 turns of wire that carries a sinusoidal current
I " I max sin *t, with I max " 50.0 A and a frequency
f " */2, " 60.0 Hz. A coil that consists of 20 turns of
wire links with the toroid, as in Figure P31.17. Determine
the emf induced in the coil as a function of time.

18. A piece of insulated wire is shaped into a figure 8, as in
Figure P31.18. The radius of the upper circle is 5.00 cm
and that of the lower circle is 9.00 cm. The wire has a uni-
form resistance per unit length of 3.00 (/m. A uniform
magnetic field is applied perpendicular to the plane of the
two circles, in the direction shown. The magnetic field is
increasing at a constant rate of 2.00 T/s. Find the magni-
tude and direction of the induced current in the wire.

Section 31.2 Motional emf

Section 31.3 Lenz’s Law

19. An automobile has a vertical radio antenna 1.20 m long.
The automobile travels at 65.0 km/h on a horizontal road

where the Earth’s magnetic field is 50.0 /T directed
toward the north and downward at an angle of 65.0° below
the horizontal. (a) Specify the direction that the automo-
bile should move in order to generate the maximum
motional emf in the antenna, with the top of the antenna
positive relative to the bottom. (b) Calculate the magni-
tude of this induced emf.

20. Consider the arrangement shown in Figure P31.20. Assume
that R " 6.00 (, ! " 1.20 m, and a uniform 2.50-T mag-
netic field is directed into the page. At what speed should
the bar be moved to produce a current of 0.500 A in the
resistor?

Figure P31.20 shows a top view of a bar that can slide
without friction. The resistor is 6.00 ( and a 2.50-T mag-
netic field is directed perpendicularly downward, into
the paper. Let ! " 1.20 m. (a) Calculate the applied
force required to move the bar to the right at a constant
speed of 2.00 m/s. (b) At what rate is energy delivered
to the resistor?

22. A conducting rod of length ! moves on two horizontal,
frictionless rails, as shown in Figure P31.20. If a constant
force of 1.00 N moves the bar at 2.00 m/s through a mag-
netic field B that is directed into the page, (a) what is the
current through the 8.00-( resistor R ? (b) What is the rate
at which energy is delivered to the resistor? (c) What is the
mechanical power delivered by the force Fapp?

23. Very large magnetic fields can be produced using a proce-
dure called flux compression. A metallic cylindrical tube of
radius R is placed coaxially in a long solenoid of somewhat
larger radius. The space between the tube and the sole-
noid is filled with a highly explosive material. When the
explosive is set off, it collapses the tube to a cylinder of
radius r 0 R . If the collapse happens very rapidly, induced
current in the tube maintains the magnetic flux nearly
constant inside the tube. If the initial magnetic field in the
solenoid is 2.50 T, and R/r " 12.0, what maximum value
of magnetic field can be achieved?

24. The homopolar generator, also called the Faraday disk, is a
low-voltage, high-current electric generator. It consists of
a rotating conducting disk with one stationary brush (a
sliding electrical contact) at its axle and another at a
point on its circumference, as shown in Figure P31.24.
A magnetic field is applied perpendicular to the plane of
the disk. Assume the field is 0.900 T, the angular speed is
3 200 rev/min, and the radius of the disk is 0.400 m. Find
the emf generated between the brushes. When supercon-
ducting coils are used to produce a large magnetic field, a
homopolar generator can have a power output of several

21.
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Problem 71 in Chapter 29 can be assigned with this section.
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megawatts. Such a generator is useful, for example, in
purifying metals by electrolysis. If a voltage is applied to
the output terminals of the generator, it runs in reverse as
a homopolar motor capable of providing great torque, useful
in ship propulsion.

25. Review problem. A flexible metallic wire with linear den-
sity 3.00 + 10%3 kg/m is stretched between two fixed
clamps 64.0 cm apart and held under tension 267 N. A
magnet is placed near the wire as shown in Figure P31.25.
Assume that the magnet produces a uniform field of
4.50 mT over a 2.00-cm length at the center of the wire,
and a negligible field elsewhere. The wire is set vibrating
at its fundamental (lowest) frequency. The section of the
wire in the magnetic field moves with a uniform amplitude
of 1.50 cm. Find (a) the frequency and (b) the amplitude
of the electromotive force induced between the ends of
the wire.

26. The square loop in Figure P31.26 is made of wires with
total series resistance 10.0 (. It is placed in a uniform
0.100-T magnetic field directed perpendicularly into the
plane of the paper. The loop, which is hinged at each
corner, is pulled as shown until the separation between
points A and B is 3.00 m. If this process takes 0.100 s,
what is the average current generated in the loop? What
is the direction of the current?

A helicopter (Figure P31.27) has blades of length 3.00 m,
extending out from a central hub and rotating at
2.00 rev/s. If the vertical component of the Earth’s mag-
netic field is 50.0 /T, what is the emf induced between the
blade tip and the center hub?

27.

28. Use Lenz’s law to answer the following questions concern-
ing the direction of induced currents. (a) What is the
direction of the induced current in resistor R in Figure
P31.28a when the bar magnet is moved to the left?
(b) What is the direction of the current induced in the
resistor R immediately after the switch S in Figure P31.28b

B
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is closed? (c) What is the direction of the induced current
in R when the current I in Figure P31.28c decreases
rapidly to zero? (d) A copper bar is moved to the right
while its axis is maintained in a direction perpendicular to
a magnetic field, as shown in Figure P31.28d. If the top of
the bar becomes positive relative to the bottom, what is the
direction of the magnetic field?

A rectangular coil with resistance R has N turns, each of
length ! and width w as shown in Figure P31.29. The coil
moves into a uniform magnetic field B with constant velocity
v. What are the magnitude and direction of the total
magnetic force on the coil (a) as it enters the magnetic field,
(b) as it moves within the field, and (c) as it leaves the field?

29.

31. Two parallel rails with negligible resistance are 10.0 cm apart
and are connected by a 5.00-( resistor. The circuit also
contains two metal rods having resistances of 10.0 ( and
15.0 ( sliding along the rails (Fig. P31.31). The rods are
pulled away from the resistor at constant speeds of 4.00 m/s
and 2.00 m/s, respectively. A uniform magnetic field of
magnitude 0.010 0 T is applied perpendicular to the plane
of the rails. Determine the current in the 5.00 -( resistor.

Section 31.4 Induced emf and Electric Fields
32. For the situation shown in Figure P31.32, the magnetic

field changes with time according to the expression
B " (2.00t 3 % 4.00t 2 2 0.800)T, and r2 " 2R " 5.00 cm.
(a) Calculate the magnitude and direction of the force
exerted on an electron located at point P2 when t " 2.00 s.
(b) At what time is this force equal to zero?

A magnetic field directed into the page changes with time
according to B " (0.030 0t 2 2 1.40)T, where t is in
seconds. The field has a circular cross section of radius
R " 2.50 cm (Fig. P31.32). What are the magnitude and
direction of the electric field at point P1 when t " 3.00 s
and r1 " 0.020 0 m ?

34. A long solenoid with 1 000 turns per meter and
radius 2.00 cm carries an oscillating current given by
I " (5.00 A) sin(100,t). What is the electric field induced
at a radius r " 1.00 cm from the axis of the solenoid?
What is the direction of this electric field when the current
is increasing counterclockwise in the coil?

Section 31.5 Generators and Motors

33.

A coil of area 0.100 m2 is rotating at 60.0 rev/s with
the axis of rotation perpendicular to a 0.200-T magnetic
field. (a) If the coil has 1 000 turns, what is the maximum
emf generated in it? (b) What is the orientation of the coil
with respect to the magnetic field when the maximum
induced voltage occurs?

36. In a 250-turn automobile alternator, the magnetic flux in
each turn is !B " (2.50 + 10%4 Wb) cos(*t), where * is
the angular speed of the alternator. The alternator is
geared to rotate three times for each engine revolution.
When the engine is running at an angular speed of
1 000 rev/min, determine (a) the induced emf in the
alternator as a function of time and (b) the maximum emf
in the alternator.

37. A long solenoid, with its axis along the x axis, consists of
200 turns per meter of wire that carries a steady current of
15.0 A. A coil is formed by wrapping 30 turns of thin wire
around a circular frame that has a radius of 8.00 cm. The
coil is placed inside the solenoid and mounted on an
axis that is a diameter of the coil and coincides with the
y axis. The coil is then rotated with an angular speed
of 4.00, rad/s. (The plane of the coil is in the yz plane

35.

w

v

Bin

× × × × × × ×

× × × × × × ×

× × × × × × ×

× × × × × × ×

× × × × × × ×
!

Figure P31.29

a

R

b

Motion toward
the loop

S

N

Figure P31.30

×
×
×
×
×
×

×
×
×
×
×
×

×
×
×
×
×
×

×
×
×
×
×
×

×
×
×
×
×
×

×
×
×
×
×
×

×
×
×
×
×
×

×
×
×
×
×
×

×
×
×
×
×
×

×
×
×
×
×
×

×
×
×
×
×
×

10.0 Ω 15.0 Ω

5.00 Ω 2.00 m/sB4.00 m/s

Figure P31.31

Bin

× × × × × × × ×

× × × × × × ×

× × × × × × ×

× × × × × ×

× × × × ×

× × × × × ×

× × × × ×

r2
P2

P1

R

r1

Figure P31.32 Problems 32 and 33.

30. In Figure P31.30, the bar magnet is moved toward the
loop. Is Va % Vb positive, negative, or zero? Explain.

Problems 28 and 62 in Chapter 29 can be assigned with
this section.
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at t " 0.) Determine the emf generated in the coil as a
function of time.

38. A bar magnet is spun at constant angular speed * around
an axis as shown in Figure P31.38. A stationary flat rectan-
gular conducting loop surrounds the magnet, and at
t " 0, the magnet is oriented as shown. Make a qualitative
graph of the induced current in the loop as a function of
time, plotting counterclockwise currents as positive and
clockwise currents as negative.

39. A motor in normal operation carries a direct current of
0.850 A when connected to a 120-V power supply. The
resistance of the motor windings is 11.8 (. While in
normal operation, (a) what is the back emf generated by
the motor? (b) At what rate is internal energy produced in
the windings? (c) What If? Suppose that a malfunction
stops the motor shaft from rotating. At what rate will inter-
nal energy be produced in the windings in this case? (Most
motors have a thermal switch that will turn off the motor
to prevent overheating when this occurs.)

40. A semicircular conductor of radius R " 0.250 m is rotated
about the axis AC at a constant rate of 120 rev/min (Fig.
P31.40). A uniform magnetic field in all of the lower half
of the figure is directed out of the plane of rotation and
has a magnitude of 1.30 T. (a) Calculate the maximum
value of the emf induced in the conductor. (b) What is the
value of the average induced emf for each complete rota-
tion? (c) What If? How would the answers to (a) and (b)
change if B were allowed to extend a distance R above the
axis of rotation? Sketch the emf versus time (d) when the
field is as drawn in Figure P31.40 and (e) when the field is
extended as described in (c).

41. The rotating loop in an AC generator is a square 10.0 cm
on a side. It is rotated at 60.0 Hz in a uniform field of
0.800 T. Calculate (a) the flux through the loop as a
function of time, (b) the emf induced in the loop, (c) the

current induced in the loop for a loop resistance of
1.00 (, (d) the power delivered to the loop, and (e) the
torque that must be exerted to rotate the loop.

Section 31.6 Eddy Currents
42. Figure P31.42 represents an electromagnetic brake that

uses eddy currents. An electromagnet hangs from a
railroad car near one rail. To stop the car, a large current
is sent through the coils of the electromagnet. The moving
electromagnet induces eddy currents in the rails, whose
fields oppose the change in the field of the electromagnet.
The magnetic fields of the eddy currents exert force on
the current in the electromagnet, thereby slowing the car.
The direction of the car’s motion and the direction of the
current in the electromagnet are shown correctly in the
picture. Determine which of the eddy currents shown on
the rails is correct. Explain your answer.

A conducting rectangular loop of mass M, resistance
R, and dimensions w by ! falls from rest into a magnetic
field B as shown in Figure P31.43. During the time interval

43.
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before the top edge of the loop reaches the field, the loop
approaches a terminal speed vT. (a) Show that

(b) Why is vT proportional to R? (c) Why is it inversely propor-
tional to B2?

Section 31.7 Maxwell’s Equations
44. An electron moves through a uniform electric field

E " (2.50 î 2 5.00 ĵ) V/m and a uniform magnetic field
B " (0.400k̂)T. Determine the acceleration of the
electron when it has a velocity v " 10.0 î m/s.

A proton moves through a uniform electric field given by
E " 50.0 ĵ V/m and a uniform magnetic field B "
(0.200 î 2 0.300 ĵ 2 0.400k̂)T. Determine the acceleration
of the proton when it has a velocity v " 200 î m/s.

Additional Problems
46. A steel guitar string vibrates (Figure 31.6). The compo-

nent of magnetic field perpendicular to the area of a
pickup coil nearby is given by

B " 50.0 mT 2 (3.20 mT) sin(2, 523 t/s)

The circular pickup coil has 30 turns and radius 2.70 mm.
Find the emf induced in the coil as a function of time.

47. Figure P31.47 is a graph of the induced emf versus time
for a coil of N turns rotating with angular speed * in a uni-
form magnetic field directed perpendicular to the axis of
rotation of the coil. What If ? Copy this sketch (on a larger
scale), and on the same set of axes show the graph of emf
versus t (a) if the number of turns in the coil is doubled;
(b) if instead the angular speed is doubled; and (c) if the
angular speed is doubled while the number of turns in the
coil is halved.

45.

vT "
MgR
B2w2

48. A technician wearing a brass bracelet enclosing area
0.005 00 m2 places her hand in a solenoid whose magnetic
field is 5.00 T directed perpendicular to the plane of the
bracelet. The electrical resistance around the circumfer-
ence of the bracelet is 0.020 0 (. An unexpected power
failure causes the field to drop to 1.50 T in a time of
20.0 ms. Find (a) the current induced in the bracelet and
(b) the power delivered to the bracelet. Note: As this

problem implies, you should not wear any metal objects
when working in regions of strong magnetic fields.

49. Two infinitely long solenoids (seen in cross section) pass
through a circuit as shown in Figure P31.49. The magni-
tude of B inside each is the same and is increasing at the
rate of 100 T/s. What is the current in each resistor?

50. A conducting rod of length ! " 35.0 cm is free to slide on
two parallel conducting bars as shown in Figure P31.50.
Two resistors R1 " 2.00 ( and R 2 " 5.00 ( are connected
across the ends of the bars to form a loop. A constant
magnetic field B " 2.50 T is directed perpendicularly into
the page. An external agent pulls the rod to the left with a
constant speed of v " 8.00 m/s. Find (a) the currents in
both resistors, (b) the total power delivered to the resis-
tance of the circuit, and (c) the magnitude of the applied
force that is needed to move the rod with this constant
velocity.

51. Suppose you wrap wire onto the core from a roll of cello-
phane tape to make a coil. Describe how you can use a bar
magnet to produce an induced voltage in the coil. What is
the order of magnitude of the emf you generate? State the
quantities you take as data and their values.

52. A bar of mass m, length d, and resistance R slides without
friction in a horizontal plane, moving on parallel rails as
shown in Figure P31.52. A battery that maintains a
constant emf $ is connected between the rails, and a
constant magnetic field B is directed perpendicularly to
the plane of the page. Assuming the bar starts from rest,
show that at time t it moves with a speed

v "
$
Bd

 (1 % e%B 2d 2t/mR)
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53. Review problem. A particle with a mass of 2.00 + 10%16 kg
and a charge of 30.0 nC starts from rest, is accelerated by a
strong electric field, and is fired from a small source inside
a region of uniform constant magnetic field 0.600 T. The
velocity of the particle is perpendicular to the field. The
circular orbit of the particle encloses a magnetic flux of
15.0 /Wb. (a) Calculate the speed of the particle. (b) Cal-
culate the potential difference through which the particle
accelerated inside the source.

54. An induction furnace uses electromagnetic induction to
produce eddy currents in a conductor, thereby raising the
conductor’s temperature. Commercial units operate at fre-
quencies ranging from 60 Hz to about 1 MHz and deliver
powers from a few watts to several megawatts. Induction
heating can be used for welding in a vacuum enclosure, to
avoid oxidation and contamination of the metal. At high
frequencies, induced currents occur only near the surface
of the conductor—this is the “skin effect.” By creating an
induced current for a short time at an appropriately high
frequency, one can heat a sample down to a controlled
depth. For example, the surface of a farm tiller can be
tempered to make it hard and brittle for effective cutting
while keeping the interior metal soft and ductile to resist
breakage.

To explore induction heating, consider a flat conduct-
ing disk of radius R , thickness b, and resistivity 3. A sinu-
soidal magnetic field Bmax cos *t is applied perpendicular
to the disk. Assume that the frequency is so low that the
skin effect is not important. Assume the eddy currents
occur in circles concentric with the disk. (a) Calculate the
average power delivered to the disk. (b) What If? By what
factor does the power change when the amplitude of the
field doubles? (c) When the frequency doubles? (d) When
the radius of the disk doubles?

The plane of a square loop of wire with edge length
a " 0.200 m is perpendicular to the Earth’s magnetic field
at a point where B " 15.0 /T, as shown in Figure P31.55.
The total resistance of the loop and the wires connecting it
to a sensitive ammeter is 0.500 (. If the loop is suddenly
collapsed by horizontal forces as shown, what total charge
passes through the ammeter?

55.

56. Magnetic field values are often determined by using a
device known as a search coil. This technique depends on
the measurement of the total charge passing through a
coil in a time interval during which the magnetic flux

linking the windings changes either because of the motion
of the coil or because of a change in the value of B.
(a) Show that as the flux through the coil changes from
!1 to !2, the charge transferred through the coil will be
given by Q " N(!2 % !1)/R, where R is the resistance of
the coil and a sensitive ammeter connected across it and N
is the number of turns. (b) As a specific example, calculate
B when a 100-turn coil of resistance 200 ( and cross-
sectional area 40.0 cm2 produces the following results.
A total charge of 5.00 + 10%4 C passes through the coil
when it is rotated in a uniform field from a position where
the plane of the coil is perpendicular to the field to a posi-
tion where the coil’s plane is parallel to the field.

57. In Figure P31.57, the rolling axle, 1.50 m long, is pushed
along horizontal rails at a constant speed v " 3.00 m/s. A
resistor R " 0.400 ( is connected to the rails at points a and
b, directly opposite each other. (The wheels make good elec-
trical contact with the rails, and so the axle, rails, and R form
a closed-loop circuit. The only significant resistance in the
circuit is R.) A uniform magnetic field B " 0.080 0 T is verti-
cally downward. (a) Find the induced current I in the resis-
tor. (b) What horizontal force F is required to keep the axle
rolling at constant speed? (c) Which end of the resistor, a or
b, is at the higher electric potential? (d) What If ? After the
axle rolls past the resistor, does the current in R reverse
direction? Explain your answer.

58. A conducting rod moves with a constant velocity v in a
direction perpendicular to a long, straight wire carrying a
current I as shown in Figure P31.58. Show that the magni-
tude of the emf generated between the ends of the rod is

In this case, note that the emf decreases with increasing r,
as you might expect.

&$&"
/0vI!
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59. A circular loop of wire of radius r is in a uniform magnetic
field, with the plane of the loop perpendicular to the
direction of the field (Fig. P31.59). The magnetic field
varies with time according to B(t) " a 2 bt, where a and b
are constants. (a) Calculate the magnetic flux through the
loop at t " 0. (b) Calculate the emf induced in the loop.
(c) If the resistance of the loop is R , what is the induced
current? (d) At what rate is energy being delivered to the
resistance of the loop?

60. In Figure P31.60, a uniform magnetic field decreases at a
constant rate dB/dt " % K, where K is a positive constant.
A circular loop of wire of radius a containing a resistance
R and a capacitance C is placed with its plane normal to
the field. (a) Find the charge Q on the capacitor when it is
fully charged. (b) Which plate is at the higher potential?
(c) Discuss the force that causes the separation of charges.

A rectangular coil of 60 turns, dimensions 0.100 m by
0.200 m and total resistance 10.0 (, rotates with angular
speed 30.0 rad/s about the y axis in a region where a 1.00-T
magnetic field is directed along the x axis. The rotation is
initiated so that the plane of the coil is perpendicular to
the direction of B at t " 0. Calculate (a) the maximum
induced emf in the coil, (b) the maximum rate of change
of magnetic flux through the coil, (c) the induced emf at
t " 0.050 0 s, and (d) the torque exerted by the magnetic
field on the coil at the instant when the emf is a maximum.

62. A small circular washer of radius 0.500 cm is held directly
below a long, straight wire carrying a current of 10.0 A.
The washer is located 0.500 m above the top of a table
(Fig. P31.62). (a) If the washer is dropped from rest, what
is the magnitude of the average induced emf in the washer
from the time it is released to the moment it hits the table-
top? Assume that the magnetic field is nearly constant over
the area of the washer, and equal to the magnetic field at
the center of the washer. (b) What is the direction of the
induced current in the washer?

61.

63. A conducting rod of length ! moves with velocity v parallel
to a long wire carrying a steady current I. The axis of the
rod is maintained perpendicular to the wire with the near
end a distance r away, as shown in Figure P31.63. Show
that the magnitude of the emf induced in the rod is

&$&"
/0Iv
2,

  ln #1 2
!

r $

64. A rectangular loop of dimensions ! and w moves with a
constant velocity v away from a long wire that carries a
current I in the plane of the loop (Fig. P31.64). The total
resistance of the loop is R. Derive an expression that gives
the current in the loop at the instant the near side is a
distance r from the wire.

The magnetic flux through a metal ring varies with time t
according to !B " 3(at3 % bt2) T & m2 , with a " 2.00 s%3

and b " 6.00 s%2. The resistance of the ring is 3.00 (.
Determine the maximum current induced in the ring
during the interval from t " 0 to t " 2.00 s.

66. Review problem. The bar of mass m in Figure P31.66 is
pulled horizontally across parallel rails by a massless string
that passes over an ideal pulley and is attached to a

65.
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suspended object of mass M. The uniform magnetic field
has a magnitude B, and the distance between the rails is !.
The rails are connected at one end by a load resistor R.
Derive an expression that gives the horizontal speed of the
bar as a function of time, assuming that the suspended
object is released with the bar at rest at t " 0. Assume no
friction between rails and bar.

67. A solenoid wound with 2 000 turns/m is supplied with
current that varies in time according to I "
(4A) sin(120,t), where t is in seconds. A small coaxial
circular coil of 40 turns and radius r " 5.00 cm is located
inside the solenoid near its center. (a) Derive an expres-
sion that describes the manner in which the emf in the
small coil varies in time. (b) At what average rate is energy
delivered to the small coil if the windings have a total resis-
tance of 8.00 (?

68. Figure P31.68 shows a stationary conductor whose shape is
similar to the letter e. The radius of its circular portion is
a " 50.0 cm. It is placed in a constant magnetic field of
0.500 T directed out of the page. A straight conducting
rod, 50.0 cm long, is pivoted about point O and rotates
with a constant angular speed of 2.00 rad/s. (a) Deter-
mine the induced emf in the loop POQ. Note that the area
of the loop is #a2/2. (b) If all of the conducting material
has a resistance per length of 5.00 (/m, what is the
induced current in the loop POQ at the instant 0.250 s
after point P passes point Q?

69. A betatron accelerates electrons to energies in the MeV
range by means of electromagnetic induction. Electrons in
a vacuum chamber are held in a circular orbit by a

magnetic field perpendicular to the orbital plane. The
magnetic field is gradually increased to induce an electric
field around the orbit. (a) Show that the electric field is in
the correct direction to make the electrons speed up.
(b) Assume that the radius of the orbit remains constant.
Show that the average magnetic field over the area
enclosed by the orbit must be twice as large as the
magnetic field at the circumference of the circle.

70. A wire 30.0 cm long is held parallel to and 80.0 cm above a
long wire carrying 200 A and resting on the floor (Fig.
P31.70). The 30.0-cm wire is released and falls, remaining
parallel with the current-carrying wire as it falls. Assume
that the falling wire accelerates at 9.80 m/s2 and derive an
equation for the emf induced in it. Express your result as a
function of the time t after the wire is dropped. What is
the induced emf 0.300 s after the wire is released?

A long, straight wire carries a current that is given by
I " Imax sin(*t 2 4) and lies in the plane of a rectangular
coil of N turns of wire, as shown in Figure P31.9. The quanti-
ties Imax, *, and 4 are all constants. Determine the emf
induced in the coil by the magnetic field created by the
current in the straight wire. Assume Imax " 50.0 A,
* " 200, s%1, N " 100, h " w " 5.00 cm, and L " 20.0 cm.

72. A dime is suspended from a thread and hung between the
poles of a strong horseshoe magnet as shown in Figure
P31.72. The dime rotates at constant angular speed *

71.
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about a vertical axis. Letting # represent the angle
between the direction of B and the normal to the face of
the dime, sketch a graph of the torque due to induced
currents as a function of # for 0 0 # 0 2,.

Answers to Quick Quizzes
31.1 (c). In all cases except this one, there is a change in the

magnetic flux through the loop.

31.2 c, d " e, b, a. The magnitude of the emf is proportional
to the rate of change of the magnetic flux. For the situa-
tion described, the rate of change of magnetic flux is
proportional to the rate of change of the magnetic
field. This rate of change is the slope of the graph in
Figure 31.4. The magnitude of the slope is largest at c.
Points d and e are on a straight line, so the slope is the
same at each point. Point b represents a point of rela-
tively small slope, while a is at a point of zero slope
because the curve is horizontal at that point.

31.3 (b). The magnetic field lines around the transmission
cable will be circular, centered on the cable. If you place
your loop around the cable, there are no field lines
passing through the loop, so no emf is induced. The
loop must be placed next to the cable, with the plane of
the loop parallel to the cable to maximize the flux
through its area.

31.4 (a). The Earth’s magnetic field has a downward compo-
nent in the northern hemisphere. As the plane flies
north, the right-hand rule illustrated in Figure 29.4
indicates that positive charge experiences a force
directed toward the west. Thus, the left wingtip
becomes positively charged and the right wingtip nega-
tively charged.

31.5 (c). The force on the wire is of magnitude Fapp " FB "
I!B, with I given by Equation 31.6. Thus, the force is
proportional to the speed and the force doubles.
Because " " Fappv, the doubling of the force and the
speed results in the power being four times as large.

31.6 (b). According to Equation 31.5, because B and v are
fixed, the emf depends only on the length of the wire
moving in the magnetic field. Thus, you want the long
dimension moving through the magnetic field lines so
that it is perpendicular to the velocity vector. In this case,
the short dimension is parallel to the velocity vector.

31.7 (a). Because the current induced in the solenoid is
clockwise when viewed from above, the magnetic field
lines produced by this current point downward in
Figure 31.15. Thus, the upper end of the solenoid acts
as a south pole. For this situation to be consistent with
Lenz’s law, the south pole of the bar magnet must be
approaching the solenoid.

31.8 (b). At the position of the loop, the magnetic field lines
due to the wire point into the page. The loop is entering
a region of stronger magnetic field as it drops toward the
wire, so the flux is increasing. The induced current must
set up a magnetic field that opposes this increase. To do
this, it creates a magnetic field directed out of the page.
By the right-hand rule for current loops, this requires a
counterclockwise current in the loop.

31.9 (d). The constant rate of change of B will result in a
constant rate of change of the magnetic flux. According
to Equation 31.9, if d !B/dt is constant, E is constant in
magnitude.

31.10 (a). While reducing the resistance may increase the
current that the generator provides to a load, it does not
alter the emf. Equation 31.11 shows that the emf depends
on *, B, and N, so all other choices increase the emf.

31.11 (b). When the aluminum sheet moves between the
poles of the magnet, eddy currents are established in
the aluminum. According to Lenz’s law, these currents
are in a direction so as to oppose the original change,
which is the movement of the aluminum sheet in the
magnetic field. The same principle is used in common
laboratory triple-beam balances. See if you can find the
magnet and the aluminum sheet the next time you use
a triple-beam balance.
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Chapter 32

! An airport metal detector contains a large coil of wire around the frame. This coil has
a property called inductance. When a passenger carries metal through the detector, the
inductance of the coil changes, and the change in inductance signals an alarm to sound.
(Jack Hollingsworth/Getty Images)
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In Chapter 31, we saw that an emf and a current are induced in a circuit when the
magnetic flux through the area enclosed by the circuit changes with time. This
phenomenon of electromagnetic induction has some practical consequences. In this
chapter, we first describe an effect known as self-induction, in which a time-varying
current in a circuit produces an induced emf opposing the emf that initially set up the
time-varying current. Self-induction is the basis of the inductor, an electrical circuit
element. We discuss the energy stored in the magnetic field of an inductor and the
energy density associated with the magnetic field.

Next, we study how an emf is induced in a circuit as a result of a changing magnetic
flux produced by a second circuit; this is the basic principle of mutual induction. Finally,
we examine the characteristics of circuits that contain inductors, resistors, and capaci-
tors in various combinations.

32.1 Self-Inductance

In this chapter, we need to distinguish carefully between emfs and currents that are
caused by batteries or other sources and those that are induced by changing magnetic
fields. When we use a term without an adjective (such as emf and current) we are
describing the parameters associated with a physical source. We use the adjective
induced to describe those emfs and currents caused by a changing magnetic field.

Consider a circuit consisting of a switch, a resistor, and a source of emf, as shown in
Figure 32.1. When the switch is thrown to its closed position, the current does not
immediately jump from zero to its maximum value !/R . Faraday’s law of electromag-
netic induction (Eq. 31.1) can be used to describe this effect as follows: as the current
increases with time, the magnetic flux through the circuit loop due to this current also
increases with time. This increasing flux creates an induced emf in the circuit. The
direction of the induced emf is such that it would cause an induced current in the loop
(if the loop did not already carry a current), which would establish a magnetic field
opposing the change in the original magnetic field. Thus, the direction of the induced
emf is opposite the direction of the emf of the battery; this results in a gradual rather
than instantaneous increase in the current to its final equilibrium value. Because of the
direction of the induced emf, it is also called a back emf, similar to that in a motor, as
discussed in Chapter 31. This effect is called self-induction because the changing flux
through the circuit and the resultant induced emf arise from the circuit itself. The emf
!L set up in this case is called a self-induced emf.

As a second example of self-induction, consider Figure 32.2, which shows a coil
wound on a cylindrical core. Assume that the current in the coil either increases or de-
creases with time. When the current is in the direction shown, a magnetic field
directed from right to left is set up inside the coil, as seen in Figure 32.2a. As the
current changes with time, the magnetic flux through the coil also changes and
induces an emf in the coil. From Lenz’s law, the polarity of this induced emf must be
such that it opposes the change in the magnetic field from the current. If the current

B

ε
R

S
I

I

Figure 32.1 After the switch is
closed, the current produces a
magnetic flux through the area
enclosed by the loop. As the
current increases toward its
equilibrium value, this magnetic
flux changes in time and induces
an emf in the loop.
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is increasing, the polarity of the induced emf is as pictured in Figure 32.2b, and if the
current is decreasing, the polarity of the induced emf is as shown in Figure 32.2c.

To obtain a quantitative description of self-induction, we recall from Faraday’s law that
the induced emf is equal to the negative of the time rate of change of the magnetic flux.
The magnetic flux is proportional to the magnetic field due to the current, which in turn
is proportional to the current in the circuit. Therefore, a self-induced emf is always
proportional to the time rate of change of the current. For any coil, we find that

(32.1)

where L is a proportionality constant—called the inductance of the coil—that depends
on the geometry of the coil and other physical characteristics. Combining this expression
with Faraday’s law, !L " # N d$B/dt, we see that the inductance of a closely spaced coil
of N turns (a toroid or an ideal solenoid) carrying a current I and containing N turns is

(32.2)

where it is assumed that the same magnetic flux passes through each turn.
From Equation 32.1, we can also write the inductance as the ratio

(32.3)

Recall that resistance is a measure of the opposition to current (R " %V/I ); in com-
parison, inductance is a measure of the opposition to a change in current.

The SI unit of inductance is the henry (H), which, as we can see from Equation
32.3, is 1 volt-second per ampere:

As shown in Examples 32.1 and 32.2, the inductance of a coil depends on its geometry.
This is analogous to the capacitance of a capacitor depending on the geometry of its
plates, as we found in Chapter 26. Inductance calculations can be quite difficult to per-
form for complicated geometries; however, the examples below involve simple situa-
tions for which inductances are easily evaluated.

1 H " 1 
V&s
A

L " #  
!L

dI/dt

L "
N  $B

I

!L " #L 
dI
dt

Inductance of an N-turn coil

Joseph Henry
American Physicist (1797–1878)

Henry became the first director
of the Smithsonian Institution
and first president of the
Academy of Natural Science. He
improved the design of the
electromagnet and constructed
one of the first motors. He also
discovered the phenomenon of
self-induction but failed to
publish his findings. The unit of
inductance, the henry, is named
in his honor. (North Wind Picture
Archives)

Lenz’s law emf Lenz’s law emf
– + –+

B

(a) (b) (c)I increasing I decreasing

Figure 32.2 (a) A current in the coil produces a magnetic field directed to the left.
(b) If the current increases, the increasing magnetic flux creates an induced emf in the
coil having the polarity shown by the dashed battery. (c) The polarity of the induced
emf reverses if the current decreases.

Quick Quiz 32.1 A coil with zero resistance has its ends labeled a and b. The
potential at a is higher than at b. Which of the following could be consistent with this
situation? (a) The current is constant and is directed from a to b ; (b) The current is
constant and is directed from b to a ; (c) The current is increasing and is directed from a
to b ; (d) The current is decreasing and is directed from a to b ; (e) The current is increas-
ing and is directed from b to a ; (f) The current is decreasing and is directed from b to a.

Inductance



32.2 RL Circuits

If a circuit contains a coil, such as a solenoid, the self-inductance of the coil prevents
the current in the circuit from increasing or decreasing instantaneously. A circuit
element that has a large self-inductance is called an inductor and has the circuit
symbol . We always assume that the self-inductance of the remainder of a
circuit is negligible compared with that of the inductor. Keep in mind, however, that
even a circuit without a coil has some self-inductance that can affect the behavior of
the circuit.

Because the inductance of the inductor results in a back emf, an inductor in a
circuit opposes changes in the current in that circuit. The inductor attempts to
keep the current the same as it was before the change occurred. If the battery voltage
in the circuit is increased so that the current rises, the inductor opposes this change,
and the rise is not instantaneous. If the battery voltage is decreased, the presence of
the inductor results in a slow drop in the current rather than an immediate drop.
Thus, the inductor causes the circuit to be “sluggish” as it reacts to changes in the
voltage.

1006 C H A P T E R  3 2 •  Inductance

Example 32.1 Inductance of a Solenoid

Find the inductance of a uniformly wound solenoid having N
turns and length !. Assume that ! is much longer than the
radius of the windings and that the core of the solenoid is air.

Solution We can assume that the interior magnetic field
due to the current is uniform and given by Equation 30.17:

where n " N/! is the number of turns per unit length. The
magnetic flux through each turn is

where A is the cross-sectional area of the solenoid. Using
this expression and Equation 32.2, we find that

(32.4)
'0N  

2A
!

L "
N  $B

I
"

$B " BA " '0 
NA
!

 I

B " '0nI " '0 
N
!

 I

This result shows that L depends on geometry and is propor-
tional to the square of the number of turns. Because N " n!,
we can also express the result in the form

(32.5)

where V " A! is the interior volume of the solenoid.

What If? What would happen to the inductance if you
inserted a ferromagnetic material inside the solenoid?

Answer The inductance would increase. For a given
current, the magnetic flux in the solenoid is much greater
because of the increase in the magnetic field originating
from the magnetization of the ferromagnetic material. For
example, if the material has a magnetic permeability of
500'0, the inductance increases by a factor of 500.

L " '0 
(n !)2

!
 A " '0n2A! " '0n2V

Example 32.2 Calculating Inductance and emf

(A) Calculate the inductance of an air-core solenoid con-
taining 300 turns if the length of the solenoid is 25.0 cm
and its cross-sectional area is 4.00 cm2.

Solution Using Equation 32.4, we obtain

0.181 mH " 1.81 ( 10#4 T&m2/A "

 "
(4) ( 10#7 T&m/A)(300)2(4.00 ( 10#4 m2)

25.0 ( 10#2 m

L "
'0N 2A

!
 

(B) Calculate the self-induced emf in the solenoid if the
current it carries is decreasing at the rate of 50.0 A/s.

Solution Using Equation 32.1 and given that dI/dt "
# 50.0 A/s, we obtain

9.05 mV"

!L " #L  
dI
dt

" #(1.81 ( 10#4 H)(#50.0 A/s)
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Consider the circuit shown in Figure 32.3, which contains a battery of negligible
internal resistance. This is an RL circuit because the elements connected to the
battery are a resistor and an inductor. Suppose that the switch S is open for t * 0 and
then closed at t " 0. The current in the circuit begins to increase, and a back emf (Eq.
32.1) that opposes the increasing current is induced in the inductor. Because the
current is increasing, dI/dt in Equation 32.1 is positive; thus, !L is negative. This nega-
tive value reflects the decrease in electric potential that occurs in going from a to b
across the inductor, as indicated by the positive and negative signs in Figure 32.3.

With this in mind, we can apply Kirchhoff’s loop rule to this circuit, traversing the
circuit in the clockwise direction:

(32.6)

where IR is the voltage drop across the resistor. (We developed Kirchhoff’s rules for
circuits with steady currents, but they can also be applied to a circuit in which the
current is changing if we imagine them to represent the circuit at one instant of time.)
We must now look for a solution to this differential equation, which is similar to that
for the RC circuit. (See Section 28.4.)

A mathematical solution of Equation 32.6 represents the current in the circuit as
a function of time. To find this solution, we change variables for convenience, letting
x " (!/R) # I, so that dx " # dI. With these substitutions, we can write Equation 32.6 as

Integrating this last expression, we have

where x0 is the value of x at time t " 0. Taking the antilogarithm of this result, we
obtain

Because I " 0 at t " 0, we note from the definition of x that x0 " !/R . Hence, this last
expression is equivalent to

This expression shows how the inductor effects the current. The current does not
increase instantly to its final equilibrium value when the switch is closed but instead
increases according to an exponential function. If we remove the inductance in the
circuit, which we can do by letting L approach zero, the exponential term becomes zero
and we see that there is no time dependence of the current in this case—the current
increases instantaneously to its final equilibrium value in the absence of the inductance.

We can also write this expression as

(32.7)I "
!
R

 (1 # e#t/+ )

I "
!
R

 (1 # e#Rt/L)

!
R

# I "
!
R

 e#Rt/L

x " x0e#Rt/L

ln 
x
x0

" #
R
L

 t

!x

x 0

 
dx
x

" #
R
L

 !t

0
 dt

 
dx
x

" #
R
L

 dt

x ,
L
R

 
dx
dt

" 0 

! # IR # L  
dI
dt

" 0

b

ε

a

I

R

S

L
+

−

+
–

Active Figure 32.3 A series RL
circuit. As the current increases
toward its maximum value, an emf
that opposes the increasing current
is induced in the inductor.

At the Active Figures link
at http://www.pse6.com, you
can adjust the values of R and L
to see the effect on the current.
A graphical display as in Figure
32.4 is available.



where the constant + is the time constant of the RL circuit:

+ " (32.8)

Physically, + is the time interval required for the current in the circuit to reach
(1 # e#1) " 0.632 " 63.2% of its final value !/R . The time constant is a useful pa-
rameter for comparing the time responses of various circuits.

Figure 32.4 shows a graph of the current versus time in the RL circuit. Note that
the equilibrium value of the current, which occurs as t approaches infinity, is !/R . We
can see this by setting dI/dt equal to zero in Equation 32.6 and solving for the current
I. (At equilibrium, the change in the current is zero.) Thus, we see that the current
initially increases very rapidly and then gradually approaches the equilibrium value
!/R as t approaches infinity.

Let us also investigate the time rate of change of the current. Taking the first time
derivative of Equation 32.7, we have

(32.9)

From this result, we see that the time rate of change of the current is a maximum (equal
to !/L) at t " 0 and falls off exponentially to zero as t approaches infinity (Fig. 32.5).

Now let us consider the RL circuit shown in Figure 32.6. The curved lines on the
switch S represent a switch that is connected either to a or b at all times. (If the switch
is connected to neither a nor b, the current in the circuit suddenly stops.) Suppose that
the switch has been set at position a long enough to allow the current to reach its equi-
librium value !/R. In this situation, the circuit is described by the outer loop in Figure
32.6. If the switch is thrown from a to b, the circuit is now described by just the right
hand loop in Figure 32.6. Thus, we have a circuit with no battery (! " 0). Applying
Kirchhoff’s loop rule to the right-hand loop at the instant the switch is thrown from a
to b, we obtain

It is left as a problem (Problem 16) to show that the solution of this differential equa-
tion is

(32.10)I "
!
R

 e#t/+ " I 0 e#t/+

IR , L  
dI
dt

" 0

dI
dt

"
!
L

 e#t/+

L
R
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Time constant of an RL circuit

/Rε

   =L/R

tτ

R
ε

0.632

I

τ

Active Figure 32.4 Plot of the current
versus time for the RL circuit shown in
Figure 32.3. The switch is open for t * 0 and
then closed at t " 0, and the current
increases toward its maximum value !/R .
The time constant + is the time interval
required for I to reach 63.2% of its
maximum value.

dI
dt

/L

t

ε

Figure 32.5 Plot of dI/dt versus time for the
RL circuit shown in Figure 32.3. The time
rate of change of current is a maximum at
t " 0, which is the instant at which the switch
is closed. The rate decreases exponentially
with time as I increases toward its maximum
value.

R

Lε

b

Sa

Active Figure 32.6 An RL circuit.
When the switch S is in position a,
the battery is in the circuit. When
the switch is thrown to position b,
the battery is no longer part of the
circuit. The switch is designed so
that it is never open, which would
cause the current to stop.

At the Active Figures link
at http://www.pse6.com, you
can adjust the values of R and L
to see the effect on the current.
A graphical display as in Figure
32.7 is available.

At the Active Figures link
at http://www.pse6.com, you
can observe this graph develop
after the switch in Figure 32.3 is
closed.
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where ! is the emf of the battery and I0 " !/R is the current at the instant at which
the switch is thrown to b.

If the circuit did not contain an inductor, the current would immediately decrease
to zero when the battery is removed. When the inductor is present, it opposes the
decrease in the current and causes the current to decrease exponentially. A graph of
the current in the circuit versus time (Fig. 32.7) shows that the current is continuously
decreasing with time. Note that the slope dI/dt is always negative and has its maximum
value at t " 0. The negative slope signifies that !L " # L (dI/dt) is now positive.

I

t

/Rε

Active Figure 32.7 Current versus
time for the right-hand loop of the
circuit shown in Figure 32.6. For
t * 0, the switch S is at position a.
At t " 0, the switch is thrown to
position b, and the current has its
maximum value !/R .

At the Active Figures link
at http://www.pse6.com, you
can observe this graph develop
after the switch in Figure 32.6 is
thrown to position b.

Quick Quiz 32.2 The circuit in Figure 32.8 consists of a resistor, an induc-
tor, and an ideal battery with no internal resistance. At the instant just after the switch
is closed, across which circuit element is the voltage equal to the emf of the battery?
(a) the resistor (b) the inductor (c) both the inductor and resistor. After a very long
time, across which circuit element is the voltage equal to the emf of the battery?
(d) the resistor (e) the inductor (f) both the inductor and resistor.

R

Lε

S

Figure 32.8 (Quick Quiz 32.2)

Figure 32.9 (Quick Quiz 32.3)

Quick Quiz 32.4 Two circuits like the one shown in Figure 32.6 are identical
except for the value of L. In circuit A the inductance of the inductor is LA, and in cir-
cuit B it is LB. Switch S is thrown to position a at t " 0. At t " 10 s, the switch is thrown
to position b. The resulting currents for the two circuits are as graphed in Figure 32.10.

Quick Quiz 32.3 The circuit in Figure 32.9 includes a power source that
provides a sinusoidal voltage. Thus, the magnetic field in the inductor is constantly
changing. The inductor is a simple air-core solenoid. The switch in the circuit is
closed and the lightbulb glows steadily. An iron rod is inserted into the interior of
the solenoid, which increases the magnitude of the magnetic field in the solenoid.
As this happens, the brightness of the lightbulb (a) increases, (b) decreases, (c) is
unaffected.

S

L

Iron bar
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Figure 32.10 (Quick Quiz 32.4)

If we assume that the time constant of each circuit is much less than 10 s, which of the
following is true? (a) LA - LB; (b) LA * LB; (c) not enough information to tell.

0

I

5 10 15

A

B

t(s)

Example 32.3 Time Constant of an RL Circuit

(A) Find the time constant of the circuit shown in Figure
32.11a.

Solution The time constant is given by Equation 32.8:

(B) The switch in Figure 32.11a is closed at t " 0. Calculate
the current in the circuit at t " 2.00 ms.

Solution Using Equation 32.7 for the current as a function of
time (with t and + in milliseconds), we find that at t " 2.00 ms,

0.659 AI "
!
R

 (1 # e#t/+ ) "
12.0 V
6.00 .

 (1 # e#0.400) "

5.00 ms+ "
L
R

"
30.0 ( 10#3 H

6.00 .
"

A plot of the current versus time for this circuit is given in
Figure 32.11b.

(C) Compare the potential difference across the resistor
with that across the inductor.

Solution At the instant the switch is closed, there is no
current and thus no potential difference across the resistor.
At this instant, the battery voltage appears entirely across the
inductor in the form of a back emf of 12.0 V as the inductor
tries to maintain the zero-current condition. (The left end
of the inductor is at a higher electric potential than the
right end.) As time passes, the emf across the inductor
decreases and the current in the resistor (and hence the
potential difference across it) increases, as shown in Figure
32.12. The sum of the two potential differences at all times
is 12.0 V.

What If? In Figure 32.12, we see that the voltages across the
resistor and inductor are equal at a time just before 4.00 ms.
What if we wanted to delay the condition in which the voltages
are equal to some later instant, such as t ! 10.0 ms? Which
parameter, L or R, would require the least adjustment, in terms
of a percentage change, to achieve this?

t(ms)
0 2 4 6 8 10

0

1

2

I(A)

(b)

(a)

30.0 mH

12.0 V 6.00 Ω

S

12 14

Figure 32.11 (Example 32.3) (a) The switch in this RL circuit
is open for t * 0 and then closed at t " 0. (b) A graph of the
current versus time for the circuit in part (a).

2 4 6 8
0

2

4

6

8

10

12

∆VL

∆VR

∆V(V)

t(ms)
10

Figure 32.12 (Example 32.3) The time behavior of the potential
differences across the resistor and inductor in Figure 32.11a.

Interactive
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32.3 Energy in a Magnetic Field

Because the emf induced in an inductor prevents a battery from establishing an instan-
taneous current, the battery must provide more energy than in a circuit without the in-
ductor. Part of the energy supplied by the battery appears as internal energy in the
resistor, while the remaining energy is stored in the magnetic field of the inductor. If
we multiply each term in Equation 32.6 by I and rearrange the expression, we have

(32.11)

Recognizing I! as the rate at which energy is supplied by the battery and I 2R as the rate
at which energy is delivered to the resistor, we see that LI(dI/dt) must represent the rate
at which energy is being stored in the inductor. If we let U denote the energy stored in
the inductor at any time, then we can write the rate dU/dt at which energy is stored as

To find the total energy stored in the inductor, we can rewrite this expression as
dU " LI dI and integrate:

(32.12)

where L is constant and has been removed from the integral. This expression repre-
sents the energy stored in the magnetic field of the inductor when the current is I.
Note that this equation is similar in form to Equation 26.11 for the energy stored in
the electric field of a capacitor, U " C(%V )2. In either case, we see that energy is
required to establish a field.

We can also determine the energy density of a magnetic field. For simplicity, con-
sider a solenoid whose inductance is given by Equation 32.5:

L " '0n2A!

The magnetic field of a solenoid is given by Equation 30.17:

B " '0nI

1
2

U " 1
2 L I 2

U " ! dU " !I

0
 L I dI " L  !I

0
 I dI

dU
dt

" L I  
dI
dt

I ! " I  
2R , L I  

dI
dt

Answer From Figure 32.12, we see that the voltages are
equal when the voltage across the inductor has fallen to
half of its original value. Thus, the time interval required
for the voltages to become equal is the half-life t1/2 of the
decay. We introduced the half-life in the What If? section
of Example 28.13, in describing the exponential decay in
RC circuits, where we found that t1/2 " 0.693+. If we want
the half-life of our RL circuit to be 10.0 ms, then the time
constant must be

We can achieve this time constant by holding L fixed and
adjusting R ; in this case,

+ "
t 1/2

0.693
"

10.0 ms
0.693

" 14.4 ms

This corresponds to a 65% decrease compared to the initial
resistance. Now hold R fixed and adjust L :

This represents a 188% increase in inductance! Thus, a
much smaller percentage adjustment in R can achieve the
desired effect than in L.

L " (6.00 .)(14.4 ms) " 86.4 ( 10#3 H

+ "
L
R

"
L

6.00 .
" 14.4 ms

R "
30.0 ( 10#3 H

14.4 ms
" 2.08 .

+ "
L
R

"
30.0 ( 10#3 H

R
" 14.4 ms

At the Interactive Worked Example link at http://www.pse6.com, you can explore the decay of current in an RL circuit.

Energy stored in an inductor

! PITFALL PREVENTION 
32.1 Compare Energy in a

Capacitor, Resistor,
and Inductor

Different energy-storage mecha-
nisms are at work in capacitors,
inductors, and resistors. A capaci-
tor stores a given amount of
energy for a fixed charge on its
plates; as more charge is deliv-
ered, more energy is delivered.
An inductor stores a given
amount of energy for constant
current; as the current increases,
more energy is delivered. Energy
delivered to a resistor is trans-
formed to internal energy.



Substituting the expression for L and I " B/'0n into Equation 32.12 gives

(32.13)

Because A! is the volume of the solenoid, the magnetic energy density, or the energy
stored per unit volume in the magnetic field of the inductor is

(32.14)

Although this expression was derived for the special case of a solenoid, it is valid for
any region of space in which a magnetic field exists. Note that Equation 32.14 is similar
in form to Equation 26.13 for the energy per unit volume stored in an electric field,
uE " /0E2. In both cases, the energy density is proportional to the square of the field
magnitude.

1
2

uB "
U

A!
"

B 2

2'0

U " 1
2 L I  

2 " 1
2 '0n2A! " B

'0n #
2

"
B  

2

2'0
 A!
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Quick Quiz 32.5 You are performing an experiment that requires the
highest possible energy density in the interior of a very long solenoid. Which of 
the following increases the energy density? (More than one choice may be correct.)
(a) increasing the number of turns per unit length on the solenoid (b) increasing
the cross-sectional area of the solenoid (c) increasing only the length of the solenoid
while keeping the number of turns per unit length fixed (d) increasing the current
in the solenoid.

Example 32.4 What Happens to the Energy in the Inductor?

Consider once again the RL circuit shown in Figure 32.6.
Recall that the current in the right-hand loop decays expo-
nentially with time according to the expression I " I 0e#t/+,
where I0 " !/R is the initial current in the circuit and
+ " L/R is the time constant. Show that all the energy
initially stored in the magnetic field of the inductor appears
as internal energy in the resistor as the current decays to zero.

Solution The rate dU/dt at which energy is delivered to the
resistor (which is the power) is equal to I 2R, where I is the
instantaneous current:

To find the total energy delivered to the resistor, we
solve for dU and integrate this expression over the limits

dU
dt

" I  
2R " (I 0e#Rt/L)2R " I 0

2
 Re#2Rt/L

t " 0 to t : 0. (The upper limit is infinity because it
takes an infinite amount of time for the current to reach
zero.)

The value of the definite integral can be shown to be L/2R
(see Problem 34) and so U becomes

Note that this is equal to the initial energy stored in the
magnetic field of the inductor, given by Equation 32.12, as
we set out to prove.

U " I 2
0  R  " L

2R # " 1
2 L I 0

2

(1)   U " !0

0
 I 0

2
 R e#2Rt/L

 dt " I 0
2R  !0

0
 e#2Rt/L

 dt

Example 32.5 The Coaxial Cable

Coaxial cables are often used to connect electrical devices,
such as your stereo system, and in receiving signals in TV cable
systems. Model a long coaxial cable as consisting of two thin
concentric cylindrical conducting shells of radii a and b and
length !, as in Figure 32.13. The conducting shells carry
the same current I in opposite directions. Imagine that the
inner conductor carries current to a device and that the outer

one acts as a return path carrying the current back to the
source.

(A) Calculate the self-inductance L of this cable.

Solution Conceptualize the situation with the help of Figure
32.13. While we do not have a visible coil in this geometry,

Magnetic energy density
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32.4 Mutual Inductance

Very often, the magnetic flux through the area enclosed by a circuit varies with time
because of time-varying currents in nearby circuits. This condition induces an emf
through a process known as mutual induction, so called because it depends on the inter-
action of two circuits.

Consider the two closely wound coils of wire shown in cross-sectional view in Figure
32.14. The current I1 in coil 1, which has N1 turns, creates a magnetic field. Some of
the magnetic field lines pass through coil 2, which has N 2 turns. The magnetic flux
caused by the current in coil 1 and passing through coil 2 is represented by $12.
In analogy to Equation 32.2, we define the mutual inductance M12 of coil 2 with

imagine a thin radial slice of the coaxial cable, such as the
light blue rectangle in Figure 32.13. If we consider the inner
and outer conductors to be connected at the ends of the
cable (above and below the figure), this slice represents one
large conducting loop. The current in the loop sets up a
magnetic field between the inner and outer conductors that
passes through this loop. If the current changes, the magnetic
field changes and the induced emf opposes the original
change in the current in the conductors. We categorize this
situation as one in which we can calculate an inductance, but
we must return to the fundamental definition of inductance,
Equation 32.2. To analyze the problem and obtain L , we must
find the magnetic flux through the light blue rectangle in
Figure 32.13. Ampère’s law (see Section 30.3) tells us that the
magnetic field in the region between the shells is due to the
inner conductor and its magnitude is B " '0I/2)r, where r is

measured from the common center of the shells. The
magnetic field is zero outside the outer shell (r - b) because
the net current passing through the area enclosed by a circu-
lar path surrounding the cable is zero, and hence from
Ampère’s law, $ B &ds " 0. The magnetic field is zero inside
the inner shell because the shell is hollow and no current is
present within a radius r * a.

The magnetic field is perpendicular to the light blue
rectangle of length ! and width b # a, the cross section of
interest. Because the magnetic field varies with radial
position across this rectangle, we must use calculus to
find the total magnetic flux. Dividing this rectangle into
strips of width dr, such as the dark blue strip in Figure 32.13,
we see that the area of each strip is ! dr and that the flux
through each strip is B dA " B! dr. Hence, we find the total
flux through the entire cross section by integrating:

Using this result, we find that the self-inductance of the
cable is

(B) Calculate the total energy stored in the magnetic field
of the cable.

Solution Using Equation 32.12 and the results to part (A)
gives

To finalize the problem, note that the inductance increases
if ! increases, if b increases, or if a decreases. This is consis-
tent with our conceptualization—any of these changes
increases the size of the loop represented by our radial slice
and through which the magnetic field passes; this increases
the inductance.

'0 !I 2

4)
  ln " b

a #U " 1
2 L I 2 "

'0 !

2)
  ln " b

a #L "
$B

I
"

$B "! B dA "!b

a
 

'0I
2)r

 ! dr "
'0I !

2)
 !b

a
 
dr
r

"
'0I!

2)
  ln " b

a #

I

!

bdr

B

rI

a

Figure 32.13 (Example 32.5) Section of a long coaxial cable.
The inner and outer conductors carry equal currents in oppo-
site directions.

Coil 1 Coil 2

N1 I1

N2 I2

Figure 32.14 A cross-sectional
view of two adjacent coils. A
current in coil 1 sets up a magnetic
field and some of the magnetic
field lines pass through coil 2.



respect to coil 1:

(32.15)

Mutual inductance depends on the geometry of both circuits and on their orienta-
tion with respect to each other. As the circuit separation distance increases, the mutual
inductance decreases because the flux linking the circuits decreases.

If the current I1 varies with time, we see from Faraday’s law and Equation 32.15
that the emf induced by coil 1 in coil 2 is

(32.16)

In the preceding discussion, we assumed that the current is in coil 1. We can also
imagine a current I2 in coil 2. The preceding discussion can be repeated to show that
there is a mutual inductance M21. If the current I2 varies with time, the emf induced
by coil 2 in coil 1 is

(32.17)

In mutual induction, the emf induced in one coil is always proportional to
the rate at which the current in the other coil is changing. Although the
proportionality constants M12 and M21 have been treated separately, it can be 
shown that they are equal. Thus, with M12 " M21 " M, Equations 32.16 and 32.17
become

These two equations are similar in form to Equation 32.1 for the self-induced emf
! " # L(dI/dt). The unit of mutual inductance is the henry.

!2 " #M  
dI 1

dt
  and  !1 " #M  

dI 2

dt

!1 " #M21 
dI 2

dt

!2 " #N 2 
d $12

dt
" #N 2 

d
dt

 " M12 I 1

N 2
# " #M12 

dI 1

dt

M12 % 
N 2$12

I 1
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Definition of mutual inductance

Example 32.6 “Wireless” Battery Charger

An electric toothbrush has a base designed to hold the
toothbrush handle when not in use. As shown in Figure
32.15a, the handle has a cylindrical hole that fits loosely
over a matching cylinder on the base. When the handle is
placed on the base, a changing current in a solenoid
inside the base cylinder induces a current in a coil inside
the handle. This induced current charges the battery in
the handle.

We can model the base as a solenoid of length ! with N B
turns (Fig. 32.15b), carrying a current I, and having a cross-
sectional area A. The handle coil contains N H turns and
completely surrounds the base coil. Find the mutual induc-
tance of the system.

Solution Because the base solenoid carries a current I, the
magnetic field in its interior is

Because the magnetic flux $BH through the handle’s coil
caused by the magnetic field of the base coil is BA, the
mutual inductance is

Wireless charging is used in a number of other “cordless”
devices. One significant example is the inductive charging
that is used by some electric car manufacturers that avoids
direct metal-to-metal contact between the car and the
charging apparatus.

'0 
N B N HA

!
M "

N H $BH

I
"

N HBA
I

"

B "
'0NB I

!

Quick Quiz 32.6 In Figure 32.14, coil 1 is moved closer to coil 2, with the
orientation of both coils remaining fixed. Because of this movement, the mutual induc-
tion of the two coils (a) increases (b) decreases (c) is unaffected.
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32.5 Oscillations in an LC Circuit

When a capacitor is connected to an inductor as illustrated in Figure 32.16, the combi-
nation is an LC circuit. If the capacitor is initially charged and the switch is then
closed, we find that both the current in the circuit and the charge on the capacitor
oscillate between maximum positive and negative values. If the resistance of the circuit
is zero, no energy is transformed to internal energy. In the following analysis, we
neglect the resistance in the circuit. We also assume an idealized situation in which
energy is not radiated away from the circuit. We shall discuss this radiation in Chapter
34, but we neglect it for now. With these idealizations—zero resistance and no
radiation—the oscillations in the circuit persist indefinitely.

Assume that the capacitor has an initial charge Q max (the maximum charge) and
that the switch is open for t * 0 and then closed at t " 0. Let us investigate what
happens from an energy viewpoint.

When the capacitor is fully charged, the energy U in the circuit is stored in the
electric field of the capacitor and is equal to Q 2

max/2C (Eq. 26.11). At this time, the
current in the circuit is zero, and therefore no energy is stored in the inductor. After
the switch is closed, the rate at which charges leave or enter the capacitor plates (which
is also the rate at which the charge on the capacitor changes) is equal to the current in
the circuit. As the capacitor begins to discharge after the switch is closed, the energy
stored in its electric field decreases. The discharge of the capacitor represents a current
in the circuit, and hence some energy is now stored in the magnetic field of the induc-
tor. Thus, energy is transferred from the electric field of the capacitor to the magnetic
field of the inductor. When the capacitor is fully discharged, it stores no energy. At this
time, the current reaches its maximum value, and all of the energy is stored in the
inductor. The current continues in the same direction, decreasing in magnitude, with
the capacitor eventually becoming fully charged again but with the polarity of its plates
now opposite the initial polarity. This is followed by another discharge until the circuit
returns to its original state of maximum charge Q max and the plate polarity shown in
Figure 32.16. The energy continues to oscillate between inductor and capacitor.

(b)

NB

NH

Coil 1(base)

Coil 2(handle)

!

Figure 32.15 (Example 32.6) (a) This electric toothbrush uses the mutual induction
of solenoids as part of its battery-charging system. (b) A coil of NH turns wrapped
around the center of a solenoid of NB turns.

S

L
C

Q max

+
–

Figure 32.16 A simple LC circuit.
The capacitor has an initial charge
Q max, and the switch is open for 
t * 0 and then closed at t " 0.

(a)



The oscillations of the LC circuit are an electromagnetic analog to the mechanical
oscillations of a block–spring system, which we studied in Chapter 15. Much of what is
discussed there is applicable to LC oscillations. For example, we investigated the effect
of driving a mechanical oscillator with an external force, which leads to the phenome-
non of resonance. The same phenomenon is observed in the LC circuit. For example, a
radio tuner has an LC circuit with a natural frequency. When the circuit is driven by
the electromagnetic oscillations of a radio signal detected by the antenna, the tuner
circuit responds with a large amplitude of electrical oscillation only for the station
frequency that matches the natural frequency. Therefore, only the signal from one 
radio station is passed on to the amplifier, even though signals from all stations are 
driving the circuit at the same time. When you turn the knob on the radio tuner to
change the station, you are changing the natural frequency of the circuit so that it will
exhibit a resonance response to a different driving frequency.

A graphical description of the fields in the inductor and the capacitor in an LC
circuit is shown in Figure 32.17. The right side of the figure shows the analogous oscil-
lating block–spring system studied in Chapter 15. In each case, the situation is shown at
intervals of one-fourth the period of oscillation T. The potential energy kx2 stored in 
a stretched spring is analogous to the electric potential energy C(%Vmax)2 stored in 
the capacitor. The kinetic energy mv 2 of the moving block is analogous to the 
magnetic energy LI 2 stored in the inductor, which requires the presence of moving
charges. In Figure 32.17a, all of the energy is stored as electric potential energy in 
the capacitor at t " 0. In Figure 32.17b, which is one fourth of a period later, all of 
the energy is stored as magnetic energy LI 2

max in the inductor, where Imax is the maxi-
mum current in the circuit. In Figure 32.17c, the energy in the LC circuit is 
stored completely in the capacitor, with the polarity of the plates now opposite what 
it was in Figure 32.17a. In parts d and e, the system returns to the initial config-
uration over the second half of the cycle. At times other than those shown in the 
figure, part of the energy is stored in the electric field of the capacitor and part is
stored in the magnetic field of the inductor. In the analogous mechanical oscillation,
part of the energy is potential energy in the spring and part is kinetic energy of the
block.

Let us consider some arbitrary time t after the switch is closed, so that the capacitor
has a charge Q * Q max and the current is I * Imax. At this time, both circuit elements
store energy, but the sum of the two energies must equal the total initial energy U
stored in the fully charged capacitor at t " 0:

(32.18)

Because we have assumed the circuit resistance to be zero and we ignore elec-
tromagnetic radiation, no energy is transformed to internal energy and none is
transferred out of the system of the circuit. Therefore, the total energy of the system
must remain constant in time. This means that dU/dt " 0. Therefore, by differentiating
Equation 32.18 with respect to time while noting that Q and I vary with time, we
obtain

(32.19)

We can reduce this to a differential equation in one variable by remembering that the
current in the circuit is equal to the rate at which the charge on the capacitor changes:
I " dQ /dt. From this, it follows that dI/dt " d2Q /dt2. Substitution of these relation-
ships into Equation 32.19 gives

(32.20) 
d2Q
dt2 " #

1
LC

 Q

Q
C

, L  
d2Q
dt2 " 0

dU
dt

"
d
dt

 " Q 
2

2C
, 1

2 L I  
2# "

Q
C

 
dQ
dt

, L I   
dI
dt

" 0

U " UC , UL "
Q 

2

2C
, 1

2 L I  
2

1
2

1
2

1
2

1
2

1
2
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Total energy stored in an LC
circuit
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We can solve for Q by noting that this expression is of the same form as the analogous
Equations 15.3 and 15.5 for a block-spring system:

where k is the spring constant, m is the mass of the block, and The solution
of this equation has the general form (Eq. 15.6),

x " A cos(1t , 2)

1 " √k/m .

d2x
dt2 " #

k
m

 x " #12x

m

m

m

m

Q = 0

I = 0

t = 0

t = T
2

+Q max

–Q max

E

C

L

C

LQ = 0

I =Imax

I = 0
–Q max

+Q max

B

C

L

t = T
4

C

L

I =Imax

t = 3
4 T

I = 0
+Q max

–Q max

E

C

t =T
L

(a)

k

x = 0

x = 0

v = 0

A

(b)
x = 0

vmax

(c)
x = 0

v = 0

A

(e)
x = 0

m

v = 0

A

x = 0

(d)
x = 0

vmax

– – – –

+ + + +

– – – –

– – – –

B

+ + + +

+ + + +

S

E

Active Figure 32.17 Energy transfer in a resistanceless, nonradiating LC circuit.
The capacitor has a charge Q max at t " 0, the instant at which the switch is closed. The
mechanical analog of this circuit is a block–spring system.

At the Active Figures link at
http://www.pse6.com, you can
adjust the values of C and L to
see the effect on the oscillating
current. The block on the spring
oscillates in a mechanical
analog of the electrical
oscillations. A graphical display
as in Figure 32.18 is available,
as is an energy bar graph.



where 1 is the angular frequency of the simple harmonic motion, A is the amplitude of
motion (the maximum value of x), and 2 is the phase constant; the values of A and 2
depend on the initial conditions. Because Equation 32.20 is of the same form as the
differential equation of the simple harmonic oscillator, we see that it has the solution

(32.21)

where Q max is the maximum charge of the capacitor and the angular frequency 1 is

(32.22)

Note that the angular frequency of the oscillations depends solely on the inductance and
capacitance of the circuit. This is the natural frequency of oscillation of the LC circuit.

Because Q varies sinusoidally with time, the current in the circuit also varies sinu-
soidally. We can easily show this by differentiating Equation 32.21 with respect to time:

(32.23)

To determine the value of the phase angle 2, we examine the initial conditions,
which in our situation require that at t " 0, I " 0 and Q " Q max. Setting I " 0 at t " 0
in Equation 32.23, we have

which shows that 2 " 0. This value for 2 also is consistent with Equation 32.21 and
with the condition that Q " Q max at t " 0. Therefore, in our case, the expressions for
Q and I are

(32.24)

(32.25)

Graphs of Q versus t and I versus t are shown in Figure 32.18. Note that the charge
on the capacitor oscillates between the extreme values Q max and # Q max, and that the
current oscillates between I max and # I max. Furthermore, the current is 90° out of
phase with the charge. That is, when the charge is a maximum, the current is zero, and
when the charge is zero, the current has its maximum value.

Let us return to the energy discussion of the LC circuit. Substituting Equations
32.24 and 32.25 in Equation 32.18, we find that the total energy is

(32.26)

This expression contains all of the features described qualitatively at the beginning of
this section. It shows that the energy of the LC circuit continuously oscillates between
energy stored in the electric field of the capacitor and energy stored in the magnetic

U " UC , UL "
Q 2

max

2C
 cos2 1t , 1

2 L I 2
max sin2 1t

I " #1Q  max sin 1t " #I max sin 1t

Q " Q  max cos 1t

0 " #1Q  max sin 2

I "
dQ
dt

" #1Q  max sin(1t , 2)

1 "
1

√LC

Q " Q  max cos(1t , 2)
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Q

Q max

I max

I

t

t

0 T 2TT
2

3T
2

Active Figure 32.18 Graphs of charge versus time and
current versus time for a resistanceless, nonradiating LC
circuit. Note that Q and I are 90° out of phase with each
other.

Charge as a function of time for
an ideal LC circuit

Angular frequency of oscillation
in an LC circuit

Current as a function of time for
an ideal LC current

At the Active Figures link
at http://www.pse6.com, you
can observe this graph develop
for the LC circuit in Figure 32.17.
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field of the inductor. When the energy stored in the capacitor has its maximum value
Q 2

max/2C, the energy stored in the inductor is zero. When the energy stored in the
inductor has its maximum value LI 2

max, the energy stored in the capacitor is zero.
Plots of the time variations of UC and UL are shown in Figure 32.19. The sum UC , UL

is a constant and equal to the total energy Q 2
max/2C , or LI 2

max. Analytical verification of
this is straightforward. The amplitudes of the two graphs in Figure 32.19 must be equal
because the maximum energy stored in the capacitor (when I " 0) must equal the maxi-
mum energy stored in the inductor (when Q " 0). This is mathematically expressed as

Using this expression in Equation 32.26 for the total energy gives

(32.27)

because cos2 1t , sin2 1t " 1.
In our idealized situation, the oscillations in the circuit persist indefinitely; how-

ever, remember that the total energy U of the circuit remains constant only if energy
transfers and transformations are neglected. In actual circuits, there is always some
resistance, and hence some energy is transformed to internal energy. We mentioned at
the beginning of this section that we are also ignoring radiation from the circuit. In
reality, radiation is inevitable in this type of circuit, and the total energy in the circuit
continuously decreases as a result of this process.

U "
Q 2

max

2C
 (cos2 1t , sin2 1t) "

Q 2
max

2C

Q 
2   
max

2C
"

LI 2
max

2

1
2

1
2

t

Q 2
max

2C

t
0 T

2
T 3T

2
2T

UL

UC

LI 2
max
2

Figure 32.19 Plots of UC versus t
and UL versus t for a resistanceless,
nonradiating LC circuit. The sum
of the two curves is a constant and
equal to the total energy stored in
the circuit.

Quick Quiz 32.7 At an instant of time during the oscillations of an LC
circuit, the current is at its maximum value. At this instant, the voltage across the
capacitor (a) is different from that across the inductor (b) is zero (c) has its maximum
value (d) is impossible to determine

Quick Quiz 32.8 At an instant of time during the oscillations of an LC
circuit, the current is momentarily zero. At this instant, the voltage across the capacitor
(a) is different from that across the inductor (b) is zero (c) has its maximum value 
(d) is impossible to determine

Example 32.7 Oscillations in an LC Circuit

In Figure 32.20, the capacitor is initially charged when
switch S1 is open and S2 is closed. Switch S2 is then opened,
removing the battery from the circuit, and the capacitor
remains charged. Switch S1 is then closed, so that the capaci-
tor is connected directly across the inductor.

(A) Find the frequency of oscillation of the circuit.

Solution Using Equation 32.22 gives for the frequency

1.00 ( 106 Hz"

 "
1

2) [(2.81 ( 10#3 H)(9.00 ( 10#12 F)]1/2

f "
1

2)
"

1

2)  √LC

9.00 pF

2.81 mH

S2

S1

   = 12.0 Vε

Figure 32.20 (Example 32.7) First the capacitor is fully
charged with the switch S1 open and S2 closed. Then, S2 is
opened and S1 is closed.

Interactive



32.6 The RLC Circuit

We now turn our attention to a more realistic circuit consisting of a resistor, an
inductor, and a capacitor connected in series, as shown in Figure 32.21. Let us
assume that the resistance of the resistor represents all of the resistance in the
circuit. Now imagine that switch S1 is closed and S2 is open, so that the capacitor has
an initial charge Q max. Next, S1 is opened and S2 is closed. Once S2 is closed and a
current is established, the total energy stored in the capacitor and inductor at any
time is given by Equation 32.18. However, this total energy is no longer constant, as it
was in the LC circuit, because the resistor causes transformation to internal energy.
(We continue to ignore electromagnetic radiation from the circuit in this discus-
sion.) Because the rate of energy transformation to internal energy within a resistor
is I 2R , we have

where the negative sign signifies that the energy U of the circuit is decreasing in time.
Substituting this result into Equation 32.19 gives

(32.28)

To convert this equation into a form that allows us to compare the electrical oscilla-
tions with their mechanical analog, we first use the fact that I " dQ /dt and move all
terms to the left-hand side to obtain

Now we divide through by I :

(32.29)

The RLC circuit is analogous to the damped harmonic oscillator discussed in
Section 15.6 and illustrated in Figure 32.22. The equation of motion for a damped

L  
d2Q
dt2 , R  

dQ
dt

,
Q
C

" 0

L  
d2Q
dt2 , IR ,

Q
C

 " 0

L I  
d2Q
dt2 , I  2R ,

Q
C

 I " 0

LI  
dI
dt

,
Q
C

 
dQ
dt

" #I  
2R

dU
dt

" #I 2R
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(B) What are the maximum values of charge on the capaci-
tor and current in the circuit?

Solution The initial charge on the capacitor equals the
maximum charge, and because C " Q /%V, we have

From Equation 32.25, we can see how the maximum current
is related to the maximum charge:

 " (2) ( 106 s#1)(1.08 ( 10#10 C)

Imax " 1Q  max " 2)f Q max 

1.08 ( 10#10 C"

Q  max " C %V " (9.00 ( 10#12 F)(12.0 V)

(C) Determine the charge and current as functions of time.

Solution Equations 32.24 and 32.25 give the following
expressions for the time variation of Q and I :

(#6.79 ( 10#4 A) sin[(2) ( 106 s#1)t]"

I " #I max sin 1t

(1.08 ( 10#10 C) cos[(2) ( 106 s#1)t]"

Q " Q  max cos 1t

6.79 ( 10#4 AI max "

At the Interactive Worked Example link at http://www.pse6.com, you can study the oscillations in an LC circuit.

C+
– L

R

S2

Q max

+
–

S1

Active Figure 32.21 A series RLC
circuit. Switch S1 is closed and the
capacitor is charged. S1 is then
opened and, at t " 0, switch S2 is
closed.

At the Active Figures link
at http://www.pse6.com, you
can adjust the values of R, L,
and C to see the effect on the
decaying charge on the
capacitor. A graphical display
as in Figure 32.23a is available,
as is an energy bar graph.

m

Figure 32.22 A block–spring
system moving in a viscous medium
with damped harmonic motion is
analogous to an RLC circuit.
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block–spring system is, from Equation 15.31,

(32.30)

Comparing Equations 32.29 and 32.30, we see that Q corresponds to the position x of
the block at any instant, L to the mass m of the block, R to the damping coefficient b,
and C to 1/k, where k is the force constant of the spring. These and other relationships
are listed in Table 32.1.

Because the analytical solution of Equation 32.29 is cumbersome, we give only a
qualitative description of the circuit behavior. In the simplest case, when R " 0, Equa-
tion 32.29 reduces to that of a simple LC circuit, as expected, and the charge and the
current oscillate sinusoidally in time. This is equivalent to removal of all damping in
the mechanical oscillator.

When R is small, a situation analogous to light damping in the mechanical oscilla-
tor, the solution of Equation 32.29 is

(32.31)

where 1d , the angular frequency at which the circuit oscillates, is given by

(32.32)

That is, the value of the charge on the capacitor undergoes a damped harmonic oscil-
lation in analogy with a block–spring system moving in a viscous medium. From Equa-
tion 32.32, we see that, when R ** (so that the second term in the brackets is
much smaller than the first), the frequency 1d of the damped oscillator is close to that
of the undamped oscillator, . Because I " dQ /dt, it follows that the current also1/√LC

√4L/C

1d " & 1
LC

# " R
2L #2'1/2

 Q " Q  max e#Rt/2L cos 1dt

m  
d2x
dt2 , b  

dx
dt

 , kx " 0

One-Dimensional
Electric Circuit Mechanical System

Charge Position
Current Velocity
Potential difference Force
Resistance Viscous damping 

coefficient
Capacitance (k " spring constant)
Inductance Mass

Current " time Velocity " time
derivative of charge derivative of 

position
Rate of change of Acceleration "

current " second second time
time derivative derivative of
of charge position

Energy in inductor Kinetic energy of
moving object

Energy in capacitor Potential energy
stored in a spring

Rate of energy loss Rate of energy loss
due to resistance due to friction

RLC circuit Damped object on
a spring

Analogies Between Electrical and Mechanical Systems

Table 32.1

Q 4 x
I 4 vx

%V 4 Fx

R 4 b

C 4 1/k
L 4 m

L  
d 2Q
dt 2 , R  

dQ
dt

,
Q
C

" 0 4  m   
d 2x
dt 2 , b  

dx
dt

, kx " 0

I 2R 4  b v 
2

 UC " 1
2 

Q2

C
 4  U " 1

2 kx 
2 

 UL " 1
2 LI 2 4  K " 1

2 mv 
2 

 
dI
dt

"
d 2Q
dt 2

 4  ax "
dvx

dt
"

d 2x
dt 2

I "
dQ
dt

 4  vx "
dx
dt



undergoes damped harmonic oscillation. A plot of the charge versus time for the
damped oscillator is shown in Figure 32.23a. Note that the maximum value of Q
decreases after each oscillation, just as the amplitude of a damped block–spring system
decreases in time.

When we consider larger values of R, we find that the oscillations damp out more
rapidly; in fact, there exists a critical resistance value above which no oscil-
lations occur. A system with R " Rc is said to be critically damped. When R exceeds Rc ,
the system is said to be overdamped (Fig. 32.24).

Rc " √4L/C
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Q max

Q

0 t

(a)

Active Figure 32.23 (a) Charge versus time for a damped RLC circuit. The charge
decays in this way when R - . The Q-versus-t curve represents a plot of
Equation 32.31. (b) Oscilloscope pattern showing the decay in the oscillations of an
RLC circuit.

√4L/C

Co
ur

te
sy

 o
f J

. R
ud

m
in

Q

t

R >   4L/CQ max

Figure 32.24 Plot of Q versus t for
an overdamped RLC circuit, which
occurs for values of R - . √4L/C

When the current in a coil changes with time, an emf is induced in the coil according
to Faraday’s law. The self-induced emf is

(32.1)

where L is the inductance of the coil. Inductance is a measure of how much opposi-
tion a coil offers to a change in the current in the coil. Inductance has the SI unit of
henry (H), where 1 H " 1 V & s / A .

The inductance of any coil is

(32.2)

where $B is the magnetic flux through the coil and N is the total number of turns. The
inductance of a device depends on its geometry. For example, the inductance of an air-
core solenoid is

(32.4)

where A is the cross-sectional area, and ! is the length of the solenoid.
If a resistor and inductor are connected in series to a battery of emf !, and if a

switch in the circuit is open for t * 0 and then closed at t " 0, the current in the
circuit varies in time according to the expression

(32.7)I "
!
R

 (1 # e#t/+ )

L "
'0N 2A

!
 

L "
N  $B

I

!L " #L  
dI
dt

S U M M A RY

Take a practice test for
this chapter by clicking on
the Practice Test link at
http://www.pse6.com.

At the Active Figures link
at http://www.pse6.com, you
can observe this graph develop
for the damped RLC circuit in
Figure 32.21.

(b)
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where + " L/R is the time constant of the RL circuit. That is, the current increases to
an equilibrium value of !/R after a time interval that is long compared with +. If the
battery in the circuit is replaced by a resistanceless wire, the current decays exponen-
tially with time according to the expression

(32.10)

where !/R is the initial current in the circuit.
The energy stored in the magnetic field of an inductor carrying a current I is

(32.12)

This energy is the magnetic counterpart to the energy stored in the electric field of a
charged capacitor.

The energy density at a point where the magnetic field is B is

(32.14)

The mutual inductance of a system of two coils is given by

(32.15)

This mutual inductance allows us to relate the induced emf in a coil to the changing
source current in a nearby coil using the relationships

(32.16, 32.17)

In an LC circuit that has zero resistance and does not radiate electromagnetically
(an idealization), the values of the charge on the capacitor and the current in the
circuit vary in time according to the expressions

(32.21)

(32.23)

where Q max is the maximum charge on the capacitor, 2 is a phase constant, and 1 is
the angular frequency of oscillation:

(32.22)

The energy in an LC circuit continuously transfers between energy stored in the capacitor
and energy stored in the inductor. The total energy of the LC circuit at any time t is

(32.26)

At t " 0, all of the energy is stored in the electric field of the capacitor (U " Q2
max/2C ).

Eventually, all of this energy is transferred to the inductor (U " LI 2
max/2). However, the

total energy remains constant because energy transformations are neglected in the ideal
LC circuit.

In an RLC circuit with small resistance, the charge on the capacitor varies with time
according to

(32.31)

where

(32.32)1d " & 1
LC

# " R
2L #2'1/2

 Q " Q  max e#Rt/2L cos 1dt

U " UC , UL "
Q 2

max

2C
 cos2 1t ,

L I 2
max

2
 sin2 1t

1 "
1

√LC

I "
dQ
dt

" #1Q  max sin(1t , 2)

Q " Q  max cos(1t , 2)

!2 " #M  
dI 1

dt
  and  !1 " #M  

dI 2

dt

M12 "
N  2 $12

I1
" M21 "

N1 $21

I2
" M

uB "
B 

2

2'0

U " 1
2 L I  

2

I "
!
R

 e#t/+
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1. Why is the induced emf that appears in an inductor called
a “counter” or “back” emf ?

The current in a circuit containing a coil, resistor, and
battery has reached a constant value. Does the coil have an
inductance? Does the coil affect the value of the current?

3. What parameters affect the inductance of a coil? Does the
inductance of a coil depend on the current in the coil?

4. How can a long piece of wire be wound on a spool so that
the wire has a negligible self-inductance?

5. For the series RL circuit shown in Figure Q32.5, can the
back emf ever be greater than the battery emf ? Explain.

2.

8. Consider this thesis: “Joseph Henry, America’s first profes-
sional physicist, caused the most recent basic change in
the human view of the Universe when he discovered self-
induction during a school vacation at the Albany Academy
about 1830. Before that time, one could think of the
Universe as composed of just one thing: matter. The energy
that temporarily maintains the current after a battery is
removed from a coil, on the other hand, is not energy that
belongs to any chunk of matter. It is energy in the massless
magnetic field surrounding the coil. With Henry’s discovery,
Nature forced us to admit that the Universe consists of 
fields as well as matter.” Argue for or against the statement.
What in your view comprises the Universe?

If the current in an inductor is doubled, by what factor
does the stored energy change?

10. Discuss the similarities between the energy stored in the
electric field of a charged capacitor and the energy stored
in the magnetic field of a current-carrying coil.

11. What is the inductance of two inductors connected in
series? Does it matter if they are solenoids or toroids?

12. The centers of two circular loops are separated by a fixed
distance. For what relative orientation of the loops is their
mutual inductance a maximum? a minimum? Explain.

13. Two solenoids are connected in series so that each carries
the same current at any instant. Is mutual induction
present? Explain.

In the LC circuit shown in Figure 32.16, the charge on the
capacitor is sometimes zero, but at such instants the
current in the circuit is not zero. How is this possible?

15. If the resistance of the wires in an LC circuit were not zero,
would the oscillations persist? Explain.

16. How can you tell whether an RLC circuit is overdamped or
underdamped?

17. What is the significance of critical damping in an RLC
circuit?

18. Can an object exert a force on itself? When a coil induces
an emf in itself, does it exert a force on itself?

14.

9.

Q U E S T I O N S

ε

R

L

Switch
Figure Q32.5 Questions 5 and 6.

Figure Q32.7

6. Suppose the switch in Figure Q32.5 has been closed for a
long time and is suddenly opened. Does the current
instantaneously drop to zero? Why does a spark appear at
the switch contacts at the moment the switch is opened?

7. A switch controls the current in a circuit that has a large
inductance. Is a spark (see Figure Q32.7) more likely to be
produced at the switch when the switch is being closed or
when it is being opened, or doesn’t it matter? The electric
arc can melt and oxidize the contact surfaces, resulting in
high resistivity of the contacts and eventual destruction of
the switch. Before electronic ignitions were invented,
distributor contact points in automobiles had to be
replaced regularly. Switches in power distribution networks
and switches controlling large motors, generators, and
electromagnets can suffer from arcing and can be very
dangerous to operate.
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Section 32.1 Self-Inductance

1. A coil has an inductance of 3.00 mH, and the current in it
changes from 0.200 A to 1.50 A in a time of 0.200 s. Find
the magnitude of the average induced emf in the coil
during this time.

2. A coiled telephone cord forms a spiral with 70 turns, a
diameter of 1.30 cm, and an unstretched length of 60.0 cm.
Determine the self-inductance of one conductor in the
unstretched cord.

A 2.00-H inductor carries a steady current of 0.500 A.
When the switch in the circuit is opened, the current is
effectively zero after 10.0 ms. What is the average induced
emf in the inductor during this time?

4. Calculate the magnetic flux through the area enclosed by
a 300-turn, 7.20-mH coil when the current in the coil is
10.0 mA.

A 10.0-mH inductor carries a current I " I max sin 1t,
with I max " 5.00 A and 1/2) " 60.0 Hz. What is the back
emf as a function of time?

6. An emf of 24.0 mV is induced in a 500-turn coil at an
instant when the current is 4.00 A and is changing at the
rate of 10.0 A/s. What is the magnetic flux through each
turn of the coil?

An inductor in the form of a solenoid contains 420 turns, is
16.0 cm in length, and has a cross-sectional area of 3.00 cm2.
What uniform rate of decrease of current through the
inductor induces an emf of 175 'V?

8. The current in a 90.0-mH inductor changes with time as
I " 1.00t2 # 6.00t (in SI units). Find the magnitude of the
induced emf at (a) t " 1.00 s and (b) t " 4.00 s. (c) At
what time is the emf zero?

9. A 40.0-mA current is carried by a uniformly wound air-core
solenoid with 450 turns, a 15.0-mm diameter, and 12.0-cm
length. Compute (a) the magnetic field inside the sole-
noid, (b) the magnetic flux through each turn, and (c) the
inductance of the solenoid. (d) What If? If the current
were different, which of these quantities would change?

10. A solenoid has 120 turns uniformly wrapped around a
wooden core, which has a diameter of 10.0 mm and a
length of 9.00 cm. (a) Calculate the inductance of the sole-
noid. (b) What If? The wooden core is replaced with a soft
iron rod that has the same dimensions, but a magnetic 
permeability 'm " 800'0. What is the new inductance?

11. A piece of copper wire with thin insulation, 200 m long
and 1.00 mm in diameter, is wound onto a plastic tube to
form a long solenoid. This coil has a circular cross section
and consists of tightly wound turns in one layer. If the
current in the solenoid drops linearly from 1.80 A to
zero in 0.120 seconds, an emf of 80.0 mV is induced in
the coil. What is the length of the solenoid, measured
along its axis?

7.

5.

3.

12. A toroid has a major radius R and a minor radius r, and is
tightly wound with N turns of wire, as shown in Figure
P32.12. If R -- r, the magnetic field in the region
enclosed by the wire of the torus, of cross-sectional area
A " )r 2, is essentially the same as the magnetic field of a
solenoid that has been bent into a large circle of radius R.
Modeling the field as the uniform field of a long solenoid,
show that the self-inductance of such a toroid is approxi-
mately

(An exact expression of the inductance of a toroid with a
rectangular cross section is derived in Problem 64.)

L (
'0N 2A

2)R

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide

= coached solution with hints available at http://www.pse6.com = computer useful in solving problem

= paired numerical and symbolic problems

P R O B L E M S

R Area
A

r

Figure P32.12

13. A self-induced emf in a solenoid of inductance L changes
in time as ! " !0 e#kt. Find the total charge that passes
through the solenoid, assuming the charge is finite.

Section 32.2 RL Circuits

14. Calculate the resistance in an RL circuit in which L " 2.50 H
and the current increases to 90.0% of its final value in 
3.00 s.

A 12.0-V battery is connected into a series circuit contain-
ing a 10.0-. resistor and a 2.00-H inductor. How long will
it take the current to reach (a) 50.0% and (b) 90.0% of its
final value?

16. Show that I " I 0 e#t/+ is a solution of the differential
equation

where + " L/R and I 0 is the current at t " 0.

17. Consider the circuit in Figure P32.17, taking ! " 6.00 V,
L " 8.00 mH, and R " 4.00 .. (a) What is the inductive
time constant of the circuit? (b) Calculate the current in

IR , L  
dI
dt

" 0

15.
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the circuit 250 's after the switch is closed. (c) What is the
value of the final steady-state current? (d) How long does
it take the current to reach 80.0% of its maximum value?

18. In the circuit shown in Figure P32.17, let L " 7.00 H,
R " 9.00 ., and ! " 120 V. What is the self-induced emf
0.200 s after the switch is closed?

For the RL circuit shown in Figure P32.17, let the
inductance be 3.00 H, the resistance 8.00 ., and the
battery emf 36.0 V. (a) Calculate the ratio of the potential
difference across the resistor to that across the inductor
when the current is 2.00 A. (b) Calculate the voltage across
the inductor when the current is 4.50 A.

20. A 12.0-V battery is connected in series with a resistor and
an inductor. The circuit has a time constant of 500 's, and
the maximum current is 200 mA. What is the value of the
inductance?

21. An inductor that has an inductance of 15.0 H and a resis-
tance of 30.0 . is connected across a 100-V battery. What is
the rate of increase of the current (a) at t " 0 and (b) at
t " 1.50 s?

22. When the switch in Figure P32.17 is closed, the current takes
3.00 ms to reach 98.0% of its final value. If R " 10.0 ., what
is the inductance?

23. The switch in Figure P32.23 is open for t * 0 and then
closed at time t " 0. Find the current in the inductor and
the current in the switch as functions of time thereafter.

19.

26. One application of an RL circuit is the generation of time-
varying high voltage from a low-voltage source, as shown in
Figure P32.26. (a) What is the current in the circuit a long
time after the switch has been in position a? (b) Now the
switch is thrown quickly from a to b. Compute the initial
voltage across each resistor and across the inductor.
(c) How much time elapses before the voltage across the
inductor drops to 12.0 V?

L

R

S

ε

Figure P32.17 Problems 17, 18, 19, and 22.

1.00 H4.00 Ω

4.00 Ω 8.00 Ω

10.0 V

S

Figure P32.23

24. A series RL circuit with L " 3.00 H and a series RC circuit
with C " 3.00 'F have equal time constants. If the two
circuits contain the same resistance R , (a) what is the
value of R and (b) what is the time constant?

25. A current pulse is fed to the partial circuit shown in Figure
P32.25. The current begins at zero, then becomes 10.0 A
between t " 0 and t " 200 's, and then is zero once again.
Determine the current in the inductor as a function of
time.

10.0 mH100 Ω

10.0 A

I(t )

I(t )

200    sµ

Figure P32.25

12.0 V
1 200 Ω

12.0 Ω

2.00 H

Sa

b

Figure P32.26

a

ε

b

L

R

S

Figure P32.27

A 140-mH inductor and a 4.90-. resistor are con-
nected with a switch to a 6.00-V battery as shown in Figure
P32.27. (a) If the switch is thrown to the left (connecting
the battery), how much time elapses before the current
reaches 220 mA? (b) What is the current in the inductor
10.0 s after the switch is closed? (c) Now the switch is
quickly thrown from a to b. How much time elapses before
the current falls to 160 mA?

27.

28. Consider two ideal inductors L1 and L2 that have zero inter-
nal resistance and are far apart, so that their magnetic fields
do not influence each other. (a) Assuming these inductors
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are connected in series, show that they are equivalent to a
single ideal inductor having Leq " L 1 , L2. (b) Assuming
these same two inductors are connected in parallel, show
that they are equivalent to a single ideal inductor having
1/L eq " 1/L 1 , 1/L2. (c) What If? Now consider two
inductors L 1 and L2 that have nonzero internal resistances
R 1 and R2, respectively. Assume they are still far apart so
that their mutual inductance is zero. Assuming these induc-
tors are connected in series, show that they are equivalent to
a single inductor having L eq " L 1 , L2 and Req "
R 1 , R2. (d) If these same inductors are now connected in
parallel, is it necessarily true that they are equivalent to a
single ideal inductor having 1/L eq " 1/L 1 , 1/L2 and
1/R eq " 1/R 1 , 1/R2? Explain your answer.

Section 32.3 Energy in a Magnetic Field

29. Calculate the energy associated with the magnetic field of
a 200-turn solenoid in which a current of 1.75 A produces
a flux of 3.70 ( 10#4 Wb in each turn.

30. The magnetic field inside a superconducting solenoid is
4.50 T. The solenoid has an inner diameter of 6.20 cm and
a length of 26.0 cm. Determine (a) the magnetic energy
density in the field and (b) the energy stored in the
magnetic field within the solenoid.

An air-core solenoid with 68 turns is 8.00 cm long and has
a diameter of 1.20 cm. How much energy is stored in its
magnetic field when it carries a current of 0.770 A?

32. At t " 0, an emf of 500 V is applied to a coil that has an
inductance of 0.800 H and a resistance of 30.0 .. (a) Find
the energy stored in the magnetic field when the current
reaches half its maximum value. (b) After the emf is
connected, how long does it take the current to reach this
value?

On a clear day at a certain location, a 100-V/m verti-
cal electric field exists near the Earth’s surface. At the
same place, the Earth’s magnetic field has a magnitude of
0.500 ( 10#4 T. Compute the energy densities of the two
fields.

34. Complete the calculation in Example 32.4 by proving that

35. An RL circuit in which L " 4.00 H and R " 5.00 . is con-
nected to a 22.0-V battery at t " 0. (a) What energy is
stored in the inductor when the current is 0.500 A? (b) At
what rate is energy being stored in the inductor when
I " 1.00 A? (c) What power is being delivered to the
circuit by the battery when I " 0.500 A?

36. A 10.0-V battery, a 5.00-. resistor, and a 10.0-H inductor are
connected in series. After the current in the circuit has
reached its maximum value, calculate (a) the power being
supplied by the battery, (b) the power being delivered to the
resistor, (c) the power being delivered to the inductor, and
(d) the energy stored in the magnetic field of the inductor.

37. A uniform electric field of magnitude 680 kV/m through-
out a cylindrical volume results in a total energy of 3.40 'J.
What magnetic field over this same region stores the same
total energy?

!0

0
 e#2Rt/L dt "

L
2R

33.

31.

38. Assume that the magnitude of the magnetic field outside a
sphere of radius R is B " B 0(R/r)2, where B 0 is a constant.
Determine the total energy stored in the magnetic field
outside the sphere and evaluate your result for B 0 "
5.00 ( 10#5 T and R " 6.00 ( 106 m, values appropriate
for the Earth’s magnetic field.

Section 32.4 Mutual Inductance

39. Two coils are close to each other. The first coil carries a time-
varying current given by I (t) " (5.00 A) e#0.025 0t sin(377t ).
At t " 0.800 s, the emf measured across the second coil is
# 3.20 V. What is the mutual inductance of the coils?

40. Two coils, held in fixed positions, have a mutual induc-
tance of 100 'H. What is the peak voltage in one when a
sinusoidal current given by I (t ) " (10.0 A) sin(1 000t) is
in the other coil?

41. An emf of 96.0 mV is induced in the windings of a coil
when the current in a nearby coil is increasing at the rate of
1.20 A/s. What is the mutual inductance of the two coils?

42. On a printed circuit board, a relatively long straight con-
ductor and a conducting rectangular loop lie in the same
plane, as shown in Figure P31.9. Taking h " 0.400 mm, 
w " 1.30 mm, and L " 2.70 mm, find their mutual
inductance.

Two solenoids A and B, spaced close to each other and
sharing the same cylindrical axis, have 400 and 700 turns,
respectively. A current of 3.50 A in coil A produces an aver-
age flux of 300 'Wb through each turn of A and a flux of
90.0 'Wb through each turn of B. (a) Calculate the
mutual inductance of the two solenoids. (b) What is the
self-inductance of A? (c) What emf is induced in B when
the current in A increases at the rate of 0.500 A/s?

44. A large coil of radius R 1 and having N 1 turns is coaxial
with a small coil of radius R2 and having N2 turns. The
centers of the coils are separated by a distance x that is
much larger than R 1 and R2. What is the mutual induc-
tance of the coils? Suggestion: John von Neumann proved
that the same answer must result from considering the flux
through the first coil of the magnetic field produced by
the second coil, or from considering the flux through the
second coil of the magnetic field produced by the first
coil. In this problem it is easy to calculate the flux through
the small coil, but it is difficult to calculate the flux
through the large coil, because to do so you would have to
know the magnetic field away from the axis.

45. Two inductors having self-inductances L 1 and L2 are con-
nected in parallel as shown in Figure P32.45a. The mutual
inductance between the two inductors is M. Determine the
equivalent self-inductance Leq for the system (Figure
P32.45b).

43.

L1

I(t )

LeqL2M

(a) (b)

I(t )

Figure P32.45
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Section 32.5 Oscillations in an LC Circuit

46. A 1.00-'F capacitor is charged by a 40.0-V power supply.
The fully charged capacitor is then discharged through a
10.0-mH inductor. Find the maximum current in the
resulting oscillations.

47. An LC circuit consists of a 20.0-mH inductor and a 
0.500-'F capacitor. If the maximum instantaneous current
is 0.100 A, what is the greatest potential difference across
the capacitor?

48. In the circuit of Figure P32.48, the battery emf is 50.0 V,
the resistance is 250 ., and the capacitance is 0.500 'F.
The switch S is closed for a long time and no voltage is
measured across the capacitor. After the switch is opened,
the potential difference across the capacitor reaches
a maximum value of 150 V. What is the value of the
inductance?

(a) the energy stored in the capacitor; (b) the energy stored
in the inductor; (c) the total energy in the circuit.

Section 32.6 The RLC Circuit

54. In Figure 32.21, let R " 7.60 ., L " 2.20 mH, and C "
1.80 'F. (a) Calculate the frequency of the damped oscilla-
tion of the circuit. (b) What is the critical resistance?

Consider an LC circuit in which L " 500 mH and 
C " 0.100 'F. (a) What is the resonance frequency 10?
(b) If a resistance of 1.00 k. is introduced into this circuit,
what is the frequency of the (damped) oscillations? (c) What
is the percent difference between the two frequencies?

56. Show that Equation 32.28 in the text is Kirchhoff’s loop
rule as applied to the circuit in Figure 32.21.

57. The energy of an RLC circuit decreases by 1.00% during
each oscillation when R " 2.00 .. If this resistance is
removed, the resulting LC circuit oscillates at a frequency
of 1.00 kHz. Find the values of the inductance and the
capacitance.

58. Electrical oscillations are initiated in a series circuit con-
taining a capacitance C, inductance L, and resistance R.
(a) If R ** (weak damping), how much time
elapses before the amplitude of the current oscillation falls
off to 50.0% of its initial value? (b) How long does it take
the energy to decrease to 50.0% of its initial value?

Additional Problems

59. Review problem. This problem extends the reasoning of
Section 26.4, Problem 26.37, Example 30.6, and Section
32.3. (a) Consider a capacitor with vacuum between its
large, closely spaced, oppositely charged parallel plates.
Show that the force on one plate can be accounted for by
thinking of the electric field between the plates as exerting
a “negative pressure” equal to the energy density of the
electric field. (b) Consider two infinite plane sheets carry-
ing electric currents in opposite directions with equal lin-
ear current densities Js . Calculate the force per area acting
on one sheet due to the magnetic field created by the
other sheet. (c) Calculate the net magnetic field between
the sheets and the field outside of the volume between
them. (d) Calculate the energy density in the magnetic
field between the sheets. (e) Show that the force on one
sheet can be accounted for by thinking of the magnetic
field between the sheets as exerting a positive pressure
equal to its energy density. This result for magnetic
pressure applies to all current configurations, not just to
sheets of current.

60. Initially, the capacitor in a series LC circuit is charged. A
switch is closed at t " 0, allowing the capacitor to
discharge, and at time t the energy stored in the capacitor
is one fourth of its initial value. Determine L, assuming C
is known.

61. A 1.00-mH inductor and a 1.00-'F capacitor are connected
in series. The current in the circuit is described by
I " 20.0t, where t is in seconds and I is in amperes. The
capacitor initially has no charge. Determine (a) the

√4L/C

55.

R

ε L C

S

Figure P32.48

1.00 µF

10.0 Ω

S

ba

µ

0.100 H

12.0 V

Figure P32.52

A fixed inductance L " 1.05 'H is used in series with a
variable capacitor in the tuning section of a radiotele-
phone on a ship. What capacitance tunes the circuit to the
signal from a transmitter broadcasting at 6.30 MHz?

50. Calculate the inductance of an LC circuit that oscillates at
120 Hz when the capacitance is 8.00 'F.

51. An LC circuit like the one in Figure 32.16 contains an
82.0-mH inductor and a 17.0-'F capacitor that initially car-
ries a 180-'C charge. The switch is open for t * 0 and
then closed at t " 0. (a) Find the frequency (in hertz) of
the resulting oscillations. At t " 1.00 ms, find (b) the
charge on the capacitor and (c) the current in the circuit.

52. The switch in Figure P32.52 is connected to point a for
a long time. After the switch is thrown to point b, what
are (a) the frequency of oscillation of the LC circuit,
(b) the maximum charge that appears on the capacitor,
(c) the maximum current in the inductor, and (d) the
total energy the circuit possesses at t " 3.00 s?

49.

An LC circuit like that in Figure 32.16 consists of a
3.30-H inductor and an 840-pF capacitor, initially carrying a
105-'C charge. The switch is open for t * 0 and then closed
at t " 0. Compute the following quantities at t " 2.00 ms:

53.
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voltage across the inductor as a function of time, (b) the
voltage across the capacitor as a function of time, and
(c) the time when the energy stored in the capacitor first
exceeds that in the inductor.

62. An inductor having inductance L and a capacitor having
capacitance C are connected in series. The current in the
circuit increases linearly in time as described by I " Kt,
where K is a constant. The capacitor is initially uncharged.
Determine (a) the voltage across the inductor as a
function of time, (b) the voltage across the capacitor as a
function of time, and (c) the time when the energy stored
in the capacitor first exceeds that in the inductor.

63. A capacitor in a series LC circuit has an initial charge Q
and is being discharged. Find, in terms of L and C, the flux
through each of the N turns in the coil, when the charge
on the capacitor is Q /2.

64. The toroid in Figure P32.64 consists of N turns and has a
rectangular cross section. Its inner and outer radii are a
and b, respectively. (a) Show that the inductance of the
toroid is

(b) Using this result, compute the self-inductance of a
500-turn toroid for which a " 10.0 cm, b " 12.0 cm, and
h " 1.00 cm. (c) What If? In Problem 12, an approximate
expression for the inductance of a toroid with R -- r
was derived. To get a feel for the accuracy of that result,
use the expression in Problem 12 to compute the approxi-
mate inductance of the toroid described in part 
(b). Compare the result with the answer to part (b).

L "
'0N 2h

2)
 ln 

b
a

be used for connections. (a) How many turns of this wire
can be wrapped around the rod? For an accurate answer
you should add the diameter of the wire to the diameter of
the rod in determining the circumference of each turn.
Also note that the wire spirals diagonally along the surface
of the rod. (b) What is the resistance of this inductor?
(c) What is its inductance?

67. A wire of nonmagnetic material, with radius R , carries
current uniformly distributed over its cross section. The
total current carried by the wire is I. Show that the mag-
netic energy per unit length inside the wire is '0I 2/16).

68. An 820-turn wire coil of resistance 24.0 . is placed around
a 12 500-turn solenoid 7.00 cm long, as shown in Figure
P32.68. Both coil and solenoid have cross-sectional areas of
1.00 ( 10#4 m2. (a) How long does it take the solenoid
current to reach 63.2% of its maximum value? Determine
(b) the average back emf caused by the self-inductance of
the solenoid during this time interval, (c) the average rate
of change in magnetic flux through the coil during this
time interval, and (d) the magnitude of the average
induced current in the coil.

h

a

b

Figure P32.64

12 500
 turns

14.0 Ω

60.0 V

S

+
–

24.0 Ω
820 turns

Figure P32.68
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S

R2 Lε

Figure P32.69 Problems 69 and 70.

65. (a) A flat circular coil does not really produce a uniform
magnetic field in the area it encloses, but estimate the self-
inductance of a flat, compact circular coil, with radius R
and N turns, by assuming that the field at its center is uni-
form over its area. (b) A circuit on a laboratory table
consists of a 1.5-volt battery, a 270-. resistor, a switch, and
three 30-cm-long patch cords connecting them. Suppose
the circuit is arranged to be circular. Think of it as a flat
coil with one turn. Compute the order of magnitude of its
self-inductance and (c) of the time constant describing
how fast the current increases when you close the switch.

66. A soft iron rod ('m " 800'0) is used as the core of a sole-
noid. The rod has a diameter of 24.0 mm and is 10.0 cm
long. A 10.0-m piece of 22-gauge copper wire (diameter "
0.644 mm) is wrapped around the rod in a single uniform
layer, except for a 10.0-cm length at each end, which is to

At t " 0, the open switch in Figure P32.69 is closed. By
using Kirchhoff’s rules for the instantaneous currents and
voltages in this two-loop circuit, show that the current in
the inductor at time t - 0 is

where R 3 " R 1R 2/(R 1 , R 2).

I (t ) "
!
R 1

 [1 # e#(R 3/L)t ]

69.
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70. In Figure P32.69 take ! " 6.00 V, R 1 " 5.00 ., and
R 2 " 1.00 .. The inductor has negligible resistance. When
the switch is opened after having been closed for a
long time, the current in the inductor drops to 0.250 A in
0.150 s. What is the inductance of the inductor?

In Figure P32.71, the switch is closed for t * 0, and steady-
state conditions are established. The switch is opened at
t " 0. (a) Find the initial voltage !0 across L just after
t " 0. Which end of the coil is at the higher potential: a or
b? (b) Make freehand graphs of the currents in R 1 and
in R2 as a function of time, treating the steady-state direc-
tions as positive. Show values before and after t " 0.
(c) How long after t " 0 does the current in R2 have the
value 2.00 mA?

71.

74. An air-core solenoid 0.500 m in length contains 1 000
turns and has a cross-sectional area of 1.00 cm2. (a) Ignor-
ing end effects, find the self-inductance. (b) A secondary
winding wrapped around the center of the solenoid has
100 turns. What is the mutual inductance? (c) The sec-
ondary winding carries a constant current of 1.00 A, and
the solenoid is connected to a load of 1.00 k.. The
constant current is suddenly stopped. How much charge
flows through the load resistor?

75. The lead-in wires from a television antenna are often con-
structed in the form of two parallel wires (Fig. P32.75).
(a) Why does this configuration of conductors have an
inductance? (b) What constitutes the flux loop for this
configuration? (c) Ignoring any magnetic flux inside the
wires, show that the inductance of a length x of this type of
lead-in is

where a is the radius of the wires and w is their center-to-
center separation.

L "
'0x
)

  ln " w # a
a #

S

6.00 kΩ ε 0.400 HL18.0 V

2.00 kΩ

R1

R2

a

b

Figure P32.71

L

R

C

S 0ε

Figure P32.72
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R

Figure P32.73

TV set
I

I
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Figure P32.75

72. The open switch in Figure P32.72 is closed at t " 0. Before
the switch is closed, the capacitor is uncharged, and all
currents are zero. Determine the currents in L, C, and R
and the potential differences across L, C, and R (a) at the
instant after the switch is closed, and (b) long after it is
closed.

To prevent damage from arcing in an electric motor, a
discharge resistor is sometimes placed in parallel with the
armature. If the motor is suddenly unplugged while
running, this resistor limits the voltage that appears across
the armature coils. Consider a 12.0-V DC motor with an
armature that has a resistance of 7.50 . and an inductance
of 450 mH. Assume the back emf in the armature coils is
10.0 V when the motor is running at normal speed. (The
equivalent circuit for the armature is shown in Figure
P32.73.) Calculate the maximum resistance R that limits
the voltage across the armature to 80.0 V when the motor is
unplugged.

73.

76. The resistance of a superconductor. In an experiment carried
out by S. C. Collins between 1955 and 1958, a current was
maintained in a superconducting lead ring for 2.50 yr
with no observed loss. If the inductance of the ring was
3.14 ( 10#8 H, and the sensitivity of the experiment was

Review problems. Problems 76 through 79 apply ideas
from this chapter and earlier chapters to some properties
of superconductors, which were introduced in Section
27.5.
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1 part in 109, what was the maximum resistance of the
ring? (Suggestion: Treat this as a decaying current in an
RL circuit, and recall that e#x ( 1 # x for small x.)

77. A novel method of storing energy has been proposed. A
huge underground superconducting coil, 1.00 km in
diameter, would be fabricated. It would carry a maximum
current of 50.0 kA through each winding of a 150-turn
Nb3Sn solenoid. (a) If the inductance of this huge coil
were 50.0 H, what would be the total energy stored?
(b) What would be the compressive force per meter length
acting between two adjacent windings 0.250 m apart?

78. Superconducting power transmission. The use of superconduc-
tors has been proposed for power transmission lines. A
single coaxial cable (Fig. P32.78) could carry 1.00 ( 103 MW
(the output of a large power plant) at 200 kV, DC, over a
distance of 1 000 km without loss. An inner wire of radius
2.00 cm, made from the superconductor Nb3Sn, carries the
current I in one direction. A surrounding superconducting
cylinder, of radius 5.00 cm, would carry the return current I.
In such a system, what is the magnetic field (a) at the surface
of the inner conductor and (b) at the inner surface of the
outer conductor? (c) How much energy would be stored in
the space between the conductors in a 1 000-km supercon-
ducting line? (d) What is the pressure exerted on the outer
conductor?

field, and note that the units J/m3 of energy density are
the same as the units N/m2 of pressure. (c) Now a super-
conducting bar 2.20 cm in diameter is inserted partway
into the solenoid. Its upper end is far outside the solenoid,
where the magnetic field is negligible. The lower end of
the bar is deep inside the solenoid. Identify the direction
required for the current on the curved surface of the bar,
so that the total magnetic field is zero within the bar. The
field created by the supercurrents is sketched in Figure
P32.79b, and the total field is sketched in Figure P32.79c.
(d) The field of the solenoid exerts a force on the current
in the superconductor. Identify the direction of the force
on the bar. (e) Calculate the magnitude of the force by
multiplying the energy density of the solenoid field times
the area of the bottom end of the superconducting bar.

Answers to Quick Quizzes

32.1 (c), (f). For the constant current in (a) and (b), there is
no potential difference across the resistanceless inductor.
In (c), if the current increases, the emf induced in the
inductor is in the opposite direction, from b to a, making
a higher in potential than b. Similarly, in (f), the decreas-
ing current induces an emf in the same direction as the
current, from b to a, again making the potential higher at
a than b.

32.2 (b), (d). As the switch is closed, there is no current, so
there is no voltage across the resistor. After a long time,
the current has reached its final value, and the inductor
has no further effect on the circuit.

32.3 (b). When the iron rod is inserted into the solenoid,
the inductance of the coil increases. As a result, more
potential difference appears across the coil than before.

I

a = 2.00 cm

b = 5.00 cm
a

I

b

Figure P32.78

(a) (b) (c)

B0

Btot

I

Figure P32.79

79. The Meissner effect. Compare this problem with Problem 65 in
Chapter 26, on the force attracting a perfect dielectric into a
strong electric field. A fundamental property of a Type I
superconducting material is perfect diamagnetism, or demon-
stration of the Meissner effect, illustrated in Figure 30.35, and
described as follows. The superconducting material has
B " 0 everywhere inside it. If a sample of the material is
placed into an externally produced magnetic field, or if it is
cooled to become superconducting while it is in a magnetic
field, electric currents appear on the surface of the sample.
The currents have precisely the strength and orientation
required to make the total magnetic field zero throughout
the interior of the sample. The following problem will help
you to understand the magnetic force that can then act on
the superconducting sample.

A vertical solenoid with a length of 120 cm and a diam-
eter of 2.50 cm consists of 1 400 turns of copper wire carry-
ing a counterclockwise current of 2.00 A, as in Figure
P32.79a. (a) Find the magnetic field in the vacuum inside
the solenoid. (b) Find the energy density of the magnetic
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Consequently, less potential difference appears across the
bulb, so the bulb is dimmer.

32.4 (b). Figure 32.10 shows that circuit B has the greater time
constant because in this circuit it takes longer for the
current to reach its maximum value and then longer for
this current to decrease to zero after the switch is thrown
to position b. Equation 32.8 indicates that, for equal resis-
tances RA and RB, the condition +B - +A means that 
LA * LB.

32.5 (a), (d). Because the energy density depends on the mag-
nitude of the magnetic field, to increase the energy den-
sity, we must increase the magnetic field. For a solenoid,
B " '0nI, where n is the number of turns per unit length.
In (a), we increase n to increase the magnetic field. In

(b), the change in cross-sectional area has no effect on
the magnetic field. In (c), increasing the length but keep-
ing n fixed has no effect on the magnetic field. Increasing
the current in (d) increases the magnetic field in the
solenoid.

32.6 (a). M12 increases because the magnetic flux through coil
2 increases.

32.7 (b). If the current is at its maximum value, the charge on
the capacitor is zero.

32.8 (c). If the current is zero, this is the instant at which the
capacitor is fully charged and the current is about to
reverse direction.
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! These large transformers are used to increase the voltage at a power plant for distribution
of energy by electrical transmission to the power grid. Voltages can be changed relatively
easily because power is distributed by alternating current rather than direct current. (Lester
Lefkowitz/Getty Images)
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In this chapter we describe alternating current (AC) circuits. Every time we turn on a
television set, a stereo, or any of a multitude of other electrical appliances in a home,
we are calling on alternating currents to provide the power to operate them. We begin
our study by investigating the characteristics of simple series circuits that contain
resistors, inductors, and capacitors and that are driven by a sinusoidal voltage. We shall
find that the maximum alternating current in each element is proportional to the
maximum alternating voltage across the element. In addition, when the applied
voltage is sinusoidal, the current in each element is also sinusoidal, but not necessarily
in phase with the applied voltage. The primary aim of this chapter can be summarized
as follows: if an AC source applies an alternating voltage to a series circuit containing
resistors, inductors, and capacitors, we want to know the amplitude and time character-
istics of the alternating current. We conclude the chapter with two sections concerning
transformers, power transmission, and electrical filters.

33.1 AC Sources

An AC circuit consists of circuit elements and a power source that provides an alternat-
ing voltage !v. This time-varying voltage is described by

!v " !Vmax sin #t

where !Vmax is the maximum output voltage of the AC source, or the voltage
amplitude. There are various possibilities for AC sources, including generators, as
discussed in Section 31.5, and electrical oscillators. In a home, each electrical outlet
serves as an AC source.

From Equation 15.12, the angular frequency of the AC voltage is

where f is the frequency of the source and T is the period. The source determines the
frequency of the current in any circuit connected to it. Because the output voltage of
an AC source varies sinusoidally with time, the voltage is positive during one half of the
cycle and negative during the other half, as in Figure 33.1. Likewise, the current in any
circuit driven by an AC source is an alternating current that also varies sinusoidally
with time. Commercial electric-power plants in the United States use a frequency of
60 Hz, which corresponds to an angular frequency of 377 rad/s.

33.2 Resistors in an AC Circuit

Consider a simple AC circuit consisting of a resistor and an AC source , as
shown in Figure 33.2. At any instant, the algebraic sum of the voltages around a closed
loop in a circuit must be zero (Kirchhoff’s loop rule). Therefore, !v $ !vR " 0, so

# " 2%f "
2%

T

! PITFALL PREVENTION 
33.1 Time-Varying Values
We will use lowercase symbols
!v and i to indicate the instanta-
neous values of time-varying
voltages and currents. Capital
letters represent fixed values of
voltage and current, such as
!Vmax and Imax.

∆v

∆Vmax

t

T

Figure 33.1 The voltage supplied
by an AC source is sinusoidal with a
period T.



that the magnitude of the source voltage equals the magnitude of the voltage across
the resistor:

!v " !vR " !Vmax sin #t (33.1)

where !vR is the instantaneous voltage across the resistor. Therefore, from
Equation 27.8, R " !V/I, the instantaneous current in the resistor is

(33.2)

where Imax is the maximum current:

From Equations 33.1 and 33.2, we see that the instantaneous voltage across the resistor is

!vR " ImaxR sin #t (33.3)

A plot of voltage and current versus time for this circuit is shown in Figure 33.3a. At
point a, the current has a maximum value in one direction, arbitrarily called the
positive direction. Between points a and b, the current is decreasing in magnitude but
is still in the positive direction. At b, the current is momentarily zero; it then begins to
increase in the negative direction between points b and c. At c, the current has reached
its maximum value in the negative direction.

The current and voltage are in step with each other because they vary identically
with time. Because iR and !vR both vary as sin #t and reach their maximum values
at the same time, as shown in Figure 33.3a, they are said to be in phase, similar to
the way that two waves can be in phase, as discussed in our study of wave motion in

I max "
∆V max

R

iR "
∆vR

R
"

∆V max

R
  sin #t " I max sin #t
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R

∆vR

∆v = ∆Vmax sin    tω

At the Active Figures link
at http://www.pse6.com, you
can adjust the resistance, the
frequency, and the maximum
voltage. The results can be
studied with the graph and
phasor diagram in Figure 33.3.

Active Figure 33.2 A circuit consisting of a resistor of
resistance R connected to an AC source, designated by the
symbol .

(b)

iR ,∆vR

iR
∆vR

Imax∆Vmax
t

(a)

iR ,∆vR

Imax

∆Vmax

iR

∆vR

t
ω

a

b

c

T

Maximum current in a resistor

Voltage across a resistor

At the Active Figures link
at http://www.pse6.com, you
can adjust the resistance, the
frequency, and the maximum
voltage of the circuit in Figure
33.2. The results can be studied
with the graph and phasor
diagram in this figure.

Active Figure 33.3 (a) Plots of the instantaneous current iR and instantaneous voltage
!vR across a resistor as functions of time. The current is in phase with the voltage,
which means that the current is zero when the voltage is zero, maximum when the
voltage is maximum, and minimum when the voltage is minimum. At time t " T, one
cycle of the time-varying voltage and current has been completed. (b) Phasor diagram
for the resistive circuit showing that the current is in phase with the voltage.



Chapter 18. Thus, for a sinusoidal applied voltage, the current in a resistor is
always in phase with the voltage across the resistor. For resistors in AC circuits,
there are no new concepts to learn. Resistors behave essentially the same way in both
DC and AC circuits. This will not be the case for capacitors and inductors.

To simplify our analysis of circuits containing two or more elements, we use
graphical constructions called phasor diagrams. A phasor is a vector whose length is
proportional to the maximum value of the variable it represents (!Vmax for voltage
and Imax for current in the present discussion) and which rotates counterclockwise at
an angular speed equal to the angular frequency associated with the variable. The
projection of the phasor onto the vertical axis represents the instantaneous value of
the quantity it represents.

Figure 33.3b shows voltage and current phasors for the circuit of Figure 33.2 at
some instant of time. The projections of the phasor arrows onto the vertical axis are
determined by a sine function of the angle of the phasor with respect to the horizontal
axis. For example, the projection of the current phasor in Figure 33.3b is Imax sin #t.
Notice that this is the same expression as Equation 33.2. Thus, we can use the projec-
tions of phasors to represent current values that vary sinusoidally in time. We can do
the same with time-varying voltages. The advantage of this approach is that the phase
relationships among currents and voltages can be represented as vector additions of
phasors, using our vector addition techniques from Chapter 3.

In the case of the single-loop resistive circuit of Figure 33.2, the current and voltage
phasors lie along the same line, as in Figure 33.3b, because iR and !vR are in phase.
The current and voltage in circuits containing capacitors and inductors have different
phase relationships.

1036 C H A P T E R  3 3 •  Alternating Current Circuits

Quick Quiz 33.1 Consider the voltage phasor in Figure 33.4, shown at three
instants of time. Choose the part of the figure that represents the instant of time at
which the instantaneous value of the voltage has the largest magnitude.

Quick Quiz 33.2 For the voltage phasor in Figure 33.4, choose the part of
the figure that represents the instant of time at which the instantaneous value of the
voltage has the smallest magnitude.

Figure 33.4 (Quick Quizzes 33.1 and 33.2) A voltage phasor is shown at three instants
of time.

! PITFALL PREVENTION 
33.2 We’ve Seen This Idea

Before
To help with this discussion of
phasors, review Section 15.4, in
which we represented the simple
harmonic motion of a real object
to the projection of uniform
circular motion of an imaginary
object onto a coordinate axis.
Phasors are a direct analog to this
discussion.

(a) (b) (c)

For the simple resistive circuit in Figure 33.2, note that the average value of the
current over one cycle is zero. That is, the current is maintained in the positive
direction for the same amount of time and at the same magnitude as it is maintained
in the negative direction. However, the direction of the current has no effect on the
behavior of the resistor. We can understand this by realizing that collisions between
electrons and the fixed atoms of the resistor result in an increase in the resistor’s
temperature. Although this temperature increase depends on the magnitude of the
current, it is independent of the direction of the current.

We can make this discussion quantitative by recalling that the rate at which energy
is delivered to a resistor is the power ! " i2R , where i is the instantaneous current in



the resistor. Because this rate is proportional to the square of the current, it makes no
difference whether the current is direct or alternating—that is, whether the sign
associated with the current is positive or negative. However, the temperature increase
produced by an alternating current having a maximum value Imax is not the same as
that produced by a direct current equal to Imax. This is because the alternating current
is at this maximum value for only an instant during each cycle (Fig. 33.5a). What is of
importance in an AC circuit is an average value of current, referred to as the rms
current. As we learned in Section 21.1, the notation rms stands for root-mean-square,
which in this case means the square root of the mean (average) value of the square of
the current: . Because i 2 varies as sin2 #t and because the average value of i 2

is I 2
max (see Fig. 33.5b), the rms current is1

(33.4)

This equation states that an alternating current whose maximum value is 2.00 A
delivers to a resistor the same power as a direct current that has a value of
(0.707)(2.00 A) " 1.41 A. Thus, the average power delivered to a resistor that
carries an alternating current is

!av " I 2
rmsR

I rms "
I max

√2
" 0.707I max

1
2

I rms " √i2
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Figure 33.5 (a) Graph of the current in a resistor as a function of time. (b) Graph of
the current squared in a resistor as a function of time. Notice that the gray shaded
regions under the curve and above the dashed line for I 2

max/2 have the same area as the
gray shaded regions above the curve and below the dashed line for I 2

max/2. Thus, the
average value of i2 is I 2

max/2.

1 That the square root of the average value of i2 is equal to can be shown as follows.
The current in the circuit varies with time according to the expression i " Imax sin #t, so
i2 " I 2

max sin2 #t. Therefore, we can find the average value of i2 by calculating the average value
of sin2 #t . A graph of cos2 #t versus time is identical to a graph of sin2 #t versus time, except that
the points are shifted on the time axis. Thus, the time average of sin2 #t is equal to the time
average of cos2 #t when taken over one or more complete cycles. That is,

(sin2 #t)av " (cos2 #t)av

Using this fact and the trigonometric identity sin2 & $ cos2 & " 1, we obtain

(sin2 #t)av $ (cos2 #t)av " 2(sin2 #t)av " 1

(sin2 #t)av "

When we substitute this result in the expression i2 " I 2
max sin2 #t, we obtain (i2)av " "

I 2
rms " I 2

max/2, or I rms " Imax/ . The factor is valid only for sinusoidally varying currents.
Other waveforms, such as sawtooth variations, have different factors.

1/√2√2
i2

1
2

I max /√2

Imax

I 2

i2

I 21
2

t

t

(a)

(b)

i

=i2

max

max

0

0

rms current

Average power delivered to
a resistor



Alternating voltage is also best discussed in terms of rms voltage, and the relation-
ship is identical to that for current:

(33.5)

When we speak of measuring a 120-V alternating voltage from an electrical outlet, we are
referring to an rms voltage of 120 V. A quick calculation using Equation 33.5 shows that
such an alternating voltage has a maximum value of about 170 V. One reason we use rms
values when discussing alternating currents and voltages in this chapter is that AC
ammeters and voltmeters are designed to read rms values. Furthermore, with rms values,
many of the equations we use have the same form as their direct current counterparts.

∆V rms "
∆V max

√2
" 0.707 ∆V max
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rms voltage

Active Figure 33.6 A circuit
consisting of an inductor of
inductance L connected to an AC
source.

At the Active Figures link
at http://www.pse6.com, you
can adjust the inductance, the
frequency, and the maximum
voltage. The results can be
studied with the graph and
phasor diagram in Figure 33.7.

Quick Quiz 33.3 Which of the following statements might be true for a
resistor connected to a sinusoidal AC source? (a) !av " 0 and iav " 0 (b) !av " 0 and
iav ' 0 (c) !av ' 0 and iav " 0 (d) !av ' 0 and iav ' 0.

Example 33.1 What Is the rms Current?

The voltage output of an AC source is given by the expres-
sion !v " (200 V) sin #t. Find the rms current in the circuit
when this source is connected to a 100-( resistor.

Solution Comparing this expression for voltage output
with the general form !v " !V max sin #t, we see that
!Vmax " 200 V. Thus, the rms voltage is

Therefore,

1.41 AI rms "
!V rms

R
"

141 V
100 (

"

!V rms "
!V max

√2
"

200 V

√2
" 141 V

33.3 Inductors in an AC Circuit

Now consider an AC circuit consisting only of an inductor connected to the terminals
of an AC source, as shown in Figure 33.6. If !vL " )L " * L(di/dt) is the self-induced
instantaneous voltage across the inductor (see Eq. 32.1), then Kirchhoff’s loop rule
applied to this circuit gives !v $ !vL " 0, or

When we substitute !Vmax sin #t for !v and rearrange, we obtain

(33.6)

Solving this equation for di, we find that

Integrating this expression2 gives the instantaneous current iL in the inductor as a
function of time:

(33.7)iL "
∆V max

L
 ! sin #t dt " *

∆V max

#L
  cos #t

di "
∆V max

L
  sin #t dt

∆v " L  
di
dt

" ∆V  max sin #t

∆v * L  
di
dt

" 0
L

∆vL

∆v = ∆Vmax sin    tω

2 We neglect the constant of integration here because it depends on the initial conditions,
which are not important for this situation.



When we use the trigonometric identity cos #t " * sin(#t * %/2), we can express
Equation 33.7 as

(33.8)

Comparing this result with Equation 33.6, we see that the instantaneous current iL
in the inductor and the instantaneous voltage !vL across the inductor are out of phase
by (%/2) rad " 90°.

A plot of voltage and current versus time is provided in Figure 33.7a. In general,
inductors in an AC circuit produce a current that is out of phase with the AC voltage.
For example, when the current iL in the inductor is a maximum (point b in Figure
33.7a), it is momentarily not changing, so the voltage across the inductor is zero (point
d). At points like a and e, the current is zero and the rate of change of current is at a
maximum. Thus, the voltage across the inductor is also at a maximum (points c and f ).
Note that the voltage reaches its maximum value one quarter of a period before the
current reaches its maximum value. Thus, we see that

iL "
∆V max

#L
  sin "#t *

%

2 #
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At the Active Figures link
at http://www.pse6.com, you
can adjust the inductance, the
frequency, and the maximum
voltage of the circuit in Figure
33.6. The results can be studied
with the graph and phasor
diagram in this figure.

Current in an inductor

(a)

iL

∆vL ∆Vmaxt

∆vL , iL

Imax

∆Vmax

iL

∆vL

t

(b)

ω
a

c

d

b

e
T

Imax

f

Active Figure 33.7 (a) Plots of the instantaneous current iL and instantaneous voltage
!vL across an inductor as functions of time. The current lags behind the voltage by 90°.
(b) Phasor diagram for the inductive circuit, showing that the current lags behind the
voltage by 90°. 

for a sinusoidal applied voltage, the current in an inductor always lags behind the
voltage across the inductor by 90° (one-quarter cycle in time).

As with the relationship between current and voltage for a resistor, we can
represent this relationship for an inductor with a phasor diagram as in Figure 33.7b.
Notice that the phasors are at 90° to one another, representing the 90° phase
difference between current and voltage.

From Equation 33.7 we see that the current in an inductive circuit reaches its
maximum value when cos #t " * 1:

(33.9)

This looks similar to the relationship between current, voltage, and resistance in a DC
circuit, I " !V/R (Eq. 27.8). In fact, because Imax has units of amperes and !Vmax
has units of volts, #L must have units of ohms. Therefore, #L has the same units as
resistance and is related to current and voltage in the same way as resistance. It must
behave in a manner similar to resistance, in the sense that it represents opposition to
the flow of charge. Notice that because #L depends on the applied frequency #, the
inductor reacts differently, in terms of offering resistance to current, for different

I max "
∆V max

#L
Maximum current in an inductor



frequencies. For this reason, we define #L as the inductive reactance:

(33.10)

and we can write Equation 33.9 as

(33.11)

The expression for the rms current in an inductor is similar to Equation 33.9, with Imax
replaced by Irms and !Vmax replaced by !V rms.

Equation 33.10 indicates that, for a given applied voltage, the inductive reactance
increases as the frequency increases. This is consistent with Faraday’s law—the greater
the rate of change of current in the inductor, the larger is the back emf. The larger
back emf translates to an increase in the reactance and a decrease in the current.

Using Equations 33.6 and 33.11, we find that the instantaneous voltage across the
inductor is

(33.12)∆vL " *L  
di
dt

" *∆Vmax sin #t " *I max XL sin #t

I max "
∆V max

XL

XL  $  #L
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Inductive reactance

Quick Quiz 33.4 Consider the AC circuit in Figure 33.8. The frequency of
the AC source is adjusted while its voltage amplitude is held constant. The lightbulb
will glow the brightest at (a) high frequencies (b) low frequencies (c) The brightness
will be the same at all frequencies.

Figure 33.8 (Quick Quiz 33.4) At what frequencies will the bulb glow the brightest?

L

R

Example 33.2 A Purely Inductive AC Circuit

In a purely inductive AC circuit (see Fig. 33.6), L " 25.0 mH
and the rms voltage is 150 V. Calculate the inductive reactance
and rms current in the circuit if the frequency is 60.0 Hz.

Solution Equation 33.10 gives

XL " #L " 2%fL " 2%(60.0 Hz)(25.0 + 10*3 H)

From an rms version of Equation 33.11, the rms current is

15.9 AI rms "
!V  L , rms

XL
"

150 V
9.42 (

"

9.42 ("

What If? What if the frequency increases to 6.00 kHz? What
happens to the rms current in the circuit?

Answer If the frequency increases, the inductive reactance
increases because the current is changing at a higher rate. The
increase in inductive reactance results in a lower current.

Let us calculate the new inductive reactance:

XL " 2%(6.00 + 103 Hz)(25.0 + 10*3 H) " 942 (

The new current is

I rms "
150 V
942 (

" 0.159 A

Voltage across an inductor



33.4 Capacitors in an AC Circuit

Figure 33.9 shows an AC circuit consisting of a capacitor connected across the
terminals of an AC source. Kirchhoff’s loop rule applied to this circuit gives
!v $ !vC " 0, so that the magnitude of the source voltage is equal to the magni-
tude of the voltage across the capacitor:

!v " !vC " !V max sin #t (33.13)

where !vC is the instantaneous voltage across the capacitor. We know from the defini-
tion of capacitance that C " q/!vC ; hence, Equation 33.13 gives

q " C !Vmax sin #t (33.14)

where q is the instantaneous charge on the capacitor. Because i " dq/dt, differ-
entiating Equation 33.14 with respect to time gives the instantaneous current in the
circuit:

(33.15)

Using the trigonometric identity

we can express Equation 33.15 in the alternative form

(33.16)

Comparing this expression with Equation 33.13, we see that the current is
%/2 rad " 90° out of phase with the voltage across the capacitor. A plot of
current and voltage versus time (Fig. 33.10a) shows that the current reaches its
maximum value one quarter of a cycle sooner than the voltage reaches its maximum
value.

iC " #C ∆Vmax  sin "#t $
%

2 #

cos #t " sin "#t $
%

2 #

iC "
dq
dt

" #C ∆Vmax cos #t
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C

∆vC

∆v = ∆Vmax sin    tω

Active Figure 33.9 A circuit
consisting of a capacitor of
capacitance C connected to an AC
source.

At the Active Figures link
at http://www.pse6.com, you
can adjust the capacitance, the
frequency, and the maximum
voltage. The results can be
studied with the graph and
phasor diagram in Figure 33.10.

Current in a capacitor

(a)

a

d

f
bc

e

iC

t

∆vC , iC

Imax

∆Vmax ∆vC

T

∆vC∆Vmax

iCImax

ωtω

(b)

Active Figure 33.10 (a) Plots of the instantaneous current iC and instantaneous
voltage !vC across a capacitor as functions of time. The voltage lags behind the current
by 90°. (b) Phasor diagram for the capacitive circuit, showing that the current leads the
voltage by 90°.

At the Active Figures link at http://www.pse6.com, you can adjust the
capacitance, the frequency, and the maximum voltage of the circuit in Figure
33.9. The results can be studied with the graph and phasor diagram in this
figure.



Looking more closely, consider a point such as b where the current is zero. This
occurs when the capacitor has just reached its maximum charge, so the voltage across
the capacitor is a maximum (point d). At points such as a and e, the current is a
maximum, which occurs at those instants at which the charge on the capacitor has just
gone to zero and it begins to charge up with the opposite polarity. Because the charge
is zero, the voltage across the capacitor is zero (points c and f ). Thus, the current and
voltage are out of phase.

As with inductors, we can represent the current and voltage for a capacitor on a
phasor diagram. The phasor diagram in Figure 33.10b shows that
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for a sinusoidally applied voltage, the current always leads the voltage across a
capacitor by 90°.

From Equation 33.15, we see that the current in the circuit reaches its maximum
value when cos #t " 1:

(33.17)

As in the case with inductors, this looks like Equation 27.8, so that the denominator
must play the role of resistance, with units of ohms. We give the combination 1/#C the
symbol XC , and because this function varies with frequency, we define it as the
capacitive reactance:

(33.18)

and we can write Equation 33.17 as

(33.19)

The rms current is given by an expression similar to Equation 33.19, with Imax replaced
by I rms and !Vmax replaced by !V rms.

Combining Equations 33.13 and 33.19, we can express the instantaneous voltage
across the capacitor as

!vC " !Vmax sin #t " Imax XC sin #t (33.20)

Equations 33.18 and 33.19 indicate that as the frequency of the voltage source
increases, the capacitive reactance decreases and therefore the maximum
current increases. Again, note that the frequency of the current is determined
by the frequency of the voltage source driving the circuit. As the frequency
approaches zero, the capacitive reactance approaches infinity, and hence the
current approaches zero. This makes sense because the circuit approaches direct
current conditions as # approaches zero, and the capacitor represents an open
circuit.

I max "
∆V max

XC

XC  $  
1

#C

I max " #C ∆V max "
∆V max

(1/#C )

Quick Quiz 33.5 Consider the AC circuit in Figure 33.11. The frequency of
the AC source is adjusted while its voltage amplitude is held constant. The lightbulb
will glow the brightest at (a) high frequencies (b) low frequencies (c) The brightness
will be same at all frequencies.

Capacitive reactance

Maximum current in a capacitor

Voltage across a capacitor

Figure 33.11 (Quick Quiz 33.5)

C

R
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Figure 33.12 (Quick Quiz 33.6)

Quick Quiz 33.6 Consider the AC circuit in Figure 33.12. The frequency of
the AC source is adjusted while its voltage amplitude is held constant. The lightbulb
will glow the brightest at (a) high frequencies (b) low frequencies (c) The brightness
will be same at all frequencies.

L

R

C

An 8.00-,F capacitor is connected to the terminals of a
60.0-Hz AC source whose rms voltage is 150 V. Find the
capacitive reactance and the rms current in the circuit.

Solution Using Equation 33.18 and the fact that # "
2%f " 377 s*1 gives

Hence, from a modified Equation 33.19, the rms current is

What If? What if the frequency is doubled? What happens
to the rms current in the circuit?

0.452 AI rms "
!V  rms

XC
"

150 V
332 (

"

332 (XC "
1

#C
"

1
(377 s*1)(8.00 + 10*6 F)

"

Example 33.3 A Purely Capacitive AC Circuit

Answer If the frequency increases, the capacitive reactance
decreases—just the opposite as in the case of an inductor.
The decrease in capacitive reactance results in an increase
in the current.

Let us calculate the new capacitive reactance:

The new current is

I rms "
150 V
166 (

" 0.904 A

XC "
1

#C
"

1
2(377 s*1)(8.00 + 10*6 F)

" 166 (

33.5 The RLC Series Circuit

Figure 33.13a shows a circuit that contains a resistor, an inductor, and a capacitor
connected in series across an alternating voltage source. As before, we assume that
the applied voltage varies sinusoidally with time. It is convenient to assume that the
instantaneous applied voltage is given by

!v " !Vmax sin #t

while the current varies as

i " Imax sin(#t * -)



where - is some phase angle between the current and the applied voltage. Based on
our discussions of phase in Sections 33.3 and 33.4, we expect that the current will
generally not be in phase with the voltage in an RLC circuit. Our aim is to determine -
and Imax. Figure 33.13b shows the voltage versus time across each element in the
circuit and their phase relationships.

First, we note that because the elements are in series, the current everywhere
in the circuit must be the same at any instant. That is, the current at all points
in a series AC circuit has the same amplitude and phase. Based on the
preceding sections, we know that the voltage across each element has a different
amplitude and phase. In particular, the voltage across the resistor is in phase
with the current, the voltage across the inductor leads the current by 90°, and
the voltage across the capacitor lags behind the current by 90°. Using these
phase relationships, we can express the instantaneous voltages across the three
circuit elements as

!vR " ImaxR sin #t " !VR sin #t (33.21)

(33.22)

(33.23)

where !VR , !VL, and !VC are the maximum voltage values across the elements:

!VR " ImaxR !VL " ImaxXL !VC " ImaxXC

At this point, we could proceed by noting that the instantaneous voltage !v across the
three elements equals the sum

!v " !vR $ !vL $ !vC

Although this analytical approach is correct, it is simpler to obtain the sum
by examining the phasor diagram, shown in Figure 33.14. Because the current
at any instant is the same in all elements, we combine the three phasor pairs shown
in Figure 33.14 to obtain Figure 33.15a, in which a single phasor I max is used to
represent the current in each element. Because phasors are rotating vectors, we can
combine the three parts of Figure 33.14 by using vector addition. To obtain the
vector sum of the three voltage phasors in Figure 33.15a, we redraw the phasor
diagram as in Figure 33.15b. From this diagram, we see that the vector sum of the
voltage amplitudes !VR , !VL , and !VC equals a phasor whose length is the
maximum applied voltage !V max, and which makes an angle - with the current
phasor I max. The voltage phasors !VL and !VC are in opposite directions
along the same line, so we can construct the difference phasor !VL * !VC , which
is perpendicular to the phasor !VR . From either one of the right triangles

∆vC " I max XC  sin "#t *
%

2 # " *∆VC  cos #t

∆vL " I max XL sin "#t $
%

2 # " ∆VL cos #t
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(b)

∆vR

∆vL

∆vC

t

t

t

∆vR

R L C

∆vL ∆vC

(a)

Active Figure 33.13 (a) A series
circuit consisting of a resistor,
an inductor, and a capacitor
connected to an AC source.
(b) Phase relationships for
instantaneous voltages in the series
RLC circuit. 

At the Active Figures link
at http://www.pse6.com, you
can adjust the resistance, the
inductance, and the
capacitance. The results can
be studied with the graph in
this figure and the phasor
diagram in Figure 33.15.

90°

90°

ωωω

∆VRImax Imax
Imax

∆VL

∆VC

(a) Resistor (b) Inductor (c) Capacitor

Figure 33.14 Phase relationships between the voltage and current phasors for
(a) a resistor, (b) an inductor, and (c) a capacitor connected in series. 
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(b)

∆Vmax

φ

∆VL – ∆VC

∆VR

(a)

ω
∆VRImax

φ

∆VL

∆VC

∆Vmax

Active Figure 33.15 (a) Phasor diagram for the series RLC circuit shown in Figure
33.13a. The phasor !VR is in phase with the current phasor Imax, the phasor !VL leads
Imax by 90°, and the phasor !VC lags Imax by 90°. The total voltage !Vmax makes an
angle - with Imax. (b) Simplified version of the phasor diagram shown in part (a).

At the Active Figures link at http://www.pse6.com, you can adjust the
resistance, the inductance, and the capacitance of the circuit in Figure 33.13a.
The results can be studied with the graphs in Figure 33.13b and the phasor
diagram in this figure.

in Figure 33.15b, we see that

(33.24)

Therefore, we can express the maximum current as

Once again, this has the same mathematical form as Equation 27.8. The denominator
of the fraction plays the role of resistance and is called the impedance Z of the circuit:

(33.25)

where impedance also has units of ohms. Therefore, we can write Equation 33.24 in
the form

(33.26)

We can regard Equation 33.26 as the AC equivalent of Equation 27.8. Note that the
impedance and therefore the current in an AC circuit depend upon the resistance,
the inductance, the capacitance, and the frequency (because the reactances are
frequency-dependent).

By removing the common factor Imax from each phasor in Figure 33.15a, we can
construct the impedance triangle shown in Figure 33.16. From this phasor diagram we
find that the phase angle - between the current and the voltage is

(33.27)

Also, from Figure 33.16, we see that cos - " R/Z . When XL ' XC (which occurs at high
frequencies), the phase angle is positive, signifying that the current lags behind the
applied voltage, as in Figure 33.15a. We describe this situation by saying that the circuit
is more inductive than capacitive. When XL . XC , the phase angle is negative, signifying
that the current leads the applied voltage, and the circuit is more capacitive than inductive.
When XL " XC , the phase angle is zero and the circuit is purely resistive.

Table 33.1 gives impedance values and phase angles for various series circuits
containing different combinations of elements.

- " tan*1 " XL * XC

R #

∆V max " I max Z

Z $ √R 
2 $ (XL * XC)2

I max "
∆V max

√R 
2 $ (XL * XC)2

∆V max " I max √R2 $ (XL * XC)2

∆V max " √∆V 
2

R $ (∆VL * ∆VC)2 " √(I max R)2 $ (I max XL * I max X C)2

Maximum current in an RLC
circuit

Impedance

Phase angle

Figure 33.16 An impedance
triangle for a series RLC circuit
gives the relationship
Z " √R2 $ (XL * XC)2.

XL – XC

Z

φ

R
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Figure 33.17 (Quick Quiz 33.7) Match the phasor diagrams to the relationships
between the reactances.

a In each case, an AC voltage (not shown) is applied across the elements.

Circuit Elements Impedance Z Phase Angle -

Impedance Values and Phase Angles for Various Circuit-Element Combinationsa

Table 33.1

R

C

L

CR

R

R CL

L

R 0/

XC * 90/

XL $ 90/

Negative, between * 90/ and 0/

Positive, between 0/ and 90/

Negative if XC ' XL

Positive if XC . XL

√R2 $ (XL * XC)2
 

 

√R2 $ XL 

 

2

√R2 $ XC 

 

2

∆Vmax

Imax

Imax

Imax

(a) (b) (c)

∆Vmax

∆Vmax

Quick Quiz 33.7 Label each part of Figure 33.17 as being XL ' XC ,
XL " XC , or XL . XC .

Example 33.4 Finding L from a Phasor Diagram

In a series RLC circuit, the applied voltage has a maximum
value of 120 V and oscillates at a frequency of 60.0 Hz. The
circuit contains an inductor whose inductance can be
varied, a 200-( resistor, and a 4.00-,F capacitor. What value
of L should an engineer analyzing the circuit choose such
that the voltage across the capacitor lags the applied voltage
by 30.0°?

Solution The phase relationships for the voltages across
the elements are shown in Figure 33.18. From the figure
we see that the phase angle is - " * 60.0°. (The phasors
representing Imax and !VR are in the same direction.)
From Equation 33.27, we find that

XL " XC $ R tan -

Substituting Equations 33.10 and 33.18 (with # " 2%f ) into
this expression gives

30.0°

φ

∆VL

∆VR

∆Vmax

∆VC

Figure 33.18 (Example 33.4) The phasor diagram for the
given information.
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L "
1

2%f
 " 1

2%f C
$ R tan -#

2%f L "
1

2%f C
$ R tan -

Substituting the given values into the equation gives

L " 0.84 H.

Example 33.5 Analyzing a Series RLC Circuit

Solution The maximum voltages are

!VR " ImaxR " (0.292 A)(425 () "

!VL " ImaxXL " (0.292 A)(471 () "

!VC " ImaxXC " (0.292 A)(758 () "

Using Equations 33.21, 33.22, and 33.23, we find that we
can write the instantaneous voltages across the three
elements as

!vR "

!vL "

!vC "

What If? What if you added up the maximum voltages
across the three circuit elements? Is this a physically mean-
ingful quantity?

Answer The sum of the maximum voltages across the
elements is !VR $ !VL $ !VC " 484 V. Note that this
sum is much greater than the maximum voltage of
the source, 150 V. The sum of the maximum voltages
is a meaningless quantity because when sinusoidally
varying quantities are added, both their amplitudes and
their phases must be taken into account. We know that
the maximum voltages across the various elements
occur at different times. That is, the voltages must
be added in a way that takes account of the different
phases.

(*221 V ) cos 377t

(138 V ) cos 377t

(124 V ) sin 377t

221 V

138 V

124 V

Interactive

At the Interactive Worked Example link at http://www.pse6.com, you can investigate the RLC circuit for various values of
the circuit elements.

A series RLC AC circuit has R " 425 (, L " 1.25 H,
C " 3.50 ,F, # " 377 s*1, and !Vmax " 150 V.

(A) Determine the inductive reactance, the capacitive
reactance, and the impedance of the circuit.

Solution The reactances are XL " #L " 471 ( and

XC " 1/#C " 758 (.
The impedance is

(B) Find the maximum current in the circuit.

Solution

(C) Find the phase angle between the current and voltage.

Solution

Because the capacitive reactance is larger than the inductive
reactance, the circuit is more capacitive than inductive. In
this case, the phase angle - is negative and the current leads
the applied voltage.

(D) Find both the maximum voltage and the instantaneous
voltage across each element.

* 34.0/"

- " tan*1 " XL * XC

R # " tan*1 " 471 ( * 758 (
425 ( #

0.292 AI max "
!V  max

Z
"

150 V
513 (

"

513 (" √(425 ()2 $ (471 ( * 758 ()2 "

Z " √R2 $ (XL * XC )2

33.6 Power in an AC Circuit

Let us now take an energy approach to analyzing AC circuits, considering the
transfer of energy from the AC source to the circuit. In Example 28.1 we found that
the power delivered by a battery to a DC circuit is equal to the product of the
current and the emf of the battery. Likewise, the instantaneous power delivered
by an AC source to a circuit is the product of the source current and the
applied voltage. For the RLC circuit shown in Figure 33.13a, we can express the
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instantaneous power ! as

! " i !v " Imax sin(#t * -) !Vmax sin #t
" Imax !Vmax sin #t sin(#t * -) (33.28)

This result is a complicated function of time and therefore is not very useful from a
practical viewpoint. What is generally of interest is the average power over one or more
cycles. Such an average can be computed by first using the trigonometric identity
sin(#t * -) " sin #t cos - * cos #t sin -. Substituting this into Equation 33.28 gives

! " Imax !Vmax sin2 #t cos - * Imax !Vmax sin #t cos #t sin - (33.29)

We now take the time average of ! over one or more cycles, noting that Imax,
!Vmax, -, and # are all constants. The time average of the first term on the right in
Equation 33.29 involves the average value of sin2 #t, which is (as shown in footnote
1). The time average of the second term on the right is identically zero because
sin #t cos #t " sin 2#t, and the average value of sin 2#t is zero. Therefore, we can
express the average power !av as

!av " I max !V max cos - (33.30)

It is convenient to express the average power in terms of the rms current and rms
voltage defined by Equations 33.4 and 33.5:

(33.31)

where the quantity cos - is called the power factor. By inspecting Figure 33.15b, we see
that the maximum voltage across the resistor is given by !VR " !Vmax cos - " Imax R .
Using Equation 33.5 and the fact that cos - " Imax R/!Vmax, we find that we can 
express !av as

After making the substitution from Equation 33.4, we have

(33.32)

In words, the average power delivered by the source is converted to internal
energy in the resistor, just as in the case of a DC circuit. When the load is purely
resistive, then - " 0, cos - " 1, and from Equation 33.31 we see that

!av " I rms !V rms

We find that no power losses are associated with pure capacitors and pure
inductors in an AC circuit. To see why this is true, let us first analyze the power in an
AC circuit containing only a source and a capacitor. When the current begins to in-
crease in one direction in an AC circuit, charge begins to accumulate on the capacitor,
and a voltage appears across it. When this voltage reaches its maximum value, the en-
ergy stored in the capacitor is C(!Vmax)2. However, this energy storage is only mo-
mentary. The capacitor is charged and discharged twice during each cycle: charge is
delivered to the capacitor during two quarters of the cycle and is returned to the 
voltage source during the remaining two quarters. Therefore, the average power 
supplied by the source is zero. In other words, no power losses occur in a capaci-
tor in an AC circuit.

Let us now consider the case of an inductor. When the current reaches its maximum
value, the energy stored in the inductor is a maximum and is given by LI 2

max. When
the current begins to decrease in the circuit, this stored energy is returned to the source
as the inductor attempts to maintain the current in the circuit.

1
2

1
2

!av " I 2
rms R

Imax " √2 Irms

!av " I rms ∆V rms cos - " I rms  " ∆V max

√2 # 
I maxR
∆V max

" I rms 
I maxR

√2

!av " I rms ∆V rms cos -

1
2

1
2

1
2

Average power delivered to an
RLC circuit
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Quick Quiz 33.8 An AC source drives an RLC circuit with a fixed voltage
amplitude. If the driving frequency is #1, the circuit is more capacitive than inductive
and the phase angle is * 10°. If the driving frequency is #2, the circuit is more
inductive than capacitive and the phase angle is $ 10°. The largest amount of power is
delivered to the circuit at (a) #1 (b) #2 (c) The same amount of power is delivered at
both frequencies.

33.7 Resonance in a Series RLC Circuit

A series RLC circuit is said to be in resonance when the current has its maximum
value. In general, the rms current can be written

(33.33)

where Z is the impedance. Substituting the expression for Z from Equation 33.25 into
33.33 gives

(33.34)

Because the impedance depends on the frequency of the source, the current in the
RLC circuit also depends on the frequency. The frequency #0 at which XL * XC " 0 is
called the resonance frequency of the circuit. To find #0, we use the condition
XL " XC , from which we obtain #0L " 1/#0C, or

(33.35)

This frequency also corresponds to the natural frequency of oscillation of an LC circuit
(see Section 32.5). Therefore, the current in a series RLC circuit reaches its maximum
value when the frequency of the applied voltage matches the natural oscillator

#0 "
1

√LC

I rms "
∆V rms

√R 
2 $ (XL * XC)2

I rms "
∆V rms

Z

Equation 33.31 shows that the power delivered by an AC source to any circuit
depends on the phase—a result that has many interesting applications. For example,
a factory that uses large motors in machines, generators, or transformers has a large
inductive load (because of all the windings). To deliver greater power to such
devices in the factory without using excessively high voltages, technicians introduce
capacitance in the circuits to shift the phase.

Calculate the average power delivered to the series RLC
circuit described in Example 33.5.

Solution First, let us calculate the rms voltage and rms
current, using the values of !Vmax and Imax from Example
33.5:

I rms "
I max

√2
"

0.292 A

√2
" 0.206 A

!V rms "
!V max

√2
"

150 V

√2
" 106 V

Example 33.6 Average Power in an RLC Series Circuit

Because - " * 34.0°, the power factor is cos (* 34.0°) "
0.829; hence, the average power delivered is

!av " Irms !Vrms cos - " (0.206 A)(106 V)(0.829)

"

We can obtain the same result using Equation 33.32.

18.1 W

Resonance frequency



A plot of rms current versus frequency for a series RLC circuit is shown in Figure
33.19a. The data assume a constant !V rms " 5.0 mV, that L " 5.0 ,H, and that
C " 2.0 nF. The three curves correspond to three values of R . In each case, the current
reaches its maximum value at the resonance frequency #0. Furthermore, the curves
become narrower and taller as the resistance decreases.

By inspecting Equation 33.34, we must conclude that, when R " 0, the current
becomes infinite at resonance. However, real circuits always have some resistance,
which limits the value of the current to some finite value.

It is also interesting to calculate the average power as a function of frequency for a
series RLC circuit. Using Equations 33.32, 33.33, and 33.25, we find that

(33.36)

Because XL " #L, XC " 1/#C, and #0
2 " 1/LC , we can express the term (XL * XC)2 as

Using this result in Equation 33.36 gives

(33.37)

This expression shows that at resonance, when ! " !0, the average power is a
maximum and has the value (!Vrms)2/R . Figure 33.19b is a plot of average power

!av "
(∆Vrms)2 R#2

R 
2#2 $ L2(# 

2 * #0
2  )2

(XL * XC)2 " "#L *
1

#C #2
"  

L2

#2
 (#2 * # 2

0 )2

!av " I 
2
rms R "

(∆Vrms)2

Z 
2  R "

(∆Vrms)2 R
R 

2 $ (XL * XC)2
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Average power as a function of
frequency in an RLC circuit

frequency—which depends only on L and C. Furthermore, at this frequency the
current is in phase with the applied voltage.

Quick Quiz 33.9 The impedance of a series RLC circuit at resonance is
(a) larger than R (b) less than R (c) equal to R (d) impossible to determine.

1.4

1.2

1.0

0.8

0.6

0.4

0.2

9 10 11 12

7

6

5

4

3

2

1

9 10 11 128
 (Mrad/s)

I rms (mA) av (µW)µ!

0ω

(Mrad/s)ωω

ω0

(a) (b)

L      = 5.0 µH
C      = 2.0 nF
∆Vrms = 5.0 mV
ω 0    =  1.0 × 107 rad/s

µ

ω

L      = 5.0   H
C      = 2.0 nF
∆Vrms = 5.0 mV
  0    =  1.0 × 107 rad/s

µ

ω

R = 3.5 Ω

R = 5 Ω

R = 10 Ω

R = 10 Ω

R = 3.5 Ω

∆ω

Active Figure 33.19 (a) The rms current versus frequency for a series RLC circuit, for
three values of R . The current reaches its maximum value at the resonance frequency
#0. (b) Average power delivered to the circuit versus frequency for the series RLC
circuit, for two values of R .

At the Active Figures link
at http://www.pse6.com, you
can adjust the resistance, the
inductance, and the
capacitance of the circuit in
Figure 33.13a. You can then
determine the current and
power for a given frequency or
sweep through the frequencies
to generate resonance curves.



versus frequency for two values of R in a series RLC circuit. As the resistance is made
smaller, the curve becomes sharper in the vicinity of the resonance frequency. This
curve sharpness is usually described by a dimensionless parameter known as the
quality factor,3 denoted by Q :

where !# is the width of the curve measured between the two values of # for which !av
has half its maximum value, called the half-power points (see Fig. 33.19b.) It is left as
a problem (Problem 72) to show that the width at the half-power points has the value
!# " R/L, so

(33.38)

The curves plotted in Figure 33.20 show that a high-Q circuit responds to only a
very narrow range of frequencies, whereas a low-Q circuit can detect a much broader
range of frequencies. Typical values of Q in electronic circuits range from 10 to 100.

The receiving circuit of a radio is an important application of a resonant circuit.
One tunes the radio to a particular station (which transmits an electromagnetic wave
or signal of a specific frequency) by varying a capacitor, which changes the resonance
frequency of the receiving circuit. When the resonance frequency of the circuit
matches that of the incoming electromagnetic wave, the current in the receiving
circuit increases. This signal caused by the incoming wave is then amplified and fed to
a speaker. Because many signals are often present over a range of frequencies, it is
important to design a high-Q circuit to eliminate unwanted signals. In this manner,
stations whose frequencies are near but not equal to the resonance frequency give
signals at the receiver that are negligibly small relative to the signal that matches the
resonance frequency.

Q "
#0L

R

Q "
#0

∆#
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Consider a series RLC circuit for which R " 150 (, L "
20.0 mH, !Vrms " 20.0 V, and # " 5 000 s*1. Determine
the value of the capacitance for which the current is a
maximum.

Solution The current has its maximum value at the reso-
nance frequency #0, which should be made to match the
“driving” frequency of 5 000 s*1:

2.00 ,F"

C "
1

# 0
2L

"
1

(5.00 + 103 s*1)2(20.0 + 10*3 H)

# 0 " 5.00 + 103 s*1 "
1

√LC

Example 33.7 A Resonating Series RLC Circuit Interactive

At the Interactive Worked Example link at http://www.pse6.com, you can explore resonance in an RLC circuit.

Quality factor

3 The quality factor is also defined as the ratio 2%E/!E where E is the energy stored in the
oscillating system and !E is the energy decrease per cycle of oscillation due to the resistance.

Small R,
high Q

Large R,
low Q

∆ωω

ω0ω
ω

!av

Figure 33.20 Average power
versus frequency for a series RLC
circuit. The width !# of each curve
is measured between the two points
where the power is half its
maximum value. The power is a
maximum at the resonance
frequency # 0.

Quick Quiz 33.10 An airport metal detector (see page 1003) is essentially
a resonant circuit. The portal you step through is an inductor (a large loop of
conducting wire) within the circuit. The frequency of the circuit is tuned to its
resonance frequency when there is no metal in the inductor. Any metal on your body
increases the effective inductance of the loop and changes the current in it. If you want
the detector to detect a small metallic object, should the circuit have (a) a high quality
factor or (b) a low quality factor?



33.8 The Transformer and Power Transmission

As discussed in Section 27.6, when electric power is transmitted over great distances, it
is economical to use a high voltage and a low current to minimize the I 2R loss in the
transmission lines. Consequently, 350-kV lines are common, and in many areas even
higher-voltage (765-kV) lines are used. At the receiving end of such lines, the
consumer requires power at a low voltage (for safety and for efficiency in design).
Therefore, a device is required that can change the alternating voltage and current
without causing appreciable changes in the power delivered. The AC transformer is
that device.

In its simplest form, the AC transformer consists of two coils of wire wound
around a core of iron, as illustrated in Figure 33.21. (Compare this to Faraday’s
experiment in Figure 31.2.) The coil on the left, which is connected to the input
alternating voltage source and has N1 turns, is called the primary winding (or the
primary). The coil on the right, consisting of N2 turns and connected to a load resistor
R, is called the secondary winding (or the secondary). The purpose of the iron core is to
increase the magnetic flux through the coil and to provide a medium in which nearly
all the magnetic field lines through one coil pass through the other coil. Eddy-current
losses are reduced by using a laminated core. Iron is used as the core material because
it is a soft ferromagnetic substance and hence reduces hysteresis losses. Transformation
of energy to internal energy in the finite resistance of the coil wires is usually quite
small. Typical transformers have power efficiencies from 90% to 99%. In the discussion
that follows, we assume an ideal transformer, one in which the energy losses in the
windings and core are zero.

First, let us consider what happens in the primary circuit. If we assume that
the resistance of the primary is negligible relative to its inductive reactance, then
the primary circuit is equivalent to a simple circuit consisting of an inductor
connected to an AC source. Because the current is 90° out of phase with the voltage,
the power factor cos - is zero, and hence the average power delivered from the
source to the primary circuit is zero. Faraday’s law states that the voltage !V 1 across
the primary is

(33.39)

where 0B is the magnetic flux through each turn. If we assume that all magnetic
field lines remain within the iron core, the flux through each turn of the primary
equals the flux through each turn of the secondary. Hence, the voltage across the
secondary is

(33.40)

Solving Equation 33.39 for d0B/dt and substituting the result into Equation 33.40, we
find that

(33.41)

When N 2 ' N 1, the output voltage !V 2 exceeds the input voltage !V 1. This setup is
referred to as a step-up transformer. When N 2 . N 1, the output voltage is less than the
input voltage, and we have a step-down transformer.

When the switch in the secondary circuit is closed, a current I 2 is induced in the
secondary. If the load in the secondary circuit is a pure resistance, the induced
current is in phase with the induced voltage. The power supplied to the secondary
circuit must be provided by the AC source connected to the primary circuit, as
shown in Figure 33.22. In an ideal transformer, where there are no losses, the power

∆V 2 "
N 2

N 1
  !V 1

∆V 2 " *N 2 
d 0B

dt

∆V 1 " *N 1 
d 0B

dt
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Soft iron
S

R

Secondary
(output)

Primary
(input)

∆V1

N1 N2

Figure 33.21 An ideal transformer
consists of two coils wound on the
same iron core. An alternating
voltage !V1 is applied to the
primary coil, and the output
voltage !V2 is across the resistor of
resistance R.

N1 N2

∆V1

I1 I2

RL ∆V2

Figure 33.22 Circuit diagram for a
transformer.



I 1 !V 1 supplied by the source is equal to the power I 2 !V 2 in the secondary circuit.
That is,

I 1 !V 1 " I 2 !V 2 (33.42)

The value of the load resistance RL determines the value of the secondary current
because I 2 " !V 2/R L. Furthermore, the current in the primary is I 1 " !V 1/R eq,
where

(33.43)

is the equivalent resistance of the load resistance when viewed from the primary
side. From this analysis we see that a transformer may be used to match resis-
tances between the primary circuit and the load. In this manner, maximum power
transfer can be achieved between a given power source and the load resistance.
For example, a transformer connected between the 1-k( output of an audio
amplifier and an 8-( speaker ensures that as much of the audio signal as possible
is transferred into the speaker. In stereo terminology, this is called impedance
matching.

We can now also understand why transformers are useful for transmitting power
over long distances. Because the generator voltage is stepped up, the current in the
transmission line is reduced, and hence I 2R losses are reduced. In practice, the voltage
is stepped up to around 230 000 V at the generating station, stepped down to around
20 000 V at a distributing station, then to 4 000 V for delivery to residential areas, and
finally to 120–240 V at the customer’s site.

There is a practical upper limit to the voltages that can be used in transmission
lines. Excessive voltages could ionize the air surrounding the transmission lines,
which could result in a conducting path to ground or to other objects in the vicinity.
This, of course, would present a serious hazard to any living creatures. For this
reason, a long string of insulators is used to keep high-voltage wires away from their
supporting metal towers. Other insulators are used to maintain separation between
wires.

Many common household electronic devices require low voltages to operate
properly. A small transformer that plugs directly into the wall, like the one illustrated
in Figure 33.23, can provide the proper voltage. The photograph shows the two
windings wrapped around a common iron core that is found inside all these little
“black boxes.” This particular transformer converts the 120-V AC in the wall socket to
12.5-V AC. (Can you determine the ratio of the numbers of turns in the two coils?)
Some black boxes also make use of diodes to convert the alternating current to direct
current. (See Section 33.9.)

R eq " " N 1

N 2
#

2

 RL
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Nikola Tesla
American Physicist (1856–1943)

Tesla was born in Croatia but
spent most of his professional life
as an inventor in the United
States. He was a key figure in the
development of alternating current
electricity, high-voltage
transformers, and the transport of
electrical power using AC
transmission lines. Tesla’s
viewpoint was at odds with the
ideas of Thomas Edison, who
committed himself to the use
of direct current in power
transmission. Tesla’s AC approach
won out. (UPI/CORBIS)

Figure 33.23 The primary winding in this
transformer is directly attached to the prongs
of the plug. The secondary winding is
connected to the power cord on the right,
which runs to an electronic device. Many of
these power-supply transformers also convert
alternating current to direct current.

This transformer is smaller than
the one in the opening photograph
for this chapter. In addition, it is a
step-down transformer. It drops the
voltage from 4 000 V to 240 V for
delivery to a group of residences.
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33.9 Rectifiers and Filters

Portable electronic devices such as radios and compact disc (CD) players are often
powered by direct current supplied by batteries. Many devices come with AC–DC
converters such as that in Figure 33.23. Such a converter contains a transformer
that steps the voltage down from 120 V to typically 9 V and a circuit that converts
alternating current to direct current. The process of converting alternating
current to direct current is called rectification, and the converting device is called
a rectifier.

The most important element in a rectifier circuit is a diode, a circuit element that
conducts current in one direction but not the other. Most diodes used in modern
electronics are semiconductor devices. The circuit symbol for a diode is ,
where the arrow indicates the direction of the current in the diode. A diode has low
resistance to current in one direction (the direction of the arrow) and high resistance
to current in the opposite direction. We can understand how a diode rectifies a current
by considering Figure 33.24a, which shows a diode and a resistor connected to the
secondary of a transformer. The transformer reduces the voltage from 120-V AC to
the lower voltage that is needed for the device having a resistance R (the load resis-
tance). Because the diode conducts current in only one direction, the alternating
current in the load resistor is reduced to the form shown by the solid curve in Figure
33.24b. The diode conducts current only when the side of the symbol containing
the arrowhead has a positive potential relative to the other side. In this situation, the
diode acts as a half-wave rectifier because current is present in the circuit during only
half of each cycle.

When a capacitor is added to the circuit, as shown by the dashed lines and the
capacitor symbol in Figure 33.24a, the circuit is a simple DC power supply. The time
variation in the current in the load resistor (the dashed curve in Fig. 33.24b) is close to
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Example 33.8 The Economics of AC Power 

An electricity-generating station needs to deliver energy at a
rate of 20 MW to a city 1.0 km away.

(A) If the resistance of the wires is 2.0 ( and the energy
costs about 10¢/kWh, estimate what it costs the utility com-
pany for the energy converted to internal energy in the
wires during one day. A common voltage for commercial
power generators is 22 kV, but a step-up transformer is used
to boost the voltage to 230 kV before transmission.

Solution Conceptualize by noting that the resistance of the
wires is in series with the resistance representing the load
(homes and businesses). Thus, there will be a voltage drop
in the wires, which means that some of the transmitted
energy is converted to internal energy in the wires and
never reaches the load. Because this is an estimate, let us
categorize this as a problem in which the power factor is
equal to 1. To analyze the problem, we begin by calculating
I rms from Equation 33.31:

Now, we determine the rate at which energy is delivered to
the resistance in the wires from Equation 33.32:

!av " I 2
rmsR " (87 A)2(2.0 () " 15 kW

I rms "
!av

!V rms
"

20 + 106 W
230 + 103 V

" 87 A

Over the course of a day, the energy loss due to the
resistance of the wires is (15 kW)(24 h) " 360 kWh, at a

cost of

(B) Repeat the calculation for the situation in which the
power plant delivers the energy at its original voltage
of 22 kV.

Solution Again using Equation 33.31, we find

and, from Equation 33.32,

!av " I 2
rmsR " (910 A)2(2.0 () " 1.7 + 103 kW

Cost per day " (1.7 + 103 kW)(24 h)($0.10/kWh)

"

To finalize the example, note the tremendous savings that
are possible through the use of transformers and high-
voltage transmission lines. This, in combination with the
efficiency of using alternating current to operate motors,
led to the universal adoption of alternating current instead
of direct current for commercial power grids.

$4 100

I rms "
!av

!V rms
"

20 + 106 W
22 + 103 V

" 910 A

$36.



being zero, as determined by the RC time constant of the circuit. As the current in the
circuit begins to rise at t " 0 in Figure 33.24b, the capacitor charges up. When the
current begins to fall, however, the capacitor discharges through the resistor, so that
the current in the resistor does not fall as fast as the current from the transformer.

The RC circuit in Figure 33.24a is one example of a filter circuit, which is used to
smooth out or eliminate a time-varying signal. For example, radios are usually powered
by a 60-Hz alternating voltage. After rectification, the voltage still contains a small AC
component at 60 Hz (sometimes called ripple), which must be filtered. By “filtered,” we
mean that the 60-Hz ripple must be reduced to a value much less than that of the
audio signal to be amplified, because without filtering, the resulting audio signal
includes an annoying hum at 60 Hz.

We can also design filters that will respond differently to different frequencies.
Consider the simple series RC circuit shown in Figure 33.25a. The input voltage is across
the series combination of the two elements. The output is the voltage across the resistor. A
plot of the ratio of the output voltage to the input voltage as a function of the logarithm
of angular frequency (see Fig. 33.25b) shows that at low frequencies !Vout is much smaller
than !Vin, whereas at high frequencies the two voltages are equal. Because the circuit
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At the Active Figures link
at http://www.pse6.com, you
can adjust the resistance and
the capacitance of the circuit in
part (a). You can then
determine the output voltage
for a given frequency or sweep
through the frequencies to
generate a curve like that in
part (b).

Figure 33.24 (a) A half-wave rectifier with an optional filter capacitor. (b) Current
versus time in the resistor. The solid curve represents the current with no filter
capacitor, and the dashed curve is the current when the circuit includes the capacitor.

(b)

i

t

(a)

Primary
(input)

Diode

C R

(a) (b)

∆Vout/∆Vin

ω

1
C

R ∆Vout∆Vin

log

Active Figure 33.25 (a) A simple RC high-pass filter. (b) Ratio of output voltage to
input voltage for an RC high-pass filter as a function of the angular frequency of the
AC source.



preferentially passes signals of higher frequency while blocking low-frequency signals, the
circuit is called an RC high-pass filter. (See Problem 51 for an analysis of this filter.)

Physically, a high-pass filter works because a capacitor “blocks out” direct current
and AC current at low frequencies. At low frequencies, the capacitive reactance is large
and much of the applied voltage appears across the capacitor rather than across the
output resistor. As the frequency increases, the capacitive reactance drops and more of
the applied voltage appears across the resistor.

Now consider the circuit shown in Figure 33.26a, where we have interchanged the
resistor and capacitor and the output voltage is taken across the capacitor. At low
frequencies, the reactance of the capacitor and the voltage across the capacitor is high.
As the frequency increases, the voltage across the capacitor drops. Thus, this is an RC
low-pass filter. The ratio of output voltage to input voltage (see Problem 52), plotted as
a function of the logarithm of # in Figure 33.26b, shows this behavior.

You may be familiar with crossover networks, which are an important part of the
speaker systems for high-fidelity audio systems. These networks use low-pass filters to
direct low frequencies to a special type of speaker, the “woofer,” which is designed to
reproduce the low notes accurately. The high frequencies are sent to the “tweeter”
speaker.
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(a) (b)

∆Vout/∆Vin

1
R

C ∆Vout∆Vin

ωlog

At the Active Figures link
at http://www.pse6.com, you
can adjust the resistance and
the capacitance of the circuit in
part (a). You can then
determine the output voltage
for a given frequency or sweep
through the frequencies to
generate a curve like that in
part (b).

Active Figure 33.26 (a) A simple RC low-pass filter. (b) Ratio of output voltage to
input voltage for an RC low-pass filter as a function of the angular frequency of the
AC source.

Quick Quiz 33.11 Suppose you are designing a high-fidelity system
containing both large loudspeakers (woofers) and small loudspeakers (tweeters). If
you wish to deliver low-frequency signals to a woofer, what device would you place in
series with it? (a) an inductor (b) a capacitor (c) a resistor. If you wish to deliver high-
frequency signals to a tweeter, what device would you place in series with it? (d) an
inductor (e) a capacitor (f) a resistor.

If an AC circuit consists of a source and a resistor, the current is in phase with the
voltage. That is, the current and voltage reach their maximum values at the same time.

The rms current and rms voltage in an AC circuit in which the voltages and
current vary sinusoidally are given by the expressions

(33.4)

(33.5)

where Imax and !Vmax are the maximum values.

∆V rms "
∆V max

√2
" 0.707 ∆V max

I rms "
I max

√2
" 0.707I max

S U M M A RY

Take a practice test for
this chapter by clicking on
the Practice Test link at
http://www.pse6.com.



If an AC circuit consists of a source and an inductor, the current lags behind the
voltage by 90°. That is, the voltage reaches its maximum value one quarter of a period
before the current reaches its maximum value.

If an AC circuit consists of a source and a capacitor, the current leads the voltage by
90°. That is, the current reaches its maximum value one quarter of a period before the
voltage reaches its maximum value.

In AC circuits that contain inductors and capacitors, it is useful to define the
inductive reactance XL and the capacitive reactance XC as

XL $ #L (33.10)

(33.18)

where # is the angular frequency of the AC source. The SI unit of reactance is
the ohm.

The impedance Z of an RLC series AC circuit is

(33.25)

This expression illustrates that we cannot simply add the resistance and
reactances in a circuit. We must account for the fact that the applied voltage and
current are out of phase, with the phase angle - between the current and voltage
being

(33.27)

The sign of - can be positive or negative, depending on whether XL is greater or less
than XC . The phase angle is zero when XL " XC .

The average power delivered by the source in an RLC circuit is

(33.31)

An equivalent expression for the average power is

(33.32)

The average power delivered by the source results in increasing internal energy in the
resistor. No power loss occurs in an ideal inductor or capacitor.

The rms current in a series RLC circuit is

(33.34)

A series RLC circuit is in resonance when the inductive reactance equals the capacitive
reactance. When this condition is met, the current given by Equation 33.34 reaches its
maximum value. The resonance frequency #0 of the circuit is

(33.35)

The current in a series RLC circuit reaches its maximum value when the frequency
of the source equals #0—that is, when the “driving” frequency matches the resonance
frequency.

Transformers allow for easy changes in alternating voltage. Because energy (and
therefore power) are conserved, we can write

(33.42)

to relate the currents and voltages in the primary and secondary windings of a
transformer.

I 1 ∆V 1 " I 2 ∆V 2

# 0 "
1

√LC

I rms "
∆V rms

√R 
2 $ (XL * XC)2

!av " I 2
rms R

!av " I rms ∆V rms cos -

- " tan*1 " XL * XC

R #

Z $ √R 
2 $ (XL * XC)2

XC  $  
1

#C

Summary 1057
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1. How can the average value of a current be zero and yet
the square root of the average squared current not be
zero?

2. What is the time average of the “square-wave” potential
shown in Figure Q33.2? What is its rms voltage?

13. As shown in Figure 7.5a, a person pulls a vacuum
cleaner at speed v across a horizontal floor, exerting on
it a force of magnitude F directed upward at an angle
& with the horizontal. At what rate is the person doing
work on the cleaner? State as completely as you can
the analogy between power in this situation and in an
electric circuit.

14. A particular experiment requires a beam of light of very
stable intensity. Why would an AC voltage be unsuitable for
powering the light source?

15. Do some research to answer these questions: Who
invented the metal detector? Why? Did it work?

16. What is the advantage of transmitting power at high
voltages?

17. What determines the maximum voltage that can be used
on a transmission line?

Will a transformer operate if a battery is used for the input
voltage across the primary? Explain.

19. Someone argues that high-voltage power lines actually
waste more energy. He points out that the rate at
which internal energy is produced in a wire is given
by (!V )2/R , where R is the resistance of the wire.
Therefore, the higher the voltage, the higher the
energy waste. What if anything is wrong with his
argument?

20. Explain how the quality factor is related to the response
characteristics of a radio receiver. Which variable most
strongly influences the quality factor?

21. Why are the primary and secondary coils of a trans-
former wrapped on an iron core that passes through
both coils?

22. With reference to Figure Q33.22, explain why the capaci-
tor prevents a DC signal from passing between A and B, yet
allows an AC signal to pass from A to B. (The circuits are
said to be capacitively coupled.)

18.

Q U E S T I O N S

Figure Q33.2

Figure Q33.22

3. Do AC ammeters and voltmeters read maximum, rms, or
average values?

4. In the clearest terms you can, explain the statement,
“The voltage across an inductor leads the current
by 90°.”

5. Some fluorescent lights flicker on and off 120 times every
second. Explain what causes this. Why can’t you see it
happening?

6. Why does a capacitor act as a short circuit at high
frequencies? Why does it act as an open circuit at low
frequencies?

7. Explain how the mnemonic “ELI the ICE man” can
be used to recall whether current leads voltage or voltage
leads current in RLC circuits. Note that E represents
emf ).

8. Why is the sum of the maximum voltages across each
of the elements in a series RLC circuit usually greater
than the maximum applied voltage? Doesn’t this violate
Kirchhoff’s loop rule?

Does the phase angle depend on frequency? What is the
phase angle when the inductive reactance equals the
capacitive reactance?

10. In a series RLC circuit, what is the possible range of values
for the phase angle?

11. If the frequency is doubled in a series RLC circuit, what
happens to the resistance, the inductive reactance, and the
capacitive reactance?

12. Explain why the average power delivered to an RLC circuit
by the source depends on the phase angle between the
current and applied voltage.

9.

0

Vmax

t

∆v

∆

Signal

C
Circuit

A
Circuit

B



Problems 1059

Section 33.1 AC Sources

Section 33.2 Resistors in an AC Circuit

1. The rms output voltage of an AC source is 200 V and the
operating frequency is 100 Hz. Write the equation giving
the output voltage as a function of time.

2. (a) What is the resistance of a lightbulb that uses an
average power of 75.0 W when connected to a 60.0-Hz
power source having a maximum voltage of 170 V?
(b) What If? What is the resistance of a 100-W bulb?

3. An AC power supply produces a maximum voltage
!Vmax " 100 V. This power supply is connected to a 24.0-(
resistor, and the current and resistor voltage are measured
with an ideal AC ammeter and voltmeter, as shown in
Figure P33.3. What does each meter read? Note that an
ideal ammeter has zero resistance and that an ideal
voltmeter has infinite resistance.

7. An audio amplifier, represented by the AC source and
resistor in Figure P33.7, delivers to the speaker alternating
voltage at audio frequencies. If the source voltage has
an amplitude of 15.0 V, R " 8.20 (, and the speaker is
equivalent to a resistance of 10.4 (, what is the time-
averaged power transferred to it?

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide

= coached solution with hints available at http://www.pse6.com = computer useful in solving problem

= paired numerical and symbolic problems

P R O B L E M S

Note: Assume all AC voltages and currents are sinusoidal,
unless stated otherwise.

A

V

R = 24.0 Ω

∆Vmax = 100 V

Figure P33.3

120 V

Lamp
1

Lamp
2

Lamp
3

Figure P33.6

Speaker

R

Figure P33.7

4. In the simple AC circuit shown in Figure 33.2, R " 70.0 (
and !v " !Vmax sin #t. (a) If !vR " 0.250 !Vmax for the
first time at t " 0.010 0 s, what is the angular frequency of
the source? (b) What is the next value of t for which
!vR " 0.250 !Vmax?

The current in the circuit shown in Figure 33.2 equals
60.0% of the peak current at t " 7.00 ms. What is the
smallest frequency of the source that gives this current?

6. Figure P33.6 shows three lamps connected to a 120-V AC
(rms) household supply voltage. Lamps 1 and 2 have
150-W bulbs; lamp 3 has a 100-W bulb. Find the rms
current and resistance of each bulb.

5.

Section 33.3 Inductors in an AC Circuit

8. An inductor is connected to a 20.0-Hz power supply that
produces a 50.0-V rms voltage. What inductance is needed
to keep the instantaneous current in the circuit below
80.0 mA?

In a purely inductive AC circuit, as shown in Figure 33.6,
!Vmax " 100 V. (a) The maximum current is 7.50 A at
50.0 Hz. Calculate the inductance L. (b) What If? At what
angular frequency # is the maximum current 2.50 A?

10. An inductor has a 54.0-( reactance at 60.0 Hz. What is
the maximum current if this inductor is connected to a
50.0-Hz source that produces a 100-V rms voltage?

For the circuit shown in Figure 33.6, !Vmax " 80.0 V,
# " 65.0% rad/s, and L " 70.0 mH. Calculate the current
in the inductor at t " 15.5 ms.

12. A 20.0-mH inductor is connected to a standard electrical
outlet (!V rms " 120 V; f " 60.0 Hz). Determine the
energy stored in the inductor at t " (1/180) s, assuming
that this energy is zero at t " 0.

13. Review problem. Determine the maximum magnetic flux
through an inductor connected to a standard electrical
outlet (!V rms " 120 V, f " 60.0 Hz).

11.

9.
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Section 33.4 Capacitors in an AC Circuit

14. (a) For what frequencies does a 22.0-,F capacitor have a
reactance below 175 (? (b) What If? Over this same
frequency range, what is the reactance of a 44.0-,F
capacitor?

15. What is the maximum current in a 2.20-,F capacitor when
it is connected across (a) a North American electrical
outlet having !Vrms " 120 V, f " 60.0 Hz, and (b) What
If? a European electrical outlet having !Vrms " 240 V,
f " 50.0 Hz?

16. A capacitor C is connected to a power supply that operates
at a frequency f and produces an rms voltage !V. What
is the maximum charge that appears on either of the
capacitor plates?

What maximum current is delivered by an AC source with
!Vmax " 48.0 V and f " 90.0 Hz when connected across a
3.70-,F capacitor?

18. A 1.00-mF capacitor is connected to a standard electrical
outlet (!Vrms " 120 V; f " 60.0 Hz). Determine the
current in the capacitor at t " (1/180) s, assuming that at
t " 0, the energy stored in the capacitor is zero.

Section 33.5 The RLC Series Circuit

An inductor (L " 400 mH), a capacitor (C " 4.43 ,F),
and a resistor (R " 500 () are connected in series. A
50.0-Hz AC source produces a peak current of 250 mA in
the circuit. (a) Calculate the required peak voltage !Vmax.
(b) Determine the phase angle by which the current leads
or lags the applied voltage.

20. At what frequency does the inductive reactance of a 57.0-,H
inductor equal the capacitive reactance of a 57.0-,F
capacitor?

21. A series AC circuit contains the following components: 
R " 150 (, L " 250 mH, C " 2.00 ,F and a source
with !Vmax " 210 V operating at 50.0 Hz. Calculate
the (a) inductive reactance, (b) capacitive reactance,
(c) impedance, (d) maximum current, and (e) phase
angle between current and source voltage.

22. A sinusoidal voltage !v(t) " (40.0 V) sin(100t) is applied
to a series RLC circuit with L " 160 mH, C " 99.0 ,F, and
R " 68.0 (. (a) What is the impedance of the circuit?
(b) What is the maximum current? (c) Determine the
numerical values for Imax, #, and - in the equation
i(t) " Imax sin(#t * -).

An RLC circuit consists of a 150-( resistor, a 21.0-,F
capacitor, and a 460-mH inductor, connected in series with
a 120-V, 60.0-Hz power supply. (a) What is the phase angle
between the current and the applied voltage? (b) Which
reaches its maximum earlier, the current or the voltage?

24. Four circuit elements—a capacitor, an inductor, a resistor,
and an AC source—are connected together in various
ways. First the capacitor is connected to the source, and
the rms current is found to be 25.1 mA. The capacitor
is disconnected and discharged, and then connected in
series with the resistor and the source, making the rms
current 15.7 mA. The circuit is disconnected and the
capacitor discharged. The capacitor is then connected in

23.

19.

17.

series with the inductor and the source, making the rms
current 68.2 mA. After the circuit is disconnected and the
capacitor discharged, all four circuit elements are
connected together in a series loop. What is the rms
current in the circuit?

25. A person is working near the secondary of a transformer,
as shown in Figure P33.25. The primary voltage is 120 V at
60.0 Hz. The capacitance Cs, which is the stray capacitance
between the hand and the secondary winding, is 20.0 pF.
Assuming the person has a body resistance to ground 
Rb " 50.0 k(, determine the rms voltage across the body.
(Suggestion: Redraw the circuit with the secondary of the
transformer as a simple AC source.)

Figure P33.25

Figure P33.26 Problems 26 and 68.

Rb

Cs

5 000 V

 µ

a dcb

40.0 Ω 185 mH 65.0    F

26. An AC source with !Vmax " 150 V and f " 50.0 Hz is
connected between points a and d in Figure P33.26.
Calculate the maximum voltages between points (a) a and
b, (b) b and c, (c) c and d, and (d) b and d.

27. Draw to scale a phasor diagram showing Z , XL , XC , and -
for an AC series circuit for which R " 300 (, C " 11.0 ,F,
L " 0.200 H, and f " (500/%) Hz.

28. In an RLC series circuit that includes a source of alternat-
ing current operating at fixed frequency and voltage, the
resistance R is equal to the inductive reactance. If the plate
separation of the capacitor is reduced to half of its original
value, the current in the circuit doubles. Find the initial
capacitive reactance in terms of R. 

29. A coil of resistance 35.0 ( and inductance 20.5 H is in series
with a capacitor and a 200-V (rms), 100-Hz source. The rms
current in the circuit is 4.00 A. (a) Calculate the capaci-
tance in the circuit. (b) What is !Vrms across the coil?

Section 33.6 Power in an AC Circuit

30. The voltage source in Figure P33.30 has an output of 
!Vrms " 100 V at an angular frequency of # " 1 000 rad/s.
Determine (a) the current in the circuit and (b) the power
supplied by the source. (c) Show that the power delivered
to the resistor is equal to the power supplied by the source.



Problems 1061

Figure P33.30

Figure P33.36

An AC voltage of the form !v " (100 V) sin(1 000t)
is applied to a series RLC circuit. Assume the resistance is
400 (, the capacitance is 5.00 ,F, and the inductance is
0.500 H. Find the average power delivered to the circuit.

32. A series RLC circuit has a resistance of 45.0 ( and an
impedance of 75.0 (. What average power is delivered to
this circuit when !V rms " 210 V?

In a certain series RLC circuit, I rms " 9.00 A, !Vrms "
180 V, and the current leads the voltage by 37.0°. (a) What
is the total resistance of the circuit? (b) Calculate the
reactance of the circuit (XL * XC).

34. Suppose you manage a factory that uses many electric
motors. The motors create a large inductive load to the
electric power line, as well as a resistive load. The electric
company builds an extra-heavy distribution line to supply
you with a component of current that is 90° out of phase
with the voltage, as well as with current in phase with the
voltage. The electric company charges you an extra fee for
“reactive volt-amps,” in addition to the amount you pay for
the energy you use. You can avoid the extra fee by
installing a capacitor between the power line and your
factory. The following problem models this solution.

In an RL circuit, a 120-V (rms), 60.0-Hz source is in
series with a 25.0-mH inductor and a 20.0-( resistor. What
are (a) the rms current and (b) the power factor?
(c) What capacitor must be added in series to make the
power factor 1? (d) To what value can the supply voltage
be reduced, if the power supplied is to be the same as
before the capacitor was installed?

35. Suppose power ! is to be transmitted over a distance d at a
voltage !V with only 1.00% loss. Copper wire of what diam-
eter should be used for each of the two conductors of the
transmission line? Assume the current density in the con-
ductors is uniform.

36. A diode is a device that allows current to be carried in only
one direction (the direction indicated by the arrowhead in
its circuit symbol). Find in terms of !V and R the average
power delivered to the diode circuit of Figure P33.36.

33.

31.

Section 33.7 Resonance in a Series RLC Circuit

An RLC circuit is used in a radio to tune into an FM
station broadcasting at 99.7 MHz. The resistance in the
circuit is 12.0 (, and the inductance is 1.40 ,H. What
capacitance should be used?

38. The tuning circuit of an AM radio contains an LC combi-
nation. The inductance is 0.200 mH, and the capacitor is
variable, so that the circuit can resonate at any frequency
between 550 kHz and 1 650 kHz. Find the range of values
required for C.

39. A radar transmitter contains an LC circuit oscillating at
1.00 + 1010 Hz. (a) What capacitance will resonate with a
one-turn loop of inductance 400 pH at this frequency?
(b) If the capacitor has square parallel plates separated by
1.00 mm of air, what should the edge length of the plates
be? (c) What is the common reactance of the loop and
capacitor at resonance?

40. A series RLC circuit has components with following values:
L " 20.0 mH, C " 100 nF, R " 20.0 (, and !Vmax " 100 V,
with !v " !Vmax sin #t. Find (a) the resonant frequency,
(b) the amplitude of the current at the resonant
frequency, (c) the Q of the circuit, and (d) the amplitude
of the voltage across the inductor at resonance.

41. A 10.0-( resistor, 10.0-mH inductor, and 100-,F capacitor
are connected in series to a 50.0-V (rms) source having
variable frequency. Find the energy that is delivered to the
circuit during one period if the operating frequency is
twice the resonance frequency.

42. A resistor R, inductor L, and capacitor C are connected in
series to an AC source of rms voltage !V and variable
frequency. Find the energy that is delivered to the circuit
during one period if the operating frequency is twice the
resonance frequency.

43. Compute the quality factor for the circuits described
in Problems 22 and 23. Which circuit has the sharper
resonance?

Section 33.8 The Transformer and Power
Transmission 

44. A step-down transformer is used for recharging the
batteries of portable devices such as tape players. The
turns ratio inside the transformer is 13:1 and it is used with
120-V (rms) household service. If a particular ideal
transformer draws 0.350 A from the house outlet, what
are (a) the voltage and (b) the current supplied to a tape
player from the transformer? (c) How much power is
delivered?

A transformer has N1 " 350 turns and N2 " 2 000 turns. If
the input voltage is !v(t) " (170 V) cos #t, what rms
voltage is developed across the secondary coil?

46. A step-up transformer is designed to have an output voltage
of 2 200 V (rms) when the primary is connected across
a 110-V (rms) source. (a) If the primary winding has
80 turns, how many turns are required on the secondary?
(b) If a load resistor across the secondary draws a current
of 1.50 A, what is the current in the primary, assuming 
ideal conditions? (c) What If? If the transformer actually

45.

37.
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has an efficiency of 95.0%, what is the current in the pri-
mary when the secondary current is 1.20 A?

47. In the transformer shown in Figure P33.47, the load
resistor is 50.0 (. The turns ratio N1:N 2 is 5:2, and the
source voltage is 80.0 V (rms). If a voltmeter across the load
measures 25.0 V (rms), what is the source resistance Rs?

voltage is

(b) What value does this ratio approach as the frequency
decreases toward zero? What value does this ratio
approach as the frequency increases without limit? (c) At
what frequency is the ratio equal to one half?

The RC high-pass filter shown in Figure 33.25 has
a resistance R " 0.500 (. (a) What capacitance gives an
output signal that has half the amplitude of a 300-Hz input
signal? (b) What is the ratio (!V out/!V in) for a 600-Hz
signal? You may use the result of Problem 51.

54. The RC low-pass filter shown in Figure 33.26 has a
resistance R " 90.0 ( and a capacitance C " 8.00 nF.
Calculate the ratio (!V out/!V in) for an input frequency of
(a) 600 Hz and (b) 600 kHz. You may use the result of
Problem 52.

55. The resistor in Figure P33.55 represents the midrange
speaker in a three-speaker system. Assume its resistance to
be constant at 8.00 (. The source represents an audio
amplifier producing signals of uniform amplitude !V in "
10.0 V at all audio frequencies. The inductor and capacitor
are to function as a bandpass filter with !V out/!V in " 1/2
at 200 Hz and at 4 000 Hz. (a) Determine the required
values of L and C. (b) Find the maximum value of the ratio
!V out/!V in. (c) Find the frequency f 0 at which the ratio
has its maximum value. (d) Find the phase shift between
!V in and !V out at 200 Hz, at f 0 , and at 4 000 Hz. (e) Find
the average power transferred to the speaker at 200 Hz,
at f 0, and at 4 000 Hz. (f) Treating the filter as a resonant
circuit, find its quality factor.

53.

∆V out

∆V in
"

1/#C

√R 
2 $ " 1
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Figure P33.47

Figure P33.56

Figure P33.55

N2N1 RL∆Vs

Rs

R∆Vin

L C

∆Vout

Vmax

–

t

∆v

∆+

Vmax∆

48. The secondary voltage of an ignition transformer in a
furnace is 10.0 kV. When the primary operates at an rms
voltage of 120 V, the primary impedance is 24.0 ( and the
transformer is 90.0% efficient. (a) What turns ratio is
required? What are (b) the current in the secondary and
(c) the impedance in the secondary?

49. A transmission line that has a resistance per unit length of
4.50 + 10*4 (/m is to be used to transmit 5.00 MW over
400 miles (6.44 + 105 m). The output voltage of the
generator is 4.50 kV. (a) What is the line loss if a trans-
former is used to step up the voltage to 500 kV? (b) What
fraction of the input power is lost to the line under these
circumstances? (c) What If? What difficulties would be
encountered in attempting to transmit the 5.00 MW at the
generator voltage of 4.50 kV?

Section 33.9 Rectifiers and Filters

50. One particular plug-in power supply for a radio looks
similar to the one shown in Figure 33.23 and is marked
with the following information: Input 120 V AC 8 W
Output 9 V DC 300 mA. Assume that these values are
accurate to two digits. (a) Find the energy efficiency of
the device when the radio is operating. (b) At what rate
does the device produce wasted energy when the radio is
operating? (c) Suppose that the input power to the
transformer is 8.0 W when the radio is switched off and
that energy costs $0.135/kWh from the electric com-
pany. Find the cost of having six such transformers
around the house, plugged in for thirty-one days. 

51.Consider the filter circuit shown in Figure 33.25a.
(a) Show that the ratio of the output voltage to the input
voltage is

(b) What value does this ratio approach as the frequency
decreases toward zero? What value does this ratio
approach as the frequency increases without limit? (c) At
what frequency is the ratio equal to one half?

52. Consider the filter circuit shown in Figure 33.26a.
(a) Show that the ratio of the output voltage to the input

∆V out

∆V in
"

R

√R 
2 $ " 1

#C #2

Additional Problems

56. Show that the rms value for the sawtooth voltage shown in
Figure P33.56 is .!Vmax / √3

A series RLC circuit consists of an 8.00-( resistor, a
5.00-,F capacitor, and a 50.0-mH inductor. A variable

57.
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62. In the circuit shown in Figure P33.62, assume that all
parameters except for C are given. (a) Find the current as
a function of time. (b) Find the power delivered to the
circuit. (c) Find the current as a function of time after only
switch 1 is opened. (d) After switch 2 is also opened, the
current and voltage are in phase. Find the capacitance C .
(e) Find the impedance of the circuit when both switches
are open. (f) Find the maximum energy stored in the ca-
pacitor during oscillations. (g) Find the maximum energy
stored in the inductor during oscillations. (h) Now the fre-
quency of the voltage source is doubled. Find the phase
difference between the current and the voltage. (i) Find
the frequency that makes the inductive reactance half the
capacitive reactance.

frequency source applies an emf of 400 V (rms) across the
combination. Determine the power delivered to the circuit
when the frequency is equal to half the resonance
frequency.

58. A capacitor, a coil, and two resistors of equal resistance are
arranged in an AC circuit, as shown in Figure P33.58. An
AC source provides an emf of 20.0 V (rms) at a frequency
of 60.0 Hz. When the double-throw switch S is open, as
shown in the figure, the rms current is 183 mA. When the
switch is closed in position 1, the rms current is 298 mA.
When the switch is closed in position 2, the rms current is
137 mA. Determine the values of R, C, and L. Is more than
one set of values possible?

Figure P33.61

Figure P33.62

Figure P33.64
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59. To determine the inductance of a coil used in a research
project, a student first connects the coil to a 12.0-V battery
and measures a current of 0.630 A. The student then
connects the coil to a 24.0-V (rms), 60.0-Hz generator
and measures an rms current of 0.570 A. What is the
inductance?

60. Review problem. One insulated conductor from a house-
hold extension cord has mass per length 19.0 g/m. A
section of this conductor is held under tension between
two clamps. A subsection is located in a region of magnetic
field of magnitude 15.3 mT perpendicular to the length of
the cord. The wire carries an AC current of 9.00 A at
60.0 Hz. Determine some combination of values for the
distance between the clamps and the tension in the cord
so that the cord can vibrate in the lowest-frequency
standing-wave vibrational state.

61. In Figure P33.61, find the rms current delivered by the
45.0-V (rms) power supply when (a) the frequency is very
large and (b) the frequency is very small.

63. An 80.0-( resistor and a 200-mH inductor are connected
in parallel across a 100-V (rms), 60.0-Hz source. (a) What is
the rms current in the resistor? (b) By what angle does the
total current lead or lag behind the voltage?

64. Make an order-of-magnitude estimate of the electric
current that the electric company delivers to a town (Figure
P33.64) from a remote generating station. State the data
you measure or estimate. If you wish, you may consider a
suburban bedroom community of 20 000 people.

Consider a series RLC circuit having the following circuit
parameters: R " 200 (, L " 663 mH, and C " 26.5 ,F.
The applied voltage has an amplitude of 50.0 V and a
frequency of 60.0 Hz. Find the following amplitudes:
(a) The current Imax, including its phase constant -
relative to the applied voltage !v, (b) the voltage !VR

65.
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across the resistor and its phase relative to the current,
(c) the voltage !VC across the capacitor and its phase
relative to the current, and (d) the voltage !VL across the
inductor and its phase relative to the current.

66. A voltage !v " (100 V) sin #t (in SI units) is applied
across a series combination of a 2.00-H inductor, a 10.0-,F
capacitor, and a 10.0-( resistor. (a) Determine the angular
frequency #0 at which the power delivered to the resistor
is a maximum. (b) Calculate the power delivered at that
frequency. (c) Determine the two angular frequencies #1
and #2 at which the power is half the maximum value.
[The Q of the circuit is #0/(#2 * #1).]

Impedance matching. Example 28.2 showed that maximum
power is transferred when the internal resistance of a DC
source is equal to the resistance of the load. A transformer
may be used to provide maximum power transfer between
two AC circuits that have different impedances Z1 and Z2,
where 1 and 2 are subscripts and the Z’s are italic (as in
the centered equation). (a) Show that the ratio of turns
N1/N2 needed to meet this condition is 

(b) Suppose you want to use a transformer as an impedance-
matching device between an audio amplifier that has an
output impedance of 8.00 k( and a speaker that has an
input impedance of 8.00 (. What should your N 1/N 2
ratio be?

68. A power supply with !V rms " 120 V is connected between
points a and d in Figure P33.26. At what frequency will it
deliver a power of 250 W?

69. Figure P33.69a shows a parallel RLC circuit, and the corre-
sponding phasor diagram is given in Figure P33.69b. The
instantaneous voltages (and rms voltages) across each of
the three circuit elements are the same, and each is in

N 1

N 2
" √ Z1

Z 2

67.

phase with the current through the resistor. The currents
in C and L lead or lag behind the current in the resistor, as
shown in Figure P33.69b. (a) Show that the rms current
delivered by the source is

(b) Show that the phase angle - between !V rms and I rms is 

70. An 80.0-( resistor, a 200-mH inductor, and a 0.150-,F
capacitor are connected in parallel across a 120-V (rms)
source operating at 374 rad/s. (a) What is the resonant
frequency of the circuit? (b) Calculate the rms current in
the resistor, inductor, and capacitor. (c) What rms current
is delivered by the source? (d) Is the current leading or
lagging behind the voltage? By what angle?

71. A series RLC circuit is operating at 2 000 Hz. At this
frequency, XL " XC " 1 884 (. The resistance of the
circuit is 40.0 (. (a) Prepare a table showing the values of
XL, XC , and Z for f " 300, 600, 800, 1 000, 1 500, 2 000,
3 000, 4 000, 6 000, and 10 000 Hz. (b) Plot on the same set
of axes XL , XC , and Z as a function of ln f.

A series RLC circuit in which R " 1.00 (, L "
1.00 mH, and C " 1.00 nF is connected to an AC source
delivering 1.00 V (rms). Make a precise graph of the
power delivered to the circuit as a function of the
frequency and verify that the full width of the resonance
peak at half-maximum is R/2%L.

73. Suppose the high-pass filter shown in Figure 33.25 has
R " 1 000 ( and C " 0.050 0 ,F. (a) At what frequency
does !Vout/!V in " ? (b) Plot log10(!Vout/!V in) versus
log10( f ) over the frequency range from 1 Hz to 1 MHz.
(This log–log plot of gain versus frequency is known as a
Bode plot.)

Answers to Quick Quizzes

33.1 (a). The phasor in part (a) has the largest projection
onto the vertical axis.

33.2 (b). The phasor in part (b) has the smallest-magnitude
projection onto the vertical axis.

33.3 (c). The average power is proportional to the rms
current, which, as Figure 33.5 shows, is nonzero even
though the average current is zero. Condition (a) is valid
only for an open circuit, and conditions (b) and (d) can
not be true because iav " 0 if the source is sinusoidal.

33.4 (b). For low frequencies, the reactance of the inductor is
small so that the current is large. Most of the voltage
from the source is across the bulb, so the power
delivered to it is large.

33.5 (a). For high frequencies, the reactance of the capacitor
is small so that the current is large. Most of the voltage
from the source is across the bulb, so the power
delivered to it is large.

33.6 (b). For low frequencies, the reactance of the capacitor
is large so that very little current exists in the capacitor

1
2
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branch. The reactance of the inductor is small so that
current exists in the inductor branch and the lightbulb
glows. As the frequency increases, the inductive reac-
tance increases and the capacitive reactance decreases.
At high frequencies, more current exists in the capacitor
branch than the inductor branch and the lightbulb
glows more dimly. 

33.7 (a) XL . XC . (b) XL " XC . (c) XL ' XC .

33.8 (c). The cosine of * - is the same as that of $-, so the
cos - factor in Equation 33.31 is the same for both
frequencies. The factor !Vrms is the same because the
source voltage is fixed. According to Equation 33.27,
changing $ - to * - simply interchanges the values of
XL and XC . Equation 33.25 tells us that such an
interchange does not affect the impedance, so that the
current I rms in Equation 33.31 is the same for both
frequencies.

33.9 (c). At resonance, XL " XC. According to Equation
33.25, this gives us Z " R.

33.10(a). The higher the quality factor, the more sensitive the
detector. As you can see from Figure 33.19, when Q "
#0/!# is high, a slight change in the resonance
frequency (as might happen when a small piece of metal
passes through the portal) causes a large change in
current that can be detected easily.

33.11(a) and (e). The current in an inductive circuit
decreases with increasing frequency (see Eq. 33.9). Thus,
an inductor connected in series with a woofer blocks
high-frequency signals and passes low-frequency signals.
The current in a capacitive circuit increases with
increasing frequency (see Eq. 33.17). When a capacitor
is connected in series with a tweeter, the capacitor blocks
low-frequency signals and passes high-frequency signals.
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! Electromagnetic waves cover a broad spectrum of wavelengths, with waves in various
wavelength ranges having distinct properties. These images of the Crab Nebula show
different structure for observations made with waves of various wavelengths. The images
(clockwise starting from the upper left) were taken with x-rays, visible light, radio waves, and
infrared waves. (upper left—NASA/CXC/SAO; upper right—Palomar Observatory; lower
right—VLA/NRAO; lower left—WM Keck Observatory)
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The waves described in Chapters 16, 17, and 18 are mechanical waves. By definition,
the propagation of mechanical disturbances—such as sound waves, water waves, and
waves on a string—requires the presence of a medium. This chapter is concerned with
the properties of electromagnetic waves, which (unlike mechanical waves) can propa-
gate through empty space.

In Section 31.7 we gave a brief description of Maxwell’s equations, which form the
theoretical basis of all electromagnetic phenomena. The consequences of Maxwell’s
equations are far-reaching and dramatic. The Ampère–Maxwell law predicts that a
time-varying electric field produces a magnetic field, just as Faraday’s law tells us that a
time-varying magnetic field produces an electric field.

Astonishingly, Maxwell’s equations also predict the existence of electromagnetic
waves that propagate through space at the speed of light c. This chapter begins with a
discussion of how Heinrich Hertz confirmed Maxwell’s prediction when he generated
and detected electromagnetic waves in 1887. That discovery has led to many practical
communication systems, including radio, television, radar, and opto-electronics. On a
conceptual level, Maxwell unified the subjects of light and electromagnetism by devel-
oping the idea that light is a form of electromagnetic radiation.

Next, we learn how electromagnetic waves are generated by oscillating electric
charges. The waves consist of oscillating electric and magnetic fields at right angles to
each other and to the direction of wave propagation. Thus, electromagnetic waves are
transverse waves. The waves radiated from the oscillating charges can be detected at
great distances. Furthermore, electromagnetic waves carry energy and momentum and
hence can exert pressure on a surface.

The chapter concludes with a look at the wide range of frequencies covered by
electromagnetic waves. For example, radio waves (frequencies of about 107 Hz) are
electromagnetic waves produced by oscillating currents in a radio tower’s transmitting
antenna. Light waves are a high-frequency form of electromagnetic radiation (about
1014 Hz) produced by oscillating electrons in atoms.

34.1 Maxwell’s Equations and Hertz’s 
Discoveries

In his unified theory of electromagnetism, Maxwell showed that electromagnetic waves
are a natural consequence of the fundamental laws expressed in the following four
equations (see Section 31.7):

(34.1)

(34.2)!  B !d A " 0 

!  E!d A "
q
#0

 

James Clerk
Maxwell
Scottish Theoretical Physicist
(1831–1879)

Maxwell developed the
electromagnetic theory of light
and the kinetic theory of gases,
and explained the nature of
Saturn’s rings and color vision.
Maxwell’s successful
interpretation of the
electromagnetic field resulted in
the field equations that bear his
name. Formidable mathematical
ability combined with great
insight enabled him to lead the
way in the study of
electromagnetism and kinetic
theory. He died of cancer before
he was 50. (North Wind Picture
Archives)

Maxwell’s equations



(34.3)

(34.4)

In the next section we show that Equations 34.3 and 34.4 can be combined to obtain a
wave equation for both the electric field and the magnetic field. In empty space, where
q " 0 and I " 0, the solution to these two equations shows that the speed at which
electromagnetic waves travel equals the measured speed of light. This result led
Maxwell to predict that light waves are a form of electromagnetic radiation.

The experimental apparatus that Hertz used to generate and detect electromag-
netic waves is shown schematically in Figure 34.1. An induction coil is connected to a
transmitter made up of two spherical electrodes separated by a narrow gap. The coil
provides short voltage surges to the electrodes, making one positive and the other neg-
ative. A spark is generated between the spheres when the electric field near either
electrode surpasses the dielectric strength for air (3 $ 106 V/m; see Table 26.1). In a
strong electric field, the acceleration of free electrons provides them with enough
energy to ionize any molecules they strike. This ionization provides more electrons,
which can accelerate and cause further ionizations. As the air in the gap is ionized, it
becomes a much better conductor, and the discharge between the electrodes exhibits
an oscillatory behavior at a very high frequency. From an electric-circuit viewpoint, this
is equivalent to an LC circuit in which the inductance is that of the coil and the capaci-
tance is due to the spherical electrodes.

Because L and C are small in Hertz’s apparatus, the frequency of oscillation is high,
on the order of 100 MHz. (Recall from Eq. 32.22 that for an LC circuit.)
Electromagnetic waves are radiated at this frequency as a result of the oscillation (and
hence acceleration) of free charges in the transmitter circuit. Hertz was able to detect
these waves using a single loop of wire with its own spark gap (the receiver). Such a
receiver loop, placed several meters from the transmitter, has its own effective induc-
tance, capacitance, and natural frequency of oscillation. In Hertz’s experiment, sparks
were induced across the gap of the receiving electrodes when the frequency of the
receiver was adjusted to match that of the transmitter. Thus, Hertz demonstrated that
the oscillating current induced in the receiver was produced by electromagnetic waves
radiated by the transmitter. His experiment is analogous to the mechanical phenome-
non in which a tuning fork responds to acoustic vibrations from an identical tuning
fork that is oscillating.

% " 1/√LC

!  B !d s " &0I ' &0#0 
d (E

dt

!  E!d s " )
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dt
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Figure 34.1 Schematic diagram of Hertz’s apparatus for
generating and detecting electromagnetic waves. The trans-
mitter consists of two spherical electrodes connected to an
induction coil, which provides short voltage surges to the
spheres, setting up oscillations in the discharge between the
electrodes. The receiver is a nearby loop of wire containing
a second spark gap.

Heinrich Rudolf
Hertz
German Physicist (1857–1894)

Hertz made his most important
discovery of electromagnetic
waves in 1887. After finding that
the speed of an electromagnetic
wave was the same as that of
light, Hertz showed that
electromagnetic waves, like light
waves, could be reflected,
refracted, and diffracted. Hertz
died of blood poisoning at the
age of 36. During his short life,
he made many contributions to
science. The hertz, equal to one
complete vibration or cycle per
second, is named after him.
(Hulton-Deutsch
Collection/CORBIS )



Additionally, Hertz showed in a series of experiments that the radiation generated
by his spark-gap device exhibited the wave properties of interference, diffraction,
reflection, refraction, and polarization, all of which are properties exhibited by light,
as we shall see in Part 5 of the text. Thus, it became evident that the radio-frequency
waves Hertz was generating had properties similar to those of light waves and differed
only in frequency and wavelength. Perhaps his most convincing experiment was the
measurement of the speed of this radiation. Waves of known frequency were reflected
from a metal sheet and created a standing-wave interference pattern whose nodal
points could be detected. The measured distance between the nodal points enabled
determination of the wavelength *. Using the relationship v " *f (Eq. 16.12), Hertz
found that v was close to 3 $ 108 m/s, the known speed c of visible light.

34.2 Plane Electromagnetic Waves

The properties of electromagnetic waves can be deduced from Maxwell’s equations. One
approach to deriving these properties is to solve the second-order differential equation
obtained from Maxwell’s third and fourth equations. A rigorous mathematical treatment
of that sort is beyond the scope of this text. To circumvent this problem, we assume that
the vectors for the electric field and magnetic field in an electromagnetic wave have a
specific space–time behavior that is simple but consistent with Maxwell’s equations.

To understand the prediction of electromagnetic waves more fully, let us focus our
attention on an electromagnetic wave that travels in the x direction (the direction of
propagation). In this wave, the electric field E is in the y direction, and the magnetic
field B is in the z direction, as shown in Figure 34.2. Waves such as this one, in which
the electric and magnetic fields are restricted to being parallel to a pair of perpendicu-
lar axes, are said to be linearly polarized waves. Furthermore, we assume that at any
point in space, the magnitudes E and B of the fields depend upon x and t only, and not
upon the y or z coordinate.

Let us also imagine that the source of the electromagnetic waves is such that a wave
radiated from any position in the yz plane (not just from the origin as might be sug-
gested by Figure 34.2) propagates in the x direction, and all such waves are emitted in
phase. If we define a ray as the line along which the wave travels, then all rays for these
waves are parallel. This entire collection of waves is often called a plane wave. A
surface connecting points of equal phase on all waves, which we call a wave front, as
introduced in Chapter 17, is a geometric plane. In comparison, a point source of radia-
tion sends waves out radially in all directions. A surface connecting points of equal
phase for this situation is a sphere, so this is called a spherical wave.

We can relate E and B to each other with Equations 34.3 and 34.4. In empty space,
where q " 0 and I " 0, Equation 34.3 remains unchanged and Equation 34.4 becomes

(34.5)

Using Equations 34.3 and 34.5 and the plane-wave assumption, we obtain the following
differential equations relating E and B. (We shall derive these equations formally later
in this section.)

(34.6)

(34.7)

Note that the derivatives here are partial derivatives. For example, when we evaluate
+E/+x, we assume that t is constant. Likewise, when we evaluate +B/+t, x is held
constant. Taking the derivative of Equation 34.6 with respect to x and combining the

+B
+x

" )&0 #0 
+E
+t

+E
+x

" )
+B
+t

!  B !d s " #0 &0 
d (E

dt
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y

E
E

c

Bz
c

x
B

Figure 34.2 An electromagnetic
wave traveling at velocity c in the
positive x direction. The electric
field is along the y direction, and
the magnetic field is along the z di-
rection. These fields depend only
on x and t.

! PITFALL PREVENTION 
34.1 What Is “a” Wave?
A sticky point in these types of
discussions is what we mean by a
single wave. We could define one
wave as that which is emitted by a
single charged particle. In
practice, however, the word wave
represents both the emission
from a single point (“wave radiated
from any position in the yz
plane”) and the collection of
waves from all points on the
source (“plane wave”). You
should be able to use this term in
both ways and to understand its
meaning from the context.



result with Equation 34.7, we obtain

(34.8)

In the same manner, taking the derivative of Equation 34.7 with respect to x and com-
bining it with Equation 34.6, we obtain

(34.9)

Equations 34.8 and 34.9 both have the form of the general wave equation1 with the
wave speed v replaced by c, where

(34.10)

Taking &0 " 4, $ 10)7 T ! m/A and #0 " 8.854 19 $ 10)12 C2/N ! m2 in Equation
34.10, we find that c " 2.997 92 $ 108 m/s. Because this speed is precisely the same as
the speed of light in empty space, we are led to believe (correctly) that light is an elec-
tromagnetic wave.

The simplest solution to Equations 34.8 and 34.9 is a sinusoidal wave, for which the
field magnitudes E and B vary with x and t according to the expressions

(34.11)

(34.12)

where Emax and Bmax are the maximum values of the fields. The angular wave number
is k " 2,/*, where * is the wavelength. The angular frequency is % " 2,f, where f is
the wave frequency. The ratio %/k equals the speed of an electromagnetic wave, c :

where we have used Equation 16.12, v " c " *f, which relates the speed, frequency,
and wavelength of any continuous wave. Thus, for electromagnetic waves, the
wavelength and frequency of these waves are related by

(34.13)

Figure 34.3a is a pictorial representation, at one instant, of a sinusoidal, linearly
polarized plane wave moving in the positive x direction. Figure 34.3b shows how the
electric and magnetic field vectors at a fixed location vary with time.

Taking partial derivatives of Equations 34.11 (with respect to x) and 34.12 (with
respect to t), we find that

+B
+t

" %B max sin(kx ) %t)

+E
+x

" )k E max sin(kx ) %t)

* "
c
f

"
3.00 $ 108 m/s

f

%

k
"

2,f
2,/*

" *f " c

B " B max cos(kx ) %t)

E " E max cos(kx ) %t)

c "
1

√&0#0

+2B
+x 

2 " &0#0 
+2B
+t2

+2E
+x 

2 " &0#0 
+2E
+t2

+2E
+x 

2 " )
+

+x
 " +B

+t # " )
+

+t
 " +B

+x # " )
+

+t
 ")&0#0 

+E
+t #
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Speed of electromagnetic
waves

1 The general wave equation is of the form (+2y/+x2) " (1/v2)(+2y/+t2) where v is the speed of the
wave and y is the wave function. The general wave equation was introduced as Equation 16.27, and it
would be useful for you to review Section 16.6.

Sinusoidal electric and
magnetic fields



Substituting these results into Equation 34.6, we find that at any instant

Using these results together with Equations 34.11 and 34.12, we see that

(34.14)

That is, at every instant the ratio of the magnitude of the electric field to the
magnitude of the magnetic field in an electromagnetic wave equals the speed of
light.

Finally, note that electromagnetic waves obey the superposition principle (which
we discussed in Section 18.1 with respect to mechanical waves) because the differential
equations involving E and B are linear equations. For example, we can add two waves
with the same frequency and polarization simply by adding the magnitudes of the two
electric fields algebraically.

Let us summarize the properties of electromagnetic waves as we have described them:

• The solutions of Maxwell’s third and fourth equations are wave-like, with both E
and B satisfying a wave equation.

• Electromagnetic waves travel through empty space at the speed of light 

• The components of the electric and magnetic fields of plane electromagnetic waves
are perpendicular to each other and perpendicular to the direction of wave propa-
gation. We can summarize the latter property by saying that electromagnetic waves
are transverse waves.

c " 1/√#0 &0.

E max

B max
"

E
B

" c

E max

B max
"

%

k
" c

k E max " %B max
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! PITFALL PREVENTION 
34.2 E Stronger Than B?
Because the value of c is so large,
some students incorrectly inter-
pret Equation 34.14 as meaning
that the electric field is much
stronger than the magnetic field.
Electric and magnetic fields are
measured in different units, how-
ever, so they cannot be directly
compared. In Section 34.3, we
find that the electric and mag-
netic fields contribute equally to
the energy of the wave.

(b)
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z

y

z

y

z
B

E

y

z

y
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y

z

y

z

y

z

y

z

y

z

y

z

E

B

c

y

x

z

(a)

Active Figure 34.3 Representation of a sinusoidal, linearly polarized plane
electromagnetic wave moving in the positive x direction with velocity c. (a) The wave at
some instant. Note the sinusoidal variations of E and B with x. (b) A time sequence
(starting at the upper left) illustrating the electric and magnetic field vectors at a fixed
point in the yz plane, as seen by an observer looking in the negative x direction. The
variations of E and B with t are sinusoidal.

At the Active Figures link
at http://www.pse6.com, you
can observe the wave in part
(a) and the variation of the
fields in part (b). In addition,
you can take a “snapshot” of
the wave at an instant of time
and investigate the electric and
magnetic fields at that instant.

Properties of electromagnetic
waves



• The magnitudes of E and B in empty space are related by the expression
E/B " c.

• Electromagnetic waves obey the principle of superposition.
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Quick Quiz 34.1 What is the phase difference between the sinusoidal
oscillations of the electric and magnetic fields in Figure 34.3? (a) 180° (b) 90° (c) 0
(d) impossible to determine.

Example 34.1 An Electromagnetic Wave

(B) At some point and at some instant, the electric field has
its maximum value of 750 N/C and is along the y axis. Cal-
culate the magnitude and direction of the magnetic field at
this position and time.

Solution From Equation 34.14 we see that

Because E and B must be perpendicular to each
other and perpendicular to the direction of wave propa-
gation (x in this case), we conclude that B is in the z
direction.

(C) Write expressions for the space–time variation of the
components of the electric and magnetic fields for this
wave.

Solution We can apply Equations 34.11 and 34.12 directly:

where

k "
2,

*
"

2,

7.50 m
" 0.838 rad/m

% " 2,f " 2,(4.00 $ 107 s)1) " 2.51 $ 108 rad/s

B " B max cos(kx ) %t) " (2.50 $ 10)6 T) cos(kx ) %t)

E " E max cos(kx ) %t) " (750 N/C) cos(kx ) %t)

2.50 $ 10)6 TB max "
E max

c
"

750 N/C
3.00 $ 108 m/s

"

A sinusoidal electromagnetic wave of frequency 40.0 MHz
travels in free space in the x direction, as in Figure 34.4.

(A) Determine the wavelength and period of the wave.

Solution Using Equation 34.13 for light waves and given
that f " 40.0 MHz " 4.00 $ 107 s)1, we have

The period T of the wave is the inverse of the frequency:

2.50 $ 10)8 s- "
1
f

"
1

4.00 $ 107 s)1 "

7.50 m* "
c
f

"
3.00 $ 108 m/s
4.00 $ 107 s)1 "

B c x

y

E = 750j  N/C

z

ˆ

Figure 34.4 (Example 34.1) At some instant, a plane electro-
magnetic wave moving in the x direction has a maximum
electric field of 750 N/C in the positive y direction. The
corresponding magnetic field at that point has a magnitude E/c
and is in the z direction.

Explore electromagnetic waves of different frequencies at the Interactive Worked Example link at http://www.pse6.com.

Interactive

Derivation of Equations 34.6 and 34.7

To derive Equation 34.6, we start with Faraday’s law, Equation 34.3:

Let us again assume that the electromagnetic wave is traveling in the x direction, with
the electric field E in the positive y direction and the magnetic field B in the positive z
direction.

!  E!d s " )
d (B

dt



Consider a rectangle of width dx and height ! lying in the xy plane, as shown in
Figure 34.5. To apply Equation 34.3, we must first evaluate the line integral of E ! ds
around this rectangle. The contributions from the top and bottom of the rectangle are
zero because E is perpendicular to ds for these paths. We can express the electric field
on the right side of the rectangle as

while the field on the left side2 is simply E(x, t). Therefore, the line integral over this
rectangle is approximately

(34.15)

Because the magnetic field is in the z direction, the magnetic flux through the rectangle
of area ! dx is approximately (B " B ! dx. (This assumes that dx is very small compared
with the wavelength of the wave.) Taking the time derivative of the magnetic flux gives

(34.16)

Substituting Equations 34.15 and 34.16 into Equation 34.3 gives

This expression is Equation 34.6.
In a similar manner, we can verify Equation 34.7 by starting with Maxwell’s fourth

equation in empty space (Eq. 34.5). In this case, the line integral of B !ds is evaluated
around a rectangle lying in the xz plane and having width dx and length !, as in Figure
34.6. Noting that the magnitude of the magnetic field changes from B(x, t) to B(x ' dx, t)
over the width dx and that the direction in which we take the line integral is as shown in
Figure 34.6, the line integral over this rectangle is found to be approximately

(34.17)

The electric flux through the rectangle is (E " E! dx, which, when differentiated with
respect to time, gives

(34.18)

Substituting Equations 34.17 and 34.18 into Equation 34.5 gives

which is Equation 34.7.

 
+B
+x

" )&0#0 
+E
+t

 

)! " +B
+x # dx " &0#0 ! dx  " +E

+t #

+ (E

+t
" ! dx  

+E
+t

! B !d s " [B(x, t)]! ) [B(x ' dx, t)]! $ )! " +B
+x # dx

 
+E
+x

" )
+B
+t

 

! " +E
+x # dx " )! dx  

+B
+t

d (B

dt
" ! dx  

dB
dt %x constant

" ! dx  
+B
+t

! E!d s " [E(x ' dx, t)]! ) [E(x, t)]! $ ! " +E
+x # dx

E(x ' dx, t) $ E(x, t) '
d E
dx %

t constant
dx " E(x, t) '

+E
+x

 dx
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E + dE
E

dx

!

y

xz
B

Figure 34.5 At an instant when a
plane wave moving in the ' x
direction passes through a
rectangular path of width dx lying in
the xy plane, the electric field in the
y direction varies from E to E ' d E.
This spatial variation in E gives rise
to a time-varying magnetic field
along the z direction, according to
Equation 34.6.

2 Because dE/dx in this equation is expressed as the change in E with x at a given instant t, dE/dx is
equivalent to the partial derivative +E/+x. Likewise, dB/dt means the change in B with time at a particu-
lar position x, so in Equation 34.16 we can replace dB/dt with +B/+t.

B

E

B + dB

dx

z

y

x

!

Figure 34.6 At an instant when a
plane wave passes through a
rectangular path of width dx lying
in the xz plane, the magnetic field
in the z direction varies from B to 
B ' d B. This spatial variation in B
gives rise to a time-varying electric
field along the y direction,
according to Equation 34.7.



34.3 Energy Carried by Electromagnetic Waves

Electromagnetic waves carry energy, and as they propagate through space they can
transfer energy to objects placed in their path. The rate of flow of energy in an electro-
magnetic wave is described by a vector S, called the Poynting vector, which is defined
by the expression

(34.19)

The magnitude of the Poynting vector represents the rate at which energy flows
through a unit surface area perpendicular to the direction of wave propagation. Thus,
the magnitude of the Poynting vector represents power per unit area. The direction of
the vector is along the direction of wave propagation (Fig. 34.7). The SI units of the
Poynting vector are J/s ! m2 " W/m2.

As an example, let us evaluate the magnitude of S for a plane electromagnetic wave
where & E ! B & " EB. In this case,

(34.20)

Because B " E/c, we can also express this as

These equations for S apply at any instant of time and represent the instantaneous rate
at which energy is passing through a unit area.

What is of greater interest for a sinusoidal plane electromagnetic wave is the time
average of S over one or more cycles, which is called the wave intensity I. (We discussed
the intensity of sound waves in Chapter 17.) When this average is taken, we obtain an
expression involving the time average of cos2(kx ) %t), which equals . Hence, the
average value of S (in other words, the intensity of the wave) is

(34.21)

Recall that the energy per unit volume, which is the instantaneous energy density
uE associated with an electric field, is given by Equation 26.13,

and that the instantaneous energy density uB associated with a magnetic field is given
by Equation 32.14:

uB "
B 

2

2&0

uE " 1
2 #0 E2

I " S av "
E max B max

2&0
"

E 2
max

2&0c
"

c
2&0

 B 2
max

1
2

S "
E2

&0c
"

c
&0

 B 
2

S "
EB
&0

S ' 
1

&0
 E ! B
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! PITFALL PREVENTION 
34.3 An Instantaneous

Value
The Poynting vector given by
Equation 34.19 is time-
dependent. Its magnitude varies
in time, reaching a maximum
value at the same instant as the
magnitudes of E and B do. The
average rate of energy transfer is
given by Equation 34.21.

y

E

c
Bz x

S

Figure 34.7 The Poynting vector S for a plane electromag-
netic wave is along the direction of wave propagation.

Poynting vector

! PITFALL PREVENTION 
34.4 Irradiance
In this discussion, intensity is
defined in the same way as in
Chapter 17 (as power per unit
area). In the optics industry, how-
ever, power per unit area is called
the irradiance, and radiant inten-
sity is defined as the power in
watts per solid angle (measured
in steradians).

Wave intensity



Because E and B vary with time for an electromagnetic wave, the energy densities also vary
with time. When we use the relationships B " E/c and , the expression for
uB becomes

Comparing this result with the expression for uE , we see that

That is, the instantaneous energy density associated with the magnetic field of an
electromagnetic wave equals the instantaneous energy density associated with the
electric field. Hence, in a given volume the energy is equally shared by the two fields.

The total instantaneous energy density u is equal to the sum of the energy den-
sities associated with the electric and magnetic fields:

When this total instantaneous energy density is averaged over one or more cycles of an
electromagnetic wave, we again obtain a factor of . Hence, for any electromagnetic
wave, the total average energy per unit volume is

(34.22)

Comparing this result with Equation 34.21 for the average value of S, we see that

(34.23)

In other words, the intensity of an electromagnetic wave equals the average
energy density multiplied by the speed of light.

I " S av " cu av

u av " #0 (E 
2)av " 1

2 #0 E max
2 "

B max
2

2&0

1
2

u " uE ' uB " #0 E 
2 "

B 
2

&0

uB " uE " 1
2 #0 E 

2 "
B 

2

2&0

uB "
(E/c)2

2&0
"

#0&0

2&0
 E 

2 " 1
2 #0 E 

2

c " 1/√#0&0
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Total instantaneous energy
density of an electromagnetic
wave

Average energy density of an
electromagnetic wave

Quick Quiz 34.2 An electromagnetic wave propagates in the ) y direction.
The electric field at a point in space is momentarily oriented in the ' x direction. The
magnetic field at that point is momentarily oriented in the (a) ) x direction (b) ' y
direction (c) ' z direction (d) ) z direction.

Quick Quiz 34.3 Which of the following is constant for a plane electromag-
netic wave? (a) magnitude of the Poynting vector (b) energy density uE (c) energy den-
sity uB (d) wave intensity.

Example 34.2 Fields on the Page

the intensity of an electromagnetic wave is also given by
Equation 34.21, we have

We must now make some assumptions about numbers to
enter in this equation. If we have a 60-W lightbulb, its
output at 5% efficiency is approximately 3.0 W by visible
light. (The remaining energy transfers out of the bulb by
conduction and invisible radiation.) A reasonable distance
from the bulb to the page might be 0.30 m. Thus, we have

I "
"av

4,r 
2 "

E 2
max

2&0c

Estimate the maximum magnitudes of the electric and
magnetic fields of the light that is incident on this page
because of the visible light coming from your desk lamp.
Treat the bulb as a point source of electromagnetic radia-
tion that is 5% efficient at transforming energy coming
in by electrical transmission to energy leaving by visible
light.

Solution Recall from Equation 17.7 that the wave intensity
I a distance r from a point source is I " "av/4,r 2, where "av
is the average power output of the source and 4,r 2 is the
area of a sphere of radius r centered on the source. Because



34.4 Momentum and Radiation Pressure

Electromagnetic waves transport linear momentum as well as energy. It follows that, as
this momentum is absorbed by some surface, pressure is exerted on the surface. We
shall assume in this discussion that the electromagnetic wave strikes the surface at
normal incidence and transports a total energy U to the surface in a time interval .t.
Maxwell showed that, if the surface absorbs all the incident energy U in this time inter-
val (as does a black body, introduced in Section 20.7), the total momentum p trans-
ported to the surface has a magnitude

(34.24)

The pressure exerted on the surface is defined as force per unit area F/A. Let us
combine this with Newton’s second law:

If we now replace p, the momentum transported to the surface by radiation, from
Equation 34.24, we have

We recognize (dU/dt)/A as the rate at which energy is arriving at the surface per unit
area, which is the magnitude of the Poynting vector. Thus, the radiation pressure P
exerted on the perfectly absorbing surface is

(34.25)

If the surface is a perfect reflector (such as a mirror) and incidence is normal, then
the momentum transported to the surface in a time interval .t is twice that given by
Equation 34.24. That is, the momentum transferred to the surface by the incoming
light is p " U/c, and that transferred by the reflected light also is p " U/c. Therefore,

(34.26)

The momentum delivered to a surface having a reflectivity somewhere between these
two extremes has a value between U/c and 2U/c, depending on the properties of the
surface. Finally, the radiation pressure exerted on a perfectly reflecting surface for
normal incidence of the wave is3

(34.27)P "
2S
c

p "
2U
c

  (complete reflection)

P "
S
c

P "
1
A

 
dp
dt

"
1
A

 
d
dt

 " U
c # "

1
c

 
(dU/dt)

A

P "
F
A

"
1
A

 
dp
dt

p "
U
c
  (complete absorption)
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3 For oblique incidence on a perfectly reflecting surface, the momentum transferred is (2U cos /)/c
and the pressure is P " (2S cos2 /)/c where / is the angle between the normal to the surface and the
direction of wave propagation.

From Equation 34.14,

This value is two orders of magnitude smaller than the
Earth’s magnetic field, which, unlike the magnetic field in
the light wave from your desk lamp, is not oscillating.

1.5 $ 10)7 TB max "
E max

c
"

45 V/m
3.00 $ 108 m/s

"

45 V/m"

 " √ (4, $ 10)7 T!m/A)(3.00 $ 108 m/s)(3.0 W)
2,(0.30 m)2

E max " √ &0c  "av

2,r 
2

! PITFALL PREVENTION 
34.5 So Many p’s
We have p for momentum and P
for pressure, and these are both
related to " for power! Be sure
you keep these all straight.

Radiation pressure exerted on a
perfectly absorbing surface

Momentum transported to a
perfectly absorbing surface

Radiation pressure exerted on a
perfectly reflecting surface



Although radiation pressures are very small (about 5 $ 10)6 N/m2 for direct
sunlight), they have been measured with torsion balances such as the one shown in
Figure 34.8. A mirror (a perfect reflector) and a black disk (a perfect absorber) are
connected by a horizontal rod suspended from a fine fiber. Normal-incidence light
striking the black disk is completely absorbed, so all of the momentum of the light is
transferred to the disk. Normal-incidence light striking the mirror is totally reflected,
and hence the momentum transferred to the mirror is twice as great as that transferred
to the disk. The radiation pressure is determined by measuring the angle through
which the horizontal connecting rod rotates. The apparatus must be placed in a high
vacuum to eliminate the effects of air currents.

NASA is exploring the possibility of solar sailing as a low-cost means of sending
spacecraft to the planets. Large sheets would experience radiation pressure from sunlight
and would be used in much the way canvas sheets are used on earthbound sailboats. In
1973 NASA engineers took advantage of the momentum of the sunlight striking the solar
panels of Mariner 10 (Fig. 34.9) to make small course corrections when the spacecraft’s
fuel supply was running low. (This procedure was carried out when the spacecraft was in
the vicinity of the planet Mercury. Would it have worked as well near Pluto?)
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Light

Black
disk

Mirror

Figure 34.8 An apparatus for measuring
the pressure exerted by light. In practice,
the system is contained in a high vacuum.

Figure 34.9 Mariner 10 used its solar panels to
“sail on sunlight.”

Quick Quiz 34.4 To maximize the radiation pressure on the sails of a
spacecraft using solar sailing, should the sheets be (a) very black to absorb as much
sunlight as possible or (b) very shiny, to reflect as much sunlight as possible?

Quick Quiz 34.5 In an apparatus such as that in Figure 34.8, the disks are
illuminated uniformly over their areas. Suppose the black disk is replaced by one with
half the radius. Which of the following are different after the disk is replaced? (a) radi-
ation pressure on the disk, (b) radiation force on the disk, (c) radiation momentum
delivered to the disk in a given time interval.
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Conceptual Example 34.3 Sweeping the Solar System

cube of the radius of a spherical dust particle because it is
proportional to the mass and therefore to the volume 4,r 3/3
of the particle. The radiation pressure is proportional to the
square of the radius because it depends on the planar cross
section of the particle. For large particles, the gravitational
force is greater than the force from radiation pressure. For
particles having radii less than about 0.2 &m, the radiation-
pressure force is greater than the gravitational force, and as a
result these particles are swept out of the Solar System.

A great amount of dust exists in interplanetary space.
Although in theory these dust particles can vary in size from
molecular size to much larger, very little of the dust in our
solar system is smaller than about 0.2 &m. Why?

Solution The dust particles are subject to two significant
forces—the gravitational force that draws them toward the
Sun and the radiation-pressure force that pushes them away
from the Sun. The gravitational force is proportional to the
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Example 34.4 Pressure from a Laser Pointer

Notice that if f " 1, which represents complete reflection,
this equation reduces to Equation 34.27. For a beam that is
70% reflected, the pressure is

To finalize the example, consider first the magnitude of the
Poynting vector. This is about the same as the intensity of
sunlight at the Earth’s surface. (For this reason, it is not safe
to shine the beam of a laser pointer into a person’s eyes;
that may be more dangerous than looking directly at the
Sun.) Note also that the pressure has an extremely small
value, as expected. (Recall from Section 14.2 that atmos-
pheric pressure is approximately 105 N/m2.)

What If? What if the laser pointer is moved twice as far
away from the screen? Does this affect the radiation
pressure on the screen?

Answer Because a laser beam is popularly represented as
a beam of light with constant cross section, one might be
tempted to claim that the intensity of radiation, and
therefore the radiation pressure, would be independent of
distance from the screen. However, a laser beam does not
have a constant cross section at all distances from the
source—there is a small but measurable divergence of the
beam. If the laser is moved farther away from the screen,
the area of illumination on the screen will increase,
decreasing the intensity. In turn, this will reduce the radia-
tion pressure.

In addition, the doubled distance from the screen will
result in more loss of energy from the beam due to scatter-
ing from air molecules and dust particles as the light travels
from the laser to the screen. This will further reduce the ra-
diation pressure.

5.4 $ 10)6 N/m2Pav " (1 ' 0.70) 
955 W/m2

3.0 $ 108 m/s
"

Many people giving presentations use a laser pointer to
direct the attention of the audience to information on a
screen. If a 3.0-mW pointer creates a spot on a screen that is
2.0 mm in diameter, determine the radiation pressure on a
screen that reflects 70% of the light that strikes it. The
power 3.0 mW is a time-averaged value.

Solution In conceptualizing this situation, we do not
expect the pressure to be very large. We categorize this as a
calculation of radiation pressure using something like
Equation 34.25 or Equation 34.27, but complicated by the
70% reflection. To analyze the problem, we begin by
determining the magnitude of the beam’s Poynting vector.
We divide the time-averaged power delivered via the
electromagnetic wave by the cross-sectional area of the
beam:

Now we can determine the radiation pressure from the
laser beam. Equation 34.27 indicates that a completely
reflected beam would apply an average pressure of
Pav " 2S av/c. We can model the actual reflection as
follows. Imagine that the surface absorbs the beam,
resulting in pressure Pav " S av/c. Then the surface emits
the beam, resulting in additional pressure Pav " S av/c. If
the surface emits only a fraction f of the beam (so that f is
the amount of the incident beam reflected), then the
pressure due to the emitted beam is Pav " f S av/c. Thus,
the total pressure on the surface due to absorption and 
re-emission (reflection) is

Pav "
S av

c
' f  

S av

c
" (1 ' f ) 

S av

c

S av "
"av

A
"

"av

,r 
2 "

3.0 $ 10)3 W

,  " 2.0 $ 10)3 m
2 #2 " 955 W/m2

At the Interactive Worked Example link at http://www.pse6.com, you can investigate the pressure on the screen for various
laser and screen parameters.

Example 34.5 Solar Energy

(B) Determine the radiation pressure and the radiation
force exerted on the roof, assuming that the roof covering is
a perfect absorber.

Solution Using Equation 34.25 with Sav " 1 000 W/m2, we
find that the radiation pressure is

Because pressure equals force per unit area, this corre-
sponds to a radiation force of

5.33 $ 10)4 N"

F " P av  A " (3.33 $ 10)6 N/m2)(160 m2)

3.33 $ 10)6 N/m2P av "   

S av

c
"

1 000 W/m2

3.00 $ 108 m/s
"

As noted in the preceding example, the Sun delivers about
103 W/m2 of energy to the Earth’s surface via electromag-
netic radiation.

(A) Calculate the total power that is incident on a roof of
dimensions 8.00 m $ 20.0 m.

Solution We assume that the average magnitude of the
Poynting vector for solar radiation at the surface of the
Earth is Sav " 1 000 W/m2; this represents the power per
unit area, or the light intensity. Assuming that the radiation
is incident normal to the roof, we obtain

1.60 $ 105 W"

"av " S av  A " (1 000 W/m2)(8.00 $ 20.0 m2)

Interactive



34.5 Production of Electromagnetic Waves 
by an Antenna

Neither stationary charges nor steady currents can produce electromagnetic waves.
Whenever the current in a wire changes with time, however, the wire emits electromag-
netic radiation. The fundamental mechanism responsible for this radiation is the
acceleration of a charged particle. Whenever a charged particle accelerates, it
must radiate energy.

Let us consider the production of electromagnetic waves by a half-wave antenna. In
this arrangement, two conducting rods are connected to a source of alternating volt-
age (such as an LC oscillator), as shown in Figure 34.10. The length of each rod is
equal to one quarter of the wavelength of the radiation that will be emitted when the
oscillator operates at frequency f. The oscillator forces charges to accelerate back and
forth between the two rods. Figure 34.10 shows the configuration of the electric and
magnetic fields at some instant when the current is upward. The electric field lines,
due to the separation of charges in the upper and lower portions of the antenna,
resemble those of an electric dipole. (As a result, this type of antenna is sometimes
called a dipole antenna.) Because these charges are continuously oscillating between
the two rods, the antenna can be approximated by an oscillating electric dipole. The
magnetic field lines, due to the current representing the movement of charges
between the ends of the antenna, form concentric circles around the antenna and are
perpendicular to the electric field lines at all points. The magnetic field is zero at all
points along the axis of the antenna. Furthermore, E and B are 90° out of phase in
time—for example, the current is zero when the charges at the outer ends of the rods
are at a maximum.

At the two points where the magnetic field is shown in Figure 34.10, the Poynting
vector S is directed radially outward. This indicates that energy is flowing away from
the antenna at this instant. At later times, the fields and the Poynting vector reverse
direction as the current alternates. Because E and B are 90° out of phase at points
near the dipole, the net energy flow is zero. From this, we might conclude (incor-
rectly) that no energy is radiated by the dipole.

However, we find that energy is indeed radiated. Because the dipole fields fall off as
1/r 3 (as shown in Example 23.6 for the electric field of a static dipole), they are negli-
gible at great distances from the antenna. At these great distances, something else
causes a type of radiation different from that close to the antenna. The source of this
radiation is the continuous induction of an electric field by the time-varying magnetic
field and the induction of a magnetic field by the time-varying electric field, predicted
by Equations 34.3 and 34.4. The electric and magnetic fields produced in this manner
are in phase with each other and vary as 1/r. The result is an outward flow of energy at
all times.
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photovoltaic cells, reducing the available power in part (A)
by an order of magnitude. Other considerations reduce the
power even further. Depending on location, the radiation
will most likely not be incident normal to the roof and, even
if it is (in locations near the Equator), this situation exists
for only a short time near the middle of the day. No energy
is available for about half of each day during the nighttime
hours. Furthermore, cloudy days reduce the available
energy. Finally, while energy is arriving at a large rate during
the middle of the day, some of it must be stored for later
use, requiring batteries or other storage devices. The result
of these considerations is that complete solar operation of
homes is not presently cost-effective for most homes.

What If? Suppose the energy striking the roof could be
captured and used to operate electrical devices in the house.
Could the home operate completely from this energy?

Answer The power in part (A) is large compared to the
power requirements of a typical home. If this power were
maintained for 24 hours per day and the energy could be
absorbed and made available to electrical devices, it would
provide more than enough energy for the average home.
However, solar energy is not easily harnessed, and the
prospects for large-scale conversion are not as bright as
may appear from this calculation. For example, the effi-
ciency of conversion from solar energy is typically 10% for
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Figure 34.10 A half-wave antenna
consists of two metal rods
connected to an alternating voltage
source. This diagram shows E and
B at an arbitrary instant when the
current is upward. Note that the
electric field lines resemble those
of a dipole (shown in Fig. 23.22).



The angular dependence of the radiation intensity produced by a dipole antenna
is shown in Figure 34.11. Note that the intensity and the power radiated are a maxi-
mum in a plane that is perpendicular to the antenna and passing through its
midpoint. Furthermore, the power radiated is zero along the antenna’s axis. A
mathematical solution to Maxwell’s equations for the dipole antenna shows that the
intensity of the radiation varies as (sin2 /)/r 2, where / is measured from the axis of
the antenna.

Electromagnetic waves can also induce currents in a receiving antenna. The response
of a dipole receiving antenna at a given position is a maximum when the antenna axis is
parallel to the electric field at that point and zero when the axis is perpendicular to the
electric field.
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Quick Quiz 34.6 If the antenna in Figure 34.10 represents the source of
a distant radio station, rank the following points in terms of the intensity of the
radiation, from greatest to least: (a) a distance d to the right of the antenna (b) a
distance 2d to the left of the antenna (c) a distance 2d in front of the antenna (out of
the page) (d) a distance d above the antenna (toward the top of the page).

Quick Quiz 34.7 If the antenna in Figure 34.10 represents the source of a
distant radio station, what would be the best orientation for your portable radio
antenna located to the right of the figure—(a) up–down along the page, (b) left–right
along the page, or (c) perpendicular to the page?

34.6 The Spectrum of Electromagnetic Waves

The various types of electromagnetic waves are listed in Figure 34.12, which shows the
electromagnetic spectrum. Note the wide ranges of frequencies and wavelengths. No
sharp dividing point exists between one type of wave and the next. Remember that all
forms of the various types of radiation are produced by the same phenome-
non—accelerating charges. The names given to the types of waves are simply for con-
venience in describing the region of the spectrum in which they lie.

Radio waves, whose wavelengths range from more than 104 m to about 0.1 m, are
the result of charges accelerating through conducting wires. They are generated by
such electronic devices as LC oscillators and are used in radio and television communi-
cation systems.

Microwaves have wavelengths ranging from approximately 0.3 m to 10)4 m and
are also generated by electronic devices. Because of their short wavelengths, they are
well suited for radar systems and for studying the atomic and molecular properties of
matter. Microwave ovens are an interesting domestic application of these waves. It has
been suggested that solar energy could be harnessed by beaming microwaves to the
Earth from a solar collector in space.

Infrared waves have wavelengths ranging from approximately 10)3 m to the
longest wavelength of visible light, 7 $ 10)7 m. These waves, produced by molecules
and room-temperature objects, are readily absorbed by most materials. The infrared
(IR) energy absorbed by a substance appears as internal energy because the energy agi-
tates the atoms of the object, increasing their vibrational or translational motion,
which results in a temperature increase. Infrared radiation has practical and scientific
applications in many areas, including physical therapy, IR photography, and vibrational
spectroscopy.

Visible light, the most familiar form of electromagnetic waves, is the part of the
electromagnetic spectrum that the human eye can detect. Light is produced by the
rearrangement of electrons in atoms and molecules. The various wavelengths of visible

y

x

Sθ

Figure 34.11 Angular depen-
dence of the intensity of radiation
produced by an oscillating electric
dipole. The distance from the ori-
gin to a point on the edge of the
gray shape is proportional to the
intensity of radiation.

! PITFALL PREVENTION 
34.6 “Heat Rays”
Infrared rays are often called “heat
rays.” This is a misnomer. While in-
frared radiation is used to raise or
maintain temperature, as in the
case of keeping food warm with
“heat lamps” at a fast-food restau-
rant, all wavelengths of electro-
magnetic radiation carry energy
that can cause the temperature of
a system to increase. As an exam-
ple, consider a potato baking in
your microwave oven.



light, which correspond to different colors, range from red (* $ 7 $ 10)7 m) to violet
(* $ 4 $ 10)7 m). The sensitivity of the human eye is a function of wavelength, being
a maximum at a wavelength of about 5.5 $ 10)7 m. With this in mind, why do you
suppose tennis balls often have a yellow-green color?

Ultraviolet waves cover wavelengths ranging from approximately 4 $ 10)7 m to
6 $ 10)10 m. The Sun is an important source of ultraviolet (UV) light, which is the
main cause of sunburn. Sunscreen lotions are transparent to visible light but absorb
most UV light. The higher a sunscreen’s solar protection factor (SPF), the greater the
percentage of UV light absorbed. Ultraviolet rays have also been implicated in the
formation of cataracts, a clouding of the lens inside the eye.

Most of the UV light from the Sun is absorbed by ozone (O3) molecules in the
Earth’s upper atmosphere, in a layer called the stratosphere. This ozone shield
converts lethal high-energy UV radiation to infrared radiation, which in turn warms
the stratosphere. Recently, a great deal of controversy has arisen concerning the possi-
ble depletion of the protective ozone layer as a result of the chemicals emitted from
aerosol spray cans and used as refrigerants.

X-rays have wavelengths in the range from approximately 10)8 m to 10)12 m. The
most common source of x-rays is the stopping of high-energy electrons upon bombard-
ing a metal target. X-rays are used as a diagnostic tool in medicine and as a treatment
for certain forms of cancer. Because x-rays damage or destroy living tissues and organ-
isms, care must be taken to avoid unnecessary exposure or overexposure. X-rays are
also used in the study of crystal structure because x-ray wavelengths are comparable to
the atomic separation distances in solids (about 0.1 nm).

Gamma rays are electromagnetic waves emitted by radioactive nuclei (such as
60Co and 137Cs) and during certain nuclear reactions. High-energy gamma rays are a
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Wavelength

1 pm

1 nm

1 µm

1 cm

1 m

1 km

Long wave

AM

TV, FM

Microwaves

Infrared

Visible light

Ultraviolet

X-rays

Gamma rays

Frequency, Hz

1022

1021

1020

1019

1018

1017

1016

1015

1014

1013

1012

1011

1010

109

108

107

106

105

104

103

µ

Radio waves

1 mm

Violet
Blue
Green
Yellow

Orange

Red

~400 nm

~700 nm

Figure 34.12 The electromagnetic spectrum. Note the overlap between adjacent wave
types. The expanded view to the right shows details of the visible spectrum.

Wearing sunglasses that do not
block ultraviolet (UV) light is worse
for your eyes than wearing no
sunglasses. The lenses of any
sunglasses absorb some visible
light, thus causing the wearer’s
pupils to dilate. If the glasses do
not also block UV light, then more
damage may be done to the lens of
the eye because of the dilated
pupils. If you wear no sunglasses at
all, your pupils are contracted, you
squint, and much less UV light
enters your eyes. High-quality
sunglasses block nearly all the 
eye-damaging UV light.
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component of cosmic rays that enter the Earth’s atmosphere from space. They have
wavelengths ranging from approximately 10)10 m to less than 10)14 m. They are
highly penetrating and produce serious damage when absorbed by living tissues. Con-
sequently, those working near such dangerous radiation must be protected with heavily
absorbing materials, such as thick layers of lead.
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Example 34.6 A Half-Wave Antenna

Thus, to operate most efficiently, the antenna should have a
length of (3.16 m)/2 " 1.58 m. For practical reasons, car
antennas are usually one-quarter wavelength in size.

3.16 m* "
3.00 $ 108 m/s
9.47 $ 107 Hz

"
A half-wave antenna works on the principle that the optimum
length of the antenna is half the wavelength of the radiation
being received. What is the optimum length of a car antenna
when it receives a signal of frequency 94.7 MHz?

Solution Equation 34.13 tells us that the wavelength of the
signal is

Quick Quiz 34.8 In many kitchens, a microwave oven is used to cook
food. The frequency of the microwaves is on the order of 1010 Hz. The wavelengths
of these microwaves are on the order of (a) kilometers (b) meters (c) centimeters
(d) micrometers.

Quick Quiz 34.9 A radio wave of frequency on the order of 105 Hz is
used to carry a sound wave with a frequency on the order of 103 Hz. The wavelength
of this radio wave is on the order of (a) kilometers (b) meters (c) centimeters
(d) micrometers.

Electromagnetic waves, which are predicted by Maxwell’s equations, have the follow-
ing properties:

• The electric field and the magnetic field each satisfy a wave equation. These two wave
equations, which can be obtained from Maxwell’s third and fourth equations, are

(34.8)

(34.9)

• The waves travel through a vacuum with the speed of light c, where

(34.10)

• The electric and magnetic fields are perpendicular to each other and perpendicu-
lar to the direction of wave propagation. (Hence, electromagnetic waves are
transverse waves.)

• The instantaneous magnitudes of E and B in an electromagnetic wave are related
by the expression

(34.14)
E
B

" c

c "
1

√&0#0
" 3.00 $ 108 m/s

+2B
+x 

2 " &0#0 
+2B
+t2

+2E
+x 

2 " &0#0 
+2E
+t2

S U M M A RY

Take a practice test for
this chapter by clicking on
the Practice Test link at
http://www.pse6.com.



Questions 1083

• The waves carry energy. The rate of flow of energy crossing a unit area is described
by the Poynting vector S, where

(34.19)

• Electromagnetic waves carry momentum and hence exert pressure on surfaces. If
an electromagnetic wave whose Poynting vector is S is completely absorbed by a
surface upon which it is normally incident, the radiation pressure on that surface is

(34.25)

If the surface totally reflects a normally incident wave, the pressure is doubled.

The electric and magnetic fields of a sinusoidal plane electromagnetic wave propa-
gating in the positive x direction can be written

(34.11)

(34.12)

where % is the angular frequency of the wave and k is the angular wave number. These
equations represent special solutions to the wave equations for E and B. The
wavelength and frequency of electromagnetic waves are related by

(34.13)

The average value of the Poynting vector for a plane electromagnetic wave has a
magnitude

(34.21)

The intensity of a sinusoidal plane electromagnetic wave equals the average value
of the Poynting vector taken over one or more cycles.

The electromagnetic spectrum includes waves covering a broad range of 
wavelengths, from long radio waves at more than 104 m to gamma rays at less
than 10)14 m.

S av "
E max B max

2&0
"

E 
2
max

2&0c
"

c
2&0

 B 
2
max

* "
c
f

"
3.00 $ 108 m/s

f

B " B max cos(kx ) %t)

E " E max cos(kx ) %t)

P "
S
c
  (complete absorption)

S ' 
1

&0
 E ! B

Radio stations often advertise “instant news.” If they mean
that you can hear the news the instant they speak it, is
their claim true? About how long would it take for a
message to travel across this country by radio waves,
assuming that the waves could be detected at this range?

2. Light from the Sun takes approximately 8.3 min to reach
the Earth. During this time interval the Earth has contin-
ued to rotate on its axis. How far is the actual direction of
the Sun from its image in the sky?

3. When light (or other electromagnetic radiation) travels
across a given region, what is it that oscillates? What is it
that is transported?

4. Do all current-carrying conductors emit electromagnetic
waves? Explain.

5. What is the fundamental source of electromagnetic
radiation?

1. 6. If a high-frequency current is passed through a solenoid
containing a metallic core, the core becomes warm due to
induction. Explain why the material rises in temperature
in this situation.

7. Does a wire connected to the terminals of a battery emit
electromagnetic waves? Explain.

If you charge a comb by running it through your hair and
then hold the comb next to a bar magnet, do the electric
and magnetic fields produced constitute an electromag-
netic wave?

9. List as many similarities and differences between sound
waves and light waves as you can.

10. Describe the physical significance of the Poynting vector.

11. For a given incident energy of an electromagnetic wave, why
is the radiation pressure on a perfectly reflecting surface
twice as great as that on a perfect absorbing surface?

8.

Q U E S T I O N S
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12. Before the advent of cable television and satellite dishes,
city dwellers often used “rabbit ears” atop their sets (Fig.
Q34.12). Certain orientations of the receiving antenna on
a television set give better reception than others. Further-
more, the best orientation varies from station to station.
Explain.

13. Often when you touch the indoor antenna on a radio or
television receiver, the reception instantly improves. Why?

14. Explain how the (dipole) VHF antenna of a television set
works. (See Fig. Q34.12.)

15. Explain how the UHF (loop) antenna of a television set
works. (See Fig. Q34.12.)

16. Explain why the voltage induced in a UHF (loop) antenna
depends on the frequency of the signal, while the voltage
in a VHF (dipole) antenna does not. (See Fig. Q34.12.)

17. Electrical engineers often speak of the radiation resistance
of an antenna. What do you suppose they mean by this
phrase?

What does a radio wave do to the charges in the receiving
antenna to provide a signal for your car radio?

19. An empty plastic or glass dish being removed from a
microwave oven is cool to the touch. How can this be
possible? (Assume that your electric bill has been paid.)

20. Why should an infrared photograph of a person look dif-
ferent from a photograph taken with visible light?

Suppose that a creature from another planet had eyes that
were sensitive to infrared radiation. Describe what the alien
would see if it looked around the room you are now in. In
particular, what would be bright and what would be dim?

22. A welder must wear protective glasses and clothing to
prevent eye damage and sunburn. What does this imply
about the nature of the light produced by the welding?

23. A home microwave oven uses electromagnetic waves with a
wavelength of about 12.2 cm. Some 2.4-GHz cordless tele-
phones suffer noisy interference when a microwave oven is
used nearby. Locate the waves used by both devices on the
electromagnetic spectrum. Do you expect them to inter-
fere with each other?

21.

18.

Figure Q34.12 Questions 12, 14, 15, and 16, and Problem 49.
The V-shaped pair of long rods is the VHF antenna and the loop is
the UHF antenna.
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Section 34.1 Maxwell’s Equations and Hertz’s 
Discoveries

1. A very long, thin rod carries electric charge with the linear
density 35.0 nC/m. It lies along the x axis and moves
in the x direction at a speed of 15.0 Mm/s. (a) Find the
electric field the rod creates at the point (0, 20.0 cm, 0).
(b) Find the magnetic field it creates at the same point.

Note: Assume that the medium is vacuum unless specified
otherwise.

(c) Find the force exerted on an electron at this point,
moving with a velocity of (240 î) Mm/s.

Section 34.2 Plane Electromagnetic Waves

2. (a) The distance to the North Star, Polaris, is approxi-
mately 6.44 $ 1018 m. If Polaris were to burn out today,
in what year would we see it disappear? (b) How long
does it take for sunlight to reach the Earth? (c) How long
does it take for a microwave radar signal to travel from
the Earth to the Moon and back? (d) How long does it
take for a radio wave to travel once around the Earth in a
great circle, close to the planet’s surface? (e) How long

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide

= coached solution with hints available at http://www.pse6.com = computer useful in solving problem

= paired numerical and symbolic problems

P R O B L E M S



Problems 1085

does it take for light to reach you from a lightning stroke
10.0 km away?

3. The speed of an electromagnetic wave traveling in a trans-
parent nonmagnetic substance is , where 0 is
the dielectric constant of the substance. Determine the
speed of light in water, which has a dielectric constant at
optical frequencies of 1.78.

4. An electromagnetic wave in vacuum has an electric field
amplitude of 220 V/m. Calculate the amplitude of the
corresponding magnetic field.

Figure 34.3 shows a plane electromagnetic sinu-
soidal wave propagating in the x direction. Suppose that
the wavelength is 50.0 m, and the electric field vibrates
in the xy plane with an amplitude of 22.0 V/m. Calculate
(a) the frequency of the wave and (b) the magnitude
and direction of B when the electric field has its maxi-
mum value in the negative y direction. (c) Write an
expression for B with the correct unit vector, with
numerical values for B max, k, and %, and with its magni-
tude in the form

6. Write down expressions for the electric and magnetic
fields of a sinusoidal plane electromagnetic wave having a
frequency of 3.00 GHz and traveling in the positive x direc-
tion. The amplitude of the electric field is 300 V/m.

In SI units, the electric field in an electromagnetic wave is
described by

Find (a) the amplitude of the corresponding magnetic
field oscillations, (b) the wavelength *, and (c) the fre-
quency f.

8. Verify by substitution that the following equations are solu-
tions to Equations 34.8 and 34.9, respectively:

9. Review problem. A standing-wave interference pattern is
set up by radio waves between two metal sheets 2.00 m
apart. This is the shortest distance between the plates that
will produce a standing-wave pattern. What is the funda-
mental frequency?

10. A microwave oven is powered by an electron tube called a
magnetron, which generates electromagnetic waves of fre-
quency 2.45 GHz. The microwaves enter the oven and are
reflected by the walls. The standing-wave pattern produced
in the oven can cook food unevenly, with hot spots in the
food at antinodes and cool spots at nodes, so a turntable is
often used to rotate the food and distribute the energy. If a
microwave oven intended for use with a turntable is
instead used with a cooking dish in a fixed position, the
antinodes can appear as burn marks on foods such as
carrot strips or cheese. The separation distance between
the burns is measured to be 6 cm 1 5%. From these data,
calculate the speed of the microwaves.

B " B max cos(kx ) %t)

E " E max cos(kx ) %t)

Ey " 100 sin(1.00 $ 107x ) %t)

7.

B " B max cos(kx ) %t)

5.

v " 1/√0&0#0

Section 34.3 Energy Carried by Electromagnetic Waves

11. How much electromagnetic energy per cubic meter is con-
tained in sunlight, if the intensity of sunlight at the Earth’s
surface under a fairly clear sky is 1 000 W/m2?

12. An AM radio station broadcasts isotropically (equally in all
directions) with an average power of 4.00 kW. A dipole
receiving antenna 65.0 cm long is at a location 4.00 miles
from the transmitter. Compute the amplitude of the emf
that is induced by this signal between the ends of the
receiving antenna.

What is the average magnitude of the Poynting vector
5.00 miles from a radio transmitter broadcasting
isotropically with an average power of 250 kW?

14. A monochromatic light source emits 100 W of electromag-
netic power uniformly in all directions. (a) Calculate the
average electric-field energy density 1.00 m from the
source. (b) Calculate the average magnetic-field energy
density at the same distance from the source. (c) Find the
wave intensity at this location.

A community plans to build a facility to convert solar
radiation to electrical power. They require 1.00 MW of
power, and the system to be installed has an efficiency of
30.0% (that is, 30.0% of the solar energy incident on the
surface is converted to useful energy that can power the
community). What must be the effective area of a perfectly
absorbing surface used in such an installation, assuming
sunlight has a constant intensity of 1 000 W/m2?

16. Assuming that the antenna of a 10.0-kW radio station radi-
ates spherical electromagnetic waves, compute the maxi-
mum value of the magnetic field 5.00 km from the
antenna, and compare this value with the surface magnetic
field of the Earth.

The filament of an incandescent lamp has a 150-2
resistance and carries a direct current of 1.00 A. The fila-
ment is 8.00 cm long and 0.900 mm in radius. (a) Calcu-
late the Poynting vector at the surface of the filament,
associated with the static electric field producing the
current and the current’s static magnetic field. (b) Find
the magnitude of the static electric and magnetic fields at
the surface of the filament.

18. One of the weapons being considered for the “Star Wars”
antimissile system is a laser that could destroy ballistic
missiles. When a high-power laser is used in the Earth’s
atmosphere, the electric field can ionize the air, turning it
into a conducting plasma that reflects the laser light. In
dry air at 0°C and 1 atm, electric breakdown occurs for
fields with amplitudes above about 3.00 MV/m. (a) What
laser beam intensity will produce such a field? (b) At this
maximum intensity, what power can be delivered in a
cylindrical beam of diameter 5.00 mm?

19. In a region of free space the electric field at an instant
of time is E " (80.0 î ' 32.0 ĵ ) 64.0 k̂) N/C and the
magnetic field is B " (0.200 î ' 0.080 0 ĵ ' 0.290 k̂) &T.
(a) Show that the two fields are perpendicular to each
other. (b) Determine the Poynting vector for these fields.

20. Let us model the electromagnetic wave in a microwave
oven as a plane traveling wave moving to the left, with an
intensity of 25.0 kW/m2. An oven contains two cubical

17.

15.

13.



1086 C H A P T E R  3 4 •  Electromagnetic Waves

containers of small mass, each full of water. One has an
edge length of 6.00 cm and the other, 12.0 cm. Energy
falls perpendicularly on one face of each container. The
water in the smaller container absorbs 70.0% of the energy
that falls on it. The water in the larger container absorbs
91.0%. (That is, the fraction 0.3 of the incoming mi-
crowave energy passes through a 6-cm thickness of water,
and the fraction (0.3)(0.3) " 0.09 passes through a 12-cm
thickness.) Find the temperature change of the water in
each container over a time interval of 480 s. Assume that a
negligible amount of energy leaves either container by
heat.

21. A lightbulb filament has a resistance of 110 2. The bulb is
plugged into a standard 120-V (rms) outlet, and emits
1.00% of the electric power delivered to it by electromag-
netic radiation of frequency f. Assuming that the bulb is
covered with a filter that absorbs all other frequencies,
find the amplitude of the magnetic field 1.00 m from the
bulb.

22. A certain microwave oven contains a magnetron that has
an output of 700 W of microwave power for an electrical
input power of 1.40 kW. The microwaves are entirely 
transferred from the magnetron into the oven chamber
through a waveguide, which is a metal tube of rectan-
gular cross section with width 6.83 cm and height 
3.81 cm. (a) What is the efficiency of the magnetron?
(b) Assuming that the food is absorbing all the 
microwaves produced by the magnetron and that no
energy is reflected back into the waveguide, find the
direction and magnitude of the Poynting vector, 
averaged over time, in the waveguide near the entrance 
to the oven chamber. (c) What is the maximum electric
field at this point?

23. High-power lasers in factories are used to cut through
cloth and metal (Fig. P34.23). One such laser has a beam
diameter of 1.00 mm and generates an electric field

having an amplitude of 0.700 MV/m at the target. Find
(a) the amplitude of the magnetic field produced, (b) the
intensity of the laser, and (c) the power delivered by the
laser.

24. A 10.0-mW laser has a beam diameter of 1.60 mm. (a) What
is the intensity of the light, assuming it is uniform across the
circular beam? (b) What is the average energy density of the
beam?

25. At one location on the Earth, the rms value of the
magnetic field caused by solar radiation is 1.80 &T. From
this value calculate (a) the rms electric field due to solar
radiation, (b) the average energy density of the solar 
component of electromagnetic radiation at this location,
and (c) the average magnitude of the Poynting vector 
for the Sun’s radiation. (d) Compare the value found in
part (c) to the value of the solar intensity given in 
Example 34.5.

Section 34.4 Momentum and Radiation Pressure

26. A 100-mW laser beam is reflected back upon itself by a
mirror. Calculate the force on the mirror.

A radio wave transmits 25.0 W/m2 of power per unit
area. A flat surface of area A is perpendicular to the
direction of propagation of the wave. Calculate the
radiation pressure on it, assuming the surface is a
perfect absorber.

28. A possible means of space flight is to place a perfectly
reflecting aluminized sheet into orbit around the Earth and
then use the light from the Sun to push this “solar sail.”
Suppose a sail of area 6.00 $ 105 m2 and mass 6 000 kg is
placed in orbit facing the Sun. (a) What force is exerted on
the sail? (b) What is the sail’s acceleration? (c) How long
does it take the sail to reach the Moon, 3.84 $ 108 m away?
Ignore all gravitational effects, assume that the acceleration
calculated in part (b) remains constant, and assume a solar
intensity of 1 340 W/m2.

A 15.0-mW helium–neon laser (* " 632.8 nm) emits a
beam of circular cross section with a diameter of 2.00 mm.
(a) Find the maximum electric field in the beam.
(b) What total energy is contained in a 1.00-m length of
the beam? (c) Find the momentum carried by a 1.00-m
length of the beam.

30. Given that the intensity of solar radiation incident on
the upper atmosphere of the Earth is 1 340 W/m2, deter-
mine (a) the intensity of solar radiation incident on
Mars, (b) the total power incident on Mars, and (c) the
radiation force that acts on the planet if it absorbs nearly
all of the light. (d) Compare this force to the gravita-
tional attraction between Mars and the Sun. (See Table
13.2.)

31. A plane electromagnetic wave has an intensity of 
750 W/m2. A flat, rectangular surface of dimensions
50 cm $ 100 cm is placed perpendicular to the direction
of the wave. The surface absorbs half of the energy and
reflects half. Calculate (a) the total energy absorbed by the
surface in 1.00 min and (b) the momentum absorbed in
this time.

29.

27.

Figure P34.23 A laser cutting device mounted on a robot arm is
being used to cut through a metallic plate.
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32. A uniform circular disk of mass 24.0 g and radius 40.0 cm
hangs vertically from a fixed, frictionless, horizontal hinge
at a point on its circumference. A horizontal beam of elec-
tromagnetic radiation with intensity 10.0 MW/m2 is inci-
dent on the disk in a direction perpendicular to its
surface. The disk is perfectly absorbing, and the resulting
radiation pressure makes the disk rotate. Find the angle
through which the disk rotates as it reaches its new equilib-
rium position. (Assume that the radiation is always perpen-
dicular to the surface of the disk.)

Section 34.5 Production of Electromagnetic Waves
by an Antenna

33. Figure 34.10 shows a Hertz antenna (also known as a half-
wave antenna, because its length is */2). The antenna is
located far enough from the ground that reflections do
not significantly affect its radiation pattern. Most AM radio
stations, however, use a Marconi antenna, which consists of
the top half of a Hertz antenna. The lower end of this
(quarter-wave) antenna is connected to Earth ground, and
the ground itself serves as the missing lower half. What are
the heights of the Marconi antennas for radio stations
broadcasting at (a) 560 kHz and (b) 1 600 kHz?

34. Two hand-held radio transceivers with dipole antennas are
separated by a large fixed distance. If the transmitting
antenna is vertical, what fraction of the maximum received
power will appear in the receiving antenna when it is
inclined from the vertical by (a) 15.0°? (b) 45.0°? (c) 90.0°?

Two radio-transmitting antennas are separated by half the
broadcast wavelength and are driven in phase with each
other. In which directions are (a) the strongest and (b) the
weakest signals radiated?

36. Review problem. Accelerating charges radiate electromag-
netic waves. Calculate the wavelength of radiation pro-
duced by a proton moving in a circle of radius R
perpendicular to a magnetic field of magnitude B.

35.

37. A very large flat sheet carries a uniformly distributed
electric current with current per unit width Js . Example
30.6 demonstrated that the current creates a magnetic
field on both sides of the sheet, parallel to the sheet and
perpendicular to the current, with magnitude B " &0 Js . If
the current oscillates in time according to

Js " J max(cos %t) ĵ " J max[cos()%t)] ĵ ,

the sheet radiates an electromagnetic wave as shown in
Figure P34.37. The magnetic field of the wave is described
by the wave function B " &0 J max[cos(kx ) %t)]k̂ .
(a) Find the wave function for the electric field in the
wave. (b) Find the Poynting vector as a function of x and t.
(c) Find the intensity of the wave. (d) What If? If the sheet
is to emit radiation in each direction (normal to the plane
of the sheet) with intensity 570 W/m2, what maximum
value of sinusoidal current density is required?

Section 34.6 The Spectrum of Electromagnetic
Waves

38. Classify waves with frequencies of 2 Hz, 2 kHz, 2 MHz,
2 GHz, 2 THz, 2 PHz, 2 EHz, 2 ZHz, and 2 YHz on
the electromagnetic spectrum. Classify waves with
wavelengths of 2 km, 2 m, 2 mm, 2 &m, 2 nm, 2 pm,
2 fm, and 2 am.

39. The human eye is most sensitive to light having a wave-
length of 5.50 $ 10)7 m, which is in the green-yellow
region of the visible electromagnetic spectrum. What is the
frequency of this light?

40. Compute an order-of-magnitude estimate for the fre-
quency of an electromagnetic wave with wavelength equal
to (a) your height; (b) the thickness of this sheet of paper.
How is each wave classified on the electromagnetic
spectrum?

What are the wavelengths of electromagnetic waves in free
space that have frequencies of (a) 5.00 $ 1019 Hz and
(b) 4.00 $ 109 Hz?

42. Suppose you are located 180 m from a radio transmitter.
(a) How many wavelengths are you from the transmitter
if the station calls itself 1 150 AM? (The AM band
frequencies are in kilohertz.) (b) What If? What if this
station is 98.1 FM? (The FM band frequencies are in
megahertz.)

43. A radar pulse returns to the receiver after a total travel
time of 4.00 $ 10)4 s. How far away is the object that
reflected the wave?

44. This just in! An important news announcement is transmit-
ted by radio waves to people sitting next to their radios
100 km from the station, and by sound waves to people
sitting across the newsroom, 3.00 m from the newscaster.
Who receives the news first? Explain. Take the speed of
sound in air to be 343 m/s.

45. The United States Navy has long proposed the construc-
tion of extremely low-frequency (ELF) communication
systems. Such waves could penetrate the oceans to reach
distant submarines. Calculate the length of a quarter-

41.
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Figure P34.37 Representation of the plane electromagnetic wave
radiated by an infinite current sheet lying in the yz plane. The
vector B is in the z direction, the vector E is in the y direction, and
the direction of wave motion is along x. Both vectors have
magnitudes proportional to cos(kx ) %t).
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wavelength antenna for a transmitter generating ELF
waves of frequency 75.0 Hz. How practical is this?

46. What are the wavelength ranges in (a) the AM radio band
(540–1 600 kHz), and (b) the FM radio band (88.0–-
108 MHz)?

Additional Problems

47. Assume that the intensity of solar radiation incident on
the cloudtops of the Earth is 1 340 W/m2. (a) Calculate
the total power radiated by the Sun, taking the average
Earth–Sun separation to be 1.496 $ 1011 m. (b) Deter-
mine the maximum values of the electric and magnetic
fields in the sunlight at the Earth’s location.

48. The intensity of solar radiation at the top of the Earth’s
atmosphere is 1 340 W/m2. Assuming that 60% of the
incoming solar energy reaches the Earth’s surface and
assuming that you absorb 50% of the incident energy,
make an order-of-magnitude estimate of the amount of
solar energy you absorb in a 60-min sunbath.

Review problem. In the absence of cable input or a
satellite dish, a television set can use a dipole-receiving
antenna for VHF channels and a loop antenna for
UHF channels (Fig. Q34.12). The UHF antenna
produces an emf from the changing magnetic flux
through the loop. The TV station broadcasts a signal
with a frequency f, and the signal has an electric-field
amplitude E max and a magnetic-field amplitude B max at
the location of the receiving antenna. (a) Using
Faraday’s law, derive an expression for the amplitude of
the emf that appears in a single-turn circular loop
antenna with a radius r, which is small compared with
the wavelength of the wave. (b) If the electric field in the
signal points vertically, what orientation of the loop gives
the best reception?

50. Consider a small, spherical particle of radius r located
in space a distance R from the Sun. (a) Show that the
ratio Frad/Fgrav is proportional to 1/r, where Frad is
the force exerted by solar radiation and Fgrav is the force
of gravitational attraction. (b) The result of part
(a) means that, for a sufficiently small value of r, the
force exerted on the particle by solar radiation exceeds
the force of gravitational attraction. Calculate the value
of r for which the particle is in equilibrium under
the two forces. (Assume that the particle has a perfectly
absorbing surface and a mass density of 1.50 g/cm3. Let
the particle be located 3.75 $ 1011 m from the Sun, and
use 214 W/m2 as the value of the solar intensity at that
point.)

A dish antenna having a diameter of 20.0 m receives
(at normal incidence) a radio signal from a distant
source, as shown in Figure P34.51. The radio signal
is a continuous sinusoidal wave with amplitude
E max " 0.200 &V/m. Assume the antenna absorbs all
the radiation that falls on the dish. (a) What is the
amplitude of the magnetic field in this wave? (b) What
is the intensity of the radiation received by this
antenna? (c) What is the power received by the antenna?
(d) What force is exerted by the radio waves on the
antenna?

51.

49.

Figure P34.51

Figure P34.54

52. One goal of the Russian space program is to illuminate
dark northern cities with sunlight reflected to Earth
from a 200-m diameter mirrored surface in orbit. Several
smaller prototypes have already been constructed and
put into orbit. (a) Assume that sunlight with intensity
1 340 W/m2 falls on the mirror nearly perpendicularly
and that the atmosphere of the Earth allows 74.6% of
the energy of sunlight to pass through it in clear
weather. What is the power received by a city when the
space mirror is reflecting light to it? (b) The plan is for
the reflected sunlight to cover a circle of diameter 
8.00 km. What is the intensity of light (the average mag-
nitude of the Poynting vector) received by the city? 
(c) This intensity is what percentage of the vertical com-
ponent of sunlight at Saint Petersburg in January, when
the sun reaches an angle of 7.00° above the horizon at
noon?

In 1965, Arno Penzias and Robert Wilson discovered the
cosmic microwave radiation left over from the Big Bang
expansion of the Universe. Suppose the energy density of
this background radiation is 4.00 $ 10)14 J/m3. Deter-
mine the corresponding electric field amplitude.

54. A hand-held cellular telephone operates in the 860- to
900-MHz band and has a power output of 0.600 W
from an antenna 10.0 cm long (Fig. P34.54). (a) Find
the average magnitude of the Poynting vector 4.00 cm
from the antenna, at the location of a typical person’s

53.
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head. Assume that the antenna emits energy with
cylindrical wave fronts. (The actual radiation from
antennas follows a more complicated pattern.) (b) The
ANSI/IEEE C95.1-1991 maximum exposure standard is
0.57 mW/cm2 for persons living near cellular telephone
base stations, who would be continuously exposed to the
radiation. Compare the answer to part (a) with this
standard.

A linearly polarized microwave of wavelength 1.50 cm is
directed along the positive x axis. The electric field
vector has a maximum value of 175 V/m and vibrates
in the xy plane. (a) Assume that the magnetic field
component of the wave can be written in the form
B " B max sin(kx ) %t) and give values for B max, k, and %.
Also, determine in which plane the magnetic field vector
vibrates. (b) Calculate the average value of the Poynting
vector for this wave. (c) What radiation pressure
would this wave exert if it were directed at normal
incidence onto a perfectly reflecting sheet? (d) What
acceleration would be imparted to a 500-g sheet
(perfectly reflecting and at normal incidence) with
dimensions of 1.00 m $ 0.750 m?

56. The Earth reflects approximately 38.0% of the incident
sunlight from its clouds and surface. (a) Given that the
intensity of solar radiation is 1 340 W/m2, what is the radi-
ation pressure on the Earth, in pascals, at the location
where the Sun is straight overhead? (b) Compare this to
normal atmospheric pressure at the Earth’s surface, which
is 101 kPa.

An astronaut, stranded in space 10.0 m from his
spacecraft and at rest relative to it, has a mass (including
equipment) of 110 kg. Because he has a 100-W light
source that forms a directed beam, he considers using
the beam as a photon rocket to propel himself continu-
ously toward the spacecraft. (a) Calculate how long it
takes him to reach the spacecraft by this method.
(b) What If? Suppose, instead, that he decides to throw
the light source away in a direction opposite the
spacecraft. If the mass of the light source is 3.00 kg and,
after being thrown, it moves at 12.0 m/s relative to the
recoiling astronaut, how long does it take for the
astronaut to reach the spacecraft?

58. Review problem. A 1.00-m-diameter mirror focuses the
Sun’s rays onto an absorbing plate 2.00 cm in radius,
which holds a can containing 1.00 L of water at 20.0°C.
(a) If the solar intensity is 1.00 kW/m2, what is the inten-
sity on the absorbing plate? (b) What are the maximum
magnitudes of the fields E and B? (c) If 40.0% of the
energy is absorbed, how long does it take to bring the
water to its boiling point?

59. Lasers have been used to suspend spherical glass beads in
the Earth’s gravitational field. (a) A black bead has a mass
of 1.00 &g and a density of 0.200 g/cm3. Determine the
radiation intensity needed to support the bead. (b) If the
beam has a radius of 0.200 cm, what is the power required
for this laser?

60. Lasers have been used to suspend spherical glass beads in
the Earth’s gravitational field. (a) A black bead has a mass

57.

55.

m and a density 3. Determine the radiation intensity
needed to support the bead. (b) If the beam has a radius r,
what is the power required for this laser?

61. A microwave source produces pulses of 20.0-GHz radia-
tion, with each pulse lasting 1.00 ns. A parabolic reflec-
tor with a face area of radius 6.00 cm is used to focus
the microwaves into a parallel beam of radiation, as
shown in Figure P34.61. The average power during each
pulse is 25.0 kW. (a) What is the wavelength of these
microwaves? (b) What is the total energy contained
in each pulse? (c) Compute the average energy density
inside each pulse. (d) Determine the amplitude of
the electric and magnetic fields in these microwaves.
(e) Assuming this pulsed beam strikes an absorbing
surface, compute the force exerted on the surface
during the 1.00-ns duration of each pulse.

12.0 cm

Figure P34.61

62. The electromagnetic power radiated by a nonrelativistic
moving point charge q having an acceleration a is

where #0 is the permittivity of free space and c is the speed
of light in vacuum. (a) Show that the right side of this
equation has units of watts. (b) An electron is placed in a
constant electric field of magnitude 100 N/C. Determine
the acceleration of the electron and the electromagnetic
power radiated by this electron. (c) What If? If a proton is
placed in a cyclotron with a radius of 0.500 m and a mag-
netic field of magnitude 0.350 T, what electromagnetic
power does this proton radiate?

63. A thin tungsten filament of length 1.00 m radiates
60.0 W of power in the form of electromagnetic waves. A
perfectly absorbing surface in the form of a hollow cylin-
der of radius 5.00 cm and length 1.00 m is placed con-
centrically with the filament. Calculate the radiation
pressure acting on the cylinder. (Assume that the radia-
tion is emitted in the radial direction, and ignore end
effects.)

64. The torsion balance shown in Figure 34.8 is used in
an experiment to measure radiation pressure. The sus-
pension fiber exerts an elastic restoring torque. Its
torque constant is 1.00 $ 10)11 N ! m/degree, and the
length of the horizontal rod is 6.00 cm. The beam from
a 3.00-mW helium–neon laser is incident on the black
disk, and the mirror disk is completely shielded.
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Calculate the angle between the equilibrium positions of
the horizontal bar when the beam is switched from “off”
to “on.”

65. A “laser cannon” of a spacecraft has a beam of cross-
sectional area A. The maximum electric field in the beam
is E. The beam is aimed at an asteroid that is initially
moving in the direction of the spacecraft. What is the
acceleration of the asteroid relative to the spacecraft if the
laser beam strikes the asteroid perpendicular to its surface,
and the surface is nonreflecting? The mass of the asteroid
is m. Ignore the acceleration of the spacecraft.

66. A plane electromagnetic wave varies sinusoidally at
90.0 MHz as it travels along the ' x direction. The peak
value of the electric field is 2.00 mV/m, and it is directed
along the 1 y direction. (a) Find the wavelength, the
period, and the maximum value of the magnetic field.
(b) Write expressions in SI units for the space and time
variations of the electric field and of the magnetic field.
Include numerical values and include subscripts to indi-
cate coordinate directions. (c) Find the average power
per unit area that this wave carries through space.
(d) Find the average energy density in the radiation (in
joules per cubic meter). (e) What radiation pressure
would this wave exert upon a perfectly reflecting surface
at normal incidence?

67. Eliza is a black cat with four black kittens: Penelope,
Rosalita, Sasha, and Timothy. Eliza’s mass is 5.50 kg, and
each kitten has mass 0.800 kg. One cool night all five
sleep snuggled together on a mat, with their bodies
forming one hemisphere. (a) Assuming that the purring
heap has uniform density 990 kg/m3, find the radius of
the hemisphere. (b) Find the area of its curved surface.
(c) Assume the surface temperature is uniformly 31.0°C
and the emissivity is 0.970. Find the intensity of radiation
emitted by the cats at their curved surface, and (d) the
radiated power from this surface. (e) You may think of
the emitted electromagnetic wave as having a single pre-
dominant frequency (of 31.2 THz). Find the amplitude
of the electric field just outside the surface of the cozy
pile, and (f) the amplitude of the magnetic field. (g) Are
the sleeping cats charged? Are they current-carrying?
Are they magnetic? Are they a radiation source? Do they
glow in the dark? Give an explanation for your answers
so that they do not seem contradictory. (h) What If? The
next night the kittens all sleep alone, curling up into
separate hemispheres like their mother. Find the total
radiated power of the family. (For simplicity, we ignore
throughout the cats’ absorption of radiation from the
environment.)

68. Review problem. (a) An elderly couple has a solar
water heater installed on the roof of their house (Fig.
P34.68). The heater consists of a flat closed box with

Note: Section 20.7 introduced electromagnetic radiation
as a mode of energy transfer. The following three
problems use ideas introduced both there and in the
current chapter.

extraordinarily good thermal insulation. Its interior is
painted black, and its front face is made of insulating
glass. Assume that its emissivity for visible light is 0.900
and its emissivity for infrared light is 0.700. Assume that
light from the noon Sun is incident perpendicular to the
glass with an intensity of 1 000 W/m2, and that no
water enters or leaves the box. Find the steady-state
temperature of the interior of the box. (b) What If?
The couple builds an identical box with no water
tubes. It lies flat on the ground in front of the house.
They use it as a cold frame, where they plant seeds in
early spring. Assuming the same noon Sun is at an eleva-
tion angle of 50.0°, find the steady-state temperature of
the interior of this box when its ventilation slots are
tightly closed.

69. Review problem. The study of Creation suggests a Creator
with an inordinate fondness for beetles and for small red
stars. A small red star radiates electromagnetic waves with
power 6.00 $ 1023 W, which is only 0.159% of the lumi-
nosity of the Sun. Consider a spherical planet in a circular
orbit around this star. Assume the emissivity of the planet
is equal for infrared and for visible light. Assume the
planet has a uniform surface temperature. Identify the
projected area over which the planet absorbs starlight and
the radiating area of the planet. If beetles thrive at a tem-
perature of 310 K, what should be the radius of the
planet’s orbit?

Answers to Quick Quizzes

34.1 (c). Figure 34.3b shows that the B and E vectors
reach their maximum and minimum values at the same
time.

34.2 (c). The B field must be in the ' z direction in order
that the Poynting vector be directed along the ) y direction.

34.3 (d). The first three choices are instantaneous values and
vary in time. The wave intensity is an average over a full
cycle.

34.4 (b). To maximize the pressure on the sails, they should be
perfectly reflective, so that the pressure is given by Equa-
tion 34.27.

34.5(b), (c). The radiation pressure (a) does not change
because pressure is force per unit area. In (b), the
smaller disk absorbs less radiation, resulting in a smaller

Figure P34.68

©
 B

ill
 B

an
as

ze
w

sk
i/V

isu
al

s U
nl

im
ite

d



Answers to Quick Quizzes 1091

force. For the same reason, the momentum in (c) is
reduced.

34.6 (a), (b) " (c), (d). The closest point along the x axis in
Figure 34.11 (choice a) will represent the highest inten-
sity. Choices (b) and (c) correspond to points equidistant
in different directions. Choice (d) is along the axis of the
antenna and the intensity is zero.

34.7 (a). The best orientation is parallel to the transmitting
antenna because that is the orientation of the electric

field. The electric field moves electrons in the receiving
antenna, thus inducing a current that is detected and
amplified.

34.8 (c). Either Equation 34.13 or Figure 34.12 can be used to
find the order of magnitude of the wavelengths.

34.9 (a). Either Equation 34.13 or Figure 34.12 can be used to
find the order of magnitude of the wavelength.





Light and Optics
ight is basic to almost all life on the Earth. Plants convert the energy trans-
ferred by sunlight to chemical energy through photosynthesis. In addition, light
is the principal means by which we are able to transmit and receive informa-

tion to and from objects around us and throughout the Universe.
The nature and properties of light have been a subject of great interest and spec-

ulation since ancient times. The Greeks believed that light consisted of tiny particles
(corpuscles) that were emitted by a light source and that these particles stimulated
the perception of vision upon striking the observer’s eye. Newton used this particle
theory to explain the reflection and refraction (bending) of light. In 1678, one of
Newton’s contemporaries, the Dutch scientist Christian Huygens, was able to explain
many other properties of light by proposing that light is a wave. In 1801, Thomas
Young showed that light beams can interfere with one another, giving strong support
to the wave theory. In 1865, Maxwell developed a brilliant theory that electromag-
netic waves travel with the speed of light (see Chapter 34). By this time, the wave
theory of light seemed to be firmly established.

However, at the beginning of the twentieth century, Max Planck returned to the
particle theory of light to explain the radiation emitted by hot objects. Einstein then
used the particle theory to explain how electrons are emitted by a metal exposed to
light. Today, scientists view light as having a dual nature—that is, light exhibits charac-
teristics of a wave in some situations and characteristics of a particle in other situa-
tions.

We shall discuss the particle nature of light in Part 6 of this text, which addresses
modern physics. In Chapters 35 through 38, we concentrate on those aspects
of light that are best understood through the wave model. First, we discuss the
reflection of light at the boundary between two media and the refraction that occurs
as light travels from one medium into another. Then, we use these ideas to study
reflection and refraction as light forms images due to mirrors and lenses. Next, we
describe how the lenses and mirrors used in such instruments as telescopes and
microscopes help us view objects not clearly visible to the naked eye. Finally,
we study the phenomena of diffraction, polarization, and interference as they apply
to light.  !

L
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! The Grand Tetons in western Wyoming are reflected in a smooth lake at sunset. The
optical principles that we study in this part of the book will explain the nature of the reflected
image of the mountains and why the sky appears red. (David Muench/CORBIS)
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The Nature of Light and the
Laws of Geometric Optics

CHAPTE R OUTL I N E
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35.3 The Ray Approximation in
Geometric Optics
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35.7 Dispersion and Prisms

35.8 Total Internal Reflection

35.9 Fermat’s Principle
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" This photograph of a rainbow shows a distinct secondary rainbow with the colors re-
versed. The appearance of the rainbow depends on three optical phenomena discussed in
this chapter—reflection, refraction, and dispersion. (Mark D. Phillips/Photo Researchers, Inc.)
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In this first chapter on optics, we begin by introducing two historical models for light
and discussing early methods for measuring the speed of light. Next we study the
fundamental phenomena of geometric optics—reflection of light from a surface and
refraction as the light crosses the boundary between two media. We will also study
the dispersion of light as it refracts into materials, resulting in visual displays such as
the rainbow. Finally, we investigate the phenomenon of total internal reflection,
which is the basis for the operation of optical fibers and the burgeoning technology
of fiber optics.

35.1 The Nature of Light

Before the beginning of the nineteenth century, light was considered to be a stream of
particles that either was emitted by the object being viewed or emanated from the eyes
of the viewer. Newton, the chief architect of the particle theory of light, held that
particles were emitted from a light source and that these particles stimulated the sense
of sight upon entering the eye. Using this idea, he was able to explain reflection and
refraction.

Most scientists accepted Newton’s particle theory. During his lifetime, however,
another theory was proposed—one that argued that light might be some sort of wave
motion. In 1678, the Dutch physicist and astronomer Christian Huygens showed that a
wave theory of light could also explain reflection and refraction.

In 1801, Thomas Young (1773–1829) provided the first clear demonstration of
the wave nature of light. Young showed that, under appropriate conditions, light rays
interfere with each other. Such behavior could not be explained at that time by a
particle theory because there was no conceivable way in which two or more particles
could come together and cancel one another. Additional developments during
the nineteenth century led to the general acceptance of the wave theory of light, the
most important resulting from the work of Maxwell, who in 1873 asserted that light was
a form of high-frequency electromagnetic wave. As discussed in Chapter 34, Hertz
provided experimental confirmation of Maxwell’s theory in 1887 by producing and
detecting electromagnetic waves.

Although the wave model and the classical theory of electricity and magnetism
were able to explain most known properties of light, they could not explain some sub-
sequent experiments. The most striking of these is the photoelectric effect, also discov-
ered by Hertz: when light strikes a metal surface, electrons are sometimes ejected from
the surface. As one example of the difficulties that arose, experiments showed that the
kinetic energy of an ejected electron is independent of the light intensity. This finding
contradicted the wave theory, which held that a more intense beam of light should add
more energy to the electron. An explanation of the photoelectric effect was proposed
by Einstein in 1905 in a theory that used the concept of quantization developed by
Max Planck (1858–1947) in 1900. The quantization model assumes that the energy of a



light wave is present in particles called photons; hence, the energy is said to be
quantized. According to Einstein’s theory, the energy of a photon is proportional to
the frequency of the electromagnetic wave:

E ! hf (35.1)

where the constant of proportionality h ! 6.63 " 10#34 J $ s is Planck’s constant (see
Section 11.6). We will study this theory in Chapter 40.

In view of these developments, light must be regarded as having a dual nature:
Light exhibits the characteristics of a wave in some situations and the charac-
teristics of a particle in other situations. Light is light, to be sure. However, the
question “Is light a wave or a particle?” is inappropriate. Sometimes light acts like a
wave, and at other times it acts like a particle. In the next few chapters, we investigate
the wave nature of light.

35.2 Measurements of the Speed of Light

Light travels at such a high speed (c ! 3.00 " 108 m/s) that early attempts to measure
its speed were unsuccessful. Galileo attempted to measure the speed of light by
positioning two observers in towers separated by approximately 10 km. Each observer
carried a shuttered lantern. One observer would open his lantern first, and then
the other would open his lantern at the moment he saw the light from the first
lantern. Galileo reasoned that, knowing the transit time of the light beams from
one lantern to the other, he could obtain the speed. His results were inconclusive.
Today, we realize (as Galileo concluded) that it is impossible to measure the speed
of light in this manner because the transit time is so much less than the reaction time
of the observers.

Roemer’s Method

In 1675, the Danish astronomer Ole Roemer (1644–1710) made the first successful
estimate of the speed of light. Roemer’s technique involved astronomical observations
of one of the moons of Jupiter, Io, which has a period of revolution around Jupiter of
approximately 42.5 h. The period of revolution of Jupiter around the Sun is about
12 yr; thus, as the Earth moves through 90° around the Sun, Jupiter revolves through
only (1/12)90° ! 7.5° (Fig. 35.1).

An observer using the orbital motion of Io as a clock would expect the orbit to
have a constant period. However, Roemer, after collecting data for more than a year,
observed a systematic variation in Io’s period. He found that the periods were
longer than average when the Earth was receding from Jupiter and shorter than
average when the Earth was approaching Jupiter. If Io had a constant period,
Roemer should have seen it become eclipsed by Jupiter at a particular instant and
should have been able to predict the time of the next eclipse. However, when he
checked the time of the second eclipse as the Earth receded from Jupiter, he found
that the eclipse was late. If the interval between his observations was three months,
then the delay was approximately 600 s. Roemer attributed this variation in period
to the fact that the distance between the Earth and Jupiter changed from one obser-
vation to the next. In three months (one quarter of the period of revolution of the
Earth around the Sun), the light from Jupiter must travel an additional distance
equal to the radius of the Earth’s orbit.

Using Roemer’s data, Huygens estimated the lower limit for the speed of light
to be approximately 2.3 " 108 m/s. This experiment is important historically
because it demonstrated that light does have a finite speed and gave an estimate
of this speed.
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Energy of a photon

J1

E1

S
E2

J2

Io
Figure 35.1 Roemer’s method for
measuring the speed of light. In
the time interval during which the
Earth travels 90° around the Sun
(three months), Jupiter travels only
about 7.5° (drawing not to scale).
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Fizeau’s Method

The first successful method for measuring the speed of light by means of purely
terrestrial techniques was developed in 1849 by French physicist Armand H. L. Fizeau
(1819–1896). Figure 35.2 represents a simplified diagram of Fizeau’s apparatus. The
basic procedure is to measure the total time interval during which light travels from
some point to a distant mirror and back. If d is the distance between the light source
(considered to be at the location of the wheel) and the mirror and if the time interval
for one round trip is %t, then the speed of light is c ! 2d/%t.

To measure the transit time, Fizeau used a rotating toothed wheel, which converts a
continuous beam of light into a series of light pulses. The rotation of such a wheel
controls what an observer at the light source sees. For example, if the pulse traveling
toward the mirror and passing the opening at point A in Figure 35.2 should return to
the wheel at the instant tooth B had rotated into position to cover the return path, the
pulse would not reach the observer. At a greater rate of rotation, the opening at point
C could move into position to allow the reflected pulse to reach the observer. Knowing
the distance d, the number of teeth in the wheel, and the angular speed of the wheel,
Fizeau arrived at a value of 3.1 " 108 m/s. Similar measurements made by subsequent
investigators yielded more precise values for c, which led to the currently accepted
value of 2.997 9 " 108 m/s.

d

A

B
C

Toothed
wheel

Mirror

Figure 35.2 Fizeau’s method for
measuring the speed of light using
a rotating toothed wheel. The light
source is considered to be at the
location of the wheel; thus, the
distance d is known.

Example 35.1 Measuring the Speed of Light with Fizeau’s Wheel

Assume that Fizeau’s wheel has 360 teeth and is rotating at
27.5 rev/s when a pulse of light passing through opening A
in Figure 35.2 is blocked by tooth B on its return. If the
distance to the mirror is 7 500 m, what is the speed of light?

Solution The wheel has 360 teeth, and so it must have 360
openings. Therefore, because the light passes through open-
ing A but is blocked by the tooth immediately adjacent to A,
the wheel must rotate through an angular displacement of
(1/720) rev in the time interval during which the light pulse

makes its round trip. From the definition of angular speed,
that time interval is

Hence, the speed of light calculated from this data is

2.97 " 108 m/sc !
2d
%t

!
2(7 500 m)

5.05 " 10#5 s
!

%t !
%&

'
!

(1/720) rev
27.5 rev/s

! 5.05 " 10#5 s

Rays

Wave fronts

Figure 35.3 A plane wave
propagating to the right. Note that
the rays, which always point in the
direction of the wave propagation,
are straight lines perpendicular to
the wave fronts.

35.3 The Ray Approximation in Geometric Optics

The field of geometric optics involves the study of the propagation of light, with the
assumption that light travels in a fixed direction in a straight line as it passes through a
uniform medium and changes its direction when it meets the surface of a different
medium or if the optical properties of the medium are nonuniform in either space or
time. As we study geometric optics here and in Chapter 36, we use what is called the
ray approximation. To understand this approximation, first note that the rays of a
given wave are straight lines perpendicular to the wave fronts as illustrated in Figure
35.3 for a plane wave. In the ray approximation, we assume that a wave moving
through a medium travels in a straight line in the direction of its rays.

If the wave meets a barrier in which there is a circular opening whose diameter is
much larger than the wavelength, as in Figure 35.4a, the wave emerging from the open-
ing continues to move in a straight line (apart from some small edge effects); hence,
the ray approximation is valid. If the diameter of the opening is on the order of the
wavelength, as in Figure 35.4b, the waves spread out from the opening in all directions.
This effect is called diffraction and will be studied in Chapter 37. Finally, if the opening is
much smaller than the wavelength, the opening can be approximated as a point source
of waves (Fig. 35.4c). Similar effects are seen when waves encounter an opaque object of
dimension d. In this case, when ( )) d , the object casts a sharp shadow.



The ray approximation and the assumption that ( )) d are used in this chapter
and in Chapter 36, both of which deal with geometric optics. This approximation is
very good for the study of mirrors, lenses, prisms, and associated optical instruments,
such as telescopes, cameras, and eyeglasses.

35.4 Reflection

When a light ray traveling in one medium encounters a boundary with another
medium, part of the incident light is reflected. Figure 35.5a shows several rays of a
beam of light incident on a smooth, mirror-like, reflecting surface. The reflected
rays are parallel to each other, as indicated in the figure. The direction of a
reflected ray is in the plane perpendicular to the reflecting surface that contains the
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Active Figure 35.4 A plane wave of wavelength ( is incident on a barrier in which
there is an opening of diameter d. (a) When ( )) d, the rays continue in a straight-line
path, and the ray approximation remains valid. (b) When ( ! d, the rays spread out
after passing through the opening. (c) When ( ** d, the opening behaves as a point
source emitting spherical waves.

(c)(a)

d

(b)

λ << dλ λ ≈ dλ

λ >> dλ

At the Active Figures link
at http://www.pse6.com, you
can adjust the size of the
opening and observe the effect
on the waves passing through.

(b)(a)

Figure 35.5 Schematic representation of (a) specular reflection, where the reflected
rays are all parallel to each other, and (b) diffuse reflection, where the reflected rays
travel in random directions. (c) and (d) Photographs of specular and diffuse reflection
using laser light.
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incident ray. Reflection of light from such a smooth surface is called specular
reflection. If the reflecting surface is rough, as shown in Figure 35.5b, the surface
reflects the rays not as a parallel set but in various directions. Reflection from any
rough surface is known as diffuse reflection. A surface behaves as a smooth surface
as long as the surface variations are much smaller than the wavelength of the
incident light.

The difference between these two kinds of reflection explains why it is more
difficult to see while driving on a rainy night. If the road is wet, the smooth surface of
the water specularly reflects most of your headlight beams away from your car (and
perhaps into the eyes of oncoming drivers). When the road is dry, its rough surface
diffusely reflects part of your headlight beam back toward you, allowing you to see the
highway more clearly. In this book, we concern ourselves only with specular reflection
and use the term reflection to mean specular reflection.

Consider a light ray traveling in air and incident at an angle on a flat, smooth
surface, as shown in Figure 35.6. The incident and reflected rays make angles &1 and
&+1, respectively, where the angles are measured between the normal and the rays. (The
normal is a line drawn perpendicular to the surface at the point where the incident ray
strikes the surface.) Experiments and theory show that the angle of reflection equals
the angle of incidence:

(35.2)

This relationship is called the law of reflection.

&+1 ! &1
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Quick Quiz 35.1 In the movies, you sometimes see an actor looking in a
mirror and you can see his face in the mirror. During the filming of this scene, what
does the actor see in the mirror? (a) his face (b) your face (c) the director’s face
(d) the movie camera (e) impossible to determine

Example 35.2 The Double-Reflected Light Ray Interactive

Normal

Incident
ray

Reflected
ray

θ1 ′θ1θ θ
At the Active Figures link

at http://www.pse6.com, vary
the incident angle and see the
effect on the reflected ray.

" PITFALL PREVENTION 
35.1 Subscript Notation
We use the subscript 1 to refer
to parameters for the light in
the initial medium. When light
travels from one medium to
another, we use the subscript 2 for
the parameters associated with the
light in the new medium. In the
current discussion, the light stays
in the same medium, so we only
have to use the subscript 1.

Active Figure 35.6 According to the law of reflection,
&+1 ! &1. The incident ray, the reflected ray, and the normal all
lie in the same plane.

Law of reflection

Two mirrors make an angle of 120° with each other, as illus-
trated in Figure 35.7a. A ray is incident on mirror M1 at an
angle of 65° to the normal. Find the direction of the ray
after it is reflected from mirror M2.

Solution Figure 35.7a helps conceptualize this situation. The
incoming ray reflects from the first mirror, and the reflected
ray is directed toward the second mirror. Thus, there is a
second reflection from this latter mirror. Because the interac-
tions with both mirrors are simple reflections, we categorize
this problem as one that will require the law of reflection and
some geometry. To analyze the problem, note that from the

law of reflection, we know that the first reflected ray makes an
angle of 65° with the normal. Thus, this ray makes an angle of
90° # 65° ! 25° with the horizontal.

From the triangle made by the first reflected ray and the
two mirrors, we see that the first reflected ray makes an an-
gle of 35° with M2 (because the sum of the interior angles of
any triangle is 180°). Therefore, this ray makes an angle of
55° with the normal to M2. From the law of reflection, the
second reflected ray makes an angle of 55° with the normal
to M2.

To finalize the problem, let us explore variations in the
angle between the mirrors as follows.



As discussed in the What If? section of the preceding example, if the angle between
two mirrors is 90°, the reflected beam returns to the source parallel to its original path.
This phenomenon, called retroreflection, has many practical applications. If a third mirror
is placed perpendicular to the first two, so that the three form the corner of a cube,
retroreflection works in three dimensions. In 1969, a panel of many small reflectors was
placed on the Moon by the Apollo 11 astronauts (Fig. 35.8a). A laser beam from the Earth
is reflected directly back on itself and its transit time is measured. This information is
used to determine the distance to the Moon with an uncertainty of 15 cm. (Imagine how
difficult it would be to align a regular flat mirror so that the reflected laser beam would
hit a particular location on the Earth!) A more everyday application is found in
automobile taillights. Part of the plastic making up the taillight is formed into many tiny
cube corners (Fig. 35.8b) so that headlight beams from cars approaching from the rear
are reflected back to the drivers. Instead of cube corners, small spherical bumps are
sometimes used (Fig. 35.8c). Tiny clear spheres are used in a coating material found on
many road signs. Due to retroreflection from these spheres, the stop sign in Figure 35.8d
appears much brighter than it would if it were simply a flat, shiny surface reflecting most
of the light hitting it away from the highway.

Another practical application of the law of reflection is the digital projection
of movies, television shows, and computer presentations. A digital projector makes use
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in Figure 35.7b, we see that

, - 2. - 2(90/ # 0) ! 180/

, ! 2(0 # .)

The change in direction of the light ray is angle 1, which is
180° # ,:

1 ! 180/ # , ! 180/ # 2(0 # .)

! 180/ # 2[0 # (90/ - 0 # &)]

! 360/ # 2&

Notice that 1 is not equal to &. For & ! 120°, we obtain 1 !
120°, which happens to be the same as the mirror angle. But
this is true only for this special angle between the mirrors.
For example, if & ! 90°, we obtain 1 ! 180°. In this case,
the light is reflected straight back to its origin.

Figure 35.7 (Example 35.2) (a) Mirrors
M1 and M2 make an angle of 120° with each
other. (b) The geometry for an arbitrary
mirror angle.

Investigate this reflection situation for various mirror angles at the Interactive Worked Example link at http://www.pse6.com.

M1

M2

55°

65°
65°

25°

35°
120°

55°

(b)(a)

φ
φ

90°–φ

90°–φ
θ γ

γ

α β

What If? If the incoming and outgoing rays in Figure 35.7a
are extended behind the mirror, they cross at an angle of 60°,
so that the overall change in direction of the light ray is 120°.
This is the same as the angle between the mirrors. What if
the angle between the mirrors is changed? Is the overall
change in the direction of the light ray always equal to the
angle between the mirrors?

Answer Making a general statement based on one data
point is always a dangerous practice! Let us investigate the
change in direction for a general situation. Figure 35.7b
shows the mirrors at an arbitrary angle & and the incoming
light ray striking the mirror at an arbitrary angle 0 with
respect to the normal to the mirror surface. In accordance
with the law of reflection and the sum of the interior 
angles of a triangle, the angle . is 180° # (90° # 0) # & !
90° - 0 # &. Considering the triangle highlighted in blue



of an optical semiconductor chip called a digital micromirror device. This device contains
an array of over one million tiny mirrors (Fig. 35.9a) that can be individually tilted
by means of signals to an address electrode underneath the edge of the mirror.
Each mirror corresponds to a pixel in the projected image. When the pixel
corresponding to a given mirror is to be bright, the mirror is in the “on” position—
oriented so as to reflect light from a source illuminating the array to the screen
(Fig. 35.9b). When the pixel for this mirror is to be dark, the mirror is “off”—tilted
so that the light is reflected away from the screen. The brightness of the pixel is
determined by the total time interval during which the mirror is in the “on” position
during the display of one image.

Digital movie projectors use three micromirror devices, one for each of the
primary colors red, blue, and green, so that movies can be displayed with up to 35
trillion colors. Because information is stored as binary data, a digital movie does not
degrade with time as does film. Furthermore, because the movie is entirely in the form
of computer software, it can be delivered to theaters by means of satellites, optical
discs, or optical fiber networks.

Several movies have been projected digitally to audiences and polls show that
85 percent of the viewers describe the image quality as “excellent.” The first all-digital
movie, from cinematography to post-production to projection, was Star Wars Episode II:
Attack of the Clones in 2002.

S E C T I O N  3 5 . 4 •  Reflection 1101

Figure 35.8 Applications of retroreflection. (a) This panel on the Moon reflects a
laser beam directly back to its source on the Earth. (b) An automobile taillight has
small retroreflectors that ensure that headlight beams are reflected back toward the car
that sent them. (c) A light ray hitting a transparent sphere at the proper position is
retroreflected. (d) This stop sign appears to glow in headlight beams because its
surface is covered with a layer of many tiny retroreflecting spheres. What would you
see if the sign had a mirror-like surface?

Retroreflector

(a) (b)

(c)

(d)
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Figure 35.9 (a) An array of
mirrors on the surface of a digital
micromirror device. Each mirror
has an area of about 16 2m2. To
provide a sense of scale, the leg of
an ant appears in the photograph.
(b) A close-up view of two single
micromirrors. The mirror on the
left is “on” and the one on the
right is “off.”
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35.5 Refraction

When a ray of light traveling through a transparent medium encounters a boundary
leading into another transparent medium, as shown in Figure 35.10, part of the energy
is reflected and part enters the second medium. The ray that enters the second
medium is bent at the boundary and is said to be refracted. The incident ray, the
reflected ray, and the refracted ray all lie in the same plane. The angle of refraction,
&2 in Figure 35.10a, depends on the properties of the two media and on the angle of
incidence through the relationship

(35.3)

where v1 is the speed of light in the first medium and v2 is the speed of light in the
second medium.

The path of a light ray through a refracting surface is reversible. For example, the
ray shown in Figure 35.10a travels from point A to point B. If the ray originated at B, it
would travel to the left along line BA to reach point A, and the reflected part would
point downward and to the left in the glass.

sin &2

sin &1
!

v2

v1
! constant
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(b)

Glass
Air

Incident
ray

Refracted
ray

Reflected
ray

Normal

A

v1
v2

(a)

B

θ2θ

′θ1θθ1θ

Active Figure 35.10 (a) A ray obliquely incident on an air–glass interface. The re-
fracted ray is bent toward the normal because v2 ) v1. All rays and the normal lie in
the same plane. (b) Light incident on the Lucite block bends both when it enters the
block and when it leaves the block.
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At the Active Figures link
at http://www.pse6.com, vary
the incident angle and see the
effect on the reflected and
refracted rays.

Quick Quiz 35.2 If beam ! is the incoming beam in Figure 35.10b, which
of the other four red lines are reflected beams and which are refracted beams?

From Equation 35.3, we can infer that when light moves from a material in which its
speed is high to a material in which its speed is lower, as shown in Figure 35.11a, the angle
of refraction &2 is less than the angle of incidence &1, and the ray is bent toward the
normal. If the ray moves from a material in which light moves slowly to a material in
which it moves more rapidly, as illustrated in Figure 35.11b, &2 is greater than &1, and the
ray is bent away from the normal.

The behavior of light as it passes from air into another substance and then re-
emerges into air is often a source of confusion to students. When light travels in air,
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At the Active Figures link
at http://www.pse6.com, light
passes through three layers of
material. You can vary the
incident angle and see the
effect on the refracted rays for
a variety of values of the index
of refraction (page 1104) of the
three materials.

Glass
Air

Normal

(a)

Normal

(b)

Glass

Air

1θ

2θ

2θ1θ >

v2 < v1

v1

v2 > v1

v1 1θ

2θ

2θ1θ <

Active Figure 35.11 (a) When the light beam moves from air into glass, the light slows
down on entering the glass and its path is bent toward the normal. (b) When the beam
moves from glass into air, the light speeds up on entering the air and its path is bent
away from the normal.

its speed is 3.00 " 108 m/s, but this speed is reduced to approximately 2 " 108 m/s
when the light enters a block of glass. When the light re-emerges into air, its speed
instantaneously increases to its original value of 3.00 " 108 m/s. This is far different
from what happens, for example, when a bullet is fired through a block of wood. In
this case, the speed of the bullet is reduced as it moves through the wood because
some of its original energy is used to tear apart the wood fibers. When the bullet
enters the air once again, it emerges at the speed it had just before leaving the
block of wood.

To see why light behaves as it does, consider Figure 35.12, which represents a
beam of light entering a piece of glass from the left. Once inside the glass, the light
may encounter an electron bound to an atom, indicated as point A. Let us assume
that light is absorbed by the atom; this causes the electron to oscillate (a detail
represented by the double-headed vertical arrows). The oscillating electron then
acts as an antenna and radiates the beam of light toward an atom at B, where the
light is again absorbed. The details of these absorptions and radiations are best
explained in terms of quantum mechanics (Chapter 42). For now, it is sufficient to
think of light passing from one atom to another through the glass. Although light
travels from one glass atom to another at 3.00 " 108 m/s, the absorption and
radiation that take place cause the average light speed through the material to fall to
about 2 " 108 m/s. Once the light emerges into the air, absorption and radiation
cease and the speed of the light returns to the original value.

A B

Figure 35.12 Light passing from one atom to another in a
medium. The dots are electrons, and the vertical arrows represent
their oscillations.



A mechanical analog of refraction is shown in Figure 35.13. When the left end of
the rolling barrel reaches the grass, it slows down, while the right end remains on the
concrete and moves at its original speed. This difference in speeds causes the barrel to
pivot, and this changes the direction of travel.

Index of Refraction

In general, the speed of light in any material is less than its speed in vacuum. In fact,
light travels at its maximum speed in vacuum. It is convenient to define the index of
refraction n of a medium to be the ratio

(35.4)

From this definition, we see that the index of refraction is a dimensionless
number greater than unity because v is always less than c. Furthermore, n is equal
to unity for vacuum. The indices of refraction for various substances are listed
in Table 35.1.

As light travels from one medium to another, its frequency does not
change but its wavelength does. To see why this is so, consider Figure 35.14.
Waves pass an observer at point A in medium 1 with a certain frequency and are

n " 
speed of light in vacuum

speed of light in a medium
!

c
v
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Concrete

Grass
This end slows
first; as a result,
the barrel turns.

Figure 35.13 Overhead view of a barrel rolling
from concrete onto grass.

1
2

A

B
v2

v1

1

n2
c
v2

=

n1
c
v1

=

λ

2λ

Figure 35.14 As a wave moves
from medium 1 to medium 2, its
wavelength changes but its
frequency remains constant.

Index of Index of
Substance Refraction Substance Refraction

Solids at 20°C Liquids at 20°C
Cubic zirconia 2.20 Benzene 1.501
Diamond (C) 2.419 Carbon disulfide 1.628
Fluorite (CaF2) 1.434 Carbon tetrachloride 1.461
Fused quartz (SiO2) 1.458 Ethyl alcohol 1.361
Gallium phosphide 3.50 Glycerin 1.473
Glass, crown 1.52 Water 1.333
Glass, flint 1.66
Ice (H2O) 1.309
Polystyrene 1.49
Sodium chloride (NaCl) 1.544

Indices of Refractiona

Table 35.1

a All values are for light having a wavelength of 589 nm in vacuum.

Index of refraction

" PITFALL PREVENTION 
35.2 n Is Not an Integer

Here
We have seen n used several
times as an integer, such as in
Chapter 18 to indicate the stand-
ing wave mode on a string or in
an air column. The index of
refraction n is not an integer.

Gases at 0°C, 1 atm
Air 1.000 293
Carbon dioxide 1.000 45



incident on the boundary between medium 1 and medium 2. The frequency with
which the waves pass an observer at point B in medium 2 must equal the frequency
at which they pass point A. If this were not the case, then energy would be piling up
at the boundary. Because there is no mechanism for this to occur, the frequency
must be a constant as a light ray passes from one medium into another. Therefore,
because the relationship v ! f ( (Eq. 16.12) must be valid in both media and
because f 1 ! f 2 ! f , we see that

v1 ! f (1 and v 2 ! f (2 (35.5)

Because v1 ! v2, it follows that (1 ! (2.
We can obtain a relationship between index of refraction and wavelength by

dividing the first Equation 35.5 by the second and then using Equation 35.4:

(35.6)

This gives

(1n1 ! (2n2

If medium 1 is vacuum, or for all practical purposes air, then n1 ! 1. Hence, it follows
from Equation 35.6 that the index of refraction of any medium can be expressed as the
ratio

(35.7)

where ( is the wavelength of light in vacuum and (n is the wavelength of light in
the medium whose index of refraction is n. From Equation 35.7, we see that because
n * 1, (n ) (.

We are now in a position to express Equation 35.3 in an alternative form.
If we replace the v2/v1 term in Equation 35.3 with n1/n 2 from Equation 35.6, we
obtain

(35.8)

The experimental discovery of this relationship is usually credited to Willebrord Snell
(1591–1627) and is therefore known as Snell’s law of refraction. We shall examine
this equation further in Sections 35.6 and 35.9.

n1 sin & 1 ! n2 sin & 2

n !
(

(n

(1

(2
!

v1

v2
!

c/n1

c/n2
!

n2

n1
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Snell’s law of refraction

" PITFALL PREVENTION 
35.3 An Inverse

Relationship
The index of refraction is
inversely proportional to the wave
speed. As the wave speed v
decreases, the index of refraction
n increases. Thus, the higher the
index of refraction of a material,
the more it slows down light from
its speed in vacuum. The more
the light slows down, the more &2
differs from &1 in Equation 35.8.

Quick Quiz 35.3 Light passes from a material with index of refraction
1.3 into one with index of refraction 1.2. Compared to the incident ray, the
refracted ray (a) bends toward the normal (b) is undeflected (c) bends away from
the normal.

Quick Quiz 35.4 As light from the Sun enters the atmosphere, it refracts
due to the small difference between the speeds of light in air and in vacuum. The
optical length of the day is defined as the time interval between the instant when the
top of the Sun is just visibly observed above the horizon to the instant at which the top
of the Sun just disappears below the horizon. The geometric length of the day is defined
as the time interval between the instant when a geometric straight line drawn from the
observer to the top of the Sun just clears the horizon to the instant at which this line
just dips below the horizon. Which is longer, (a) the optical length of a day, or
(b) the geometric length of a day?
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Figure 35.15 (Example 35.4) Refraction of light by glass.

A light beam passes from medium 1 to medium 2, with the
latter medium being a thick slab of material whose index of
refraction is n2 (Fig. 35.16a). Show that the emerging beam
is parallel to the incident beam.

Solution First, let us apply Snell’s law of refraction to the
upper surface:

Applying this law to the lower surface gives

(1)   sin & 2 !
n1

n2
  sin & 1

A beam of light of wavelength 550 nm traveling in air is inci-
dent on a slab of transparent material. The incident beam
makes an angle of 40.0° with the normal, and the refracted
beam makes an angle of 26.0° with the normal. Find the
index of refraction of the material.

Solution Using Snell’s law of refraction (Eq. 35.8) with
these data, and taking n1 ! 1.00 for air, we have

n1 sin & 1 ! n2 sin & 2

From Table 35.1, we see that the material could be fused
quartz.

1.47!
0.643
0.438

!

n2 !
n1 sin & 1

sin & 2
! (1.00) 

sin 40.0/

sin 26.0/

change in direction is called the angle of deviation and is
given by 3 ! #&1 # &2 # ! 30.0° # 19.2° ! 10.8°.

A laser in a compact disc player generates light that has a
wavelength of 780 nm in air.

(A) Find the speed of this light once it enters the plastic of
a compact disc (n ! 1.55).

Solution We expect to find a value less than 3.00 " 108 m/s
because n * 1. We can obtain the speed of light in the plastic
by using Equation 35.4:

v !
c
n

!
3.00 " 108 m/s

1.55

(B) What is the wavelength of this light in the plastic?

Solution We use Equation 35.7 to calculate the wavelength
in plastic, noting that we are given the wavelength in air to
be ( ! 780 nm:

503 nm(n !
(

n
!

780 nm
1.55

!

1.94 " 108 m/sv !

A light ray of wavelength 589 nm traveling through air is
incident on a smooth, flat slab of crown glass at an angle of
30.0° to the normal, as sketched in Figure 35.15. Find the
angle of refraction.

Solution We rearrange Snell’s law of refraction to obtain

From Table 35.1, we find that n1 ! 1.00 for air and
n2 ! 1.52 for crown glass. Therefore,

Because this is less than the incident angle of 30°, the
refracted ray is bent toward the normal, as expected. Its

19.2/& 2 ! sin#1(0.329) !

sin & 2 ! $ 1.00
1.52 % sin 30.0/ ! 0.329

sin & 2 !
n1

n2
  sin & 1

Substituting Equation (1) into Equation (2) gives

Therefore, &3 ! &1, and the slab does not alter the direction
of the beam. It does, however, offset the beam parallel to
itself by the distance d shown in Figure 35.16a.

sin & 3 !
n2

n1
  $ n1

n2
  sin & 1% ! sin & 1

(2)   sin & 3 !
n2

n1
  sin & 2

Example 35.3 An Index of Refraction Measurement

Example 35.5 Laser Light in a Compact Disc

Example 35.6 Light Passing Through a Slab Interactive

Example 35.4 Angle of Refraction for Glass

Glass
Air

NormalIncident
ray

Refracted
ray

30.0°

θ2
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Figure 35.16 (Example 35.6) (a) When light passes through a flat slab of material, the
emerging beam is parallel to the incident beam, and therefore &1 ! &3. The dashed
line drawn parallel to the ray coming out the bottom of the slab represents the path the
light would take if the slab were not there. (b) A magnification of the area of the light
path inside the slab.

Explore refraction through slabs of various thicknesses at the Interactive Worked Example link at http://www.pse6.com.

What If? What if the thickness t of the slab is doubled?
Does the offset distance d also double?

Answer Consider the magnification of the area of the light
path within the slab in Figure 35.16b. The distance a is the
hypotenuse of two right triangles. From the gold triangle,
we see

and from the blue triangle,

a !
t

cos & 2

d ! a sin . ! a sin(&1 # &2)

Combining these equations, we have

For a given incident angle &1, the refracted angle &2 is deter-
mined solely by the index of refraction, so the offset
distance d is proportional to t. If the thickness doubles, so
does the offset distance.

d !
t

cos & 2
 sin(& 1 # & 2)

35.6 Huygens’s Principle

In this section, we develop the laws of reflection and refraction by using a geometric
method proposed by Huygens in 1678. Huygens’s principle is a geometric construc-
tion for using knowledge of an earlier wave front to determine the position of a new
wave front at some instant. In Huygens’s construction,

all points on a given wave front are taken as point sources for the production of
spherical secondary waves, called wavelets, which propagate outward through
a medium with speeds characteristic of waves in that medium. After some time interval
has passed, the new position of the wave front is the surface tangent to the wavelets.

First, consider a plane wave moving through free space, as shown in Figure 35.17a.
At t ! 0, the wave front is indicated by the plane labeled AA+. In Huygens’s construc-
tion, each point on this wave front is considered a point source. For clarity, only three
points on AA+ are shown. With these points as sources for the wavelets, we draw circles,
each of radius c %t , where c is the speed of light in vacuum and %t is some time interval
during which the wave propagates. The surface drawn tangent to these wavelets is the
plane BB+, which is the wave front at a later time, and is parallel to AA+. In a similar
manner, Figure 35.17b shows Huygens’s construction for a spherical wave.

" PITFALL PREVENTION 
35.4 Of What Use Is

Huygens’s Principle?
At this point, the importance of
Huygens’s principle may not be
evident. Predicting the position
of a future wave front may not
seem to be very critical. However,
we will use Huygens’s principle in
later chapters to explain addi-
tional wave phenomena for light.

d

2θ

θ1θ

t
a

γ
n2

n1

n1

θ1θ

2θ

3θ

(b)(a)

d

2θ
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(a) (b)

Old
wavefront

New
wavefront

c ∆ t

A B

Old
wavefront

New
wavefront

A′ B ′

c ∆ t

Figure 35.17 Huygens’s construction for (a) a plane wave propagating to the right and
(b) a spherical wave propagating to the right.

Figure 35.18 (a) Huygens’s construction for proving the law of reflection. At the
instant that ray 1 strikes the surface, it sends out a Huygens wavelet from A and ray 2
sends out a Huygens wavelet from B. We choose a radius of the wavelet to be c %t,
where %t is the time interval for ray 2 to travel from B to C. (b) Triangle ADC is
congruent to triangle ABC.

Christian Huygens
Dutch Physicist and
Astronomer (1629–1695)

Huygens is best known for his
contributions to the fields of
optics and dynamics. To
Huygens, light was a type of
vibratory motion, spreading out
and producing the sensation of
light when impinging on the
eye. On the basis of this theory,
he deduced the laws of
reflection and refraction and
explained the phenomenon of
double refraction. (Courtesy of
Rijksmuseum voor de
Geschiedenis der
Natuurwetenschappen and Niels
Bohr Library.)

Huygens’s Principle Applied to Reflection and Refraction

The laws of reflection and refraction were stated earlier in this chapter without proof.
We now derive these laws, using Huygens’s principle.

For the law of reflection, refer to Figure 35.18a. The line AB represents a wave front
of the incident light just as ray 1 strikes the surface. At this instant, the wave at A sends
out a Huygens wavelet (the circular arc centered on A) toward D. At the same time, the
wave at B emits a Huygens wavelet (the circular arc centered on B) toward C. Figure
35.18a shows these wavelets after a time interval %t, after which ray 2 strikes the surface.
Because both rays 1 and 2 move with the same speed, we must have AD ! BC ! c %t.

The remainder of our analysis depends on geometry, as summarized in Figure
35.18b, in which we isolate the triangles ABC and ADC. Note that these two triangles
are congruent because they have the same hypotenuse AC and because AD ! BC.
From Figure 35.18b, we have

where, comparing Figures 35.18a and 35.18b, we see that . ! 90° # &1 and
.+ ! 90° # &+1. Because AD ! BC, we have

cos . ! cos .+

cos . !
BC
AC

  and  cos .+ !
AD
AC

γ′γA C

B D

(b)(a)

A C

B D
1′θ

1θ

1

2



Therefore,

. ! .+

90/ # &1 ! 90/ # &+1

and

&1 ! &+1

which is the law of reflection.
Now let us use Huygens’s principle and Figure 35.19 to derive Snell’s law of refrac-

tion. We focus our attention on the instant ray 1 strikes the surface and the subsequent
time interval until ray 2 strikes the surface. During this time interval, the wave at A
sends out a Huygens wavelet (the arc centered on A) toward D. In the same time
interval, the wave at B sends out a Huygens wavelet (the arc centered on B) toward C.
Because these two wavelets travel through different media, the radii of the wavelets are
different. The radius of the wavelet from A is AD ! v2 %t, where v2 is the wave speed in
the second medium. The radius of the wavelet from B is BC ! v1 %t, where v1 is the
wave speed in the original medium.

From triangles ABC and ADC, we find that

If we divide the first equation by the second, we obtain

But from Equation 35.4 we know that v1 ! c/n1 and v2 ! c/n2. Therefore,

n1 sin &1 ! n2 sin & 2

which is Snell’s law of refraction.

35.7 Dispersion and Prisms

An important property of the index of refraction n is that, for a given material, the
index varies with the wavelength of the light passing through the material, as Figure
35.20 shows. This behavior is called dispersion. Because n is a function of wavelength,
Snell’s law of refraction indicates that light of different wavelengths is bent at different
angles when incident on a refracting material.

As we see from Figure 35.20, the index of refraction generally decreases with
increasing wavelength. This means that violet light bends more than red light does when
passing into a refracting material. To understand the effects that dispersion can have on
light, consider what happens when light strikes a prism, as shown in Figure 35.21. A ray
of single-wavelength light incident on the prism from the left emerges refracted from its
original direction of travel by an angle 3, called the angle of deviation.

Now suppose that a beam of white light (a combination of all visible wavelengths) is
incident on a prism, as illustrated in Figure 35.22. The rays that emerge spread out in a
series of colors known as the visible spectrum. These colors, in order of decreasing
wavelength, are red, orange, yellow, green, blue, and violet. Clearly, the angle of
deviation 3 depends on wavelength. Violet light deviates the most, red the least, and
the remaining colors in the visible spectrum fall between these extremes. Newton
showed that each color has a particular angle of deviation and that the colors can be
recombined to form the original white light.

The dispersion of light into a spectrum is demonstrated most vividly in nature by the
formation of a rainbow, which is often seen by an observer positioned between the Sun

sin &1

sin &2
!

c/n1

c/n2
!

n2

n1

sin & 1

sin & 2
!

v 1

v 2

sin & 1 !
BC
AC

!
v 1 %t
AC

  and  sin & 2 !
AD
AC

!
v 2 %t
AC

S E C T I O N  3 5 . 7 •  Dispersion and Prisms 1109
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1θ

1

2

2θ
2θ

A
D

1.54

1.52

1.50

1.48

1.46

400 500 600 700

n

Fused quartz

Acrylic

Crown glass

, nmλ

Figure 35.19 Huygens’s construc-
tion for proving Snell’s law of
refraction. At the instant that ray 1
strikes the surface, it sends out a
Huygens wavelet from A and ray 2
sends out a Huygens wavelet from
B. The two wavelets have different
radii because they travel in differ-
ent media.

Figure 35.20 Variation of index of
refraction with vacuum wavelength
for three materials.

Figure 35.21 A prism refracts a
single-wavelength light ray through
an angle 3.

δ



and a rain shower. To understand how a rainbow is formed, consider Figure 35.23. A ray
of sunlight (which is white light) passing overhead strikes a drop of water in the atmos-
phere and is refracted and reflected as follows: It is first refracted at the front surface of
the drop, with the violet light deviating the most and the red light the least. At the back
surface of the drop, the light is reflected and returns to the front surface, where it again
undergoes refraction as it moves from water into air. The rays leave the drop such that the
angle between the incident white light and the most intense returning violet ray is 40° and
the angle between the white light and the most intense returning red ray is 42°. This small
angular difference between the returning rays causes us to see a colored bow.

Now suppose that an observer is viewing a rainbow, as shown in Figure 35.24. If a
raindrop high in the sky is being observed, the most intense red light returning from
the drop can reach the observer because it is deviated the most, but the most intense
violet light passes over the observer because it is deviated the least. Hence, the
observer sees this drop as being red. Similarly, a drop lower in the sky would direct the
most intense violet light toward the observer and appears to be violet. (The most
intense red light from this drop would pass below the eye of the observer and not be
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Figure 35.22 White light enters a
glass prism at the upper left. A
reflected beam of light comes out of
the prism just below the incoming
beam. The beam moving toward the
lower right shows distinct colors.
Different colors are refracted at
different angles because the index of
refraction of the glass depends on
wavelength. Violet light deviates the
most; red light deviates the least.Da
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" PITFALL PREVENTION 
35.5 A Rainbow of Many

Light Rays
Pictorial representations such as
Figure 35.23 are subject to misin-
terpretation. The figure shows one
ray of light entering the raindrop
and undergoing reflection and
refraction, exiting the raindrop in
a range of 40° to 42° from the
entering ray. This might be inter-
preted incorrectly as meaning that
all light entering the raindrop
exits in this small range of angles.
In reality, light exits the raindrop
over a much larger range of
angles, from 0° to 42°. A careful
analysis of the reflection and
refraction from the spherical
raindrop shows that the range of
40° to 42° is where the highest-
intensity light exits the raindrop.

Active Figure 35.23 Path of
sunlight through a spherical
raindrop. Light following this path
contributes to the visible rainbow.

At the Active Figures link
at http://www.pse6.com, you
can vary the point at which the
sunlight enters the raindrop to
verify that the angles shown are
the maximum angles.

Figure 35.24 The formation of a rainbow seen by an observer standing with the Sun
behind his back.



seen.) The most intense light from other colors of the spectrum would reach the
observer from raindrops lying between these two extreme positions.

The opening photograph for this chapter shows a double rainbow. The secondary
rainbow is fainter than the primary rainbow and the colors are reversed. The secondary
rainbow arises from light that makes two reflections from the interior surface before
exiting the raindrop. In the laboratory, rainbows have been observed in which the light
makes over 30 reflections before exiting the water drop. Because each reflection
involves some loss of light due to refraction out of the water drop, the intensity of these
higher-order rainbows is small compared to the intensity of the primary rainbow.
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Example 35.7 Measuring n Using a Prism

Quick Quiz 35.5 Lenses in a camera use refraction to form an image on a
film. Ideally, you want all the colors in the light from the object being photographed
to be refracted by the same amount. Of the materials shown in Figure 35.20, which
would you choose for a camera lens? (a) crown glass (b) acrylic (c) fused quartz
(d) impossible to determine

Although we do not prove it here, the minimum angle of
deviation 3min for a prism occurs when the angle of inci-
dence &1 is such that the refracted ray inside the prism
makes the same angle with the normal to the two prism
faces,1 as shown in Figure 35.25. Obtain an expression for
the index of refraction of the prism material.

Solution Using the geometry shown in Figure 35.25, we
find that &2 ! 4/2, where 4 is the apex angle and

From Snell’s law of refraction, with n1 ! 1 because medium
1 is air, we have

(35.9)

Hence, knowing the apex angle 4 of the prism and measur-
ing 3min, we can calculate the index of refraction of the
prism material. Furthermore, we can use a hollow prism to
determine the values of n for various liquids filling the
prism.

sin $ 4 - 3min

2 %
sin(4/2)

n !

sin $ 4 - 3min

2 % ! n sin(4/2)

sin & 1 ! n sin & 2

&1 ! &2 - , !
4

2
-

3min

2
!

4 - 3min

2

n

Φ/2

θ1

δminα αθ

θ 2θ

θ1θ
δ

2

Figure 35.25 (Example 35.7) A light ray passing through a
prism at the minimum angle of deviation 3min.

35.8 Total Internal Reflection

An interesting effect called total internal reflection can occur when light is directed
from a medium having a given index of refraction toward one having a lower index of
refraction. Consider a light beam traveling in medium 1 and meeting the boundary
between medium 1 and medium 2, where n1 is greater than n2 (Fig. 35.26a). Various
possible directions of the beam are indicated by rays 1 through 5. The refracted rays
are bent away from the normal because n1 is greater than n2. At some particular angle
of incidence &c , called the critical angle, the refracted light ray moves parallel to the
boundary so that &2 ! 90° (Fig. 35.26b).

1 The details of this proof are available in texts on optics.



For angles of incidence greater than &c , the beam is entirely reflected at the bound-
ary, as shown by ray 5 in Figure 35.26a. This ray is reflected at the boundary as it strikes
the surface. This ray and all those like it obey the law of reflection; that is, for these
rays, the angle of incidence equals the angle of reflection.

We can use Snell’s law of refraction to find the critical angle. When &1 ! &c ,
&2 ! 90° and Equation 35.8 gives

n1 sin &c ! n2 sin 90/ ! n2

(35.10)

This equation can be used only when n1 is greater than n2. That is, total internal
reflection occurs only when light is directed from a medium of a given index of
refraction toward a medium of lower index of refraction. If n1 were less than n2,
Equation 35.10 would give sin &c * 1; this is a meaningless result because the sine of an
angle can never be greater than unity.

The critical angle for total internal reflection is small when n1 is considerably
greater than n2. For example, the critical angle for a diamond in air is 24°. Any ray
inside the diamond that approaches the surface at an angle greater than this is
completely reflected back into the crystal. This property, combined with proper
faceting, causes diamonds to sparkle. The angles of the facets are cut so that light is
“caught” inside the crystal through multiple internal reflections. These multiple
reflections give the light a long path through the medium, and substantial disper-
sion of colors occurs. By the time the light exits through the top surface of the
crystal, the rays associated with different colors have been fairly widely separated
from one another.

sin &c !
n 2

n1
  (for n1 * n 2)
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Active Figure 35.26 (a) Rays travel from a medium of index
of refraction n1 into a medium of index of refraction n2,
where n2 ) n1. As the angle of incidence &1 increases, the
angle of refraction &2 increases until &2 is 90° (ray 4). For even
larger angles of incidence, total internal reflection occurs (ray
5). (b) The angle of incidence producing an angle of refrac-
tion equal to 90° is the critical angle &c . At this angle of
incidence, all of the energy of the incident light is reflected.

At the Active Figures link at http://www.pse6.com,
you can vary the incident angle and see the effect on
the refracted ray and the distribution of incident
energy between the reflected and refracted rays.
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(b)

n 2 <n 1

cθ
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n 2
n 1
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n 2 <n 1

Critical angle for total internal
reflection



Cubic zirconia also has a high index of refraction and can be made to sparkle very
much like a genuine diamond. If a suspect jewel is immersed in corn syrup, the differ-
ence in n for the cubic zirconia and that for the syrup is small, and the critical angle is
therefore great. This means that more rays escape sooner, and as a result the sparkle
completely disappears. A real diamond does not lose all of its sparkle when placed in
corn syrup.
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Figure 35.28 (Example 35.8) What If? A fish looks upward 
toward the water surface.

Quick Quiz 35.6 In Figure 35.27, five light rays enter a glass prism from the
left. How many of these rays undergo total internal reflection at the slanted surface of
the prism? (a) 1 (b) 2 (c) 3 (d) 4 (e) 5.

Quick Quiz 35.7 Suppose that the prism in Figure 35.27 can be rotated
in the plane of the paper. In order for all five rays to experience total internal
reflection from the slanted surface, should the prism be rotated (a) clockwise or
(b) counterclockwise?

Quick Quiz 35.8 A beam of white light is incident on a crown glass–air
interface as shown in Figure 35.26a. The incoming beam is rotated clockwise, so that
the incident angle & increases. Because of dispersion in the glass, some colors
of light experience total internal reflection (ray 4 in Figure 35.26a) before other
colors, so that the beam refracting out of the glass is no longer white. The last color
to refract out of the upper surface is (a) violet (b) green (c) red (d) impossible
to determine.

Figure 35.27 (Quick Quiz 35.6
and 35.7) Five nonparallel light
rays enter a glass prism from the
left.
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Find the critical angle for an air–water boundary. (The
index of refraction of water is 1.33.)

Solution We can use Figure 35.26 to solve this problem,
with the air above the water having index of refraction
n2 and the water having index of refraction n1. Applying

Equation 35.10, we find that

What If? What if a fish in a still pond looks upward toward
the water’s surface at different angles relative to the surface,
as in Figure 35.28? What does it see?

Answer Because the path of a light ray is reversible, light
traveling from medium 2 into medium 1 in Figure 35.26a
follows the paths shown, but in the opposite direction. A fish
looking upward toward the water surface, as in Figure 35.28,
can see out of the water if it looks toward the surface at an
angle less than the critical angle. Thus, for example, when
the fish’s line of vision makes an angle of 40° with the
normal to the surface, light from above the water reaches
the fish’s eye. At 48.8°, the critical angle for water, the light
has to skim along the water’s surface before being refracted
to the fish’s eye; at this angle, the fish can in principle see
the whole shore of the pond. At angles greater than the
critical angle, the light reaching the fish comes by means of
internal reflection at the surface. Thus, at 60°, the fish sees a
reflection of the bottom of the pond.

48.8/&c !

sin &c !
n2

n1
!

1
1.33

! 0.752

θ

Example 35.8 A View from the Fish’s Eye



Optical Fibers

Another interesting application of total internal reflection is the use of glass or
transparent plastic rods to “pipe” light from one place to another. As indicated in
Figure 35.29, light is confined to traveling within a rod, even around curves, as the
result of successive total internal reflections. Such a light pipe is flexible if thin fibers
are used rather than thick rods. A flexible light pipe is called an optical fiber. If a
bundle of parallel fibers is used to construct an optical transmission line, images can
be transferred from one point to another. This technique is used in a sizable industry
known as fiber optics.

A practical optical fiber consists of a transparent core surrounded by a cladding, a
material that has a lower index of refraction than the core. The combination may be
surrounded by a plastic jacket to prevent mechanical damage. Figure 35.30 shows a
cutaway view of this construction. Because the index of refraction of the cladding is less
than that of the core, light traveling in the core experiences total internal reflection if
it arrives at the interface between the core and the cladding at an angle of incidence
that exceeds the critical angle. In this case, light “bounces” along the core of the
optical fiber, losing very little of its intensity as it travels.

Any loss in intensity in an optical fiber is due essentially to reflections from the two
ends and absorption by the fiber material. Optical fiber devices are particularly useful
for viewing an object at an inaccessible location. For example, physicians often use
such devices to examine internal organs of the body or to perform surgery without
making large incisions. Optical fiber cables are replacing copper wiring and coaxial
cables for telecommunications because the fibers can carry a much greater volume of
telephone calls or other forms of communication than electrical wires can.

35.9 Fermat’s Principle

Pierre de Fermat (1601–1665) developed a general principle that can be used to deter-
mine the path that light follows as it travels from one point to another. Fermat’s
principle states that when a light ray travels between any two points, its path is
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Figure 35.30 The construction of
an optical fiber. Light travels in the
core, which is surrounded by a
cladding and a protective jacket.

Jacket

Cladding

Glass or plastic
core

Figure 35.29 Light travels in a
curved transparent rod by multiple
internal reflections.
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(Left) Strands of glass optical fibers are used to carry voice, video, and data signals in
telecommunication networks. (Right) A bundle of optical fibers is illuminated by a laser.



the one that requires the smallest time interval. An obvious consequence of this
principle is that the paths of light rays traveling in a homogeneous medium are
straight lines because a straight line is the shortest distance between two points.

Let us illustrate how Fermat’s principle can be used to derive Snell’s law of
refraction. Suppose that a light ray is to travel from point P in medium 1 to point Q in
medium 2 (Fig. 35.31), where P and Q are at perpendicular distances a and b, respec-
tively, from the interface. The speed of light is c/n1 in medium 1 and c/n2 in medium
2. Using the geometry of Figure 35.31, and assuming that light leaves P at t ! 0, we see
that the time at which the ray arrives at Q is

(35.11)

To obtain the value of x for which t has its minimum value, we take the derivative of t
with respect to x and set the derivative equal to zero:

or

(35.12)

From Figure 35.31,

Substituting these expressions into Equation 35.12, we find that

n1 sin &1 ! n2 sin & 2

which is Snell’s law of refraction.
This situation is equivalent to the problem of deciding where a lifeguard who can

run faster than he can swim should enter the water to help a swimmer in distress. If he
enters the water too directly (in other words, at a very small value of &1 in Figure
35.31), the distance x is smaller than the value of x that gives the minimum value of the
time interval needed for the guard to move from the starting point on the sand to the
swimmer. As a result, he spends too little time running and too much time swimming.
The guard’s optimum location for entering the water so that he can reach the
swimmer in the shortest time is at that interface point that gives the value of x that
satisfies Equation 35.12.

It is a simple matter to use a similar procedure to derive the law of reflection (see
Problem 65).
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Figure 35.31 Geometry for
deriving Snell’s law of refraction
using Fermat’s principle.

P

n 1

n 2

d

x

b

d _ x

r1

r2

Q

a 1

2

θ

1θ

θ
2θ

In geometric optics, we use the ray approximation, in which a wave travels through a
uniform medium in straight lines in the direction of the rays.

The law of reflection states that for a light ray traveling in air and incident on a
smooth surface, the angle of reflection &+1 equals the angle of incidence &1:

&+1 ! &1 (35.2)

Take a practice test for
this chapter by clicking on
the Practice Test link at
http://www.pse6.com.
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1. Light of wavelength ( is incident on a slit of width d.
Under what conditions is the ray approximation valid?
Under what circumstances does the slit produce
enough diffraction to make the ray approximation
invalid?

Why do astronomers looking at distant galaxies talk about
looking backward in time?

3. A solar eclipse occurs when the Moon passes between the
Earth and the Sun. Use a diagram to show why some areas
of the Earth see a total eclipse, other areas see a partial
eclipse, and most areas see no eclipse.

4. The display windows of some department stores are
slanted slightly inward at the bottom. This is to decrease
the glare from streetlights or the Sun, which would make it
difficult for shoppers to see the display inside. Sketch a
light ray reflecting from such a window to show how this
technique works.

5. You take a child for walks around the neighborhood. She
loves to listen to echoes from houses when she shouts or

2.

when you clap loudly. A house with a large flat front
wall can produce an echo if you stand straight in front
of it and reasonably far away. Draw a bird’s-eye view of
the situation to explain the production of the
echo. Shade in the area where you can stand to hear the
echo. What If? The child helps you to discover that
a house with an L-shaped floor plan can produce
echoes if you are standing in a wider range of
locations. You can be standing at any reasonably distant
location from which you can see the inside corner.
Explain the echo in this case and draw another diagram
for comparison. What If? What if the two wings of
the house are not perpendicular? Will you and the
child, standing close together, hear echoes? What If?
What if a rectangular house and its garage have a
breezeway between them, so that their perpendicular
walls do not meet in an inside corner? Will this
structure produce strong echoes for people in a
wide range of locations? Explain your answers with
diagrams.

Q U E S T I O N S

Light crossing a boundary as it travels from medium 1 to medium 2 is refracted, or
bent. The angle of refraction &2 is defined by the relationship

(35.3)

The index of refraction n of a medium is defined by the ratio

(35.4)

where c is the speed of light in a vacuum and v is the speed of light in the medium. In
general, n varies with wavelength and is given by

(35.7)

where ( is the vacuum wavelength and (n is the wavelength in the medium. As light
travels from one medium to another, its frequency remains the same.

Snell’s law of refraction states that

n1 sin &1 ! n2 sin &2 (35.8)

where n1 and n 2 are the indices of refraction in the two media. The incident ray, the
reflected ray, the refracted ray, and the normal to the surface all lie in the same
plane.

Total internal reflection occurs when light travels from a medium of high index
of refraction to one of lower index of refraction. The critical angle &c for which total
internal reflection occurs at an interface is given by

(35.10)sin &c !
n2

n1
  (for n1 * n2)

n !
(

(n

n " 
c
v

sin & 2

sin & 1
!

v2

v1
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Questions 1117

7. Sound waves have much in common with light waves,
including the properties of reflection and refraction. Give
examples of these phenomena for sound waves.

8. Does a light ray traveling from one medium into another
always bend toward the normal, as shown in Figure 35.10a?
Explain.

As light travels from one medium to another, does the
wavelength of the light change? Does the frequency
change? Does the speed change? Explain.

10. A laser beam passing through a nonhomogeneous sugar
solution follows a curved path. Explain.

11. A laser beam with vacuum wavelength 632.8 nm is incident
from air onto a block of Lucite as shown in Figure 35.10b.
The line of sight of the photograph is perpendicular to the
plane in which the light moves. Find the speed, frequency,
and wavelength of the light in the Lucite.

12. Suppose blue light were used instead of red light in the
experiment shown in Figure 35.10b. Would the refracted
beam be bent at a larger or smaller angle?

9.

13. The level of water in a clear, colorless glass is easily
observed with the naked eye. The level of liquid helium in
a clear glass vessel is extremely difficult to see with the
naked eye. Explain.

14. In Example 35.6 we saw that light entering a slab with
parallel sides will emerge offset, but still parallel to the
incoming beam. Our assumption was that the index of
refraction of the material did not vary with wavelength. If
the slab were made of crown glass (see Fig. 35.20), what
would the outgoing beam look like?

Explain why a diamond sparkles more than a glass crystal
of the same shape and size.

16. Explain why an oar partially in the water appears bent.

17. Total internal reflection is applied in the periscope of a
submarine to let the user “see around corners.” In this
device, two prisms are arranged as shown in Figure
Q35.17, so that an incident beam of light follows the path
shown. Parallel tilted silvered mirrors could be used, but
glass prisms with no silvered surfaces give higher light
throughput. Propose a reason for the higher efficiency.

15.

Figure Q35.6
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18. Under certain circumstances, sound can be heard over
extremely great distances. This frequently happens over a
body of water, where the air near the water surface is
cooler than the air higher up. Explain how the refraction
of sound waves in such a situation could increase the
distance over which the sound can be heard.

When two colors of light (X and Y) are sent through a
glass prism, X is bent more than Y. Which color travels
more slowly in the prism?

20. Retroreflection by transparent spheres, mentioned in
Section 35.4 in the text, can be observed with dewdrops.
To do so, look at the shadow of your head where it falls on
dewy grass. Compare your observations to the reactions of
two other people: The Renaissance artist Benvenuto
Cellini described the phenomenon and his reaction in his
Autobiography, at the end of Part One. The American
philosopher Henry David Thoreau did the same in Walden,
“Baker Farm,” paragraph two. Try to find a person you
know who has seen the halo—what did they think?

21. Why does the arc of a rainbow appear with red on top and
violet on the bottom?

19.

6. The F-117A stealth fighter (Figure Q35.6) is specifically
designed to be a non-retroreflector of radar. What aspects
of its design help accomplish this? Suggestion: Answer the
previous question as preparation for this one. Note that
the bottom of the plane is flat and that all of the flat
exterior panels meet at odd angles.
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Section 35.1 The Nature of Light
Section 35.2 Measurements of the Speed of Light
1. The Apollo 11 astronauts set up a panel of efficient corner-

cube retroreflectors on the Moon’s surface. The speed of
light can be found by measuring the time interval required
for a laser beam to travel from Earth, reflect from the panel,
and return to Earth. If this interval is measured to be 2.51 s,
what is the measured speed of light? Take the center-to-
center distance from Earth to Moon to be 3.84 " 108 m, and
do not ignore the sizes of the Earth and Moon.

2. As a result of his observations, Roemer concluded that
eclipses of Io by Jupiter were delayed by 22 min during a
6 month period as the Earth moved from the point in its
orbit where it is closest to Jupiter to the diametrically
opposite point where it is farthest from Jupiter. Using
1.50 " 108 km as the average radius of the Earth’s orbit
around the Sun, calculate the speed of light from these data.

In an experiment to measure the speed of light using the
apparatus of Fizeau (see Fig. 35.2), the distance between
light source and mirror was 11.45 km and the wheel had
720 notches. The experimentally determined value of c
was 2.998 " 108 m/s. Calculate the minimum angular
speed of the wheel for this experiment.

4. Figure P35.4 shows an apparatus used to measure the
speed distribution of gas molecules. It consists of two
slotted rotating disks separated by a distance d, with the
slots displaced by the angle &. Suppose the speed of light is
measured by sending a light beam from the left through
this apparatus. (a) Show that a light beam will be seen in
the detector (that is, will make it through both slots) only
if its speed is given by c ! 'd/&, where ' is the angular

3.

speed of the disks and & is measured in radians. (b) What
is the measured speed of light if the distance between the
two slotted rotating disks is 2.50 m, the slot in the second
disk is displaced 1/60 of one degree from the slot in the
first disk, and the disks are rotating at 5 555 rev/s?

Section 35.3 The Ray Approximation in 
Geometric Optics

Section 35.4 Reflection
Section 35.5 Refraction

5. A dance hall is built without pillars and with a horizontal
ceiling 7.20 m above the floor. A mirror is fastened flat
against one section of the ceiling. Following an earth-
quake, the mirror is in place and unbroken. An engineer
makes a quick check of whether the ceiling is sagging by
directing a vertical beam of laser light up at the mirror
and observing its reflection on the floor. (a) Show that if
the mirror has rotated to make an angle 0 with the hori-
zontal, the normal to the mirror makes an angle 0 with
the vertical. (b) Show that the reflected laser light makes
an angle 20 with the vertical. (c) If the reflected laser light
makes a spot on the floor 1.40 cm away from the point
vertically below the laser, find the angle 0.

6. The two mirrors illustrated in Figure P35.6 meet at a right
angle. The beam of light in the vertical plane P strikes
mirror 1 as shown. (a) Determine the distance the

Note: You may look up indices of refraction in Table 35.1.

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide

= coached solution with hints available at http://www.pse6.com = computer useful in solving problem

= paired numerical and symbolic problems

P R O B L E M S

22. How is it possible that a complete circle of a rainbow can
sometimes be seen from an airplane? With a stepladder, a
lawn sprinkler, and a sunny day, how can you show the
complete circle to children?

23. Is it possible to have total internal reflection for light inci-
dent from air on water? Explain.

24. Under what conditions is a mirage formed? On a hot day,
what are we seeing when we observe “water on the road”?

Mirror
2

Mirror
1

Light
beam

P

40.0°

1.25 m

Motor

Detector

Beam

d

θ

ω
θ

Figure P35.4 Figure P35.6



Problems 1119

reflected light beam travels before striking mirror 2. (b) In
what direction does the light beam travel after being
reflected from mirror 2?

7. Two flat rectangular mirrors, both perpendicular to a hori-
zontal sheet of paper, are set edge to edge with their
reflecting surfaces perpendicular to each other. (a) A light
ray in the plane of the paper strikes one of the mirrors at
an arbitrary angle of incidence &1. Prove that the final
direction of the ray, after reflection from both mirrors, is
opposite to its initial direction. In a clothing store, such a
pair of mirrors shows you an image of yourself as others
see you, with no apparent right–left reversal. (b) What If?
Now assume that the paper is replaced with a third flat
mirror, touching edges with the other two and perpendic-
ular to both. The set of three mirrors is called a corner-cube
reflector. A ray of light is incident from any direction within
the octant of space bounded by the reflecting surfaces.
Argue that the ray will reflect once from each mirror and
that its final direction will be opposite to its original
direction. The Apollo 11 astronauts placed a panel of
corner cube retroreflectors on the Moon. Analysis of
timing data taken with it reveals that the radius of the
Moon’s orbit is increasing at the rate of 3.8 cm/yr as it
loses kinetic energy because of tidal friction.

8. How many times will the incident beam shown in Figure
P35.8 be reflected by each of the parallel mirrors?

on a smooth surface of water at 25°C, at an angle of inci-
dence of 3.50°. Determine the angle of refraction for the
sound wave and the wavelength of the sound in water.

12. The wavelength of red helium–neon laser light in air is
632.8 nm. (a) What is its frequency? (b) What is its
wavelength in glass that has an index of refraction of 1.50?
(c) What is its speed in the glass?

An underwater scuba diver sees the Sun at an apparent
angle of 45.0° above the horizon. What is the actual eleva-
tion angle of the Sun above the horizon?

14. A ray of light is incident on a flat surface of a block of
crown glass that is surrounded by water. The angle of
refraction is 19.6°. Find the angle of reflection.

15. A laser beam is incident at an angle of 30.0° from the
vertical onto a solution of corn syrup in water. If the beam is
refracted to 19.24° from the vertical, (a) what is the index
of refraction of the syrup solution? Suppose the light is red,
with vacuum wavelength 632.8 nm. Find its (b) wavelength,
(c) frequency, and (d) speed in the solution.

16. Find the speed of light in (a) flint glass, (b) water, and
(c) cubic zirconia.

17. A light ray initially in water enters a transparent substance
at an angle of incidence of 37.0°, and the transmitted ray
is refracted at an angle of 25.0°. Calculate the speed of
light in the transparent substance.

18. An opaque cylindrical tank with an open top has a
diameter of 3.00 m and is completely filled with water.
When the afternoon Sun reaches an angle of 28.0° above
the horizon, sunlight ceases to illuminate any part of the
bottom of the tank. How deep is the tank?

A ray of light strikes a flat block of glass (n ! 1.50) of
thickness 2.00 cm at an angle of 30.0° with the normal.
Trace the light beam through the glass, and find the
angles of incidence and refraction at each surface.

20. Unpolarized light in vacuum is incident onto a sheet of
glass with index of refraction n. The reflected and
refracted rays are perpendicular to each other. Find the
angle of incidence. This angle is called Brewster’s angle or
the polarizing angle. In this situation the reflected light is
linearly polarized, with its electric field restricted to be
perpendicular to the plane containing the rays and the
normal.

21. When the light illustrated in Figure P35.21 passes through
the glass block, it is shifted laterally by the distance d.
Taking n ! 1.50, find the value of d.

19.

13.

2.00 cm

d

30.0°

Mirror Mirror

1.00 m

1.00 m

Incident beam
5.00°

Figure P35.8

Figure P35.21 Problems 21 and 22.

9. The distance of a lightbulb from a large plane mirror is
twice the distance of a person from the plane mirror. Light
from the bulb reaches the person by two paths. It travels to
the mirror at an angle of incidence &, and reflects from
the mirror to the person. It also travels directly to the
person without reflecting off the mirror. The total distance
traveled by the light in the first case is twice the distance
traveled by the light in the second case. Find the value of
the angle &.

10. A narrow beam of sodium yellow light, with wavelength
589 nm in vacuum, is incident from air onto a smooth
water surface at an angle of incidence of 35.0°. Determine
the angle of refraction and the wavelength of the light in
water.

11. Compare this problem with the preceding problem. A plane sound
wave in air at 20°C, with wavelength 589 mm, is incident
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22. Find the time interval required for the light to pass through
the glass block described in the previous problem.

23. The light beam shown in Figure P35.23 makes an angle of
20.0° with the normal line NN + in the linseed oil. Deter-
mine the angles & and &+. (The index of refraction of
linseed oil is 1.48.)

Section 35.6 Huygens’s Principle
28. The speed of a water wave is described by , where

d is the water depth, assumed to be small compared to the
wavelength. Because their speed changes, water waves
refract when moving into a region of different depth.
Sketch a map of an ocean beach on the eastern side of a
landmass. Show contour lines of constant depth under
water, assuming reasonably uniform slope. (a) Suppose
that waves approach the coast from a storm far away to the
north-northeast. Demonstrate that the waves will move
nearly perpendicular to the shoreline when they reach the
beach. (b) Sketch a map of a coastline with alternating
bays and headlands, as suggested in Figure P35.28. Again
make a reasonable guess about the shape of contour lines
of constant depth. Suppose that waves approach the coast,
carrying energy with uniform density along originally
straight wavefronts. Show that the energy reaching the
coast is concentrated at the headlands and has lower
intensity in the bays.

v ! √gd

24. Three sheets of plastic have unknown indices of refrac-
tion. Sheet 1 is placed on top of sheet 2, and a laser beam
is directed onto the sheets from above so that it strikes the
interface at an angle of 26.5° with the normal. The
refracted beam in sheet 2 makes an angle of 31.7° with
the normal. The experiment is repeated with sheet 3 on
top of sheet 2, and, with the same angle of incidence, the
refracted beam makes an angle of 36.7° with the normal.
If the experiment is repeated again with sheet 1 on top of
sheet 3, what is the expected angle of refraction in sheet
3? Assume the same angle of incidence.

25. When you look through a window, by how much time is
the light you see delayed by having to go through glass
instead of air? Make an order-of-magnitude estimate on
the basis of data you specify. By how many wavelengths is it
delayed?

26. Light passes from air into flint glass. (a) What angle of
incidence must the light have if the component of its
velocity perpendicular to the interface is to remain constant?
(b) What If? Can the component of velocity parallel to the
interface remain constant during refraction?

27. The reflecting surfaces of two intersecting flat mirrors are
at an angle & (0° ) & ) 90°), as shown in Figure P35.27.
For a light ray that strikes the horizontal mirror, show that
the emerging ray will intersect the incident ray at an angle
1 ! 180° # 2&.

Linseed oil

Water

20.0°

N ′

N

θ

 ′θ

Air

Figure P35.23

θ

β

Figure P35.27

Figure P35.28

Section 35.7 Dispersion and Prisms

29. A narrow white light beam is incident on a block of fused
quartz at an angle of 30.0°. Find the angular width of the
light beam inside the quartz.

30. Light of wavelength 700 nm is incident on the face of a
fused quartz prism at an angle of 75.0° (with respect to the
normal to the surface). The apex angle of the prism is 60.0°.
Use the value of n from Figure 35.20 and calculate the angle
(a) of refraction at this first surface, (b) of incidence at the
second surface, (c) of refraction at the second surface, and
(d) between the incident and emerging rays.

A prism that has an apex angle of 50.0° is made of cubic
zirconia, with n ! 2.20. What is its angle of minimum
deviation?

32. A triangular glass prism with apex angle 60.0° has an
index of refraction of 1.50. (a) Show that if its angle of
incidence on the first surface is &1 ! 48.6°, light
will pass symmetrically through the prism, as shown in

31.

Note: The apex angle of a prism is the angle between the
surface at which light enters the prism and the second
surface the light encounters.
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Problems 1121

Consider a common mirage formed by super-heated air
just above a roadway. A truck driver whose eyes are 2.00 m
above the road, where n ! 1.000 3, looks forward. She
perceives the illusion of a patch of water ahead on the
road, where her line of sight makes an angle of 1.20°
below the horizontal. Find the index of refraction of the
air just above the road surface. (Suggestion: Treat this as a
problem in total internal reflection.)

40. An optical fiber has index of refraction n and diameter d.
It is surrounded by air. Light is sent into the fiber along its
axis, as shown in Figure P35.40. (a) Find the smallest
outside radius R permitted for a bend in the fiber if no
light is to escape. (b) What If? Does the result for part
(a) predict reasonable behavior as d approaches zero? As
n increases? As n approaches 1? (c) Evaluate R assuming
the fiber diameter is 100 2m and its index of refraction
is 1.40.

39.

41. A large Lucite cube (n ! 1.59) has a small air bubble
(a defect in the casting process) below one surface. When
a penny (diameter 1.90 cm) is placed directly over the
bubble on the outside of the cube, the bubble cannot be
seen by looking down into the cube at any angle. However,
when a dime (diameter 1.75 cm) is placed directly over it,
the bubble can be seen by looking down into the cube.
What is the range of the possible depths of the air bubble
beneath the surface?

42. A room contains air in which the speed of sound is
343 m/s. The walls of the room are made of concrete, in
which the speed of sound is 1 850 m/s. (a) Find the
critical angle for total internal reflection of sound at
the concrete–air boundary. (b) In which medium must the
sound be traveling in order to undergo total internal

Figure P35.35

Figure P35.38

Figure P35.40

Visible light
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yellow light

Screen
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d

Figure 35.25. (b) Find the angle of deviation 3min for
&1 ! 48.6°. (c) What If? Find the angle of deviation if the
angle of incidence on the first surface is 45.6°. (d) Find
the angle of deviation if &1 ! 51.6°.

A triangular glass prism with apex angle 4 ! 60.0° has an
index of refraction n ! 1.50 (Fig. P35.33). What is the
smallest angle of incidence &1 for which a light ray can
emerge from the other side?

33.

Figure P35.33 Problems 33 and 34.

Φ
1θ

A triangular glass prism with apex angle 4 has index of
refraction n. (See Fig. P35.33.) What is the smallest angle
of incidence &1 for which a light ray can emerge from the
other side?

The index of refraction for violet light in silica flint
glass is 1.66, and that for red light is 1.62. What is the
angular dispersion of visible light passing through a prism
of apex angle 60.0° if the angle of incidence is 50.0°? (See
Fig. P35.35.)

35.

34.

Section 35.8 Total Internal Reflection
36. For 589-nm light, calculate the critical angle for the follow-

ing materials surrounded by air: (a) diamond, (b) flint
glass, and (c) ice.

37. Repeat Problem 36 when the materials are surrounded by
water.

38. Determine the maximum angle & for which the light rays
incident on the end of the pipe in Figure P35.38 are
subject to total internal reflection along the walls of the
pipe. Assume that the pipe has an index of refraction of
1.36 and the outside medium is air.
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reflection? (c) “A bare concrete wall is a highly efficient
mirror for sound.” Give evidence for or against this
statement.

43. In about 1965, engineers at the Toro Company invented a
gasoline gauge for small engines, diagrammed in Figure
P35.43. The gauge has no moving parts. It consists of a flat
slab of transparent plastic fitting vertically into a slot in the
cap on the gas tank. None of the plastic has a reflective
coating. The plastic projects from the horizontal top down
nearly to the bottom of the opaque tank. Its lower edge is
cut with facets making angles of 45° with the horizontal. A
lawnmower operator looks down from above and sees a
boundary between bright and dark on the gauge. The
location of the boundary, across the width of the plastic,
indicates the quantity of gasoline in the tank. Explain how
the gauge works. Explain the design requirements, if any,
for the index of refraction of the plastic.

46. A light ray enters the atmosphere of a planet where it
descends vertically to the surface a distance h below. The
index of refraction where the light enters the atmosphere
is 1.000, and it increases linearly to the surface where it
has the value n. (a) How long does it take the ray to
traverse this path? (b) Compare this to the time interval
required in the absence of an atmosphere.

47. A narrow beam of light is incident from air onto the surface
of glass with index of refraction 1.56. Find the angle of inci-
dence for which the corresponding angle of refraction is
half the angle of incidence. (Suggestion: You might want to
use the trigonometric identity sin 2& ! 2 sin & cos &.)

48. (a) Consider a horizontal interface between air above
and glass of index 1.55 below. Draw a light ray incident
from the air at angle of incidence 30.0°. Determine the
angles of the reflected and refracted rays and show them
on the diagram. (b) What If? Suppose instead that the
light ray is incident from the glass at angle of incidence
30.0°. Determine the angles of the reflected and refracted
rays and show all three rays on a new diagram. (c) For rays
incident from the air onto the air–glass surface, determine
and tabulate the angles of reflection and refraction for all
the angles of incidence at 10.0° intervals from 0° to 90.0°.
(d) Do the same for light rays coming up to the interface
through the glass.

A small underwater pool light is 1.00 m below the
surface. The light emerging from the water forms a circle
on the water surface. What is the diameter of this circle?

50. One technique for measuring the angle of a prism is
shown in Figure P35.50. A parallel beam of light is
directed on the angle so that parts of the beam reflect
from opposite sides. Show that the angular separation of
the two reflected beams is given by B ! 2A.

49.

51. The walls of a prison cell are perpendicular to the four
cardinal compass directions. On the first day of spring,
light from the rising Sun enters a rectangular window in

Figure P35.45
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Figure P35.43

Figure P35.50

Section 35.9 Fermat’s Principle

44. The shoreline of a lake runs east and west. A swimmer
gets into trouble 20.0 m out from shore and 26.0 m to the
east of a lifeguard, whose station is 16.0 m in from the
shoreline. The lifeguard takes negligible time to acceler-
ate. He can run at 7.00 m/s and swim at 1.40 m/s. To
reach the swimmer as quickly as possible, in what direction
should the lifeguard start running? You will need to solve a
transcendental equation numerically.

Additional Problems
45. Figure P35.45 shows a desk ornament globe containing a

photograph. The flat photograph is in air, inside a vertical
slot located behind a water-filled compartment having the
shape of one half of a cylinder. Suppose you are looking at
the center of the photograph and then rotate the globe
about a vertical axis. You find that the center of the photo-
graph disappears when you rotate the globe beyond a
certain maximum angle (Fig. P35.45b). Account for this
phenomenon and calculate the maximum angle. Briefly
describe what you would see when you turn the globe 
beyond this angle.

A

B

θ
θ1

1+

(a) (b)
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the eastern wall. The light traverses 2.37 m horizontally to
shine perpendicularly on the wall opposite the window. A
young prisoner observes the patch of light moving across
this western wall and for the first time forms his own
understanding of the rotation of the Earth. (a) With what
speed does the illuminated rectangle move? (b) The
prisoner holds a small square mirror flat against the wall at
one corner of the rectangle of light. The mirror reflects
light back to a spot on the eastern wall close beside the
window. How fast does the smaller square of light move
across that wall? (c) Seen from a latitude of 40.0° north,
the rising Sun moves through the sky along a line making
a 50.0° angle with the southeastern horizon. In what direc-
tion does the rectangular patch of light on the western
wall of the prisoner’s cell move? (d) In what direction does
the smaller square of light on the eastern wall move?

52. Figure P35.52 shows a top view of a square enclosure. The
inner surfaces are plane mirrors. A ray of light enters a
small hole in the center of one mirror. (a) At what angle &
must the ray enter in order to exit through the hole after
being reflected once by each of the other three mirrors?
(b) What If? Are there other values of & for which the ray
can exit after multiple reflections? If so, make a sketch of
one of the ray’s paths.

56. When light is incident normally on the interface between
two transparent optical media, the intensity of the
reflected light is given by the expression

In this equation S1 represents the average magnitude of
the Poynting vector in the incident light (the incident
intensity), S +1 is the reflected intensity, and n1 and n2 are
the refractive indices of the two media. (a) What fraction
of the incident intensity is reflected for 589-nm light
normally incident on an interface between air and crown
glass? (b) What If? Does it matter in part (a) whether the
light is in the air or in the glass as it strikes the interface?

57. Refer to Problem 56 for its description of the reflected
intensity of light normally incident on an interface between
two transparent media. (a) When light is normally incident
on an interface between vacuum and a transparent medium
of index n, show that the intensity S2 of the transmitted
light is given by S2/S1 ! 4n/(n - 1)2. (b) Light travels
perpendicularly through a diamond slab, surrounded by air,
with parallel surfaces of entry and exit. Apply the trans-
mission fraction in part (a) to find the approximate overall
transmission through the slab of diamond, as a percentage.
Ignore light reflected back and forth within the slab.

58. What If? This problem builds upon the results of
Problems 56 and 57. Light travels perpendicularly through
a diamond slab, surrounded by air, with parallel surfaces
of entry and exit. The intensity of the transmitted light is
what fraction of the incident intensity? Include the effects
of light reflected back and forth inside the slab.

The light beam in Figure P35.59 strikes surface 2 at the
critical angle. Determine the angle of incidence &1.

59.

S +1 ! $ n2 # n1

n2 - n1
%2  

S 1

Figure P35.52

Figure P35.55

Figure P35.59

θ

42.0 cm

50.0°
3.10 mmn  = 1.48

A hiker stands on an isolated mountain peak near sunset
and observes a rainbow caused by water droplets in the air
8.00 km away. The valley is 2.00 km below the mountain
peak and entirely flat. What fraction of the complete circular
arc of the rainbow is visible to the hiker? (See Fig. 35.24.)

54. A 4.00-m-long pole stands vertically in a lake having a depth
of 2.00 m. The Sun is 40.0° above the horizontal. Determine
the length of the pole’s shadow on the bottom of the lake.
Take the index of refraction for water to be 1.33.

A laser beam strikes one end of a slab of material, as
shown in Figure P35.55. The index of refraction of the slab
is 1.48. Determine the number of internal reflections of
the beam before it emerges from the opposite end of the
slab.

55.

53.

Surface 1
Su

rf
ac

e 
2

42.0°

60.0°

1θ

42.0°

60. Builders use a leveling instrument with the beam from a
fixed helium–neon laser reflecting in a horizontal plane
from a small flat mirror mounted on an accurately vertical
rotating shaft. The light is sufficiently bright and the rota-
tion rate is sufficiently high that the reflected light appears
as a horizontal line wherever it falls on a wall. (a) Assume
the mirror is at the center of a circular grain elevator of
radius R . The mirror spins with constant angular velocity
'm. Find the speed of the spot of laser light on the wall.
(b) What If? Assume the spinning mirror is at a perpen-
dicular distance d from point O on a flat vertical wall.
When the spot of laser light on the wall is at distance x
from point O, what is its speed?



A light ray of wavelength 589 nm is incident at an
angle & on the top surface of a block of polystyrene, as
shown in Figure P35.61. (a) Find the maximum value of &
for which the refracted ray undergoes total internal reflec-
tion at the left vertical face of the block. What If? Repeat
the calculation for the case in which the polystyrene block
is immersed in (b) water and (c) carbon disulfide.

61.
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Figure P35.67

Figure P35.69

Mirrored
surface

Incident ray

Exiting ray
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d
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n

A′

B ′C ′

t

C B A

P
d
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66. A material having an index of refraction n is surrounded
by a vacuum and is in the shape of a quarter circle of
radius R (Fig. P35.66). A light ray parallel to the base of
the material is incident from the left at a distance L above
the base and emerges from the material at the angle &.
Determine an expression for &.

67. A transparent cylinder of radius R ! 2.00 m has a mir-
rored surface on its right half, as shown in Figure P35.67.
A light ray traveling in air is incident on the left side of the
cylinder. The incident light ray and exiting light ray are
parallel and d ! 2.00 m. Determine the index of refrac-
tion of the material.

Figure P35.61

θ

Figure P35.63

4.00 cm

h

Figure P35.66

Outgoing ray

θ

n

R

Incoming ray

L

62. Refer to Quick Quiz 35.4. By how much does the duration
of an optical day exceed that of a geometric day? Model
the Earth’s atmosphere as uniform, with index of refrac-
tion 1.000 293, a sharply defined upper surface, and depth
8 614 m. Assume that the observer is at the Earth’s equa-
tor, so that the apparent path of the rising and setting Sun
is perpendicular to the horizon.

A shallow glass dish is 4.00 cm wide at the bottom, as shown
in Figure P35.63. When an observer’s eye is placed as shown,
the observer sees the edge of the bottom of the empty dish.
When this dish is filled with water, the observer sees the
center of the bottom of the dish. Find the height of the dish.

63.

64. A ray of light passes from air into water. For its deviation angle
3 ! #&1 # &2# to be 10.0°, what must be its angle of incidence?

Derive the law of reflection (Eq. 35.2) from Fermat’s
principle. (See the procedure outlined in Section 35.9 
for the derivation of the law of refraction from Fermat’s
principle.)

65.

68. Suppose that a luminous sphere of radius R1 (such as the
Sun) is surrounded by a uniform atmosphere of radius R2
and index of refraction n. When the sphere is viewed from
a location far away in vacuum, what is its apparent radius?
You will need to distinguish between the two cases
(a) R2 * nR1 and (b) R2 ) nR1.

69. A. H. Pfund’s method for measuring the index of refraction
of glass is illustrated in Figure P35.69. One face of a slab of
thickness t is painted white, and a small hole scraped clear at
point P serves as a source of diverging rays when the slab is



illuminated from below. Ray PBB+ strikes the clear surface at
the critical angle and is totally reflected, as are rays such as
PCC+. Rays such as PAA+ emerge from the clear surface. On
the painted surface there appears a dark circle of diameter
d, surrounded by an illuminated region, or halo. (a) Derive
an equation for n in terms of the measured quantities d and
t. (b) What is the diameter of the dark circle if n ! 1.52 for a
slab 0.600 cm thick? (c) If white light is used, the critical
angle depends on color caused by dispersion. Is the inner
edge of the white halo tinged with red light or violet light?
Explain.

70. A light ray traveling in air is incident on one face of a
right-angle prism of index of refraction n ! 1.50 as shown
in Figure P35.70, and the ray follows the path shown in the
figure. Assuming & ! 60.0° and the base of the prism is
mirrored, determine the angle 0 made by the outgoing
ray with the normal to the right face of the prism.
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Figure P35.70

Figure P35.71

Incoming ray

θ

Outgoing ray

Mirror base

n

φ

90° – θ

n

2

L

1θ

θ

incidence versus the sine of the angle of refraction. Use the
resulting plot to deduce the index of refraction of water.

Angle of Incidence Angle of Refraction
(degrees) (degrees)

10.0 7.5
20.0 15.1
30.0 22.3
40.0 28.7
50.0 35.2
60.0 40.3
70.0 45.3
80.0 47.7

Answers to Quick Quizzes
35.1 (d). The light rays from the actor’s face must reflect from

the mirror and into the camera. If these light rays are
reversed, light from the camera reflects from the mirror
into the eyes of the actor.

35.2 Beams " and $ are reflected; beams # and % are
refracted.

35.3 (c). Because the light is entering a material in which the
index of refraction is lower, the speed of light is higher
and the light bends away from the normal.

35.4 (a). Due to the refraction of light by air, light rays
from the Sun deviate slightly downward toward the
surface of the Earth as the light enters the atmosphere.
Thus, in the morning, light rays from the upper edge of
the Sun arrive at your eyes before the geometric line
from your eyes to the top of the Sun clears the horizon.
In the evening, light rays from the top of the Sun con-
tinue to arrive at your eyes even after the geometric line
from your eyes to the top of the Sun dips below the
horizon.

35.5 (c). An ideal camera lens would have an index of refrac-
tion that does not vary with wavelength so that all colors
would be bent through the same angle by the lens. Of the
three choices, fused quartz has the least variation in n
across the visible spectrum.

35.6 (b). The two bright rays exiting the bottom of the prism
on the right in Figure 35.27 result from total internal
reflection at the right face of the prism. Notice that there
is no refracted light exiting the slanted side for these rays.
The light from the other three rays is divided into
reflected and refracted parts.

35.7 (b). Counterclockwise rotation of the prism will cause the
rays to strike the slanted side of the prism at a larger angle.
When all five rays strike at an angle larger than the critical
angle, they will all undergo total internal reflection.

35.8 (c). When the outgoing beam approaches the direction
parallel to the straight side, the incident angle is
approaching the critical angle for total internal reflection.
The index of refraction for light at the violet end of the
visible spectrum is larger than that at the red end. Thus,
as the outgoing beam approaches the straight side, the
violet light experiences total internal reflection first,
followed by the other colors. The red light is the last to
experience total internal reflection.

71. A light ray enters a rectangular block of plastic at an angle
&1 ! 45.0° and emerges at an angle &2 ! 76.0°, as shown
in Figure P35.71. (a) Determine the index of refraction of
the plastic. (b) If the light ray enters the plastic at a point
L ! 50.0 cm from the bottom edge, how long does it take
the light ray to travel through the plastic?

72. Students allow a narrow beam of laser light to strike a
water surface. They arrange to measure the angle of
refraction for selected angles of incidence and record the
data shown in the accompanying table. Use the data to verify
Snell’s law of refraction by plotting the sine of the angle of
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! The light rays coming from the leaves in the background of this scene did not form a
focused image on the film of the camera that took this photograph. Consequently, the back-
ground appears very blurry. Light rays passing though the raindrop, however, have been
altered so as to form a focused image of the background leaves on the film. In this chapter,
we investigate the formation of images as light rays reflect from mirrors and refract through
lenses. (Don Hammond/CORBIS)
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This chapter is concerned with the images that result when light rays encounter flat
and curved surfaces. We find that images can be formed either by reflection or by
refraction and that we can design mirrors and lenses to form images with desired char-
acteristics. We continue to use the ray approximation and to assume that light travels
in straight lines. Both of these steps lead to valid predictions in the field called geometric
optics. In subsequent chapters, we shall concern ourselves with interference and diffrac-
tion effects—the objects of study in the field of wave optics.

36.1 Images Formed by Flat Mirrors

We begin by considering the simplest possible mirror, the flat mirror. Consider a
point source of light placed at O in Figure 36.1, a distance p in front of a flat mirror.
The distance p is called the object distance. Light rays leave the source and are
reflected from the mirror. Upon reflection, the rays continue to diverge (spread
apart). The dashed lines in Figure 36.1 are extensions of the diverging rays back to a
point of intersection at I. The diverging rays appear to the viewer to come from the
point I behind the mirror. Point I is called the image of the object at O. Regardless
of the system under study, we always locate images by extending diverging rays back
to a point at which they intersect. Images are located either at a point from
which rays of light actually diverge or at a point from which they appear to
diverge. Because the rays in Figure 36.1 appear to originate at I, which is a distance
q behind the mirror, this is the location of the image. The distance q is called the
image distance.

Images are classified as real or virtual. A real image is formed when light rays
pass through and diverge from the image point; a virtual image is formed when
the light rays do not pass through the image point but only appear to diverge
from that point. The image formed by the mirror in Figure 36.1 is virtual. The image
of an object seen in a flat mirror is always virtual. Real images can be displayed on a

Mirror

O I

qp

Figure 36.1 An image formed by reflection from a flat
mirror. The image point I is located behind the mirror a
perpendicular distance q from the mirror (the image
distance). The image distance has the same magnitude as
the object distance p. 



screen (as at a movie), but virtual images cannot be displayed on a screen. We shall see
an example of a real image in Section 36.2.

We can use the simple geometry in Figure 36.2 to examine the properties of the
images of extended objects formed by flat mirrors. Even though there are an infinite
number of choices of direction in which light rays could leave each point on the object,
we need to choose only two rays to determine where an image is formed. One of those
rays starts at P, follows a horizontal path to the mirror, and reflects back on itself. The
second ray follows the oblique path PR and reflects as shown, according to the law of
reflection. An observer in front of the mirror would trace the two reflected rays back to
the point at which they appear to have originated, which is point P! behind the mirror. A
continuation of this process for points other than P on the object would result in a virtual
image (represented by a yellow arrow) behind the mirror. Because triangles PQR and
P !QR are congruent, PQ " P !Q. We conclude that the image formed by an object
placed in front of a flat mirror is as far behind the mirror as the object is in front
of the mirror.

Geometry also reveals that the object height h equals the image height h!. Let us
define lateral magnification M of an image as follows:

(36.1)

This is a general definition of the lateral magnification for an image from any type of
mirror. (This equation is also valid for images formed by lenses, which we study in
Section 36.4.) For a flat mirror, M " 1 for any image because h! " h.

Finally, note that a flat mirror produces an image that has an apparent left–right
reversal. You can see this reversal by standing in front of a mirror and raising your right
hand, as shown in Figure 36.3. The image you see raises its left hand. Likewise, your
hair appears to be parted on the side opposite your real part, and a mole on your right
cheek appears to be on your left cheek.

This reversal is not actually a left–right reversal. Imagine, for example, lying on your
left side on the floor, with your body parallel to the mirror surface. Now your head is on
the left and your feet are on the right. If you shake your feet, the image does not shake its
head! If you raise your right hand, however, the image again raises its left hand. Thus, the
mirror again appears to produce a left–right reversal but in the up–down direction!

The reversal is actually a front–back reversal, caused by the light rays going forward
toward the mirror and then reflecting back from it. An interesting exercise is to stand
in front of a mirror while holding an overhead transparency in front of you so that you
can read the writing on the transparency. You will also be able to read the writing on
the image of the transparency. You may have had a similar experience if you have
attached a transparent decal with words on it to the rear window of your car. If the

M ! 
Image height
Object height

"
h!

h
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! PITFALL PREVENTION 
36.1 Magnification Does

Not Necessarily
Imply Enlargement

For optical elements other than
flat mirrors, the magnification
defined in Equation 36.1 can
result in a number with magni-
tude larger or smaller than 1.
Thus, despite the cultural usage
of the word magnification to mean
enlargement, the image could be
smaller than the object. 

Lateral magnification

Object θ
θh R

QP P ′

Image

p q

h′

Active Figure 36.2 A geometric
construction that is used to locate
the image of an object placed in
front of a flat mirror. Because the
triangles PQR and P!QR are con-
gruent, and h " h!.

At the Active Figures link
at http://www.pse6.com, you
can move the object and see
the effect on the image.

" p " " " q "

Figure 36.3 The image in the mirror of a person’s right hand is reversed front to back.
This makes the right hand appear to be a left hand. Notice that the thumb is on the left
side of both real hands and on the left side of the image. That the thumb is not on the
right side of the image indicates that there is no left-to-right reversal.
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decal can be read from outside the car, you can also read it when looking into your
rearview mirror from inside the car.

We conclude that the image that is formed by a flat mirror has the following
properties.
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• The image is as far behind the mirror as the object is in front.

• The image is unmagnified, virtual, and upright. (By upright we mean that, if the
object arrow points upward as in Figure 36.2, so does the image arrow.)

• The image has front–back reversal.

Quick Quiz 36.1 In the overhead view of Figure 36.4, the image of the stone
seen by observer 1 is at C. At which of the five points A, B, C, D, or E does observer 2 see
the image?

Conceptual Example 36.1 Multiple Images Formed by Two Mirrors

Two flat mirrors are perpendicular to each other, as in
Figure 36.5, and an object is placed at point O. In this situa-
tion, multiple images are formed. Locate the positions of
these images.

Solution The image of the object is at I1 in mirror 1 and
at I2 in mirror 2. In addition, a third image is formed at
I3. This third image is the image of I1 in mirror 2 or, equiva-
lently, the image of I2 in mirror 1. That is, the image at
I1 (or I2) serves as the object for I3. Note that to form this
image at I3, the rays reflect twice after leaving the object
at O.

Mirror 2

Mirror 1

I1 I3

I2O

Figure 36.5 (Conceptual Example 36.1) When an object is
placed in front of two mutually perpendicular mirrors as shown,
three images are formed.

Quick Quiz 36.2 You are standing about 2 m away from a mirror. The
mirror has water spots on its surface. True or false: It is possible for you to see the water
spots and your image both in focus at the same time.

2 1

A B C D E

Figure 36.4 (Quick Quiz 36.1) Where does observer 2 see the image of the stone?
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Conceptual Example 36.2 The Levitated Professor

The professor in the box shown in Figure 36.6 appears to
be balancing himself on a few fingers, with his feet off
the floor. He can maintain this position for a long time,
and he appears to defy gravity. How was this illusion
created?

Solution This is one of many magicians’ optical illusions
that make use of a mirror. The box in which the professor
stands is a cubical frame that contains a flat vertical mirror
positioned in a diagonal plane of the frame. The professor
straddles the mirror so that one foot, which you see, is in
front of the mirror, and the other foot, which you cannot
see, is behind the mirror. When he raises the foot in front of
the mirror, the reflection of that foot also rises, so he
appears to float in air. 

Figure 36.6 (Conceptual Example 36.2) An optical illusion.
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Conceptual Example 36.3 The Tilting Rearview Mirror

Most rearview mirrors in cars have a day setting and a
night setting. The night setting greatly diminishes the
intensity of the image in order that lights from trailing
vehicles do not blind the driver. How does such a mirror
work?

Solution Figure 36.7 shows a cross-sectional view of a
rearview mirror for each setting. The unit consists of a
reflective coating on the back of a wedge of glass. In the day
setting (Fig. 36.7a), the light from an object behind the car
strikes the glass wedge at point 1. Most of the light enters
the wedge, refracting as it crosses the front surface, and
reflects from the back surface to return to the front surface,
where it is refracted again as it re-enters the air as ray B (for
bright). In addition, a small portion of the light is reflected
at the front surface of the glass, as indicated by ray D (for
dim).

B

D
1

Daytime setting

Incident
light

Reflecting
side of mirror

(a)

Figure 36.7 (Conceptual Example 36.3) Cross-sectional views of a rearview mirror.
(a) With the day setting, the silvered back surface of the mirror reflects a bright ray B
into the driver’s eyes. (b) With the night setting, the glass of the unsilvered front
surface of the mirror reflects a dim ray D into the driver’s eyes.

B

D

Incident
light

Nighttime setting

(b)

This dim reflected light is responsible for the image that
is observed when the mirror is in the night setting (Fig.
36.7b). In this case, the wedge is rotated so that the path
followed by the bright light (ray B) does not lead to the eye.
Instead, the dim light reflected from the front surface of the
wedge travels to the eye, and the brightness of trailing
headlights does not become a hazard.



36.2 Images Formed by Spherical Mirrors

Concave Mirrors

A spherical mirror, as its name implies, has the shape of a section of a sphere. This
type of mirror focuses incoming parallel rays to a point, as demonstrated by the col-
ored light rays in Figure 36.8. Figure 36.9a shows a cross section of a spherical mirror,
with its surface represented by the solid, curved black line. (The blue band represents
the structural support for the mirrored surface, such as a curved piece of glass on
which the silvered surface is deposited.) Such a mirror, in which light is reflected from
the inner, concave surface, is called a concave mirror. The mirror has a radius of cur-
vature R, and its center of curvature is point C. Point V is the center of the spherical
section, and a line through C and V is called the principal axis of the mirror.

Now consider a point source of light placed at point O in Figure 36.9b, where O is
any point on the principal axis to the left of C. Two diverging rays that originate at O
are shown. After reflecting from the mirror, these rays converge and cross at the image
point I. They then continue to diverge from I as if an object were there. As a result, at
point I we have a real image of the light source at O.
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Figure 36.8 Red, blue, and green light rays
are reflected by a curved mirror. Note that
the three colored beams meet at a point.

Mirror

C V

(a)

Center of
curvature R

Principal
axis

Mirror

O VI

(b)

C

Figure 36.9 (a) A concave mirror of radius R . The center of curvature C is located on
the principal axis. (b) A point object placed at O in front of a concave spherical mirror
of radius R, where O is any point on the principal axis farther than R from the mirror
surface, forms a real image at I. If the rays diverge from O at small angles, they all
reflect through the same image point.

Ke
n 

Ka
y/

Fu
nd

am
en

ta
l P

ho
to

gr
ap

hs



We shall consider in this section only rays that diverge from the object and make a
small angle with the principal axis. Such rays are called paraxial rays. All paraxial rays
reflect through the image point, as shown in Figure 36.9b. Rays that are far from the
principal axis, such as those shown in Figure 36.10, converge to other points on the
principal axis, producing a blurred image. This effect, which is called spherical aberra-
tion, is present to some extent for any spherical mirror and is discussed in Section 36.5.

We can use Figure 36.11 to calculate the image distance q from a knowledge of the
object distance p and radius of curvature R . By convention, these distances are mea-
sured from point V. Figure 36.11 shows two rays leaving the tip of the object. One of
these rays passes through the center of curvature C of the mirror, hitting the mirror
perpendicular to the mirror surface and reflecting back on itself. The second ray
strikes the mirror at its center (point V ) and reflects as shown, obeying the law of
reflection. The image of the tip of the arrow is located at the point where these two
rays intersect. From the gold right triangle in Figure 36.11, we see that tan# " h/p,
and from the blue right triangle we see that tan# " $ h!/q. The negative sign is intro-
duced because the image is inverted, so h! is taken to be negative. Thus, from Equation
36.1 and these results, we find that the magnification of the image is

(36.2)

We also note from the two triangles in Figure 36.11 that have % as one angle that

from which we find that

(36.3)

If we compare Equations 36.2 and 36.3, we see that

Simple algebra reduces this to

(36.4)

This expression is called the mirror equation.
If the object is very far from the mirror—that is, if p is so much greater than R

that p can be said to approach infinity—then 1/p # 0, and we see from Equation
36.4 that q # R/2. That is, when the object is very far from the mirror, the image
point is halfway between the center of curvature and the center point on the mirror,
as shown in Figure 36.12a. The incoming rays from the object are essentially parallel
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Figure 36.10 Rays diverging from
the object at large angles from the
principal axis reflect from a
spherical concave mirror to
intersect the principal axis at
different points, resulting in a
blurred image. This condition is
called spherical aberration.

h

O
Principal

axis

R

C

q

p

VI
h′

α
α

θ
θ

Figure 36.11 The image
formed by a spherical concave
mirror when the object O lies
outside the center of curvature
C. This geometric construction
is used to derive Equation 36.4.

Mirror equation in terms of
radius of curvature



in this figure because the source is assumed to be very far from the mirror. We call
the image point in this special case the focal point F and the image distance the
focal length f, where

(36.5)

In Figure 36.8, the colored beams are traveling parallel to the principal axis and the
mirror reflects all three beams to the focal point. Notice that the point at which the
three beams intersect and the colors add is white. 

Focal length is a parameter particular to a given mirror and therefore can be used
to compare one mirror with another. The mirror equation can be expressed in terms
of the focal length:

(36.6)

Notice that the focal length of a mirror depends only on the curvature of the mirror
and not on the material from which the mirror is made. This is because the formation
of the image results from rays reflected from the surface of the material. The situation
is different for lenses; in that case the light actually passes through the material and
the focal length depends on the type of material from which the lens is made.

1
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Figure 36.12 (a) Light rays from a distant object (p : ') reflect from a concave
mirror through the focal point F. In this case, the image distance q # R/2 " f, where
f is the focal length of the mirror. (b) Reflection of parallel rays from a concave mirror.

! PITFALL PREVENTION 
36.2 The Focal Point Is

Not the Focus Point
The focal point is usually not the
point at which the light rays focus
to form an image. The focal
point is determined solely by the
curvature of the mirror—it does
not depend on the location of
the object at all. In general, an
image forms at a point different
from the focal point of a mirror
(or a lens). The only exception is
when the object is located infi-
nitely far away from the mirror. 

A satellite-dish antenna is a concave reflector for televi-
sion signals from a satellite in orbit around the Earth. The
signals are carried by microwaves that, because the
satellite is so far away, are parallel when they arrive at the
dish. These waves reflect from the dish and are focused
on the receiver at the focal point of the dish.

Focal length

Mirror equation in terms of focal
length
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Convex Mirrors

Figure 36.13 shows the formation of an image by a convex mirror—that is, one
silvered so that light is reflected from the outer, convex surface. This is sometimes
called a diverging mirror because the rays from any point on an object diverge after
reflection as though they were coming from some point behind the mirror. The image
in Figure 36.13 is virtual because the reflected rays only appear to originate at the
image point, as indicated by the dashed lines. Furthermore, the image is always upright
and smaller than the object. This type of mirror is often used in stores to foil
shoplifters. A single mirror can be used to survey a large field of view because it forms a
smaller image of the interior of the store.

We do not derive any equations for convex spherical mirrors because we can use
Equations 36.2, 36.4, and 36.6 for either concave or convex mirrors if we adhere to
the following procedure. Let us refer to the region in which light rays move toward the
mirror as the front side of the mirror, and the other side as the back side. For example, in
Figures 36.11 and 36.13, the side to the left of the mirrors is the front side, and the
side to the right of the mirrors is the back side. Figure 36.14 states the sign conventions
for object and image distances, and Table 36.1 summarizes the sign conventions for all
quantities.

Ray Diagrams for Mirrors

The positions and sizes of images formed by mirrors can be conveniently deter-
mined with ray diagrams. These graphical constructions reveal the nature of the
image and can be used to check results calculated from the mirror and magnifica-
tion equations. To draw a ray diagram, we need to know the position of the object
and the locations of the mirror’s focal point and center of curvature. We then draw
three principal rays to locate the image, as shown by the examples in Figure 36.15.
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Front
Back

O I F C

p q

Figure 36.13 Formation of an image by a spherical convex mirror. The image formed
by the real object is virtual and upright.

Front, or
real, side

Reflected light

Back, or
virtual, side

p and q negative

No light

p and q positive

Incident light

Convex or
concave mirror

Figure 36.14 Signs of p and q for
convex and concave mirrors.

! PITFALL PREVENTION 
36.3 Watch Your Signs
Success in working mirror
problems (as well as problems
involving refracting surfaces and
thin lenses) is largely determined
by proper sign choices when
substituting into the equations.
The best way to become adept at
this is to work a multitude of
problems on your own. Watching
your instructor or reading 
the example problems is no
substitute for practice.

Quantity Positive When Negative When

Object location (p) Object is in front of Object is in back
mirror (real object) of mirror (virtual object)

Image location (q) Image is in front of Image is in back of
mirror (real image) mirror (virtual image)

Image height (h!) Image is upright Image is inverted
Focal length (f )  Mirror is concave Mirror is convex

and radius (R)
Magnification (M) Image is upright Image is inverted

Sign Conventions for Mirrors

Table 36.1
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(a)

1
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Front Back

I

Principal axis

(b)
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3
C F O I

Front Back

(c)

CFO I

1

2

3

Front Back

Active Figure 36.15 Ray diagrams for spherical mirrors, along with corresponding
photographs of the images of candles. (a) When the object is located so that the center
of curvature lies between the object and a concave mirror surface, the image is real,
inverted, and reduced in size. (b) When the object is located between the focal point
and a concave mirror surface, the image is virtual, upright, and enlarged. (c) When the
object is in front of a convex mirror, the image is virtual, upright, and reduced in size.

Ph
ot

os
 co

ur
te

sy
 D

av
id

 R
og

er
s

At the Active Figures link
at http://www.pse6.com, you
can move the objects and
change the focal length of the
mirrors to see the effect on the
images.



These rays all start from the same object point and are drawn as follows. We may
choose any point on the object; here, we choose the top of the object for simplicity.
For concave mirrors (see Figs. 36.15a and 36.15b), we draw the following three
principal rays:

1136 C H A P T E R  3 6 •  Image Formation

• Ray 1 is drawn from the top of the object parallel to the principal axis and is
reflected through the focal point F.

• Ray 2 is drawn from the top of the object through the focal point and is reflected
parallel to the principal axis.

• Ray 3 is drawn from the top of the object through the center of curvature C and is
reflected back on itself.

• Ray 1 is drawn from the top of the object parallel to the principal axis and is
reflected away from the focal point F.

• Ray 2 is drawn from the top of the object toward the focal point on the back side
of the mirror and is reflected parallel to the principal axis.

• Ray 3 is drawn from the top of the object toward the center of curvature C on the
back side of the mirror and is reflected back on itself.

The intersection of any two of these rays locates the image. The third ray serves as
a check of the construction. The image point obtained in this fashion must always
agree with the value of q calculated from the mirror equation. With concave mirrors,
note what happens as the object is moved closer to the mirror. The real, inverted
image in Figure 36.15a moves to the left as the object approaches the focal point.
When the object is at the focal point, the image is infinitely far to the left. However,
when the object lies between the focal point and the mirror surface, as shown in
Figure 36.15b, the image is virtual, upright, and enlarged. This latter situation applies
when you use a shaving mirror or a makeup mirror, both of which are concave. Your
face is closer to the mirror than the focal point, and you see an upright, enlarged
image of your face.

For convex mirrors (see Fig. 36.15c), we draw the following three principal 
rays:

Quick Quiz 36.3 You wish to reflect sunlight from a mirror onto some
paper under a pile of wood in order to start a fire. Which would be the best choice for
the type of mirror? (a) flat (b) concave (c) convex.

Quick Quiz 36.4 Consider the image in the mirror in Figure 36.16. Based
on the appearance of this image, you would conclude that (a) the mirror is concave
and the image is real. (b) the mirror is concave and the image is virtual. (c) the
mirror is convex and the image is real. (d) the mirror is convex and the image is
virtual.Figure 36.16 (Quick Quiz 36.4)

What type of mirror is this?

In a convex mirror, the image of an object is always virtual, upright, and reduced in
size as shown in Figure 36.15c. In this case, as the object distance decreases, the virtual
image increases in size and moves away from the focal point toward the mirror as the
object approaches the mirror. You should construct other diagrams to verify how image
position varies with object position.

! PITFALL PREVENTION 
36.4 We Are Choosing a

Small Number of
Rays

A huge number of light rays leave
each point on an object (and
pass through each point on an
image). In a principal-ray dia-
gram, which displays the charac-
teristics of the image, we choose
only a few rays that follow simply
stated rules. Locating the image
by calculation complements the
diagram.

NA
SA
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Example 36.4 The Image formed by a Concave Mirror 

image. In this case, the mirror equation gives

The image is virtual because it is located behind the mirror,
as expected. The magnification of the image is

The image is twice as large as the object, and the positive sign
for M indicates that the image is upright (see Fig. 36.15b).

What If? Suppose you set up the candle and mirror appara-
tus illustrated in Figure 36.15a and described in part (A) of
the example. While adjusting the apparatus, you accidentally
strike the candle with your elbow so that it begins to slide
toward the mirror at velocity vp. How fast does the image of the
candle move?

Answer We solve the mirror equation, Equation 36.6, for q :

Differentiating this equation with respect to time gives us
the velocity of the image vq " dq/dt :

For the object position of 25.0 cm in part (A), the velocity of
the image is

Thus, the speed of the image is less than that of the object
in this case.

We can see two interesting behaviors of this function for
vq . First, note that the velocity is negative regardless of the
value of p or f. Thus, if the object moves toward the mirror, the
image moves toward the left in Figure 36.15 without regard
for the side of the focal point at which the object is located or
whether the mirror is concave or convex. Second, in the limit
of p : 0, the velocity vq approaches $ vp . As the object moves
very close to the mirror, the mirror looks like a plane mirror,
the image is as far behind the mirror as the object is in front,
and both the object and the image move with the same speed.

vq " $
f 2 vp

(p $ f )2 " $
(10.0 cm)2

 vp

(25.0 cm $ 10.0 cm)2 " $0.444 vp

vq "
dq
dt

"
d
dt

 $ f p
p $ f % " $

f  
2

(p $ f )2  
dp
dt

" $
f  

2vp

(p $ f )2

q "
f p

p $ f

M " $
q
p

" $$ $10.0 cm
5.00 cm % " &2.00

$10.0 cmq "

1
5.00 cm

&
1
q

"
1

10.0 cm

Assume that a certain spherical mirror has a focal length of
& 10.0 cm. Locate and describe the image for object
distances of

(A) 25.0 cm,

(B) 10.0 cm, and

(C) 5.00 cm.

Solution Because the focal length is positive, we know that
this is a concave mirror (see Table 36.1).

(A) This situation is analogous to that in Figure 36.15a;
hence, we expect the image to be real. We find the image
distance by using Equation 36.6:

The magnification of the image is given by Equation 36.2:

The fact that the absolute value of M is less than unity tells us
that the image is smaller than the object, and the negative sign
for M tells us that the image is inverted. Because q is positive,
the image is located on the front side of the mirror and is real. 

(B) When the object distance is 10.0 cm, the object is
located at the focal point. Now we find that

which means that rays originating from an object positioned at
the focal point of a mirror are reflected so that the image is
formed at an infinite distance from the mirror; that is, the rays
travel parallel to one another after reflection. This is the situa-
tion in a flashlight, where the bulb filament is placed at the
focal point of a reflector, producing a parallel beam of light.

(C) When the object is at p " 5.00 cm, it lies halfway
between the focal point and the mirror surface, as shown in
Figure 36.15b. Thus, we expect a magnified, virtual, upright

'q "

1
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&
1
q
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1

10.0 cm

$0.668M " $
q
p
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16.7 cm
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1
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Investigate the image formed for various object positions and mirror focal lengths at the Interactive Worked Example link
at http://www.pse6.com.

Interactive

Example 36.5 The Image from a Convex Mirror 

(B) the magnification of the image.

Solution (A) This situation is depicted in Figure 36.15c.
We should expect to find an upright, reduced, virtual image.
To find the image position, we use Equation 36.6:

An anti-shoplifting mirror, as shown in Figure 36.17, shows
an image of a woman who is located 3.0 m from the mirror.
The focal length of the mirror is $ 0.25 m. Find

(A) the position of her image and

Interactive



36.3 Images Formed by Refraction

In this section we describe how images are formed when light rays are refracted at the
boundary between two transparent materials. Consider two transparent media having
indices of refraction n1 and n2, where the boundary between the two media is a spheri-
cal surface of radius R (Fig. 36.18). We assume that the object at O is in the medium
for which the index of refraction is n1. Let us consider the paraxial rays leaving O. As
we shall see, all such rays are refracted at the spherical surface and focus at a single
point I, the image point.

Figure 36.19 shows a single ray leaving point O and refracting to point I. Snell’s law
of refraction applied to this ray gives

Because #1 and #2 are assumed to be small, we can use the small-angle approximation
sin # # # (with angles in radians) and say that

Now we use the fact that an exterior angle of any triangle equals the sum of the two
opposite interior angles. Applying this rule to triangles OPC and PIC in Figure 36.19 gives

( " # 2 & )

# 1 " % & (

n1# 1 " n2# 2

n1 sin # 1 " n2 sin # 2
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The negative value of q indicates that her image is virtual, or
behind the mirror, as shown in Figure 36.15c.

(B) The magnification of the image is

The image is much smaller than the woman, and it is
upright because M is positive.

&0.077M " $
q
p

" $$ $0.23 m
3.0 m % "

$0.23 mq "

 
1
q

"
1

$0.25 m
$

1
3.0 m

1
p

&
1
q

"
1
f

"
1

$0.25 m
 

Figure 36.17 (Example 36.5) Convex mirrors, often used 
for security in department stores, provide wide-angle 
viewing.

Investigate the image formed for various object positions and mirror focal lengths at the Interactive Worked Example link
at http://www.pse6.com.

n1 < n2

O I

p q

n2n1
R

Figure 36.18 An image formed by
refraction at a spherical surface. Rays
making small angles with the principal axis
diverge from a point object at O and are
refracted through the image point I.
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If we combine all three expressions and eliminate #1 and #2, we find that

(36.7)

From Figure 36.19, we see three right triangles that have a common vertical leg of
length d. For paraxial rays (unlike the relatively large-angle ray shown in Fig. 36.19),
the horizontal legs of these triangles are approximately p for the triangle containing
angle %, R for the triangle containing angle (, and q for the triangle containing angle
). In the small-angle approximation, tan# # #, so we can write the approximate rela-
tionships from these triangles as follows:

We substitute these expressions into Equation 36.7 and divide through by d to give

(36.8)

For a fixed object distance p, the image distance q is independent of the angle that the
ray makes with the axis. This result tells us that all paraxial rays focus at the same point I.

As with mirrors, we must use a sign convention if we are to apply this equation to a
variety of cases. We define the side of the surface in which light rays originate as the
front side. The other side is called the back side. Real images are formed by refraction
in back of the surface, in contrast with mirrors, where real images are formed in front
of the reflecting surface. Because of the difference in location of real images, the
refraction sign conventions for q and R are opposite the reflection sign conventions.
For example, q and R are both positive in Figure 36.19. The sign conventions for spher-
ical refracting surfaces are summarized in Table 36.2.

We derived Equation 36.8 from an assumption that n1 * n2 in Figure 36.19. This
assumption is not necessary, however. Equation 36.8 is valid regardless of which index
of refraction is greater.

n1

p
&

n2

q
"

n2 $ n1

R

tan % # % #
d
p
  tan ( # ( #

d
R
  tan ) # ) #

d
q

n1% & n2) " (n2 $ n1)(
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Relation between object and
image distance for a refracting
surface

O

P

R

C

n1 n2

d

p q

γα β
I

θ1 θ2

Figure 36.19 Geometry used to derive Equation 36.8, assuming that n1 * n2.

Quantity Positive When Negative When

Object location (p) Object is in front of Object is in back of 
surface (real object) surface (virtual object)

Image location (q) Image is in back of Image is in front of 
surface (real image) surface (virtual image)

Image height (h!) Image is upright Image is inverted
Radius (R) Center of curvature Center of curvature

is in back of surface is in front of surface

Sign Conventions for Refracting Surfaces

Table 36.2



Flat Refracting Surfaces

If a refracting surface is flat, then R is infinite and Equation 36.8 reduces to

(36.9)

From this expression we see that the sign of q is opposite that of p. Thus, according
to Table 36.2, the image formed by a flat refracting surface is on the same
side of the surface as the object. This is illustrated in Figure 36.20 for the
situation in which the object is in the medium of index n1 and n1 is greater than n 2.
In this case, a virtual image is formed between the object and the surface. If n1 is
less than n 2, the rays in the back side diverge from each other at lesser angles than
those in Figure 36.20. As a result, the virtual image is formed to the left of the
object.

 q " $
n2

n1
 p 

  
n1

p
" $

n2

q
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Example 36.7 Gaze into the Crystal Ball

Solution Because n1 + n 2, where n2 " 1.00 is the index of
refraction for air, the rays originating from the coin are
refracted away from the normal at the surface and diverge
outward. Hence, the image is formed inside the paper-
weight and is virtual. Applying Equation 36.8 and noting

A set of coins is embedded in a spherical plastic paper-
weight having a radius of 3.0 cm. The index of refraction of
the plastic is n1 " 1.50. One coin is located 2.0 cm from the
edge of the sphere (Fig. 36.21). Find the position of the
image of the coin.

O

I

q

p

n1 > n2

n1  n2

Active Figure 36.20 The image
formed by a flat refracting surface
is virtual and on the same side of
the surface as the object. All rays
are assumed to be paraxial.

At the Active Figures link
at http://www.pse6.com, you
can move the object to see the
effect on the location of the
image. Quick Quiz 36.5 In Figure 36.18, what happens to the image point I as the

object point O is moved to the right from very far away to very close to the refracting
surface? (a) It is always to the right of the surface. (b) It is always to the left of 
the surface. (c) It starts off to the left and at some position of O, I moves to the right
of the surface. (d) It starts off to the right and at some position of O, I moves to the left
of the surface.

Quick Quiz 36.6 In Figure 36.20, what happens to the image point I as
the object point O moves toward the right-hand surface of the material of index of
refraction n1? (a) It always remains between O and the surface, arriving at the
surface just as O does. (b) It moves toward the surface more slowly than O so that
eventually O passes I. (c) It approaches the surface and then moves to the right of
the surface.

Conceptual Example 36.6 Let’s Go Scuba Diving!

when a person under water views objects with the naked
eye. In this case, light rays from an object focus behind
the retina, resulting in a blurred image. When a mask is
used, the air space between the eye and the mask surface
provides the normal amount of refraction at the eye–air
interface, and the light from the object focuses on the
retina.

It is well known that objects viewed under water with the
naked eye appear blurred and out of focus. However, a
scuba diver using a mask has a clear view of underwater
objects. Explain how this works, using the facts that the
indices of refraction of the cornea, water, and air are 1.376,
1.333, and 1.00029, respectively.

Solution Because the cornea and water have almost iden-
tical indices of refraction, very little refraction occurs



36.4 Thin Lenses

Lenses are commonly used to form images by refraction in optical instruments, such
as cameras, telescopes, and microscopes. We can use what we just learned about
images formed by refracting surfaces to help us locate the image formed by a lens.
We recognize that light passing through a lens experiences refraction at two
surfaces. The development we shall follow is based on the notion that the image
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3.0 cm

2.0 cm

q

n2
n1

n1 > n2

Figure 36.21 (Example 36.7) Light rays from a coin embedded
in a plastic sphere form a virtual image between the surface
of the object and the sphere surface. Because the object is inside
the sphere, the front of the refracting surface is the interior of
the sphere.

from Table 36.2 that R is negative, we obtain

The negative sign for q indicates that the image is in front of
the surface—in other words, in the same medium as the
object, as shown in Figure 36.21. Being in the same medium
as the object, the image must be virtual. (See Table 36.2.)
The coin appears to be closer to the paperweight surface
than it actually is.
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Example 36.8 The One That Got Away

The apparent height h! of the fish is 

and the fish appears to be approximately three-fourths its
actual height.

 " 0.752h

h! " q top $ q bottom " $0.752d $ [$0.752(d & h)]

A small fish is swimming at a depth d below the surface of a
pond (Fig. 36.22). What is the apparent depth of the fish, as
viewed from directly overhead?

Solution Because the refracting surface is flat, R is infinite.
Hence, we can use Equation 36.9 to determine the location
of the image with p " d. Using the indices of refraction
given in Figure 36.22, we obtain

Because q is negative, the image is virtual, as indicated by
the dashed lines in Figure 36.22. The apparent depth is
approximately three-fourths the actual depth.

What If? What if you look more carefully at the fish and
measure its apparent height, from its upper fin to its lower
fin? Is the apparent height h! of the fish different from the
actual height h?

Answer Because all points on the fish appear to be frac-
tionally closer to the observer, we would predict that the
height would be smaller. If we let the distance d in Figure
36.22 be measured to the top fin and the distance to the
bottom fin be d & h, then the images of the top and bottom
of the fish are located at

q bottom " $0.752(d & h)

q top " $0.752d

$0.752dq " $
n2

n1
 p " $

1.00
1.33

 d "

d

q

n2 = 1.00

n1 = 1.33

Figure 36.22 (Example 36.8) The apparent depth q of the
fish is less than the true depth d. All rays are assumed to be
paraxial.



formed by one refracting surface serves as the object for the second surface.
We shall analyze a thick lens first and then let the thickness of the lens be approxi-
mately zero.

Consider a lens having an index of refraction n and two spherical surfaces with
radii of curvature R1 and R2, as in Figure 36.23. (Note that R1 is the radius of curva-
ture of the lens surface that the light from the object reaches first and that R2 is the
radius of curvature of the other surface of the lens.) An object is placed at point O at a
distance p1 in front of surface 1. 

Let us begin with the image formed by surface 1. Using Equation 36.8 and assum-
ing that n1 " 1 because the lens is surrounded by air, we find that the image I1 formed
by surface 1 satisfies the equation

(36.10)

where q 1 is the position of the image due to surface 1. If the image due to
surface 1 is virtual (Fig. 36.23a), q 1 is negative, and it is positive if the image is real
(Fig. 36.23b).

Now we apply Equation 36.8 to surface 2, taking n1 " n and n 2 " 1. (We make this
switch in index because the light rays approaching surface 2 are in the material of the
lens, and this material has index n.) Taking p 2 as the object distance for surface 2 and
q2 as the image distance gives

(36.11)

We now introduce mathematically the fact that the image formed by the first
surface acts as the object for the second surface. We do this by noting from Figure
36.23 that p2, measured from surface 2, is related to q1 as follows:

Virtual image from surface 1 (Fig. 36.23a): p2 " $ q1 & t (q1 is negative)

Real image from surface 1 (Fig. 36.23b): p2 " $ q1 & t (q1 is positive)

n
p 2

&
1
q 2

"
1 $ n

R 2

1
p 1

&
n
q 1

"
n $ 1

R 1
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t
p1

q1

p2

O

I1

C1

Surface 1

R1

n
Surface 2

R2

n1 = 1

t
p1

q1

O

C1

Surface 1

R1

n
Surface 2

R2

n1 = 1

p2

I1

(a)

(b)

Figure 36.23 To locate the image formed
by a lens, we use the virtual image at I1
formed by surface 1 as the object for the
image formed by surface 2. The point C1 is
the center of curvature of surface 1. (a) The
image due to surface 1 is virtual so that I1 is
to the left of the surface. (b) The image due
to surface 1 is real so that I1 is to the right of
the surface.



where t is the thickness of the lens. For a thin lens (one whose thickness is small
compared to the radii of curvature), we can neglect t. In this approximation, we see
that p 2 " $ q 1 for either type of image from surface 1. (If the image from surface 1
is real, the image acts as a virtual object, so p 2 is negative.) Hence, Equation 36.11
becomes

(36.12)

Adding Equations 36.10 and 36.12, we find that

(36.13)

For a thin lens, we can omit the subscripts on p1 and q2 in Equation 36.13 and call the
object distance p and the image distance q, as in Figure 36.24. Hence, we can write
Equation 36.13 in the form

(36.14)

This expression relates the image distance q of the image formed by a thin lens to the
object distance p and to the lens properties (index of refraction and radii of curva-
ture). It is valid only for paraxial rays and only when the lens thickness is much less
than R1 and R2.

The focal length f of a thin lens is the image distance that corresponds to an infi-
nite object distance, just as with mirrors. Letting p approach ' and q approach f in
Equation 36.14, we see that the inverse of the focal length for a thin lens is

(36.15)

This relationship is called the lens makers’ equation because it can be used to deter-
mine the values of R1 and R2 that are needed for a given index of refraction and a
desired focal length f. Conversely, if the index of refraction and the radii of curvature
of a lens are given, this equation enables a calculation of the focal length. If the lens is
immersed in something other than air, this same equation can be used, with n inter-
preted as the ratio of the index of refraction of the lens material to that of the sur-
rounding fluid.

Using Equation 36.15, we can write Equation 36.14 in a form identical to Equation
36.6 for mirrors:

(36.16)
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Figure 36.24 Simplified geometry for a thin lens.

Lens makers’ equation

Thin lens equation
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f f

f f

(a)

(b)

F1 F2F1 F2

F1
F2F1 F2

Figure 36.25 (Left) Effects of a converging lens (top) and a diverging lens (bottom)
on parallel rays. (Right) Parallel light rays pass through (a) a converging lens and 
(b) a diverging lens. The focal length is the same for light rays passing through a given
lens in either direction. Both focal points F1 and F2 are the same distance from the lens.
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Front

p positive
q negative

Incident light

Back

p negative
q positive

Refracted light

Figure 36.26 A diagram for
obtaining the signs of p and q for a
thin lens. (This diagram also
applies to a refracting surface.)

Quantity Positive When Negative When

Object location (p) Object is in front of Object is in back of
lens (real object) lens (virtual object)

Image location (q) Image is in back of Image is in front of
lens (real image) lens (virtual image)

Image height (h!) Image is upright Image is inverted
R1 and R2 Center of curvature Center of curvature

is in back of lens is in front of lens
Focal length ( f ) Converging lens Diverging lens

Sign Conventions for Thin Lenses

Table 36.3

This equation, called the thin lens equation, can be used to relate the image distance
and object distance for a thin lens.

Because light can travel in either direction through a lens, each lens has two focal
points, one for light rays passing through in one direction and one for rays passing
through in the other direction. This is illustrated in Figure 36.25 for a biconvex lens
(two convex surfaces, resulting in a converging lens) and a biconcave lens (two con-
cave surfaces, resulting in a diverging lens). 

Figure 36.26 is useful for obtaining the signs of p and q, and Table 36.3 gives the
sign conventions for thin lenses. Note that these sign conventions are the same as
those for refracting surfaces (see Table 36.2). Applying these rules to a biconvex lens,
we see that when p + f , the quantities p, q, and R1 are positive, and R2 is negative.
Therefore, p, q, and f are all positive when a converging lens forms a real image of an
object. For a biconcave lens, p and R2 are positive and q and R1 are negative, with the
result that f is negative.

! PITFALL PREVENTION 
36.5 A Lens Has Two

Focal Points but
Only One Focal
Length

A lens has a focal point on each
side, front and back. However,
there is only one focal length—
each of the two focal points is
located the same distance from
the lens (Fig, 36.25). This can be
seen mathematically by inter-
changing R1 and R2 in Equation
36.15 (and changing the signs of
the radii because back and front
have been interchanged). As a
result, the lens forms an image of
an object at the same point if it
is turned around. In practice this
might not happen, because real
lenses are not infinitesimally thin.



Various lens shapes are shown in Figure 36.27. Note that a converging lens is
thicker at the center than at the edge, whereas a diverging lens is thinner at the center
than at the edge.

Magnification of Images

Consider a thin lens through which light rays from an object pass. As with mirrors (Eq.
36.2), we could analyze a geometric construction to show that the lateral magnification
of the image is

From this expression, it follows that when M is positive, the image is upright and on
the same side of the lens as the object. When M is negative, the image is inverted and
on the side of the lens opposite the object.

Ray Diagrams for Thin Lenses

Ray diagrams are convenient for locating the images formed by thin lenses or systems
of lenses. They also help clarify our sign conventions. Figure 36.28 shows such dia-
grams for three single-lens situations. 

To locate the image of a converging lens (Fig. 36.28a and b), the following three rays
are drawn from the top of the object:

M "
h!

h
" $

q
p
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(a)

(b)

Convex–
concave

Convex–
concave

Plano–
concave

Plano–
convex

Biconvex

Biconcave

Figure 36.27 Various lens shapes.
(a) Converging lenses have a posi-
tive focal length and are thickest at
the middle. (b) Diverging lenses
have a negative focal length and
are thickest at the edges.
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Front
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(b)
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Front

F2

Back
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1

2

3

O

(c)

F1

Front

F2

Back

I

1

2

3

Active Figure 36.28 Ray diagrams for locating the image formed
by a thin lens. (a) When the object is in front of and outside the
focal point of a converging lens, the image is real, inverted, and on
the back side of the lens. (b) When the object is between the focal
point and a converging lens, the image is virtual, upright, larger
than the object, and on the front side of the lens. (c) When an
object is anywhere in front of a diverging lens, the image is virtual,
upright, smaller than the object, and on the front side of the lens.

At the Active Figures link at http://www.pse6.com, you
can move the objects and change the focal length of the
lenses to see the effect on the images.

• Ray 1 is drawn parallel to the principal axis. After being refracted by the lens, this
ray passes through the focal point on the back side of the lens.

• Ray 2 is drawn through the center of the lens and continues in a straight 
line.

• Ray 3 is drawn through the focal point on the front side of the lens (or as if
coming from the focal point if p * f ) and emerges from the lens parallel to the
principal axis.



To locate the image of a diverging lens (Fig. 36.28c), the following three rays are
drawn from the top of the object:
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• Ray 1 is drawn parallel to the principal axis. After being refracted by the lens,
this ray emerges directed away from the focal point on the front side of the
lens.

• Ray 2 is drawn through the center of the lens and continues in a straight 
line.

• Ray 3 is drawn in the direction toward the focal point on the back side of the lens
and emerges from the lens parallel to the principal axis.

For the converging lens in Figure 36.28a, where the object is to the left of the focal
point (p + f ), the image is real and inverted. When the object is between the focal
point and the lens (p * f ), as in Figure 36.28b, the image is virtual and upright. For a
diverging lens (see Fig. 36.28c), the image is always virtual and upright, regardless of
where the object is placed. These geometric constructions are reasonably accurate only
if the distance between the rays and the principal axis is much less than the radii of the
lens surfaces.

Note that refraction occurs only at the surfaces of the lens. A certain lens design
takes advantage of this fact to produce the Fresnel lens, a powerful lens without great
thickness. Because only the surface curvature is important in the refracting qualities of
the lens, material in the middle of a Fresnel lens is removed, as shown in the cross
sections of lenses in Figure 36.29. Because the edges of the curved segments cause
some distortion, Fresnel lenses are usually used only in situations in which image
quality is less important than reduction of weight. A classroom overhead projector
often uses a Fresnel lens; the circular edges between segments of the lens can be seen
by looking closely at the light projected onto a screen.

Figure 36.29 The Fresnel lens on
the left has the same focal length as
the thick lens on the right but is
made of much less glass.

Quick Quiz 36.7 What is the focal length of a pane of window glass?
(a) zero (b) infinity (c) the thickness of the glass (d) impossible to determine

Quick Quiz 36.8 Diving masks often have a lens built into the glass for
divers who do not have perfect vision. This allows the individual to dive without the
necessity for glasses, because the lenses in the faceplate perform the necessary
refraction to provide clear vision. The proper design allows the diver to see clearly with
the mask on both under water and in the open air. Normal eyeglasses have lenses that
are curved on both the front and back surfaces. The lenses in a diving mask should be
curved (a) only on the front surface (b) only on the back surface (c) on both the front
and back surfaces.

Example 36.9 Images Formed by a Converging Lens 

Solution

(A) First we construct a ray diagram as shown in Figure
36.30a. The diagram shows that we should expect a real,
inverted, smaller image to be formed on the back side of the
lens. The thin lens equation, Equation 36.16, can be used to
find the image distance:

 
1
p

&
1
q

"
1
f

 

A converging lens of focal length 10.0 cm forms images of
objects placed

(A) 30.0 cm,

(B) 10.0 cm, and

(C) 5.00 cm from the lens.

In each case, construct a ray diagram, find the image
distance and describe the image.

Interactive
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The positive sign for the image distance tells us that the
image is indeed real and on the back side of the lens. The
magnification of the image is

Thus, the image is reduced in height by one half, and the
negative sign for M tells us that the image is inverted. 

(B) No calculation is necessary for this case because
we know that, when the object is placed at the focal
point, the image is formed at infinity. This is readily
verified by substituting p " 10.0 cm into the thin lens
equation.

(C) We now move inside the focal point. The ray diagram
in Figure 36.30b shows that in this case the lens acts as a
magnifying glass; that is, the image is magnified, upright,
on the same side of the lens as the object, and virtual.
Because the object distance is 5.00 cm, the thin lens equa-
tion gives

$10.0 cmq "

  
1

5.00 cm
&

1
q

"
1

10.0 cm
 

$0.500M " $
q
p

" $
15.0 cm
30.0 cm

"

&15.0 cmq "

  
1

30.0 cm
&

1
q

"
1

10.0 cm
 

and the magnification of the image is

The negative image distance tells us that the image is virtual
and formed on the side of the lens from which the light is
incident, the front side. The image is enlarged, and the posi-
tive sign for M tells us that the image is upright.

What If? What if the object moves right up to the lens
surface, so that p B 0? Where is the image?

Answer In this case, because p ** R , where R is either of the
radii of the surfaces of the lens, the curvature of the lens can
be ignored and it should appear to have the same effect as a
plane piece of material. This would suggest that the image is
just on the front side of the lens, at q " 0. We can verify this
mathematically by rearranging the thin lens equation:

If we let p : 0, the second term on the right becomes very
large compared to the first and we can neglect 1/f. The
equation becomes

Thus, q is on the front side of the lens (because it has the
opposite sign as p), and just at the lens surface.

q " $p " 0

1
q

" $
1
p

1
q

"
1
f

$
1
p

&2.00M " $
q
p

" $$ $10.0 cm
5.00 cm % "

(b)

O F2I, F1

10.0 cm5.00 cm

10.0 cm

(a)

O F1

F2 I

15.0 cm

30.0 cm

10.0 cm

Figure 36.30 (Example 36.9) An image is formed by a converging lens. (a) The object
is farther from the lens than the focal point. (b) The object is closer to the lens than
the focal point.

Investigate the image formed for various object positions and lens focal lengths at the Interactive Worked Example link at
http://www.pse6.com.
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Example 36.10 The Case of a Diverging Lens

This result confirms that the image is virtual, smaller than
the object, and upright.

(B) When the object is at the focal point, the ray diagram
appears as in Figure 36.31b. In the thin lens equation, using
p " 10.0 cm, we have

The magnification of the image is

Notice the difference between this situation and that for a
converging lens. For a diverging lens, an object at the focal
point does not produce an image infinitely far away.

(C) When the object is inside the focal point, at p " 5.00 cm,
the ray diagram in Figure 36.31c shows that we expect a
virtual image that is smaller than the object and upright. In

&0.500M " $
q
p

" $$ $5.00 cm
10.0 cm % "

$5.00 cmq "

  
1

10.0 cm
&

1
q

"
1

$10.0 cm
 

Repeat Example 36.9 for a diverging lens of focal length
10.0 cm.

Solution
(A) We begin by constructing a ray diagram as in Figure
36.31a taking the object distance to be 30.0 cm. The dia-
gram shows that we should expect an image that is virtual,
smaller than the object, and upright. Let us now apply the
thin lens equation with p " 30.0 cm:

The magnification of the image is

&0.250M " $
q
p

" $$ $7.50 cm
30.0 cm % "

$7.50 cmq "

  
1

30.0 cm
&

1
q

"
1

$10.0 cm
 

 
1
p

&
1
q

"
1
f

 

IO

(c)

F1

5.00 cm

3.33 cm

10.0 cm

F2

IO

(a)

F1

30.0 cm

10.0 cm
7.50 cm

F2 IO, F1

(b)

5.00 cm

10.0 cm

F2

Figure 36.31 (Example 36.10) An image is formed by a diverging lens. (a) The object
is farther from the lens than the focal point. (b) The object is at the focal point.
(c) The object is closer to the lens than the focal point.

Interactive



Combination of Thin Lenses

If two thin lenses are used to form an image, the system can be treated in the following
manner. First, the image formed by the first lens is located as if the second lens were not
present. Then a ray diagram is drawn for the second lens, with the image formed by the
first lens now serving as the object for the second lens. The second image formed is the
final image of the system. If the image formed by the first lens lies on the back side of the
second lens, then that image is treated as a virtual object for the second lens (that is, in
the thin lens equation, p is negative). The same procedure can be extended to a system
of three or more lenses. Because the magnification due to the second lens is performed
on the magnified image due to the first lens, the overall magnification of the image due
to the combination of lenses is the product of the individual magnifications. 

Let us consider the special case of a system of two lenses of focal lengths f1 and f2
in contact with each other. If p1 " p is the object distance for the combination, applica-
tion of the thin lens equation (Eq. 36.16) to the first lens gives

1
p

&
1
q 1

"
1
f 1
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this case, the thin lens equation gives

$3.33 cmq "

  
1

5.00 cm
&

1
q

"
1

$10.0 cm
 

and the magnification of the image is

This confirms that the image is virtual, smaller than the
object, and upright.

&0.667M " $$ $3.33 cm
5.00 cm % "

Example 36.11 A Lens Under Water

equation by the second gives

Because f air " 40.0 cm, we find that

f water " 3.71f air " 3.71(40.0 cm) "

The focal length of any lens is increased by a factor
(n $ 1)/(n! $ 1) when the lens is immersed in a fluid,
where n! is the ratio of the index of refraction n of the lens
material to that of the fluid.

148 cm

f water

f air
"

n $ 1
n! $ 1

"
1.52 $ 1
1.14 $ 1

" 3.71

A converging glass lens (n " 1.52) has a focal length of
40.0 cm in air. Find its focal length when it is immersed in
water, which has an index of refraction of 1.33.

Solution We can use the lens makers’ equation (Eq. 36.15)
in both cases, noting that R1 and R 2 remain the same in air
and water:

where n! is the ratio of the index of refraction of glass
to that of water: n! " 1.52/1.33 " 1.14. Dividing the first

 
1

f water
" (n! $ 1) $ 1

R1
$

1
R 2

%

  
1

f air
" (n $ 1) $ 1

R1
$

1
R 2

%

Investigate the image formed for various object positions and lens focal lengths at the Interactive Worked Example link at
http://www.pse6.com.

Light from a distant object is brought into focus
by two converging lenses.He
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where q1 is the image distance for the first lens. Treating this image as the object for
the second lens, we see that the object distance for the second lens must be p2 " $ q1.
(The distances are the same because the lenses are in contact and assumed to be infini-
tesimally thin. The object distance is negative because the object is virtual.) Therefore,
for the second lens,

where q " q2 is the final image distance from the second lens, which is the image distance
for the combination. Adding the equations for the two lenses eliminates q1 and gives

If we consider replacing the combination with a single lens that will form an image at
the same location, we see that its focal length is related to the individual focal lengths
by

(36.17)

Therefore, two thin lenses in contact with each other are equivalent to a single
thin lens having a focal length given by Equation 36.17.
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Focal length for a combination
of two thin lenses in contact

Example 36.12 Where Is the Final Image?

The magnification of this image is

The image formed by this lens acts as the object for the
second lens. Thus, the object distance for the second lens is
20.0 cm $ 15.0 cm " 5.00 cm. We again apply the thin lens
equation to find the location of the final image:

The magnification of the second image is

Thus, the overall magnification of the system is

To finalize the problem, note that the negative sign on the
overall magnification indicates that the final image is
inverted with respect to the initial object. The fact that the
absolute value of the magnification is less than one tells us
that the final image is smaller than the object. The fact that
q2 is negative tells us that the final image is on the front, or
left, side of lens 2. All of these conclusions are consistent
with the ray diagram in Figure 36.32b.

$0.667M " M1M2 " ($0.500)(1.33) "

&1.33M2 " $
q 2

p 2
" $

($6.67 cm)
5.00 cm

"

$6.67 cmq 2 "

  
1

5.00 cm
&

1
q 2

"
1

20.0 cm
 

$0.500M1 " $
q 1

p 1
" $

15.0 cm
30.0 cm

"

Two thin converging lenses of focal lengths f1 " 10.0 cm
and f2 " 20.0 cm are separated by 20.0 cm, as illustrated in
Figure 36.32a. An object is placed 30.0 cm to the left of
lens 1. Find the position and the magnification of the final
image.

Solution Conceptualize by imagining light rays passing
through the first lens and forming a real image (because
p + f ) in the absence of the second lens. Figure 36.32b
shows these light rays forming the inverted image I1. Once
the light rays converge to the image point, they do not
stop. They continue through the image point and interact
with the second lens. The rays leaving the image point
behave in the same way as the rays leaving an object. Thus,
the image of the first lens serves as the object of the second
lens. We categorize this problem as one in which we apply
the thin lens equation, but in stepwise fashion to the two
lenses.

To analyze the problem, we first draw a ray diagram
(Figure 36.32b) showing where the image from the first lens
falls and how it acts as the object for the second lens. The
location of the image formed by lens 1 is found from the
thin lens equation:

&15.0 cmq 1 "
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30.0 cm 20.0 cm

Object

f1 = 10.0 cm f2 = 20.0 cm
(a)

(b)

I2 I1

Lens 1 Lens 2
20.0 cm

6.67 cm

15.0 cm10.0 cm

O1

30.0 cm

What If? Suppose we want to create an upright image with
this system of two lenses. How must the second lens be
moved in order to achieve this?

Answer Because the object is farther from the first lens
than the focal length of that lens, we know that the first
image is inverted. Consequently, we need the second lens to

invert the image once again so that the final image is
upright. An inverted image is only formed by a converging
lens if the object is outside the focal point. Thus, the image
due to the first lens must be to the left of the focal point of
the second lens in Figure 36.32b. To make this happen, we
must move the second lens at least as far away from the first
lens as the sum q1 & f2 " 15.0 cm & 20.0 cm " 35.0 cm.

Figure 36.32 (Example 36.12) (a) A combination of two converging lenses. (b) The
ray diagram showing the location of the final image due to the combination of lenses.
The black dots are the focal points of lens 1 while the red dots are the focal points of
lens 2.

Investigate the image formed by a combination of two lenses at the Interactive Worked Example link at http://www.pse6.com.

Conceptual Example 36.13 Watch Your p’s and q’s!

related according to the same equation—the thin lens
equation.

The curve in the upper right portion of the f " & 10 cm
graph corresponds to an object located on the front side of a
lens, which we have drawn as the left side of the lens in our
previous diagrams. When the object is at positive infinity, a
real image forms at the focal point on the back side (the posi-
tive side) of the lens, q " f. (The incoming rays are parallel in
this case.) As the object moves closer to the lens, the image

Use a spreadsheet or a similar tool to create two graphs of
image distance as a function of object distance—one for a
lens for which the focal length is 10 cm and one for a lens
for which the focal length is $ 10 cm.

Solution The graphs are shown in Figure 36.33. In each
graph, a gap occurs where p " f, which we shall
discuss. Note the similarity in the shapes—a result of the
fact that image and object distances for both lenses are



36.5 Lens Aberrations

Our analysis of mirrors and lenses assumes that rays make small angles with the princi-
pal axis and that the lenses are thin. In this simple model, all rays leaving a point
source focus at a single point, producing a sharp image. Clearly, this is not always true.
When the approximations used in this analysis do not hold, imperfect images are
formed.

A precise analysis of image formation requires tracing each ray, using Snell’s law at
each refracting surface and the law of reflection at each reflecting surface. This proce-
dure shows that the rays from a point object do not focus at a single point, with the
result that the image is blurred. The departures of actual images from the ideal pre-
dicted by our simplified model are called aberrations.

Spherical Aberrations

Spherical aberrations occur because the focal points of rays far from the principal axis of
a spherical lens (or mirror) are different from the focal points of rays of the same
wavelength passing near the axis. Figure 36.34 illustrates spherical aberration for parallel
rays passing through a converging lens. Rays passing through points near the center of
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Figure 36.33 (Conceptual Example 36.13) (a) Image position as a function of object
position for a lens having a focal length of & 10 cm. (b) Image position as a function of
object position for a lens having a focal length of $ 10 cm.

moves farther from the lens, corresponding to the upward
path of the curve. This continues until the object is located at
the focal point on the near side of the lens. At this point, the
rays leaving the lens are parallel, making the image infinitely
far away. This is described in the graph by the asymptotic
approach of the curve to the line p " f " 10 cm.

As the object moves inside the focal point, the image
becomes virtual and located near q " $ '. We are now
following the curve in the lower left portion of Figure
36.33a. As the object moves closer to the lens, the virtual
image also moves closer to the lens. As p : 0, the image dis-
tance q also approaches 0. Now imagine that we bring the
object to the back side of the lens, where p * 0. The object
is now a virtual object, so it must have been formed by some
other lens. For all locations of the virtual object, the image

distance is positive and less than the focal length. The final
image is real, and its position approaches the focal point as
p becomes more and more negative.

The f " $ 10 cm graph shows that a distant real object
forms an image at the focal point on the front side of the
lens. As the object approaches the lens, the image remains
virtual and moves closer to the lens. But as we continue
toward the left end of the p axis, the object becomes virtual.
As the position of this virtual object approaches the focal
point, the image recedes toward infinity. As we pass the
focal point, the image shifts from a location at positive
infinity to one at negative infinity. Finally, as the virtual
object continues moving away from the lens, the image
is virtual, starts moving in from negative infinity, and
approaches the focal point.

Figure 36.34 Spherical aberration
caused by a converging lens. Does
a diverging lens cause spherical
aberration?



the lens are imaged farther from the lens than rays passing through points near the edges.
Figure 36.10 earlier in the chapter showed a similar situation for a spherical mirror.

Many cameras have an adjustable aperture to control light intensity and reduce
spherical aberration. (An aperture is an opening that controls the amount of light
passing through the lens.) Sharper images are produced as the aperture size is
reduced because with a small aperture only the central portion of the lens is exposed
to the light; as a result, a greater percentage of the rays are paraxial. At the same time,
however, less light passes through the lens. To compensate for this lower light intensity,
a longer exposure time is used.

In the case of mirrors, spherical aberration can be minimized through the use of a
parabolic reflecting surface rather than a spherical surface. Parabolic surfaces are not
used often, however, because those with high-quality optics are very expensive to make.
Parallel light rays incident on a parabolic surface focus at a common point, regardless
of their distance from the principal axis. Parabolic reflecting surfaces are used in many
astronomical telescopes to enhance image quality.

Chromatic Aberrations

The fact that different wavelengths of light refracted by a lens focus at different points
gives rise to chromatic aberrations. In Chapter 35 we described how the index of refrac-
tion of a material varies with wavelength. For instance, when white light passes through a
lens, violet rays are refracted more than red rays (Fig. 36.35). From this we see that the
focal length of a lens is greater for red light than for violet light. Other wavelengths (not
shown in Fig. 36.35) have focal points intermediate between those of red and violet.

Chromatic aberration for a diverging lens also results in a shorter focal length for
violet light than for red light, but on the front side of the lens. Chromatic aberration
can be greatly reduced by combining a converging lens made of one type of glass and a
diverging lens made of another type of glass.
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Figure 36.35 Chromatic aberra-
tion caused by a converging lens.
Rays of different wavelengths focus
at different points.

Quick Quiz 36.9 A curved mirrored surface can have (a) spherical aberra-
tion but not chromatic aberration (b) chromatic aberration but not spherical aberra-
tion (c) both spherical aberration and chromatic aberration.

36.6 The Camera

The photographic camera is a simple optical instrument whose essential features are
shown in Figure 36.36. It consists of a light-tight chamber, a converging lens that
produces a real image, and a film behind the lens to receive the image. One focuses
the camera by varying the distance between lens and film. This is accomplished with an
adjustable bellows in antique cameras and with some other mechanical arrangement in
contemporary models. For proper focusing—which is necessary for the formation of
sharp images—the lens-to-film distance depends on the object distance as well as on
the focal length of the lens.

The shutter, positioned behind the lens, is a mechanical device that is opened for
selected time intervals, called exposure times. One can photograph moving objects by
using short exposure times or photograph dark scenes (with low light levels) by using
long exposure times. If this adjustment were not available, it would be impossible to
take stop-action photographs. For example, a rapidly moving vehicle could move
enough in the time interval during which the shutter is open to produce a blurred
image. Another major cause of blurred images is the movement of the camera while
the shutter is open. To prevent such movement, either short exposure times or a
tripod should be used, even for stationary objects. Typical shutter speeds (that is,
exposure times) are (1/30)s, (1/60)s, (1/125)s, and (1/250)s. For handheld cameras,

Shutter
Lens

Aperture

Film

Image

qp

Figure 36.36 Cross-sectional view
of a simple camera. Note that in
reality, p ++ q.



the use of slower speeds can result in blurred images (due to movement), but the use
of faster speeds reduces the gathered light intensity. In practice, stationary objects are
normally shot with an intermediate shutter speed of (1/60)s.

More expensive cameras have an aperture of adjustable diameter to further control
the intensity of the light reaching the film. As noted earlier, when an aperture of small
diameter is used, only light from the central portion of the lens reaches the film; in
this way spherical aberration is reduced.

The intensity I of the light reaching the film is proportional to the area of the lens.
Because this area is proportional to the square of the diameter D, we conclude that I is
also proportional to D2. Light intensity is a measure of the rate at which energy is
received by the film per unit area of the image. Because the area of the image is propor-
tional to q2 and q # f (when p ++ f , so p can be approximated as infinite), we conclude
that the intensity is also proportional to 1/f 2, and thus I , D2/f 2. The brightness of the
image formed on the film depends on the light intensity, so we see that the image
brightness depends on both the focal length and the diameter of the lens.

The ratio f/D is called the f -number of a lens:

(36.18)

Hence, the intensity of light incident on the film varies according to the following
proportionality:

(36.19)

The f -number is often given as a description of the lens “speed.” The lower the f -number,
the wider the aperture and the higher the rate at which energy from the light
exposes the film—thus, a lens with a low f -number is a “fast” lens. The conventional
notation for an f -number is “f/” followed by the actual number. For example, “f/4”
means an f -number of 4—it does not mean to divide f by 4! Extremely fast lenses, which
have f -numbers as low as approximately f/1.2, are expensive because it is very difficult to
keep aberrations acceptably small with light rays passing through a large area of the lens.
Camera lens systems (that is, combinations of lenses with adjustable apertures) are often
marked with multiple f -numbers, usually f/2.8, f/4, f/5.6, f/8, f/11, and f/16. Any one of
these settings can be selected by adjusting the aperture, which changes the value of D.
Increasing the setting from one f -number to the next higher value (for example, from
f/2.8 to f/4) decreases the area of the aperture by a factor of two. The lowest f -number
setting on a camera lens corresponds to a wide-open aperture and the use of the
maximum possible lens area.

Simple cameras usually have a fixed focal length and a fixed aperture size, with an
f -number of about f/11. This high value for the f -number allows for a large depth of
field, meaning that objects at a wide range of distances from the lens form reasonably
sharp images on the film. In other words, the camera does not have to be focused.

Digital cameras are similar to the cameras we have described here except that the
light does not form an image on photographic film. The image in a digital camera
is formed on a charge-coupled device (CCD), which digitizes the image, turning it into
binary code, as we discussed for sound in Section 17.5. (The CCD is described in
Section 40.2.) The digital information is then stored on a memory chip for playback
on the screen of the camera, or it can be downloaded to a computer and sent to a
friend or relative through the Internet.

I , 
1

( f/D)2  , 
1

( f -number)2

f -number ! 
f
D
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Quick Quiz 36.10 A camera can be modeled as a simple converging lens
that focuses an image on the film, acting as the screen. A camera is initially focused on
a distant object. To focus the image of an object close to the camera, the lens must be
(a) moved away from the film. (b) left where it is. (c) moved toward the film.



36.7 The Eye

Like a camera, a normal eye focuses light and produces a sharp image. However, the
mechanisms by which the eye controls the amount of light admitted and adjusts to
produce correctly focused images are far more complex, intricate, and effective than
those in even the most sophisticated camera. In all respects, the eye is a physiological
wonder.

Figure 36.37 shows the basic parts of the human eye. Light entering the eye passes
through a transparent structure called the cornea (Fig. 36.38), behind which are a clear
liquid (the aqueous humor), a variable aperture (the pupil, which is an opening in the
iris), and the crystalline lens. Most of the refraction occurs at the outer surface of the
eye, where the cornea is covered with a film of tears. Relatively little refraction occurs
in the crystalline lens because the aqueous humor in contact with the lens has an aver-
age index of refraction close to that of the lens. The iris, which is the colored portion
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Example 36.14 Finding the Correct Exposure Time

time. If I is the light intensity reaching the film, then in
a time interval -t the energy per unit area received by
the film is proportional to I -t. Comparing the two situa-
tions, we require that I1 -t1 " I2 -t2, where -t1 is the
correct exposure time for f/1.8 and -t2 is the correct
exposure time for f/4. Using this result together with
Equation 36.19, we find that

As the aperture size is reduced, exposure time must
increase.

1
100

 s-t 2 " $ f 2 -number
f 1 -number %

2
 -t 1 " $ 4

1.8 %
2
 $ 1

500
 s% #

-t 1

( f1 -number)2 "  
-t 2

( f 2 -number)2

The lens of a certain 35-mm camera (where 35 mm is the
width of the film strip) has a focal length of 55 mm and a
speed (an f -number) of f/1.8. The correct exposure time for
this speed under certain conditions is known to be (1/500) s.

(A) Determine the diameter of the lens.

Solution From Equation 36.18, we find that

(B) Calculate the correct exposure time if the f -number is
changed to f/4 under the same lighting conditions.

Solution The total light energy hitting the film is propor-
tional to the product of the intensity and the exposure

31 mmD "
f

f -number
"

55 mm
1.8

"

Pupil

Cornea

Crystalline
lens

Ciliary
muscle

Retinal
arteries

and veins

Retina

Vitreous
humor

Iris
Optic
nerve

Aqueous
humor

Figure 36.37 Important parts of the eye.
Figure 36.38 Close-up photograph of the
cornea of the human eye.
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of the eye, is a muscular diaphragm that controls pupil size. The iris regulates the
amount of light entering the eye by dilating the pupil in low-light conditions and con-
tracting the pupil in high-light conditions. The f -number range of the eye is from
about f/2.8 to f/16.

The cornea–lens system focuses light onto the back surface of the eye, the retina,
which consists of millions of sensitive receptors called rods and cones. When stimulated
by light, these receptors send impulses via the optic nerve to the brain, where an image
is perceived. By this process, a distinct image of an object is observed when the image
falls on the retina.

The eye focuses on an object by varying the shape of the pliable crystalline lens
through an amazing process called accommodation. An important component of
accommodation is the ciliary muscle, which is situated in a circle around the rim of the
lens. Thin filaments, called zonules, run from this muscle to the edge of the lens. When
the eye is focused on a distant object, the ciliary muscle is relaxed, tightening the
zonules that attach the muscle to the edge of the lens. The force of the zonules causes
the lens to flatten, increasing its focal length. For an object distance of infinity, the
focal length of the eye is equal to the fixed distance between lens and retina, about
1.7 cm. The eye focuses on nearby objects by tensing the ciliary muscle, which relaxes
the zonules. This action allows the lens to bulge a bit, and its focal length decreases,
resulting in the image being focused on the retina. All these lens adjustments take
place so swiftly that we are not even aware of the change. 

Accommodation is limited in that objects very close to the eye produce blurred
images. The near point is the closest distance for which the lens can accommodate
to focus light on the retina. This distance usually increases with age and has an
average value of 25 cm. Typically, at age 10 the near point of the eye is about 18 cm.
It increases to about 25 cm at age 20, to 50 cm at age 40, and to 500 cm or greater
at age 60. The far point of the eye represents the greatest distance for which the
lens of the relaxed eye can focus light on the retina. A person with normal vision
can see very distant objects and thus has a far point that can be approximated as
infinity.

Recall that the light leaving the mirror in Figure 36.8 becomes white where it
comes together but then diverges into separate colors again. Because nothing but air
exists at the point where the rays cross (and hence nothing exists to cause the colors to
separate again), seeing white light as a result of a combination of colors must be a vi-
sual illusion. In fact, this is the case. Only three types of color-sensitive cells are present
in the retina; they are called red, green, and blue cones because of the peaks of the
color ranges to which they respond (Fig. 36.39). If the red and green cones are stimu-
lated simultaneously (as would be the case if yellow light were shining on them), the
brain interprets what we see as yellow. If all three types of cones are stimulated by the
separate colors red, blue, and green, as in Figure 36.8, we see white. If all three types of
cones are stimulated by light that contains all colors, such as sunlight, we again see
white light.

Color televisions take advantage of this visual illusion by having only red, green,
and blue dots on the screen. With specific combinations of brightness in these three
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Figure 36.39 Approximate color sensitivity of the three types of cones in the retina. 



primary colors, our eyes can be made to see any color in the rainbow. Thus, the
yellow lemon you see in a television commercial is not really yellow, it is red
and green! The paper on which this page is printed is made of tiny, matted,
translucent fibers that scatter light in all directions; the resultant mixture of colors
appears white to the eye. Snow, clouds, and white hair are not really white. In fact,
there is no such thing as a white pigment. The appearance of these things is a
consequence of the scattering of light containing all colors, which we interpret as
white.

Conditions of the Eye

When the eye suffers a mismatch between the focusing range of the lens–cornea
system and the length of the eye, with the result that light rays from a near object reach
the retina before they converge to form an image, as shown in Figure 36.40a, the con-
dition is known as farsightedness (or hyperopia). A farsighted person can usually see
faraway objects clearly but not nearby objects. Although the near point of a normal eye
is approximately 25 cm, the near point of a farsighted person is much farther away.
The refracting power in the cornea and lens is insufficient to focus the light from all
but distant objects satisfactorily. The condition can be corrected by placing a converg-
ing lens in front of the eye, as shown in Figure 36.40b. The lens refracts the incoming
rays more toward the principal axis before entering the eye, allowing them to converge
and focus on the retina.

A person with nearsightedness (or myopia), another mismatch condition, can
focus on nearby objects but not on faraway objects. The far point of the nearsighted
eye is not infinity and may be less than 1 m. The maximum focal length of the near-
sighted eye is insufficient to produce a sharp image on the retina, and rays from a
distant object converge to a focus in front of the retina. They then continue past
that point, diverging before they finally reach the retina and causing blurred vision
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Converging
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Image
behind retina
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at retina
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Figure 36.40 (a) When a farsighted eye looks at an object located between the near
point and the eye, the image point is behind the retina, resulting in blurred vision. The
eye muscle contracts to try to bring the object into focus. (b) Farsightedness is cor-
rected with a converging lens.



(Fig. 36.41a). Nearsightedness can be corrected with a diverging lens, as shown in
Figure 36.41b. The lens refracts the rays away from the principal axis before they enter
the eye, allowing them to focus on the retina.

Beginning in middle age, most people lose some of their accommodation ability as
the ciliary muscle weakens and the lens hardens. Unlike farsightedness, which is a
mismatch between focusing power and eye length, presbyopia (literally, “old-age
vision”) is due to a reduction in accommodation ability. The cornea and lens do not
have sufficient focusing power to bring nearby objects into focus on the retina. The
symptoms are the same as those of farsightedness, and the condition can be corrected
with converging lenses.

In the eye defect known as astigmatism, light from a point source produces a line
image on the retina. This condition arises when either the cornea or the lens or both
are not perfectly symmetric. Astigmatism can be corrected with lenses that have differ-
ent curvatures in two mutually perpendicular directions.

Optometrists and ophthalmologists usually prescribe lenses1 measured in diopters:
the power P of a lens in diopters equals the inverse of the focal length in meters: P " 1/f.
For example, a converging lens of focal length & 20 cm has a power of & 5.0 diopters, and
a diverging lens of focal length $ 40 cm has a power of $ 2.5 diopters.
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(a)

(b)

Diverging
lens

Relaxed lens

Image in
front of retina

Image
at retina

Far point

Far point

Object

Object

1 The word lens comes from lentil, the name of an Italian legume. (You may have eaten lentil soup.)
Early eyeglasses were called “glass lentils” because the biconvex shape of their lenses resembled the
shape of a lentil. The first lenses for farsightedness and presbyopia appeared around 1280; concave
eyeglasses for correcting nearsightedness did not appear for more than 100 years after that.

Figure 36.41 (a) When a nearsighted eye looks at an object that lies beyond the eye’s
far point, the image is formed in front of the retina, resulting in blurred vision.
(b) Nearsightedness is corrected with a diverging lens.

Quick Quiz 36.11 Two campers wish to start a fire during the day. One
camper is nearsighted and one is farsighted. Whose glasses should be used to focus the
Sun’s rays onto some paper to start the fire? (a) either camper (b) the nearsighted
camper (c) the farsighted camper.



36.8 The Simple Magnifier

The simple magnifier consists of a single converging lens. As the name implies, this
device increases the apparent size of an object.

Suppose an object is viewed at some distance p from the eye, as illustrated in
Figure 36.42. The size of the image formed at the retina depends on the angle # sub-
tended by the object at the eye. As the object moves closer to the eye, # increases and
a larger image is observed. However, an average normal eye cannot focus on an object
closer than about 25 cm, the near point (Fig. 36.43a). Therefore, # is maximum at the
near point.

To further increase the apparent angular size of an object, a converging lens can
be placed in front of the eye as in Figure 36.43b, with the object located at point O,
just inside the focal point of the lens. At this location, the lens forms a virtual,
upright, enlarged image. We define angular magnification m as the ratio of the
angle subtended by an object with a lens in use (angle # in Fig. 36.43b) to the angle
subtended by the object placed at the near point with no lens in use (angle #0 in Fig.
36.43a):

(36.20)

The angular magnification is a maximum when the image is at the near point of the
eye—that is, when q " $ 25 cm. The object distance corresponding to this image

m ! 
#

#0
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Example 36.15 A Case of Nearsightedness

We use a negative sign for the image distance because the
image is virtual and in front of the eye. As you should have
suspected, the lens must be a diverging lens (one with a neg-
ative focal length) to correct nearsightedness.

$2.5 mf "

1
p

&
1
q

"
1
'

&
1

$2.5 m
"

1
f

A particular nearsighted person is unable to see objects
clearly when they are beyond 2.5 m away (the far point of
this particular eye). What should the focal length be in a
lens prescribed to correct this problem?

Solution The purpose of the lens in this instance is to
“move” an object from infinity to a distance where it can be
seen clearly. This is accomplished by having the lens
produce an image at the far point. From the thin lens
equation, we have

θ

p

Figure 36.42 The size of the
image formed on the retina
depends on the angle # subtended
at the eye.

θ
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(a)

h
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h'
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h

p
F O θ

(b)

θ0θ

Figure 36.43 (a) An object
placed at the near point of the
eye (p " 25 cm) subtends an
angle #0 # h/25 at the eye.
(b) An object placed near the
focal point of a converging
lens produces a magnified image
that subtends an angle 
# # h!/25 at the eye.



distance can be calculated from the thin lens equation:

where f is the focal length of the magnifier in centimeters. If we make the small-angle
approximations

(36.21)

Equation 36.20 becomes

(36.22)

Although the eye can focus on an image formed anywhere between the near point
and infinity, it is most relaxed when the image is at infinity. For the image formed by
the magnifying lens to appear at infinity, the object has to be at the focal point of the
lens. In this case, Equations 36.21 become

and the magnification is

(36.23)

With a single lens, it is possible to obtain angular magnifications up to about 4 without
serious aberrations. Magnifications up to about 20 can be achieved by using one or two
additional lenses to correct for aberrations.
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A simple magnifier, also called a
magnifying glass, is used to view an
enlarged image of a portion of a
map.

Example 36.16 Maximum Magnification of a Lens

When the eye is relaxed, the image is at infinity. In this case,
we use Equation 36.23:

2.5mmin "
25 cm

f
"

25 cm
10 cm

"

What is the maximum magnification that is possible with a
lens having a focal length of 10 cm, and what is the magnifi-
cation of this lens when the eye is relaxed?

Solution The maximum magnification occurs when the
image is located at the near point of the eye. Under these
circumstances, Equation 36.22 gives

3.5" 1 &
25 cm
10 cm

"mmax " 1 &
25 cm

f

36.9 The Compound Microscope

A simple magnifier provides only limited assistance in inspecting minute details of
an object. Greater magnification can be achieved by combining two lenses in a
device called a compound microscope, a schematic diagram of which is shown in
Figure 36.44a. It consists of one lens, the objective, that has a very short focal
length fo * 1 cm and a second lens, the eyepiece, that has a focal length fe of a few

Ge
or

ge
 S

em
pl

e



centimeters. The two lenses are separated by a distance L that is much greater than
either fo or fe . The object, which is placed just outside the focal point of the objec-
tive, forms a real, inverted image at I1, and this image is located at or close to the
focal point of the eyepiece. The eyepiece, which serves as a simple magnifier,
produces at I2 a virtual, enlarged image of I1. The lateral magnification M1 of the
first image is $ q1/p1. Note from Figure 36.44a that q1 is approximately equal to L
and that the object is very close to the focal point of the objective: p1 # fo. Thus, the
lateral magnification by the objective is

The angular magnification by the eyepiece for an object (corresponding to the image
at I1) placed at the focal point of the eyepiece is, from Equation 36.23,

me "
25 cm

fe

Mo # $
L
fo

S E C T I O N  3 6 . 9 •  The Compound Microscope 1161

Objective Eyepiece

L

(a)

I2

O
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fo

p1 q1

Fe I l

fe

Active Figure 36.44 (a) Diagram of a compound microscope, which consists of an
objective lens and an eyepiece lens. (b) A compound microscope. The three-objective
turret allows the user to choose from several powers of magnification. Combinations of
eyepieces with different focal lengths and different objectives can produce a wide range
of magnifications.

At the Active Figures link
at http://www.pse6.com, you
can adjust the focal lengths of
the objective and eyepiece
lenses to see the effect on the
final image.
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The overall magnification of the image formed by a compound microscope is defined
as the product of the lateral and angular magnifications:

(36.24)

The negative sign indicates that the image is inverted.
The microscope has extended human vision to the point where we can view previ-

ously unknown details of incredibly small objects. The capabilities of this instrument
have steadily increased with improved techniques for precision grinding of lenses. A
question often asked about microscopes is: “If one were extremely patient and careful,
would it be possible to construct a microscope that would enable the human eye to see
an atom?” The answer is no, as long as light is used to illuminate the object. The
reason is that, for an object under an optical microscope (one that uses visible light) to
be seen, the object must be at least as large as a wavelength of light. Because the
diameter of any atom is many times smaller than the wavelengths of visible light, the
mysteries of the atom must be probed using other types of “microscopes.”

The ability to use other types of waves to “see” objects also depends on wavelength.
We can illustrate this with water waves in a bathtub. Suppose you vibrate your hand in
the water until waves having a wavelength of about 15 cm are moving along the
surface. If you hold a small object, such as a toothpick, so that it lies in the path of the
waves, it does not appreciably disturb the waves; they continue along their path “oblivi-
ous” to it. Now suppose you hold a larger object, such as a toy sailboat, in the path of
the 15-cm waves. In this case, the waves are considerably disturbed by the object.
Because the toothpick is smaller than the wavelength of the waves, the waves do not
“see” it. (The intensity of the scattered waves is low.) Because it is about the same size
as the wavelength of the waves, however, the boat creates a disturbance. In other words,
the object acts as the source of scattered waves that appear to come from it.

Light waves behave in this same general way. The ability of an optical microscope to
view an object depends on the size of the object relative to the wavelength of the light
used to observe it. Hence, we can never observe atoms with an optical microscope2

because their dimensions are small (* 0.1 nm) relative to the wavelength of the light
(* 500 nm). 

36.10 The Telescope

Two fundamentally different types of telescopes exist; both are designed to aid in
viewing distant objects, such as the planets in our Solar System. The refracting tele-
scope uses a combination of lenses to form an image, and the reflecting telescope
uses a curved mirror and a lens.

The lens combination shown in Figure 36.45a is that of a refracting telescope.
Like the compound microscope, this telescope has an objective and an eyepiece. The
two lenses are arranged so that the objective forms a real, inverted image of a distant
object very near the focal point of the eyepiece. Because the object is essentially at
infinity, this point at which I1 forms is the focal point of the objective. The eyepiece
then forms, at I2, an enlarged, inverted image of the image at I1. In order to provide
the largest possible magnification, the image distance for the eyepiece is infinite. This
means that the light rays exit the eyepiece lens parallel to the principal axis, and
the image of the objective lens must form at the focal point of the eyepiece. Hence,
the two lenses are separated by a distance fo & fe , which corresponds to the length of
the telescope tube.

M " Mome " $
L
fo

 $ 25 cm
fe %
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2 Single-molecule near-field optic studies are routinely performed with visible light having wave-
lengths of about 500 nm. The technique uses very small apertures to produce images having resolu-
tions as small as 10 nm.



The angular magnification of the telescope is given by #/#o , where #o is the angle
subtended by the object at the objective and # is the angle subtended by the final
image at the viewer’s eye. Consider Figure 36.45a, in which the object is a very great
distance to the left of the figure. The angle #o (to the left of the objective) subtended by
the object at the objective is the same as the angle (to the right of the objective)
subtended by the first image at the objective. Thus,

where the negative sign indicates that the image is inverted.

tan #o # #o # $
h!

fo
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Objective lens

Eyepiece lens

fo

fe fe

Fe Fo

I1

Fe'

θh'

(a)

I2

oθ

oθ

At the Active Figures link
at http://www.pse6.com, you
can adjust the focal lengths of
the objective and eyepiece
lenses to see the effect on the
final image.

Active Figure 36.45 (a) Lens arrangement in a refracting telescope, with the object at
infinity. (b) A refracting telescope.
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The angle # subtended by the final image at the eye is the same as the angle that a
ray coming from the tip of I1 and traveling parallel to the principal axis makes with the
principal axis after it passes through the lens. Thus,

We have not used a negative sign in this equation because the final image is not
inverted; the object creating this final image I2 is I1, and both it and I2 point in the
same direction. Hence, the angular magnification of the telescope can be expressed as

(36.25)

and we see that the angular magnification of a telescope equals the ratio of the objec-
tive focal length to the eyepiece focal length. The negative sign indicates that the
image is inverted.

When we look through a telescope at such relatively nearby objects as the Moon
and the planets, magnification is important. However, individual stars in our galaxy are
so far away that they always appear as small points of light no matter how great the
magnification. A large research telescope that is used to study very distant objects must
have a great diameter to gather as much light as possible. It is difficult and expensive
to manufacture large lenses for refracting telescopes. Another difficulty with large
lenses is that their weight leads to sagging, which is an additional source of aberration.
These problems can be partially overcome by replacing the objective with a concave
mirror, which results in a reflecting telescope. Because light is reflected from the
mirror and does not pass through a lens, the mirror can have rigid supports on the
back side. Such supports eliminate the problem of sagging.

Figure 36.46a shows the design for a typical reflecting telescope. Incoming light
rays pass down the barrel of the telescope and are reflected by a parabolic mirror at
the base. These rays converge toward point A in the figure, where an image would be
formed. However, before this image is formed, a small, flat mirror M reflects the light
toward an opening in the side of the tube that passes into an eyepiece. This particular
design is said to have a Newtonian focus because Newton developed it. Figure 36.46b

m "
#

#o
"

h!/fe
$h!/fo

" $
fo
fe

tan # # # #
h!

fe
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mirror

Figure 36.46 (a) A Newtonian-focus reflecting telescope. (b) A reflecting telescope.
This type of telescope is shorter than that in Figure 36.45b.
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shows such a telescope. Note that in the reflecting telescope the light never passes
through glass (except through the small eyepiece). As a result, problems associated
with chromatic aberration are virtually eliminated. The reflecting telescope can be
made even shorter by orienting the flat mirror so that it reflects the light back toward
the objective mirror and the light enters an eyepiece in a hole in the middle of the
mirror.

The largest reflecting telescopes in the world are at the Keck Observatory on Mauna
Kea, Hawaii. The site includes two telescopes with diameters of 10 m, each containing
36 hexagonally shaped, computer-controlled mirrors that work together to form a large
reflecting surface. In contrast, the largest refracting telescope in the world, at the Yerkes
Observatory in Williams Bay, Wisconsin, has a diameter of only 1 m.

Summary 1165

The lateral magnification M of the image due to a mirror or lens is defined as the
ratio of the image height h! to the object height h and is equal to the negative of the
ratio of the image distance q to the object distance p :

(36.1, 36.2)

In the paraxial ray approximation, the object distance p and image distance q for a
spherical mirror of radius R are related by the mirror equation:

(36.4, 36.6)

where f " R/2 is the focal length of the mirror.
An image can be formed by refraction from a spherical surface of radius R . The

object and image distances for refraction from such a surface are related by

(36.8)

where the light is incident in the medium for which the index of refraction is n1 and is
refracted in the medium for which the index of refraction is n2.

The inverse of the focal length f of a thin lens surrounded by air is given by the
lens makers’ equation:

(36.15)

Converging lenses have positive focal lengths, and diverging lenses have negative
focal lengths.

For a thin lens, and in the paraxial ray approximation, the object and image
distances are related by the thin lens equation:

(36.16)

The ratio of the focal length of a camera lens to the diameter of the lens is called
the f -number of the lens:

(36.18)

The intensity of light incident on the film in the camera varies according to:

(36.19)I , 
1

( f/D)2  , 
1

( f -number)2

f -number ! 
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Take a practice test for
this chapter by clicking on
the Practice Test link at
http://www.pse6.com.
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The maximum magnification of a single lens of focal length f used as a simple
magnifier is

(36.22)

The overall magnification of the image formed by a compound microscope is:

(36.24)

where fo and fe are the focal lengths of the objective and eyepiece lenses, respectively,
and L is the distance between the lenses.

The angular magnification of a refracting telescope can be expressed as

(36.25)

where fo and fe are the focal lengths of the objective and eyepiece lenses, respectively.
The angular magnification of a reflecting telescope is given by the same expression
where fo is the focal length of the objective mirror.

m " $
fo
fe

M " $
L
fo

 $ 25 cm
fe %

mmax " 1 &
25 cm

f

1. What is wrong with the caption of the cartoon shown in
Figure Q36.1?

5. Why does a clear stream, such as a creek, always appear to
be shallower than it actually is? By how much is its depth
apparently reduced?

6. Consider the image formed by a thin converging 
lens. Under what conditions is the image (a) inverted, 
(b) upright, (c) real, (d) virtual, (e) larger than the object,
and (f) smaller than the object?

7. Repeat Question 6 for a thin diverging lens.

8. Use the lens makers’ equation to verify the sign of the
focal length of each of the lenses in Figure 36.27.

9. If a solid cylinder of glass or clear plastic is placed above
the words LEAD OXIDE and viewed from above as shown

Q U E S T I O N S

Figure Q36.1 “Most mirrors reverse left and right. This one
reverses top and bottom.”

2. Consider a concave spherical mirror with a real object. Is
the image always inverted? Is the image always real? Give
conditions for your answers.

3. Repeat the preceding question for a convex spherical mirror.

4. Do the equations 1/p & 1/q " 1/f or M " $ q/p apply to
the image formed by a flat mirror? Explain your answer. Figure Q36.9
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in Figure Q36.9, the LEAD appears inverted but the
OXIDE does not. Explain.

10. In Figure 36.28a, assume that the blue object arrow is
replaced by one that is much taller than the lens. How
many rays from the object will strike the lens? How many
principal rays can be drawn in a ray diagram?

11. A zip-lock plastic sandwich bag filled with water can act as
a crude converging lens in air. If the bag is filled with air
and placed under water, is the effective lens converging or
diverging? 

12. Explain why a mirror cannot give rise to chromatic
aberration.

Why do some automobile mirrors have printed on them
the statement “Objects in mirror are closer than they
appear”? (See Fig. P36.19.)

14. Can a converging lens be made to diverge light if it is
placed into a liquid? What If? How about a converging
mirror?

Explain why a fish in a spherical goldfish bowl appears
larger than it really is.

16. Why do some emergency vehicles have the symbol
written on the front?

17. A lens forms an image of an object on a screen. What 
happens to the image if you cover the top half of the lens
with paper?

Lenses used in eyeglasses, whether converging or diverg-
ing, are always designed so that the middle of the lens
curves away from the eye, like the center lenses of Figure
36.27a and b. Why?

19. Which glasses in Figure Q36.19 correct nearsightedness
and which correct farsightedness?

18.

AMBULANCE

15.

13.

22. In a Jules Verne novel, a piece of ice is shaped to form a mag-
nifying lens to focus sunlight to start a fire. Is this possible?

23. The f -number of a camera is the focal length of the lens
divided by its aperture (or diameter). How can the f -number
of the lens be changed? How does changing this number
affect the required exposure time?

24. A solar furnace can be constructed by using a concave
mirror to reflect and focus sunlight into a furnace enclo-
sure. What factors in the design of the reflecting mirror
would guarantee very high temperatures?

25. One method for determining the position of an image,
either real or virtual, is by means of parallax. If a finger or
other object is placed at the position of the image, as
shown in Figure Q36.25, and the finger and image are
viewed simultaneously (the image is viewed through the
lens if it is virtual), the finger and image have the same
parallax; that is, if they are viewed from different positions,
the image will appear to move along with the finger. Use
this method to locate the image formed by a lens. Explain
why the method works.

Figure Q36.19

Finger

Image

Figure Q36.25
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20. A child tries on either his hyperopic grandfather’s or his
myopic brother’s glasses and complains that “everything
looks blurry.” Why do the eyes of a person wearing glasses
not look blurry? (See Figure Q36.19.)

21. Consider a spherical concave mirror, with the object
located to the left of the mirror beyond the focal point.
Using ray diagrams, show that the image moves to the left
as the object approaches the focal point.

26. Figure Q36.26 shows a lithograph by M. C. Escher titled
Hand with Reflection Sphere (Self-Portrait in Spherical Mirror).
Escher had this to say about the work: “The picture

Figure Q36.26
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shows a spherical mirror, resting on a left hand. But as a
print is the reverse of the original drawing on stone, it
was my right hand that you see depicted. (Being left-
handed, I needed my left hand to make the drawing.)
Such a globe reflection collects almost one’s whole
surroundings in one disk-shaped image. The whole
room, four walls, the floor, and the ceiling, everything,
albeit distorted, is compressed into that one small circle.
Your own head, or more exactly the point between your
eyes, is the absolute center. No matter how you turn or
twist yourself, you can’t get out of that central point.
You are immovably the focus, the unshakable core, of
your world.” Comment on the accuracy of Escher’s
description.

27. You can make a corner reflector by placing three flat
mirrors in the corner of a room where the ceiling meets
the walls. Show that no matter where you are in the
room, you can see yourself reflected in the mirrors—
upside down.

28. A converging lens of short focal length can take light di-
verging from a small source and refract it into a beam of
parallel rays. A Fresnel lens, as shown in Figure 36.29, is
used for this purpose in a lighthouse. A concave mirror
can take light diverging from a small source and reflect it
into a beam of parallel rays. Is it possible to make a Fresnel
mirror? Is this an original idea, or has it already been
done? Suggestion: Look at the walls and ceiling of an audi-
torium.

Section 36.1 Images Formed by Flat Mirrors

1. Does your bathroom mirror show you older or younger
than you actually are? Compute an order-of-magnitude
estimate for the age difference, based on data that you
specify.

2. In a church choir loft, two parallel walls are 5.30 m apart.
The singers stand against the north wall. The organist
faces the south wall, sitting 0.800 m away from it. To
enable her to see the choir, a flat mirror 0.600 m wide is
mounted on the south wall, straight in front of her. What
width of the north wall can she see? Suggestion: Draw a top-
view diagram to justify your answer.

Determine the minimum height of a vertical flat mirror in
which a person 5!10. in height can see his or her full
image. (A ray diagram would be helpful.)

4. Two flat mirrors have their reflecting surfaces facing
each other, with the edge of one mirror in contact with
an edge of the other, so that the angle between the
mirrors is %. When an object is placed between the
mirrors, a number of images are formed. In general, if
the angle % is such that n% " 360°, where n is an integer,
the number of images formed is n $ 1. Graphically, find
all the image positions for the case n " 6 when a point
object is between the mirrors (but not on the angle
bisector).

5. A person walks into a room with two flat mirrors on oppo-
site walls, which produce multiple images. When the
person is located 5.00 ft from the mirror on the left wall
and 10.0 ft from the mirror on the right wall, find the
distance from the person to the first three images seen in
the mirror on the left.

6. A periscope (Figure P36.6) is useful for viewing objects
that cannot be seen directly. It finds use in submarines
and in watching golf matches or parades from behind a
crowd of people. Suppose that the object is a distance

3.

p1 from the upper mirror and that the two flat mirrors
are separated by a distance h. (a) What is the distance of
the final image from the lower mirror? (b) Is the final
image real or virtual? (c) Is it upright or inverted?
(d) What is its magnification? (e) Does it appear to be
left–right reversed? 

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide

= coached solution with hints available at http://www.pse6.com = computer useful in solving problem

= paired numerical and symbolic problems

P R O B L E M S

h

Figure P36.6

Section 36.2 Images Formed by Spherical Mirrors

7. A concave spherical mirror has a radius of curvature of
20.0 cm. Find the location of the image for object
distances of (a) 40.0 cm, (b) 20.0 cm, and (c) 10.0 cm. For
each case, state whether the image is real or virtual and
upright or inverted. Find the magnification in each case.
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8. At an intersection of hospital hallways, a convex mirror is
mounted high on a wall to help people avoid collisions.
The mirror has a radius of curvature of 0.550 m. Locate
and describe the image of a patient 10.0 m from the
mirror. Determine the magnification.

A spherical convex mirror has a radius of curvature
with a magnitude of 40.0 cm. Determine the position of
the virtual image and the magnification for object
distances of (a) 30.0 cm and (b) 60.0 cm. (c) Are the
images upright or inverted?

10. A large church has a niche in one wall. On the floor plan
it appears as a semicircular indentation of radius 2.50 m. A
worshiper stands on the center line of the niche, 2.00 m
out from its deepest point, and whispers a prayer. Where is
the sound concentrated after reflection from the back wall
of the niche?

A concave mirror has a radius of curvature of 60.0 cm.
Calculate the image position and magnification of an object
placed in front of the mirror at distances of (a) 90.0 cm and
(b) 20.0 cm. (c) Draw ray diagrams to obtain the image
characteristics in each case.

12. A concave mirror has a focal length of 40.0 cm. Determine
the object position for which the resulting image is upright
and four times the size of the object.

13. A certain Christmas tree ornament is a silver sphere having
a diameter of 8.50 cm. Determine an object location for
which the size of the reflected image is three-fourths the
size of the object. Use a principal-ray diagram to arrive at a
description of the image.

14. (a) A concave mirror forms an inverted image four times
larger than the object. Find the focal length of the mirror,
assuming the distance between object and image is 0.600 m.
(b) A convex mirror forms a virtual image half the size
of the object. Assuming the distance between image and
object is 20.0 cm, determine the radius of curvature of the
mirror.

15. To fit a contact lens to a patient’s eye, a keratometer can be
used to measure the curvature of the front surface of the
eye, the cornea. This instrument places an illuminated
object of known size at a known distance p from the
cornea. The cornea reflects some light from the object,
forming an image of the object. The magnification M of
the image is measured by using a small viewing telescope
that allows comparison of the image formed by the
cornea with a second calibrated image projected into the
field of view by a prism arrangement. Determine the ra-
dius of curvature of the cornea for the case p " 30.0 cm
and M " 0.013 0. 

16. An object 10.0 cm tall is placed at the zero mark of a
meter stick. A spherical mirror located at some point on
the meter stick creates an image of the object that is
upright, 4.00 cm tall, and located at the 42.0-cm mark
of the meter stick. (a) Is the mirror convex or concave?
(b) Where is the mirror? (c) What is the mirror’s focal
length? 

A spherical mirror is to be used to form, on a screen located
5.00 m from the object, an image five times the size of the
object. (a) Describe the type of mirror required. (b) Where
should the mirror be positioned relative to the object?

17.

11.

9.

18. A dedicated sports car enthusiast polishes the inside and
outside surfaces of a hubcap that is a section of a sphere.
When she looks into one side of the hubcap, she sees an
image of her face 30.0 cm in back of the hubcap. She then
flips the hubcap over and sees another image of her face
10.0 cm in back of the hubcap. (a) How far is her face
from the hubcap? (b) What is the radius of curvature of
the hubcap?

19. You unconsciously estimate the distance to an object
from the angle it subtends in your field of view. This
angle # in radians is related to the linear height of the
object h and to the distance d by # " h/d. Assume that
you are driving a car and another car, 1.50 m high, is
24.0 m behind you. (a) Suppose your car has a flat
passenger-side rearview mirror, 1.55 m from your eyes.
How far from your eyes is the image of the car following
you? (b) What angle does the image subtend in your
field of view? (c) What If? Suppose instead that your car
has a convex rearview mirror with a radius of curvature
of magnitude 2.00 m (Fig. P36.19). How far from your
eyes is the image of the car behind you? (d) What angle
does the image subtend at your eyes? (e) Based on its
angular size, how far away does the following car appear
to be?

Figure P36.19

20. Review Problem. A ball is dropped at t " 0 from rest 3.00 m
directly above the vertex of a concave mirror that has a
radius of curvature of 1.00 m and lies in a horizontal plane.
(a) Describe the motion of the ball’s image in the mirror.
(b) At what time do the ball and its image coincide?
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Section 36.3 Images Formed by Refraction

A cubical block of ice 50.0 cm on a side is placed on a level
floor over a speck of dust. Find the location of the image
of the speck as viewed from above. The index of refraction
of ice is 1.309.

22. A flint glass plate (n " 1.66) rests on the bottom of an
aquarium tank. The plate is 8.00 cm thick (vertical dimen-
sion) and is covered with a layer of water (n " 1.33)
12.0 cm deep. Calculate the apparent thickness of the
plate as viewed from straight above the water. 

A glass sphere (n " 1.50) with a radius of 15.0 cm has a
tiny air bubble 5.00 cm above its center. The sphere is
viewed looking down along the extended radius contain-
ing the bubble. What is the apparent depth of the bubble
below the surface of the sphere?

24. A simple model of the human eye ignores its lens entirely.
Most of what the eye does to light happens at the outer
surface of the transparent cornea. Assume that this surface
has a radius of curvature of 6.00 mm, and assume that the
eyeball contains just one fluid with a refractive index of
1.40. Prove that a very distant object will be imaged on the
retina, 21.0 mm behind the cornea. Describe the image.

25. One end of a long glass rod (n " 1.50) is formed into a
convex surface with a radius of curvature of 6.00 cm. An
object is located in air along the axis of the rod. Find the
image positions corresponding to object distances of
(a) 20.0 cm, (b) 10.0 cm, and (c) 3.00 cm from the end of
the rod.

26. A transparent sphere of unknown composition is observed
to form an image of the Sun on the surface of the sphere
opposite the Sun. What is the refractive index of the
sphere material?

27. A goldfish is swimming at 2.00 cm/s toward the front wall
of a rectangular aquarium. What is the apparent speed of
the fish measured by an observer looking in from outside
the front wall of the tank? The index of refraction of water
is 1.33.

Section 36.4 Thin Lenses

28. A contact lens is made of plastic with an index of refrac-
tion of 1.50. The lens has an outer radius of curvature of
& 2.00 cm and an inner radius of curvature of & 2.50 cm.
What is the focal length of the lens?

The left face of a biconvex lens has a radius of curva-
ture of magnitude 12.0 cm, and the right face has a radius
of curvature of magnitude 18.0 cm. The index of refrac-
tion of the glass is 1.44. (a) Calculate the focal length of
the lens. (b) What If? Calculate the focal length the lens
has after is turned around to interchange the radii of cur-
vature of the two faces.

30. A converging lens has a focal length of 20.0 cm. Locate the
image for object distances of (a) 40.0 cm, (b) 20.0 cm, and
(c) 10.0 cm. For each case, state whether the image is real
or virtual and upright or inverted. Find the magnification
in each case.

31. A thin lens has a focal length of 25.0 cm. Locate and
describe the image when the object is placed (a) 26.0 cm
and (b) 24.0 cm in front of the lens. 

29.

23.

21.

32. An object located 32.0 cm in front of a lens forms an
image on a screen 8.00 cm behind the lens. (a) Find the
focal length of the lens. (b) Determine the magnification.
(c) Is the lens converging or diverging?

The nickel’s image in Figure P36.33 has twice the
diameter of the nickel and is 2.84 cm from the lens. Deter-
mine the focal length of the lens.

33.

Figure P36.33

34. A person looks at a gem with a jeweler’s loupe—a
converging lens that has a focal length of 12.5 cm. The
loupe forms a virtual image 30.0 cm from the lens.
(a) Determine the magnification. Is the image upright
or inverted? (b) Construct a ray diagram for this
arrangement.

35. Suppose an object has thickness dp so that it extends from
object distance p to p & dp. Prove that the thickness dq of
its image is given by ($ q2/p2)dp, so that the longitudinal
magnification dq/dp " $ M 2, where M is the lateral
magnification.

36. The projection lens in a certain slide projector is a single
thin lens. A slide 24.0 mm high is to be projected so that
its image fills a screen 1.80 m high. The slide-to-screen
distance is 3.00 m. (a) Determine the focal length of the
projection lens. (b) How far from the slide should the lens
of the projector be placed in order to form the image on
the screen?

An object is located 20.0 cm to the left of a diverging lens
having a focal length f " $ 32.0 cm. Determine (a) the
location and (b) the magnification of the image. 
(c) Construct a ray diagram for this arrangement.

38. An antelope is at a distance of 20.0 m from a converging
lens of focal length 30.0 cm. The lens forms an image of
the animal. If the antelope runs away from the lens at a
speed of 5.00 m/s, how fast does the image move? Does
the image move toward or away from the lens?

39. In some types of optical spectroscopy, such as photolumi-
nescence and Raman spectroscopy, a laser beam exits from
a pupil and is focused on a sample to stimulate electro-
magnetic radiation from the sample. The focusing lens
usually has an antireflective coating preventing any light
loss. Assume a 100-mW laser is located 4.80 m from the
lens, which has a focal length of 7.00 cm. (a) How far from
the lens should the sample be located so that an image of
the laser exit pupil is formed on the surface of the sample?
(b) If the diameter of the laser exit pupil is 5.00 mm, what

37.
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is the diameter of the light spot on the sample? (c) What is
the light intensity at the spot?

40. Figure P36.40 shows a thin glass (n " 1.50) converging
lens for which the radii of curvature are R1 " 15.0 cm and
R2 " $ 12.0 cm. To the left of the lens is a cube having a
face area of 100 cm2. The base of the cube is on the axis of
the lens, and the right face is 20.0 cm to the left of the
lens. (a) Determine the focal length of the lens. (b) Draw
the image of the square face formed by the lens. What type
of geometric figure is this? (c) Determine the area of the
image.

45. Two rays traveling parallel to the principal axis strike a
large plano-convex lens having a refractive index of 1.60
(Fig. P36.45). If the convex face is spherical, a ray near the
edge does not pass through the focal point (spherical
aberration occurs). Assume this face has a radius of
curvature of 20.0 cm and the two rays are at distances
h1 " 0.500 cm and h2 " 12.0 cm from the principal axis.
Find the difference -x in the positions where each crosses
the principal axis.

20.0 cm

F F

Figure P36.40

C

R ∆x

Figure P36.45

41. An object is at a distance d to the left of a flat screen. A
converging lens with focal length f * d/4 is placed
between object and screen. (a) Show that two lens posi-
tions exist that form an image on the screen, and deter-
mine how far these positions are from the object. (b) How
do the two images differ from each other?

42. Figure 36.36 diagrams a cross section of a camera. It has a
single lens of focal length 65.0 mm, which is to form an
image on the film at the back of the camera. Suppose the
position of the lens has been adjusted to focus the image
of a distant object. How far and in what direction must the
lens be moved to form a sharp image of an object that is
2.00 m away?

43. The South American capybara is the largest rodent on
Earth; its body can be 1.20 m long. The smallest rodent is
the pygmy mouse found in Texas, with an average body
length of 3.60 cm. Assume that a pygmy mouse is observed
by looking through a lens placed 20.0 cm from the mouse.
The whole image of the mouse is the size of a capybara.
Then the lens is moved a certain distance along its axis,
and the image of the mouse is the same size as before!
How far was the lens moved?

Section 36.5 Lens Aberrations

44. The magnitudes of the radii of curvature are 32.5 cm and
42.5 cm for the two faces of a biconcave lens. The glass has
index of refraction 1.53 for violet light and 1.51 for red
light. For a very distant object, locate and describe (a) the
image formed by violet light, and (b) the image formed by
red light.

Section 36.6 The Camera

46. A camera is being used with a correct exposure at f/4 and
a shutter speed of (1/16) s. In order to photograph a
rapidly moving subject, the shutter speed is changed to
(1/128) s. Find the new f -number setting needed to
maintain satisfactory exposure.

Section 36.7 The Eye

A nearsighted person cannot see objects clearly beyond
25.0 cm (her far point). If she has no astigmatism and
contact lenses are prescribed for her, what power and type
of lens are required to correct her vision?

48. The accommodation limits for Nearsighted Nick’s eyes are
18.0 cm and 80.0 cm. When he wears his glasses, he can
see faraway objects clearly. At what minimum distance is he
able to see objects clearly?

49. A person sees clearly when he wears eyeglasses that have a
power of $ 4.00 diopters and sit 2.00 cm in front of his
eyes. If the person wants to switch to contact lenses, which
are placed directly on the eyes, what lens power should be
prescribed?

Section 36.8 The Simple Magnifier

Section 36.9 The Compound Microscope

Section 36.10 The Telescope

50. A lens that has a focal length of 5.00 cm is used as a
magnifying glass. (a) To obtain maximum magnification,
where should the object be placed? (b) What is the
magnification?

47.
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51. The distance between eyepiece and objective lens in a
certain compound microscope is 23.0 cm. The focal length
of the eyepiece is 2.50 cm, and that of the objective
is 0.400 cm. What is the overall magnification of the
microscope?

52. The desired overall magnification of a compound micro-
scope is 140/. The objective alone produces a lateral mag-
nification of 12.0/. Determine the required focal length
of the eyepiece.

The Yerkes refracting telescope has a 1.00-m diameter
objective lens of focal length 20.0 m. Assume it is used with
an eyepiece of focal length 2.50 cm. (a) Determine the
magnification of the planet Mars as seen through this tele-
scope. (b) Are the Martian polar caps right side up or
upside down?

54. Astronomers often take photographs with the objective
lens or mirror of a telescope alone, without an eyepiece.
(a) Show that the image size h! for this telescope is given
by h! " f h/( f $ p) where h is the object size, f is the objec-
tive focal length, and p is the object distance. (b) What If?
Simplify the expression in part (a) for the case in which
the object distance is much greater than objective focal
length. (c) The “wingspan” of the International Space
Station is 108.6 m, the overall width of its solar panel con-
figuration. Find the width of the image formed by a tele-
scope objective of focal length 4.00 m when the station is
orbiting at an altitude of 407 km.

55. Galileo devised a simple terrestrial telescope that produces
an upright image. It consists of a converging objective lens
and a diverging eyepiece at opposite ends of the telescope
tube. For distant objects, the tube length is equal to the
objective focal length minus the absolute value of the
eyepiece focal length. (a) Does the user of the telescope
see a real or virtual image? (b) Where is the final image?
(c) If a telescope is to be constructed with a tube of length
10.0 cm and a magnification of 3.00, what are the focal
lengths of the objective and eyepiece?

56. A certain telescope has an objective mirror with an aper-
ture diameter of 200 mm and a focal length of 2 000 mm.
It captures the image of a nebula on photographic film at
its prime focus with an exposure time of 1.50 min. To
produce the same light energy per unit area on the film,
what is the required exposure time to photograph the
same nebula with a smaller telescope, which has an
objective with a diameter of 60.0 mm and a focal length of
900 mm?

Additional Problems

57. The distance between an object and its upright image is
20.0 cm. If the magnification is 0.500, what is the focal
length of the lens that is being used to form the image?

58. The distance between an object and its upright image is d.
If the magnification is M, what is the focal length of the
lens that is being used to form the image?

59. Your friend needs glasses with diverging lenses of focal
length $ 65.0 cm for both eyes. You tell him he looks good

53.

when he doesn’t squint, but he is worried about how thick
the lenses will be. Assuming the radius of curvature of the
first surface is R1 " 50.0 cm and the high-index plastic has
a refractive index of 1.66, (a) find the required radius of
curvature of the second surface. (b) Assume the lens is
ground from a disk 4.00 cm in diameter and 0.100 cm
thick at the center. Find the thickness of the plastic at the
edge of the lens, measured parallel to the axis. Suggestion:
Draw a large cross-sectional diagram.

60. A cylindrical rod of glass with index of refraction 1.50 is
immersed in water with index 1.33. The diameter of the
rod is 9.00 cm. The outer part of each end of the rod has
been ground away to form each end into a hemisphere of
radius 4.50 cm. The central portion of the rod with
straight sides is 75.0 cm long. An object is situated in the
water, on the axis of the rod, at a distance of 100 cm from
the vertex of the nearer hemisphere. (a) Find the location
of the final image formed by refraction at both surfaces.
(b) Is the final image real or virtual? Upright or inverted?
Enlarged or diminished?

61. A zoom lens system is a combination of lenses that produces
a variable magnification while maintaining fixed object
and image positions. The magnification is varied by
moving one or more lenses along the axis. While multiple
lenses are used in practice to obtain high-quality images,
the effect of zooming in on an object can be demonstrated
with a simple two-lens system. An object, two converging
lenses, and a screen are mounted on an optical bench.
The first lens, which is to the right of the object, has a
focal length of 5.00 cm, and the second lens, which is to
the right of the first lens, has a focal length of 10.0 cm.
The screen is to the right of the second lens. Initially, an
object is situated at a distance of 7.50 cm to the left of the
first lens, and the image formed on the screen has a mag-
nification of & 1.00. (a) Find the distance between the
object and the screen. (b) Both lenses are now moved
along their common axis, while the object and the screen
maintain fixed positions, until the image formed on the
screen has a magnification of & 3.00. Find the displace-
ment of each lens from its initial position in (a). Can the
lenses be displaced in more than one way?

62. The object in Figure P36.62 is midway between the lens
and the mirror. The mirror’s radius of curvature is
20.0 cm, and the lens has a focal length of $ 16.7 cm. Con-
sidering only the light that leaves the object and travels
first toward the mirror, locate the final image formed by
this system. Is this image real or virtual? Is it upright or
inverted? What is the overall magnification?

Lens Object
Mirror

25.0 cm

Figure P36.62
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63. An object placed 10.0 cm from a concave spherical mirror
produces a real image 8.00 cm from the mirror. If the object
is moved to a new position 20.0 cm from the mirror, what is
the position of the image? Is the latter image real or virtual?

64. In many applications it is necessary to expand or to
decrease the diameter of a beam of parallel rays of light.
This change can be made by using a converging lens and a
diverging lens in combination. Suppose you have a con-
verging lens of focal length 21.0 cm and a diverging lens of
focal length $ 12.0 cm. How can you arrange these lenses
to increase the diameter of a beam of parallel rays? By
what factor will the diameter increase?

A parallel beam of light enters a glass hemisphere
perpendicular to the flat face, as shown in Figure P36.65.
The magnitude of the radius is 6.00 cm, and the index of
refraction is 1.560. Determine the point at which the beam
is focused. (Assume paraxial rays.)

65.

and the other is inverted. Both images are 1.50 times larger
than the object. The lens has a focal length of 10.0 cm. The
lens and mirror are separated by 40.0 cm. Determine the
focal length of the mirror. Do not assume that the figure is
drawn to scale. 

The disk of the Sun subtends an angle of 0.533° at the
Earth. What are the position and diameter of the solar
image formed by a concave spherical mirror with a radius
of curvature of 3.00 m?

70. Assume the intensity of sunlight is 1.00 kW/m2 at a particu-
lar location. A highly reflecting concave mirror is to be
pointed toward the Sun to produce a power of at least 350 W
at the image. (a) Find the required radius Ra of the circular
face area of the mirror. (b) Now suppose the light intensity is
to be at least 120 kW/m2 at the image. Find the required
relationship between Ra and the radius of curvature R of the
mirror. The disk of the Sun subtends an angle of 0.533° at
the Earth.

In a darkened room, a burning candle is placed 1.50 m
from a white wall. A lens is placed between candle and wall
at a location that causes a larger, inverted image to form
on the wall. When the lens is moved 90.0 cm toward the
wall, another image of the candle is formed. Find (a) the
two object distances that produce the specified images and
(b) the focal length of the lens. (c) Characterize the
second image.

72. Figure P36.72 shows a thin converging lens for which the
radii of curvature are R 1 " 9.00 cm and R 2 " $ 11.0 cm.
The lens is in front of a concave spherical mirror with
the radius of curvature R " 8.00 cm. (a) Assume its
focal points F1 and F2 are 5.00 cm from the center of
the lens. Determine its index of refraction. (b) The lens
and mirror are 20.0 cm apart, and an object is placed
8.00 cm to the left of the lens. Determine the position of
the final image and its magnification as seen by the eye
in the figure. (c) Is the final image inverted or upright?
Explain.

71.

69.

n

R

Air

I

q

Figure P36.65

66. Review problem. A spherical lightbulb of diameter 3.20 cm
radiates light equally in all directions, with power 4.50 W.
(a) Find the light intensity at the surface of the bulb.
(b) Find the light intensity 7.20 m away from the center of
the bulb. (c) At this 7.20-m distance a lens is set up with its
axis pointing toward the bulb. The lens has a circular face
with a diameter 15.0 cm and has a focal length of 35.0 cm.
Find the diameter of the image of the bulb. (d) Find the
light intensity at the image.

An object is placed 12.0 cm to the left of a diverging lens
of focal length $ 6.00 cm. A converging lens of focal
length 12.0 cm is placed a distance d to the right of the di-
verging lens. Find the distance d so that the final image is
at infinity. Draw a ray diagram for this case.

68. An observer to the right of the mirror–lens combination
shown in Figure P36.68 sees two real images that are the
same size and in the same location. One image is upright

67.

Object

Mirror Lens
Images

Figure P36.68

F2

C

F1

Figure P36.72

73. A compound microscope has an objective of focal length
0.300 cm and an eyepiece of focal length 2.50 cm. If
an object is 3.40 mm from the objective, what is the
magnification? (Suggestion: Use the lens equation for the
objective.)

74. Two converging lenses having focal lengths of 10.0 cm
and 20.0 cm are located 50.0 cm apart, as shown in
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Figure P36.74. The final image is to be located between
the lenses at the position indicated. (a) How far to the
left of the first lens should the object be? (b) What is the
overall magnification? (c) Is the final image upright or
inverted?

P36.76). If a strawberry is placed on the lower mirror, an
image of the strawberry is formed at the small opening at
the center of the top mirror. Show that the final image is
formed at that location and describe its characteristics.
(Note: A very startling effect is to shine a flashlight beam
on this image. Even at a glancing angle, the incoming light
beam is seemingly reflected from the image! Do you
understand why?)

77. An object 2.00 cm high is placed 40.0 cm to the left of a
converging lens having a focal length of 30.0 cm. A
diverging lens with a focal length of $ 20.0 cm is placed
110 cm to the right of the converging lens. (a) Deter-
mine the position and magnification of the final image.
(b) Is the image upright or inverted? (c) What If?
Repeat parts (a) and (b) for the case where the second
lens is a converging lens having a focal length of
& 20.0 cm.

78. Two lenses made of kinds of glass having different refractive
indices n1 and n2 are cemented together to form what is
called an optical doublet. Optical doublets are often used to
correct chromatic aberrations in optical devices. The first
lens of a doublet has one flat side and one concave side of
radius of curvature R. The second lens has two convex sides
of radius of curvature R. Show that the doublet can be
modeled as a single thin lens with a focal length described by

Answers to Quick Quizzes

36.1 At C. A ray traced from the stone to the mirror and then
to observer 2 looks like this:

1
f

"
2n2 $ n1 $ 1

R

f2 (20.0 cm)f1 (10.0 cm)

Final image
Object

p 31.0 cm
50.0 cm

Figure P36.74

Strawberry

Small hole

Figure P36.76
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75. A cataract-impaired lens in an eye may be surgically
removed and replaced by a manufactured lens. The focal
length required for the new lens is determined by
the lens-to-retina distance, which is measured by a sonar-
like device, and by the requirement that the implant
provide for correct distant vision. (a) Assuming the
distance from lens to retina is 22.4 mm, calculate the
power of the implanted lens in diopters. (b) Because no
accommodation occurs and the implant allows for
correct distant vision, a corrective lens for close work
or reading must be used. Assume a reading distance of
33.0 cm and calculate the power of the lens in the
reading glasses.

76. A floating strawberry illusion is achieved with two para-
bolic mirrors, each having a focal length 7.50 cm, facing
each other so that their centers are 7.50 cm apart (Fig.

C

2 1

36.2 False. The water spots are 2 m away from you and your
image is 4 m away. You cannot focus your eyes on both at
the same time.

36.3 (b). A concave mirror will focus the light from a large
area of the mirror onto a small area of the paper, result-
ing in a very high power input to the paper.
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36.6 (a). No matter where O is, the rays refract into the air
away from the normal and form a virtual image between
O and the surface.

36.7 (b). Because the flat surfaces of the plane have infinite
radii of curvature, Equation 36.15 indicates that the
focal length is also infinite. Parallel rays striking
the plane focus at infinity, which means that they remain
parallel after passing through the glass.

36.8 (b). If there is a curve on the front surface, the refrac-
tion will differ at that surface when the mask is worn in
air and water. In order for there to be no difference in
refraction (for normal incidence), the front of the mask
should be flat.

36.9 (a). Because the light reflecting from a mirror does not
enter the material of the mirror, there is no opportunity
for the dispersion of the material to cause chromatic
aberration.

36.10 (a). If the object is brought closer to the lens, the image
moves farther away from the lens, behind the plane of
the film. In order to bring the image back up to the
film, the lens is moved toward the object and away from
the film.

36.11 (c). The Sun’s rays must converge onto the paper. A far-
sighted person wears converging lenses.

n1 < n2

I

n2

R

O

q
p

n1

36.4 (b). A convex mirror always forms an image with a mag-
nification less than one, so the mirror must be concave.
In a concave mirror, only virtual images are upright.
This particular photograph is of the Hubble Space
Telescope primary mirror.

36.5 (d). When O is far away, the rays refract into the mater-
ial of index n2 and converge to form a real image as in
Figure 36.18. For certain combinations of R and n2 as O
moves very close to the refracting surface, the incident
angle of the rays increases so much that rays are no
longer refracted back toward the principal axis. This 
results in a virtual image as shown below:
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! The colors in many of a hummingbird’s feathers are not due to pigment. The iridescence
that makes the brilliant colors that often appear on the throat and belly is due to an
interference effect caused by structures in the feathers. The colors will vary with the viewing
angle. (RO-MA/Index Stock Imagery)
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In the preceding chapter, we used light rays to examine what happens when light
passes through a lens or reflects from a mirror. This discussion completed our study of
geometric optics. Here in Chapter 37 and in the next chapter, we are concerned with
wave optics or physical optics, the study of interference, diffraction, and polarization of
light. These phenomena cannot be adequately explained with the ray optics used in
Chapters 35 and 36. We now learn how treating light as waves rather than as rays leads
to a satisfying description of such phenomena.

37.1 Conditions for Interference

In Chapter 18, we found that the superposition of two mechanical waves can be
constructive or destructive. In constructive interference, the amplitude of the resultant
wave at a given position or time is greater than that of either individual wave, whereas
in destructive interference, the resultant amplitude is less than that of either individual
wave. Light waves also interfere with each other. Fundamentally, all interference associ-
ated with light waves arises when the electromagnetic fields that constitute the individ-
ual waves combine.

If two lightbulbs are placed side by side, no interference effects are observed
because the light waves from one bulb are emitted independently of those from the
other bulb. The emissions from the two lightbulbs do not maintain a constant phase
relationship with each other over time. Light waves from an ordinary source such as a
lightbulb undergo random phase changes in time intervals less than a nanosecond.
Therefore, the conditions for constructive interference, destructive interference, or
some intermediate state are maintained only for such short time intervals. Because the
eye cannot follow such rapid changes, no interference effects are observed. Such light
sources are said to be incoherent.

In order to observe interference in light waves, the following conditions must be met:

• The sources must be coherent—that is, they must maintain a constant phase
with respect to each other.

• The sources should be monochromatic—that is, of a single wavelength.

As an example, single-frequency sound waves emitted by two side-by-side loudspeak-
ers driven by a single amplifier can interfere with each other because the two speakers
are coherent—that is, they respond to the amplifier in the same way at the same time.

37.2 Young’s Double-Slit Experiment

A common method for producing two coherent light sources is to use a monochro-
matic source to illuminate a barrier containing two small openings (usually in the
shape of slits). The light emerging from the two slits is coherent because a single

As with the hummingbird feathers
shown in the opening photograph,
the bright colors of peacock feathers
are also due to interference. In both
types of birds, structures in the
feathers split and recombine visible
light so that interference occurs for
certain colors.

Conditions for interference
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source produces the original light beam and the two slits serve only to separate the
original beam into two parts (which, after all, is what is done to the sound signal from
the side-by-side loudspeakers at the end of the preceding section). Any random change
in the light emitted by the source occurs in both beams at the same time, and as a 
result interference effects can be observed when the light from the two slits arrives at a
viewing screen.

If the light traveled only in its original direction after passing through the slits, as
shown in Figure 37.1a, the waves would not overlap and no interference pattern would
be seen. Instead, as we have discussed in our treatment of Huygens’s principle (Section
35.6), the waves spread out from the slits as shown in Figure 37.1b. In other words, the
light deviates from a straight-line path and enters the region that would otherwise be
shadowed. As noted in Section 35.3, this divergence of light from its initial line of
travel is called diffraction.

Interference in light waves from two sources was first demonstrated by Thomas
Young in 1801. A schematic diagram of the apparatus that Young used is shown in
Figure 37.2a. Plane light waves arrive at a barrier that contains two parallel slits S1 and
S2. These two slits serve as a pair of coherent light sources because waves emerging
from them originate from the same wave front and therefore maintain a constant
phase relationship. The light from S1 and S2 produces on a viewing screen a visible
pattern of bright and dark parallel bands called fringes (Fig. 37.2b). When the light
from S1 and that from S2 both arrive at a point on the screen such that constructive
interference occurs at that location, a bright fringe appears. When the light from the
two slits combines destructively at any location on the screen, a dark fringe results.
Figure 37.3 is a photograph of an interference pattern produced by two coherent
vibrating sources in a water tank.

Figure 37.4 shows some of the ways in which two waves can combine at the
screen. In Figure 37.4a, the two waves, which leave the two slits in phase, strike the
screen at the central point P. Because both waves travel the same distance, they
arrive at P in phase. As a result, constructive interference occurs at this location,
and a bright fringe is observed. In Figure 37.4b, the two waves also start in phase,
but in this case the upper wave has to travel one wavelength farther than the lower

Figure 37.1 (a) If light waves did
not spread out after passing through
the slits, no interference would
occur. (b) The light waves from the
two slits overlap as they spread out,
filling what we expect to be
shadowed regions with light and
producing interference fringes on a
screen placed to the right of the slits.

At a beach in Tel Aviv, Israel, plane water waves pass through two openings in a
breakwall. Notice the diffraction effect—the waves exit the openings with circular wave
fronts, as in Figure 37.1b. Notice also how the beach has been shaped by the circular
wave fronts.
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! PITFALL PREVENTION 
37.1 Interference Patterns

Are Not Standing
Waves

The interference pattern in
Figure 37.2b shows bright and
dark regions that appear similar
to the antinodes and nodes of a
standing-wave pattern on a string
(Section 18.3). While both
patterns depend on the principle
of superposition, here are two
major differences: (1) waves on a
string propagate in only one
dimension while the light-wave
interference pattern exists in
three dimensions; (2) the
standing-wave pattern represents
no net energy flow, while there is
a net energy flow from the slits to
the screen in an interference
pattern.
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wave to reach point Q . Because the upper wave falls behind the lower one by exactly
one wavelength, they still arrive in phase at Q , and so a second bright fringe appears
at this location. At point R in Figure 37.4c, however, between points P and Q , the
upper wave has fallen half a wavelength behind the lower wave. This means that
a trough of the lower wave overlaps a crest of the upper wave; this gives rise to
destructive interference at point R . For this reason, a dark fringe is observed at
this location.

S1

S2

Barrier

Viewing
screen

max

min

max

min

max

min

max

min

max

(a) (b)

Active Figure 37.2 (a) Schematic diagram of Young’s double-slit experiment. Slits S1
and S2 behave as coherent sources of light waves that produce an interference pattern
on the viewing screen (drawing not to scale). (b) An enlargement of the center of a
fringe pattern formed on the viewing screen.

At the Active Figures link
at http://www.pse6.com, you
can adjust the slit separation
and the wavelength of the light
to see the effect on the
interference pattern.

A

B

Figure 37.3 An interference
pattern involving water waves is
produced by two vibrating
sources at the water’s surface. The
pattern is analogous to that
observed in Young’s double-slit
experiment. Note the regions of
constructive (A) and destructive
(B) interference.
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Bright
fringe

S1

S2

S1

S2

Slits P P P

R

Q

 Viewing screen

Q

S2

S1

Figure 37.4 (a) Constructive interference occurs at point P when the waves combine.
(b) Constructive interference also occurs at point Q . (c) Destructive interference
occurs at R when the two waves combine because the upper wave falls half a wavelength
behind the lower wave. (All figures not to scale.)
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We can describe Young’s experiment quantitatively with the help of Figure 37.5. The
viewing screen is located a perpendicular distance L from the barrier containing two slits,
S1 and S2. These slits are separated by a distance d, and the source is monochromatic. To
reach any arbitrary point P in the upper half of the screen, a wave from the lower slit must
travel farther than a wave from the upper slit by a distance d sin !. This distance is called
the path difference " (lowercase Greek delta). If we assume that r1 and r2 are parallel,
which is approximately true if L is much greater than d, then " is given by

" # r 2 $ r1 # d sin! (37.1)

The value of " determines whether the two waves are in phase when they arrive at
point P. If " is either zero or some integer multiple of the wavelength, then the two
waves are in phase at point P and constructive interference results. Therefore, the
condition for bright fringes, or constructive interference, at point P is

(37.2)

The number m is called the order number. For constructive interference, the order
number is the same as the number of wavelengths that represents the path difference
between the waves from the two slits. The central bright fringe at ! # 0 is called the
zeroth-order maximum. The first maximum on either side, where m # %1, is called the
first-order maximum, and so forth.

When " is an odd multiple of &/2, the two waves arriving at point P are 180° out of
phase and give rise to destructive interference. Therefore, the condition for dark
fringes, or destructive interference, at point P is

(37.3)

It is useful to obtain expressions for the positions along the screen of the bright
and dark fringes measured vertically from O to P. In addition to our assumption that
L '' d , we assume d '' &. These can be valid assumptions because in practice L is
often on the order of 1 m, d a fraction of a millimeter, and & a fraction of a
micrometer for visible light. Under these conditions, ! is small; thus, we can use the
small angle approximation sin! ! tan!. Then, from triangle OPQ in Figure 37.5a,

d sin!dark # (m ( 1
2)&  (m # 0, %1, %2,  ) ) ))

" # d sin! bright # m &  (m # 0, %1, %2,  ) ) ))
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(b)

r2 – r1 = d sin

S1

S2

θ
d

r1

r2

(a)

d

S1

S2

Q

L
Viewing screen

θ

θ

P

O

δ

y

r1

r2

θ

Figure 37.5 (a) Geometric construction for describing Young’s double-slit experiment
(not to scale). (b) When we assume that r1 is parallel to r2, the path difference between
the two rays is r2 $ r1 # d sin !. For this approximation to be valid, it is essential that
L '' d.

Path difference

Conditions for constructive
interference

Conditions for destructive
interference
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! PITFALL PREVENTION 
37.3 It May Not Be True

That L !! d
Equations 37.2, 37.3, 37.5, and
37.6 were developed under the
assumption that L '' d. This is a
very common situation, but you
are likely to encounter some situ-
ations in which this assumption is
not valid. In those cases, the geo-
metric construction will be more
complicated, but the general
approach outlined here will be
similar.

! PITFALL PREVENTION 
37.2 It May Not Be True

That ! Is Small
The approximation sin! ! tan!
is true to three-digit precision
only for angles less than about 4°.
If you are considering fringes
that are far removed from the
central fringe, tan! # y/L is still
true, but the small-angle approxi-
mation may not be valid. In this
case, Equations 37.5 and 37.6
cannot be used. These problems
can be solved, but the geometry
is not as simple.

A viewing screen is separated from a double-slit source by
1.2 m. The distance between the two slits is 0.030 mm. The
second-order bright fringe (m # 2) is 4.5 cm from the
center line.

(A) Determine the wavelength of the light.

Solution We can use Equation 37.5, with m # 2, ybright #
4.5 * 10$2 m, L # 1.2 m, and d # 3.0 * 10$5 m:

which is in the green range of visible light.

560 nm# 5.6 * 10$7 m #

& #
ybrightd

mL
#

(4.5 * 10$2 m)(3.0 * 10$5 m)
2(1.2 m)

(B) Calculate the distance between adjacent bright fringes.

Solution From Equation 37.5 and the results of part (A),
we obtain

2.2 cm# 2.2 * 10$2 m #

#
&L
d

#
(5.6 * 10$7 m)(1.2 m)

3.0 * 10$5 m

ym(1 $ ym #
&L
d

  (m ( 1) $
&L
d

  m

Example 37.1 Measuring the Wavelength of a Light Source Interactive

we see that

y # L tan! ! L sin! (37.4)

Solving Equation 37.2 for sin! and substituting the result into Equation 37.4, we
see that the positions of the bright fringes measured from O are given by the
expression

(37.5)

Using Equations 37.3 and 37.4, we find that the dark fringes are located at

(37.6)

As we demonstrate in Example 37.1, Young’s double-slit experiment provides a
method for measuring the wavelength of light. In fact, Young used this technique to do
just that. Additionally, his experiment gave the wave model of light a great deal of cred-
ibility. It was inconceivable that particles of light coming through the slits could cancel
each other in a way that would explain the dark fringes.

y dark #
&L
d

 (m ( 1
2)  (m # 0, %1, %2,  ) ) ))

y bright #
&L
d

 m  (m # 0, %1, %2,  ) ) ))

Quick Quiz 37.1 If you were to blow smoke into the space between the
barrier and the viewing screen of Figure 37.5a, the smoke would show (a) no evidence
of interference between the barrier and the screen (b) evidence of interference every-
where between the barrier and the screen.

Quick Quiz 37.2 In a two-slit interference pattern projected on a screen, the
fringes are equally spaced on the screen (a) everywhere (b) only for large angles
(c) only for small angles.

Quick Quiz 37.3 Which of the following will cause the fringes in a two-slit
interference pattern to move farther apart? (a) decreasing the wavelength of the light
(b) decreasing the screen distance L (c) decreasing the slit spacing d (d) immersing
the entire apparatus in water.

Investigate the double-slit interference pattern at the Interactive Worked Example link at http://www.pse6.com.
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A light source emits visible light of two wavelengths:
& # 430 nm and &+ # 510 nm. The source is used in a
double-slit interference experiment in which L # 1.50 m
and d # 0.025 0 mm. Find the separation distance between
the third-order bright fringes.

Solution Using Equation 37.5, with m # 3, we find that the
fringe positions corresponding to these two wavelengths are

Hence, the separation distance between the two fringes is

,y # 9.18 * 10$2 m $ 7.74 * 10$2 m

What If? What if we examine the entire interference pattern
due to the two wavelengths and look for overlapping fringes?
Are there any locations on the screen where the bright
fringes from the two wavelengths overlap exactly?

Answer We could find such a location by setting the
location of any bright fringe due to & equal to one due to &+,

1.40 cm# 1.40 * 10$2 m #

# 9.18 * 10$2 m

y +bright #
&+L
d

  m # 3  
&+L
d

# 3  
(510 * 10$9 m)(1.50 m)

0.025 0 * 10$3 m

# 7.74 * 10$2 m

y bright #
&L
d

  m # 3  
&L
d

# 3  
(430 * 10$9 m)(1.50 m)

0.025 0 * 10$3 m

using Equation 37.5:

Substituting the wavelengths, we have

This might suggest that the 51st bright fringe of the
430-nm light would overlap with the 43rd bright fringe of
the 510-nm light. However, if we use Equation 37.5 to find
the value of y for these fringes, we find

This value of y is comparable to L, so that the small-angle
approximation used in Equation 37.4 is not valid. This suggests
that we should not expect Equation 37.5 to give us the
correct result. If you use the exact relationship y # L tan!,
you can show that the bright fringes do indeed overlap when
the same condition, m+/m # &/&+, is met (see Problem 44).
Thus, the 51st fringe of the 430-nm light does overlap with
the 43rd fringe of the 510-nm light, but not at the location of
1.32 m. You are asked to find the correct location as part
of Problem 44.

y # 51 
(430 * 10$9 m)(1.5 m)

0.025 * 10$3 m
# 1.32 m # y+

m+

m
#

&

&+
#

430 nm
510 nm

#
43
51

&

&+
#

m+

m

&L
d

 m #
&+L
d

 m+

Example 37.2 Separating Double-Slit Fringes of Two Wavelengths

37.3 Intensity Distribution of the Double-Slit
Interference Pattern

Note that the edges of the bright fringes in Figure 37.2b are not sharp—there is a
gradual change from bright to dark. So far we have discussed the locations of only
the centers of the bright and dark fringes on a distant screen. Let us now direct
our attention to the intensity of the light at other points between the positions
of maximum constructive and destructive interference. In other words, we now
calculate the distribution of light intensity associated with the double-slit interfer-
ence pattern.

Again, suppose that the two slits represent coherent sources of sinusoidal waves
such that the two waves from the slits have the same angular frequency - and a
constant phase difference .. The total magnitude of the electric field at point P on the
screen in Figure 37.6 is the superposition of the two waves. Assuming that the two
waves have the same amplitude E0, we can write the magnitude of the electric field at
point P due to each wave separately as

E1 # E0 sin -t and E2 # E 0 sin(-t ( .) (37.7)

Although the waves are in phase at the slits, their phase difference . at P depends on the
path difference " # r2 $ r1 # d sin!. A path difference of & (for constructive interfer-
ence) corresponds to a phase difference of 2/ rad. A path difference of " is the same
fraction of & as the phase difference . is of 2/. We can describe this mathematically

O

y

d
r2

r1

L

S2

S1

P

Figure 37.6 Construction for
analyzing the double-slit
interference pattern. A bright
fringe, or intensity maximum, is
observed at O.
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with the ratio

which gives us

(37.8)

This equation tells us precisely how the phase difference . depends on the angle ! in
Figure 37.5.

Using the superposition principle and Equation 37.7, we can obtain the magnitude
of the resultant electric field at point P :

EP # E1 ( E2 # E0[sin -t ( sin(-t ( .)] (37.9)

To simplify this expression, we use the trigonometric identity

Taking A # -t ( . and B # -t, we can write Equation 37.9 in the form

(37.10)

This result indicates that the electric field at point P has the same frequency - as the
light at the slits, but that the amplitude of the field is multiplied by the factor
2 cos(./2). To check the consistency of this result, note that if . # 0, 2/, 4/, . . .,
then the magnitude of the electric field at point P is 2E 0, corresponding to the condi-
tion for maximum constructive interference. These values of . are consistent with
Equation 37.2 for constructive interference. Likewise, if . # /, 3/, 5/, . . ., then the
magnitude of the electric field at point P is zero; this is consistent with Equation 37.3
for total destructive interference.

Finally, to obtain an expression for the light intensity at point P, recall from Section
34.3 that the intensity of a wave is proportional to the square of the resultant electric field
magnitude at that point (Eq. 34.21). Using Equation 37.10, we can therefore express the
light intensity at point P as

Most light-detecting instruments measure time-averaged light intensity, and the time-
averaged value of sin2(-t ( ./2) over one cycle is . (See Figure 33.5.) Therefore, we
can write the average light intensity at point P as

(37.11)

where Imax is the maximum intensity on the screen and the expression represents the
time average. Substituting the value for . given by Equation 37.8 into this expression,
we find that

(37.12)

Alternatively, because sin! ! y/L for small values of ! in Figure 37.5, we can write
Equation 37.12 in the form

(37.13)I ! I max cos2 " /d 
&L

  y#

I # I max cos2 " /d sin !

& #

I # I max cos2 " .

2 #

1
2

I 0 EP
2 # 4E 0

2 cos2 " .

2 # sin2 "-t (
.

2 #

EP # 2E0 cos " .

2 # sin "-t (
.

2 #

sin A ( sin B # 2 sin " A ( B
2 # cos " A $ B

2 #

. #
2/

&
 " #

2/

&
 d sin !

"

&
#

.

2/

Phase difference



Constructive interference, which produces light intensity maxima, occurs when the
quantity / dy/&L is an integral multiple of /, corresponding to y # (&L/d)m. This is
consistent with Equation 37.5.

A plot of light intensity versus d sin ! is given in Figure 37.7. The interference
pattern consists of equally spaced fringes of equal intensity. Remember, however, that
this result is valid only if the slit-to-screen distance L is much greater than the slit
separation, and only for small values of !.
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Quick Quiz 37.4 At dark areas in an interference pattern, the light
waves have canceled. Thus, there is zero intensity at these regions and, therefore, no
energy is arriving. Consequently, when light waves interfere and form an interference
pattern, (a) energy conservation is violated because energy disappears in the dark areas
(b) energy transferred by the light is transformed to another type of energy in the dark
areas (c) the total energy leaving the slits is distributed among light and dark areas and
energy is conserved.

I

–2 –λ λ 2

Imax

d sin θ

λλ
Figure 37.7 Light intensity versus
d sin ! for a double-slit interference
pattern when the screen is far from
the two slits (L '' d).

M
. C

ag
ne

t, 
M

. F
ra

nc
on

, J
.C

. T
hi

er
r

37.4 Phasor Addition of Waves

In the preceding section, we combined two waves algebraically to obtain the resultant
wave amplitude at some point on a screen. Unfortunately, this analytical procedure
becomes cumbersome when we must add several wave amplitudes. Because we shall
eventually be interested in combining a large number of waves, we now describe a
graphical procedure for this purpose.

Let us again consider a sinusoidal wave whose electric field component is given
by

E1 # E0 sin -t

where E0 is the wave amplitude and - is the angular frequency. We used phasors in
Chapter 33 to analyze AC circuits, and again we find the use of phasors to be valuable
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in discussing wave interference. The sinusoidal wave we are discussing can be repre-
sented graphically by a phasor of magnitude E0 rotating about the origin counterclock-
wise with an angular frequency -, as in Figure 37.8a. Note that the phasor makes an
angle -t with the horizontal axis. The projection of the phasor on the vertical axis
represents E1, the magnitude of the wave disturbance at some time t . Hence, as the
phasor rotates in a circle about the origin, the projection E1 oscillates along the verti-
cal axis.

Now consider a second sinusoidal wave whose electric field component is given
by

E2 # E0 sin(-t ( .)

This wave has the same amplitude and frequency as E1, but its phase is . with
respect to E 1. The phasor representing E 2 is shown in Figure 37.8b. We can obtain
the resultant wave, which is the sum of E 1 and E 2, graphically by redrawing the
phasors as shown in Figure 37.8c, in which the tail of the second phasor is placed
at the tip of the first. As with vector addition, the resultant phasor ER runs from
the tail of the first phasor to the tip of the second. Furthermore, ER rotates along
with the two individual phasors at the same angular frequency -. The projection
of ER along the vertical axis equals the sum of the projections of the two other
phasors: EP # E 1 ( E 2.

It is convenient to construct the phasors at t # 0 as in Figure 37.9. From the geom-
etry of one of the right triangles, we see that

which gives

ER # 2E0 cos 1

Because the sum of the two opposite interior angles equals the exterior angle ., we see
that 1 # ./2; thus,

Hence, the projection of the phasor ER along the vertical axis at any time t is

This is consistent with the result obtained algebraically, Equation 37.10. The resultant
phasor has an amplitude 2E0 cos(./2) and makes an angle ./2 with the first phasor.

EP # ER sin "-t (
.

2 # # 2E0 cos(./2) sin "-t (
.

2 #

ER # 2E0 cos " .

2 #

cos 1 #
ER /2

E0

Figure 37.8 (a) Phasor diagram for the wave disturbance E1 # E0 sin -t . The phasor
is a vector of length E0 rotating counterclockwise. (b) Phasor diagram for the wave
E2 # E0 sin(-t ( .). (c) The phasor ER represents the combination of the waves in
part (a) and (b).

Figure 37.9 A reconstruction of
the resultant phasor ER . From the
geometry, note that 1 # ./2.

E2 E0

(b)

ωt + φω φ tωE1 E0

 φ

(c)

EP

E0

ERE2

E1

(a)

E0
tω

E0

φ
E0

ER
α

α
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Furthermore, the average light intensity at point P, which varies as EP
2, is proportional

to cos2(./2), as described in Equation 37.11.
We can now describe how to obtain the resultant of several waves that have the

same frequency:

• Represent the waves by phasors, as shown in Figure 37.10, remembering to
maintain the proper phase relationship between one phasor and the next.

• The resultant phasor ER is the vector sum of the individual phasors. At each
instant, the projection of ER along the vertical axis represents the time variation of
the resultant wave. The phase angle 1 of the resultant wave is the angle between ER
and the first phasor. From Figure 37.10, drawn for four phasors, we see that the
resultant wave is given by the expression EP # ER sin(-t ( 1).

Phasor Diagrams for Two Coherent Sources

As an example of the phasor method, consider the interference pattern produced
by two coherent sources. Figure 37.11 represents the phasor diagrams for various
values of the phase difference . and the corresponding values of the path differ-
ence ", which are obtained from Equation 37.8. The light intensity at a point is
a maximum when ER is a maximum; this occurs at . # 0, 2/, 4/, . . . . The light
intensity at some point is zero when ER is zero; this occurs at . # /, 3/, 5/, . . . .
These results are in complete agreement with the analytical procedure described in
the preceding section.

Three-Slit Interference Pattern

Using phasor diagrams, let us analyze the interference pattern caused by three equally
spaced slits. We can express the electric field components at a point P on the screen
caused by waves from the individual slits as

Figure 37.10 The phasor ER is the
resultant of four phasors of equal
amplitude E0. The phase of ER with
respect to the first phasor is 1. The
projection EP on the vertical axis
represents the combination of the
four phasors.

 φE0

ER
 φ

 φ

E0

E0

E0

EP

α

tω

ER =   2 E0√

λ=δ
= 360°= 2φ π

  = 3  /4δ λ
= 270°= 3  /4φ π

  =   /8δ λ

= 180°=φ π

= 45°=   /4φ π

E0

ER = 2E0

E0

= 0

ER = 0

E0

E0

180°
E0

270°

E0 E0 E0

360°

E0

E0

90°

E0

ER = 1.85 E0
E0

45°

ER = 2E0

= 0φ

  =   /2δ λ

  =   /4δ λ
= 90°=   /2φ π

ER =   2 E0√

δ

Choose any phase angle
at the Active Figures link at
http://www.pse6.com and see
the resultant phasor.

Active Figure 37.11 Phasor diagrams for a double-slit interference pattern. The
resultant phasor ER is a maximum when . # 0, 2/, 4/, . . . and is zero when . # /,
3/, 5/, . . . .
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E1 # E0 sin -t

E2 # E0 sin(-t ( .)

E3 # E0 sin(-t ( 2.)

where . is the phase difference between waves from adjacent slits. We can obtain
the resultant magnitude of the electric field at point P from the phasor diagram in
Figure 37.12.

The phasor diagrams for various values of . are shown in Figure 37.13. Note that
the resultant magnitude of the electric field at P has a maximum value of 3E0, a condi-
tion that occurs when . # 0, % 2/, % 4/, . . . . These points are called primary max-
ima. Such primary maxima occur whenever the three phasors are aligned as shown in
Figure 37.13a. We also find secondary maxima of amplitude E0 occurring between the
primary maxima at points where . # % /, % 3/, . . . . For these points, the wave
from one slit exactly cancels that from another slit (Fig. 37.13d). This means that only
light from the third slit contributes to the resultant, which consequently has a total
amplitude of E0. Total destructive interference occurs whenever the three phasors
form a closed triangle, as shown in Figure 37.13c. These points where ER # 0
correspond to . # % 2//3, % 4//3, . . . . You should be able to construct other
phasor diagrams for values of . greater than /.

Figure 37.14 shows multiple-slit interference patterns for a number of config-
urations. For three slits, note that the primary maxima are nine times more
intense than the secondary maxima as measured by the height of the curve. This is
because the intensity varies as ER

2. For N slits, the intensity of the primary maxima is
N 2 times greater than that due to a single slit. As the number of slits increases, the
primary maxima increase in intensity and become narrower, while the secondary
maxima decrease in intensity relative to the primary maxima. Figure 37.14 also shows
that as the number of slits increases, the number of secondary maxima also increases.
In fact, the number of secondary maxima is always N $ 2 where N is the number of
slits. In Section 38.4 (next chapter), we shall investigate the pattern for a very large
number of slits in a device called a diffraction grating.

Active Figure 37.13 Phasor diagrams for three equally spaced slits at various values of
.. Note from (a) that there are primary maxima of amplitude 3E0 and from (d) that
there are secondary maxima of amplitude E0.

Choose any phase angle at the Active Figures link at
http://www.pse6.com and see the resultant phasor.
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Figure 37.12 Phasor diagram for
three equally spaced slits.
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Quick Quiz 37.5 Using Figure 37.14 as a model, sketch the interference
pattern from six slits.
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37.5 Change of Phase Due to Reflection

Young’s method for producing two coherent light sources involves illuminating a pair of
slits with a single source. Another simple, yet ingenious, arrangement for producing an
interference pattern with a single light source is known as Lloyd’s mirror 1 (Fig. 37.15). A
point light source is placed at point S close to a mirror, and a viewing screen is positioned
some distance away and perpendicular to the mirror. Light waves can reach point P on
the screen either directly from S to P or by the path involving reflection from the mirror.
The reflected ray can be treated as a ray originating from a virtual source at point S+. As a
result, we can think of this arrangement as a double-slit source with the distance between
points S and S+ comparable to length d in Figure 37.5. Hence, at observation points far
from the source (L '' d) we expect waves from points S and S+ to form an interference
pattern just like the one we see from two real coherent sources. An interference pattern is
indeed observed. However, the positions of the dark and bright fringes are reversed
relative to the pattern created by two real coherent sources (Young’s experiment). This
can only occur if the coherent sources at points S and S+ differ in phase by 180°.

To illustrate this further, consider point P+, the point where the mirror intersects
the screen. This point is equidistant from points S and S+. If path difference alone were
responsible for the phase difference, we would see a bright fringe at point P+ (because
the path difference is zero for this point), corresponding to the central bright fringe of

Figure 37.14 Multiple-slit interference patterns. As N, the number of slits, is increased,
the primary maxima (the tallest peaks in each graph) become narrower but remain
fixed in position and the number of secondary maxima increases. For any value of N,
the decrease in intensity in maxima to the left and right of the central maximum,
indicated by the blue dashed arcs, is due to diffraction patterns from the individual slits,
which are discussed in Chapter 38.

Figure 37.15 Lloyd’s mirror. An
interference pattern is produced at
point P on the screen as a result of
the combination of the direct
ray (blue) and the reflected ray
(brown). The reflected ray
undergoes a phase change of 180°.

Single
slit

N = 2

N = 3

N = 4

N = 5

N = 10

0–2λ– 2λλ λ λ λ

Primary maximum
Secondary maximum

 I
Imax

d sin θθ

S ′

S

Real
source

Viewing
screen

Mirror

P

P ′

Virtual
source

1 Developed in 1834 by Humphrey Lloyd (1800–1881), Professor of Natural and Experimental
Philosophy, Trinity College, Dublin.
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the two-slit interference pattern. Instead, we observe a dark fringe at point P+. From
this, we conclude that a 180° phase change must be produced by reflection from the
mirror. In general, an electromagnetic wave undergoes a phase change of 180°
upon reflection from a medium that has a higher index of refraction than the
one in which the wave is traveling.

It is useful to draw an analogy between reflected light waves and the reflections of
a transverse wave pulse on a stretched string (Section 16.4). The reflected pulse on a
string undergoes a phase change of 180° when reflected from the boundary of
a denser medium, but no phase change occurs when the pulse is reflected from the
boundary of a less dense medium. Similarly, an electromagnetic wave undergoes a 180°
phase change when reflected from a boundary leading to an optically denser medium
(defined as a medium with a higher index of refraction), but no phase change occurs
when the wave is reflected from a boundary leading to a less dense medium. These
rules, summarized in Figure 37.16, can be deduced from Maxwell’s equations, but the
treatment is beyond the scope of this text.

37.6 Interference in Thin Films

Interference effects are commonly observed in thin films, such as thin layers of oil on
water or the thin surface of a soap bubble. The varied colors observed when white light
is incident on such films result from the interference of waves reflected from the two
surfaces of the film.

Consider a film of uniform thickness t and index of refraction n, as shown in Figure
37.17. Let us assume that the light rays traveling in air are nearly normal to the two
surfaces of the film. To determine whether the reflected rays interfere constructively or
destructively, we first note the following facts:

• A wave traveling from a medium of index of refraction n1 toward a medium of
index of refraction n2 undergoes a 180° phase change upon reflection when
n2 ' n1 and undergoes no phase change if n2 2 n1.

• The wavelength of light &n in a medium whose index of refraction is n (see Section
35.5) is

(37.14)

where & is the wavelength of the light in free space.

&n #
&

n

Rigid support
String analogy

180° phase change

n1

n1

n2

n2<

(a)

Free support

No phase change

n1

n1

n2

n2>

(b)

Figure 37.16 (a) For n1 2 n2, a light ray traveling in medium 1 when reflected from
the surface of medium 2 undergoes a 180° phase change. The same thing happens with
a reflected pulse traveling along a string fixed at one end. (b) For n1 ' n2, a light ray
traveling in medium 1 undergoes no phase change when reflected from the surface of
medium 2. The same is true of a reflected wave pulse on a string whose supported end
is free to move.

No phase
change

Air

180° phase
change

1
2

A

t
Film

Air

B

3 4

Figure 37.17 Interference in light
reflected from a thin film is due
to a combination of rays 1 and 2
reflected from the upper and lower
surfaces of the film. Rays 3 and 4
lead to interference effects for light
transmitted through the film.
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Let us apply these rules to the film of Figure 37.17, where nfilm ' nair. Reflected
ray 1, which is reflected from the upper surface (A), undergoes a phase change of 180°
with respect to the incident wave. Reflected ray 2, which is reflected from the lower
film surface (B), undergoes no phase change because it is reflected from a medium
(air) that has a lower index of refraction. Therefore, ray 1 is 180° out of phase with ray
2, which is equivalent to a path difference of &n/2. However, we must also consider that
ray 2 travels an extra distance 2t before the waves recombine in the air above surface A.
(Remember that we are considering light rays that are close to normal to the surface.
If the rays are not close to normal, the path difference is larger than 2t .) If 2t # &n/2,
then rays 1 and 2 recombine in phase, and the result is constructive interference. In
general, the condition for constructive interference in thin films is2

(37.15)

This condition takes into account two factors: (1) the difference in path length for the
two rays (the term m&n) and (2) the 180° phase change upon reflection (the term
&n/2). Because &n # &/n, we can write Equation 37.15 as

(37.16)

If the extra distance 2t traveled by ray 2 corresponds to a multiple of &n, then the
two waves combine out of phase, and the result is destructive interference. The general
equation for destructive interference in thin films is

(37.17)

The foregoing conditions for constructive and destructive interference are valid
when the medium above the top surface of the film is the same as the medium below
the bottom surface or, if there are different media above and below the film, the index
of refraction of both is less than n. If the film is placed between two different media,
one with n 2 nfilm and the other with n ' nfilm, then the conditions for constructive
and destructive interference are reversed. In this case, either there is a phase change
of 180° for both ray 1 reflecting from surface A and ray 2 reflecting from surface B, or
there is no phase change for either ray; hence, the net change in relative phase due to
the reflections is zero.

Rays 3 and 4 in Figure 37.17 lead to interference effects in the light transmitted
through the thin film. The analysis of these effects is similar to that of the reflected
light. You are asked to explore the transmitted light in Problems 31, 36, and 37.

2nt # m &  (m # 0, 1, 2,  ) ) ))

2nt # (m ( 1
2)&  (m # 0, 1, 2,  ) ) ))

2t # (m ( 1
2)&n  (m # 0, 1, 2,  ) ) ))

Conditions for destructive
interference in thin films

Conditions for constructive
interference in thin films

2 The full interference effect in a thin film requires an analysis of an infinite number of
reflections back and forth between the top and bottom surfaces of the film. We focus here only
on a single reflection from the bottom of the film, which provides the largest contribution to the
interference effect.

Quick Quiz 37.6 In a laboratory accident, you spill two liquids onto water,
neither of which mixes with the water. They both form thin films on the water surface.
When the films become very thin as they spread, you observe that one film becomes
bright and the other dark in reflected light. The film that is dark (a) has an index of
refraction higher than that of water (b) has an index of refraction lower than that
of water (c) has an index of refraction equal to that of water (d) has an index of refrac-
tion lower than that of the bright film.

Quick Quiz 37.7 One microscope slide is placed on top of another with
their left edges in contact and a human hair under the right edge of the upper slide.
As a result, a wedge of air exists between the slides. An interference pattern results
when monochromatic light is incident on the wedge. At the left edges of the slides,
there is (a) a dark fringe (b) a bright fringe (c) impossible to determine.

! PITFALL PREVENTION 
37.4 Be Careful with Thin

Films
Be sure to include both effects—
path length and phase change—
when analyzing an interference
pattern resulting from a thin
film. The possible phase change
is a new feature that we did not
need to consider for double-slit
interference. Also think carefully
about the material on either side
of the film. You may have situa-
tions in which there is a 180°
phase change at both surfaces or
at neither surface, if there are
different materials on either side
of the film.
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Figure 37.18 (a) The combination of rays reflected from the flat plate and the
curved lens surface gives rise to an interference pattern known as Newton’s rings.
(b) Photograph of Newton’s rings.

Newton’s Rings

Another method for observing interference in light waves is to place a plano-convex
lens on top of a flat glass surface, as shown in Figure 37.18a. With this arrangement,
the air film between the glass surfaces varies in thickness from zero at the point of
contact to some value t at point P. If the radius of curvature R of the lens is much
greater than the distance r, and if the system is viewed from above, a pattern of light
and dark rings is observed, as shown in Figure 37.18b. These circular fringes,
discovered by Newton, are called Newton’s rings.

The interference effect is due to the combination of ray 1, reflected from
the flat plate, with ray 2, reflected from the curved surface of the lens. Ray 1
undergoes a phase change of 180° upon reflection (because it is reflected from
a medium of higher index of refraction), whereas ray 2 undergoes no phase
change (because it is reflected from a medium of lower refractive index).
Hence, the conditions for constructive and destructive interference are given
by Equations 37.16 and 37.17, respectively, with n # 1 because the film is air.

(Left) Interference in soap bubbles. The colors are due to interference between
light rays reflected from the front and back surfaces of the thin film of soap
making up the bubble. The color depends on the thickness of the film, ranging
from black where the film is thinnest to magenta where it is thickest. (Right) A
thin film of oil floating on water displays interference, as shown by the pattern of
colors when white light is incident on the film. Variations in film thickness
produce the interesting color pattern. The razor blade gives you an idea of the
size of the colored bands.
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Figure 37.19 This asymmetrical
interference pattern indicates
imperfections in the lens of a
Newton’s-rings apparatus.
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The contact point at O is dark, as seen in Figure 37.18b, because there is no
path difference and the total phase change is due only to the 180° phase change
upon reflection.

Using the geometry shown in Figure 37.18a, we can obtain expressions for the radii of
the bright and dark bands in terms of the radius of curvature R and wavelength &. For
example, the dark rings have radii given by the expression . The details are
left as a problem for you to solve (see Problem 62). We can obtain the wavelength of the
light causing the interference pattern by measuring the radii of the rings, provided R is
known. Conversely, we can use a known wavelength to obtain R .

One important use of Newton’s rings is in the testing of optical lenses. A circular
pattern like that pictured in Figure 37.18b is obtained only when the lens is ground to
a perfectly symmetric curvature. Variations from such symmetry might produce a
pattern like that shown in Figure 37.19. These variations indicate how the lens must be
reground and repolished to remove imperfections.

r ! ÷m&R/n

P R O B L E M - S O LV I N G  H I N T S

Thin-Film Interference
You should keep the following ideas in mind when you work thin-film interference
problems:

• Identify the thin film causing the interference.

• The type of interference that occurs is determined by the phase
relationship between the portion of the wave reflected at the
upper surface of the film and the portion reflected at the
lower surface.

• Phase differences between the two portions of the wave have two causes:
(1) differences in the distances traveled by the two portions and (2) phase
changes that may occur upon reflection.

• When the distance traveled and phase changes upon reflection are both
taken into account, the interference is constructive if the equivalent
path difference between the two waves is an integral multiple of &,
and it is destructive if the path difference is &/2, 3&/2, 5&/2, and
so forth.

Example 37.3 Interference in a Soap Film

Calculate the minimum thickness of a soap-bubble film that
results in constructive interference in the reflected light if
the film is illuminated with light whose wavelength in free
space is & # 600 nm.

Solution The minimum film thickness for constructive
interference in the reflected light corresponds to m # 0 in
Equation 37.16. This gives 2nt # &/2, or

What If? What if the film is twice as thick? Does this situa-
tion produce constructive interference?

113 nmt #
&

4n
#

600 nm
4(1.33)

#

Answer Using Equation 37.16, we can solve for the thick-
nesses at which constructive interference will occur:

The allowed values of m show that constructive interference
will occur for odd multiples of the thickness corresponding
to m # 0, t # 113 nm. Thus, constructive interference will
not occur for a film that is twice as thick.

t # (m ( 1
2)  

&

2n
# (2m ( 1)  

&

4n
  (m # 0, 1, 2, ) ) ))
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A thin, wedge-shaped film of index of refraction n is illumi-
nated with monochromatic light of wavelength &, as illus-
trated in Figure 37.21a. Describe the interference pattern
observed for this case.

Solution The interference pattern, because it is created by
a thin film of variable thickness surrounded by air, is a series
of alternating bright and dark parallel fringes. A dark fringe
corresponding to destructive interference appears at point
O, the apex, because here the upper reflected ray undergoes
a 180° phase change while the lower one undergoes no
phase change.

According to Equation 37.17, other dark minima appear
when 2nt # m&; thus, t1 # &/2n, t2 # &/n, t3 # 3&/2n, and
so on. Similarly, the bright maxima appear at locations 
where t satisfies Equation 37.16, , cor-
responding to thicknesses of &/4n, 3&/4n, 5&/4n, and so on.

If white light is used, bands of different colors are
observed at different points, corresponding to the different
wavelengths of light (see Fig. 37.21b). This is why we see
different colors in soap bubbles and other films of varying
thickness.

2nt # (m ( 1
2)&

Example 37.5 Interference in a Wedge-Shaped Film

Si

180° phase
change

1 2

SiO

Air

n = 3.5

n = 1.45

n = 1

180° phase
change

(a)

Figure 37.20 (Example 37.4) (a) Reflective losses from a
silicon solar cell are minimized by coating the surface of the
cell with a thin film of silicon monoxide. (b) The reflected
light from a coated camera lens often has a reddish-violet
appearance.
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Investigate the interference for various film properties at the Interactive Worked Example link at http://www.pse6.com.

Example 37.4 Nonreflective Coatings for Solar Cells Interactive

Solar cells—devices that generate electricity when exposed to
sunlight—are often coated with a transparent, thin film of
silicon monoxide (SiO, n # 1.45) to minimize reflective losses
from the surface. Suppose that a silicon solar cell (n # 3.5) is
coated with a thin film of silicon monoxide for this purpose
(Fig. 37.20). Determine the minimum film thickness that

produces the least reflection at a wavelength of 550 nm, near
the center of the visible spectrum.

Solution Figure 37.20a helps us conceptualize the path of
the rays in the SiO film that result in interference in the
reflected light. Based on the geometry of the SiO layer,
we categorize this as a thin-film interference problem. To
analyze the problem, note that the reflected light is a
minimum when rays 1 and 2 in Figure 37.20a meet the con-
dition of destructive interference. In this situation, both rays
undergo a 180° phase change upon reflection—ray 1 from
the upper SiO surface and ray 2 from the lower SiO surface.
The net change in phase due to reflection is therefore zero,
and the condition for a reflection minimum requires a path
difference of &n/2, where &n is the wavelength of the light in
SiO. Hence 2t # &/2n, where & is the wavelength in air and
n is the index of refraction of SiO. The required thickness is

To finalize the problem, we can investigate the losses in
typical solar cells. A typical uncoated solar cell has reflective
losses as high as 30%; a SiO coating can reduce this value to
about 10%. This significant decrease in reflective losses
increases the cell’s efficiency because less reflection means
that more sunlight enters the silicon to create charge
carriers in the cell. No coating can ever be made perfectly
nonreflecting because the required thickness is wavelength-
dependent and the incident light covers a wide range of
wavelengths.

Glass lenses used in cameras and other optical instru-
ments are usually coated with a transparent thin film to
reduce or eliminate unwanted reflection and enhance the
transmission of light through the lenses. The camera lens
in Figure 37.20b has several coatings (of different thick-
nesses) to minimize reflection of light waves having wave-
lengths near the center of the visible spectrum. As a
result, the little light that is reflected by the lens has a
greater proportion of the far ends of the spectrum and
often appears reddish-violet.

94.8 nmt #
&

4n
#

550 nm
4(1.45)

#

(b)
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t1

O

t2

t3

Incident
light

(a)

n
Figure 37.21 (Example 37.5) (a) Inter-
ference bands in reflected light can be
observed by illuminating a wedge-
shaped film with monochromatic light.
The darker areas correspond to regions
where rays tend to cancel each other
because of interference effects. (b) Inter-
ference in a vertical film of variable
thickness. The top of the film appears
darkest where the film is thinnest.

Active Figure 37.22 Diagram of
the Michelson interferometer. A
single ray of light is split into two
rays by mirror M0, which is called a
beam splitter. The path difference
between the two rays is varied with
the adjustable mirror M1. As M1 is
moved, an interference pattern
changes in the field of view.

At the Active Figures link at
http://www.pse6.com, move
the mirror to see the effect
on the interference pattern and
use the interferometer to
measure the wavelength of light.

Ri
ch

ar
d 

M
eg

na
/F

un
da

m
en

ta
l P

ho
to

gr
ap

hs
 

37.7 The Michelson Interferometer

The interferometer, invented by the American physicist A. A. Michelson
(1852–1931), splits a light beam into two parts and then recombines the parts to
form an interference pattern. The device can be used to measure wavelengths or
other lengths with great precision because a large and precisely measurable displace-
ment of one of the mirrors is related to an exactly countable number of wavelengths
of light.

A schematic diagram of the interferometer is shown in Figure 37.22. A ray
of light from a monochromatic source is split into two rays by mirror M0, which
is inclined at 45° to the incident light beam. Mirror M0, called a beam splitter,
transmits half the light incident on it and reflects the rest. One ray is reflected
from M0 vertically upward toward mirror M1, and the second ray is transmitted
horizontally through M0 toward mirror M2. Hence, the two rays travel separate
paths L 1 and L 2. After reflecting from M1 and M2, the two rays eventually
recombine at M0 to produce an interference pattern, which can be viewed through
a telescope.

The interference condition for the two rays is determined by their path length dif-
ferences. When the two mirrors are exactly perpendicular to each other, the interfer-
ence pattern is a target pattern of bright and dark circular fringes, similar to Newton’s
rings. As M1 is moved, the fringe pattern collapses or expands, depending on the
direction in which M1 is moved. For example, if a dark circle appears at the center of
the target pattern (corresponding to destructive interference) and M1 is then moved a
distance &/4 toward M0, the path difference changes by &/2. What was a dark circle at
the center now becomes a bright circle. As M1 is moved an additional distance &/4
toward M0, the bright circle becomes a dark circle again. Thus, the fringe pattern
shifts by one-half fringe each time M1 is moved a distance &/4. The wavelength of light
is then measured by counting the number of fringe shifts for a given displacement of
M1. If the wavelength is accurately known, mirror displacements can be measured to
within a fraction of the wavelength.

We will see an important historical use of the Michelson interferometer in our
discussion of relativity in Chapter 39. Modern uses include the following two
applications.

Telescope

M1

M2

M0 L2

L1

Light
source

(b)
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Fourier Transform Infrared Spectroscopy (FTIR)

Spectroscopy is the study of the wavelength distribution of radiation from a sample
that can be used to identify the characteristics of atoms or molecules in the sample.
Infrared spectroscopy is particularly important to organic chemists in analyzing
organic molecules. Traditional spectroscopy involves the use of an optical element,
such as a prism (Section 35.7) or a diffraction grating (Section 38.4), which spreads
out various wavelengths in a complex optical signal from the sample into different
angles. In this way, the various wavelengths of radiation and their intensities in the
signal can be determined. These types of devices are limited in their resolution and
effectiveness because they must be scanned through the various angular deviations
of the radiation.

The technique of Fourier Transform Infrared Spectroscopy (FTIR) is used to create a
higher-resolution spectrum in a time interval of one second that may have required
30 minutes with a standard spectrometer. In this technique, the radiation from a sam-
ple enters a Michelson interferometer. The movable mirror is swept through the zero-
path-difference condition and the intensity of radiation at the viewing position is
recorded. The result is a complex set of data relating light intensity as a function of
mirror position, called an interferogram. Because there is a relationship between mirror
position and light intensity for a given wavelength, the interferogram contains infor-
mation about all wavelengths in the signal.

In Section 18.8, we discussed Fourier analysis of a waveform. The waveform is a
function that contains information about all of the individual frequency components
that make up the waveform.3 Equation 18.16 shows how the waveform is generated
from the individual frequency components. Similarily, the interferogram can be
analyzed by computer, in a process called a Fourier transform, to provide all of the
wavelength components. This is the same information generated by traditional
spectroscopy, but the resolution of FTIR is much higher.

Laser Interferometer Gravitational-Wave Observatory (LIGO)

Einstein’s general theory of relativity (Section 39.10) predicts the existence of gravi-
tational waves. These waves propagate from the site of any gravitational disturbance,
which could be periodic and predictable, such as the rotation of a double star
around a center of mass, or unpredictable, such as the supernova explosion of a
massive star.

In Einstein’s theory, gravitation is equivalent to a distortion of space. Thus, a gravi-
tational disturbance causes an additional distortion that propagates through space in a
manner similar to mechanical or electromagnetic waves. When gravitational waves
from a disturbance pass by the Earth, they create a distortion of the local space.
The LIGO apparatus is designed to detect this distortion. The apparatus employs a
Michelson interferometer that uses laser beams with an effective path length of several
kilometers. At the end of an arm of the interferometer, a mirror is mounted on a
massive pendulum. When a gravitational wave passes by, the pendulum and the
attached mirror move, and the interference pattern due to the laser beams from the
two arms changes.

Two sites have been developed in the United States for interferometers in order to
allow coincidence studies of gravitational waves. These sites are located in Richland,
Washington, and Livingston, Louisiana. Figure 37.23 shows the Washington site. The
two arms of the Michelson interferometer are evident in the photograph. Test runs are
being performed as of the printing of this book. Cooperation with other gravitational
wave detectors, such as VIRGO in Cascina, Italy, will allow detailed studies of
gravitational waves.

3 In acoustics, it is common to talk about the components of a complex signal in terms of
frequency. In optics, it is more common to identify the components by wavelength.
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Figure 37.23 The Laser Interferometer Gravitational-Wave Observatory (LIGO) near
Richland, Washington. Note the two perpendicular arms of the Michelson interferometer.
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Interference in light waves occurs whenever two or more waves overlap at a given
point. An interference pattern is observed if (1) the sources are coherent and (2) the
sources have identical wavelengths.

In Young’s double-slit experiment, two slits S1 and S2 separated by a distance d are
illuminated by a single-wavelength light source. An interference pattern consisting of
bright and dark fringes is observed on a viewing screen. The condition for bright
fringes (constructive interference) is

" # d sin!bright # m& (37.2)

The condition for dark fringes (destructive interference) is

(37.3)

The number m is called the order number of the fringe.
The intensity at a point in the double-slit interference pattern is

(37.12)

where I max is the maximum intensity on the screen and the expression represents the
time average.

A wave traveling from a medium of index of refraction n1 toward a medium of
index of refraction n2 undergoes a 180° phase change upon reflection when n2 ' n1
and undergoes no phase change when n2 2 n1.

The condition for constructive interference in a film of thickness t and index of re-
fraction n surrounded by air is

(37.16)

where & is the wavelength of the light in free space.
Similarly, the condition for destructive interference in a thin film surrounded by

air is

2nt # m& (37.17)(m # 0, 1, 2, ) ) ))

2nt # (m ( 1
2)&  (m # 0, 1, 2, ) ) ))

I # I max cos2 " /d sin !

& #

d sin!dark # (m ( 1
2)&  (m # 0, %1, %2, ) ) ))

(m # 0, %1, %2, ) ) ))

S U M M A RY

Take a practice test for
this chapter by clicking on
the Practice Test link at
http://www.pse6.com.
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What is the necessary condition on the path length differ-
ence between two waves that interfere (a) constructively
and (b) destructively?

2. Explain why two flashlights held close together do not
produce an interference pattern on a distant screen.

3. If Young’s double-slit experiment were performed under
water, how would the observed interference pattern be
affected?

In Young’s double-slit experiment, why do we use mono-
chromatic light? If white light is used, how would the
pattern change?

5. A simple way to observe an interference pattern is to look
at a distant light source through a stretched handkerchief
or an opened umbrella. Explain how this works.

6. A certain oil film on water appears brightest at the outer
regions, where it is thinnest. From this information, what
can you say about the index of refraction of oil relative to
that of water?

7. As a soap bubble evaporates, it appears black just before it
breaks. Explain this phenomenon in terms of the phase
changes that occur on reflection from the two surfaces of
the soap film.

8. If we are to observe interference in a thin film, why must
the film not be very thick (with thickness only on the order
of a few wavelengths)?

9. A lens with outer radius of curvature R and index of refrac-
tion n rests on a flat glass plate. The combination is

4.

1. illuminated with white light from above and observed from
above. Is there a dark spot or a light spot at the center of
the lens? What does it mean if the observed rings are
noncircular?

10. Why is the lens on a good-quality camera coated with a
thin film?

11. Why is it so much easier to perform interference experi-
ments with a laser than with an ordinary light source?

12. Suppose that reflected white light is used to observe a thin
transparent coating on glass as the coating material is
gradually deposited by evaporation in a vacuum. Describe
color changes that might occur during the process of
building up the thickness of the coating.

13. In our discussion of thin-film interference, we looked at
light reflecting from a thin film. What If? Consider one light
ray, the direct ray, which transmits through the film
without reflecting. Consider a second ray, the reflected ray,
that transmits through the first surface, reflects from the
second, reflects again from the first, and then transmits
out into the air, parallel to the direct ray. For normal
incidence, how thick must the film be, in terms of the
wavelength of light, for the outgoing rays to interfere
destructively? Is it the same thickness as for reflected
destructive interference?

14. Suppose you are watching television by connection to an
antenna rather than a cable system. If an airplane flies
near your location, you may notice wavering ghost images
in the television picture. What might cause this?

Q U E S T I O N S

Section 37.1 Conditions for Interference

Section 37.2 Young’s Double-Slit Experiment

1. A laser beam (& # 632.8 nm) is incident on two slits
0.200 mm apart. How far apart are the bright interference
fringes on a screen 5.00 m away from the double slits?

2. A Young’s interference experiment is performed with
monochromatic light. The separation between the slits
is 0.500 mm, and the interference pattern on a screen
3.30 m away shows the first side maximum 3.40 mm from
the center of the pattern. What is the wavelength?

Two radio antennas separated by 300 m as shown in
Figure P37.3 simultaneously broadcast identical signals at

3.

Note: Problems 8, 9, 10, and 12 in Chapter 18 can be
assigned with these sections.

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide

= coached solution with hints available at http://www.pse6.com = computer useful in solving problem

= paired numerical and symbolic problems

P R O B L E M S

400 m

1000 m
300 m

Figure P37.3
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the same wavelength. A radio in a car traveling due north
receives the signals. (a) If the car is at the position of the
second maximum, what is the wavelength of the signals?
(b) How much farther must the car travel to encounter
the next minimum in reception? (Note: Do not use the
small-angle approximation in this problem.)

4. In a location where the speed of sound is 354 m/s, a
2 000-Hz sound wave impinges on two slits 30.0 cm apart.
(a) At what angle is the first maximum located? (b) What
If? If the sound wave is replaced by 3.00-cm microwaves,
what slit separation gives the same angle for the first
maximum? (c) What If? If the slit separation is 1.00 3m,
what frequency of light gives the same first maximum
angle?

Young’s double-slit experiment is performed with
589-nm light and a distance of 2.00 m between the slits
and the screen. The tenth interference minimum is
observed 7.26 mm from the central maximum. Determine
the spacing of the slits.

6. The two speakers of a boom box are 35.0 cm apart. A single
oscillator makes the speakers vibrate in phase at a frequency
of 2.00 kHz. At what angles, measured from the perpen-
dicular bisector of the line joining the speakers, would a
distant observer hear maximum sound intensity? Minimum
sound intensity? (Take the speed of sound as 340 m/s.)

Two narrow, parallel slits separated by 0.250 mm are
illuminated by green light (& # 546.1 nm). The interfer-
ence pattern is observed on a screen 1.20 m away from the
plane of the slits. Calculate the distance (a) from the
central maximum to the first bright region on either side
of the central maximum and (b) between the first and
second dark bands.

8. Light with wavelength 442 nm passes through a double-slit
system that has a slit separation d # 0.400 mm. Determine
how far away a screen must be placed in order that a dark
fringe appear directly opposite both slits, with just one
bright fringe between them.

9. A riverside warehouse has two open doors as shown in
Figure P37.9. Its walls are lined with sound-absorbing
material. A boat on the river sounds its horn. To person A
the sound is loud and clear. To person B the sound is
barely audible. The principal wavelength of the sound
waves is 3.00 m. Assuming person B is at the position of
the first minimum, determine the distance between the
doors, center to center.

7.

5.

10. Two slits are separated by 0.320 mm. A beam of 500-nm
light strikes the slits, producing an interference pattern.
Determine the number of maxima observed in the angular
range $ 30.0° 2 ! 2 30.0°.

11. Young’s double-slit experiment underlies the Instrument
Landing System used to guide aircraft to safe landings when
the visibility is poor. Although real systems are more
complicated than the example described here, they
operate on the same principles. A pilot is trying to align
her plane with a runway, as suggested in Figure P37.11a.
Two radio antennas A1 and A2 are positioned adjacent to
the runway, separated by 40.0 m. The antennas broadcast
unmodulated coherent radio waves at 30.0 MHz. (a) Find
the wavelength of the waves. The pilot “locks onto” the
strong signal radiated along an interference maximum,
and steers the plane to keep the received signal strong. If
she has found the central maximum, the plane will have
just the right heading to land when it reaches the runway.
(b) What If? Suppose instead that the plane is flying along
the first side maximum (Fig. P37.11b). How far to the side
of the runway centerline will the plane be when it is
2.00 km from the antennas? (c) It is possible to tell the
pilot she is on the wrong maximum by sending out two
signals from each antenna and equipping the aircraft with
a two-channel receiver. The ratio of the two frequencies
must not be the ratio of small integers (such as 3/4).
Explain how this two-frequency system would work, and
why it would not necessarily work if the frequencies were
related by an integer ratio.

Figure P37.9

20.0 m

150 m

A

B

Figure P37.11

(a)

A1

A2

A1

A2

40 m

(b)

12. A student holds a laser that emits light of wavelength
633 nm. The beam passes though a pair of slits separated
by 0.300 mm, in a glass plate attached to the front of the
laser. The beam then falls perpendicularly on a screen,
creating an interference pattern on it. The student begins
to walk directly toward the screen at 3.00 m/s. The central
maximum on the screen is stationary. Find the speed of
the first-order maxima on the screen.
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In Figure 37.5 let L # 1.20 m and d # 0.120 mm and
assume that the slit system is illuminated with monochro-
matic 500-nm light. Calculate the phase difference
between the two wave fronts arriving at P when (a) ! #
0.500° and (b) y # 5.00 mm. (c) What is the value of ! for
which the phase difference is 0.333 rad? (d) What is the
value of ! for which the path difference is &/4?

14. Coherent light rays of wavelength & strike a pair of slits
separated by distance d at an angle !1 as shown in Figure
P37.14. Assume an interference maximum is formed at
an angle !2 a great distance from the slits. Show that
d(sin!2 $ sin!1) # m&, where m is an integer.

13. separated by a distance d from its neighbor. (a) Show that
the time-averaged intensity as a function of the angle ! is

(b) Determine the ratio of the intensities of the primary
and secondary maxima.

Section 37.4 Phasor Addition of Waves

21. Marie Cornu, a physicist at the Polytechnic Institute in
Paris, invented phasors in about 1880. This problem helps
you to see their utility. Find the amplitude and phase
constant of the sum of two waves represented by the
expressions

E1 # (12.0 kN/C) sin(15x $ 4.5t)

and E2 # (12.0 kN/C) sin(15x $ 4.5t ( 704)

(a) by using a trigonometric identity (as from Appendix
B), and (b) by representing the waves by phasors. (c) Find
the amplitude and phase constant of the sum of the three
waves represented by

E1 # (12.0 kN/C) sin(15x $ 4.5t ( 704),

E2 # (15.5 kN/C) sin(15x $ 4.5t $ 804),

and E3 # (17.0 kN/C) sin(15x $ 4.5t ( 1604)

22. The electric fields from three coherent sources are
described by E1 # E0 sin -t, E2 # E0 sin(-t ( .), and 
E3 # E0 sin(-t ( 2.). Let the resultant field be repre-
sented by EP # ER sin(-t ( 1). Use phasors to find ER and
1 when (a) . # 20.0°, (b) . # 60.0°, and (c) . # 120°.
(d) Repeat when . # (3//2) rad.

Determine the resultant of the two waves given by
E1 # 6.0 sin(100 /t) and E2 # 8.0 sin(100 /t ( //2).

24. Suppose the slit openings in a Young’s double-slit experi-
ment have different sizes so that the electric fields 
and intensities from each slit are different. With 
E1 # E01 sin(-t) and E 2 # E02 sin(-t ( .), show that the
resultant electric field is E # E 0 sin(-t ( !), where

and

25. Use phasors to find the resultant (magnitude and phase
angle) of two fields represented by E1 # 12 sin -t and
E2 # 18 sin(-t ( 60°). (Note that in this case the ampli-
tudes of the two fields are unequal.)

26. Two coherent waves are described by

E1 # E0 sin " 2/x1

&
$ 2/ft (

/

6 #

sin ! #
502 sin .

50

E0 # E01
2 ( E02

2 ( 2E 01E 02 cos .

23.

Note: Problems 4, 5, and 6 in Chapter 18 can be assigned
with this section.

I(!) # I max  $1 ( 2 cos " 2/d sin !

& #%2

Figure P37.14
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d

2

θ

θ

15. In a double-slit arrangement of Figure 37.5, d # 0.150 mm,
L # 140 cm, & # 643 nm, and y # 1.80 cm. (a) What is the
path difference " for the rays from the two slits arriving at
P ? (b) Express this path difference in terms of &. (c) Does
P correspond to a maximum, a minimum, or an interme-
diate condition?

Section 37.3 Intensity Distribution of the
Double-Slit Interference Pattern

16. The intensity on the screen at a certain point in a double-
slit interference pattern is 64.0% of the maximum value.
(a) What minimum phase difference (in radians) between
sources produces this result? (b) Express this phase differ-
ence as a path difference for 486.1-nm light.

In Figure 37.5, let L # 120 cm and d # 0.250 cm.
The slits are illuminated with coherent 600-nm light.
Calculate the distance y above the central maximum for
which the average intensity on the screen is 75.0% of the
maximum.

18. Two slits are separated by 0.180 mm. An interference
pattern is formed on a screen 80.0 cm away by 656.3-nm
light. Calculate the fraction of the maximum intensity
0.600 cm above the central maximum.

Two narrow parallel slits separated by 0.850 mm are illumi-
nated by 600-nm light, and the viewing screen is 2.80 m
away from the slits. (a) What is the phase difference
between the two interfering waves on a screen at a point
2.50 mm from the central bright fringe? (b) What is the
ratio of the intensity at this point to the intensity at the
center of a bright fringe?

20. Monochromatic coherent light of amplitude E0 and angu-
lar frequency - passes through three parallel slits each

19.

17.



Determine the relationship between x1 and x2 that
produces constructive interference when the two waves are
superposed.

27. When illuminated, four equally spaced parallel slits act as
multiple coherent sources, each differing in phase from
the adjacent one by an angle .. Use a phasor diagram to
determine the smallest value of . for which the resultant
of the four waves (assumed to be of equal amplitude) is
zero.

28. Sketch a phasor diagram to illustrate the resultant of E1 #
E01 sin -t and E2 # E02 sin(-t ( .), where E02 # 1.50E01
and //6 6 . 6 //3. Use the sketch and the law of cosines
to show that, for two coherent waves, the resultant inten-
sity can be written in the form .

Consider N coherent sources described as follows: E 1 #
E0sin(-t ( .), E2 # E0sin(-t ( 2.), E3 # E0sin(-t ( 3.),
. . . , EN # E0 sin(-t ( N.). Find the minimum value of
. for which ER # E1 ( E2 ( E3 ( ) ) ) ( EN is zero.

Section 37.5 Change of Phase Due to Reflection

Section 37.6 Interference in Thin Films

30. A soap bubble (n # 1.33) is floating in air. If the thickness
of the bubble wall is 115 nm, what is the wavelength of the
light that is most strongly reflected?

An oil film (n # 1.45) floating on water is illuminated by
white light at normal incidence. The film is 280 nm thick.
Find (a) the color of the light in the visible spectrum most
strongly reflected and (b) the color of the light in the
spectrum most strongly transmitted. Explain your reasoning.

32. A thin film of oil (n # 1.25) is located on a smooth wet
pavement. When viewed perpendicular to the pavement,
the film reflects most strongly red light at 640 nm and
reflects no blue light at 512 nm. How thick is the oil film?

33. A possible means for making an airplane invisible to radar
is to coat the plane with an antireflective polymer. If radar
waves have a wavelength of 3.00 cm and the index of
refraction of the polymer is n # 1.50, how thick would you
make the coating?

34. A material having an index of refraction of 1.30 is used as
an antireflective coating on a piece of glass (n # 1.50).
What should be the minimum thickness of this film in
order to minimize reflection of 500-nm light?

35. A film of MgF2 (n # 1.38) having thickness 1.00 * 10$5 cm
is used to coat a camera lens. Are any wavelengths in the
visible spectrum intensified in the reflected light?

36. Astronomers observe the chromosphere of the Sun with a
filter that passes the red hydrogen spectral line of wave-
length 656.3 nm, called the H1 line. The filter consists of a
transparent dielectric of thickness d held between two
partially aluminized glass plates. The filter is held at a
constant temperature. (a) Find the minimum value of d
that produces maximum transmission of perpendicular H1

light, if the dielectric has an index of refraction of 1.378.
(b) What If? If the temperature of the filter increases

31.

29.
IR # I1 ( I2 ( 2 I1I2 cos .

E2 # E0 sin " 2/x2

&
$ 2/ft (

/

8 #
above the normal value, what happens to the transmitted
wavelength? (Its index of refraction does not change
significantly.) (c) The dielectric will also pass what near-
visible wavelength? One of the glass plates is colored red to
absorb this light.

37. A beam of 580-nm light passes through two closely spaced
glass plates, as shown in Figure P37.37. For what minimum
nonzero value of the plate separation d is the transmitted
light bright?
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Figure P37.37

Figure P37.39 Problems 39 and 40.

d

38. When a liquid is introduced into the air space between the
lens and the plate in a Newton’s-rings apparatus, the
diameter of the tenth ring changes from 1.50 to 1.31 cm.
Find the index of refraction of the liquid.

An air wedge is formed between two glass plates
separated at one edge by a very fine wire, as shown in
Figure P37.39. When the wedge is illuminated from above
by 600-nm light and viewed from above, 30 dark fringes
are observed. Calculate the radius of the wire.

39.

40. Two glass plates 10.0 cm long are in contact at one end
and separated at the other end by a thread 0.050 0 mm
in diameter (Fig. P37.39). Light containing the two
wavelengths 400 nm and 600 nm is incident perpendicu-
larly and viewed by reflection. At what distance from the
contact point is the next dark fringe?

Section 37.7 The Michelson Interferometer

Mirror M1 in Figure 37.22 is displaced a distance ,L.
During this displacement, 250 fringe reversals (formation
of successive dark or bright bands) are counted. The light
being used has a wavelength of 632.8 nm. Calculate the
displacement ,L.

42. Monochromatic light is beamed into a Michelson inter-
ferometer. The movable mirror is displaced 0.382 mm,
causing the interferometer pattern to reproduce itself
1 700 times. Determine the wavelength of the light. What
color is it?

43. One leg of a Michelson interferometer contains an evacu-
ated cylinder of length L, having glass plates on each end.

41.
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A gas is slowly leaked into the cylinder until a pressure of
1 atm is reached. If N bright fringes pass on the screen
when light of wavelength & is used, what is the index of
refraction of the gas?

Additional Problems

44. In the What If? section of Example 37.2, it was claimed
that overlapping fringes in a two-slit interference pattern
for two different wavelengths obey the following relation-
ship even for large values of the angle !:

(a) Prove this assertion. (b) Using the data in Example
37.2, find the value of y on the screen at which the fringes
from the two wavelengths first coincide.

45. One radio transmitter A operating at 60.0 MHz is 10.0 m
from another similar transmitter B that is 180° out of
phase with A. How far must an observer move from A
toward B along the line connecting A and B to reach the
nearest point where the two beams are in phase?

46. Review problem. This problem extends the result of
Problem 12 in Chapter 18. Figure P37.46 shows two
adjacent vibrating balls dipping into a tank of water. At
distant points they produce an interference pattern of
water waves, as shown in Figure 37.3. Let & represent the
wavelength of the ripples. Show that the two sources
produce a standing wave along the line segment, of length
d , between them. In terms of & and d, find the number of
nodes and the number of antinodes in the standing wave.
Find the number of zones of constructive and of destruc-
tive interference in the interference pattern far away from
the sources. Each line of destructive interference springs
from a node in the standing wave and each line of
constructive interference springs from an antinode.

&

&+
#

m+

m

of constructive interference. (b) To make the angles in
the interference pattern easy to measure with a plastic
protractor, you should use an electromagnetic wave with
frequency of what order of magnitude? How is this wave
classified on the electromagnetic spectrum?

48. In a Young’s double-slit experiment using light of wave-
length &, a thin piece of Plexiglas having index of refrac-
tion n covers one of the slits. If the center point on the
screen is a dark spot instead of a bright spot, what is the
minimum thickness of the Plexiglas?

49. Review problem. A flat piece of glass is held stationary and
horizontal above the flat top end of a 10.0-cm-long vertical
metal rod that has its lower end rigidly fixed. The thin film
of air between the rod and glass is observed to be bright by
reflected light when it is illuminated by light of wavelength
500 nm. As the temperature is slowly increased by 25.0°C,
the film changes from bright to dark and back to bright
200 times. What is the coefficient of linear expansion of
the metal?

50. A certain crude oil has an index of refraction of 1.25. A
ship dumps 1.00 m3 of this oil into the ocean, and the oil
spreads into a thin uniform slick. If the film produces a
first-order maximum of light of wavelength 500 nm
normally incident on it, how much surface area of the
ocean does the oil slick cover? Assume that the index of
refraction of the ocean water is 1.34.

Astronomers observe a 60.0-MHz radio source both
directly and by reflection from the sea. If the receiving
dish is 20.0 m above sea level, what is the angle of the
radio source above the horizon at first maximum?

52. Interference effects are produced at point P on a screen as
a result of direct rays from a 500-nm source and reflected
rays from the mirror, as shown in Figure P37.52. Assume
the source is 100 m to the left of the screen and 1.00 cm
above the mirror. Find the distance y to the first dark band
above the mirror.

51.
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47. Raise your hand and hold it flat. Think of the space
between your index finger and your middle finger as one
slit, and think of the space between middle finger and ring
finger as a second slit. (a) Consider the interference
resulting from sending coherent visible light perpendicu-
larly through this pair of openings. Compute an order-of-
magnitude estimate for the angle between adjacent zones

53. The waves from a radio station can reach a home receiver
by two paths. One is a straight-line path from transmitter
to home, a distance of 30.0 km. The second path is by
reflection from the ionosphere (a layer of ionized air
molecules high in the atmosphere). Assume this reflection
takes place at a point midway between receiver and
transmitter and that the wavelength broadcast by the radio
station is 350 m. Find the minimum height of the
ionospheric layer that could produce destructive interfer-
ence between the direct and reflected beams. (Assume
that no phase change occurs on reflection.)



the transmitter and indirectly from signals that reflect from
the ground. Assume that the ground is level between the
transmitter and receiver and that a 180° phase shift occurs
upon reflection. Determine the longest wavelengths that
interfere (a) constructively and (b) destructively.

60. A piece of transparent material having an index of refrac-
tion n is cut into the shape of a wedge as shown in Figure
P37.60. The angle of the wedge is small. Monochromatic
light of wavelength & is normally incident from above, and
viewed from above. Let h represent the height of the
wedge and ! its width. Show that bright fringes occur at
the positions x # &!(m ( )/2hn and dark fringes occur at
the positions x = &!m/2hn, where m # 0, 1, 2, . . . and x
is measured as shown.

1
2

1202 C H A P T E R  37 •  Interference of Light Waves

Figure P37.59

Figure P37.60

Figure P37.61
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54. Many cells are transparent and colorless. Structures of
great interest in biology and medicine can be practically
invisible to ordinary microscopy. An interference microscope
reveals a difference in index of refraction as a shift in inter-
ference fringes, to indicate the size and shape of cell
structures. The idea is exemplified in the following
problem: An air wedge is formed between two glass plates in
contact along one edge and slightly separated at the oppo-
site edge. When the plates are illuminated with monochro-
matic light from above, the reflected light has 85 dark
fringes. Calculate the number of dark fringes that appear
if water (n # 1.33) replaces the air between the plates.

Measurements are made of the intensity distribution in a
Young’s interference pattern (see Fig. 37.7). At a particu-
lar value of y, it is found that I/Imax # 0.810 when 600-nm
light is used. What wavelength of light should be used to
reduce the relative intensity at the same location to 64.0%
of the maximum intensity?

56. Our discussion of the techniques for determining con-
structive and destructive interference by reflection from a
thin film in air has been confined to rays striking the film
at nearly normal incidence. What If? Assume that a ray is
incident at an angle of 30.0° (relative to the normal) on a
film with index of refraction 1.38. Calculate the minimum
thickness for constructive interference of sodium light
with a wavelength of 590 nm.

The condition for constructive interference by reflection
from a thin film in air as developed in Section 37.6
assumes nearly normal incidence. What If? Show that if
the light is incident on the film at a nonzero angle .1
(relative to the normal), then the condition for construc-
tive interference is 2nt cos !2 # (m ( )&, where !2 is the
angle of refraction.

58. (a) Both sides of a uniform film that has index of refrac-
tion n and thickness d are in contact with air. For normal
incidence of light, an intensity minimum is observed in the
reflected light at &2 and an intensity maximum is observed
at &1, where &1 ' &2. Assuming that no intensity minima
are observed between &1 and &2, show that the integer m in
Equations 37.16 and 37.17 is given by m # &1/2(&1 $ &2).
(b) Determine the thickness of the film, assuming
n # 1.40, &1 # 500 nm, and &2 # 370 nm.

59. Figure P37.59 shows a radio-wave transmitter and a receiver
separated by a distance d and both a distance h above the
ground. The receiver can receive signals both directly from

1
2

57.

55.

Consider the double-slit arrangement shown in Figure
P37.61, where the slit separation is d and the slit to screen
distance is L. A sheet of transparent plastic having an
index of refraction n and thickness t is placed over the
upper slit. As a result, the central maximum of the inter-
ference pattern moves upward a distance y+. Find y+.

61.

62. A plano-convex lens has index of refraction n. The curved
side of the lens has radius of curvature R and rests on a flat
glass surface of the same index of refraction, with a film of
index nfilm between them, as shown in Fig. 37.18a. The lens
is illuminated from above by light of wavelength &. Show that
the dark Newton’s rings have radii given approximately by

where m is an integer and r is much less than R.

r ! √ m&R  

n film
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63. In a Newton’s-rings experiment, a plano-convex glass
(n # 1.52) lens having diameter 10.0 cm is placed on a flat
plate as shown in Figure 37.18a. When 650-nm light is inci-
dent normally, 55 bright rings are observed with the last
one right on the edge of the lens. (a) What is the radius of
curvature of the convex surface of the lens? (b) What is
the focal length of the lens?

64. A plano-concave lens having index of refraction 1.50 is
placed on a flat glass plate, as shown in Figure P37.64. Its
curved surface, with radius of curvature 8.00 m, is on the
bottom. The lens is illuminated from above with yellow
sodium light of wavelength 589 nm, and a series of con-
centric bright and dark rings is observed by reflection. The
interference pattern has a dark spot at the center, sur-
rounded by 50 dark rings, of which the largest is at the
outer edge of the lens. (a) What is the thickness of the air
layer at the center of the interference pattern? (b) Calcu-
late the radius of the outermost dark ring. (c) Find the 
focal length of the lens.

(a) Locate the first red (& # 680 nm) interference band.
(b) Determine the film thickness at the positions of the
violet and red bands. (c) What is the wedge angle of the
film?

68. Compact disc (CD) and digital video disc (DVD) players
use interference to generate a strong signal from a tiny
bump. The depth of a pit is chosen to be one quarter of the
wavelength of the laser light used to read the disc. Then
light reflected from the pit and light reflected from the ad-
joining flat differ in path length traveled by one-half 
wavelength, to interfere destructively at the detector. As the
disc rotates, the light intensity drops significantly every time
light is reflected from near a pit edge. The space between
the leading and trailing edges of a pit determines the time
between the fluctuations. The series of time intervals is de-
coded into a series of zeros and ones that carries the stored
information. Assume that infrared light with a wavelength
of 780 nm in vacuum is used in a CD player. The disc is
coated with plastic having an index of refraction of 1.50.
What should be the depth of each pit? A DVD player uses
light of a shorter wavelength, and the pit dimensions are
correspondingly smaller. This is one factor resulting in
greater storage capacity on a DVD compared to a CD.

69. Interference fringes are produced using Lloyd’s mirror
and a 606-nm source as shown in Figure 37.15. Fringes
1.20 mm apart are formed on a screen 2.00 m from the
real source S. Find the vertical distance h of the source
above the reflecting surface.

70. Monochromatic light of wavelength 620 nm passes
through a very narrow slit S and then strikes a screen in
which are two parallel slits, S1 and S2, as in Figure P37.70.
Slit S1 is directly in line with S and at a distance of
L # 1.20 m away from S, whereas S2 is displaced a distance
d to one side. The light is detected at point P on a second
screen, equidistant from S1 and S2. When either one of the
slits S1 and S2 is open, equal light intensities are measured
at point P. When both are open, the intensity is three
times larger. Find the minimum possible value for the slit
separation d.

Figure P37.64

Figure P37.65

Figure P37.70
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65. A plano-convex lens having a radius of curvature of
r # 4.00 m is placed on a concave glass surface whose radius
of curvature is R # 12.0 m, as shown in Figure P37.65.
Determine the radius of the 100th bright ring, assuming
500-nm light is incident normal to the flat surface of the
lens.

66. Use phasor addition to find the resultant amplitude and
phase constant when the following three harmonic
functions are combined: E1 # sin(-t ( //6), E2 #
3.0 sin(-t ( 7//2), and E3 # 6.0 sin(-t ( 4//3).

67. A soap film (n # 1.33) is contained within a rectangular
wire frame. The frame is held vertically so that the film
drains downward and forms a wedge with flat faces. The
thickness of the film at the top is essentially zero. The film
is viewed in reflected white light with near-normal
incidence, and the first violet (& # 420 nm) interference
band is observed 3.00 cm from the top edge of the film.

71. Slit 1 of a double slit is wider than slit 2, so that the light
from 1 has an amplitude 3.00 times that of the light from
2. Show that for this situation, Equation 37.11 is replaced
by the equation I # (4Imax/9)(1 ( 3 cos2 ./2).



Answers to Quick Quizzes

37.1 (b). The geometrical construction shown in Figure 37.5 is
important for developing the mathematical description of
interference. It is subject to misinterpretation, however, as
it might suggest that the interference can only occur at the
position of the screen. A better diagram for this situation is
Figure 37.2, which shows paths of destructive and construc-
tive interference all the way from the slits to the screen.
These paths would be made visible by the smoke.

37.2 (c). Equation 37.5, which shows positions y proportional
to order number m, is only valid for small angles.

37.3 (c). Equation 37.5 shows that decreasing & or L will bring
the fringes closer together. Immersing the apparatus in
water decreases the wavelength so that the fringes move
closer together.

37.4 (c). Conservation of energy cannot be violated. While
there is no energy arriving at the location of a dark
fringe, there is more energy arriving at the location of a
bright fringe than there would be without the double slit.

37.5 The graph is shown in the next column. The width of the
primary maxima is slightly narrower than the N # 5
primary width but wider than the N # 10 primary width.
Because N # 6, the secondary maxima are as intense
as the primary maxima.

1
36

37.6 (a). One of the materials has a higher index of refraction
than water, the other lower. For the material with a
higher index of refraction, there is a 180° phase shift for
the light reflected from the upper surface, but no such
phase change from the lower surface, because the index
of refraction for water on the other side is lower than
that of the film. Thus, the two reflections are out of
phase and interfere destructively.

37.7 (a). At the left edge, the air wedge has zero thickness and
the only contribution to the interference is the 180°
phase shift as the light reflects from the upper surface of
the glass slide.
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Diffraction Patterns 
and Polarization

CHAPTE R OUTL I N E

38.1 Introduction to Diffraction
Patterns

38.2 Diffraction Patterns from
Narrow Slits

38.3 Resolution of Single-Slit and
Circular Apertures

38.4 The Diffraction Grating

38.5 Diffraction of X-Rays by
Crystals

38.6 Polarization of Light Waves

! The Hubble Space Telescope does its viewing above the atmosphere and does not suffer
from the atmospheric blurring, caused by air turbulence, that plagues ground-based tele-
scopes. Despite this advantage, it does have limitations due to diffraction effects. In this
chapter we show how the wave nature of light limits the ability of any optical system to distin-
guish between closely spaced objects. (©Denis Scott/CORBIS)

Chapter 38
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When plane light waves pass through a small aperture in an opaque barrier, the
aperture acts as if it were a point source of light, with waves entering the shadow region
behind the barrier. This phenomenon, known as diffraction, can be described only
with a wave model for light, as discussed in Section 35.3. In this chapter, we investigate
the features of the diffraction pattern that occurs when the light from the aperture is
allowed to fall upon a screen.

In Chapter 34, we learned that electromagnetic waves are transverse. That is, the
electric and magnetic field vectors associated with electromagnetic waves are perpen-
dicular to the direction of wave propagation. In this chapter, we show that under
certain conditions these transverse waves with electric field vectors in all possible
transverse directions can be polarized in various ways. This means that only certain
directions of the electric field vectors are present in the polarized wave.

38.1 Introduction to Diffraction Patterns

In Section 35.3 we discussed the fact that light of wavelength comparable to or larger
than the width of a slit spreads out in all forward directions upon passing through the
slit. We call this phenomenon diffraction. This behavior indicates that light, once it has
passed through a narrow slit, spreads beyond the narrow path defined by the slit into
regions that would be in shadow if light traveled in straight lines. Other waves, such as
sound waves and water waves, also have this property of spreading when passing
through apertures or by sharp edges.

We might expect that the light passing through a small opening would simply result
in a broad region of light on a screen, due to the spreading of the light as it passes
through the opening. We find something more interesting, however. A diffraction
pattern consisting of light and dark areas is observed, somewhat similar to the interfer-
ence patterns discussed earlier. For example, when a narrow slit is placed between a
distant light source (or a laser beam) and a screen, the light produces a diffraction
pattern like that in Figure 38.1. The pattern consists of a broad, intense central band
(called the central maximum), flanked by a series of narrower, less intense additional
bands (called side maxima or secondary maxima) and a series of intervening dark
bands (or minima). Figure 38.2 shows a diffraction pattern associated with light passing
by the edge of an object. Again we see bright and dark fringes, which is reminiscent of an
interference pattern.

Figure 38.3 shows a diffraction pattern associated with the shadow of a penny. A bright
spot occurs at the center, and circular fringes extend outward from the shadow’s edge. We
can explain the central bright spot only by using the wave theory of light, which predicts
constructive interference at this point. From the viewpoint of geometric optics (in which
light is viewed as rays traveling in straight lines), we expect the center of the shadow to be
dark because that part of the viewing screen is completely shielded by the penny.

It is interesting to point out an historical incident that occurred shortly before the
central bright spot was first observed. One of the supporters of geometric optics,

Figure 38.1 The diffraction
pattern that appears on a screen
when light passes through a narrow
vertical slit. The pattern consists of
a broad central fringe and a series
of less intense and narrower side
fringes.



Simeon Poisson, argued that if Augustin Fresnel’s wave theory of light were valid, then
a central bright spot should be observed in the shadow of a circular object illuminated
by a point source of light. To Poisson’s astonishment, the spot was observed by
Dominique Arago shortly thereafter. Thus, Poisson’s prediction reinforced the wave
theory rather than disproving it.

38.2 Diffraction Patterns from Narrow Slits

Let us consider a common situation, that of light passing through a narrow opening
modeled as a slit, and projected onto a screen. To simplify our analysis, we assume that
the observing screen is far from the slit, so that the rays reaching the screen are
approximately parallel. This can also be achieved experimentally by using a converging
lens to focus the parallel rays on a nearby screen. In this model, the pattern on the
screen is called a Fraunhofer diffraction pattern.1

Figure 38.4a shows light entering a single slit from the left and diffracting as it
propagates toward a screen. Figure 38.4b is a photograph of a single-slit Fraunhofer
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Figure 38.2 Light from a small source passes by the edge of an opaque object and con-
tinues on to a screen. A diffraction pattern consisting of bright and dark fringes
appears on the screen in the region above the edge of the object.

! PITFALL PREVENTION 
38.1 Diffraction vs.

Diffraction Pattern
Diffraction refers to the general
behavior of waves spreading out
as they pass through a slit. We
used diffraction in explaining the
existence of an interference pat-
tern in Chapter 37. A diffraction
pattern is actually a misnomer but
is deeply entrenched in the lan-
guage of physics. The diffraction
pattern seen on a screen when a
single slit is illuminated is really
another interference pattern.
The interference is between parts
of the incident light illuminating
different regions of the slit.

Figure 38.3 Diffraction pattern
created by the illumination of a
penny, with the penny positioned
midway between screen and light
source. Note the bright spot at the
center.
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1 If the screen is brought close to the slit (and no lens is used), the pattern is a Fresnel diffraction pat-
tern. The Fresnel pattern is more difficult to analyze, so we shall restrict our discussion to Fraunhofer
diffraction.

Slit

Incoming
wave

Viewing screen
(a)

θ

Active Figure 38.4 (a) Fraunhofer
diffraction pattern of a single slit. The
pattern consists of a central bright fringe
flanked by much weaker maxima
alternating with dark fringes. (Drawing not
to scale.) (b) Photograph of a single-slit
Fraunhofer diffraction pattern.
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At the Active Figures link
at http://www.pse6.com, you
can adjust the slit width and
the wavelength of the light to
see the effect on the diffraction
pattern.

(b)



diffraction pattern. A bright fringe is observed along the axis at ! " 0, with alternating
dark and bright fringes on each side of the central bright fringe.

Until now, we have assumed that slits are point sources of light. In this section, we
abandon that assumption and see how the finite width of slits is the basis for under-
standing Fraunhofer diffraction. We can deduce some important features of this phe-
nomenon by examining waves coming from various portions of the slit, as shown in
Figure 38.5. According to Huygens’s principle, each portion of the slit acts as a
source of light waves. Hence, light from one portion of the slit can interfere with
light from another portion, and the resultant light intensity on a viewing screen
depends on the direction !. Based on this analysis, we recognize that a diffraction
pattern is actually an interference pattern, in which the different sources of light are
different portions of the single slit!

To analyze the diffraction pattern, it is convenient to divide the slit into two halves,
as shown in Figure 38.5. Keeping in mind that all the waves are in phase as they leave
the slit, consider rays 1 and 3. As these two rays travel toward a viewing screen far to the
right of the figure, ray 1 travels farther than ray 3 by an amount equal to the path dif-
ference (a/2)sin!, where a is the width of the slit. Similarly, the path difference
between rays 2 and 4 is also (a/2) sin !, as is that between rays 3 and 5. If this path dif-
ference is exactly half a wavelength (corresponding to a phase difference of 180°),
then the two waves cancel each other and destructive interference results. If this is true
for two such rays, then it is true for any two rays that originate at points separated by
half the slit width because the phase difference between two such points is 180°.
Therefore, waves from the upper half of the slit interfere destructively with waves from
the lower half when

or when

If we divide the slit into four equal parts and use similar reasoning, we find that the
viewing screen is also dark when

Likewise, we can divide the slit into six equal parts and show that darkness occurs on
the screen when

Therefore, the general condition for destructive interference is

(38.1)

This equation gives the values of !dark for which the diffraction pattern has zero
light intensity—that is, when a dark fringe is formed. However, it tells us nothing
about the variation in light intensity along the screen. The general features of the
intensity distribution are shown in Figure 38.6. A broad central bright fringe is
observed; this fringe is flanked by much weaker bright fringes alternating with dark
fringes. The various dark fringes occur at the values of !dark that satisfy Equation
38.1. Each bright-fringe peak lies approximately halfway between its bordering dark-
fringe minima. Note that the central bright maximum is twice as wide as the sec-
ondary maxima.

m " #1, #2, #3, $ $ $sin !dark " m  
%

a

sin ! " #
3%

a

sin ! " #
2%

a

sin ! " #
%

a

a
2

 sin ! " #
%

2
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a/2

a

a/2

a
2 sin

3

2

5

4

1

θ

θ

Figure 38.5 Paths of light rays that
encounter a narrow slit of width a
and diffract toward a screen in the
direction described by angle !.
Each portion of the slit acts as a
point source of light waves. The
path difference between rays 1 and
3, rays 2 and 4, or rays 3 and 5 is
(a/2) sin !. (Drawing not to scale.)

! PITFALL PREVENTION 
38.2 Similar Equation

Warning!
Equation 38.1 has exactly the
same form as Equation 37.2, with
d, the slit separation, used in
Equation 37.2 and a, the slit
width, in Equation 38.1. How-
ever, Equation 37.2 describes the
bright regions in a two-slit inter-
ference pattern while Equation
38.1 describes the dark regions in
a single-slit diffraction pattern.
Furthermore, m " 0 does not
represent a dark fringe in the dif-
fraction pattern.

Condition for destructive
interference for a single slit
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Quick Quiz 38.1 Suppose the slit width in Figure 38.6 is made half as wide.
The central bright fringe (a) becomes wider (b) remains the same (c) becomes narrower.

Quick Quiz 38.2 If a classroom door is open slightly, you can hear sounds
coming from the hallway. Yet you cannot see what is happening in the hallway. Why is
there this difference? (a) Light waves do not diffract through the single slit of the open
doorway. (b) Sound waves can pass through the walls, but light waves cannot. (c) The
open door is a small slit for sound waves, but a large slit for light waves. (d) The open
door is a large slit for sound waves, but a small slit for light waves.

θ

sin   dark = 2  /a

sin   dark =   /a

sin   dark = –  /a

sin   dark = –2  /aL

a 0

y2

y1

– y1

– y2

Viewing screen

θ

θ

θ

θ

λ

λ

λ

λ

Figure 38.6 Intensity distribution for a
Fraunhofer diffraction pattern from a
single slit of width a. The positions of two
minima on each side of the central
maximum are labeled. (Drawing not to
scale.)

Example 38.1 Where Are the Dark Fringes?

Light of wavelength 580 nm is incident on a slit having a
width of 0.300 mm. The viewing screen is 2.00 m from the
slit. Find the positions of the first dark fringes and the width
of the central bright fringe.

Solution The problem statement cues us to conceptualize
a single-slit diffraction pattern similar to that in Figure 38.6.
We categorize this as a straightforward application of our
discussion of single-slit diffraction patterns. To analyze the
problem, note that the two dark fringes that flank the
central bright fringe correspond to m " # 1 in Equation
38.1. Hence, we find that

From the triangle in Figure 38.6, note that tan !dark " y1/L.
Because !dark is very small, we can use the approximation
sin !dark ! tan !dark; thus, sin !dark ! y1/L. Therefore, the
positions of the first minima measured from the central axis
are given by

The positive and negative signs correspond to the dark
fringes on either side of the central bright fringe. Hence,
the width of the central bright fringe is equal to 2 " y1 " "

7.74 & 10'3 m " To finalize this problem,7.74 mm.

#3.87 & 10'3 m"

y 1 ! L sin ! dark " (2.00 m)(#1.933 & 10'3)

sin ! dark " #
%

a
" #

5.80 & 10'7 m
0.300 & 10'3 m

" #1.933 & 10'3

note that this value is much greater than the width of the
slit. We finalize further by exploring what happens if we
change the slit width.

What If? What if the slit width is increased by an order
of magnitude to 3.00 mm? What happens to the diffraction
pattern?

Answer Based on Equation 38.1, we expect that the angles
at which the dark bands appear will decrease as a increases.
Thus, the diffraction pattern narrows. For a " 3.00 mm, the
sines of the angles !dark for the m " # 1 dark fringes are

The positions of the first minima measured from the central
axis are given by

and the width of the central bright fringe is equal to 2 " y1 " "
7.74 & 10'4 m " 0.774 mm. Notice that this is smaller than
the width of the slit.

In general, for large values of a, the various maxima and
minima are so closely spaced that only a large central bright
area resembling the geometric image of the slit is observed.
This is very important in the performance of optical instru-
ments such as telescopes.

 " #3.87 & 10'4 m

y 1 ! L sin ! dark " (2.00 m)(#1.933 & 10'4)

sin ! dark " #
%

a
" #

5.80 & 10'7 m
3.00 & 10'3 m

" #1.933 & 10'4

Investigate the single-slit diffraction pattern at the Interactive Worked Example link at http://www.pse6.com.

Interactive



Intensity of Single-Slit Diffraction Patterns

We can use phasors to determine the light intensity distribution for a single-slit dif-
fraction pattern. Imagine a slit divided into a large number of small zones, each of
width (y as shown in Figure 38.7. Each zone acts as a source of coherent radiation,
and each contributes an incremental electric field of magnitude (E at some point
on the screen. We obtain the total electric field magnitude E at a point on the
screen by summing the contributions from all the zones. The light intensity at this
point is proportional to the square of the magnitude of the electric field (Section
37.3).

The incremental electric field magnitudes between adjacent zones are out of phase
with one another by an amount (), where the phase difference () is related to the
path difference (y sin! between adjacent zones by an expression given by an argument
similar to that leading to Equation 37.8:

(38.2)

To find the magnitude of the total electric field on the screen at any angle !, we
sum the incremental magnitudes (E due to each zone. For small values of !, we can
assume that all the (E values are the same. It is convenient to use phasor diagrams for
various angles, as in Figure 38.8. When ! " 0, all phasors are aligned as in Figure 38.8a
because all the waves from the various zones are in phase. In this case, the total electric
field at the center of the screen is E0 " N (E, where N is the number of zones. The
resultant magnitude ER at some small angle ! is shown in Figure 38.8b, where each
phasor differs in phase from an adjacent one by an amount (). In this case, ER is the

() "
2*

%
 (y sin !
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P

a

∆y

∆y sin
Viewing
screen

θ

θ

Figure 38.7 Fraunhofer diffraction
pattern for a single slit. The light inten-
sity at a distant screen is the resultant
of all the incremental electric field
magnitudes from zones of width (y.

= 3β π

ER

(a)

(b)

(c)

(d)

ER
ER

= 0β
= 2β π

Figure 38.8 Phasor diagrams for obtaining the various maxima and minima of a
single-slit diffraction pattern.



vector sum of the incremental magnitudes and hence is given by the length of the
chord. Therefore, ER + E0. The total phase difference ) between waves from the top
and bottom portions of the slit is

(38.3)

where a " N (y is the width of the slit.
As ! increases, the chain of phasors eventually forms the closed path shown in

Figure 38.8c. At this point, the vector sum is zero, and so ER " 0, corresponding to the
first minimum on the screen. Noting that ) " N () " 2* in this situation, we see from
Equation 38.3 that

That is, the first minimum in the diffraction pattern occurs where sin!dark " %/a ; this
is in agreement with Equation 38.1.

At larger values of !, the spiral chain of phasors tightens. For example, Figure
38.8d represents the situation corresponding to the second maximum, which occurs
when ) " 360° , 180° " 540° (3* rad). The second minimum (two complete circles,
not shown) corresponds to ) " 720° (4* rad), which satisfies the condition sin!dark "
2%/a.

We can obtain the total electric-field magnitude ER and light intensity I at any point
on the screen in Figure 38.7 by considering the limiting case in which (y becomes
infinitesimal (dy) and N approaches -. In this limit, the phasor chains in Figure 38.8
become the curve of Figure 38.9. The arc length of the curve is E0 because it is
the sum of the magnitudes of the phasors (which is the total electric field magnitude at
the center of the screen). From this figure, we see that at some angle !, the resultant
electric field magnitude ER on the screen is equal to the chord length. From the
triangle containing the angle )/2, we see that

where R is the radius of curvature. But the arc length E0 is equal to the product R),
where ) is measured in radians. Combining this information with the previous expres-
sion gives

Because the resultant light intensity I at a point on the screen is proportional to the
square of the magnitude ER , we find that

(38.4)

where Imax is the intensity at ! " 0 (the central maximum). Substituting the expression
for ) (Eq. 38.3) into Equation 38.4, we have

(38.5)

From this result, we see that minima occur when

*a sin! dark

%
" m*

I " I max # sin(*a sin!/%)
*a sin!/% $2

I " I max # sin()/2)
)/2 $2

ER " 2R sin 
)

2
" 2 % E0

) & sin 
)

2
" E0 # sin()/2)

)/2 $

sin 
)

2
"

ER /2
R

sin! dark "
%

a

2* "
2*

%
 a sin! dark

) " . () "
2*

%
 . (y sin! "

2*

%
 a sin!
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R

R

O

β

/2β

ER/2
ERθ

Figure 38.9 Phasor diagram for a
large number of coherent sources.
All the ends of the phasors lie on
the circular arc of radius R. The
resultant electric field magnitude
ER equals the length of the chord.

Intensity of a single-slit
Fraunhofer diffraction pattern



or

in agreement with Equation 38.1.
Figure 38.10a represents a plot of Equation 38.4, and Figure 38.10b is a photo-

graph of a single-slit Fraunhofer diffraction pattern. Note that most of the light inten-
sity is concentrated in the central bright fringe.

m " #1, #2, #3, $ $ $sin ! dark " m  
%

a
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(a)

Imax

I2 I1 I1 I2

_3 _2 2 3π_π
/2

I

β
π πππ

(b)

Figure 38.10 (a) A plot of light
intensity I versus )/2 for the
single-slit Fraunhofer diffraction
pattern. (b) Photograph of a
single-slit Fraunhofer diffraction
pattern.
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Example 38.2 Relative Intensities of the Maxima

Find the ratio of the intensities of the secondary maxima to
the intensity of the central maximum for the single-slit
Fraunhofer diffraction pattern.

Solution To a good approximation, the secondary maxima
lie midway between the zero points. From Figure 38.10a,
we see that this corresponds to )/2 values of 3*/2, 5*/2,
7*/2, . . . . Substituting these values into Equation 38.4
gives for the first two ratios

0.045
I 1

I max
"  # sin(3*/2)

(3*/2) $2
"

1
9*2/4

"

That is, the first secondary maxima (the ones adjacent to
the central maximum) have an intensity of 4.5% that of the
central maximum, and the next secondary maxima have an
intensity of 1.6% that of the central maximum.

0.016
I 2

I max
"  # sin(5*/2)

5*/2 $2
"

1
25*2/4

"

Intensity of Two-Slit Diffraction Patterns

When more than one slit is present, we must consider not only diffraction patterns due
to the individual slits but also the interference patterns due to the waves coming from
different slits. Notice the curved dashed lines in Figure 37.14, which indicate a
decrease in intensity of the interference maxima as ! increases. This decrease is due
to a diffraction pattern. To determine the effects of both two-slit interference and a
single-slit diffraction pattern from each slit, we combine Equations 37.12 and 38.5:

(38.6)

Although this expression looks complicated, it merely represents the single-slit
diffraction pattern (the factor in square brackets) acting as an “envelope” for a two-slit

I " I max cos2 % *d sin !
% & # sin(*a sin !/%)

*a sin !/% $2

Condition for intensity minima
for a single slit



interference pattern (the cosine-squared factor), as shown in Figure 38.11. The
broken blue curve in Figure 38.11 represents the factor in square brackets in Equa-
tion 38.6. The cosine-squared factor by itself would give a series of peaks all with
the same height as the highest peak of the red-brown curve in Figure 38.11. Because
of the effect of the square-bracket factor, however, these peaks vary in height
as shown.

Equation 37.2 indicates the conditions for interference maxima as d sin! " m%,
where d is the distance between the two slits. Equation 38.1 specifies that the first
diffraction minimum occurs when a sin! " %, where a is the slit width. Dividing Equa-
tion 37.2 by Equation 38.1 (with m " 1) allows us to determine which interference
maximum coincides with the first diffraction minimum:

(38.7)

In Figure 38.11, d/a " 18 /m/3.0 /m " 6. Therefore, the sixth interference maximum
(if we count the central maximum as m " 0) is aligned with the first diffraction
minimum and cannot be seen.

 
d 
a 

" m

d sin!

a sin!
"

m %

%
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I

Diffraction
envelope

Interference
fringes

–3 –2 –π π 2 3
/2β

π π π π

Active Figure 38.11 The combined effects of two-slit and single-slit interference. This
is the pattern produced when 650-nm light waves pass through two 3.0-/m slits that are
18 /m apart. Notice how the diffraction pattern acts as an “envelope” and controls the
intensity of the regularly spaced interference maxima.
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At the Active Figures link
at http://www.pse6.com, you
can adjust the slit width, slit
separation, and the wavelength
of the light to see the effect on
the interference pattern.

Quick Quiz 38.3 Using Figure 38.11 as a starting point, make a sketch of
the combined diffraction and interference pattern for 650-nm light waves striking two
3.0-/m slits located 9.0 /m apart.



38.3 Resolution of Single-Slit 
and Circular Apertures

The ability of optical systems to distinguish between closely spaced objects is limited
because of the wave nature of light. To understand this difficulty, consider Figure 38.12,
which shows two light sources far from a narrow slit of width a. The sources can be two
noncoherent point sources S1 and S2—for example, they could be two distant stars. If
no interference occurred between light passing through different parts of the slit, two
distinct bright spots (or images) would be observed on the viewing screen. However,
because of such interference, each source is imaged as a bright central region flanked
by weaker bright and dark fringes—a diffraction pattern. What is observed on the
screen is the sum of two diffraction patterns: one from S1, and the other from S2.

If the two sources are far enough apart to keep their central maxima from overlap-
ping as in Figure 38.12a, their images can be distinguished and are said to be resolved.
If the sources are close together, however, as in Figure 38.12b, the two central maxima
overlap, and the images are not resolved. To determine whether two images are
resolved, the following condition is often used:
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Quick Quiz 38.4 Consider the central peak in the diffraction envelope in
Figure 38.11. Suppose the wavelength of the light is changed to 450 nm. What happens
to this central peak? (a) The width of the peak decreases and the number of inter-
ference fringes it encloses decreases. (b) The width of the peak decreases and the
number of interference fringes it encloses increases. (c) The width of the peak
decreases and the number of interference fringes it encloses remains the same.
(d) The width of the peak increases and the number of interference fringes it encloses
decreases. (e) The width of the peak increases and the number of interference fringes
it encloses increases. (f) The width of the peak increases and the number of interfer-
ence fringes it encloses remains the same.

S1

S2

S1

S2

Slit Viewing screen

(a) (b)

Slit Viewing screen

θ θ

Figure 38.12 Two point sources far from a narrow slit each produce a diffraction
pattern. (a) The angle subtended by the sources at the slit is large enough for the
diffraction patterns to be distinguishable. (b) The angle subtended by the sources is so
small that their diffraction patterns overlap, and the images are not well resolved.
(Note that the angles are greatly exaggerated. The drawing is not to scale.)

When the central maximum of one image falls on the first minimum of another
image, the images are said to be just resolved. This limiting condition of resolution
is known as Rayleigh’s criterion.



From Rayleigh’s criterion, we can determine the minimum angular separation !min
subtended by the sources at the slit in Figure 38.12 for which the images are just
resolved. Equation 38.1 indicates that the first minimum in a single-slit diffraction
pattern occurs at the angle for which

where a is the width of the slit. According to Rayleigh’s criterion, this expression gives
the smallest angular separation for which the two images are resolved. Because % ++ a
in most situations, sin! is small, and we can use the approximation sin! ! !.
Therefore, the limiting angle of resolution for a slit of width a is

(38.8)

where !min is expressed in radians. Hence, the angle subtended by the two sources at
the slit must be greater than %/a if the images are to be resolved.

Many optical systems use circular apertures rather than slits. The diffraction
pattern of a circular aperture, as shown in the lower half of Figure 38.13, consists of
a central circular bright disk surrounded by progressively fainter bright and dark
rings. Figure 38.13 shows diffraction patterns for three situations in which light
from two point sources passes through a circular aperture. When the sources are far
apart, their images are well resolved (Fig. 38.13a). When the angular separation of
the sources satisfies Rayleigh’s criterion, the images are just resolved (Fig. 38.13b).
Finally, when the sources are close together, the images are said to be unresolved
(Fig. 38.13c).

! min "
 %

a

 sin! "
 %

a
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(b)(a) (c)

Figure 38.13 Individual diffraction patterns of two point sources (solid curves) and
the resultant patterns (dashed curves) for various angular separations of the sources.
In each case, the dashed curve is the sum of the two solid curves. (a) The sources
are far apart, and the patterns are well resolved. (b) The sources are closer together
such that the angular separation just satisfies Rayleigh’s criterion, and the
patterns are just resolved. (c) The sources are so close together that the patterns are
not resolved.
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Analysis shows that the limiting angle of resolution of the circular aperture is

(38.9)

where D is the diameter of the aperture. Note that this expression is similar to Equa-
tion 38.8 except for the factor 1.22, which arises from a mathematical analysis of dif-
fraction from the circular aperture.

! min " 1.22  
 %

D
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Limiting angle of resolution for
a circular aperture

Quick Quiz 38.5 Cat’s eyes have pupils that can be modeled as vertical slits.
At night, would cats be more successful in resolving (a) headlights on a distant car, or
(b) vertically-separated lights on the mast of a distant boat?

Quick Quiz 38.6 Suppose you are observing a binary star with a telescope
and are having difficulty resolving the two stars. You decide to use a colored filter to
maximize the resolution. (A filter of a given color transmits only that color of light.)
What color filter should you choose? (a) blue (b) green (c) yellow (d) red.

Example 38.3 Limiting Resolution of a Microscope

Light of wavelength 589 nm is used to view an object under
a microscope. If the aperture of the objective has a diameter
of 0.900 cm,

(A) what is the limiting angle of resolution?

Solution Using Equation 38.9, we find that the limiting
angle of resolution is

This means that any two points on the object subtending an
angle smaller than this at the objective cannot be distin-
guished in the image.

(B) If it were possible to use visible light of any wavelength,
what would be the maximum limit of resolution for this
microscope?

Solution To obtain the smallest limiting angle, we have to
use the shortest wavelength available in the visible spectrum.
Violet light (400 nm) gives a limiting angle of resolution of

5.42 & 10'5 rad! min " 1.22 % 400 & 10'9 m
0.900 & 10'2 m & "

7.98 & 10'5 rad! min " 1.22 % 589 & 10'9 m
0.900 & 10'2 m & "

What If? Suppose that water (n ! 1.33) fills the space
between the object and the objective. What effect does this
have on resolving power when 589-nm light is used?

Answer Because light travels more slowly in water, we
know that the wavelength of the light in water is smaller
than that in vacuum. Based on Equation 38.9, we expect
the limiting angle of resolution to be smaller. To find the
new value of the limiting angle of resolution, we first calcu-
late the wavelength of the 589-nm light in water using
Equation 35.7:

The limiting angle of resolution at this wavelength is

which is indeed smaller than that calculated in part (A).

6.00 & 10'5 rad! min " 1.22 % 443 & 10'9 m
0.900 & 10'2 m & "

% water "
% air

n water
"

589 nm
1.33

" 443 nm

Example 38.4 Resolution of the Eye

Estimate the limiting angle of resolution for the human eye,
assuming its resolution is limited only by diffraction.

Solution Let us choose a wavelength of 500 nm, near the
center of the visible spectrum. Although pupil diameter
varies from person to person, we estimate a daytime diame-
ter of 2 mm. We use Equation 38.9, taking % " 500 nm

and D " 2 mm:

1 min of arc3 & 10'4 rad !!

! min " 1.22  
%

D
" 1.22 % 5.00 & 10'7 m

2 & 10'3 m &
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S1

S2

L

d minθ

Figure 38.14 (Example 38.4) Two point sources separated by a
distance d as observed by the eye.

We can use this result to determine the minimum sepa-
ration distance d between two point sources that the eye can
distinguish if they are a distance L from the observer (Fig.
38.14). Because !min is small, we see that

For example, if the point sources are 25 cm from the eye
(the near point), then

This is approximately equal to the thickness of a human hair.

d " (25 cm)(3 & 10'4 rad) " 8 & 10'3 cm

d " L! min

sin ! min ! ! min !
d
L

Example 38.5 Resolution of a Telescope

The Keck telescope at Mauna Kea, Hawaii, has an effective
diameter of 10 m. What is its limiting angle of resolution for
600-nm light?

Solution Because D " 10 m and % " 6.00 & 10'7 m, Equa-
tion 38.9 gives

Any two stars that subtend an angle greater than or equal to
this value are resolved (if atmospheric conditions are ideal).

The Keck telescope can never reach its diffraction limit
because the limiting angle of resolution is always set by atmos-
pheric blurring at optical wavelengths. This seeing limit is usu-
ally about 1 s of arc and is never smaller than about 0.1 s of
arc. (This is one of the reasons for the superiority of pho-
tographs from the Hubble Space Telescope, which views celes-
tial objects from an orbital position above the atmosphere.)

What If? What if we consider radio telescopes? These
are much larger in diameter than optical telescopes, but

0.015 s of arc7.3 & 10'8 rad !"

! min " 1.22  
%

D
" 1.22 % 6.00 & 10'7 m

10 m &

do they have angular resolutions that are better than
optical telescopes? For example, the radio telescope at
Arecibo, Puerto Rico, has a diameter of 305 m and is
designed to detect radio waves of 0.75-m wavelength.
How does its resolution compare to that of the Keck
telescope?

Answer The increase in diameter might suggest that radio
telescopes would have better resolution, but Equation 38.9
shows that !min depends on both diameter and wavelength.
Calculating the minimum angle of resolution for the radio
telescope, we find

Notice that this limiting angle of resolution is measured in
minutes of arc rather than the seconds of arc for the optical
telescope. Thus, the change in wavelength more than
compensates for the increase in diameter, and the limiting
angle of resolution for the Arecibo radio telescope is
more than 40 000 times larger (that is, worse) than the
Keck minimum.

 " 3.0 & 10'3 rad ! 10 min of arc

! min " 1.22  
%

D
" 1.22 % 0.75 m

305 m &

As an example of the effects of atmospheric blurring mentioned in Example 38.5, con-
sider telescopic images of Pluto and its moon Charon. Figure 38.15a shows the image
taken in 1978 that represents the discovery of Charon. In this photograph taken from
an Earth-based telescope, atmospheric turbulence causes the image of Charon to
appear only as a bump on the edge of Pluto. In comparison, Figure 38.15b shows a
photograph taken with the Hubble Space Telescope. Without the problems of atmos-
pheric turbulence, Pluto and its moon are clearly resolved.

38.4 The Diffraction Grating

The diffraction grating, a useful device for analyzing light sources, consists of a large
number of equally spaced parallel slits. A transmission grating can be made by cutting par-
allel grooves on a glass plate with a precision ruling machine. The spaces between the
grooves are transparent to the light and hence act as separate slits. A reflection grating can



be made by cutting parallel grooves on the surface of a reflective material. The reflection
of light from the spaces between the grooves is specular, and the reflection from the
grooves cut into the material is diffuse. Thus, the spaces between the grooves act as paral-
lel sources of reflected light, like the slits in a transmission grating. Current technology
can produce gratings that have very small slit spacings. For example, a typical grating
ruled with 5 000 grooves/cm has a slit spacing d " (1/5 000) cm " 2.00 & 10'4 cm.

A section of a diffraction grating is illustrated in Figure 38.16. A plane wave is inci-
dent from the left, normal to the plane of the grating. The pattern observed on the

1218 C H A P T E R  3 8 •  Diffraction Patterns and Polarization

(a)

Plu
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C
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(b)

Figure 38.15 (a) The photograph on which Charon, the moon of Pluto, was discov-
ered in 1978. From an Earth-based telescope, atmospheric blurring results in Charon
appearing only as a subtle bump on the edge of Pluto. (b) A Hubble Space Telescope
photo of Pluto and Charon, clearly resolving the two objects.
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   = d sin θδ

P

First-order
maximum

(m = 1)

Central or
zeroth-order
maximum

(m = 0)

First-order
maximum
(m = –1)

Incoming plane
wave of light

P

Diffraction
grating

θ

Figure 38.16 Side view of a diffraction grating. The slit separation is d, and the path
difference between adjacent slits is d sin !.

! PITFALL PREVENTION 
38.3 A Diffraction Grating

Is an Interference
Grating

As with diffraction pattern, diffrac-
tion grating is a misnomer, but
is deeply entrenched in the
language of physics. The diffrac-
tion grating depends on diffrac-
tion in the same way as the
double slit—spreading the light
so that light from different slits
can interfere. It would be more
correct to call it an interference
grating, but diffraction grating is
the name in use.



screen (far to the right of Figure 38.16) is the result of the combined effects of inter-
ference and diffraction. Each slit produces diffraction, and the diffracted beams inter-
fere with one another to produce the final pattern.

The waves from all slits are in phase as they leave the slits. However, for some arbi-
trary direction ! measured from the horizontal, the waves must travel different path
lengths before reaching the screen. From Figure 38.16, note that the path difference 0
between rays from any two adjacent slits is equal to d sin !. If this path difference
equals one wavelength or some integral multiple of a wavelength, then waves from all
slits are in phase at the screen and a bright fringe is observed. Therefore, the condi-
tion for maxima in the interference pattern at the angle !bright is

(38.10)

We can use this expression to calculate the wavelength if we know the grating
spacing d and the angle !bright. If the incident radiation contains several wavelengths, the
mth-order maximum for each wavelength occurs at a specific angle. All wavelengths are
seen at ! " 0, corresponding to m " 0, the zeroth-order maximum. The first-order maxi-
mum (m " 1) is observed at an angle that satisfies the relationship sin !bright " %/d; the
second-order maximum (m " 2) is observed at a larger angle !bright, and so on.

The intensity distribution for a diffraction grating obtained with the use of a mono-
chromatic source is shown in Figure 38.17. Note the sharpness of the principal maxima
and the broadness of the dark areas. This is in contrast to the broad bright fringes
characteristic of the two-slit interference pattern (see Fig. 37.7). You should also review
Figure 37.14, which shows that the width of the intensity maxima decreases as the
number of slits increases. Because the principal maxima are so sharp, they are much
brighter than two-slit interference maxima.

A schematic drawing of a simple apparatus used to measure angles in a diffraction
pattern is shown in Figure 38.18. This apparatus is a diffraction grating spectrometer. The
light to be analyzed passes through a slit, and a collimated beam of light is incident on
the grating. The diffracted light leaves the grating at angles that satisfy Equation 38.10,
and a telescope is used to view the image of the slit. The wavelength can be deter-
mined by measuring the precise angles at which the images of the slit appear for the
various orders.

m " 0, #1, #2, #3, $ $ $d sin ! bright " m %
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Active Figure 38.17 Intensity
versus sin ! for a diffraction grating.
The zeroth-, first-, and second-order
maxima are shown.

At the Active Figures link
at http://www.pse6.com, you
can choose the number of slits
to be illuminated to see the
effect on the interference
pattern.

Telescope

Slit

Source

Grating

θ

Collimator

Active Figure 38.18 Diagram of a diffraction grating spectrometer. The collimated
beam incident on the grating is spread into its various wavelength components with
constructive interference for a particular wavelength occurring at the angles !bright that
satisfy the equation d sin !bright " m%, where m " 0, 1, 2, . . . .

Use the spectrometer at
the Active Figures link at
http://www.pse6.com to observe
constructive interference for
various wavelengths.

Condition for interference
maxima for a grating



The spectrometer is a useful tool in atomic spectroscopy, in which the light from an
atom is analyzed to find the wavelength components. These wavelength components
can be used to identify the atom. We will investigate atomic spectra in Chapter 42 of
the extended version of this text.

Another application of diffraction gratings is in the recently developed grating light
valve (GLV), which may compete in the near future in video projection with the digital
micromirror devices (DMDs) discussed in Section 35.4. The grating light valve consists
of a silicon microchip fitted with an array of parallel silicon nitride ribbons coated with
a thin layer of aluminum (Fig. 38.19). Each ribbon is about 20 /m long and about
5 /m wide and is separated from the silicon substrate by an air gap on the order of
100 nm. With no voltage applied, all ribbons are at the same level. In this situation, the
array of ribbons acts as a flat surface, specularly reflecting incident light.

When a voltage is applied between a ribbon and the electrode on the silicon
substrate, an electric force pulls the ribbon downward, closer to the substrate.
Alternate ribbons can be pulled down, while those in between remain in the higher
configuration. As a result, the array of ribbons acts as a diffraction grating, such that
the constructive interference for a particular wavelength of light can be directed
toward a screen or other optical display system. By using three such devices, one each
for red, blue, and green light, full-color display is possible.

The GLV tends to be simpler to fabricate and higher in resolution than compara-
ble DMD devices. On the other hand, DMD devices have already made an entry into
the market. It will be interesting to watch this technology competition in future years.
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Figure 38.19 A small portion of a
grating light valve. The alternating
reflective ribbons at different levels act
as a diffraction grating, offering very-
high-speed control of the direction of
light toward a digital display device.

Quick Quiz 38.7 If laser light is reflected from a phonograph record or a
compact disc, a diffraction pattern appears. This is due to the fact that both devices
contain parallel tracks of information that act as a reflection diffraction grating. Which
device, (a) record or (b) compact disc, results in diffraction maxima that are farther
apart in angle?

Quick Quiz 38.8 Ultraviolet light of wavelength 350 nm is incident on a dif-
fraction grating with slit spacing d and forms an interference pattern on a screen a
distance L away. The angular positions !bright of the interference maxima are large. The
locations of the bright fringes are marked on the screen. Now red light of wavelength
700 nm is used with a diffraction grating to form another diffraction pattern on the
screen. The bright fringes of this pattern will be located at the marks on the screen if
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(a) the screen is moved to a distance 2L from the grating (b) the screen is moved to
a distance L/2 from the grating (c) the grating is replaced with one of slit spacing 2d
(d) the grating is replaced with one of slit spacing d/2 (e) nothing is changed.

Conceptual Example 38.6 A Compact Disc Is a Diffraction Grating

Light reflected from the surface of a compact disc is multicol-
ored, as shown in Figure 38.20. The colors and their intensi-
ties depend on the orientation of the disc relative to the eye
and relative to the light source. Explain how this works.

Solution The surface of a compact disc has a spiral grooved
track (with adjacent grooves having a separation on the
order of 1 /m). Thus, the surface acts as a reflection grating.
The light reflecting from the regions between these closely
spaced grooves interferes constructively only in certain direc-
tions that depend on the wavelength and on the direction of
the incident light. Any section of the disc serves as a diffrac-
tion grating for white light, sending different colors in differ-
ent directions. The different colors you see when viewing
one section change as the light source, the disc, or you move
to change the angles of incidence or diffraction.

Figure 38.20 (Conceptual Example 38.6) A compact disc
observed under white light. The colors observed in the
reflected light and their intensities depend on the orientation
of the disc relative to the eye and relative to the light source.
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Example 38.7 The Orders of a Diffraction Grating

Monochromatic light from a helium–neon laser (% "
632.8 nm) is incident normally on a diffraction grating con-
taining 6 000 grooves per centimeter. Find the angles at
which the first- and second-order maxima are observed.

Solution First, we must calculate the slit separation, which
is equal to the inverse of the number of grooves per
centimeter:

For the first-order maximum (m " 1), we obtain

22.311! 1 "

sin ! 1 "
%

d
"

632.8 nm
1 667 nm

" 0.379 6

d "
1

6 000
 cm " 1.667 & 10'4 cm " 1 667 nm

For the second-order maximum (m " 2), we find

What If? What if we look for the third-order maximum? Do
we find it?

Answer For m " 3, we find sin !3 " 1.139. Because sin!
cannot exceed unity, this does not represent a realistic solu-
tion. Hence, only zeroth-, first-, and second-order maxima
are observed for this situation.

49.391! 2 "

sin ! 2 "
2%

d
"

2(632.8 nm)
1 667 nm

" 0.759 2

Investigate the interference pattern from a diffraction grating at the Interactive Worked Example link at http://www.pse6.com.

Resolving Power of the Diffraction Grating

The diffraction grating is useful for measuring wavelengths accurately. Like the prism,
the diffraction grating can be used to separate white light into its wavelength compo-
nents. Of the two devices, a grating with very small slit separation is more precise if one
wants to distinguish two closely spaced wavelengths.

Interactive



For two nearly equal wavelengths %1 and %2 between which a diffraction grating can
just barely distinguish, the resolving power R of the grating is defined as

(38.11)

where % " (%1 , %2)/2 and (% " %2 ' %1. Thus, a grating that has a high resolv-
ing power can distinguish small differences in wavelength. If N slits of the
grating are illuminated, it can be shown that the resolving power in the m th-order
diffraction is

(38.12)

Thus, resolving power increases with increasing order number and with increasing
number of illuminated slits.

Note that R " 0 for m " 0; this signifies that all wavelengths are indistinguishable for
the zeroth-order maximum. However, consider the second-order diffraction pattern
(m " 2) of a grating that has 5 000 rulings illuminated by the light source. The resolving
power of such a grating in second order is R " 5 000 & 2 " 10 000. Therefore, for a
mean wavelength of, for example, 600 nm, the minimum wavelength separation between
two spectral lines that can be just resolved is (% " %/R " 6.00 & 10'2 nm. For the third-
order principal maximum, R " 15 000 and (% " 4.00 & 10'2 nm, and so on.

R " Nm

R ' 
%

%2 ' %1
"

%

(%
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Example 38.8 Resolving Sodium Spectral Lines

When a gaseous element is raised to a very high temperature,
the atoms emit radiation having discrete wavelengths. The set
of wavelengths for a given element is called its atomic spectrum
(Chapter 42). Two strong components in the atomic spectrum
of sodium have wavelengths of 589.00 nm and 589.59 nm.

(A) What resolving power must a grating have if these
wavelengths are to be distinguished?

Solution Using Equation 38.11,

999R "
%

(%
"

589.30 nm
589.59 nm ' 589.00 nm

"
589.30
0.59

"

(B) To resolve these lines in the second-order spectrum,
how many slits of the grating must be illuminated?

Solution From Equation 38.12 and the result to part (A),
we find that

500 slitsN "
R
m

"
999
2

"

Application Holography

One interesting application of diffraction gratings is
holography, the production of three-dimensional images
of objects. The physics of holography was developed by
Dennis Gabor in 1948, and resulted in the Nobel Prize
in physics for Gabor in 1971. The requirement of coher-
ent light for holography, however, delayed the realization
of holographic images from Gabor’s work until the
development of lasers in the 1960s. Figure 38.21 shows
a hologram and the three-dimensional character of its
image.

Figure 38.22 shows how a hologram is made. Light from
the laser is split into two parts by a half-silvered mirror at B.
One part of the beam reflects off the object to be pho-
tographed and strikes an ordinary photographic film. The
other half of the beam is diverged by lens L2, reflects from
mirrors M1 and M2, and finally strikes the film. The two
beams overlap to form an extremely complicated interfer-
ence pattern on the film. Such an interference pattern can
be produced only if the phase relationship of the two waves

is constant throughout the exposure of the film. This condi-
tion is met by illuminating the scene with light coming
through a pinhole or with coherent laser radiation. The
hologram records not only the intensity of the light scat-
tered from the object (as in a conventional photograph),
but also the phase difference between the reference beam
and the beam scattered from the object. Because of this
phase difference, an interference pattern is formed that
produces an image in which all three-dimensional informa-
tion available from the perspective of any point on the holo-
gram is preserved.

In a normal photographic image, a lens is used to focus
the image so that each point on the object corresponds to a
single point on the film. Notice that there is no lens used in
Figure 38.22 to focus the light onto the film. Thus, light
from each point on the object reaches all points on the film.
As a result, each region of the photographic film on which
the hologram is recorded contains information about all
illuminated points on the object. This leads to a remarkable

Resolving power of a grating

Resolving power
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result—if a small section of the hologram is cut from the
film, the complete image can be formed from the small piece!
(The quality of the image is reduced, but the entire image
is present.)

A hologram is best viewed by allowing coherent light
to pass through the developed film as one looks back
along the direction from which the beam comes. The
interference pattern on the film acts as a diffraction grat-
ing. Figure 38.23 shows two rays of light striking the film
and passing through. For each ray, the m " 0 and m " # 1
rays in the diffraction pattern are shown emerging from
the right side of the film. The m " , 1 rays converge to

form a real image of the scene, which is not the image
that is normally viewed. By extending the light rays corre-
sponding to m " ' 1 back behind the film, we see that
there is a virtual image located there, with light coming
from it in exactly the same way that light came from
the actual object when the film was exposed. This is
the image that we see by looking through the holo-
graphic film.

Holograms are finding a number of applications. You
may have a hologram on your credit card. This is a special
type of hologram called a rainbow hologram, designed to be
viewed in reflected white light.

M2

Film

L1

B

L2

Laser

M1

Figure 38.21 In this hologram, a circuit board is shown from two different views.
Notice the difference in the appearance of the measuring tape and the view through
the magnifying lens.

Figure 38.22 Experimental arrangement for produc-
ing a hologram.
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Virtual image Hologram

Incoming light ray

Incoming light ray

m = 0

m = –1

m = +1

m = –1

m = 0

Real image

m = +1

Figure 38.23 Two light rays strike a hologram
at normal incidence. For each ray, outgoing
rays corresponding to m " 0 and m " # 1 are
shown. If the m " ' 1 rays are extended
backward, a virtual image of the object
photographed in the hologram exists on the
front side of the hologram.



38.5 Diffraction of X-Rays by Crystals

In principle, the wavelength of any electromagnetic wave can be determined if a
grating of the proper spacing (on the order of %) is available. X-rays, discovered by
Wilhelm Roentgen (1845–1923) in 1895, are electromagnetic waves of very short
wavelength (on the order of 0.1 nm). It would be impossible to construct a grating
having such a small spacing by the cutting process described at the beginning of
Section 38.4. However, the atomic spacing in a solid is known to be about 0.1 nm. In
1913, Max von Laue (1879–1960) suggested that the regular array of atoms in a crystal
could act as a three-dimensional diffraction grating for x-rays. Subsequent experiments
confirmed this prediction. The diffraction patterns from crystals are complex because
of the three-dimensional nature of crystal structure. Nevertheless, x-ray diffraction has
proved to be an invaluable technique for elucidating these structures and for under-
standing the structure of matter.

Figure 38.24 is one experimental arrangement for observing x-ray diffraction from
a crystal. A collimated beam of monochromatic x-rays is incident on a crystal. The
diffracted beams are very intense in certain directions, corresponding to constructive
interference from waves reflected from layers of atoms in the crystal. The diffracted
beams, which can be detected by a photographic film, form an array of spots known as
a Laue pattern, as in Figure 38.25a. One can deduce the crystalline structure by analyz-
ing the positions and intensities of the various spots in the pattern. Fig. 38.25b shows a
Laue pattern from a crystalline enzyme, using a wide range of wavelengths so that a
swirling pattern results.

The arrangement of atoms in a crystal of sodium chloride (NaCl) is shown in
Figure 38.26. Each unit cell (the geometric solid that repeats throughout the crystal)
is a cube having an edge length a. A careful examination of the NaCl structure shows
that the ions lie in discrete planes (the shaded areas in Fig. 38.26). Now suppose that
an incident x-ray beam makes an angle ! with one of the planes, as in Figure 38.27.
The beam can be reflected from both the upper plane and the lower one. However,
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Photographic
film

Collimator

X-ray
tube

Crystal

X-rays

Figure 38.24 Schematic diagram
of the technique used to observe
the diffraction of x-rays by a crystal.
The array of spots formed on the
film is called a Laue pattern.

Figure 38.25 (a) A Laue pattern of a single crystal of the mineral beryl (beryllium alu-
minum silicate). Each dot represents a point of constructive interference. (b) A Laue
pattern of the enzyme Rubisco, produced with a wide-band x-ray spectrum. This 
enzyme is present in plants and takes part in the process of photosynthesis. The Laue
pattern is used to determine the crystal structure of Rubisco.
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the beam reflected from the lower plane travels farther than the beam reflected from
the upper plane. The effective path difference is 2d sin !. The two beams reinforce
each other (constructive interference) when this path difference equals some
integer multiple of %. The same is true for reflection from the entire family of
parallel planes. Hence, the condition for constructive interference (maxima in the
reflected beam) is

(38.13)

This condition is known as Bragg’s law, after W. L. Bragg (1890–1971), who first
derived the relationship. If the wavelength and diffraction angle are measured, Equa-
tion 38.13 can be used to calculate the spacing between atomic planes.

38.6 Polarization of Light Waves

In Chapter 34 we described the transverse nature of light and all other electromag-
netic waves. Polarization, discussed in this section, is firm evidence of this transverse
nature.

An ordinary beam of light consists of a large number of waves emitted by the atoms
of the light source. Each atom produces a wave having some particular orientation
of the electric field vector E, corresponding to the direction of atomic vibration. The
direction of polarization of each individual wave is defined to be the direction in which
the electric field is vibrating. In Figure 38.28, this direction happens to lie along the y
axis. However, an individual electromagnetic wave could have its E vector in the yz
plane, making any possible angle with the y axis. Because all directions of vibration
from a wave source are possible, the resultant electromagnetic wave is a superposition
of waves vibrating in many different directions. The result is an unpolarized light
beam, represented in Figure 38.29a. The direction of wave propagation in this figure is
perpendicular to the page. The arrows show a few possible directions of the electric
field vectors for the individual waves making up the resultant beam. At any given point
and at some instant of time, all these individual electric field vectors add to give one re-
sultant electric field vector.

As noted in Section 34.2, a wave is said to be linearly polarized if the resultant
electric field E vibrates in the same direction at all times at a particular point, as shown
in Figure 38.29b. (Sometimes, such a wave is described as plane-polarized, or simply
polarized.) The plane formed by E and the direction of propagation is called the plane

m " 1, 2, 3, $ $ $2d sin ! " m %
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Bragg’s law

a

Figure 38.26 Crystalline structure of
sodium chloride (NaCl). The blue spheres
represent Cl' ions, and the red spheres
represent Na, ions. The length of the cube
edge is a " 0.562 737 nm.

! PITFALL PREVENTION 
38.4 Different Angles
Notice in Figure 38.27 that the
angle ! is measured from the
reflecting surface, rather than
from the normal, as in the case of
the law of reflection in Chapter
35. With slits and diffraction
gratings, we also measured the
angle ! from the normal to the
array of slits. Because of historical
tradition, the angle is measured
differently in Bragg diffraction,
so interpret Equation 38.13 with
care.

θ

Incident
beam

Reflected
beam

Upper plane

Lower plane

d

θ θ

d sin θ
Figure 38.27 A two-dimensional description of the
reflection of an x-ray beam from two parallel crystalline
planes separated by a distance d. The beam reflected from
the lower plane travels farther than the one reflected from
the upper plane by a distance 2d sin !.

z

y
E

c

B

x

Figure 38.28 Schematic diagram
of an electromagnetic wave
propagating at velocity c in the x
direction. The electric field vibrates
in the xy plane, and the magnetic
field vibrates in the xz plane.



of polarization of the wave. If the wave in Figure 38.28 represents the resultant of all
individual waves, the plane of polarization is the xy plane.

It is possible to obtain a linearly polarized beam from an unpolarized beam by
removing all waves from the beam except those whose electric field vectors oscillate in
a single plane. We now discuss four processes for producing polarized light from unpo-
larized light.

Polarization by Selective Absorption

The most common technique for producing polarized light is to use a material that
transmits waves whose electric fields vibrate in a plane parallel to a certain direction
and that absorbs waves whose electric fields vibrate in all other directions.

In 1938, E. H. Land (1909–1991) discovered a material, which he called polaroid,
that polarizes light through selective absorption by oriented molecules. This material is
fabricated in thin sheets of long-chain hydrocarbons. The sheets are stretched during
manufacture so that the long-chain molecules align. After a sheet is dipped into a solu-
tion containing iodine, the molecules become good electrical conductors. However,
conduction takes place primarily along the hydrocarbon chains because electrons can
move easily only along the chains. As a result, the molecules readily absorb light whose
electric field vector is parallel to their length and allow light through whose electric
field vector is perpendicular to their length.

It is common to refer to the direction perpendicular to the molecular chains as
the transmission axis. In an ideal polarizer, all light with E parallel to the transmis-
sion axis is transmitted, and all light with E perpendicular to the transmission axis is
absorbed.

Figure 38.30 represents an unpolarized light beam incident on a first polarizing
sheet, called the polarizer. Because the transmission axis is oriented vertically in
the figure, the light transmitted through this sheet is polarized vertically. A second
polarizing sheet, called the analyzer, intercepts the beam. In Figure 38.30, the
analyzer transmission axis is set at an angle ! to the polarizer axis. We call the
electric field vector of the first transmitted beam E0. The component of E0 perpen-
dicular to the analyzer axis is completely absorbed. The component of E0 parallel to
the analyzer axis, which is allowed through by the analyzer, is E 0 cos!. Because
the intensity of the transmitted beam varies as the square of its magnitude, we
conclude that the intensity of the (polarized) beam transmitted through the
analyzer varies as

(38.14)I " I max cos2 !
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E

(a)

E

(b)

Figure 38.29 (a) A representation
of an unpolarized light beam viewed
along the direction of propagation
(perpendicular to the page). The
transverse electric field can vibrate
in any direction in the plane of
the page with equal probability.
(b) A linearly polarized light beam
with the electric field vibrating in
the vertical direction.

Analyzer

Unpolarized
light

Transmission
axis

Polarized
light

E0 cos

E0

Polarizer

θ

θ

Active Figure 38.30 Two polarizing sheets whose transmission axes make an angle !
with each other. Only a fraction of the polarized light incident on the analyzer is trans-
mitted through it.

Rotate the analyzer at 
the Active Figures link at
http://www.pse6.com, to see the
effect on the transmitted light.

Malus’s law



where Imax is the intensity of the polarized beam incident on the analyzer. This
expression, known as Malus’s law,2 applies to any two polarizing materials
whose transmission axes are at an angle ! to each other. From this expression, we
see that the intensity of the transmitted beam is maximum when the transmission
axes are parallel (! " 0 or 180°) and that it is zero (complete absorption by the
analyzer) when the transmission axes are perpendicular to each other. This
variation in transmitted intensity through a pair of polarizing sheets is illustrated in
Figure 38.31.

Polarization by Reflection

When an unpolarized light beam is reflected from a surface, the reflected light may be
completely polarized, partially polarized, or unpolarized, depending on the angle of
incidence. If the angle of incidence is 0°, the reflected beam is unpolarized. For other
angles of incidence, the reflected light is polarized to some extent, and for one partic-
ular angle of incidence, the reflected light is completely polarized. Let us now investi-
gate reflection at that special angle.

Suppose that an unpolarized light beam is incident on a surface, as in Figure
38.32a. Each individual electric field vector can be resolved into two components: one
parallel to the surface (and perpendicular to the page in Fig. 38.32, represented by the
dots), and the other (represented by the brown arrows) perpendicular both to the first
component and to the direction of propagation. Thus, the polarization of the entire
beam can be described by two electric field components in these directions. It is found
that the parallel component reflects more strongly than the perpendicular compo-
nent, and this results in a partially polarized reflected beam. Furthermore, the
refracted beam is also partially polarized.

Now suppose that the angle of incidence !1 is varied until the angle between the
reflected and refracted beams is 90°, as in Figure 38.32b. At this particular angle
of incidence, the reflected beam is completely polarized (with its electric field
vector parallel to the surface), and the refracted beam is still only partially
polarized. The angle of incidence at which this polarization occurs is called the
polarizing angle !p .
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2 Named after its discoverer, E. L. Malus (1775–1812). Malus discovered that reflected light was
polarized by viewing it through a calcite (CaCO3) crystal.

Figure 38.31 The intensity of light transmitted through two polarizers depends on the
relative orientation of their transmission axes. (a) The transmitted light has maximum
intensity when the transmission axes are aligned with each other. (b) The transmitted
light has lesser intensity when the transmission axes are at an angle of 451 with each
other. (c) The transmitted light intensity is a minimum when the transmission axes are
perpendicular to each other.
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We can obtain an expression relating the polarizing angle to the index of refrac-
tion of the reflecting substance by using Figure 38.32b. From this figure, we see that
!p , 90° , !2 " 180°; thus !2 " 90° ' !p . Using Snell’s law of refraction (Eq. 35.8)
and taking n1 " 1.00 for air and n2 " n, we have

Because sin!2 " sin(90° ' !p) " cos!p , we can write this expression for n as 
n " sin!p/cos!p , which means that

(38.15)

This expression is called Brewster’s law, and the polarizing angle !p is sometimes
called Brewster’s angle, after its discoverer, David Brewster (1781–1868). Because n
varies with wavelength for a given substance, Brewster’s angle is also a function of
wavelength.

We can understand polarization by reflection by imagining that the electric field
in the incident light sets electrons at the surface of the material in Figure 38.32b into
oscillation. The component directions of oscillation are (1) parallel to the arrows
shown on the refracted beam of light and (2) perpendicular to the page. The oscillat-
ing electrons act as antennas radiating light with a polarization parallel to the direc-
tion of oscillation. For the oscillations in direction (1), there is no radiation in the
perpendicular direction, which is along the reflected ray (see the ! " 90° direction
in Figure 34.11). For oscillations in direction (2), the electrons radiate light with a
polarization perpendicular to the page (the ! " 0 direction in Figure 34.11). Thus, the
light reflected from the surface at this angle is completely polarized parallel to the
surface.

Polarization by reflection is a common phenomenon. Sunlight reflected from
water, glass, and snow is partially polarized. If the surface is horizontal, the electric

n " tan!p

n "
sin!1

sin! 2
"

sin!p

sin! 2
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Figure 38.32 (a) When unpolarized light is incident on a reflecting surface, the
reflected and refracted beams are partially polarized. (b) The reflected beam is
completely polarized when the angle of incidence equals the polarizing angle !p , which
satisfies the equation n " tan!p . At this incident angle, the reflected and refracted rays
are perpendicular to each other.

Brewster’s law



field vector of the reflected light has a strong horizontal component. Sunglasses made
of polarizing material reduce the glare of reflected light. The transmission axes of the
lenses are oriented vertically so that they absorb the strong horizontal component of
the reflected light. If you rotate sunglasses through 90 degrees, they are not as effective
at blocking the glare from shiny horizontal surfaces.

Polarization by Double Refraction

Solids can be classified on the basis of internal structure. Those in which the atoms are
arranged in a specific order are called crystalline; the NaCl structure of Figure 38.26 is
just one example of a crystalline solid. Those solids in which the atoms are distributed
randomly are called amorphous. When light travels through an amorphous material,
such as glass, it travels with a speed that is the same in all directions. That is, glass has a
single index of refraction. In certain crystalline materials, however, such as calcite
and quartz, the speed of light is not the same in all directions. Such materials are
characterized by two indices of refraction. Hence, they are often referred to as double-
refracting or birefringent materials.

Upon entering a calcite crystal, unpolarized light splits into two plane-
polarized rays that travel with different velocities, corresponding to two angles of
refraction, as shown in Figure 38.33. The two rays are polarized in two mutually
perpendicular directions, as indicated by the dots and arrows. One ray, called the
ordinary (O) ray, is characterized by an index of refraction nO that is the same in
all directions. This means that if one could place a point source of light inside the
crystal, as in Figure 38.34, the ordinary waves would spread out from the source as
spheres.

The second plane-polarized ray, called the extraordinary (E) ray, travels with
different speeds in different directions and hence is characterized by an index of
refraction nE that varies with the direction of propagation. Consider again the point
source within a birefringent material, as in Figure 38.34. The source sends out an
extraordinary wave having wave fronts that are elliptical in cross section. Note from
Figure 38.34 that there is one direction, called the optic axis, along which the ordi-
nary and extraordinary rays have the same speed, corresponding to the direction for
which nO " nE . The difference in speed for the two rays is a maximum in the direc-
tion perpendicular to the optic axis. For example, in calcite, nO " 1.658 at a
wavelength of 589.3 nm, and nE varies from 1.658 along the optic axis to 1.486
perpendicular to the optic axis. Values for nO and nE for various double-refracting
crystals are given in Table 38.1.
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Unpolarized
light

E ray

O ray

Calcite

Figure 38.33 Unpolarized light incident on a calcite crystal splits into an ordinary (O)
ray and an extraordinary (E) ray. These two rays are polarized in mutually
perpendicular directions. (Drawing not to scale.)

E

O

S

Optic axis

Figure 38.34 A point source S
inside a double-refracting crystal
produces a spherical wave front
corresponding to the ordinary ray
and an elliptical wave front
corresponding to the extraordinary
ray. The two waves propagate with
the same velocity along the optic
axis.



If we place a piece of calcite on a sheet of paper and then look through the crystal at
any writing on the paper, we see two images, as shown in Figure 38.35. As can be seen
from Figure 38.33, these two images correspond to one formed by the ordinary ray and
one formed by the extraordinary ray. If the two images are viewed through a sheet of
rotating polarizing glass, they alternately appear and disappear because the ordinary
and extraordinary rays are plane-polarized along mutually perpendicular directions.

Some materials, such as glass and plastic, become birefringent when stressed.
Suppose that an unstressed piece of plastic is placed between a polarizer and an
analyzer so that light passes from polarizer to plastic to analyzer. When the plastic is
unstressed and the analyzer axis is perpendicular to the polarizer axis, none of the
polarized light passes through the analyzer. In other words, the unstressed plastic has
no effect on the light passing through it. If the plastic is stressed, however, regions of
greatest stress become birefringent and the polarization of the light passing through
the plastic changes. Hence, a series of bright and dark bands is observed in the trans-
mitted light, with the bright bands corresponding to regions of greatest stress.

Engineers often use this technique, called optical stress analysis, in designing structures
ranging from bridges to small tools. They build a plastic model and analyze it under
different load conditions to determine regions of potential weakness and failure under
stress. Some examples of plastic models under stress are shown in Figure 38.36.

Polarization by Scattering

When light is incident on any material, the electrons in the material can absorb and rera-
diate part of the light. Such absorption and reradiation of light by electrons in the gas
molecules that make up air is what causes sunlight reaching an observer on the Earth to
be partially polarized. You can observe this effect—called scattering—by looking
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Crystal nO nE nO/nE

Calcite (CaCO3) 1.658 1.486 1.116
Quartz (SiO2) 1.544 1.553 0.994
Sodium nitrate (NaNO3) 1.587 1.336 1.188
Sodium sulfite (NaSO3) 1.565 1.515 1.033
Zinc chloride (ZnCl2) 1.687 1.713 0.985
Zinc sulfide (ZnS) 2.356 2.378 0.991

Indices of Refraction for Some Double-Refracting
Crystals at a Wavelength of 589.3 nm

Table 38.1

Figure 38.35 A calcite crystal
produces a double image because it
is a birefringent (double-refracting)
material.
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Figure 38.36 (a) Strain distribution in a plastic model of a hip replacement used in a
medical research laboratory. The pattern is produced when the plastic model is viewed
between a polarizer and analyzer oriented perpendicular to each other. (b) A plastic
model of an arch structure under load conditions observed between perpendicular
polarizers. Such patterns are useful in the optimal design of architectural components.
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directly up at the sky through a pair of sunglasses whose lenses are made of polarizing
material. Less light passes through at certain orientations of the lenses than at others.

Figure 38.37 illustrates how sunlight becomes polarized when it is scattered. The
phenomenon is similar to that creating completely polarized light upon reflection from
a surface at Brewster’s angle. An unpolarized beam of sunlight traveling in the horizon-
tal direction (parallel to the ground) strikes a molecule of one of the gases that make
up air, setting the electrons of the molecule into vibration. These vibrating charges act
like the vibrating charges in an antenna. The horizontal component of the electric field
vector in the incident wave results in a horizontal component of the vibration of the
charges, and the vertical component of the vector results in a vertical component of
vibration. If the observer in Figure 38.37 is looking straight up (perpendicular to the
original direction of propagation of the light), the vertical oscillations of the charges
send no radiation toward the observer. Thus, the observer sees light that is completely
polarized in the horizontal direction, as indicated by the brown arrows. If the observer
looks in other directions, the light is partially polarized in the horizontal direction.

Some phenomena involving the scattering of light in the atmosphere can be under-
stood as follows. When light of various wavelengths % is incident on gas molecules of
diameter d, where d ++ %, the relative intensity of the scattered light varies as 1/%4.
The condition d ++ % is satisfied for scattering from oxygen (O2) and nitrogen (N2)
molecules in the atmosphere, whose diameters are about 0.2 nm. Hence, short wave-
lengths (blue light) are scattered more efficiently than long wavelengths (red light).
Therefore, when sunlight is scattered by gas molecules in the air, the short-wavelength
radiation (blue) is scattered more intensely than the long-wavelength radiation (red).

When you look up into the sky in a direction that is not toward the Sun, you see the
scattered light, which is predominantly blue; hence, you see a blue sky. If you look
toward the west at sunset (or toward the east at sunrise), you are looking in a direction
toward the Sun and are seeing light that has passed through a large distance of air.
Most of the blue light has been scattered by the air between you and the Sun. The light
that survives this trip through the air to you has had much of its blue component scat-
tered and is thus heavily weighted toward the red end of the spectrum; as a result, you
see the red and orange colors of sunset.
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Unpolarized
light

Air
molecule

Figure 38.37 The scattering of
unpolarized sunlight by air
molecules. The scattered light
traveling perpendicular to the
incident light is plane-polarized
because the vertical vibrations of
the charges in the air molecule
send no light in this direction.

On the right side of this photograph is a view from the side of the freeway (cars and a
truck are visible at the left) of a rocket launch from Vandenburg Air Force Base, Cali-
fornia. The trail left by the rocket shows the effects of scattering of light by air mole-
cules. The lower portion of the trail appears red, due to the scattering of wavelengths at
the violet end of the spectrum as the light from the Sun travels through a large portion
of the atmosphere to light up the trail. The upper portion of the trail is illuminated by
light that has traveled through much less atmosphere and appears white.
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Optical Activity

Many important applications of polarized light involve materials that display optical
activity. A material is said to be optically active if it rotates the plane of polarization of
any light transmitted through the material. The angle through which the light is
rotated by a specific material depends on the length of the path through the material
and on concentration if the material is in solution. One optically active material is a
solution of the common sugar dextrose. A standard method for determining the con-
centration of sugar solutions is to measure the rotation produced by a fixed length of
the solution.

Molecular asymmetry determines whether a material is optically active. For exam-
ple, some proteins are optically active because of their spiral shape.

The liquid crystal displays found in most calculators have their optical activity
changed by the application of electric potential across different parts of the display. Try
using a pair of polarizing sunglasses to investigate the polarization used in the display
of your calculator.
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Quick Quiz 38.9 A polarizer for microwaves can be made as a grid of paral-
lel metal wires about a centimeter apart. Is the electric field vector for microwaves
transmitted through this polarizer (a) parallel or (b) perpendicular to the metal wires?

Quick Quiz 38.10 You are walking down a long hallway that has many light
fixtures in the ceiling and a very shiny, newly waxed floor. In the floor, you see reflec-
tions of every light fixture. Now you put on sunglasses that are polarized. Some of the
reflections of the light fixtures can no longer be seen (Try this!) The reflections that
disappear are those (a) nearest to you (b) farthest from you (c) at an intermediate
distance from you.

Diffraction is the deviation of light from a straight-line path when the light passes
through an aperture or around an obstacle. Diffraction is due to the wave nature of
light.

The Fraunhofer diffraction pattern produced by a single slit of width a on a
distant screen consists of a central bright fringe and alternating bright and dark fringes
of much lower intensities. The angles !dark at which the diffraction pattern has zero
intensity, corresponding to destructive interference, are given by

(38.1)

The intensity I of a single-slit diffraction pattern as a function of angle ! is given by
the expression

(38.4)

where ) " (2*a sin !)/% and Imax is the intensity at ! " 0.
Rayleigh’s criterion, which is a limiting condition of resolution, states that two

images formed by an aperture are just distinguishable if the central maximum of the
diffraction pattern for one image falls on the first minimum of the diffraction
pattern for the other image. The limiting angle of resolution for a slit of width a is
!min " %/a, and the limiting angle of resolution for a circular aperture of diameter
D is !min " 1.22%/D.

I " I max # sin()/2)
)/2 $2

m " #1, #2, #3, $ $ $sin ! dark " m  
%

a
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Take a practice test for
this chapter by clicking on
the Practice Test link at
http://www.pse6.com.



Questions 1233

A diffraction grating consists of a large number of equally spaced, identical slits.
The condition for intensity maxima in the interference pattern of a diffraction grating
for normal incidence is

(38.10)

where d is the spacing between adjacent slits and m is the order number of the diffrac-
tion pattern. The resolving power of a diffraction grating in the m th order of the dif-
fraction pattern is

(38.12)

where N is the number of lines in the grating that are illuminated.
When polarized light of intensity Imax is emitted by a polarizer and then incident

on an analyzer, the light transmitted through the analyzer has an intensity equal to
Imax cos2!, where ! is the angle between the polarizer and analyzer transmission axes.

In general, reflected light is partially polarized. However, reflected light is com-
pletely polarized when the angle of incidence is such that the angle between the
reflected and refracted beams is 90°. This angle of incidence, called the polarizing
angle !p , satisfies Brewster’s law:

(38.15)

where n is the index of refraction of the reflecting medium.

n " tan!p

R " Nm

m " 0, #1, #2, #3, $ $ $d sin! bright " m %

Why can you hear around corners, but not see around
corners?

2. Holding your hand at arm’s length, you can readily block
sunlight from reaching your eyes. Why can you not block
sound from reaching your ears this way?

3. Observe the shadow of your book when it is held a few
inches above a table with a small lamp several feet above
the book. Why is the shadow somewhat fuzzy at the
edges?

4. Knowing that radio waves travel at the speed of light and
that a typical AM radio frequency is 1 000 kHz while an
FM radio frequency might be 100 MHz, estimate the
wavelengths of typical AM and FM radio signals. Use this
information to explain why AM radio stations can fade out
when you drive your car through a short tunnel or under-
pass, when FM radio stations do not.

Describe the change in width of the central maximum of
the single-slit diffraction pattern as the width of the slit is
made narrower.

6. John William Strutt, Lord Rayleigh (1842–1919), is
known as the last person to understand all of physics and
all of mathematics. He invented an improved foghorn.
To warn ships of a coastline, a foghorn should radiate
sound in a wide horizontal sheet over the ocean’s sur-
face. It should not waste energy by broadcasting sound
upward. It should not emit sound downward, because
the water in front of the foghorn would reflect that
sound upward. Rayleigh’s foghorn trumpet is shown in
Figure Q38.6. Is it installed in the correct orientation?
Decide whether the long dimension of the rectangular
opening should be horizontal or vertical, and argue for
your decision.

5.

1.

7. Featured in the motion picture M*A*S*H (20th Century
Fox, Aspen Productions, 1970) is a loudspeaker mounted 
on an exterior wall of an Army barracks. It has an approxi-
mately rectangular aperture. Its design can be thought of as
based on Lord Rayleigh’s foghorn trumpet, described in
Question 6. Borrow or rent a copy of the movie, sketch the
orientation of the loudspeaker, decide whether it is installed
in the correct orientation, and argue for your decision.

Q U E S T I O N S

Figure Q38.6
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8. Assuming that the headlights of a car are point sources,
estimate the maximum distance from an observer to the
car at which the headlights are distinguishable from each
other.

9. A laser beam is incident at a shallow angle on a machinist’s
ruler that has a finely calibrated scale. The engraved
rulings on the scale give rise to a diffraction pattern on a
screen. Discuss how you can use this technique to obtain a
measure of the wavelength of the laser light.

10. When you receive a chest x-ray at a hospital, the rays pass
through a series of parallel ribs in your chest. Do the ribs
act as a diffraction grating for x-rays?

11. Certain sunglasses use a polarizing material to reduce the
intensity of light reflected from shiny surfaces. What orien-
tation of polarization should the material have to be most
effective?

12. During the “day” on the Moon (when the Sun is visible),
you see a black sky and the stars can be clearly seen.
During the day on the Earth, you see a blue sky with no
stars. Account for this difference.

13. You can make the path of a light beam visible by placing
dust in the air (perhaps by clapping two blackboard
erasers in the path of the light beam). Explain why you can
see the beam under these circumstances. In general, when
is light visible?

14. Is light from the sky polarized? Why is it that clouds seen
through Polaroid glasses stand out in bold contrast to
the sky?

15. If a coin is glued to a glass sheet and this arrangement is
held in front of a laser beam, the projected shadow has dif-
fraction rings around its edge and a bright spot in the
center. How is this possible?

16. How could the index of refraction of a flat piece of dark
obsidian glass be determined?

17. A laser produces a beam a few millimeters wide, with uni-
form intensity across its width. A hair is stretched vertically
across the front of the laser to cross the beam. How is the
diffraction pattern it produces on a distant screen related
to that of a vertical slit equal in width to the hair? How
could you determine the width of the hair from measure-
ments of its diffraction pattern?

18. A radio station serves listeners in a city to the northeast of
its broadcast site. It broadcasts from three adjacent towers
on a mountain ridge, along a line running east and west.
Show that by introducing time delays among the signals
the individual towers radiate, the station can maximize net
intensity in the direction toward the city (and in the oppo-
site direction) and minimize the signal transmitted in
other directions. The towers together are said to form a
phased array.

Section 38.2 Diffraction Patterns from Narrow Slits

1. Helium–neon laser light (% " 632.8 nm) is sent through a
0.300-mm-wide single slit. What is the width of the central
maximum on a screen 1.00 m from the slit?

2. A beam of green light is diffracted by a slit of width
0.550 mm. The diffraction pattern forms on a wall 2.06 m
beyond the slit. The distance between the positions of zero
intensity on both sides of the central bright fringe is
4.10 mm. Calculate the wavelength of the laser light.

A screen is placed 50.0 cm from a single slit, which is
illuminated with 690-nm light. If the distance between the
first and third minima in the diffraction pattern is 3.00 mm,
what is the width of the slit?

4. Coherent microwaves of wavelength 5.00 cm enter a long,
narrow window in a building otherwise essentially opaque
to the microwaves. If the window is 36.0 cm wide, what is
the distance from the central maximum to the first-order
minimum along a wall 6.50 m from the window?

5. Sound with a frequency 650 Hz from a distant source passes
through a doorway 1.10 m wide in a sound-absorbing
wall. Find the number and approximate directions of

3.

the diffraction-maximum beams radiated into the space
beyond.

6. Light of wavelength 587.5 nm illuminates a single slit
0.750 mm in width. (a) At what distance from the slit should
a screen be located if the first minimum in the diffraction
pattern is to be 0.850 mm from the center of the principal
maximum? (b) What is the width of the central maximum?

7. A beam of laser light of wavelength 632.8 nm has a circular
cross section 2.00 mm in diameter. A rectangular aperture
is to be placed in the center of the beam so that, when the
light falls perpendicularly on a wall 4.50 m away, the
central maximum fills a rectangle 110 mm wide and
6.00 mm high. The dimensions are measured between
the minima bracketing the central maximum. Find the
required width and height of the aperture.

8. What If? Assume the light in Figure 38.5 strikes the single
slit at an angle ) from the perpendicular direction. Show
that Equation 38.1, the condition for destructive interfer-
ence, must be modified to read

sin !dark " m  % %

a & ' sin )

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide

= coached solution with hints available at http://www.pse6.com = computer useful in solving problem

= paired numerical and symbolic problems

P R O B L E M S



Problems 1235

A diffraction pattern is formed on a screen 120 cm away
from a 0.400-mm-wide slit. Monochromatic 546.1-nm light
is used. Calculate the fractional intensity I/Imax at a point
on the screen 4.10 mm from the center of the principal
maximum.

10. Coherent light of wavelength 501.5 nm is sent through two
parallel slits in a large flat wall. Each slit is 0.700 /m wide.
Their centers are 2.80 /m apart. The light then falls on a
semicylindrical screen, with its axis at the midline between
the slits. (a) Predict the direction of each interference maxi-
mum on the screen, as an angle away from the bisector of
the line joining the slits. (b) Describe the pattern of light on
the screen, specifying the number of bright fringes and the
location of each. (c) Find the intensity of light on the screen
at the center of each bright fringe, expressed as a fraction of
the light intensity Imax at the center of the pattern.

Section 38.3 Resolution of Single-Slit and Circular
Apertures

11. The pupil of a cat’s eye narrows to a vertical slit of width
0.500 mm in daylight. What is the angular resolution for
horizontally separated mice? Assume that the average
wavelength of the light is 500 nm.

12. Find the radius a star image forms on the retina of the eye
if the aperture diameter (the pupil) at night is 0.700 cm
and the length of the eye is 3.00 cm. Assume the represen-
tative wavelength of starlight in the eye is 500 nm.

A helium–neon laser emits light that has a wavelength
of 632.8 nm. The circular aperture through which the
beam emerges has a diameter of 0.500 cm. Estimate the
diameter of the beam 10.0 km from the laser.

14. You are vacationing in a Wonderland populated by friendly
elves and a cannibalistic Cyclops that devours physics
students. The elves and the Cyclops look precisely alike
(everyone wears loose jeans and sweatshirts) except that
each elf has two eyes, about 10.0 cm apart, and the
Cyclops—you guessed it—has only one eye of about the
same size as an elf’s. The elves and the Cyclops are con-
stantly at war with each other, so they rarely sleep and all
have red eyes, predominantly reflecting light with a
wavelength of 660 nm. From what maximum distance can
you distinguish between a friendly elf and the predatory
Cyclops? The air in Wonderland is always clear. Dilated
with fear, your pupils have a diameter of 7.00 mm.

15. Narrow, parallel, glowing gas-filled tubes in a variety of colors
form block letters to spell out the name of a night club.
Adjacent tubes are all 2.80 cm apart. The tubes forming
one letter are filled with neon and radiate predominantly
red light with a wavelength of 640 nm. For another letter,
the tubes emit predominantly violet light at 440 nm. The
pupil of a dark-adapted viewer’s eye is 5.20 mm in diame-
ter. If she is in a certain range of distances away, the viewer
can resolve the separate tubes of one color but not the
other. Which color is easier to resolve? The viewer’s distance
must be in what range for her to resolve the tubes of
only one color?

16. On the night of April 18, 1775, a signal was sent from the
steeple of Old North Church in Boston to Paul Revere,

13.

9. who was 1.80 mi away: “One if by land, two if by sea.” At
what minimum separation did the sexton have to set the
lanterns for Revere to receive the correct message about
the approaching British? Assume that the patriot’s pupils
had a diameter of 4.00 mm at night and that the lantern
light had a predominant wavelength of 580 nm.

The Impressionist painter Georges Seurat created paint-
ings with an enormous number of dots of pure pigment,
each of which was approximately 2.00 mm in diameter.
The idea was to have colors such as red and green next to
each other to form a scintillating canvas (Fig. P38.17).
Outside what distance would one be unable to discern
individual dots on the canvas? (Assume that % " 500 nm
and that the pupil diameter is 4.00 mm.)

17.

Figure P38.17 Sunday Afternoon on the Island of La Grande Jatte, by
Georges Seurat.
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18. A binary star system in the constellation Orion has an angu-
lar interstellar separation of 1.00 & 10'5 rad. If % " 500 nm,
what is the smallest diameter the telescope can have to just
resolve the two stars?

19. A spy satellite can consist essentially of a large-diameter
concave mirror forming an image on a digital-camera
detector and sending the picture to a ground receiver by
radio waves. In effect, it is an astronomical telescope in
orbit, looking down instead of up. Can a spy satellite read
a license plate? Can it read the date on a dime? Argue for
your answers by making an order-of-magnitude calcula-
tion, specifying the data you estimate.

20. A circular radar antenna on a Coast Guard ship has a
diameter of 2.10 m and radiates at a frequency of 15.0 GHz.
Two small boats are located 9.00 km away from the ship.
How close together could the boats be and still be detected
as two objects?

21. Grote Reber was a pioneer in radio astronomy. He con-
structed a radio telescope with a 10.0-m-diameter receiving
dish. What was the telescope’s angular resolution for 2.00-m
radio waves?

22. When Mars is nearest the Earth, the distance separating
the two planets is 88.6 & 106 km. Mars is viewed through a
telescope whose mirror has a diameter of 30.0 cm. (a) If
the wavelength of the light is 590 nm, what is the angular
resolution of the telescope? (b) What is the smallest
distance that can be resolved between two points on Mars?
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Section 38.4 The Diffraction Grating

White light is spread out into its spectral components by
a diffraction grating. If the grating has 2 000 grooves per
centimeter, at what angle does red light of wavelength
640 nm appear in first order?

24. Light from an argon laser strikes a diffraction grating that
has 5 310 grooves per centimeter. The central and first-
order principal maxima are separated by 0.488 m on a wall
1.72 m from the grating. Determine the wavelength of the
laser light.

The hydrogen spectrum has a red line at 656 nm and
a blue line at 434 nm. What are the angular separations
between these two spectral lines obtained with a diffraction
grating that has 4 500 grooves/cm?

26. A helium–neon laser (% " 632.8 nm) is used to calibrate a
diffraction grating. If the first-order maximum occurs at
20.5°, what is the spacing between adjacent grooves in the
grating?

27. Three discrete spectral lines occur at angles of 10.09°,
13.71°, and 14.77° in the first-order spectrum of a grating
spectrometer. (a) If the grating has 3 660 slits/cm, what
are the wavelengths of the light? (b) At what angles are
these lines found in the second-order spectrum?

28. Show that, whenever white light is passed through a diffrac-
tion grating of any spacing size, the violet end of the contin-
uous visible spectrum in third order always overlaps with red
light at the other end of the second-order spectrum.

A diffraction grating of width 4.00 cm has been ruled
with 3 000 grooves/cm. (a) What is the resolving power of
this grating in the first three orders? (b) If two monochro-
matic waves incident on this grating have a mean
wavelength of 400 nm, what is their wavelength separation
if they are just resolved in the third order?

30. The laser in a CD player must precisely follow the spiral
track, along which the distance between one loop of the
spiral and the next is only about 1.25 /m. A feedback
mechanism lets the player know if the laser drifts off the
track, so that the player can steer it back again. Figure
P38.30 shows how a diffraction grating is used to provide
information to keep the beam on track. The laser light
passes through a diffraction grating just before it reaches
the disk. The strong central maximum of the diffraction
pattern is used to read the information in the track of pits.
The two first-order side maxima are used for steering. The
grating is designed so that the first-order maxima fall on
the flat surfaces on both sides of the information track.
Both side beams are reflected into their own detectors. As
long as both beams are reflecting from smooth nonpitted
surfaces, they are detected with constant high intensity. If
the main beam wanders off the track, however, one of the
side beams will begin to strike pits on the information
track and the reflected light will diminish. This change is
used with an electronic circuit to guide the beam back to

29.

25.

23.

Note: In the following problems, assume that the light is
incident normally on the gratings.

the desired location. Assume that the laser light has a
wavelength of 780 nm and that the diffraction grating is
positioned 6.90 /m from the disk. Assume that the 
first-order beams are to fall on the disk 0.400 /m on either
side of the information track. What should be the number
of grooves per millimeter in the grating?

A source emits 531.62-nm and 531.81-nm light. (a) What
minimum number of grooves is required for a grating that
resolves the two wavelengths in the first-order spectrum?
(b) Determine the slit spacing for a grating 1.32 cm wide
that has the required minimum number of grooves.

32. A diffraction grating has 4 200 rulings/cm. On a screen
2.00 m from the grating, it is found that for a particular
order m, the maxima corresponding to two closely spaced
wavelengths of sodium (589.0 nm and 589.6 nm) are sepa-
rated by 1.59 mm. Determine the value of m.

A grating with 250 grooves/mm is used with an incandes-
cent light source. Assume the visible spectrum to range in
wavelength from 400 to 700 nm. In how many orders can
one see (a) the entire visible spectrum and (b) the short-
wavelength region?

34. A wide beam of laser light with a wavelength of 632.8 nm is
directed through several narrow parallel slits, separated by
1.20 mm, and falls on a sheet of photographic film 1.40 m
away. The exposure time is chosen so that the film stays
unexposed everywhere except at the central region of each
bright fringe. (a) Find the distance between these interfer-
ence maxima. The film is printed as a transparency—it is
opaque everywhere except at the exposed lines. Next, the
same beam of laser light is directed through the trans-
parency and allowed to fall on a screen 1.40 m beyond.
(b) Argue that several narrow parallel bright regions, sepa-
rated by 1.20 mm, will appear on the screen, as real images
of the original slits. If at last the screen is removed, light will
diverge from the images of the original slits with the same
reconstructed wave fronts as the original slits produced.
(Suggestion: You may find it useful to draw diagrams similar

33.

31.

Laser

Diffraction
grating

Central
maximum

First-order
maxima

Compact disc

Figure P38.30
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to Figure 38.16. A train of thought like this, at a soccer
game, led Dennis Gabor to the invention of holography.)

Section 38.5 Diffraction of X-Rays by Crystals

35. Potassium iodide (KI) has the same crystalline structure as
NaCl, with atomic planes separated by 0.353 nm. A mono-
chromatic x-ray beam shows a first-order diffraction maxi-
mum when the grazing angle is 7.60°. Calculate the x-ray
wavelength.

36. A wavelength of 0.129 nm characterizes K2 x-rays from
zinc. When a beam of these x-rays is incident on the
surface of a crystal whose structure is similar to that of
NaCl, a first-order maximum is observed at 8.15°. Calculate
the interplanar spacing based on this information.

If the interplanar spacing of NaCl is 0.281 nm, what is
the predicted angle at which 0.140-nm x-rays are diffracted
in a first-order maximum?

38. The first-order diffraction maximum is observed at 12.6°
for a crystal in which the interplanar spacing is 0.240 nm.
How many other orders can be observed?

39. In water of uniform depth, a wide pier is supported on
pilings in several parallel rows 2.80 m apart. Ocean waves
of uniform wavelength roll in, moving in a direction that
makes an angle of 80.0° with the rows of posts. Find the
three longest wavelengths of waves that will be strongly
reflected by the pilings.

Section 38.6 Polarization of Light Waves

40. Unpolarized light passes through two polaroid sheets. The
axis of the first is vertical, and that of the second is at 30.0°
to the vertical. What fraction of the incident light is
transmitted?

Plane-polarized light is incident on a single polarizing disk
with the direction of E0 parallel to the direction of the
transmission axis. Through what angle should the disk be
rotated so that the intensity in the transmitted beam is
reduced by a factor of (a) 3.00, (b) 5.00, (c) 10.0?

42. Three polarizing disks whose planes are parallel are cen-
tered on a common axis. The direction of the transmission
axis in each case is shown in Figure P38.42 relative to the

41.

Problem 34 in Chapter 34 can be assigned with this
section.

37.

common vertical direction. A plane-polarized beam of
light with E0 parallel to the vertical reference direction
is incident from the left on the first disk with intensity
Ii " 10.0 units (arbitrary). Calculate the transmitted inten-
sity If when (a) !1 " 20.0°, !2 " 40.0°, and !3 " 60.0°;
(b) !1 " 0°, !2 " 30.0°, and !3 " 60.0°.

43. The angle of incidence of a light beam onto a reflecting
surface is continuously variable. The reflected ray is found
to be completely polarized when the angle of incidence is
48.0°. What is the index of refraction of the reflecting
material?

44. Review Problem. (a) A transparent plate with index of re-
fraction n2 is immersed in a medium with index n1. Light
traveling in the surrounding medium strikes the top surface
of the plate at Brewster’s angle. Show that if and only if the
surfaces of the plate are parallel, the refracted light will
strike the bottom surface of the plate at Brewster’s angle 
for that interface. (b) What If? Instead of a plate, consider 
a prism of index of refraction n2 separating media of dif-
ferent refractive indices n1 and n3. Is there one particular
apex angle between the surfaces of the prism for which 
light can fall on both of its surfaces at Brewster’s angle as it
passes through the prism? If so, determine it.

The critical angle for total internal reflection for sapphire
surrounded by air is 34.4°. Calculate the polarizing angle
for sapphire.

46. For a particular transparent medium surrounded by air,
show that the critical angle for total internal reflection and
the polarizing angle are related by cot !p " sin !c .

47. How far above the horizon is the Moon when its image
reflected in calm water is completely polarized? (nwater "
1.33)

Additional Problems

48. In Figure P38.42, suppose that the transmission axes of the
left and right polarizing disks are perpendicular to each
other. Also, let the center disk be rotated on the common
axis with an angular speed 3. Show that if unpolarized
light is incident on the left disk with an intensity Imax, the
intensity of the beam emerging from the right disk is

This means that the intensity of the emerging beam is
modulated at a rate that is four times the rate of rotation
of the center disk. [Suggestion: Use the trigonometric iden-
tities cos2 ! " (1 , cos 2!)/2 and sin2 ! " (1 ' cos 2!)/2,
and recall that ! " 3t.]

49. You want to rotate the plane of polarization of a polarized
light beam by 45.0° with a maximum intensity reduction of
10.0%. (a) How many sheets of perfect polarizers do you
need to achieve your goal? (b) What is the angle between
adjacent polarizers?

50. Figure P38.50 shows a megaphone in use. Construct a the-
oretical description of how a megaphone works. You may
assume that the sound of your voice radiates just through

I " 1
16 I max (1 ' cos 43t)

45.

Ii

If

3θ
2θ

1θ

Figure P38.42 Problems 42 and 48.
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the opening of your mouth. Most of the information in
speech is carried not in a signal at the fundamental fre-
quency, but in noises and in harmonics, with frequencies
of a few thousand hertz. Does your theory allow any pre-
diction that is simple to test?

51. Light from a helium–neon laser (% " 632.8 nm) is inci-
dent on a single slit. What is the maximum width of the slit
for which no diffraction minima are observed?

52. What are the approximate dimensions of the smallest
object on Earth that astronauts can resolve by eye when
they are orbiting 250 km above the Earth? Assume that
% " 500 nm and that a pupil diameter is 5.00 mm.

53. Review problem. A beam of 541-nm light is incident on a dif-
fraction grating that has 400 grooves/mm. (a) Determine
the angle of the second-order ray. (b) What If? If the entire
apparatus is immersed in water, what is the new second-order
angle of diffraction? (c) Show that the two diffracted rays of
parts (a) and (b) are related through the law of refraction.

54. The Very Large Array (VLA) is a set of 27 radio telescope
dishes in Caton and Socorro Counties, New Mexico (Fig.
P38.54). The antennas can be moved apart on railroad
tracks, and their combined signals give the resolving power
of a synthetic aperture 36.0 km in diameter. (a) If the
detectors are tuned to a frequency of 1.40 GHz, what is the
angular resolution of the VLA? (b) Clouds of hydrogen
radiate at this frequency. What must be the separation
distance of two clouds 26 000 lightyears away at the center
of the galaxy, if they are to be resolved? (c) What If? As the
telescope looks up, a circling hawk looks down. Find the

angular resolution of the hawk’s eye. Assume that the hawk
is most sensitive to green light having a wavelength of 
500 nm and that it has a pupil of diameter 12.0 mm. (d) A
mouse is on the ground 30.0 m below. By what distance
must the mouse’s whiskers be separated if the hawk can re-
solve them?

55. A 750-nm light beam hits the flat surface of a certain
liquid, and the beam is split into a reflected ray and a
refracted ray. If the reflected ray is completely polarized at
36.0°, what is the wavelength of the refracted ray?

56. Iridescent peacock feathers are shown in Figure P38.56a.
The surface of one microscopic barbule is composed of
transparent keratin that supports rods of dark brown
melanin in a regular lattice, represented in Figure P38.56b.
(Your fingernails are made of keratin, and melanin is the
dark pigment giving color to human skin.) In a portion of
the feather that can appear turquoise, assume that the
melanin rods are uniformly separated by 0.25 /m, with air
between them. (a) Explain how this structure can appear
blue-green when it contains no blue or green pigment.

Figure P38.50
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Figure P38.54 Some of the radio telescope dishes in the Very
Large Array.
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Figure P38.56 (a) Iridescent peacock feathers. (b) Microscopic
section of a feather showing dark melanin rods in a pale keratin
matrix.
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(b) Explain how it can also appear violet if light falls on it
in a different direction. (c) Explain how it can present
different colors to your two eyes at the same time—a char-
acteristic of iridescence. (d) A compact disc can appear to
be any color of the rainbow. Explain why this portion of the
feather cannot appear yellow or red. (e) What could be
different about the array of melanin rods in a portion of
the feather that does appear to be red?

Light of wavelength 500 nm is incident normally on a dif-
fraction grating. If the third-order maximum of the diffrac-
tion pattern is observed at 32.0°, (a) what is the number of
rulings per centimeter for the grating? (b) Determine the
total number of primary maxima that can be observed in
this situation.

58. Light strikes a water surface at the polarizing angle. The
part of the beam refracted into the water strikes a sub-
merged glass slab (index of refraction, 1.50), as shown in
Figure P38.58. The light reflected from the upper surface
of the slab is completely polarized. Find the angle between
the water surface and the glass slab.

57.

that the average wavelength of the light coming from the
screen is 550 nm.

62. (a) Light traveling in a medium of index of refraction n1 is
incident at an angle ! on the surface of a medium of index
n2. The angle between reflected and refracted rays is ).
Show that

(Suggestion: Use the identity sin(A , B) " sin A cos B ,
cos A sin B.) (b) What If ? Show that this expression for tan !
reduces to Brewster’s law when ) " 90°, n1 " 1, and n2 " n.

Suppose that the single slit in Figure 38.6 is 6.00 cm wide
and in front of a microwave source operating at 7.50 GHz.
(a) Calculate the angle subtended by the first minimum in
the diffraction pattern. (b) What is the relative intensity
I/Imax at ! " 15.0°? (c) Assume that two such sources, sep-
arated laterally by 20.0 cm, are behind the slit. What must
the maximum distance between the plane of the sources
and the slit be if the diffraction patterns are to be
resolved? (In this case, the approximation sin ! ! tan ! is
not valid because of the relatively small value of a/%.)

64. Two polarizing sheets are placed together with their trans-
mission axes crossed so that no light is transmitted. A third
sheet is inserted between them with its transmission axis at
an angle of 45.0° with respect to each of the other axes.
Find the fraction of incident unpolarized light intensity
transmitted by the three-sheet combination. (Assume each
polarizing sheet is ideal.)

65. Two wavelengths % and % , (% (with (% ++ %) are inci-
dent on a diffraction grating. Show that the angular sepa-
ration between the spectral lines in the m th-order
spectrum is

where d is the slit spacing and m is the order number.

66. Two closely spaced wavelengths of light are incident on a
diffraction grating. (a) Starting with Equation 38.10, show
that the angular dispersion of the grating is given by

(b) A square grating 2.00 cm on each side containing
8 000 equally spaced slits is used to analyze the spectrum of
mercury. Two closely spaced lines emitted by this element
have wavelengths of 579.065 nm and 576.959 nm. What is
the angular separation of these two wavelengths in the
second-order spectrum?

67. The scale of a map is a number of kilometers per centime-
ter, specifying the distance on the ground that any dis-
tance on the map represents. The scale of a spectrum is its
dispersion, a number of nanometers per centimeter, which
specifies the change in wavelength that a distance across
the spectrum represents. One must know the dispersion in
order to compare one spectrum with another and to make
a measurement of (for example) a Doppler shift. Let y rep-
resent the position relative to the center of a diffraction
pattern projected onto a flat screen at distance L by a dif-
fraction grating with slit spacing d. The dispersion is d%/dy.

d!

d %
"

m
d cos !

(! "
(%

√(d/m)2 ' %2

63.

tan ! "
n2 sin )

n1 ' n2 cos )

θp

θ
Air

Water

θ

Figure P38.58

59. A beam of bright red light of wavelength 654 nm passes
through a diffraction grating. Enclosing the space beyond
the grating is a large screen forming one half of a cylinder
centered on the grating, with its axis parallel to the slits in
the grating. Fifteen bright spots appear on the screen.
Find the maximum and minimum possible values for the
slit separation in the diffraction grating.

60. A pinhole camera has a small circular aperture of diameter D.
Light from distant objects passes through the aperture into
an otherwise dark box, falling on a screen located a distance
L away. If D is too large, the display on the screen will be
fuzzy, because a bright point in the field of view will send
light onto a circle of diameter slightly larger than D. On the
other hand, if D is too small, diffraction will blur the display
on the screen. The screen shows a reasonably sharp image if
the diameter of the central disk of the diffraction pattern,
specified by Equation 38.9, is equal to D at the screen.
(a) Show that for monochromatic light with plane wave
fronts and L 44 D, the condition for a sharp view is fulfilled
if D 2 " 2.44%L . (b) Find the optimum pinhole diameter for
500-nm light projected onto a screen 15.0 cm away.

61. An American standard television picture is composed of
about 485 horizontal lines of varying light intensity.
Assume that your ability to resolve the lines is limited only
by the Rayleigh criterion and that the pupils of your eyes
are 5.00 mm in diameter. Calculate the ratio of minimum
viewing distance to the vertical dimension of the picture
such that you will not be able to resolve the lines. Assume
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(a) Prove that the dispersion is given by

(b) Calculate the dispersion in first order for light with a
mean wavelength of 550 nm, analyzed with a grating having
8 000 rulings/cm, and projected onto a screen 2.40 m away.

68. Derive Equation 38.12 for the resolving power of a grating,
R " Nm, where N is the number of slits illuminated and m
is the order in the diffraction pattern. Remember that
Rayleigh’s criterion (Section 38.3) states that two
wavelengths will be resolved when the principal maximum
for one falls on the first minimum for the other.

69. Figure P38.69a is a three-dimensional sketch of a birefrin-
gent crystal. The dotted lines illustrate how a thin parallel-
faced slab of material could be cut from the larger specimen
with the optic axis of the crystal parallel to the faces of the
plate. A section cut from the crystal in this manner is known
as a retardation plate. When a beam of light is incident on the
plate perpendicular to the direction of the optic axis, as
shown in Figure P38.69b, the O ray and the E ray travel
along a single straight line, but with different speeds. (a) Let
the thickness of the plate be d and show that the phase dif-
ference between the O ray and the E ray is

where % is the wavelength in air. (b) In a particular case
the incident light has a wavelength of 550 nm. Find the
minimum value of d for a quartz plate for which ! " */2.
Such a plate is called a quarter-wave plate. (Use values of nO
and nE from Table 38.1.)

! "
2*d

%
 "nO ' nE "

d %

dy
"

L2d
m(L2 , y2)3/2

maximum of the central maximum of the single-slit
Fraunhofer diffraction pattern. You can evaluate this angle
of spreading in this problem and in the next. (a) In Equa-
tion 38.4, define )/2 " 5 and show that, at the point
where I " 0.5Imax, we must have sin 5 " 5/ . (b) Let
y1 " sin 5 and y2 " 5/ . Plot y1 and y2 on the same set
of axes over a range from 5 " 1 rad to 5 " */2 rad. De-
termine 5 from the point of intersection of the two curves.
(c) Then show that, if the fraction %/a is not large, the an-
gular full width at half maximum of the central diffraction
maximum is (! " 0.886 %/a.

Another method to solve the equation 5 " sin 5 in
Problem 70 is to guess a first value of 5, use a computer or
calculator to see how nearly it fits, and continue to update
your estimate until the equation balances. How many steps
(iterations) does this take?

72. In the diffraction pattern of a single slit, described by
the equation

with ) " (2*a sin !)/%, the central maximum is at ) " 0
and the side maxima are approximately at )/2 " (m , )*
for m " 1, 2, 3, . . . . Determine more precisely (a) the
location of the first side maximum, where m " 1, and
(b) the location of the second side maximum. Observe in
Figure 38.10a that the graph of intensity versus )/2 has a
horizontal tangent at maxima and also at minima. You will
need to solve a transcendental equation.

73. Light of wavelength 632.8 nm illuminates a single slit,
and a diffraction pattern is formed on a screen 1.00 m from
the slit. Using the data in the table below, plot relative inten-
sity versus position. Choose an appropriate value for the slit
width a and on the same graph used for the experimental
data, plot the theoretical expression for the relative intensity

What value of a gives the best fit of theory and experiment?

I!

I max
"  

sin2()/2)
()/2)2

1
2

I! " I max 
sin2()/2)

()/2)2

√271.

√2
√2

(b)

(a)

Optic
axis

Optic
axis

Wave front
E ray

O ray

d

Figure P38.69

Position Relative to
Relative Intensity Central Maximum (mm)

1.00 0
0.95 0.8
0.80 1.6
0.60 2.4
0.39 3.2
0.21 4.0
0.079 4.8
0.014 5.6
0.003 6.5
0.015 7.3
0.036 8.1
0.047 8.9
0.043 9.7
0.029 10.5
0.013 11.3
0.002 12.1
0.000 3 12.9
0.005 13.7

70. How much diffraction spreading does a light beam
undergo? One quantitative answer is the full width at half
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aperture larger, relative to the light wavelength, increasing
the resolving power. Thus, we should choose a blue filter.

38.7 (b). The tracks of information on a compact disc are
much closer together than on a phonograph record. As
a result, the diffraction maxima from the compact disc
will be farther apart than those from the record.

38.8 (c). With the doubled wavelength, the pattern will be
wider. Choices (a) and (d) make the pattern even wider.
From Equation 38.10, we see that choice (b) causes sin !
to be twice as large. Because we cannot use the small
angle approximation, however, a doubling of sin ! is not
the same as a doubling of !, which would translate to a
doubling of the position of a maximum along the screen.
If we only consider small-angle maxima, choice (b) would
work, but it does not work in the large-angle case.

38.9 (b). Electric field vectors parallel to the metal wires cause
electrons in the metal to oscillate parallel to the wires.
Thus, the energy from the waves with these electric field
vectors is transferred to the metal by accelerating these
electrons and is eventually transformed to internal energy
through the resistance of the metal. Waves with electric-
field vectors perpendicular to the metal wires pass
through because they are not able to accelerate electrons
in the wires.

38.10 (c). At some intermediate distance, the light rays from
the fixtures will strike the floor at Brewster’s angle and
reflect to your eyes. Because this light is polarized hori-
zontally, it will not pass through your polarized sun-
glasses. Tilting your head to the side will cause the
reflections to reappear.

0.012 14.5
0.016 15.3
0.015 16.1
0.010 16.9
0.004 4 17.7
0.000 6 18.5
0.000 3 19.3
0.003 20.2

Answers to Quick Quizzes

38.1 (a). Equation 38.1 shows that a decrease in a results in an
increase in the angles at which the dark fringes appear.

38.2 (c). The space between the slightly open door and the
doorframe acts as a single slit. Sound waves have
wavelengths that are larger than the opening and so
are diffracted and spread throughout the room you are
in. Because light wavelengths are much smaller than the
slit width, they experience negligible diffraction. As a
result, you must have a direct line of sight to detect the
light waves.

38.3 The situation is like that depicted in Figure 38.11 except
that now the slits are only half as far apart. The diffrac-
tion pattern is the same, but the interference pattern is
stretched out because d is smaller. Because d/a " 3, the
m " 3 interference maximum coincides with the first
diffraction minimum. Your sketch should look like the
figure below.

π

I

/2β

π–

38.4 (c). In Equation 38.7, the ratio d/a is independent of
wavelength, so the number of interference fringes in the
central diffraction pattern peak remains the same. Equa-
tion 38.1 tells us that a decrease in wavelength causes a
decrease in the width of the central peak.

38.5 (b). The effective slit width in the vertical direction of
the cat’s eye is larger than that in the horizontal direc-
tion. Thus, the eye has more resolving power for lights
separated in the vertical direction and would be more
effective at resolving the mast lights on the boat.

38.6 (a). We would like to reduce the minimum angular sepa-
ration for two objects below the angle subtended by the
two stars in the binary system. We can do that by reducing
the wavelength of the light—this in essence makes the ©
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Modern Physics
t the end of the nineteenth century, many scientists believed that they had
learned most of what there was to know about physics. Newton’s laws of motion
and his theory of universal gravitation, Maxwell’s theoretical work in unifying

electricity and magnetism, the laws of thermodynamics and kinetic theory, and the
principles of optics were highly successful in explaining a variety of phenomena.

As the nineteenth century turned to the twentieth, however, a major revolution
shook the world of physics. In 1900 Planck provided the basic ideas that led to the
formulation of the quantum theory, and in 1905 Einstein formulated his brilliant
special theory of relativity. The excitement of the times is captured in Einstein’s own
words: “It was a marvelous time to be alive.” Both ideas were to have a profound
effect on our understanding of nature. Within a few decades, these two theories
inspired new developments and theories in the fields of atomic physics, nuclear
physics, and condensed-matter physics.

In Chapter 39 we introduce the special theory of relativity. The theory provides us
with a new and deeper view of physical laws. Although the concepts underlying this
theory often violate our common sense, the theory correctly predicts the results of
experiments involving speeds near the speed of light. In the extended version of this
textbook, Physics for Scientists and Engineers with Modern Physics, we cover the
basic concepts of quantum mechanics and their application to atomic and molecular
physics, and we introduce solid-state physics, nuclear physics, particle physics, and
cosmology.

You should keep in mind that, although the physics that was developed during
the twentieth century has led to a multitude of important technological achievements,
the story is still incomplete. Discoveries will continue to evolve during our lifetimes,
and many of these discoveries will deepen or refine our understanding of nature and
the world around us. It is still a “marvelous time to be alive.”  !

A

P A R T 6

! A portion of the accelerator tunnel at Fermilab, near Chicago, Illinois. The tunnel is
circular and 1.9 km in diameter. Using electric and magnetic fields, protons and antiprotons
are accelerated to speeds close to that of light and then allowed to collide head-on, in order
to investigate the production of new particles. (Fermilab Photo)
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" Standing on the shoulders of a giant. David Serway, son of one of the authors, watches
over his children, Nathan and Kaitlyn, as they frolic in the arms of Albert Einstein at the
Einstein memorial in Washington, D.C. It is well known that Einstein, the principal architect
of relativity, was very fond of children. (Emily Serway)
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Our everyday experiences and observations have to do with objects that move at
speeds much less than the speed of light. Newtonian mechanics was formulated by
observing and describing the motion of such objects, and this formalism is very
successful in describing a wide range of phenomena that occur at low speeds.
However, it fails to describe properly the motion of objects whose speeds approach
that of light.

Experimentally, the predictions of Newtonian theory can be tested at high speeds
by accelerating electrons or other charged particles through a large electric potential
difference. For example, it is possible to accelerate an electron to a speed of 0.99c
(where c is the speed of light) by using a potential difference of several million volts.
According to Newtonian mechanics, if the potential difference is increased by a factor
of 4, the electron’s kinetic energy is four times greater and its speed should double to
1.98c. However, experiments show that the speed of the electron—as well as the speed
of any other object in the Universe—always remains less than the speed of light,
regardless of the size of the accelerating voltage. Because it places no upper limit on
speed, Newtonian mechanics is contrary to modern experimental results and is clearly
a limited theory.

In 1905, at the age of only 26, Einstein published his special theory of relativity.
Regarding the theory, Einstein wrote:

The relativity theory arose from necessity, from serious and deep contradictions
in the old theory from which there seemed no escape. The strength of the new
theory lies in the consistency and simplicity with which it solves all these
difficulties . . . .1

Although Einstein made many other important contributions to science, the special
theory of relativity alone represents one of the greatest intellectual achievements of all
time. With this theory, experimental observations can be correctly predicted over the
range of speeds from v ! 0 to speeds approaching the speed of light. At low speeds,
Einstein’s theory reduces to Newtonian mechanics as a limiting situation. It is important
to recognize that Einstein was working on electromagnetism when he developed the
special theory of relativity. He was convinced that Maxwell’s equations were correct, and in
order to reconcile them with one of his postulates, he was forced into the revolutionary
notion of assuming that space and time are not absolute.

This chapter gives an introduction to the special theory of relativity, with emphasis
on some of its consequences. The special theory covers phenomena such as the
slowing down of moving clocks and the contraction of moving lengths. We also discuss
the relativistic forms of momentum and energy.

In addition to its well-known and essential role in theoretical physics, the special
theory of relativity has practical applications, including the design of nuclear power
plants and modern global positioning system (GPS) units. These devices do not work if
designed in accordance with nonrelativistic principles.

1 A. Einstein and L. Infeld, The Evolution of Physics, New York, Simon and Schuster, 1961.



39.1 The Principle of Galilean Relativity

To describe a physical event, we must establish a frame of reference. You should recall
from Chapter 5 that an inertial frame of reference is one in which an object is observed
to have no acceleration when no forces act on it. Furthermore, any system moving with
constant velocity with respect to an inertial frame must also be in an inertial frame.

There is no absolute inertial reference frame. This means that the results of an
experiment performed in a vehicle moving with uniform velocity will be identical to
the results of the same experiment performed in a stationary vehicle. The formal
statement of this result is called the principle of Galilean relativity:
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The laws of mechanics must be the same in all inertial frames of reference.

Let us consider an observation that illustrates the equivalence of the laws of
mechanics in different inertial frames. A pickup truck moves with a constant velocity,
as shown in Figure 39.1a. If a passenger in the truck throws a ball straight up, and if air
effects are neglected, the passenger observes that the ball moves in a vertical path. The
motion of the ball appears to be precisely the same as if the ball were thrown by a
person at rest on the Earth. The law of universal gravitation and the equations of
motion under constant acceleration are obeyed whether the truck is at rest or in
uniform motion.

Both observers agree on the laws of physics—they each throw a ball straight up and
it rises and falls back into their hand. What about the path of the ball thrown by the
observer in the truck? Do the observers agree on the path? The observer on the
ground sees the path of the ball as a parabola, as illustrated in Figure 39.1b, while, as
mentioned earlier, the observer in the truck sees the ball move in a vertical path.
Furthermore, according to the observer on the ground, the ball has a horizontal
component of velocity equal to the velocity of the truck. Although the two observers
disagree on certain aspects of the situation, they agree on the validity of Newton’s laws
and on such classical principles as conservation of energy and conservation of linear
momentum. This agreement implies that no mechanical experiment can detect any
difference between the two inertial frames. The only thing that can be detected is the
relative motion of one frame with respect to the other.

(b)(a)

Figure 39.1 (a) The observer in the truck sees the ball move in a vertical path when
thrown upward. (b) The Earth observer sees the path of the ball as a parabola.

Principle of Galilean relativity

Quick Quiz 39.1 Which observer in Figure 39.1 sees the ball’s correct path?
(a) the observer in the truck (b) the observer on the ground (c) both observers.
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Suppose that some physical phenomenon, which we call an event, occurs and is
observed by an observer at rest in an inertial reference frame. The event’s location and
time of occurrence can be specified by the four coordinates (x, y, z, t). We would like
to be able to transform these coordinates from those of an observer in one inertial
frame to those of another observer in a frame moving with uniform relative velocity
compared to the first frame. When we say an observer is “in a frame,” we mean that the
observer is at rest with respect to the origin of that frame.

Consider two inertial frames S and S" (Fig. 39.2). The frame S" moves with a
constant velocity v along the common x and x" axes, where v is measured relative to S.
We assume that the origins of S and S" coincide at t ! 0 and that an event occurs
at point P in space at some instant of time. An observer in S describes the event
with space–time coordinates (x, y, z, t), whereas an observer in S" uses the coordinates
(x", y", z", t") to describe the same event. As we see from the geometry in Figure 39.2,
the relationships among these various coordinates can be written

x" ! x # vt y" ! y z" ! z t" ! t (39.1)

These equations are the Galilean space–time transformation equations. Note that
time is assumed to be the same in both inertial frames. That is, within the framework
of classical mechanics, all clocks run at the same rate, regardless of their velocity, so
that the time at which an event occurs for an observer in S is the same as the time for
the same event in S". Consequently, the time interval between two successive events
should be the same for both observers. Although this assumption may seem obvious, it
turns out to be incorrect in situations where v is comparable to the speed of light.

Now suppose that a particle moves through a displacement of magnitude dx along
the x axis in a time interval dt as measured by an observer in S. It follows from
Equations 39.1 that the corresponding displacement dx" measured by an observer in S"
is dx" ! dx # v dt, where frame S" is moving with speed v in the x direction relative to
frame S. Because dt ! dt", we find that

or

u"x ! ux # v (39.2)

where ux and u"x are the x components of the velocity of the particle measured by
observers in S and S", respectively. (We use the symbol u for particle velocity rather
than v, which is used for the relative velocity of two reference frames.) This is the
Galilean velocity transformation equation. It is consistent with our intuitive notion
of time and space as well as with our discussions in Section 4.6. As we shall soon see,
however, it leads to serious contradictions when applied to electromagnetic waves.

dx "

dt "
!

dx
dt

# v

y

0 x

y′

0′ x ′

x
vt x ′

P (event)

v

S ′S

Figure 39.2 An event occurs at a
point P. The event is seen by two
observers in inertial frames S and
S", where S" moves with a velocity v
relative to S.

Galilean transformation
equations

" PITFALL PREVENTION 
39.1 The Relationship

Between the S and
S! Frames

Many of the mathematical repre-
sentations in this chapter are true
only for the specified relationship
between the S and S" frames. The
x and x" axes coincide, except
that their origins are different.
The y and y" axes (and the z and
z" axes), are parallel, but do not
coincide due to the displacement
of the origin of S" with respect to
that of S. We choose the time
t ! 0 to be the instant at which
the origins of the two coordinate
systems coincide. If the S" frame
is moving in the positive x direc-
tion relative to S, v is positive;
otherwise it is negative.

Quick Quiz 39.2 A baseball pitcher with a 90-mi/h fastball throws a ball
while standing on a railroad flatcar moving at 110 mi/h. The ball is thrown in the
same direction as that of the velocity of the train. Applying the Galilean velocity
transformation equation, the speed of the ball relative to the Earth is (a) 90 mi/h
(b) 110 mi/h (c) 20 mi/h (d) 200 mi/h (e) impossible to determine.

The Speed of Light

It is quite natural to ask whether the principle of Galilean relativity also applies to
electricity, magnetism, and optics. Experiments indicate that the answer is no.
Recall from Chapter 34 that Maxwell showed that the speed of light in free space is
c ! 3.00 $ 108 m/s. Physicists of the late 1800s thought that light waves moved through a
medium called the ether and that the speed of light was c only in a special, absolute frame



at rest with respect to the ether. The Galilean velocity transformation equation was
expected to hold for observations of light made by an observer in any frame moving at
speed v relative to the absolute ether frame. That is, if light travels along the x axis and
an observer moves with velocity v along the x axis, the observer will measure the light to
have speed c % v, depending on the directions of travel of the observer and the light.

Because the existence of a preferred, absolute ether frame would show that light
was similar to other classical waves and that Newtonian ideas of an absolute frame were
true, considerable importance was attached to establishing the existence of the ether
frame. Prior to the late 1800s, experiments involving light traveling in media moving at
the highest laboratory speeds attainable at that time were not capable of detecting
differences as small as that between c and c % v. Starting in about 1880, scientists
decided to use the Earth as the moving frame in an attempt to improve their chances
of detecting these small changes in the speed of light.

As observers fixed on the Earth, we can take the view that we are stationary
and that the absolute ether frame containing the medium for light propagation moves
past us with speed v. Determining the speed of light under these circumstances is
just like determining the speed of an aircraft traveling in a moving air current, or
wind; consequently, we speak of an “ether wind” blowing through our apparatus fixed
to the Earth.

A direct method for detecting an ether wind would use an apparatus fixed to the
Earth to measure the ether wind’s influence on the speed of light. If v is the speed of
the ether relative to the Earth, then light should have its maximum speed c & v when
propagating downwind, as in Figure 39.3a. Likewise, the speed of light should have its
minimum value c # v when the light is propagating upwind, as in Figure 39.3b, and an
intermediate value (c2 # v2)1/2 in the direction perpendicular to the ether wind, as in
Figure 39.3c. If the Sun is assumed to be at rest in the ether, then the velocity of the
ether wind would be equal to the orbital velocity of the Earth around the Sun, which
has a magnitude of approximately 3 $ 104 m/s. Because c ! 3 $ 108 m/s, it is
necessary to detect a change in speed of about 1 part in 104 for measurements in the
upwind or downwind directions. However, while such a change is experimentally
measurable, all attempts to detect such changes and establish the existence of the
ether wind (and hence the absolute frame) proved futile! We explore the classic
experimental search for the ether in Section 39.2.

The principle of Galilean relativity refers only to the laws of mechanics. If it is
assumed that the laws of electricity and magnetism are the same in all inertial frames, a
paradox concerning the speed of light immediately arises. We can understand this by
recognizing that Maxwell’s equations seem to imply that the speed of light always has
the fixed value 3.00 $ 108 m/s in all inertial frames, a result in direct contradiction to
what is expected based on the Galilean velocity transformation equation. According to
Galilean relativity, the speed of light should not be the same in all inertial frames.

To resolve this contradiction in theories, we must conclude that either (1) the laws
of electricity and magnetism are not the same in all inertial frames or (2) the Galilean
velocity transformation equation is incorrect. If we assume the first alternative, then a
preferred reference frame in which the speed of light has the value c must exist and the
measured speed must be greater or less than this value in any other reference frame, in
accordance with the Galilean velocity transformation equation. If we assume the second
alternative, then we are forced to abandon the notions of absolute time and absolute
length that form the basis of the Galilean space–time transformation equations.

39.2 The Michelson–Morley Experiment

The most famous experiment designed to detect small changes in the speed of light was
first performed in 1881 by Albert A. Michelson (see Section 37.7) and later repeated
under various conditions by Michelson and Edward W. Morley (1838–1923). We state at
the outset that the outcome of the experiment contradicted the ether hypothesis.
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c + v

(a) Downwind

(b) Upwind

(c) Across wind

vc

v

c  – v

c

v

cc 2 – v 2√

Figure 39.3 If the velocity of the
ether wind relative to the Earth
is v and the velocity of light relative
to the ether is c, then the speed
of light relative to the Earth is
(a) c & v in the downwind
direction, (b) c # v in the upwind
direction, and (c) (c2 # v2)1/2

in the direction perpendicular to
the wind.



The experiment was designed to determine the velocity of the Earth relative to
that of the hypothetical ether. The experimental tool used was the Michelson interfer-
ometer, which was discussed in Section 37.7 and is shown again in Figure 39.4. Arm 2 is
aligned along the direction of the Earth’s motion through space. The Earth moving
through the ether at speed v is equivalent to the ether flowing past the Earth in the
opposite direction with speed v. This ether wind blowing in the direction opposite the
direction of Earth’s motion should cause the speed of light measured in the Earth
frame to be c # v as the light approaches mirror M2 and c & v after reflection, where c
is the speed of light in the ether frame.

The two light beams reflect from M1 and M2 and recombine, and an interference
pattern is formed, as discussed in Section 37.7. The interference pattern is observed
while the interferometer is rotated through an angle of 90°. This rotation interchanges
the speed of the ether wind between the arms of the interferometer. The rotation
should cause the fringe pattern to shift slightly but measurably. Measurements failed,
however, to show any change in the interference pattern! The Michelson–Morley
experiment was repeated at different times of the year when the ether wind was
expected to change direction and magnitude, but the results were always the same: no
fringe shift of the magnitude required was ever observed.2

The negative results of the Michelson–Morley experiment not only contradicted
the ether hypothesis but also showed that it was impossible to measure the absolute
velocity of the Earth with respect to the ether frame. However, Einstein offered a
postulate for his special theory of relativity that places quite a different interpretation
on these null results. In later years, when more was known about the nature of light,
the idea of an ether that permeates all of space was abandoned. Light is now
understood to be an electromagnetic wave, which requires no medium for its
propagation. As a result, the idea of an ether in which these waves travel became
unnecessary.

Details of the Michelson–Morley Experiment

To understand the outcome of the Michelson–Morley experiment, let us assume that
the two arms of the interferometer in Figure 39.4 are of equal length L. We shall
analyze the situation as if there were an ether wind, because that is what Michelson and
Morley expected to find. As noted above, the speed of the light beam along arm 2
should be c # v as the beam approaches M2 and c & v after the beam is reflected.
Thus, the time interval for travel to the right is L/(c # v), and the time interval for
travel to the left is L/(c & v). The total time interval for the round trip along arm 2 is

Now consider the light beam traveling along arm 1, perpendicular to the ether
wind. Because the speed of the beam relative to the Earth is (c2 # v2)1/2 in this case
(see Fig. 39.3), the time interval for travel for each half of the trip is L/(c2 # v2)1/2,
and the total time interval for the round trip is

Thus, the time difference 't between the horizontal round trip (arm 2) and the
vertical round trip (arm 1) is
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Telescope

Ether wind

M1

M2

M0

v

Arm 2

Arm 1

Active Figure 39.4 According to
the ether wind theory, the speed of
light should be c # v as the beam
approaches mirror M2 and c & v
after reflection.

At the Active Figures link
at http://www.pse6.com, you
can adjust the speed of the
ether wind to see the effect on
the light beams if there were an
ether.

2 From an Earth observer’s point of view, changes in the Earth’s speed and direction of motion in
the course of a year are viewed as ether wind shifts. Even if the speed of the Earth with respect to the
ether were zero at some time, six months later the speed of the Earth would be 60 km/s with respect to
the ether, and as a result a fringe shift should be noticed. No shift has ever been observed, however.



Because v2/c2 (( 1, we can simplify this expression by using the following binomial
expansion after dropping all terms higher than second order:

(1 # x)n % 1 # nx (for x (( 1)

In our case, x ! v2/c2, and we find that

(39.3)

This time difference between the two instants at which the reflected beams arrive at
the viewing telescope gives rise to a phase difference between the beams, producing an
interference pattern when they combine at the position of the telescope. A shift in the
interference pattern should be detected when the interferometer is rotated through
90° in a horizontal plane, so that the two beams exchange roles. This rotation results in
a time difference twice that given by Equation 39.3. Thus, the path difference that
corresponds to this time difference is

Because a change in path length of one wavelength corresponds to a shift of one
fringe, the corresponding fringe shift is equal to this path difference divided by the
wavelength of the light:

(39.4)

In the experiments by Michelson and Morley, each light beam was reflected by
mirrors many times to give an effective path length L of approximately 11 m. Using
this value and taking v to be equal to 3.0 $ 104 m/s, the speed of the Earth around the
Sun, we obtain a path difference of

This extra travel distance should produce a noticeable shift in the fringe pattern.
Specifically, using 500-nm light, we expect a fringe shift for rotation through 90° of

The instrument used by Michelson and Morley could detect shifts as small as 0.01 fringe.
However, it detected no shift whatsoever in the fringe pattern. Since then, the
experiment has been repeated many times by different scientists under a wide variety of
conditions, and no fringe shift has ever been detected. Thus, it was concluded that the
motion of the Earth with respect to the postulated ether cannot be detected.

Many efforts were made to explain the null results of the Michelson–Morley
experiment and to save the ether frame concept and the Galilean velocity transforma-
tion equation for light. All proposals resulting from these efforts have been shown to
be wrong. No experiment in the history of physics received such valiant efforts to
explain the absence of an expected result as did the Michelson–Morley experiment.
The stage was set for Einstein, who solved the problem in 1905 with his special theory
of relativity.

39.3 Einstein’s Principle of Relativity

In the previous section we noted the impossibility of measuring the speed of the ether
with respect to the Earth and the failure of the Galilean velocity transformation
equation in the case of light. Einstein proposed a theory that boldly removed these
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The first postulate asserts that all the laws of physics—those dealing with mechanics,
electricity and magnetism, optics, thermodynamics, and so on—are the same in all
reference frames moving with constant velocity relative to one another. This postulate is
a sweeping generalization of the principle of Galilean relativity, which refers only to the
laws of mechanics. From an experimental point of view, Einstein’s principle of relativity
means that any kind of experiment (measuring the speed of light, for example)
performed in a laboratory at rest must give the same result when performed in a labora-
tory moving at a constant velocity with respect to the first one. Hence, no preferred
inertial reference frame exists, and it is impossible to detect absolute motion.

Note that postulate 2 is required by postulate 1: if the speed of light were not the
same in all inertial frames, measurements of different speeds would make it possible to
distinguish between inertial frames; as a result, a preferred, absolute frame could be
identified, in contradiction to postulate 1.

Although the Michelson–Morley experiment was performed before Einstein
published his work on relativity, it is not clear whether or not Einstein was aware of the
details of the experiment. Nonetheless, the null result of the experiment can be readily
understood within the framework of Einstein’s theory. According to his principle of
relativity, the premises of the Michelson–Morley experiment were incorrect. In the
process of trying to explain the expected results, we stated that when light traveled
against the ether wind its speed was c # v, in accordance with the Galilean velocity
transformation equation. However, if the state of motion of the observer or of the
source has no influence on the value found for the speed of light, one always measures
the value to be c. Likewise, the light makes the return trip after reflection from the
mirror at speed c, not at speed c & v. Thus, the motion of the Earth does not influence
the fringe pattern observed in the Michelson–Morley experiment, and a null result
should be expected.

If we accept Einstein’s theory of relativity, we must conclude that relative motion is
unimportant when measuring the speed of light. At the same time, we shall see that we
must alter our common-sense notion of space and time and be prepared for some
surprising consequences. It may help as you read the pages ahead to keep in mind that
our common-sense ideas are based on a lifetime of everyday experiences and not on
observations of objects moving at hundreds of thousands of kilometers per second. Thus,
these results will seem strange, but that is only because we have no experience with them.

39.4 Consequences of the Special
Theory of Relativity

Before we discuss the consequences of Einstein’s special theory of relativity, we must
first understand how an observer located in an inertial reference frame describes an
event. As mentioned earlier, an event is an occurrence describable by three space
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1. The principle of relativity: The laws of physics must be the same in all inertial
reference frames.

2. The constancy of the speed of light: The speed of light in vacuum has the
same value, c ! 3.00 $ 108 m/s, in all inertial frames, regardless of the velocity
of the observer or the velocity of the source emitting the light.

difficulties and at the same time completely altered our notion of space and time.3 He
based his special theory of relativity on two postulates:

3 A. Einstein, “On the Electrodynamics of Moving Bodies,” Ann. Physik 17:891, 1905. For an English
translation of this article and other publications by Einstein, see the book by H. Lorentz, A. Einstein,
H. Minkowski, and H. Weyl, The Principle of Relativity, Dover, 1958.

Albert Einstein
German-American Physicist
(1879–1955)

Einstein, one of the greatest
physicists of all times, was born
in Ulm, Germany. In 1905, at
the age of 26, he published four
scientific papers that
revolutionized physics. Two of
these papers were concerned
with what is now considered his
most important contribution: the
special theory of relativity.

In 1916, Einstein published
his work on the general theory
of relativity. The most dramatic
prediction of this theory is the
degree to which light is
deflected by a gravitational
field. Measurements made by
astronomers on bright stars in
the vicinity of the eclipsed Sun
in 1919 confirmed Einstein’s
prediction, and as a result
Einstein became a world
celebrity.

Einstein was deeply
disturbed by the development
of quantum mechanics in the
1920s despite his own role as
a scientific revolutionary. In
particular, he could never
accept the probabilistic view of
events in nature that is a central
feature of quantum theory. The
last few decades of his life were
devoted to an unsuccessful
search for a unified theory that
would combine gravitation and
electromagnetism. (AIP Niels
Bohr Library)



coordinates and one time coordinate. Observers in different inertial frames will
describe the same event with coordinates that have different values.

As we examine some of the consequences of relativity in the remainder of this
section, we restrict our discussion to the concepts of simultaneity, time intervals, and
lengths, all three of which are quite different in relativistic mechanics from what they
are in Newtonian mechanics. For example, in relativistic mechanics the distance
between two points and the time interval between two events depend on the frame of
reference in which they are measured. That is, in relativistic mechanics there is no
such thing as an absolute length or absolute time interval. Furthermore, events
at different locations that are observed to occur simultaneously in one frame
are not necessarily observed to be simultaneous in another frame moving
uniformly with respect to the first.

Simultaneity and the Relativity of Time

A basic premise of Newtonian mechanics is that a universal time scale exists that is the
same for all observers. In fact, Newton wrote that “Absolute, true, and mathematical
time, of itself, and from its own nature, flows equably without relation to anything
external.” Thus, Newton and his followers simply took simultaneity for granted. In his
special theory of relativity, Einstein abandoned this assumption.

Einstein devised the following thought experiment to illustrate this point. A boxcar
moves with uniform velocity, and two lightning bolts strike its ends, as illustrated in
Figure 39.5a, leaving marks on the boxcar and on the ground. The marks on the
boxcar are labeled A" and B", and those on the ground are labeled A and B. An
observer O" moving with the boxcar is midway between A" and B", and a ground
observer O is midway between A and B. The events recorded by the observers are the
striking of the boxcar by the two lightning bolts.

The light signals emitted from A and B at the instant at which the two bolts strike
reach observer O at the same time, as indicated in Figure 39.5b. This observer realizes
that the signals have traveled at the same speed over equal distances, and so rightly
concludes that the events at A and B occurred simultaneously. Now consider the same
events as viewed by observer O". By the time the signals have reached observer O,
observer O" has moved as indicated in Figure 39.5b. Thus, the signal from B" has
already swept past O", but the signal from A" has not yet reached O". In other words, O"
sees the signal from B" before seeing the signal from A". According to Einstein, the two
observers must find that light travels at the same speed. Therefore, observer O" concludes
that the lightning strikes the front of the boxcar before it strikes the back.

This thought experiment clearly demonstrates that the two events that appear
to be simultaneous to observer O do not appear to be simultaneous to observer O".
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Figure 39.5 (a) Two lightning bolts strike the ends of a moving boxcar. (b) The events
appear to be simultaneous to the stationary observer O, standing midway between A
and B. The events do not appear to be simultaneous to observer O", who claims that
the front of the car is struck before the rear. Note that in (b) the leftward-traveling light
signal has already passed O" but the rightward-traveling signal has not yet reached O".

" PITFALL PREVENTION 
39.2 Who’s Right?
You might wonder which observer
in Fig. 39.5 is correct concerning
the two lightning strikes. Both are
correct, because the principle of
relativity states that there is no
preferred inertial frame of reference.
Although the two observers reach
different conclusions, both are
correct in their own reference
frame because the concept of
simultaneity is not absolute. This,
in fact, is the central point of
relativity—any uniformly moving
frame of reference can be used to
describe events and do physics.
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At the Active Figures link
at http://www.pse6.com, you
can observe the bouncing of
the light pulse for various
speeds of the train.

Einstein’s thought experiment demonstrates that two observers can disagree on the
simultaneity of two events. This disagreement, however, depends on the transit
time of light to the observers and, therefore, does not demonstrate the deeper
meaning of relativity. In relativistic analyses of high-speed situations, relativity shows
that simultaneity is relative even when the transit time is subtracted out. In fact, all of
the relativistic effects that we will discuss from here on will assume that we are ignoring
differences caused by the transit time of light to the observers.

Time Dilation

We can illustrate the fact that observers in different inertial frames can measure
different time intervals between a pair of events by considering a vehicle moving to the
right with a speed v, such as the boxcar shown in Figure 39.6a. A mirror is fixed to the
ceiling of the vehicle, and observer O" at rest in the frame attached to the vehicle holds
a flashlight a distance d below the mirror. At some instant, the flashlight emits a pulse of
light directed toward the mirror (event 1), and at some later time after reflecting from
the mirror, the pulse arrives back at the flashlight (event 2). Observer O" carries a clock
and uses it to measure the time interval 'tp between these two events. (The subscript p
stands for proper , as we shall see in a moment.) Because the light pulse has a speed c, the
time interval required for the pulse to travel from O" to the mirror and back is

(39.5)

Now consider the same pair of events as viewed by observer O in a second frame, as
shown in Figure 39.6b. According to this observer, the mirror and flashlight are moving to
the right with a speed v, and as a result the sequence of events appears entirely different.
By the time the light from the flashlight reaches the mirror, the mirror has moved to the
right a distance v 't/2, where 't is the time interval required for the light to travel from
O" to the mirror and back to O" as measured by O. In other words, O concludes that,
because of the motion of the vehicle, if the light is to hit the mirror, it must leave the

'tp !
distance traveled

speed
!

2d
c

two events that are simultaneous in one reference frame are in general not
simultaneous in a second frame moving relative to the first. That is, simultaneity is
not an absolute concept but rather one that depends on the state of motion of
the observer.

v

O ′ O ′ O ′

x ′
O

y ′

v∆t

(b)

d

v∆t
2

c∆t
2

(c)

v
Mirror

y ′

x ′

d

O ′

(a)

Active Figure 39.6 (a) A mirror is fixed to a moving vehicle, and a light pulse is sent
out by observer O" at rest in the vehicle. (b) Relative to a stationary observer O standing
alongside the vehicle, the mirror and O" move with a speed v . Note that what observer
O measures for the distance the pulse travels is greater than 2d . (c) The right triangle
for calculating the relationship between 't and 'tp .

In other words,



flashlight at an angle with respect to the vertical direction. Comparing Figure 39.6a and b,
we see that the light must travel farther in (b) than in (a). (Note that neither observer
“knows” that he or she is moving. Each is at rest in his or her own inertial frame.)

According to the second postulate of the special theory of relativity, both observers
must measure c for the speed of light. Because the light travels farther according to O,
it follows that the time interval 't measured by O is longer than the time interval 'tp
measured by O". To obtain a relationship between these two time intervals, it is conve-
nient to use the right triangle shown in Figure 39.6c. The Pythagorean theorem gives

Solving for 't gives

(39.6)

Because 'tp ! 2d/c, we can express this result as

(39.7)

where

(39.8)

Because * is always greater than unity, this result says that the time interval "t
measured by an observer moving with respect to a clock is longer than the time
interval "tp measured by an observer at rest with respect to the clock. This effect
is known as time dilation.

We can see that time dilation is not observed in our everyday lives by considering
the factor *. This factor deviates significantly from a value of 1 only for very high
speeds, as shown in Figure 39.7 and Table 39.1. For example, for a speed of 0.1c, the
value of * is 1.005. Thus, there is a time dilation of only 0.5% at one-tenth the speed of
light. Speeds that we encounter on an everyday basis are far slower than this, so we do
not see time dilation in normal situations.

The time interval 'tp in Equations 39.5 and 39.7 is called the proper time
interval. (In German, Einstein used the term Eigenzeit , which means “own-time.”) In

* !
1

√1 #
v2

c 
2

't !
'tp

√1 #
v2

c 
2

! * 'tp

't !
2d

√c 
2 # v2

!
2d

c  √1 #
v2

c 
2

" c 't
2 #2

! " v 't
2 #2

& d2
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Time dilation
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Figure 39.7 Graph of * versus v. As the speed approaches that of light, * increases
rapidly.

v/c #

0.001 0 1.000 000 5
0.010 1.000 05
0.10 1.005
0.20 1.021
0.30 1.048
0.40 1.091
0.50 1.155
0.60 1.250
0.70 1.400
0.80 1.667
0.90 2.294
0.92 2.552
0.94 2.931
0.96 3.571
0.98 5.025
0.99 7.089
0.995 10.01
0.999 22.37

Approximate Values for #
at Various Speeds

Table 39.1



general, the proper time interval is the time interval between two events
measured by an observer who sees the events occur at the same point in space.

If a clock is moving with respect to you, the time interval between ticks of the
moving clock is observed to be longer than the time interval between ticks of an
identical clock in your reference frame. Thus, it is often said that a moving clock is
measured to run more slowly than a clock in your reference frame by a factor *. This
is true for mechanical clocks as well as for the light clock just described. We can
generalize this result by stating that all physical processes, including chemical and
biological ones, are measured to slow down when those processes occur in a frame
moving with respect to the observer. For example, the heartbeat of an astronaut 
moving through space would keep time with a clock inside the spacecraft. Both the 
astronaut’s clock and heartbeat would be measured to slow down according to an 
observer on Earth comparing time intervals with his own clock (although the astronaut
would have no sensation of life slowing down in the spacecraft).
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Quick Quiz 39.3 Suppose the observer O" on the train in Figure 39.6 aims her
flashlight at the far wall of the boxcar and turns it on and off, sending a pulse of light
toward the far wall. Both O" and O measure the time interval between when the pulse
leaves the flashlight and it hits the far wall. Which observer measures the proper time
interval between these two events? (a) O" (b) O (c) both observers (d) neither observer.

Quick Quiz 39.4 A crew watches a movie that is two hours long in a space-
craft that is moving at high speed through space. Will an Earthbound observer, who is
watching the movie through a powerful telescope, measure the duration of the movie
to be (a) longer than, (b) shorter than, or (c) equal to two hours?

" PITFALL PREVENTION 
39.3 The Proper Time

Interval
It is very important in relativistic
calculations to correctly identify
the observer who measures the
proper time interval. The proper
time interval between two events
is always the time interval mea-
sured by an observer for whom
the two events take place at the
same position.

Strange as it may seem, time dilation is a verifiable phenomenon. An experiment
reported by Hafele and Keating provided direct evidence of time dilation.4 Time
intervals measured with four cesium atomic clocks in jet flight were compared with
time intervals measured by Earth-based reference atomic clocks. In order to compare
these results with theory, many factors had to be considered, including periods of
speeding up and slowing down relative to the Earth, variations in direction of travel,
and the fact that the gravitational field experienced by the flying clocks was weaker
than that experienced by the Earth-based clock. The results were in good agreement
with the predictions of the special theory of relativity and can be explained in terms of
the relative motion between the Earth and the jet aircraft. In their paper, Hafele and
Keating stated that “Relative to the atomic time scale of the U.S. Naval Observatory, the
flying clocks lost 59 % 10 ns during the eastward trip and gained 273 % 7 ns during
the westward trip. . . . These results provide an unambiguous empirical resolution of
the famous clock paradox with macroscopic clocks.”

Another interesting example of time dilation involves the observation of muons,
unstable elementary particles that have a charge equal to that of the electron and a
mass 207 times that of the electron. (We will study the muon and other particles in
Chapter 46.) Muons can be produced by the collision of cosmic radiation with atoms
high in the atmosphere. Slow-moving muons in the laboratory have a lifetime which is
measured to be the proper time interval 'tp ! 2.2 +s. If we assume that the speed of
atmospheric muons is close to the speed of light, we find that these particles can travel
a distance of approximately (3.0 $ 108 m/s)(2.2 $ 10#6 s) % 6.6 $ 102 m before they
decay (Fig. 39.8a). Hence, they are unlikely to reach the surface of the Earth from

4 J. C. Hafele and R. E. Keating, “Around the World Atomic Clocks: Relativistic Time Gains
Observed,” Science, 177:168, 1972.

(a)

≈ 4.8 × 103 m

(b)

≈ 6.6 × 102 m

Muon is created

Muon decays

Muon is created

Muon decays

Figure 39.8 (a) Without relativis-
tic considerations, muons created
in the atmosphere and traveling
downward with a speed of 0.99c
travel only about 6.6 $ 102 m
before decaying with an average
lifetime of 2.2 +s. Thus, very few
muons reach the surface of the
Earth. (b) With relativistic
considerations, the muon’s lifetime
is dilated according to an observer
on Earth. As a result, according to
this observer, the muon can travel
about 4.8 $ 103 m before decaying.
This results in many of them
arriving at the surface.
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high in the atmosphere where they are produced. However, experiments show that a
large number of muons do reach the surface. The phenomenon of time dilation
explains this effect. As measured by an observer on Earth, the muons have a dilated
lifetime equal to * 'tp. For example, for v ! 0.99c, * % 7.1 and * 'tp % 16 +s. Hence,
the average distance traveled by the muons in this time as measured by an observer
on Earth is approximately (0.99)(3.0 $ 108 m/s)(16 $ 10#6 s) % 4.8 $ 103 m, as indi-
cated in Figure 39.8b.

In 1976, at the laboratory of the European Council for Nuclear Research (CERN)
in Geneva, muons injected into a large storage ring reached speeds of approximately
0.999 4c. Electrons produced by the decaying muons were detected by counters around
the ring, enabling scientists to measure the decay rate and hence the muon lifetime.
The lifetime of the moving muons was measured to be approximately 30 times as long
as that of the stationary muon (Fig. 39.9), in agreement with the prediction of relativity
to within two parts in a thousand.

Muon
at rest

Muon moving
at 0.999 4c
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Figure 39.9 Decay curves for muons
at rest and for muons traveling at a
speed of 0.999 4c.

Example 39.1 What Is the Period of the Pendulum?

The period of a pendulum is measured to be 3.00 s in the
reference frame of the pendulum. What is the period when
measured by an observer moving at a speed of 0.950c rela-
tive to the pendulum?

Solution To conceptualize this problem, let us change
frames of reference. Instead of the observer moving at 0.950c,
we can take the equivalent point of view that the observer is at
rest and the pendulum is moving at 0.950c past the stationary
observer. Hence, the pendulum is an example of a clock
moving at high speed with respect to an observer and we can
categorize this problem as one involving time dilation.

To analyze the problem, note that the proper time
interval, measured in the rest frame of the pendulum, is
'tp ! 3.00 s. Because a clock moving with respect to an
observer is measured to run more slowly than a stationary
clock by a factor *, Equation 39.7 gives

To finalize this problem, we see that indeed a moving
pendulum is measured to take longer to complete a period

9.60 s! (3.20)(3.00 s) !

't ! * 'tp !
1

√1 #
(0.950c)2

c2

 'tp !
1

√1 # 0.902
 'tp

than a pendulum at rest does. The period increases by a
factor of * ! 3.20. We see that this is consistent with Table
39.1, where this value lies between those for * for v/c ! 0.94
and v/c ! 0.96.

What If? What if we increase the speed of the observer by
5.00%? Does the dilated time interval increase by 5.00%?

Answer Based on the highly nonlinear behavior of * as a
function of v in Figure 39.7, we would guess that the
increase in 't would be different from 5.00%. Increasing v
by 5.00% gives us

vnew ! (1.050 0)(0.950c) ! 0.997 5c

(Because * varies so rapidly with v when v is this large, we will
keep one additional significant figure until the final answer.)
If we perform the time dilation calculation again, we find that

Thus, the 5.00% increase in speed has caused over a 300%
increase in the dilated time!

! (14.15)(3.00 s) ! 42.5 s

't ! * 'tp !
1

√1 #
(0.997 5c)2

c 
2

 'tp !
1

√1 # 0.995 0
 'tp
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The Twin Paradox

An intriguing consequence of time dilation is the so-called twin paradox (Fig. 39.10).
Consider an experiment involving a set of twins named Speedo and Goslo. When they
are 20 yr old, Speedo, the more adventuresome of the two, sets out on an epic journey
to Planet X, located 20 ly from the Earth. (Note that 1 lightyear (ly) is the distance
light travels through free space in 1 year.) Furthermore, Speedo’s spacecraft is capable
of reaching a speed of 0.95c relative to the inertial frame of his twin brother
back home. After reaching Planet X, Speedo becomes homesick and immediately
returns to the Earth at the same speed 0.95c. Upon his return, Speedo is shocked to
discover that Goslo has aged 42 yr and is now 62 yr old. Speedo, on the other hand,
has aged only 13 yr.

At this point, it is fair to raise the following question—which twin is the traveler and
which is really younger as a result of this experiment? From Goslo’s frame of reference,
he was at rest while his brother traveled at a high speed away from him and then came
back. According to Speedo, however, he himself remained stationary while Goslo and
the Earth raced away from him and then headed back. This leads to an apparent

Suppose you are driving your car on a business trip and
are traveling at 30 m/s. Your boss, who is waiting at your
destination, expects the trip to take 5.0 h. When you
arrive late, your excuse is that your car clock registered
the passage of 5.0 h but that you were driving fast and so
your clock ran more slowly than your boss’s clock. If your
car clock actually did indicate a 5.0-h trip, how much time
passed on your boss’s clock, which was at rest on the
Earth?

Solution We begin by calculating * from Equation 39.8:

!
1

√1 # 10#14

* !
1

√1 #
v2

c2

!
1

√1 #
(3 $ 101 m/s)2

(3 $ 108 m/s)2

If you try to determine this value on your calculator, you
will probably obtain * ! 1. However, if we perform a
binomial expansion, we can more precisely determine the
value as

This result indicates that at typical automobile speeds, * is
not much different from 1.

Applying Equation 39.7, we find 't, the time interval
measured by your boss, to be

't ! * 'tp ! (1 & 5.0 $ 10#15)(5.0 h)

! 5.0 h & 2.5 $ 10#14 h !

Your boss’s clock would be only 0.09 ns ahead of your car
clock. You might want to think of another excuse!

5.0 h & 0.09 ns

* ! (1 # 10#14)#1/2 % 1 & 1
2 (10#14) ! 1 & 5.0 $ 10#15

Example 39.2 How Long Was Your Trip?

(a) (b)
Speedo Goslo Speedo Goslo

Figure 39.10 (a) As one twin leaves his brother on the Earth, both are the same age.
(b) When Speedo returns from his journey to Planet X, he is younger than his twin Goslo.
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contradiction due to the apparent symmetry of the observations. Which twin has
developed signs of excess aging?

The situation in our current problem is actually not symmetrical. To resolve this
apparent paradox, recall that the special theory of relativity describes observations
made in inertial frames of reference moving relative to each other. Speedo,
the space traveler, must experience a series of accelerations during his journey
because he must fire his rocket engines to slow down and start moving back
toward Earth. As a result, his speed is not always uniform, and consequently he
is not in an inertial frame. Therefore, there is no paradox—only Goslo, who is
always in a single inertial frame, can make correct predictions based on special
relativity. During each passing year noted by Goslo, slightly less than 4 months
elapses for Speedo.

Only Goslo, who is in a single inertial frame, can apply the simple time-dilation
formula to Speedo’s trip. Thus, Goslo finds that instead of aging 42 yr, Speedo ages
only (1 # v2/c2)1/2(42 yr) ! 13 yr. Thus, according to Goslo, Speedo spends 6.5 yr
traveling to Planet X and 6.5 yr returning, for a total travel time of 13 yr, in agreement
with our earlier statement.

Quick Quiz 39.5 Suppose astronauts are paid according to the amount
of time they spend traveling in space. After a long voyage traveling at a speed
approaching c, would a crew rather be paid according to (a) an Earth-based clock,
(b) their spacecraft’s clock, or (c) either clock?

Length Contraction

The measured distance between two points also depends on the frame of reference.
The proper length Lp of an object is the length measured by someone at rest
relative to the object. The length of an object measured by someone in a reference
frame that is moving with respect to the object is always less than the proper length.
This effect is known as length contraction.

Consider a spacecraft traveling with a speed v from one star to another. There
are two observers: one on the Earth and the other in the spacecraft. The observer
at rest on the Earth (and also assumed to be at rest with respect to the two stars)
measures the distance between the stars to be the proper length Lp. According to
this observer, the time interval required for the spacecraft to complete the voyage is
't ! Lp/v. The passages of the two stars by the spacecraft occur at the same
position for the space traveler. Thus, the space traveler measures the proper time
interval 'tp. Because of time dilation, the proper time interval is related to
the Earth-measured time interval by 'tp ! 't/*. Because the space traveler
reaches the second star in the time 'tp, he or she concludes that the distance L
between the stars is

Because the proper length is Lp ! v 't, we see that

(39.9)

where is a factor less than unity. If an object has a proper length Lp
when it is measured by an observer at rest with respect to the object, then when
it moves with speed v in a direction parallel to its length, its length L is
measured to be shorter according to .L ! Lp √1 # v 

2/c 
2 ! Lp  / # 

√1 # v 
2/c 

2

L !
Lp

*
! Lp  √1 #

v 
2

c 
2

L ! v 'tp ! v  
't
*

" PITFALL PREVENTION 
39.4 The Proper Length
As with the proper time interval,
it is very important in relativistic
calculations to correctly identify
the observer who measures the
proper length. The proper
length between two points in
space is always the length mea-
sured by an observer at rest with
respect to the points. Often the
proper time interval and the
proper length are not measured
by the same observer.

Length contraction



For example, suppose that a meter stick moves past a stationary Earth observer with
speed v, as in Figure 39.11. The length of the stick as measured by an observer in a frame
attached to the stick is the proper length Lp shown in Figure 39.11a. The length of the
stick L measured by the Earth observer is shorter than Lp by the factor (1 # v2/c2)1/2.
Note that length contraction takes place only along the direction of motion.

The proper length and the proper time interval are defined differently. The proper
length is measured by an observer for whom the end points of the length remain fixed in
space. The proper time interval is measured by someone for whom the two events take
place at the same position in space. As an example of this point, let us return to the
decaying muons moving at speeds close to the speed of light. An observer in the muon’s
reference frame would measure the proper lifetime, while an Earth-based observer would
measure the proper length (the distance from creation to decay in Figure 39.8). In the
muon’s reference frame, there is no time dilation but the distance of travel to the surface
is observed to be shorter when measured in this frame. Likewise, in the Earth observer’s
reference frame, there is time dilation, but the distance of travel is measured to be the
proper length. Thus, when calculations on the muon are performed in both frames, the
outcome of the experiment in one frame is the same as the outcome in the other frame—
more muons reach the surface than would be predicted without relativistic effects.
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Lp

y′

O ′
(a)

x ′

L
y

O
(b)

x

v

Active Figure 39.11 (a) A meter
stick measured by an observer in a
frame attached to the stick (that is,
both have the same velocity) has its
proper length Lp. (b) The stick
measured by an observer in a frame
in which the stick has a velocity v
relative to the frame is measured to
be shorter than its proper length
Lp by a factor (1 # v2/c2)1/2.

At the Active Figures link
at http://www.pse6.com, you
can view the meter stick from
the points of view of two
observers to compare the
measured length of the stick.

Quick Quiz 39.6 You are packing for a trip to another star. During the
journey, you will be traveling at 0.99c. You are trying to decide whether you should buy
smaller sizes of your clothing, because you will be thinner on your trip, due to length
contraction. Also, you are considering saving money by reserving a smaller cabin to sleep
in, because you will be shorter when you lie down. Should you (a) buy smaller sizes of
clothing, (b) reserve a smaller cabin, (c) do neither of these, or (d) do both of these?

Quick Quiz 39.7 You are observing a spacecraft moving away from you. You
measure it to be shorter than when it was at rest on the ground next to you. You also
see a clock through the spacecraft window, and you observe that the passage of time on
the clock is measured to be slower than that of the watch on your wrist. Compared to
when the spacecraft was on the ground, what do you measure if the spacecraft turns
around and comes toward you at the same speed? (a) The spacecraft is measured to be
longer and the clock runs faster. (b) The spacecraft is measured to be longer and the
clock runs slower. (c) The spacecraft is measured to be shorter and the clock runs
faster. (d) The spacecraft is measured to be shorter and the clock runs slower.

Space–Time Graphs

It is sometimes helpful to make a space–time graph, in which ct is the ordinate and
position x is the abscissa. The twin paradox is displayed in such a graph in Figure 39.12

World-line of Speedo

World-line of light beam
World-line
of Goslo

ct

x

Figure 39.12 The twin paradox on a
space–time graph. The twin who stays on
the Earth has a world-line along the ct axis.
The path of the traveling twin through
space–time is represented by a world-line
that changes direction.



from the point of view of Goslo. A path through space–time is called a world-line. At
the origin, the world-lines of Speedo and Goslo coincide because the twins are in the
same location at the same time. After Speedo leaves on his trip, his world-line diverges
from that of his brother. Goslo’s world-line is vertical because he remains fixed in
location. At their reunion, the two world-lines again come together. Note that it would
be impossible for Speedo to have a world-line that crossed the path of a light beam that
left the Earth when he did. To do so would require him to have a speed greater than c
(not possible, as shown in Sections 39.6 and 39.7).

World-lines for light beams are diagonal lines on space–time graphs, typically
drawn at 45° to the right or left of vertical (assuming that the x and ct axes have the
same scales), depending on whether the light beam is traveling in the direction of
increasing or decreasing x. These two world-lines mean that all possible future events
for Goslo and Speedo lie within two 45° lines extending from the origin. Either twin’s
presence at an event outside this “light cone” would require that twin to move at a
speed greater than c, which we have said is not possible. Also, the only past events that
Goslo and Speedo could have experienced occurred within two similar 45° world-lines
that approach the origin from below the x axis.
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A spacecraft is measured to be 120.0 m long and 20.0 m
in diameter while at rest relative to an observer. If
this spacecraft now flies by the observer with a speed of
0.99c, what length and diameter does the observer
measure?

Solution From Equation 39.9, the length measured by the

observer is

The diameter measured by the observer is still 20.0 m because
the diameter is a dimension perpendicular to the motion and
length contraction occurs only along the direction of motion.

17 m!L ! Lp √1 #
v 

2

c 
2 ! (120.0 m) √1 #

(0.99c)2

c 
2

The twin paradox, discussed earlier, is a classic “paradox”
in relativity. Another classic “paradox” is this: Suppose a
runner moving at 0.75c carries a horizontal pole 15 m
long toward a barn that is 10 m long. The barn has front
and rear doors. An observer on the ground can instantly
and simultaneously open and close the two doors by
remote control. When the runner and the pole are inside
the barn, the ground observer closes and then opens both
doors so that the runner and pole are momentarily
captured inside the barn and then proceed to exit the
barn from the back door. Do both the runner and the
ground observer agree that the runner makes it safely
through the barn?

Solution From our everyday experience, we would be
surprised to see a 15-m pole fit inside a 10-m barn. But the
pole is in motion with respect to the ground observer, who
measures the pole to be contracted to a length L pole,
where

Thus, the ground observer measures the pole to be slightly
shorter than the barn and there is no problem with momen-
tarily capturing the pole inside it. The “paradox” arises
when we consider the runner’s point of view. The runner

L pole ! Lp  √1 #
v2

c 
2 ! (15 m) √1 # (0.75)2 ! 9.9 m

sees the barn contracted to

Because the pole is in the rest frame of the runner, the
runner measures it to have its proper length of 15 m. How
can a 15-m pole fit inside a 6.6-m barn? While this is the
classic question that is often asked, this is not the question
we have asked, because it is not the important question. We
asked if the runner can make it safely through the barn.

The resolution of the “paradox” lies in the relativity of
simultaneity. The closing of the two doors is measured to be
simultaneous by the ground observer. Because the doors are
at different positions, however, they do not close simultane-
ously as measured by the runner. The rear door closes and
then opens first, allowing the leading edge of the pole to
exit. The front door of the barn does not close until the
trailing edge of the pole passes by.

We can analyze this using a space-time graph. Figure
39.13a is a space–time graph from the ground observer’s
point of view. We choose x ! 0 as the position of the front
door of the barn and t ! 0 as the instant at which the leading
end of the pole is located at the front door of the barn. The
world-lines for the two ends of the barn are separated by 10 m
and are vertical because the barn is not moving relative to this
observer. For the pole, we follow two tilted world-lines, one

6.6 mL barn ! Lp  √1 #
v2

c 
2 ! (10 m) √1 # (0.75)2 !

Example 39.3 The Contraction of a Spacecraft

Example 39.4 The Pole-in-the-Barn Paradox Interactive
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An astronaut takes a trip to Sirius, which is located a
distance of 8 lightyears from the Earth. The astronaut
measures the time of the one-way journey to be 6 yr. If the
spaceship moves at a constant speed of 0.8c, how can the 8-ly
distance be reconciled with the 6-yr trip time measured by
the astronaut?

Solution The distance of 8 ly represents the proper length
from the Earth to Sirius measured by an observer seeing
both objects nearly at rest. The astronaut sees Sirius
approaching her at 0.8c but also sees the distance

contracted to

Thus, the travel time measured on her clock is

Note that we have used the value for the speed of light as
c ! 1 ly/yr.

't !
d
v

!
5 ly
0.8c

! 6 yr

8 ly
*

! (8 ly) √1 #
v2

c 
2 ! (8 ly) √1 #

(0.8c)2

c 
2 ! 5 ly

Example 39.5 A Voyage to Sirius

for each end of the moving pole. These world-lines are 9.9 m
apart horizontally, which is the contracted length seen by the
ground observer. As seen in Figure 39.13a, at one instant, the
pole is entirely within the barn.

Figure 39.13b shows the space–time graph according to
the runner. Here, the world-lines for the pole are separated by
15 m and are vertical because the pole is at rest in the runner’s
frame of reference. The barn is hurtling toward the runner, so
the world-lines for the front and rear doors of the barn are
tilted in the opposite direction compared to Figure 39.13a.
The world-lines for the barn are separated by 6.6 m, the
contracted length as seen by the runner. Notice that the front
of the pole leaves the rear door of the barn long before the
back of the pole enters the barn. Thus, the opening of the
rear door occurs before the closing of the front door.

From the ground observer’s point of view, the time at
which the trailing end of the pole enters the barn is found
from

't ! t # 0 ! t !
'x
v

!
9.9 m
0.75c

!
13.2 m

c

Thus, the pole should be completely inside the barn at a
time corresponding to ct ! 13.2 m. This is consistent with
the point on the ct axis in Figure 39.13a where the pole is
inside the barn.

From the runner’s point of view, the time at which the
leading end of the pole leaves the barn is found from

leading to ct ! 8.8 m. This is consistent with the point on
the ct axis in Figure 39.13b where the back door of the barn
arrives at the leading end of the pole. Finally, the time at
which the trailing end of the pole enters the front door of
the barn is found from

This gives ct ! 20 m, which agrees with the instant shown in
Figure 39.13b.

't ! t # 0 ! t !
'x
v

!
15 m
0.75c

!
20 m

c

't ! t # 0 ! t !
'x
v

!
6.6 m
0.75c

!
8.8 m

c

10

20

ct (m)

Front
door

Back
door

Pole is
entirely
in barn

Leading
end of
pole

Trailing
end of
pole

–10 0 10 x (m)
(a)

Front door
arrives at
trailing end
of pole

Trailing
end of
pole

Leading
end of
pole

Back
door

Front
door

10

20

10–10 0

Back door
arrives at
leading end
of pole

x (m)
(b)

ct (m)

Figure 39.13 (Example 39.4) Space–time graphs for the pole-in-the-barn paradox.
(a) From the ground observer’s point of view, the world-lines for the front and back
doors of the barn are vertical lines. The world-lines for the ends of the pole are
tilted and are 9.9 m apart horizontally. The front door of the barn is at x ! 0, and
the leading end of the pole enters the front door at t ! 0. The entire pole is inside
the barn at the time indicated by the dashed line. (b) From the runner’s point of
view, the world-lines for the ends of the pole are vertical. The barn is moving in the
negative direction, so the world-lines for the front and back doors are tilted to the
left. The leading end of the pole exits the back door before the trailing end arrives
at the front door.

Investigate the pole-in-the-barn paradox at the Interactive Worked Example link at http://www.pse6.com.



The Relativistic Doppler Effect

Another important consequence of time dilation is the shift in frequency
found for light emitted by atoms in motion as opposed to light emitted by atoms
at rest. This phenomenon, known as the Doppler effect, was introduced in Chapter
17 as it pertains to sound waves. In the case of sound, the motion of the source
with respect to the medium of propagation can be distinguished from the motion
of the observer with respect to the medium. Light waves must be analyzed
differently, however, because they require no medium of propagation, and no
method exists for distinguishing the motion of a light source from the motion of
the observer.

If a light source and an observer approach each other with a relative speed v, the
frequency fobs measured by the observer is

(39.10)

where f source is the frequency of the source measured in its rest frame. Note that this
relativistic Doppler shift equation, unlike the Doppler shift equation for sound,
depends only on the relative speed v of the source and observer and holds for relative
speeds as great as c. As you might expect, the equation predicts that fobs , f source when
the source and observer approach each other. We obtain the expression for the case in
which the source and observer recede from each other by substituting negative values
for v in Equation 39.10.

The most spectacular and dramatic use of the relativistic Doppler effect is the
measurement of shifts in the frequency of light emitted by a moving astronomical
object such as a galaxy. Light emitted by atoms and normally found in the extreme
violet region of the spectrum is shifted toward the red end of the spectrum for atoms
in other galaxies—indicating that these galaxies are receding from us. The American
astronomer Edwin Hubble (1889–1953) performed extensive measurements of this red
shift to confirm that most galaxies are moving away from us, indicating that the
Universe is expanding.

39.5 The Lorentz Transformation Equations

Suppose an event that occurs at some point P is reported by two observers, one
at rest in a frame S and another in a frame S" that is moving to the right with
speed v as in Figure 39.14. The observer in S reports the event with space–time
coordinates (x, y, z, t), while the observer in S" reports the same event using the
coordinates (x", y", z", t"). If two events occur at P and Q , Equation 39.1
predicts that 'x ! 'x", that is, the distance between the two points in space

f obs !
√1 & v/c

√1 # v/c
 f source
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What If? What if this trip is observed with a very powerful
telescope by a technician in Mission Control on Earth? At
what time will this technician see that the astronaut has
arrived at Sirius?

Answer The time interval that the technician will measure
for the astronaut to arrive is

In order for the technician to see the arrival, the light from
the scene of the arrival must travel back to Earth and enter

't !
d
v

!
8 ly
0.8c

! 10 yr

the telescope. This will require a time interval of

Thus, the technician sees the arrival after 10 yr & 8 yr !
18 yr. Notice that if the astronaut immediately turns
around and comes back home, she arrives, according to
the technician, 20 years after leaving, only 2 years after he
saw her arrive! In addition, she would have aged by only
12 years.

't !
d
v

!
8 ly

c
! 8 yr

y y′ v
S ′S

O x x ′

P (event)

O ′

∆x ′

Q (event)

vt
x

x ′
∆x

Figure 39.14 Events occur at
points P and Q and are observed by
an observer at rest in the S frame
and another in the S" frame, which
is moving to the right with a speed v.



at which the events occur does not depend on motion of the observer. Because
this is contradictory to the notion of length contraction, the Galilean trans-
formation is not valid when v approaches the speed of light. In this section, we
state the correct transformation equations that apply for all speeds in the range
0 - v ( c.

The equations that are valid for all speeds and enable us to transform coordinates
from S to S" are the Lorentz transformation equations:

x" ! *(x # vt) y" ! y z" ! z (39.11)

These transformation equations were developed by Hendrik A. Lorentz (1853–1928)
in 1890 in connection with electromagnetism. However, it was Einstein who recognized
their physical significance and took the bold step of interpreting them within the
framework of the special theory of relativity.

Note the difference between the Galilean and Lorentz time equations. In
the Galilean case, t ! t", but in the Lorentz case the value for t" assigned to an event by
an observer O" in the S" frame in Figure 39.14 depends both on the time t and on the
coordinate x as measured by an observer O in the S frame. This is consistent with the
notion that an event is characterized by four space–time coordinates (x, y, z, t). In
other words, in relativity, space and time are not separate concepts but rather are
closely interwoven with each other.

If we wish to transform coordinates in the S" frame to coordinates in the S frame,
we simply replace v by # v and interchange the primed and unprimed coordinates in
Equations 39.11:

x ! *(x" & vt") y ! y" z ! z" (39.12)

When v (( c, the Lorentz transformation equations should reduce to the
Galilean equations. To verify this, note that as v approaches zero, v/c (( 1; thus,
* : 1, and Equations 39.11 reduce to the Galilean space–time transformation
equations:

x" ! x # vt y" ! y z" ! z t" ! t

In many situations, we would like to know the difference in coordinates between
two events or the time interval between two events as seen by observers O and O". We
can accomplish this by writing the Lorentz equations in a form suitable for describing
pairs of events. From Equations 39.11 and 39.12, we can express the differences
between the four variables x, x", t, and t" in the form

(39.13)

(39.14)

where 'x" ! x "2 # x "1 and 't" ! t "2 # t "1 are the differences measured by observer O "
and 'x ! x2 # x1 and 't ! t 2 # t1 are the differences measured by observer O. (We
have not included the expressions for relating the y and z coordinates because they are
unaffected by motion along the x direction.5)

't ! * "'t " &
v
c 

2  'x "#
'x ! * ('x " & v 't ")

't " ! * "'t #
v
c 

2  'x#
'x " ! * ('x # v 't )

t ! * "t " &
v
c  2

 x "#

t " ! * "t #
v
c  2

 x#
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Lorentz transformation for
S : S!

5 Although relative motion of the two frames along the x axis does not change the y and z coordi-
nates of an object, it does change the y and z velocity components of an object moving in either frame,
as noted in Section 39.6.

Inverse Lorentz transformation
for S" : S

& S : S"

& S" : S



39.6 The Lorentz Velocity Transformation
Equations

Suppose two observers in relative motion with respect to each other are both observing
the motion of an object. Previously, we defined an event as occurring at an instant of
time. Now, we wish to interpret the “event” as the motion of the object. We know that the
Galilean velocity transformation (Eq. 39.2) is valid for low speeds. How do the observers’
measurements of the velocity of the object relate to each other if the speed of the object
is close to that of light? Once again S" is our frame moving at a speed v relative to S.
Suppose that an object has a velocity component u"x measured in the S" frame, where

(39.15)

Using Equation 39.11, we have

dx" ! *(dx # v dt)

Substituting these values into Equation 39.15 gives

But dx/dt is just the velocity component ux of the object measured by an observer in S,
and so this expression becomes

(39.16)

If the object has velocity components along the y and z axes, the components as
measured by an observer in S" are

(39.17)u "y !
uy

* "1 #
ux v
c 

2 #
  and  u "z !

uz

* "1 #
ux v
c 

2 #

u "x !
ux # v

1 #
ux v
c 

2

u "x !
dx "

dt "
!

dx # v dt

dt #
v
c 

2  dx
!

dx
dt

# v

1 #
v
c 

2  
dx
dt

dt " ! *  "dt #
v
c 

2  dx#

u"x !
dx "

dt "
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Lorentz velocity transformation
for S : S"

Use the Lorentz transformation equations in difference
form to show that

(A) simultaneity is not an absolute concept and that

(B) a moving clock is measured to run more slowly than a
clock that is at rest with respect to an observer.

Solution (A) Suppose that two events are simultaneous
and separated in space such that 't " ! 0 and 'x" ! 0
according to an observer O" who is moving with speed v
relative to O . From the expression for 't given in
Equation 39.14, we see that in this case the time interval
't measured by observer O is 't ! *v 'x"/c 2. That is, the

time interval for the same two events as measured by O is
nonzero, and so the events do not appear to be simultane-
ous to O .

(B) Suppose that observer O" carries a clock that he uses
to measure a time interval 't". He finds that two events occur
at the same place in his reference frame ('x" ! 0) but at
different times ('t" ! 0). Observer O" is moving with speed 
v relative to O, who measures the time interval between the
events to be 't. In this situation, the expression for 't given 
in Equation 39.14 becomes 't ! * 't". This is the equation
for time dilation found earlier (Eq. 39.7), where 't" ! 'tp is
the proper time measured by the clock carried by observer 
O". Thus, O measures the moving clock to run slow.

Example 39.6 Simultaneity and Time Dilation Revisited
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Note that u"y and u"z do not contain the parameter v in the numerator because the
relative velocity is along the x axis.

When v is much smaller than c (the nonrelativistic case), the denominator of
Equation 39.16 approaches unity, and so u"x % ux # v, which is the Galilean velocity
transformation equation. In another extreme, when ux ! c, Equation 39.16 becomes

From this result, we see that a speed measured as c by an observer in S is also measured
as c by an observer in S"—independent of the relative motion of S and S". Note that
this conclusion is consistent with Einstein’s second postulate—that the speed of light
must be c relative to all inertial reference frames. Furthermore, we find that the speed
of an object can never be measured as larger than c. That is, the speed of light is the
ultimate speed. We return to this point later.

To obtain ux in terms of u"x , we replace v by # v in Equation 39.16 and interchange
the roles of ux and u"x:

(39.18)ux !
u "x & v

1 &
u "x v
c 

2

u "x !
c # v

1 #
c v
c 

2

!

c  "1 #
v
c #

1 #
v
c

! c

Two spacecraft A and B are moving in opposite directions,
as shown in Figure 39.15. An observer on the Earth
measures the speed of craft A to be 0.750c and the speed of
craft B to be 0.850c. Find the velocity of craft B as observed
by the crew on craft A.

Solution To conceptualize this problem, we carefully
identify the observers and the event. The two observers
are on the Earth and on spacecraft A. The event is the
motion of spacecraft B. Because the problem asks to find
an observed velocity, we categorize this problem as one
requiring the Lorentz velocity transformation. To analyze
the problem, we note that the Earth observer makes two
measurements, one of each spacecraft. We identify this
observer as being at rest in the S frame. Because the
velocity of spacecraft B is what we wish to measure, we
identify the speed ux as # 0.850c. The velocity of
spacecraft A is also the velocity of the observer at rest in
the S" frame, which is attached to the spacecraft, relative
to the observer at rest in S. Thus, v ! 0.750c. Now we
can obtain the velocity u "x of craft B relative to craft A
by using Equation 39.16:

" PITFALL PREVENTION 
39.5 What Can the

Observers Agree On?
We have seen several measure-
ments that the two observers O
and O" do not agree on: (1) the
time interval between events that
take place in the same position in
one of the frames, (2) the distance
between two points that remain
fixed in one of their frames,
(3) the velocity components of a
moving particle, and (4) whether
two events occurring at different
locations in both frames are simul-
taneous or not. Note that the two
observers can agree on (1) their
relative speed of motion v with
respect to each other, (2) the
speed c of any ray of light, and
(3) the simultaneity of two events
which take place at the same posi-
tion and time in some frame.

Quick Quiz 39.8 You are driving on a freeway at a relativistic speed. Straight
ahead of you, a technician standing on the ground turns on a searchlight and a beam
of light moves exactly vertically upward, as seen by the technician. As you observe the
beam of light, you measure the magnitude of the vertical component of its velocity as
(a) equal to c (b) greater than c (c) less than c.

Quick Quiz 39.9 Consider the situation in Quick Quiz 39.8 again. If the
technician aims the searchlight directly at you instead of upward, you measure the
magnitude of the horizontal component of its velocity as (a) equal to c (b) greater than
c (c) less than c.

S ′ (attached to A)y ′

0.750c –0.850c

BA

x ′O ′

S (attached
to the Earth)

y

xO
Figure 39.15 (Example 39.7) Two spacecraft A and B move in
opposite directions. The speed of B relative to A is less than c and
is obtained from the relativistic velocity transformation equation.

Example 39.7 Relative Velocity of Two Spacecraft
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Example 39.9 Relativistic Leaders of the Pack Interactive

Example 39.8 The Speeding Motorcycle

To finalize this problem, note that the negative sign indicates
that craft B is moving in the negative x direction as observed
by the crew on craft A. Is this consistent with your expectation
from Figure 39.15? Note that the speed is less than c. That is,
an object whose speed is less than c in one frame of reference
must have a speed less than c in any other frame. (If
the Galilean velocity transformation equation were used in

# 0.977c!

u "x !
ux # v

1 #
ux v
c 

2

!
# 0.850c # 0.750c

1 #
(# 0.850c)(0.750c)

c 
2

this example, we would find that u "x ! ux # v ! # 0.850c #
0.750c ! # 1.60c, which is impossible. The Galilean transfor-
mation equation does not work in relativistic situations.)

What If? What if the two spacecraft pass each other? Now
what is their relative speed?

Answer The calculation using Equation 39.16 involves only
the velocities of the two spacecraft and does not depend on
their locations. After they pass each other, they have the
same velocities, so the velocity of craft B as observed by the
crew on craft A is the same, # 0.977c. The only difference
after they pass is that B is receding from A whereas it was
approaching A before it passed.

Imagine a motorcycle moving with a speed 0.80c past a
stationary observer, as shown in Figure 39.16. If the rider

tosses a ball in the forward direction with a speed of 0.70c
relative to himself, what is the speed of the ball relative to
the stationary observer?

Solution The speed of the motorcycle relative to the
stationary observer is v ! 0.80c. The speed of the ball in the
frame of reference of the motorcyclist is u"x ! 0.70c. There-
fore, the speed ux of the ball relative to the stationary
observer is

0.96cux !
u "x & v

1 &
u "x v
c 

2

!
0.70c & 0.80c

1 &
(0.70c)(0.80c)

c 
2

!

Two motorcycle pack leaders named David and Emily are
racing at relativistic speeds along perpendicular paths, as
shown in Figure 39.17. How fast does Emily recede as seen
by David over his right shoulder?

Solution Figure 39.17 represents the situation as seen
by a police officer at rest in frame S, who observes the

following:

David: ux ! 0.75c uy ! 0

Emily: ux ! 0 uy ! # 0.90c

To calculate Emily’s speed of recession as seen by David, we
take S" to move along with David and then calculate u"x and

z
y
x

0.90c

Emily

David

0.75c

Police officer at
rest in S

0.70c

0.80c

Figure 39.16 (Example 39.8) A motorcyclist moves past a
stationary observer with a speed of 0.80c and throws a ball in
the direction of motion with a speed of 0.70c relative to himself.

Figure 39.17 (Example 39.9) David moves
to the east with a speed 0.75c relative to the
police officer, and Emily travels south at a
speed 0.90c relative to the officer.



39.7 Relativistic Linear Momentum and
the Relativistic Form of Newton’s Laws

We have seen that in order to describe properly the motion of particles within
the framework of the special theory of relativity, we must replace the Galilean
transformation equations by the Lorentz transformation equations. Because the laws
of physics must remain unchanged under the Lorentz transformation, we must
generalize Newton’s laws and the definitions of linear momentum and energy to
conform to the Lorentz transformation equations and the principle of relativity.
These generalized definitions should reduce to the classical (nonrelativistic) defini-
tions for v (( c.

First, recall that the law of conservation of linear momentum states that when two
particles (or objects that can be modeled as particles) collide, the total momentum
of the isolated system of the two particles remains constant. Suppose that we observe
this collision in a reference frame S and confirm that the momentum of the system
is conserved. Now imagine that the momenta of the particles are measured by an
observer in a second reference frame S" moving with velocity v relative to
the first frame. Using the Lorentz velocity transformation equation and the classical
definition of linear momentum, p ! mu (where u is the velocity of a particle),
we find that linear momentum is not measured to be conserved by the observer in S".
However, because the laws of physics are the same in all inertial frames, linear
momentum of the system must be conserved in all frames. We have a contradiction.
In view of this contradiction and assuming that the Lorentz velocity transformation
equation is correct, we must modify the definition of linear momentum to satisfy the
following conditions:

• The linear momentum of an isolated system must be conserved in all collisions.

• The relativistic value calculated for the linear momentum p of a particle must
approach the classical value mu as u approaches zero.

For any particle, the correct relativistic equation for linear momentum that satisfies
these conditions is

(39.19)

where u is the velocity of the particle and m is the mass of the particle. When u is much
less than c, * ! (1 # u2/c2)#1/2 approaches unity and p approaches mu. Therefore,

p ' 
m u

√1 #
u2

c 
2

! *m u
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" PITFALL PREVENTION 
39.6 Watch Out for

“Relativistic Mass”
Some older treatments of rela-
tivity maintained the conserva-
tion of momentum principle at
high speeds by using a model in
which the mass of a particle
increases with speed. You might
still encounter this notion of
“relativistic mass” in your
outside reading, especially in
older books. Be aware that this
notion is no longer widely ac-
cepted and mass is considered
as invariant, independent of
speed. The mass of an object in
all frames is considered to be
the mass as measured by an
observer at rest with respect to
the object.

u"y for Emily using Equations 39.16 and 39.17:

 ! # 0.60c

u "y !
uy

 * "1 #
ux v
c 

2 #
!

√1 #
(0.75c)2

c2  (#0.90c)

"1 #
(0)(0.75c)

c 
2 #

u "x !
ux # v

1 #
ux v
c 

2

!
0 # 0.75c

1 #
(0)(0.75c)

c 
2

! # 0.75c

Thus, the speed of Emily as observed by David is

Note that this speed is less than c, as required by the special
theory of relativity.

0.96c!

u" ! √(u"x)2 & (u"y)2 ! √(#0.75c)2 & (#0.60c)2

Investigate this situation with various speeds of David and Emily at the Interactive Worked Example link at
http://www.pse6.com.

Definition of relativistic linear
momentum



the relativistic equation for p does indeed reduce to the classical expression when u is
much smaller than c.

The relativistic force F acting on a particle whose linear momentum is p is
defined as

(39.20)

where p is given by Equation 39.19. This expression, which is the relativistic form of
Newton’s second law, is reasonable because it preserves classical mechanics in the limit
of low velocities and is consistent with conservation of linear momentum for an iso-
lated system (F ! 0) both relativistically and classically.

It is left as an end-of-chapter problem (Problem 69) to show that under relativistic
conditions, the acceleration a of a particle decreases under the action of a constant
force, in which case a . (1 # u2/c2)3/2. From this proportionality, we see that as the
particle’s speed approaches c, the acceleration caused by any finite force approaches
zero. Hence, it is impossible to accelerate a particle from rest to a speed u / c. This
argument shows that the speed of light is the ultimate speed, as noted at the end of the
preceding section.

F ' 
d p
dt
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SPEED
LIMIT

3$108m/s

The speed of light is the speed limit
of the Universe. It is the maximum
possible speed for energy transfer
and for information transfer. Any
object with mass must move at a
lower speed.

An electron, which has a mass of 9.11 $ 10#31 kg, moves
with a speed of 0.750c. Find its relativistic momentum and
compare this value with the momentum calculated from the
classical expression.

Solution Using Equation 39.19 with u ! 0.750c, we have

p !
(9.11 $ 10#31 kg)(0.750)(3.00 $ 108 m/s)

√1 #
(0.750c)2

c 
2

p !
meu

√1 #
u2

c 
2

The classical expression (used incorrectly here) gives

pclassical ! meu ! 2.05 $ 10#22 kg 0 m/s

Hence, the correct relativistic result is 50% greater than the
classical result!

3.10 $ 10#22 kg0m/sp !

Example 39.10 Linear Momentum of an Electron

39.8 Relativistic Energy

We have seen that the definition of linear momentum requires generalization to make
it compatible with Einstein’s postulates. This implies that most likely the definition of
kinetic energy must also be modified.

To derive the relativistic form of the work–kinetic energy theorem, let us imagine a
particle moving in one dimension along the x axis. A force in the x direction causes the
momentum of the particle to change according to Equation 39.20. The work done by
the force F on the particle is

(39.21)

In order to perform this integration and find the work done on the particle and the
relativistic kinetic energy as a function of u, we first evaluate dp/dt :

dp
dt

!
d
dt

 
mu

√1 #
u2

c 
2

!
m(du/dt)

"1 #
u2

c 
2 #3/2

W ! (x2

x1

 F dx ! (x2

x1

  
dp
dt

 dx



Substituting this expression for dp/dt and dx ! u dt into Equation 39.21 gives

where we use the limits 0 and u in the integral because the integration variable has
been changed from t to u. We assume that the particle is accelerated from rest to some
final speed u. Evaluating the integral, we find that

(39.22)

Recall from Chapter 7 that the work done by a force acting on a system consisting of a
single particle equals the change in kinetic energy of the particle. Because we assumed
that the initial speed of the particle is zero, we know that its initial kinetic energy is
zero. We therefore conclude that the work W in Equation 39.22 is equivalent to the
relativistic kinetic energy K:

(39.23)

This equation is routinely confirmed by experiments using high-energy particle
accelerators.

At low speeds, where u/c (( 1, Equation 39.23 should reduce to the classical
expression K ! mu2. We can check this by using the binomial expansion (1 # 12)#1/2 %
1 & 12 & 0 0 0 for 1 (( 1, where the higher-order powers of 1 are neglected in the 
expansion. (In treatments of relativity, 1 is a common symbol used to represent u/c or
v/c.) In our case, 1 ! u/c, so that

Substituting this into Equation 39.23 gives

which is the classical expression for kinetic energy. A graph comparing the relativistic
and nonrelativistic expressions is given in Figure 39.18. In the relativistic case, the
particle speed never exceeds c, regardless of the kinetic energy. The two curves are in
good agreement when u (( c .

K % !"1 & 1
2 

u2

c 
2 # # 1$ mc 

2 ! 1
2 mu2  (for u/c (( 1)

* !
1

√1 #
u2

c 
2

! "1 #
u2

c 
2 ##1/2

% 1 & 1
2 

u2

c 
2

1
2

1
2

K !
mc 

2

√1 #
u2

c 
2

# mc 
2 ! *mc 

2 # mc 
2 ! (* # 1)mc 

2

W !
mc 

2

√1 #
u2

c 
2

# mc 
2

W ! (t

0
  

m(du/dt)u dt

"1 #
u2

c 
2 #3/2 ! m (u

0
 

u

"1 #
u2

c 
2 #3/2  du

S E C T I O N  3 9 . 8 •  Relativistic Energy 1269

Relativistic kinetic energy

K/mc2

0.5c 1.0c 1.5c 2.0c

0.5

1.0
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u

Relativistic
case

Nonrelativistic
case

Figure 39.18 A graph comparing relativistic and
nonrelativistic kinetic energy of a moving particle.
The energies are plotted as a function of particle
speed u. In the relativistic case, u is always less than c.



The constant term mc2 in Equation 39.23, which is independent of the speed of the
particle, is called the rest energy ER of the particle:

(39.24)

The term *mc2, which does depend on the particle speed, is therefore the sum of
the kinetic and rest energies. We define *mc2 to be the total energy E :

Total energy ! kinetic energy & rest energy

(39.25)

or

(39.26)

The relationship E ! K & mc2 shows that mass is a form of energy, where c2 in
the rest energy term is just a constant conversion factor. This expression also shows
that a small mass corresponds to an enormous amount of energy, a concept fundamen-
tal to nuclear and elementary-particle physics.

In many situations, the linear momentum or energy of a particle is measured
rather than its speed. It is therefore useful to have an expression relating the total
energy E to the relativistic linear momentum p . This is accomplished by using the
expressions E ! *mc2 and p ! *mu. By squaring these equations and subtracting, we
can eliminate u (Problem 43). The result, after some algebra, is6

E2 ! p2c2 & (mc2)2 (39.27)

When the particle is at rest, p ! 0 and so E ! ER ! mc2.
In Section 35.1, we introduced the concept of a particle of light, called a photon.

For particles that have zero mass, such as photons, we set m ! 0 in Equation 39.27 and
find that

E ! pc (39.28)

This equation is an exact expression relating total energy and linear momentum for
photons, which always travel at the speed of light (in vacuum).

Finally, note that because the mass m of a particle is independent of its motion, m
must have the same value in all reference frames. For this reason, m is often called the
invariant mass. On the other hand, because the total energy and linear momentum
of a particle both depend on velocity, these quantities depend on the reference frame
in which they are measured.

When we are dealing with subatomic particles, it is convenient to express their
energy in electron volts (Section 25.1) because the particles are usually given this
energy by acceleration through a potential difference. The conversion factor, as you
recall from Equation 25.5, is

1 eV ! 1.60 $ 10#19 J

For example, the mass of an electron is 9.11 $ 10#31 kg. Hence, the rest energy of the
electron is

mec2 ! (9.11 $ 10#31 kg)(3.00 $ 108 m/s)2 ! 8.20 $ 10#14 J
! (8.20 $ 10#14 J)(1 eV/1.60 $ 10#19 J) ! 0.511 MeV

E !
mc 

2

√1 #
u2

c 
2

! *mc 
2

E ! K & mc 
2

ER ! mc 
2
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Total energy of a relativistic
particle

Rest energy

6 One way to remember this relationship is to draw a right triangle having a hypotenuse of length E
and legs of lengths pc and mc 2.

Energy–momentum relationship
for a relativistic particle
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Quick Quiz 39.10 The following pairs of energies represent the rest
energy and total energy of three different particles: particle 1: E, 2E; particle 2: E, 3E;
particle 3: 2E, 4E. Rank the particles, from greatest to least, according to their (a) mass;
(b) kinetic energy; (c) speed.

(A) Find the rest energy of a proton in electron volts.

Solution Using Equation 39.24,

ER ! mpc2 ! (1.67 $ 10#27 kg)(3.00 $ 108 m/s)2

(B) If the total energy of a proton is three times its rest
energy, what is the speed of the proton?

Solution Equation 39.26 gives

Solving for u gives

(C) Determine the kinetic energy of the proton in electron
volts.

2.83 $ 108 m/su !
√8
3

 c ! 0.943c !

u2

c 
2 !

8
9

"1 #
u2

c 
2 # !

1
9

3 !
1

√1 #
u2

c 
2

E ! 3mpc 
2 !

mpc 
2

√1 #
u2

c 
2

938 MeV!

! (1.50 $ 10#10 J) " 1.00 eV
1.60 $ 10#19 J #

Solution From Equation 39.25,

K ! E # mpc2 ! 3mpc2 # mpc2 ! 2mpc2

Because mpc2 ! 938 MeV, we see that K ! 1 880 MeV.

(D) What is the proton’s momentum?

Solution We can use Equation 39.27 to calculate the
momentum with E ! 3mpc2:

E2 ! p2c2 & (mpc2)2 ! (3mpc2)2

p2c2 ! 9(mpc2)2 # (mpc2)2 ! 8(mpc2)2

The unit of momentum is written MeV/c, which is a
common unit in particle physics.

What If? In classical physics, if the momentum of a particle
doubles, the kinetic energy increases by a factor of 4. What
happens to the kinetic energy of the speedy proton in this
example if its momentum doubles?

Answer Based on what we have seen so far in relativity, it is
likely that you would predict that its kinetic energy does not
increase by a factor of 4. If the momentum doubles, the new
momentum is

Using Equation 39.27, we find the square of the new total
energy:

E2
new ! p2

newc 2 & (mpc 2)2

p new ! 2 "√8  

mpc 
2

c # ! 4√2  

mpc 
2

c

2 650 MeV/cp ! √8  
mpc 

2

c
! √8  

(938 MeV)
c

!

An electron in a television picture tube typically moves with
a speed u ! 0.250c. Find its total energy and kinetic energy
in electron volts.

Solution Using the fact that the rest energy of the electron
is 0.511 MeV together with Equation 39.26, we have

0.528 MeV! 1.03(0.511 MeV) !

E !
mec 

2

√1 #
u2

c 
2

!
0.511 MeV

√1 #
(0.250c)2

c 
2

This is 3% greater than the rest energy.
We obtain the kinetic energy by subtracting the rest

energy from the total energy:

K ! E # mec2 ! 0.528 MeV # 0.511 MeV

! 0.017 MeV

Example 39.11 The Energy of a Speedy Electron

Example 39.12 The Energy of a Speedy Proton



39.9 Mass and Energy

Equation 39.26, E ! *mc2, which represents the total energy of a particle, suggests that
even when a particle is at rest (* ! 1) it still possesses enormous energy through its
mass. The clearest experimental proof of the equivalence of mass and energy occurs in
nuclear and elementary particle interactions in which the conversion of mass into
kinetic energy takes place. Because of this, in relativistic situations, we cannot use the
principle of conservation of energy as it was outlined in Chapters 7 and 8. We must
include rest energy as another form of energy storage.

This concept is important in atomic and nuclear processes, in which the change in
mass is a relatively large fraction of the initial mass. For example, in a conventional nu-
clear reactor, the uranium nucleus undergoes fission, a reaction that results in several
lighter fragments having considerable kinetic energy. In the case of 235U, which is used
as fuel in nuclear power plants, the fragments are two lighter nuclei and a few 
neutrons. The total mass of the fragments is less than that of the 235U by an amount
'm. The corresponding energy 'mc2 associated with this mass difference is exactly
equal to the total kinetic energy of the fragments. The kinetic energy is absorbed
as the fragments move through water, raising the internal energy of the water. This
internal energy is used to produce steam for the generation of electrical power.

Next, consider a basic fusion reaction in which two deuterium atoms combine to
form one helium atom. The decrease in mass that results from the creation of one
helium atom from two deuterium atoms is 'm ! 4.25 $ 10#29 kg. Hence, the corre-
sponding energy that results from one fusion reaction is 'mc2 ! 3.83 $ 10#12 J !
23.9 MeV. To appreciate the magnitude of this result, if only 1 g of deuterium is
converted to helium, the energy released is on the order of 1012 J! At the year 2003
cost of electrical energy, this would be worth about $30 000. We shall present more
details of these nuclear processes in Chapter 45 of the extended version of this
textbook.
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Now, using Equation 39.25, we find the new kinetic energy:

Knew ! Enew # mpc2 ! 5.7mpc2 # mpc2 ! 4.7mpc2

Enew ! √33(mpc 
2) ! 5.7mpc 

2

E2
new ! "4√2  

mpc 
2

c #2
 c 

2 & (mpc 
2)2 ! 33(mpc 

2)2
Notice that this is only 2.35 times as large as the kinetic en-
ergy we found in part (C), not four times as large. In gen-
eral, the factor by which the kinetic energy increases if the
momentum doubles will depend on the initial momentum,
but will approach 4 as the momentum approaches zero. In
this latter situation, classical physics correctly describes the
situation.

Example 39.13 Mass Change in a Radioactive Decay

The 216Po nucleus is unstable and exhibits radioactivity
(Chapter 44). It decays to 212Pb by emitting an alpha parti-
cle, which is a helium nucleus, 4He. Find

(A) the mass change in this decay and

(B) the energy that this represents.

Solution Using values in Table A.3, we see that the initial
and final masses are

mi ! m(216Po) ! 216.001 905 u

mf ! m(212Pb) & m(4He) ! 211.991 888 u & 4.002 603 u

! 215.994 491 u

Thus, the mass change is

'm ! 216.001 905 u # 215.994 491 u ! 0.007 414 u

!

(B) The energy associated with this mass change is

E ! 'mc2 ! (1.23 $ 10#29 kg)(3.00 $ 108 m/s)2

! 1.11 $ 10#12 J !

This energy appears as the kinetic energy of the alpha
particle and the 212Pb nucleus after the decay.

6.92 MeV

1.23 $ 10#29 kg



39.10 The General Theory of Relativity

Up to this point, we have sidestepped a curious puzzle. Mass has two seemingly differ-
ent properties: a gravitational attraction for other masses and an inertial property that
represents a resistance to acceleration. To designate these two attributes, we use the
subscripts g and i and write

Gravitational property Fg ! mgg

Inertial property F ! mia

The value for the gravitational constant G was chosen to make the magnitudes of mg
and mi numerically equal. Regardless of how G is chosen, however, the strict propor-
tionality of mg and mi has been established experimentally to an extremely high degree:
a few parts in 1012. Thus, it appears that gravitational mass and inertial mass may
indeed be exactly proportional.

But why? They seem to involve two entirely different concepts: a force of mutual
gravitational attraction between two masses, and the resistance of a single mass to
being accelerated. This question, which puzzled Newton and many other physicists
over the years, was answered by Einstein in 1916 when he published his theory of gravi-
tation, known as the general theory of relativity. Because it is a mathematically complex
theory, we offer merely a hint of its elegance and insight.

In Einstein’s view, the dual behavior of mass was evidence for a very intimate and
basic connection between the two behaviors. He pointed out that no mechanical
experiment (such as dropping an object) could distinguish between the two situations
illustrated in Figures 39.19a and 39.19b. In Figure 39.19a, a person is standing in an
elevator on the surface of a planet, and feels pressed into the floor, due to the gravita-
tional force. In Figure 39.19b, the person is in an elevator in empty space accelerating
upward with a ! g. The person feels pressed into the floor with the same force as in
Figure 39.19a. In each case, an object released by the observer undergoes a downward
acceleration of magnitude g relative to the floor. In Figure 39.19a, the person is in an
inertial frame in a gravitational field. In Figure 39.19b, the person is in a noninertial
frame accelerating in gravity-free space. Einstein’s claim is that these two situations are
completely equivalent.

)
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(b)

F

(a) (c) (d)

F

Figure 39.19 (a) The observer is at rest in a uniform gravitational field g, directed
downward. (b) The observer is in a region where gravity is negligible, but the frame
is accelerated by an external force F that produces an acceleration g directed
upward. According to Einstein, the frames of reference in parts (a) and (b) are
equivalent in every way. No local experiment can distinguish any difference between
the two frames. (c) In the accelerating frame, a ray of light would appear to bend
downward due to the acceleration of the elevator. (d) If parts (a) and (b) are truly
equivalent, as Einstein proposed, then part (c) suggests that a ray of light would
bend downward in a gravitational field.



Einstein carried this idea further and proposed that no experiment, mechanical or
otherwise, could distinguish between the two cases. This extension to include all
phenomena (not just mechanical ones) has interesting consequences. For example,
suppose that a light pulse is sent horizontally across an elevator that is accelerating
upward in empty space, as in Figure 39.19c. From the point of view of an observer in
an inertial frame outside of the elevator, the light travels in a straight line while the
floor of the elevator accelerates upward. According to the observer on the elevator,
however, the trajectory of the light pulse bends downward as the floor of the elevator
(and the observer) accelerates upward. Therefore, based on the equality of parts
(a) and (b) of the figure for all phenomena, Einstein proposed that a beam of light
should also be bent downward by a gravitational field, as in Figure 39.19d. Experi-
ments have verified the effect, although the bending is small. A laser aimed at the
horizon falls less than 1 cm after traveling 6 000 km. (No such bending is predicted in
Newton’s theory of gravitation.)

The two postulates of Einstein’s general theory of relativity are

• All the laws of nature have the same form for observers in any frame of reference,
whether accelerated or not.

• In the vicinity of any point, a gravitational field is equivalent to an accelerated
frame of reference in the absence of gravitational effects. (This is the principle of
equivalence.)

One interesting effect predicted by the general theory is that time is altered by
gravity. A clock in the presence of gravity runs slower than one located where gravity
is negligible. Consequently, the frequencies of radiation emitted by atoms in the
presence of a strong gravitational field are red-shifted to lower frequencies when
compared with the same emissions in the presence of a weak field. This gravitational
red shift has been detected in spectral lines emitted by atoms in massive stars. It has
also been verified on the Earth by comparing the frequencies of gamma rays emitted
from nuclei separated vertically by about 20 m.

The second postulate suggests that a gravitational field may be “transformed away”
at any point if we choose an appropriate accelerated frame of reference—a freely
falling one. Einstein developed an ingenious method of describing the acceleration
necessary to make the gravitational field “disappear.” He specified a concept, the
curvature of space–time, that describes the gravitational effect at every point. In fact, the
curvature of space–time completely replaces Newton’s gravitational theory. According
to Einstein, there is no such thing as a gravitational force. Rather, the presence of a
mass causes a curvature of space–time in the vicinity of the mass, and this curvature
dictates the space–time path that all freely moving objects must follow. In 1979, John
Wheeler summarized Einstein’s general theory of relativity in a single sentence: “Space
tells matter how to move and matter tells space how to curve.”

As an example of the effects of curved space–time, imagine two travelers moving on
parallel paths a few meters apart on the surface of the Earth and maintaining an exact
northward heading along two longitude lines. As they observe each other near the
equator, they will claim that their paths are exactly parallel. As they approach the
North Pole, however, they notice that they are moving closer together, and they will
actually meet at the North Pole. Thus, they will claim that they moved along parallel
paths, but moved toward each other, as if there were an attractive force between them. They
will make this conclusion based on their everyday experience of moving on flat
surfaces. From our mental representation, however, we realize that they are walking on
a curved surface, and it is the geometry of the curved surface that causes them to
converge, rather than an attractive force. In a similar way, general relativity replaces
the notion of forces with the movement of objects through curved space–time.

One prediction of the general theory of relativity is that a light ray passing near the
Sun should be deflected in the curved space–time created by the Sun’s mass. This
prediction was confirmed when astronomers detected the bending of starlight near the
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Postulates of the general theory
of relativity

Einstein’s cross. The four bright
spots are images of the same galaxy
that have been bent around a
massive object located between the
galaxy and the Earth. The massive
object acts like a lens, causing the
rays of light that were diverging
from the distant galaxy to converge
on the Earth. (If the intervening
massive object had a uniform mass
distribution, we would see a bright
ring instead of four spots.)
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Sun during a total solar eclipse that occurred shortly after World War I (Fig. 39.20).
When this discovery was announced, Einstein became an international celebrity.

If the concentration of mass becomes very great, as is believed to occur when a
large star exhausts its nuclear fuel and collapses to a very small volume, a black hole
may form. Here, the curvature of space–time is so extreme that, within a certain
distance from the center of the black hole, all matter and light become trapped, as
discussed in Section 13.7.

Summary 1275

1.75"

Sun
Light from star

(actual direction)

Apparent
direction to star

Deflected path of light
from star

Earth

Figure 39.20 Deflection of starlight passing near the Sun. Because of this effect, the
Sun or some other remote object can act as a gravitational lens. In his general theory of
relativity, Einstein calculated that starlight just grazing the Sun’s surface should be
deflected by an angle of 1.75 s of arc.

The two basic postulates of the special theory of relativity are

• The laws of physics must be the same in all inertial reference frames.

• The speed of light in vacuum has the same value, c ! 3.00 $ 108 m/s, in all inertial
frames, regardless of the velocity of the observer or the velocity of the source emit-
ting the light.

Three consequences of the special theory of relativity are

• Events that are measured to be simultaneous for one observer are not necessarily
measured to be simultaneous for another observer who is in motion relative to
the first.

• Clocks in motion relative to an observer are measured to run slower by a factor
* ! (1 # v2/c2)#1/2. This phenomenon is known as time dilation.

• The length of objects in motion are measured to be contracted in the direction of
motion by a factor 1/* ! (1 # v2/c2)1/2. This phenomenon is known as length
contraction.

To satisfy the postulates of special relativity, the Galilean transformation equations
must be replaced by the Lorentz transformation equations:

x " ! *(x # vt) y" ! y z" ! z (39.11)

where * ! (1 # v2/c2)#1/2 and the S" frame moves in the x direction relative to the S
frame.

The relativistic form of the velocity transformation equation is

(39.16)

where ux is the speed of an object as measured in the S frame and u"x is its speed
measured in the S" frame.

u "x !
ux # v

1 #
ux v
c 

2

t " ! * "t #
v
c 

2  x#

Take a practice test for
this chapter by clicking on
the Practice Test link at
http://www.pse6.com.
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1. What two speed measurements do two observers in relative
motion always agree on?

2. A spacecraft with the shape of a sphere moves past an
observer on Earth with a speed 0.5c. What shape does the
observer measure for the spacecraft as it moves past?

3. The speed of light in water is 230 Mm/s. Suppose an
electron is moving through water at 250 Mm/s. Does this
violate the principle of relativity?

4. Two identical clocks are synchronized. One is then put in
orbit directed eastward around the Earth while the other
remains on the Earth. Which clock runs slower? When the
moving clock returns to the Earth, are the two still
synchronized?

Explain why it is necessary, when defining the length of a
rod, to specify that the positions of the ends of the rod are
to be measured simultaneously.

6. A train is approaching you at very high speed as you stand
next to the tracks. Just as an observer on the train passes
you, you both begin to play the same Beethoven symphony
on portable compact disc players. (a) According to you,
whose CD player finishes the symphony first? (b) What If?
According to the observer on the train, whose CD player
finishes the symphony first? (c) Whose CD player really
finishes the symphony first?

List some ways our day-to-day lives would change if the
speed of light were only 50 m/s.

8. Does saying that a moving clock runs slower than a station-
ary one imply that something is physically unusual about
the moving clock?

7.

5.

9. How is acceleration indicated on a space–time graph?

10. A particle is moving at a speed less than c/2. If the speed
of the particle is doubled, what happens to its momentum?

Give a physical argument that shows that it is impossible to
accelerate an object of mass m to the speed of light, even
with a continuous force acting on it.

12. The upper limit of the speed of an electron is the speed of
light c . Does that mean that the momentum of the
electron has an upper limit?

13. Because mass is a measure of energy, can we conclude that
the mass of a compressed spring is greater than the mass
of the same spring when it is not compressed?

14. It is said that Einstein, in his teenage years, asked the ques-
tion, “What would I see in a mirror if I carried it in my
hands and ran at the speed of light?” How would you
answer this question?

15. Some distant astronomical objects, called quasars, are
receding from us at half the speed of light (or greater).
What is the speed of the light we receive from these
quasars?

16. Photons of light have zero mass. How is it possible that
they have momentum?

17. “Newtonian mechanics correctly describes objects moving
at ordinary speeds and relativistic mechanics correctly
describes objects moving very fast.” “Relativistic mechanics
must make a smooth transition as it reduces to Newtonian
mechanics in a case where the speed of an object becomes
small compared to the speed of light.” Argue for or against
each of these two statements.

11.

Q U E S T I O N S

The relativistic expression for the linear momentum of a particle moving with a
velocity u is

(39.19)

The relativistic expression for the kinetic energy of a particle is

(39.23)

The constant term mc2 in Equation 39.23 is called the rest energy ER of the particle:

ER ! mc2 (39.24)

The total energy E of a particle is given by 

(39.26)

The relativistic linear momentum of a particle is related to its total energy through
the equation

E2 ! p2c2 & (mc2)2 (39.27)

E !
mc 

2

√1 #
u2

c 
2

! *mc 
2

K !
mc 

2

√1 #
u2

c 
2

# mc 
2 ! (* # 1)mc 

2

p ' 
m u

√1 #
u2

c 
2

! *m u



Problems 1277

18. Two cards have straight edges. Suppose that the top edge
of one card crosses the bottom edge of another card at a
small angle, as in Figure Q39.18a. A person slides the cards
together at a moderately high speed. In what direction
does the intersection point of the edges move? Show that
it can move at a speed greater than the speed of light.

A small flashlight is suspended in a horizontal plane
and set into rapid rotation. Show that the spot of light it
produces on a distant screen can move across the screen at
a speed greater than the speed of light. (If you use a laser
pointer, as in Figure Q39.18b, make sure the direct laser
light cannot enter a person’s eyes.) Argue that these exper-
iments do not invalidate the principle that no material, no
energy, and no information can move faster than light
moves in a vacuum.

19. Describe how the results of Example 39.7 would change if,
instead of fast space vehicles, two ordinary cars were
approaching each other at highway speeds.

20. Two objects are identical except that one is hotter than the
other. Compare how they respond to identical forces.

21. With regard to reference frames, how does general relativ-
ity differ from special relativity?

22. Two identical clocks are in the same house, one upstairs in
a bedroom, and the other downstairs in the kitchen.
Which clock runs more slowly? Explain.

23. A thought experiment. Imagine ants living on a merry-
go-round turning at relativistic speed, which is their two-
dimensional world. From measurements on small circles
they are thoroughly familiar with the number 2. When
they measure the circumference of their world, and
divide it by the diameter, they expect to calculate the
number 2 ! 3.141 59. . . . We see the merry-go-round
turning at relativistic speed. From our point of view, the
ants’ measuring rods on the circumference are experi-
encing length contraction in the tangential direction;
hence the ants will need some extra rods to fill that
entire distance. The rods measuring the diameter,
however, do not contract, because their motion is
perpendicular to their lengths. As a result, the computed
ratio does not agree with the number 2. If you were an
ant, you would say that the rest of the universe is
spinning in circles, and your disk is stationary. What
possible explanation can you then give for the discrep-
ancy, in light of the general theory of relativity?

(b)(a)

Figure Q39.18

Section 39.1 The Principle of Galilean Relativity
1. A 2 000-kg car moving at 20.0 m/s collides and locks

together with a 1 500-kg car at rest at a stop sign. Show that
momentum is conserved in a reference frame moving at
10.0 m/s in the direction of the moving car.

2. A ball is thrown at 20.0 m/s inside a boxcar moving along
the tracks at 40.0 m/s. What is the speed of the ball

relative to the ground if the ball is thrown (a) forward
(b) backward (c) out the side door?

In a laboratory frame of reference, an observer notes
that Newton’s second law is valid. Show that it is also
valid for an observer moving at a constant speed, small
compared with the speed of light, relative to the labora-
tory frame.

3.

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide

= coached solution with hints available at http://www.pse6.com = computer useful in solving problem

= paired numerical and symbolic problems
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4. Show that Newton’s second law is not valid in a reference
frame moving past the laboratory frame of Problem 3 with
a constant acceleration.

Section 39.2 The Michelson–Morley Experiment
Section 39.3 Einstein’s Principle of Relativity
Section 39.4 Consequences of the Special

Theory of Relativity

5. How fast must a meter stick be moving if its length is
measured to shrink to 0.500 m?

6. At what speed does a clock move if it is measured to run at
a rate that is half the rate of a clock at rest with respect to
an observer?

7. An astronaut is traveling in a space vehicle that has a speed
of 0.500c relative to the Earth. The astronaut measures her
pulse rate at 75.0 beats per minute. Signals generated by
the astronaut’s pulse are radioed to Earth when the vehicle
is moving in a direction perpendicular to the line that
connects the vehicle with an observer on the Earth.
(a) What pulse rate does the Earth observer measure?
(b) What If? What would be the pulse rate if the speed of
the space vehicle were increased to 0.990c?

8. An astronomer on Earth observes a meteoroid in the
southern sky approaching the Earth at a speed of 0.800c.
At the time of its discovery the meteoroid is 20.0 ly from
the Earth. Calculate (a) the time interval required for the
meteoroid to reach the Earth as measured by the Earth-
bound astronomer, (b) this time interval as measured by a
tourist on the meteoroid, and (c) the distance to the Earth
as measured by the tourist.

An atomic clock moves at 1 000 km/h for 1.00 h as mea-
sured by an identical clock on the Earth. How many
nanoseconds slow will the moving clock be compared with
the Earth clock, at the end of the 1.00-h interval?

10. A muon formed high in the Earth’s atmosphere travels at
speed v ! 0.990c for a distance of 4.60 km before it
decays into an electron, a neutrino, and an antineutrino
(+# : e# & 3 & ). (a) How long does the muon live, as
measured in its reference frame? (b) How far does the
Earth travel, as measured in the frame of the muon?

A spacecraft with a proper length of 300 m takes
0.750 +s to pass an Earth observer. Determine the speed of
the spacecraft as measured by the Earth observer.

12. (a) An object of proper length Lp takes a time interval 't
to pass an Earth observer. Determine the speed of the
object as measured by the Earth observer. (b) A column
of tanks, 300 m long, takes 75.0 s to pass a child waiting
at a street corner on her way to school. Determine the
speed of the armored vehicles. (c) Show that the answer
to part (a) includes the answer to Problem 11 as a special
case, and includes the answer to part (b) as another
special case.

11.

3

9.

Problem 43 in Chapter 4 can be assigned with this section.

13. Review problem. In 1963 Mercury astronaut Gordon Cooper
orbited the Earth 22 times. The press stated that for each
orbit he aged 2 millionths of a second less than he would
have if he had remained on the Earth. (a) Assuming that he
was 160 km above the Earth in a circular orbit, determine
the time difference between someone on the Earth and the
orbiting astronaut for the 22 orbits. You will need to use
the approximation , for small x. (b) Did
the press report accurate information? Explain.

14. For what value of v does * ! 1.010 0? Observe that for
speeds lower than this value, time dilation and length con-
traction are effects amounting to less than 1%.

15. A friend passes by you in a spacecraft traveling at a high
speed. He tells you that his craft is 20.0 m long and that
the identically constructed craft you are sitting in is 19.0 m
long. According to your observations, (a) how long is your
spacecraft, (b) how long is your friend’s craft, and (c) what
is the speed of your friend’s craft?

16. The identical twins Speedo and Goslo join a migration
from the Earth to Planet X. It is 20.0 ly away in a reference
frame in which both planets are at rest. The twins, of the
same age, depart at the same time on different spacecraft.
Speedo’s craft travels steadily at 0.950c, and Goslo’s at
0.750c . Calculate the age difference between the twins
after Goslo’s spacecraft lands on Planet X. Which twin is
the older?

17. An interstellar space probe is launched from the Earth.
After a brief period of acceleration it moves with a
constant velocity, with a magnitude of 70.0% of the speed
of light. Its nuclear-powered batteries supply the energy to
keep its data transmitter active continuously. The batteries
have a lifetime of 15.0 yr as measured in a rest frame.
(a) How long do the batteries on the space probe last as
measured by Mission Control on the Earth? (b) How far is
the probe from the Earth when its batteries fail, as mea-
sured by Mission Control? (c) How far is the probe from
the Earth when its batteries fail, as measured by its built-in
trip odometer? (d) For what total time interval after
launch are data received from the probe by Mission
Control? Note that radio waves travel at the speed of light
and fill the space between the probe and the Earth at the
time of battery failure.

18. Review problem. An alien civilization occupies a brown
dwarf, nearly stationary relative to the Sun, several
lightyears away. The extraterrestrials have come to love
original broadcasts of I Love Lucy, on our television
channel 2, at carrier frequency 57.0 MHz. Their line of
sight to us is in the plane of the Earth’s orbit. Find the
difference between the highest and lowest frequencies
they receive due to the Earth’s orbital motion around
the Sun.

19. Police radar detects the speed of a car (Fig. P39.19) as
follows. Microwaves of a precisely known frequency are
broadcast toward the car. The moving car reflects the
microwaves with a Doppler shift. The reflected waves are
received and combined with an attenuated version of the
transmitted wave. Beats occur between the two microwave
signals. The beat frequency is measured. (a) For an
electromagnetic wave reflected back to its source from a
mirror approaching at speed v, show that the reflected

√1 # x % 1 # x / 2
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wave has frequency

where f source is the source frequency. (b) When v is much
less than c, the beat frequency is much smaller than the
transmitted frequency. In this case use the approximation
f & f source % 2 f source and show that the beat frequency can
be written as fbeat ! 2v/). (c) What beat frequency is mea-
sured for a car speed of 30.0 m/s if the microwaves have
frequency 10.0 GHz? (d) If the beat frequency measure-
ment is accurate to % 5 Hz, how accurate is the velocity
measurement?

f ! f source 
c & v
c # v

the emission of the same two pulses separated in time by
9.00 +s. (a) How fast is Mark moving relative to Suzanne?
(b) According to Mark, what is the separation in space of
the two pulses?

23. A moving rod is observed to have a length of 2.00 m and to
be oriented at an angle of 30.0° with respect to the direc-
tion of motion, as shown in Figure P39.23. The rod has a
speed of 0.995c. (a) What is the proper length of the rod?
(b) What is the orientation angle in the proper frame?

Figure P39.19

20. The red shift. A light source recedes from an observer with a
speed vsource that is small compared with c. (a) Show that
the fractional shift in the measured wavelength is given by
the approximate expression

This phenomenon is known as the red shift, because the
visible light is shifted toward the red. (b) Spectroscopic
measurements of light at ) ! 397 nm coming from a
galaxy in Ursa Major reveal a red shift of 20.0 nm. What is
the recessional speed of the galaxy?

21. A physicist drives through a stop light. When he is pulled
over, he tells the police officer that the Doppler shift made
the red light of wavelength 650 nm appear green to him,
with a wavelength of 520 nm. The police officer writes out
a traffic citation for speeding. How fast was the physicist
traveling, according to his own testimony?

Section 39.5 The Lorentz Transformation
Equations

22. Suzanne observes two light pulses to be emitted from the
same location, but separated in time by 3.00 +s. Mark sees
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Figure P39.23

Figure P39.26

24. An observer in reference frame S sees two events as simul-
taneous. Event A occurs at the point (50.0 m, 0, 0) at the
instant 9:00:00 Universal time, 15 January 2004. Event B
occurs at the point (150 m, 0, 0) at the same moment. A
second observer, moving past with a velocity of 0.800c î ,
also observes the two events. In her reference frame S",
which event occurred first and what time interval elapsed
between the events?

25. A red light flashes at position xR ! 3.00 m and time tR !
1.00 $ 10#9 s, and a blue light flashes at xB ! 5.00 m and
tB ! 9.00 $ 10#9 s, all measured in the S reference frame.
Reference frame S" has its origin at the same point as S at
t ! t" ! 0; frame S" moves uniformly to the right. Both
flashes are observed to occur at the same place in S".
(a) Find the relative speed between S and S". (b) Find the
location of the two flashes in frame S". (c) At what time
does the red flash occur in the S" frame?

Section 39.6 The Lorentz Velocity Transformation
Equations

26. A Klingon spacecraft moves away from the Earth at a speed
of 0.800c (Fig. P39.26). The starship Enterprise pursues at a
speed of 0.900c relative to the Earth. Observers on the Earth
see the Enterprise overtaking the Klingon craft at a relative
speed of 0.100c. With what speed is the Enterprise overtaking
the Klingon craft as seen by the crew of the Enterprise?

u = 0.900c

S

x

S ′

x ′

v = 0.800c

Two jets of material from the center of a radio galaxy
are ejected in opposite directions. Both jets move at 0.750c

27.
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stationary observer? Note that relativistic density is defined
as ER/c2V .

41. An unstable particle with a mass of 3.34 $ 10#27 kg is
initially at rest. The particle decays into two fragments that
fly off along the x axis with velocity components 0.987c and
# 0.868c . Find the masses of the fragments. (Suggestion:
Conserve both energy and momentum.)

42. An object having mass 900 kg and traveling at speed 0.850c
collides with a stationary object having mass 1 400 kg. The
two objects stick together. Find (a) the speed and (b) the
mass of the composite object.

Show that the energy–momentum relationship E 2 !
p 2c 2 & (mc 2)2 follows from the expressions E ! *mc 2

and p ! *mu.

44. In a typical color television picture tube, the electrons are
accelerated through a potential difference of 25 000 V.
(a) What speed do the electrons have when they strike the
screen? (b) What is their kinetic energy in joules?

45. Consider electrons accelerated to an energy of 20.0 GeV in
the 3.00-km-long Stanford Linear Accelerator. (a) What is
the * factor for the electrons? (b) What is their speed?
(c) How long does the accelerator appear to them?

46. Compact high-power lasers can produce a 2.00-J light
pulse of duration 100 fs, focused to a spot 1 +m in diame-
ter. (See Mourou and Umstader, “Extreme Light,” Scientific
American, May 2002, page 81.) The electric field in the
light accelerates electrons in the target material to near
the speed of light. (a) What is the average power of the
laser during the pulse? (b) How many electrons can be
accelerated to 0.999 9c if 0.010 0% of the pulse energy is
converted into energy of electron motion?

A pion at rest (m2 ! 273me) decays to a muon (m+ !
207me) and an antineutrino . The reaction is
written 2# : +# & . Find the kinetic energy of the muon
and the energy of the antineutrino in electron volts. (Sug-
gestion: Conserve both energy and momentum.)

48. According to observer A, two objects of equal mass and
moving along the x axis collide head on and stick to
each other. Before the collision, this observer measures
that object 1 moves to the right with a speed of 3c/4,
while object 2 moves to the left with the same speed.
According to observer B, however, object 1 is initially at
rest. (a) Determine the speed of object 2 as seen by
observer B. (b) Compare the total initial energy of the
system in the two frames of reference.

Section 39.9 Mass and Energy
49. Make an order-of-magnitude estimate of the ratio of mass

increase to the original mass of a flag, as you run it up a
flagpole. In your solution explain what quantities you take
as data and the values you estimate or measure for them.

50. When 1.00 g of hydrogen combines with 8.00 g of oxygen,
9.00 g of water is formed. During this chemical reaction,
2.86 $ 105 J of energy is released. How much mass do the
constituents of this reaction lose? Is the loss of mass likely
to be detectable?

51. In a nuclear power plant the fuel rods last 3 yr before they
are replaced. If a plant with rated thermal power 1.00 GW

3
(m3 % 0)

47.

43.

relative to the galaxy. Determine the speed of one jet
relative to the other.

28. A spacecraft is launched from the surface of the Earth with a
velocity of 0.600c at an angle of 50.0° above the horizontal
positive x axis. Another spacecraft is moving past, with a
velocity of 0.700c in the negative x direction. Determine the
magnitude and direction of the velocity of the first spacecraft
as measured by the pilot of the second spacecraft.

Section 39.7 Relativistic Linear Momentum
and the Relativistic Form 
of Newton’s Laws

29. Calculate the momentum of an electron moving with a
speed of (a) 0.010 0c, (b) 0.500c, and (c) 0.900c.

30. The nonrelativistic expression for the momentum of a
particle, p ! mu, agrees with experiment if u (( c. For
what speed does the use of this equation give an error in
the momentum of (a) 1.00% and (b) 10.0%?

31. A golf ball travels with a speed of 90.0 m/s. By what fraction
does its relativistic momentum magnitude p differ from its
classical value mu? That is, find the ratio (p # mu)/mu.

32. Show that the speed of an object having momentum of
magnitude p and mass m is 

An unstable particle at rest breaks into two fragments
of unequal mass. The mass of the first fragment is 
2.50 $ 10#28 kg, and that of the other is 1.67 $ 10#27 kg. 
If the lighter fragment has a speed of 0.893c after the
breakup, what is the speed of the heavier fragment?

Section 39.8 Relativistic Energy
34. Determine the energy required to accelerate an electron

from (a) 0.500c to 0.900c and (b) 0.900c to 0.990c.

A proton in a high-energy accelerator moves with a speed
of c/2. Use the work–kinetic energy theorem to find the
work required to increase its speed to (a) 0.750c and
(b) 0.995c.

36. Show that, for any object moving at less than one-tenth the
speed of light, the relativistic kinetic energy agrees with
the result of the classical equation to within less
than 1%. Thus for most purposes, the classical equation is
good enough to describe these objects, whose motion we
call nonrelativistic.

Find the momentum of a proton in MeV/c units assuming
its total energy is twice its rest energy.

38. Find the kinetic energy of a 78.0-kg spacecraft launched
out of the solar system with speed 106 km/s by using
(a) the classical equation (b) What If?
Calculate its kinetic energy using the relativistic equation.

A proton moves at 0.950c. Calculate its (a) rest
energy, (b) total energy, and (c) kinetic energy.

40. A cube of steel has a volume of 1.00 cm3 and a mass of
8.00 g when at rest on the Earth. If this cube is now given a
speed u ! 0.900c, what is its density as measured by a

39.

K ! 1
2 mu2.

37.

K ! 1
2 mu2

35.

33.

u !
c

√1 & (mc/p)2
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Additional Problems
56. An astronaut wishes to visit the Andromeda galaxy, making

a one-way trip that will take 30.0 yr in the spacecraft’s
frame of reference. Assume that the galaxy is 2.00 $ 106 ly
away and that the astronaut’s speed is constant. (a) How
fast must he travel relative to the Earth? (b) What will be
the kinetic energy of his 1 000-metric-ton spacecraft?
(c) What is the cost of this energy if it is purchased at a
typical consumer price for electric energy: $0.130/kWh?

The cosmic rays of highest energy are protons that
have kinetic energy on the order of 1013 MeV. (a) How
long would it take a proton of this energy to travel across
the Milky Way galaxy, having a diameter * 105 ly, as mea-
sured in the proton’s frame? (b) From the point of view of
the proton, how many kilometers across is the galaxy?

58. An electron has a speed of 0.750c. (a) Find the speed of a
proton that has the same kinetic energy as the electron.
(b) What If? Find the speed of a proton that has the same
momentum as the electron.

59. Ted and Mary are playing a game of catch in frame S",
which is moving at 0.600c with respect to frame S, while
Jim, at rest in frame S, watches the action (Fig. P39.59).
Ted throws the ball to Mary at 0.800c (according to Ted)
and their separation (measured in S") is 1.80 $ 1012 m.
(a) According to Mary, how fast is the ball moving?
(b) According to Mary, how long does it take the ball to
reach her? (c) According to Jim, how far apart are Ted
and Mary, and how fast is the ball moving? (d) According
to Jim, how long does it take the ball to reach Mary?

57.

operates at 80.0% capacity for 3.00 yr, what is the loss of
mass of the fuel?

52. Review problem. The total volume of water in the oceans
is approximately 1.40 $ 109 km3. The density of sea
water is 1 030 kg/m3, and the specific heat of the water is
4 186 J/(kg 0 °C). Find the increase in mass of the oceans
produced by an increase in temperature of 10.0°C.

The power output of the Sun is 3.77 $ 1026 W. How much
mass is converted to energy in the Sun each second?

54. A gamma ray (a high-energy photon) can produce an
electron (e#) and a positron (e&) when it enters the
electric field of a heavy nucleus: * : e& & e#. What
minimum gamma-ray energy is required to accomplish this
task? (Note: The masses of the electron and the positron
are equal.)

Section 39.10 The General Theory of Relativity
55. An Earth satellite used in the global positioning

system moves in a circular orbit with period 11 h 58 min.
(a) Determine the radius of its orbit. (b) Determine its
speed. (c) The satellite contains an oscillator producing
the principal nonmilitary GPS signal. Its frequency is
1 575.42 MHz in the reference frame of the satellite. When
it is received on the Earth’s surface, what is the fractional
change in this frequency due to time dilation, as described
by special relativity? (d) The gravitational blue shift of the
frequency according to general relativity is a separate
effect. The magnitude of that fractional change is given by

where 'Ug is the change in gravitational potential energy
of an object–Earth system when the object of mass m is
moved between the two points at which the signal is
observed. Calculate this fractional change in frequency.
(e) What is the overall fractional change in frequency?
Superposed on both of these relativistic effects is a
Doppler shift that is generally much larger. It can be a red
shift or a blue shift, depending on the motion of a particu-
lar satellite relative to a GPS receiver (Fig. P39.55).

'f
f

!
'Ug

mc 
2

53.

Figure P39.55 This global positioning system (GPS) receiver
incorporates relativistically corrected time calculations in its
analysis of signals it receives from orbiting satellites. This allows
the unit to determine its position on the Earth’s surface to within
a few meters. If these corrections were not made, the location
error would be about 1 km.

x ′

v = 0.600c
S ′

Ted

1.80 × 1012 m
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x

S 0.800c

Figure P39.59
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60. A rechargeable AA battery with a mass of 25.0 g can supply
a power of 1.20 W for 50.0 min. (a) What is the difference
in mass between a charged and an uncharged battery?
(b) What fraction of the total mass is this mass difference?

The net nuclear fusion reaction inside the Sun can be
written as 4 1H : 4 He & 'E. The rest energy of each hydro-
gen atom is 938.78 MeV and the rest energy of the helium-4
atom is 3 728.4 MeV. Calculate the percentage of the starting
mass that is transformed to other forms of energy.

62. An object disintegrates into two fragments. One of
the fragments has mass 1.00 MeV/c2 and momentum
1.75 MeV/c in the positive x direction. The other fragment
has mass 1.50 MeV/c2 and momentum 2.00 MeV/c in the
positive y direction. Find (a) the mass and (b) the speed of
the original object.

61.
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63. An alien spaceship traveling at 0.600c toward the Earth
launches a landing craft with an advance guard of purchas-
ing agents and physics teachers. The lander travels in the
same direction with a speed of 0.800c relative to the
mother ship. As observed on the Earth, the spaceship is
0.200 ly from the Earth when the lander is launched.
(a) What speed do the Earth observers measure for the
approaching lander? (b) What is the distance to the Earth
at the time of lander launch, as observed by the aliens?
(c) How long does it take the lander to reach the Earth as
observed by the aliens on the mother ship? (d) If the
lander has a mass of 4.00 $ 105 kg, what is its kinetic
energy as observed in the Earth reference frame?

64. A physics professor on the Earth gives an exam to her
students, who are in a spacecraft traveling at speed v
relative to the Earth. The moment the craft passes the
professor, she signals the start of the exam. She wishes her
students to have a time interval T0 (spacecraft time) to
complete the exam. Show that she should wait a time inter-
val (Earth time) of

before sending a light signal telling them to stop. (Sugges-
tion: Remember that it takes some time for the second
light signal to travel from the professor to the students.)

Spacecraft I, containing students taking a physics exam,
approaches the Earth with a speed of 0.600c (relative to
the Earth), while spacecraft II, containing professors
proctoring the exam, moves at 0.280c (relative to the
Earth) directly toward the students. If the professors stop
the exam after 50.0 min have passed on their clock, how
long does the exam last as measured by (a) the students
(b) an observer on the Earth?

66. Energy reaches the upper atmosphere of the Earth from
the Sun at the rate of 1.79 $ 1017 W. If all of this energy
were absorbed by the Earth and not re-emitted, how much
would the mass of the Earth increase in 1.00 yr?

A supertrain (proper length 100 m) travels at a speed of
0.950c as it passes through a tunnel (proper length
50.0 m). As seen by a trackside observer, is the train ever
completely within the tunnel? If so, with how much space
to spare?

68. Imagine that the entire Sun collapses to a sphere of radius
Rg such that the work required to remove a small mass m
from the surface would be equal to its rest energy mc 2. This
radius is called the gravitational radius for the Sun. Find Rg.
(It is believed that the ultimate fate of very massive stars is to
collapse beyond their gravitational radii into black holes.)

A particle with electric charge q moves along a straight line
in a uniform electric field E with a speed of u. The electric
force exerted on the charge is q E. The motion and the
electric field are both in the x direction. (a) Show that the
acceleration of the particle in the x direction is given by

(b) Discuss the significance of the dependence of the
acceleration on the speed. (c) What If? If the particle

a !
du
dt

!
qE
m

 "1 #
u2

c 
2 #3/2

69.

67.

65.

T ! T0 √ 1 # v/c
1 & v/c

starts from rest at x ! 0 at t ! 0, how would you proceed
to find the speed of the particle and its position at time t?

70. An observer in a coasting spacecraft moves toward a
mirror at speed v relative to the reference frame labeled
by S in Figure P39.70. The mirror is stationary with respect
to S. A light pulse emitted by the spacecraft travels toward
the mirror and is reflected back to the craft. The front of
the craft is a distance d from the mirror (as measured by
observers in S) at the moment the light pulse leaves the
craft. What is the total travel time of the pulse as measured
by observers in (a) the S frame and (b) the front of the
spacecraft?

MirrorS

0

v = 0.800c

Figure P39.70

71. The creation and study of new elementary particles is an
important part of contemporary physics. Especially inter-
esting is the discovery of a very massive particle. To create
a particle of mass M requires an energy Mc2. With enough
energy, an exotic particle can be created by allowing a fast
moving particle of ordinary matter, such as a proton, to
collide with a similar target particle. Let us consider a
perfectly inelastic collision between two protons: an
incident proton with mass mp, kinetic energy K , and
momentum magnitude p joins with an originally stationary
target proton to form a single product particle of mass M .
You might think that the creation of a new product
particle, nine times more massive than in a previous
experiment, would require just nine times more energy for
the incident proton. Unfortunately not all of the kinetic
energy of the incoming proton is available to create the
product particle, since conservation of momentum
requires that after the collision the system as a whole still
must have some kinetic energy. Only a fraction of the
energy of the incident particle is thus available to create a
new particle. You will determine how the energy available
for particle creation depends on the energy of the moving
proton. Show that the energy available to create a product
particle is given by

From this result, when the kinetic energy K of the incident
proton is large compared to its rest energy mpc2, we see
that M approaches (2mpK)1/2/c . Thus if the energy of the
incoming proton is increased by a factor of nine, the mass
you can create increases only by a factor of three. This
disappointing result is the main reason that most modern
accelerators, such as those at CERN (in Europe), at Fermi-
lab (near Chicago), at SLAC (at Stanford), and at DESY
(in Germany), use colliding beams. Here the total momen-
tum of a pair of interacting particles can be zero. The

Mc 
2 ! 2mpc 

2  √1 &
K

2mpc 
2
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center of mass can be at rest after the collision, so in
principle all of the initial kinetic energy can be used for
particle creation, according to

where K is the total kinetic energy of two identical collid-
ing particles. Here if K ,, mc2, we have M directly propor-
tional to K , as we would desire. These machines are
difficult to build and to operate, but they open new vistas
in physics.

72. A particle of mass m moving along the x axis with a velocity
component & u collides head-on and sticks to a particle of
mass m/3 moving along the x axis with the velocity compo-
nent # u. What is the mass M of the resulting particle?

73. A rod of length L0 moving with a speed v along the hori-
zontal direction makes an angle 40 with respect to the x"
axis. (a) Show that the length of the rod as measured by
a stationary observer is L ! L0[1 # (v2/c2) cos2 40]1/2.
(b) Show that the angle that the rod makes with the x axis
is given by tan 4 ! * tan 40. These results show that the
rod is both contracted and rotated. (Take the lower end of
the rod to be at the origin of the primed coordinate
system.)

74. Suppose our Sun is about to explode. In an effort to
escape, we depart in a spacecraft at v ! 0.800c and head
toward the star Tau Ceti, 12.0 ly away. When we reach the
midpoint of our journey from the Earth, we see our Sun
explode and, unfortunately, at the same instant we see Tau
Ceti explode as well. (a) In the spacecraft’s frame of
reference, should we conclude that the two explosions
occurred simultaneously? If not, which occurred first?
(b) What If? In a frame of reference in which the Sun and
Tau Ceti are at rest, did they explode simultaneously? If
not, which exploded first?

75. A 57Fe nucleus at rest emits a 14.0-keV photon. Use con-
servation of energy and momentum to deduce the
kinetic energy of the recoiling nucleus in electron volts.
(Use Mc2 ! 8.60 $ 10#9 J for the final state of the 57Fe
nucleus.)

76. Prepare a graph of the relativistic kinetic energy and
the classical kinetic energy, both as a function of speed, for
an object with a mass of your choice. At what speed does
the classical kinetic energy underestimate the experimen-
tal value by 1%? by 5%? by 50%?

Answers to Quick Quizzes
39.1 (c). While the observers’ measurements differ, both are

correct.

39.2 (d). The Galilean velocity transformation gives us
ux ! u"x & v ! 110 mi/h & 90 mi/h ! 200 mi/h.

39.3 (d). The two events (the pulse leaving the flashlight and
the pulse hitting the far wall) take place at different loca-
tions for both observers, so neither measures the proper
time interval.

39.4 (a). The two events are the beginning and the end of the
movie, both of which take place at rest with respect to
the spacecraft crew. Thus, the crew measures the proper

Mc 
2 ! 2mc 

2 & K ! 2mc 
2 "1 &

K
2mc 

2 #

time interval of 2 h. Any observer in motion with respect
to the spacecraft, which includes the observer on Earth,
will measure a longer time interval due to time dilation.

39.5 (a). If their on-duty time is based on clocks that remain
on the Earth, they will have larger paychecks. A shorter
time interval will have passed for the astronauts in their
frame of reference than for their employer back on the
Earth.

39.6 (c). Both your body and your sleeping cabin are at rest
in your reference frame; thus, they will have their proper
length according to you. There will be no change in
measured lengths of objects, including yourself, within
your spacecraft.

39.7 (d). Time dilation and length contraction depend only
on the relative speed of one observer relative to another,
not on whether the observers are receding or approach-
ing each other.

39.8 (c). Because of your motion toward the source of the
light, the light beam has a horizontal component of
velocity as measured by you. The magnitude of the
vector sum of the horizontal and vertical component
vectors must be equal to c, so the magnitude of the
vertical component must be smaller than c.

39.9 (a). In this case, there is only a horizontal component of
the velocity of the light, and you must measure a speed
of c.

39.10(a) m3 , m2 ! m1; the rest energy of particle 3 is 2E,
while it is E for particles 1 and 2. (b) K3 ! K2 , K1; the
kinetic energy is the difference between the total energy
and the rest energy. The kinetic energy is 4E # 2E ! 2E
for particle 3, 3E # E ! 2E for particle 2, and 2E # E ! E
for particle 1. (c) u2 , u3 ! u1; from Equation 39.26,
E ! *ER . Solving this for the square of the particle speed
u, we find u2 ! c2(1 # (ER/E )2). Thus, the particle with
the smallest ratio of rest energy to total energy will have
the largest speed. Particles 1 and 3 have the same ratio as
each other, and the ratio of particle 2 is smaller.

©
 2

00
3 

by
 S

id
ne

y H
ar

ris



A.1

Appendix A  •  Tables

Mass

kg g slug u

1 kilogram 1 103 6.852 ! 10"2 6.024 ! 1026

1 gram 10"3 1 6.852 ! 10"5 6.024 ! 1023

1 slug 14.59 1.459 ! 104 1 8.789 ! 1027

1 atomic mass unit 1.660 ! 10"27 1.660 ! 10"24 1.137 ! 10"28 1

Note : 1 metric ton # 1 000 kg.

Time

s min h day yr

1 second 1 1.667 ! 10"2 2.778 ! 10"4 1.157 ! 10"5 3.169 ! 10"8

1 minute 60 1 1.667 ! 10"2 6.994 ! 10"4 1.901 ! 10"6

1 hour 3 600 60 1 4.167 ! 10"2 1.141 ! 10"4

1 day 8.640 ! 104 1 440 24 1 2.738 ! 10"5

1 year 3.156 ! 107 5.259 ! 105 8.766 ! 103 365.2 1

Speed

m/s cm/s ft/s mi/h

1 meter per second 1 102 3.281 2.237
1 centimeter per second 10"2 1 3.281 ! 10"2 2.237 ! 10"2

1 foot per second 0.304 8 30.48 1 0.681 8
1 mile per hour 0.447 0 44.70 1.467 1

Note : 1 mi/min # 60 mi/h # 88 ft/s.

Force

N lb

1 newton 1 0.224 8
1 pound 4.448 1

Conversion Factors

Table A.1

Length

m cm km in. ft mi

1 meter 1 102 10"3 39.37 3.281 6.214 ! 10"4

1 centimeter 10"2 1 10"5 0.393 7 3.281 ! 10"2 6.214 ! 10"6

1 kilometer 103 105 1 3.937 ! 104 3.281 ! 103 0.621 4
1 inch 2.540 ! 10"2 2.540 2.540 ! 10"5 1 8.333 ! 10"2 1.578 ! 10"5

1 foot 0.304 8 30.48 3.048 ! 10"4 12 1 1.894 ! 10"4

1 mile 1 609 1.609 ! 105 1.609 6.336 ! 104 5 280 1

continued



Conversion Factors continued
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Work, Energy, Heat

J ft $ lb eV

1 joule 1 0.737 6 6.242 ! 1018

1 foot-pound 1.356 1 8.464 ! 1018

1 electron volt 1.602 ! 10"19 1.182 ! 10"19 1
1 calorie 4.186 3.087 2.613 ! 1019

1 British thermal unit 1.055 ! 103 7.779 ! 102 6.585 ! 1021

1 kilowatt hour 3.600 ! 106 2.655 ! 106 2.247 ! 1025

cal Btu kWh

1 joule 0.238 9 9.481 ! 10"4 2.778 ! 10"7

1 foot-pound 0.323 9 1.285 ! 10"3 3.766 ! 10"7

1 electron volt 3.827 ! 10"20 1.519 ! 10"22 4.450 ! 10"26

1 calorie 1 3.968 ! 10"3 1.163 ! 10"6

1 British thermal unit 2.520 ! 102 1 2.930 ! 10"4

1 kilowatt hour 8.601 ! 105 3.413 ! 102 1

Pressure

Pa atm

1 pascal 1 9.869 ! 10"6

1 atmosphere 1.013 ! 105 1
1 centimeter mercurya 1.333 ! 103 1.316 ! 10"2

1 pound per square inch 6.895 ! 103 6.805 ! 10"2

1 pound per square foot 47.88 4.725 ! 10"4

cm Hg lb/in.2 lb/ft2

1 pascal 7.501 ! 10"4 1.450 ! 10"4 2.089 ! 10"2

1 atmosphere 76 14.70 2.116 ! 103

1 centimeter mercurya 1 0.194 3 27.85
1 pound per square inch 5.171 1 144
1 pound per square foot 3.591 ! 10"2 6.944 ! 10"3 1

a At 0°C and at a location where the free-fall acceleration has its “standard” value, 9.806 65 m/s2.

Common Unit in Terms of
Quantity Symbol Unita Dimensionsb Base SI Units

Acceleration a m/s2 L/T2 m/s2

Amount of substance n MOLE mol
Angle %, & radian (rad) 1
Angular acceleration ! rad/s2 T"2 s"2

Angular frequency ' rad/s T"1 s"1

Angular momentum L kg $ m2/s ML2/T kg $ m2/s
Angular velocity " rad/s T"1 s"1

Area A m2 L2 m2

Atomic number Z

Symbols, Dimensions, and Units of Physical Quantities

Table A.2

Table A.1
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Capacitance C farad (F) Q2T2/ML2 A2 $ s4/kg $ m2

Charge q, Q , e coulomb (C) Q A $ s
Charge density

Line ( C/m Q /L A $ s/m
Surface ) C/m2 Q /L2 A $ s/m2

Volume * C/m3 Q /L3 A $ s/m3

Conductivity ) 1/+ $ m Q2T/ML3 A2 $ s3/kg $ m3

Current I AMPERE Q /T A
Current density J A/m2 Q /T2 A/m2

Density * kg/m3 M/L3 kg/m3

Dielectric constant ,

Length !, L METER L m
Position x, y, z, r
Displacement -x, -r
Distance d, h

Electric dipole moment p C $ m QL A $ s $ m
Electric field E V/m ML/QT2 kg $ m/A $ s3

Electric flux .E V $ m ML3/QT2 kg $ m3/A $ s3

Electromotive force / volt (V) ML2/QT2 kg $ m2/A $ s3

Energy E, U, K joule ( J) ML2/T2 kg $ m2/s2

Entropy S J/K ML2/T2 $ K kg $ m2/s2 $ K
Force F newton (N) ML/T2 kg $ m/s2

Frequency f hertz (Hz) T"1 s"1

Heat Q joule ( J) ML2/T2 kg $ m2/s2

Inductance L henry (H) ML2/Q2 kg $ m2/A2 $ s2

Magnetic dipole moment # N $ m/T QL2/T A $ m2

Magnetic field B tesla (T) (# Wb/m2) M/QT kg/A $ s2

Magnetic flux .B weber (Wb) ML2/QT kg $ m2/A $ s2

Mass m, M KILOGRAM M kg
Molar specific heat C J/mol $ K kg $ m2/s2 $ mol $ K
Moment of inertia I kg $ m2 ML2 kg $ m2

Momentum p kg $ m/s ML/T kg $ m/s
Period T s T s
Permeability of free space 00 N/A2 (# H/m) ML/Q2T kg $ m/A2 $ s2

Permittivity of free space 10 C2/N $ m2 (# F/m) Q2T2/ML3 A2 $ s4/kg $ m3

Potential V volt (V)(# J/C) ML2/QT2 kg $ m2/A $ s3

Power " watt (W)(# J/s) ML2/T3 kg $ m2/s3

Pressure P pascal (Pa)(# N/m2) M/LT2 kg/m $ s2

Resistance R ohm (+)(# V/A) ML2/Q2T kg $ m2/A2 $ s3

Specific heat c J/kg $ K L2/T2 $ K m2/s2 $ K
Speed v m/s L/T m/s
Temperature T KELVIN K K
Time t SECOND T s
Torque 2 N $ m ML2/T2 kg $ m2/s2

Velocity v m/s L/T m/s
Volume V m3 L3 m3

Wavelength ( m L m
Work W joule ( J)(# N $ m) ML2/T2 kg $ m2/s2

a The base SI units are given in uppercase letters.
b The symbols M, L, T, and Q denote mass, length, time, and charge, respectively.

Common Unit in Terms of
Quantity Symbol Unita Dimensionsb Base SI Units

Symbols, Dimensions, and Units of Physical Quantities continued
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Mass
Number

Atomic Chemical (*Indicates Half-Life
Number Atomic Radioactive) Atomic Percent (If Radioactive)
Z Element Symbol Mass (u) A Mass (u) Abundance T1/2

0 (Neutron) n 1* 1.008 665 10.4 min
1 Hydrogen H 1.007 94 1 1.007 825 99.988 5

Deuterium D 2 2.014 102 0.011 5
Tritium T 3* 3.016 049 12.33 yr

2 Helium He 4.002 602 3 3.016 029 0.000 137
4 4.002 603 99.999 863
6* 6.018 888 0.81 s

3 Lithium Li 6.941 6 6.015 122 7.5
7 7.016 004 92.5
8* 8.022 487 0.84 s

4 Beryllium Be 9.012 182 7* 7.016 929 53.3 days
9 9.012 182 100

10* 10.013 534 1.5 ! 106 yr
5 Boron B 10.811 10 10.012 937 19.9

11 11.009 306 80.1
12* 12.014 352 0.020 2 s

6 Carbon C 12.010 7 10* 10.016 853 19.3 s
11* 11.011 434 20.4 min
12 12.000 000 98.93
13 13.003 355 1.07
14* 14.003 242 5 730 yr
15* 15.010 599 2.45 s

7 Nitrogen N 14.006 7 12* 12.018 613 0.011 0 s
13* 13.005 739 9.96 min
14 14.003 074 99.632
15 15.000 109 0.368
16* 16.006 101 7.13 s
17* 17.008 450 4.17 s

8 Oxygen O 15.999 4 14* 14.008 595 70.6 s
15* 15.003 065 122 s
16 15.994 915 99.757
17 16.999 132 0.038
18 17.999 160 0.205
19* 19.003 579 26.9 s

9 Fluorine F 18.998 403 2 17* 17.002 095 64.5 s
18* 18.000 938 109.8 min
19 18.998 403 100
20* 19.999 981 11.0 s
21* 20.999 949 4.2 s

10 Neon Ne 20.179 7 18* 18.005 697 1.67 s
19* 19.001 880 17.2 s
20 19.992 440 90.48
21 20.993 847 0.27
22 21.991 385 9.25
23* 22.994 467 37.2 s

11 Sodium Na 22.989 77 21* 20.997 655 22.5 s
22* 21.994 437 2.61 yr

Table of Atomic Massesa
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(11) Sodium 23 22.989 770 100
24* 23.990 963 14.96 h

12 Magnesium Mg 24.305 0 23* 22.994 125 11.3 s
24 23.985 042 78.99
25 24.985 837 10.00
26 25.982 593 11.01
27* 26.984 341 9.46 min

13 Aluminum Al 26.981 538 26* 25.986 892 7.4 ! 105 yr
27 26.981 539 100
28* 27.981 910 2.24 min

14 Silicon Si 28.085 5 28 27.976 926 92.229 7
29 28.976 495 4.683 2
30 29.973 770 3.087 2
31* 30.975 363 2.62 h
32* 31.974 148 172 yr

15 Phosphorus P 30.973 761 30* 29.978 314 2.50 min
31 30.973 762 100
32* 31.973 907 14.26 days
33* 32.971 725 25.3 days

16 Sulfur S 32.066 32 31.972 071 94.93
33 32.971 458 0.76
34 33.967 869 4.29
35* 34.969 032 87.5 days
36 35.967 081 0.02

17 Chlorine Cl 35.452 7 35 34.968 853 75.78
36* 35.968 307 3.0 ! 105 yr
37 36.965 903 24.22

18 Argon Ar 39.948 36 35.967 546 0.336 5
37* 36.966 776 35.04 days
38 37.962 732 0.063 2
39* 38.964 313 269 yr
40 39.962 383 99.600 3
42* 41.963 046 33 yr

19 Potassium K 39.098 3 39 38.963 707 93.258 1
40* 39.963 999 0.011 7 1.28 ! 109 yr
41 40.961 826 6.730 2

20 Calcium Ca 40.078 40 39.962 591 96.941
41* 40.962 278 1.0 ! 105 yr
42 41.958 618 0.647
43 42.958 767 0.135
44 43.955 481 2.086
46 45.953 693 0.004
48 47.952 534 0.187

21 Scandium Sc 44.955 910 41* 40.969 251 0.596 s
45 44.955 910 100

22 Titanium Ti 47.867 44* 43.959 690 49 yr
46 45.952 630 8.25

Mass
Number

Atomic Chemical (*Indicates Half-Life
Number Atomic Radioactive) Atomic Percent (If Radioactive)
Z Element Symbol Mass (u) A Mass (u) Abundance T1/2
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(22) Titanium 47 46.951 764 7.44
48 47.947 947 73.72
49 48.947 871 5.41
50 49.944 792 5.18

23 Vanadium V 50.941 5 48* 47.952 254 15.97 days
50* 49.947 163 0.250 1.5 ! 1017 yr
51 50.943 964 99.750

24 Chromium Cr 51.996 1 48* 47.954 036 21.6 h
50 49.946 050 4.345
52 51.940 512 83.789
53 52.940 654 9.501
54 53.938 885 2.365

25 Manganese Mn 54.938 049 54* 53.940 363 312.1 days
55 54.938 050 100

26 Iron Fe 55.845 54 53.939 615 5.845
55* 54.938 298 2.7 yr
56 55.934 942 91.754
57 56.935 399 2.119
58 57.933 280 0.282
60* 59.934 077 1.5 ! 106 yr

27 Cobalt Co 58.933 200 59 58.933 200 100
60* 59.933 822 5.27 yr

28 Nickel Ni 58.693 4 58 57.935 348 68.076 9
59* 58.934 351 7.5 ! 104 yr
60 59.930 790 26.223 1
61 60.931 060 1.139 9
62 61.928 349 3.634 5
63* 62.929 673 100 yr
64 63.927 970 0.925 6

29 Copper Cu 63.546 63 62.929 601 69.17
65 64.927 794 30.83

30 Zinc Zn 65.39 64 63.929 147 48.63
66 65.926 037 27.90
67 66.927 131 4.10
68 67.924 848 18.75
70 69.925 325 0.62

31 Gallium Ga 69.723 69 68.925 581 60.108
71 70.924 705 39.892

32 Germanium Ge 72.61 70 69.924 250 20.84
72 71.922 076 27.54
73 72.923 459 7.73
74 73.921 178 36.28
76 75.921 403 7.61

33 Arsenic As 74.921 60 75 74.921 596 100
34 Selenium Se 78.96 74 73.922 477 0.89

76 75.919 214 9.37
77 76.919 915 7.63

Mass
Number

Atomic Chemical (*Indicates Half-Life
Number Atomic Radioactive) Atomic Percent (If Radioactive)
Z Element Symbol Mass (u) A Mass (u) Abundance T1/2
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(34) Selenium 78 77.917 310 23.77
79* 78.918 500 3 6.5 ! 104 yr
80 79.916 522 49.61
82* 81.916 700 8.73 1.4 ! 1020 yr

35 Bromine Br 79.904 79 78.918 338 50.69
81 80.916 291 49.31

36 Krypton Kr 83.80 78 77.920 386 0.35
80 79.916 378 2.28
81* 80.916 592 2.1 ! 105 yr
82 81.913 485 11.58
83 82.914 136 11.49
84 83.911 507 57.00
85* 84.912 527 10.76 yr
86 85.910 610 17.30

37 Rubidium Rb 85.467 8 85 84.911 789 72.17
87* 86.909 184 27.83 4.75 ! 1010 yr

38 Strontium Sr 87.62 84 83.913 425 0.56
86 85.909 262 9.86
87 86.908 880 7.00
88 87.905 614 82.58
90* 89.907 738 29.1 yr

39 Yttrium Y 88.905 85 89 88.905 848 100
40 Zirconium Zr 91.224 90 89.904 704 51.45

91 90.905 645 11.22
92 91.905 040 17.15
93* 92.906 476 1.5 ! 106 yr
94 93.906 316 17.38
96 95.908 276 2.80

41 Niobium Nb 92.906 38 91* 90.906 990 6.8 ! 102 yr
92* 91.907 193 3.5 ! 107 yr
93 92.906 378 100
94* 93.907 284 2 ! 104 yr

42 Molybdenum Mo 95.94 92 91.906 810 14.84
93* 92.906 812 3.5 ! 103 yr
94 93.905 088 9.25
95 94.905 842 15.92
96 95.904 679 16.68
97 96.906 021 9.55
98 97.905 408 24.13

100 99.907 477 9.63
43 Technetium Tc 97* 96.906 365 2.6 ! 106 yr

98* 97.907 216 4.2 ! 106 yr
99* 98.906 255 2.1 ! 105 yr

44 Ruthenium Ru 101.07 96 95.907 598 5.54
98 97.905 287 1.87
99 98.905 939 12.76

100 99.904 220 12.60

Mass
Number

Atomic Chemical (*Indicates Half-Life
Number Atomic Radioactive) Atomic Percent (If Radioactive)
Z Element Symbol Mass (u) A Mass (u) Abundance T1/2
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(44) Ruthenium 101 100.905 582 17.06
102 101.904 350 31.55
104 103.905 430 18.62

45 Rhodium Rh 102.905 50 103 102.905 504 100
46 Palladium Pd 106.42 102 101.905 608 1.02

104 103.904 035 11.14
105 104.905 084 22.33
106 105.903 483 27.33
107* 106.905 128 6.5 ! 106 yr
108 107.903 894 26.46
110 109.905 152 11.72

47 Silver Ag 107.868 2 107 106.905 093 51.839
109 108.904 756 48.161

48 Cadmium Cd 112.411 106 105.906 458 1.25
108 107.904 183 0.89
109* 108.904 986 462 days
110 109.903 006 12.49
111 110.904 182 12.80
112 111.902 757 24.13
113* 112.904 401 12.22 9.3 ! 1015 yr
114 113.903 358 28.73
116 115.904 755 7.49

49 Indium In 114.818 113 112.904 061 4.29
115* 114.903 878 95.71 4.4 ! 1014 yr

50 Tin Sn 118.710 112 111.904 821 0.97
114 113.902 782 0.66
115 114.903 346 0.34
116 115.901 744 14.54
117 116.902 954 7.68
118 117.901 606 24.22
119 118.903 309 8.59
120 119.902 197 32.58
121* 120.904 237 55 yr
122 121.903 440 4.63
124 123.905 275 5.79

51 Antimony Sb 121.760 121 120.903 818 57.21
123 122.904 216 42.79
125* 124.905 248 2.7 yr

52 Tellurium Te 127.60 120 119.904 020 0.09
122 121.903 047 2.55
123* 122.904 273 0.89 1.3 ! 1013 yr
124 123.902 820 4.74
125 124.904 425 7.07
126 125.903 306 18.84
128* 127.904 461 31.74 4 8 ! 1024 yr
130* 129.906 223 34.08 3 1.25 ! 1021 yr

Mass
Number

Atomic Chemical (*Indicates Half-Life
Number Atomic Radioactive) Atomic Percent (If Radioactive)
Z Element Symbol Mass (u) A Mass (u) Abundance T1/2

Table of Atomic Massesa continued

Table A.3

continuedcontinued



Appendix A A.9

53 Iodine I 126.904 47 127 126.904 468 100
129* 128.904 988 1.6 ! 107 yr

54 Xenon Xe 131.29 124 123.905 896 0.09
126 125.904 269 0.09
128 127.903 530 1.92
129 128.904 780 26.44
130 129.903 508 4.08
131 130.905 082 21.18
132 131.904 145 26.89
134 133.905 394 10.44
136* 135.907 220 8.87 5 2.36 ! 1021 yr

55 Cesium Cs 132.905 45 133 132.905 447 100
134* 133.906 713 2.1 yr
135* 134.905 972 2 ! 106 yr
137* 136.907 074 30 yr

56 Barium Ba 137.327 130 129.906 310 0.106
132 131.905 056 0.101
133* 132.906 002 10.5 yr
134 133.904 503 2.417
135 134.905 683 6.592
136 135.904 570 7.854
137 136.905 821 11.232
138 137.905 241 71.698

57 Lanthanum La 138.905 5 137* 136.906 466 6 ! 104 yr
138* 137.907 107 0.090 1.05 ! 1011 yr
139 138.906 349 99.910

58 Cerium Ce 140.116 136 135.907 144 0.185
138 137.905 986 0.251
140 139.905 434 88.450
142* 141.909 240 11.114 4 5 ! 1016 yr

59 Praseodymium Pr 140.907 65 141 140.907 648 100
60 Neodymium Nd 144.24 142 141.907 719 27.2

143 142.909 810 12.2
144* 143.910 083 23.8 2.3 ! 1015 yr
145 144.912 569 8.3
146 145.913 112 17.2
148 147.916 888 5.7
150* 149.920 887 5.6 4 1 ! 1018 yr

61 Promethium Pm 143* 142.910 928 265 days
145* 144.912 744 17.7 yr
146* 145.914 692 5.5 yr
147* 146.915 134 2.623 yr

62 Samarium Sm 150.36 144 143.911 995 3.07
146* 145.913 037 1.0 ! 108 yr
147* 146.914 893 14.99 1.06 ! 1011 yr
148* 147.914 818 11.24 7 ! 1015 yr

Mass
Number

Atomic Chemical (*Indicates Half-Life
Number Atomic Radioactive) Atomic Percent (If Radioactive)
Z Element Symbol Mass (u) A Mass (u) Abundance T1/2
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(62) Samarium 149* 148.917 180 13.82 4 2 ! 1015 yr
150 149.917 272 7.38
151* 150.919 928 90 yr
152 151.919 728 26.75
154 153.922 205 22.75

63 Europium Eu 151.964 151 150.919 846 47.81
152* 151.921 740 13.5 yr
153 152.921 226 52.19
154* 153.922 975 8.59 yr
155* 154.922 889 4.7 yr

64 Gadolinium Gd 157.25 148* 147.918 110 75 yr
150* 149.918 656 1.8 ! 106 yr
152* 151.919 788 0.20 1.1 ! 1014 yr
154 153.920 862 2.18
155 154.922 619 14.80
156 155.922 120 20.47
157 156.923 957 15.65
158 157.924 100 24.84
160 159.927 051 21.86

65 Terbium Tb 158.925 34 159 158.925 343 100
66 Dysprosium Dy 162.50 156 155.924 278 0.06

158 157.924 405 0.10
160 159.925 194 2.34
161 160.926 930 18.91
162 161.926 795 25.51
163 162.928 728 24.90
164 163.929 171 28.18

67 Holmium Ho 164.930 32 165 164.930 320 100
166* 165.932 281 1.2 ! 103 yr

68 Erbium Er 167.6 162 161.928 775 0.14
164 163.929 197 1.61
166 165.930 290 33.61
167 166.932 045 22.93
168 167.932 368 26.78
170 169.935 460 14.93

69 Thulium Tm 168.934 21 169 168.934 211 100
171* 170.936 426 1.92 yr

70 Ytterbium Yb 173.04 168 167.933 894 0.13
170 169.934 759 3.04
171 170.936 322 14.28
172 171.936 378 21.83
173 172.938 207 16.13
174 173.938 858 31.83
176 175.942 568 12.76

71 Lutecium Lu 174.967 173* 172.938 927 1.37 yr
175 174.940 768 97.41
176* 175.942 682 2.59 3.78 ! 1010 yr

Mass
Number

Atomic Chemical (*Indicates Half-Life
Number Atomic Radioactive) Atomic Percent (If Radioactive)
Z Element Symbol Mass (u) A Mass (u) Abundance T1/2
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72 Hafnium Hf 178.49 174* 173.940 040 0.16 2.0 ! 1015 yr
176 175.941 402 5.26
177 176.943 220 18.60
178 177.943 698 27.28
179 178.945 815 13.62
180 179.946 549 35.08

73 Tantalum Ta 180.947 9 180* 179.947 466 0.012 8.152 h
181 180.947 996 99.988

74 Tungsten W 183.84 180 179.946 706 0.12
(Wolfram) 182 181.948 206 26.50

183 182.950 224 14.31
184* 183.950 933 30.64 43 ! 1017 yr
186 185.954 362 28.43

75 Rhenium Re 186.207 185 184.952 956 37.40
187* 186.955 751 62.60 4.4 ! 1010 yr

76 Osmium Os 190.23 184 183.952 491 0.02
186* 185.953 838 1.59 2.0 ! 1015 yr
187 186.955 748 1.96
188 187.955 836 13.24
189 188.958 145 16.15
190 189.958 445 26.26
192 191.961 479 40.78
194* 193.965 179 6.0 yr

77 Iridium Ir 192.217 191 190.960 591 37.3
193 192.962 924 62.7

78 Platinum Pt 195.078 190* 189.959 930 0.014 6.5 ! 1011 yr
192 191.961 035 0.782
194 193.962 664 32.967
195 194.964 774 33.832
196 195.964 935 25.242
198 197.967 876 7.163

79 Gold Au 196.966 55 197 196.966 552 100
80 Mercury Hg 200.59 196 195.965 815 0.15

198 197.966 752 9.97
199 198.968 262 16.87
200 199.968 309 23.10
201 200.970 285 13.18
202 201.970 626 29.86
204 203.973 476 6.87

81 Thallium Tl 204.383 3 203 202.972 329 29.524
204* 203.973 849 3.78 yr
205 204.974 412 70.476

(Ra E6) 206* 205.976 095 4.2 min
(Ac C6) 207* 206.977 408 4.77 min
(Th C6) 208* 207.982 005 3.053 min
(Ra C6) 210* 209.990 066 1.30 min

Mass
Number

Atomic Chemical (*Indicates Half-Life
Number Atomic Radioactive) Atomic Percent (If Radioactive)
Z Element Symbol Mass (u) A Mass (u) Abundance T1/2
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82 Lead Pb 207.2 202* 201.972 144 5 ! 104 yr
204* 203.973 029 1.4 5 1.4 ! 1017 yr
205* 204.974 467 1.5 ! 107 yr
206 205.974 449 24.1
207 206.975 881 22.1
208 207.976 636 52.4

(Ra D) 210* 209.984 173 22.3 yr
(Ac B) 211* 210.988 732 36.1 min
(Th B) 212* 211.991 888 10.64 h
(Ra B) 214* 213.999 798 26.8 min

83 Bismuth Bi 208.980 38 207* 206.978 455 32.2 yr
208* 207.979 727 3.7 ! 105 yr
209 208.980 383 100

(Ra E) 210* 209.984 105 5.01 days
(Th C) 211* 210.987 258 2.14 min

212* 211.991 272 60.6 min
(Ra C) 214* 213.998 699 19.9 min

215* 215.001 832 7.4 min
84 Polonium Po 209* 208.982 416 102 yr

(Ra F) 210* 209.982 857 138.38 days
(Ac C7) 211* 210.986 637 0.52 s
(Th C7) 212* 211.988 852 0.30 0s
(Ra C7) 214* 213.995 186 164 0s
(Ac A) 215* 214.999 415 0.001 8 s
(Th A) 216* 216.001 905 0.145 s
(Ra A) 218* 218.008 966 3.10 min

85 Astatine At 215* 214.998 641 ! 100 0s
218* 218.008 682 1.6 s
219* 219.011 297 0.9 min

86 Radon Rn
(An) 219* 219.009 475 3.96 s
(Tn) 220* 220.011 384 55.6 s
(Rn) 222* 222.017 570 3.823 days

87 Francium Fr
(Ac K) 223* 223.019 731 22 min

88 Radium Ra
(Ac X) 223* 223.018 497 11.43 days
(Th X) 224* 224.020 202 3.66 days
(Ra) 226* 226.025 403 1 600 yr
(Ms Th1) 228* 228.031 064 5.75 yr

89 Actinium Ac 227* 227.027 747 21.77 yr
(Ms Th2) 228* 228.031 015 6.15 h

90 Thorium Th 232.038 1
(Rd Ac) 227* 227.027 699 18.72 days
(Rd Th) 228* 228.028 731 1.913 yr

229* 229.031 755 7 300 yr
(Io) 230* 230.033 127 75.000 yr

Mass
Number

Atomic Chemical (*Indicates Half-Life
Number Atomic Radioactive) Atomic Percent (If Radioactive)
Z Element Symbol Mass (u) A Mass (u) Abundance T1/2

Table of Atomic Massesa continued

Table A.3

continuedcontinued
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Mass
Number

Atomic Chemical (*Indicates Half-Life
Number Atomic Radioactive) Atomic Percent (If Radioactive)
Z Element Symbol Mass (u) A Mass (u) Abundance T1/2

Table of Atomic Massesa continued

Table A.3

(90) Thorium (UY) 231* 231.036 297 25.52 h
(Th) 232* 232.038 050 100 1.40 ! 1010 yr
(UX1) 234* 234.043 596 24.1 days

91 Protactinium Pa 231.035 88 231* 231.035 879 32.760 yr
(Uz) 234* 234.043 302 6.7 h

92 Uranium U 238.028 9 232* 232.037 146 69 yr
233* 233.039 628 1.59 ! 105 yr
234* 234.040 946 0.005 5 2.45 ! 105 yr

(Ac U) 235* 235.043 923 0.720 0 7.04 ! 108 yr
236* 236.045 562 2.34 ! 107 yr

(UI) 238* 238.050 783 99.274 5 4.47 ! 109 yr
93 Neptunium Np 235* 235.044 056 396 days

236* 236.046 560 1.15 ! 105 yr
237* 237.048 167 2.14 ! 106 yr

94 Plutonium Pu 236* 236.046 048 2.87 yr
238* 238.049 553 87.7 yr
239* 239.052 156 2.412 ! 104 yr
240* 240.053 808 6 560 yr
241* 241.056 845 14.4 yr
242* 242.058 737 3.73 ! 106 yr
244* 244.064 198 8.1 ! 107 yr

a Chemical atomic masses are from T. B. Coplen, “Atomic Weights of the Elements 1999,” a technical report to the International Union of Pure and
Applied Chemistry, and published in Pure and Applied Chemistry, 73(4), 667–683, 2001. Atomic masses of the isotopes are from G. Audi and 
A. H. Wapstra, “The 1995 Update to the Atomic Mass Evaluation,” Nuclear Physics, A595, vol. 4, 409–480, December 25, 1995. Percent abundance
values are from K. J. R. Rosman and P. D. P. Taylor, “Isotopic Compositions of the Elements 1999”, a technical report to the International Union of 
Pure and Applied Chemistry, and published in Pure and Applied Chemistry, 70(1), 217–236, 1998.



A.14

These appendices in mathematics are intended as a brief review of operations and
methods. Early in this course, you should be totally familiar with basic algebraic tech-
niques, analytic geometry, and trigonometry. The appendices on differential and inte-
gral calculus are more detailed and are intended for those students who have difficulty
applying calculus concepts to physical situations.

B.1 Scientific Notation

Many quantities that scientists deal with often have very large or very small values. For
example, the speed of light is about 300 000 000 m/s, and the ink required to make
the dot over an i in this textbook has a mass of about 0.000 000 001 kg. Obviously, it is
very cumbersome to read, write, and keep track of numbers such as these. We avoid
this problem by using a method dealing with powers of the number 10:

and so on. The number of zeros corresponds to the power to which 10 is raised, called
the exponent of 10. For example, the speed of light, 300 000 000 m/s, can be ex-
pressed as 3 ! 108 m/s.

In this method, some representative numbers smaller than unity are

In these cases, the number of places the decimal point is to the left of the digit 1
equals the value of the (negative) exponent. Numbers expressed as some power of
10 multiplied by another number between 1 and 10 are said to be in scientific nota-
tion. For example, the scientific notation for 5 943 000 000 is 5.943 ! 109 and that for
0.000 083 2 is 8.32 ! 10"5.

When numbers expressed in scientific notation are being multiplied, the following
general rule is very useful:

(B.1)10n ! 10m # 10n$m

10"5 #
1

10 ! 10 ! 10 ! 10 ! 10
# 0.000 01

10"4 #
1

10 ! 10 ! 10 ! 10
# 0.000 1

10"3 #
1

10 ! 10 ! 10
# 0.001

10"2 #
1

10 ! 10
# 0.01

10"1 #
1
10

# 0.1

100 # 1

101 # 10

102 # 10 ! 10 # 100

103 # 10 ! 10 ! 10 # 1000

104 # 10 ! 10 ! 10 ! 10 # 10 000

105 # 10 ! 10 ! 10 ! 10 ! 10 # 100 000
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where n and m can be any numbers (not necessarily integers). For example, 102 ! 105 #
107. The rule also applies if one of the exponents is negative: 103 ! 10"8 # 10"5.

When dividing numbers expressed in scientific notation, note that

(B.2)

Exercises

With help from the above rules, verify the answers to the following:

1. 86 400 # 8.64 ! 104

2. 9 816 762.5 # 9.816 762 5 ! 106

3. 0.000 000 039 8 # 3.98 ! 10"8

4. (4 ! 108) (9 ! 109) # 3.6 ! 1018

5. (3 ! 107) (6 ! 10" 12) # 1.8 ! 10"4

6.

7.

B.2 Algebra

Some Basic Rules

When algebraic operations are performed, the laws of arithmetic apply. Symbols such
as x, y, and z are usually used to represent quantities that are not specified, what are
called the unknowns.

First, consider the equation

8x # 32

If we wish to solve for x, we can divide (or multiply) each side of the equation by the same
factor without destroying the equality. In this case, if we divide both sides by 8, we have

Next consider the equation

x $ 2 # 8

In this type of expression, we can add or subtract the same quantity from each side. If
we subtract 2 from each side, we obtain

In general, if x $ a # b, then x # b " a.
Now consider the equation

If we multiply each side by 5, we are left with x on the left by itself and 45 on the right:

x # 45

! x
5 "(5) # 9 ! 5

x
5

# 9

x # 6

x $ 2 " 2 # 8 " 2

x # 4

8x
8

#
32
8

(3 ! 106)(8 ! 10"2)
(2 ! 1017)(6 ! 105)

# 2 ! 10"18

75 ! 10"11

5 ! 10"3 # 1.5 ! 10"7

10n

10m # 10n ! 10"m # 10n"m
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In all cases, whatever operation is performed on the left side of the equality must also be per-
formed on the right side.

The following rules for multiplying, dividing, adding, and subtracting fractions
should be recalled, where a, b, and c are three numbers:
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Rule Example

Multiplying

Dividing

Adding
2
3

"
4
5

 #
(2)(5) " (4)(3)

(3)(5)
# "

2
15

 
a
b

%
c
d

#
ad % bc

bd

2/3
4/5

 #
(2)(5)
(4)(3)

#
10
12

 
(a/b)
(c/d)

#
ad
bc

! 2
3 "! 4

5 " #
8

15
 ! a

b "! c
d " #

ac
bd

Exercises

In the following exercises, solve for x :

Answers

1.

2.

3.

4.

Powers

When powers of a given quantity x are multiplied, the following rule applies:

(B.3)

For example, x2x4 # x2$4 # x6.
When dividing the powers of a given quantity, the rule is

(B.4)

For example, x8/x2 # x8"2 # x6.
A power that is a fraction, such as , corresponds to a root as follows:

(B.5)

For example, . (A scientific calculator is useful for such calculations.)
Finally, any quantity xn raised to the m th power is

(B.6)

Table B.1 summarizes the rules of exponents.

Exercises

Verify the following:

1. 32 ! 33 # 243

2. x5x"8 # x"3

(x 
n)m # x 

nm

41/3 # √3 4 # 1.5874

x1/n # √n x

1
3

x 
n

x 
m  # x 

n"m

x 
n

 x 
m # x 

n$m

5
2x $ 6

#
3

4x $ 8
  x # "

11
7

ax " 5 # bx $ 2  x #
7

a " b

3x " 5 # 13  x # 6

a #
1

1 $ x
 x #

1 " a
a

(x 
n)m # xnm

x 
1/n # √n x

x 
n/x 

m # x 
n"m

x 
nx 

m # x 
n$m

x 
1 # x

x 
0 # 1

Rules of Exponents

Table B.1



3. x10/x"5 # x15

4. 51/3 # 1.709 975 (Use your calculator.)

5. 601/4 # 2.783 158 (Use your calculator.)

6. (x4)3 # x12

Factoring

Some useful formulas for factoring an equation are

Quadratic Equations

The general form of a quadratic equation is

(B.7)

where x is the unknown quantity and a, b, and c are numerical factors referred to as
coefficients of the equation. This equation has two roots, given by

(B.8)

If b2 & 4ac, the roots are real.

x #
"b % √b 

2 " 4ac
2a

ax 
2 $ bx $ c # 0

a 
2 " b 

2 # (a $ b)(a " b)  differences of squares

a 
2 $ 2ab $ b 

2 # (a $ b)2  perfect square

ax $ ay $ az # a(x $ y $ z)  common factor
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Example 1

Exercises

Solve the following quadratic equations:

Answers

1.

2.

3.

Linear Equations

A linear equation has the general form

(B.9)

where m and b are constants. This equation is referred to as being linear because the
graph of y versus x is a straight line, as shown in Figure B.1. The constant b, called the
y-intercept, represents the value of y at which the straight line intersects the y axis.
The constant m is equal to the slope of the straight line. If any two points on the
straight line are specified by the coordinates (x1, y1) and (x2, y2), as in Figure B.1, then

y # mx $ b

2x 
2 " 4x " 9 # 0  x $ # 1 $ √22/2  x " # 1 " √22/2

2x 
2 " 5x $ 2 # 0  x $ # 2   x " # 1

2

x 
2 $ 2x " 3 # 0  x $ # 1   x " # "3

The equation x2 $ 5x $ 4 # 0 has the following roots corre-
sponding to the two signs of the square-root term:

x #
"5 % √52 " (4)(1)(4)

2(1)
#

"5 % √9
2

#
"5 % 3

2
where x$ refers to the root corresponding to the positive sign
and x" refers to the root corresponding to the negative sign.

"4x" #
"5 " 3

2
#"1x$ #

"5 $ 3
2

#

y

(x1, y1)

(x2, y2)

∆y

∆x(0, b)

(0, 0) x

Figure B.1



the slope of the straight line can be expressed as

(B.10)

Note that m and b can have either positive or negative values. If m ' 0, the straight
line has a positive slope, as in Figure B.1. If m ( 0, the straight line has a negative slope.
In Figure B.1, both m and b are positive. Three other possible situations are shown in
Figure B.2.

Exercises

1. Draw graphs of the following straight lines:
(a) y # 5x $ 3 (b) y # "2x $ 4 (c) y # "3x " 6

2. Find the slopes of the straight lines described in Exercise 1.

Answers (a) 5 (b) " 2 (c) " 3

3. Find the slopes of the straight lines that pass through the following sets of points:
(a) (0, "4) and (4, 2) (b) (0, 0) and (2, " 5) (c) (" 5, 2) and (4, " 2)

Answers (a) 3/2 (b) " 5/2 (c) " 4/9

Solving Simultaneous Linear Equations

Consider the equation 3x $ 5y # 15, which has two unknowns, x and y. Such an equa-
tion does not have a unique solution. For example, note that (x # 0, y # 3), (x # 5,
y # 0), and (x # 2, y # 9/5) are all solutions to this equation.

If a problem has two unknowns, a unique solution is possible only if we have two
equations. In general, if a problem has n unknowns, its solution requires n equations. In
order to solve two simultaneous equations involving two unknowns, x and y, we solve one
of the equations for x in terms of y and substitute this expression into the other equation.

Slope #
y 2 " y1

x 2 " x1
#

)y
)x
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Example 2

y
(1)

(2)

(3)

m > 0
b < 0

m < 0
b > 0

m < 0
b < 0

x

Figure B.2

Two linear equations containing two unknowns can also be solved by a graphical
method. If the straight lines corresponding to the two equations are plotted in a con-
ventional coordinate system, the intersection of the two lines represents the solution.
For example, consider the two equations

x " 2y # "1

x " y # 2

Solve the following two simultaneous equations:

Solution From Equation (2), x # y $ 2. Substitution of this
into Equation (1) gives

"1x # y $ 2 #

"3y #

6y # "18

5(y $ 2) $ y # "8

(2)   2x " 2y # 4

(1)  5x $ y # "8

Alternate Solution Multiply each term in Equation (1) by
the factor 2 and add the result to Equation (2):

"3y # x " 2 #

"1x #

12x # "12

2x " 2y # 4

10x $ 2y # "16



These are plotted in Figure B.3. The intersection of the two lines has the coordinates
x # 5, y # 3. This represents the solution to the equations. You should check this
solution by the analytical technique discussed above.

Exercises

Solve the following pairs of simultaneous equations involving two unknowns:

Answers

1. x $ y # 8 x # 5, y # 3
x " y # 2

2. 98 " T # 10a T # 65, a # 3.3
T " 49 # 5a

3. 6x $ 2y # 6 x # 2, y # " 3
8x " 4y # 28

Logarithms

Suppose that a quantity x is expressed as a power of some quantity a:

(B.11)

The number a is called the base number. The logarithm of x with respect to the base
a is equal to the exponent to which the base must be raised in order to satisfy the ex-
pression x # a y:

(B.12)

Conversely, the antilogarithm of y is the number x :

(B.13)

In practice, the two bases most often used are base 10, called the common logarithm
base, and base e # 2.718 282, called Euler’s constant or the natural logarithm base.
When common logarithms are used,

(B.14)

When natural logarithms are used,

(B.15)

For example, log10 52 # 1.716, so that antilog10 1.716 # 101.716 # 52. Likewise,
ln 52 # 3.951, so antiln 3.951 # e3.951 # 52.

In general, note that you can convert between base 10 and base e with the equality

(B.16)

Finally, some useful properties of logarithms are

ln x # (2.302 585) log10 x

y # ln x  (or x # e 
y)

y # log10  x  (or x # 10y)

x # antiloga  y

y # loga  x

x # a 
y
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5
4
3
2
1

x – 2y = –1

1 2 3 4 5 6

(5, 3)

x

x – y = 2

y

Figure B.3

any base

ln ! 1
a " # " ln a

ln e 
a # a

ln e # 1
log(an) # n  log a

log(a/b) # log a " log b
log(ab) # log a $ log b

#



B.3 Geometry

The distance d between two points having coordinates (x1, y1) and (x2, y2) is

(B.17)

Radian measure: The arc length s of a circular arc (Fig. B.4) is proportional to
the radius r for a fixed value of * (in radians):

(B.18)

Table B.2 gives the areas and volumes for several geometric shapes used throughout
this text:

s # r *

* #
s
r

d # √(x 2 " x 1)2 $ (y 2 " y 1)2
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Shape Area or Volume Shape Area or Volume

Useful Information for Geometry

Table B.2

r
θ

s

Figure B.4

y

0

b

a
x

Figure B.6

Rectangle

w

r

Circle

Triangle

h

Sphere

r

Cylinder

Rectangular box

r

! Lateral surface
area = 2  r!

Volume =   r 2!

Surface area = 4  r 2

Surface area =
2(!h + !w + hw)
Volume = !whw

h

Area =  r 2

(Circumference = 2  r)

Area = !w

b !

!

Area =   bh1
2

Volume = 4  r3

3

π
π

π
π

π
π

b

0

y

m = slope

x

Figure B.5

The equation of a straight line (Fig. B.5) is

(B.19)

where b is the y intercept and m is the slope of the line.
The equation of a circle of radius R centered at the origin is

(B.20)

The equation of an ellipse having the origin at its center (Fig. B.6) is

(B.21)
x 

2

a 
2 $

y 
2

b 
2 # 1

x 
2 $ y 

2 # R 
2

y # mx $ b



where a is the length of the semimajor axis (the longer one) and b is the length of the
semiminor axis (the shorter one).

The equation of a parabola the vertex of which is at y # b (Fig. B.7) is

(B.22)

The equation of a rectangular hyperbola (Fig. B.8) is

(B.23)

B.4 Trigonometry

That portion of mathematics based on the special properties of the right triangle is
called trigonometry. By definition, a right triangle is one containing a 90° angle. Con-
sider the right triangle shown in Figure B.9, where side a is opposite the angle *, side b
is adjacent to the angle *, and side c is the hypotenuse of the triangle. The three basic
trigonometric functions defined by such a triangle are the sine (sin), cosine (cos), and
tangent (tan) functions. In terms of the angle *, these functions are defined by

(B.24)

(B.25)

(B.26)

The Pythagorean theorem provides the following relationship among the sides of a
right triangle:

(B.27)

From the above definitions and the Pythagorean theorem, it follows that

The cosecant, secant, and cotangent functions are defined by

The relationships below follow directly from the right triangle shown in Figure B.9:

Some properties of trigonometric functions are

tan ("*) # " tan *

cos ("*) # cos *

sin ("*) # "sin *

cot * # tan(90+ " *)

cos * # sin(90+ " *)

sin * # cos(90+ " *)

csc * $ 
1

sin *
  sec * $ 

1
cos *

  cot * $ 
1

tan *

tan * #
sin *
cos *

sin2 * $ cos2 * # 1

c 
2 # a 

2 $ b 
2

xy # constant

y # ax 
2 $ b
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y

b

0
x

Figure B.7

0

y

x

Figure B.8

a = opposite side
b = adjacent side
c = hypotenuse

90°–θc
a

b

90°
θ

θ

Figure B.9

tan * $ 
side opposite *

side adjacent to *
#

a
b

cos * $ 
side adjacent to *

hypotenuse
#

b
c

sin * $ 
side opposite *

hypotenuse
#

a
c



The following relationships apply to any triangle, as shown in Figure B.10:

Table B.3 lists a number of useful trigonometric identities.

a
sin ,

#
b

sin -
#

c
sin .

Law of sines

c 
2 # a 

2 $ b 
2 " 2ab cos .

Law of cosines  b 
2 # a 

2 $ c 
2 " 2ac cos -

a 
2 # b 

2 $ c 
2 " 2bc cos ,

, $ - $ . # 180+
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cos A " cos B # 2 sin[1
2(A $ B)]sin[1

2(B " A)]
cos A $ cos B # 2 cos[1

2(A $ B)]cos[1
2(A " B)]

sin A % sin B # 2 sin[1
2(A % B)]cos[1

2(A / B)]
cos(A % B) # cos A cos B / sin A sin B
sin(A % B) # sin A cos B % cos A sin B

tan 
*

2
# √ 1 " cos *

1 $ cos *
tan 2* #

2 tan *
1 " tan2 *

1 " cos * # 2 sin2
  

*

2
cos 2* # cos2 * " sin2 *

cos2
  

*

2
# 1

2(1 $ cos *)sin 2* # 2 sin * cos *

sin2
  

*

2
# 1

2(1 " cos *)sec2 * # 1 $ tan2 *

csc2 * # 1 $ cot2 *sin2 * $ cos2 * # 1

Some Trigonometric Identities

Table B.3

Example 3

a b

c

β α

γ

Figure B.10

5

4

3

θ

φ

Figure B.12

Exercises

1. In Figure B.12, identify (a) the side opposite * (b) the side adjacent to 0. Then
find (c) cos * (d) sin 0 (e) tan 0.

Answers (a) 3 (b) 3 (c) (d) (e) 

2. In a certain right triangle, the two sides that are perpendicular to each other are
5 m and 7 m long. What is the length of the third side?

Answer 8.60 m

4
3

4
5

4
5

Consider the right triangle in Figure B.11, in which a # 2,
b # 5, and c is unknown. From the Pythagorean theorem, we
have

To find the angle *, note that

From a table of functions or from a calculator, we have

tan * #
a
b

#
2
5

# 0.400

5.39c # √29 #

c 
2 # a 

2 $ b 
2 # 22 $ 52 # 4 $ 25 # 29

where tan"1 (0.400) is the notation for “angle whose tan-
gent is 0.400,” sometimes written as arctan (0.400).

21.8+* # tan"1(0.400) #

a = 2
c

θ
b = 5

Figure B.11 (Example 3).



3. A right triangle has a hypotenuse of length 3 m, and one of its angles is 30°. What
is the length of (a) the side opposite the 30° angle (b) the side adjacent to the 30°
angle?

Answers (a) 1.5 m (b) 2.60 m

B.5 Series Expansions

For x (( 1, the following approximations can be used1:

B.6 Differential Calculus

In various branches of science, it is sometimes necessary to use the basic tools of calcu-
lus, invented by Newton, to describe physical phenomena. The use of calculus is funda-
mental in the treatment of various problems in Newtonian mechanics, electricity, and
magnetism. In this section, we simply state some basic properties and “rules of thumb”
that should be a useful review to the student.

First, a function must be specified that relates one variable to another (such as a co-
ordinate as a function of time). Suppose one of the variables is called y (the dependent
variable), the other x (the independent variable). We might have a function relation-
ship such as

If a, b, c, and d are specified constants, then y can be calculated for any value of x. We usu-
ally deal with continuous functions, that is, those for which y varies “smoothly” with x.

The derivative of y with respect to x is defined as the limit, as )x approaches zero,
of the slopes of chords drawn between two points on the y versus x curve. Mathemati-
cally, we write this definition as

(B.28)

where )y and )x are defined as )x # x2 " x1 and )y # y2 " y1 (Fig. B.13). It is impor-
tant to note that dy/dx does not mean dy divided by dx, but is simply a notation of the
limiting process of the derivative as defined by Equation B.28.

dy
dx

# lim
)x : 0

  
)y
)x

# lim
)x : 0

  
y(x $ )x) " y(x)

)x

y(x) # ax 
3 $ bx 

2 $ cx $ d

ln(1 % x) % %x  tan x % x

e 
x % 1 $ x  cos x % 1

(1 $ x)n % 1 $ nx  sin x % x

tan x # x $
x 

3

3
$

2x 
5

15
$ 1 1 1  & x & ( 2/2

cos x # 1 "
x 

2

2!
$

x 
4

4!
" 1 1 1

sin x # x "
x 

3

3!
$

x 
5

5!
" 1 1 1

ln(1 % x) # %x "  12x 
2 %  13x 

3 " 1 1 1

ex # 1 $ x $
x 

2

2!
$

x 
3

3!
$ 1 1 1

(1 $ x)n # 1 $ nx $
n(n " 1)

2!
 x 

2 $ 1 1 1

(a $ b)n # an $
n
1!

 an"1b $
n(n " 1)

2!
 an"2b 

2 $ 1 1 1
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1 The approximations for the functions sin x, cos x, and tan x are for x 3 0.1 rad.

x in radians

y

y2

y1

x1 x2
x

∆x

∆y

Figure B.13

#



A useful expression to remember when y(x) # axn, where a is a constant and n is
any positive or negative number (integer or fraction), is

(B.29)

If y(x) is a polynomial or algebraic function of x, we apply Equation B.29 to each
term in the polynomial and take d[constant]/dx # 0. In Examples 4 through 7, we
evaluate the derivatives of several functions.

Special Properties of the Derivative

A. Derivative of the product of two functions If a function f(x) is given by
the product of two functions, say, g(x) and h(x), then the derivative of f(x) is
defined as

(B.30)

B. Derivative of the sum of two functions If a function f(x) is equal to the sum
of two functions, then the derivative of the sum is equal to the sum of the
derivatives:

(B.31)

C. Chain rule of differential calculus If y # f(x) and x # g(z), then dy/dz can be
written as the product of two derivatives:

(B.32)

D. The second derivative The second derivative of y with respect to x is defined as the
derivative of the function dy/dx (the derivative of the derivative). It is usually written

(B.33)
d 

2y
dx 

2 #
d
dx

  ! dy
dx "

dy
dz

#
dy
dx

  
dx
dz

d
dx

  f (x) #
d
dx

 [g (x) $ h(x)] #   
dg
dx

$
dh
dx

d
dx

  f (x) #
d
dx

 [g (x)h(x)] # g   
dh
dx

$ h  
dg
dx

dy
dx

# nax 
n"1
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Example 4

Substituting this into Equation B.28 gives

3ax 
2 $ b

dy
dx

#

dy
dx

# lim
)x : 0

 
)y
)x

# lim
)x : 0

[3ax 
2 $ 3x )x $ )x 

2] $ b

Example 5

Suppose y(x) (that is, y as a function of x) is given by

where a and b are constants. Then it follows that

so

)y # y(x $ )x) " y(x) # a(3x 
2

 )x $ 3x  )x 
2 $ )x 

3) $ b )x

y(x $ )x) # a(x 
3 $ 3x 

2
 )x $ 3x  )x 

2 $ ∆x 
3) $ b(x $ )x) $ c

y(x $ )x) # a(x $ )x)3 $ b(x $ ∆x) $ c

y(x) # ax 
3 $ bx $ c

Find the derivative of

Solution Applying Equation B.29 to each term indepen-
dently, and remembering that d/dx (constant) # 0, we have

y(x) # 8x 
5 $ 4x 

3 $ 2x $ 7

40x 
4 $ 12x 

2 $ 2
dy
dx

#

dy
dx

# 8(5)x4 $ 4(3)x 
2 $ 2(1)x 

0 $ 0



Some of the more commonly used derivatives of functions are listed in Table B.4.

B.7 Integral Calculus

We think of integration as the inverse of differentiation. As an example, consider the
expression

(B.34)

which was the result of differentiating the function

in Example 4. We can write Equation B.34 as dy # f(x) dx # (3ax2 $ b) dx and obtain
y(x) by “summing” over all values of x. Mathematically, we write this inverse operation

For the function f(x) given by Equation B.34, we have

where c is a constant of the integration. This type of integral is called an indefinite inte-
gral because its value depends on the choice of c.

A general indefinite integral I(x) is defined as

(B.35)

where f(x) is called the integrand and 
For a general continuous function f(x), the integral can be described as the area un-

der the curve bounded by f(x) and the x axis, between two specified values of x, say, x1
and x2, as in Figure B.14.

The area of the blue element is approximately . If we sum all these area el-
ements from x1 and x2 and take the limit of this sum as , we obtain the true)xi : 0

f (xi) )xi

f (x) # dI(x)/dx.

I(x) # ' f (x) dx

y(x) # ' (3ax 
2 $ b) dx # ax 

3 $ bx $ c

y(x) # ' f (x) dx

y(x) # ax 
3 $ bx $ c

f (x) #
dy
dx

# 3ax 
2 $ b
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Example 6

Find the derivative of y(x) # x3/(x $ 1)2 with respect to x.

Solution We can rewrite this function as y(x) # x3(x $ 1)"2

and apply Equation B.30:

dy
dx

# (x $ 1)"2
  

d
dx

 (x 
3) $ x 

3
  

d
dx

 (x $ 1)"2

3x2

(x $ 1)2 "
2x3

(x $ 1)3
dy
dx

#

 # (x $ 1)"2 3x 
2 $ x 

3("2)(x $ 1)"3

Example 7

A useful formula that follows from Equation B.30 is the de-
rivative of the quotient of two functions. Show that

Solution We can write the quotient as gh"1 and then apply
Equations B.29 and B.30:

d
dx

 ( g (x)
h(x) ) #

h 
dg
dx

" g 
dh
dx

h2

 #
h 

dg
dx

" g 
dh
dx

h2

 # "gh"2
  
dh
dx

$ h"1
  

dg
dx

d
dx

 ! g
h " #

d
dx

 ( gh"1) # g   
d
dx

 (h"1) $ h"1
 

d
dx

 (g)

d
dx

 (ln ax) #
1
x

d
dx

 (csc x) # "cot x csc x

d
dx

 (sec x) # tan x sec x

d
dx

 (cot ax) # "a csc2dx

d
dx

 (tan ax) # a sec2 ax

d
dx

 (cos ax) # "a sin ax

d
dx

 (sin ax) # a cos ax

d
dx

 (e 
ax) # ae 

ax

d
dx

 (axn) # naxn" 1

d
dx

 (a) # 0

Derivative for Several
Functions

Table B.4

Note : The symbols a and n
represent constants.



area under the curve bounded by f(x) and x, between the limits x1 and x2:

(B.36)

Integrals of the type defined by Equation B.36 are called definite integrals.
One common integral that arises in practical situations has the form

(B.37)

This result is obvious, being that differentiation of the right-hand side with respect to x
gives f(x) # xn directly. If the limits of the integration are known, this integral becomes
a definite integral and is written

(B.38)

Examples

1.

2.

3.

Partial Integration

Sometimes it is useful to apply the method of partial integration (also called “integrating
by parts”) to evaluate certain integrals. The method uses the property that

(B.39)

where u and v are carefully chosen so as to reduce a complex integral to a simpler one.
In many cases, several reductions have to be made. Consider the function

This can be evaluated by integrating by parts twice. First, if we choose u # x2, v # ex,
we obtain

Now, in the second term, choose u # x, v # ex, which gives

' x 
2e 

x  dx # ' x 
2  d(e 

x) # x 
2e 

x " 2' e 
xx  dx $ c1

I(x) # ' x 
2e 

x dx

' u  dv # uv " ' v  du

'5

3
 x  dx #

x 
2

2 )5

3
#

52 " 32

2
# 8

'b

0
 x 

3/2 dx #
x 

5/2

5/2 )b

0
# 2

5b 
5/2

'a

0
 x 

2 dx #
x 

3

3 )a

0
#

a 
3

3

'x 2

x1

 xn dx #
x 

n$1

n $ 1 &x 2

x1

#
x 2

n$1 " x 1
n$1

n $ 1
  (n 4 "1)

' x 
n dx #

xn$1

n $ 1
$ c  (n 4 "1)

Area # lim
)x : 0

 *
i

  f (xi) )xi # 'x 2

x1

  f (x) dx
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∆xi

x2

f(xi)

f(x)

x1

Figure B.14



or

The Perfect Differential

Another useful method to remember is the use of the perfect differential, in which we look
for a change of variable such that the differential of the function is the differential of the
independent variable appearing in the integrand. For example, consider the integral

This becomes easy to evaluate if we rewrite the differential as d(cos x) # "sin x dx.
The integral then becomes

If we now change variables, letting y # cos x, we obtain

Table B.5 lists some useful indefinite integrals. Table B.6 gives Gauss’s probability
integral and other definite integrals. A more complete list can be found in various
handbooks, such as The Handbook of Chemistry and Physics, CRC Press.

' cos2 x  sin  x  dx # "' y 
2dy # "

y 
3

3
$ c # "

cos3 x
3

$ c

' cos2 x  sin  x  dx # " ' cos2 x d(cos x)

I(x ) # ' cos2 x  sin x  dx

' x 
2e 

x dx # x 
2e 

x " 2xe 
x $ 2e 

x $ c 2

' x 
2e 

x  dx # x 
2 e 

x " 2x e 
x $ 2' e 

x
 dx $ c 1
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'  ln ax dx # (x ln ax) " x' x dx
a 

2 % x 
2 # % 

1
2 ln(a 

2 % x 
2)

' eax dx #
1
a

 eax' 
dx

x 2 " a2 #
1
2a

 ln 
x " a
x $ a

  (x 
2 " a 2 ' 0)

' x(√x 
2 % a2) dx # 1

3(x 
2 % a 

2)3/2'  
dx

a 2 " x 
2 #

1
2a

 ln 
a $ x
a " x

  (a2 " x 2 ' 0)

'  √x 
2 % a 

2
 dx # 1

2[x √x 
2 % a 

2 % a 
2 

 ln(x $ √x 
2 % a 

2)]' dx
a 

2 $ x 
2 #

1
a

 tan"1 
x
a

' x √a2 " x2
 dx # "1

3(a 2 " x2)3/2' 
dx

(a $ bx)2 # "
1

b(a $ bx)

'√a2 " x2 dx # 1
2 !x √a 2 " x2 $ a 2 sin"1 x

a "' 
dx

x(x $ a)
# "

1
a

 ln 
x $ a

x

'  
x dx

√x2 % a2
# √x2 % a2' 

xdx
a $ bx

#
x
b

"
a
b2  ln(a $ bx)

' 
x dx

√a2 " x 
2

# "√a2 " x 
2' 

dx
a $ bx

#
1
b

 ln(a $ bx)

' 
dx

√x2 % a2
# ln(x $ √x 

2 % a 
2)' 

dx
x

# 'x"1dx # ln x

' 
dx

√a 
2 " x 

2
# sin"1 

x
a

# "cos"1 
x
a
  (a 2 " x 

2 ' 0)' xn dx #
xn$1

n $ 1
  (provided n 4 "1)

Some Indefinite Integrals (An arbitrary constant should be added to each of these integrals.)

Table B.5

continued
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(Gauss’s probability integral)

I2n$ 1 # (" 1)n 
dn

dan  I1

I2n # (" 1)n 
dn

dan  I0

.
.

.

I 5 # '5

0
 x 

5e"ax 
2 dx #

d 
2I 1

da 
2 #

1
a 3

I4 # '5

0
 x4e"ax 

2 dx #
d 

2I 0

da2 #
3
8

 √ 2

a5

I3 # '5

0
 x3e"ax 

2 dx # "
dI1

da
#

1
2a 2

I2 # '5

0
 x2 e"ax 

2 dx # "
dI0

da
#

1
4

  √ 2

a3

I1 # '5

0
 xe"ax 

2  dx #
1

2a

I0 # '5

0
 e"ax 

2 dx #
1
2

  √ 2

a

'5

0
 xn e"ax  dx #

n!
an$1

Gauss’s Probability Integral and Other Definite Integrals

Table B.6

' x dx

(x2 $ a2)3/2
# "

1

√x2 $ a2'sin2 ax dx #
x
2

"
sin 2ax

4a

'  
dx

(x2 $ a2)3/2
#

x

a2√x2 $ a2' csc ax dx #
1
a

 ln(csc ax " cot ax) #
1
a

 ln !tan 
ax
2 "

' cos"1 ax dx # x(cos"1 ax) "
√1 " a 

2x 
2

a' sec ax dx #
1
a

 ln(sec ax $ tan ax) #
1
a

 ln (tan ! ax
2

$
2

4 " )
'  sin"1 ax dx # x(sin"1 ax) $

√1 " a 
2 x 

2

a' cot ax dx #
1
a

 ln(sin ax)

' cot2 ax dx # "
1
a

 (cot ax) " x' tan ax dx # "
1
a

 ln(cos ax) #
1
a

 ln(sec ax)

' tan2 ax dx #
1
a

 (tan ax) " x' cos ax dx #
1
a

 sin ax

' 
dx

cos2 ax
#

1
a

 tan ax' sin ax dx # "
1
a

 cos ax

' 
dx

sin2 ax
# "

1
a

 cot ax'  
dx

a $ becx #
x
a

"
1
ac

 ln(a $ becx)

' cos2 ax dx #
x
2

$
sin 2ax

4a' xeax dx #
e ax

a2
 (ax " 1)

Some Indefinite Integrals (An arbitrary constant should be added to each of these integrals.) continued

Table B.5

B.8 Propagation of Uncertainty

In laboratory experiments, a common activity is to take measurements that act as raw
data. These measurements are of several types— length, time interval, temperature,
voltage, etc.—and are taken by a variety of instruments. Regardless of the measure-



ment and the quality of the instrumentation, there is always uncertainty associated
with a physical measurement. This uncertainty is a combination of that associated
with the instrument and that related to the system being measured. An example of the
former is the inability to exactly determine the position of a length measurement be-
tween the lines on a meter stick. An example of uncertainty related to the system being
measured is the variation of temperature within a sample of water so that a single tem-
perature for the sample is difficult to determine.

Uncertainties can be expressed in two ways. Absolute uncertainty refers to an un-
certainty expressed in the same units as the measurement. Thus, a length might be ex-
pressed as (5.5 % 0.1) cm, as was the length of the computer disk label in Section 1.7.
The uncertainty of % 0.1 cm by itself is not descriptive enough for some purposes,
however. This is a large uncertainty if the measurement is 1.0 cm, but it is a small un-
certainty if the measurement is 100 m. To give a more descriptive account of the uncer-
tainty, fractional uncertainty or percent uncertainty is used. In this type of descrip-
tion, the uncertainty is divided by the actual measurement. Thus, the length of the
computer disk label could be expressed as

or as

When combining measurements in a calculation, the uncertainty in the final result
is larger than the uncertainty in the individual measurements. This is called propaga-
tion of uncertainty and is one of the challenges of experimental physics. As a calcula-
tion becomes more complicated, there is increased propagation of uncertainty and the
uncertainty in the value of the final result can grow to be quite large.

There are simple rules that can provide a reasonable estimate of the uncertainty in
a calculated result:

Multiplication and division: When measurements with uncertainties are multiplied
or divided, add the percent uncertainties to obtain the percent uncertainty in the result.

Example: The Area of a Rectangular Plate

Addition and subtraction: When measurements with uncertainties are added or
subtracted, add the absolute uncertainties to obtain the absolute uncertainty in the
result.

Example: A Change in Temperature

Powers: If a measurement is taken to a power, the percent uncertainty is multi-
plied by that power to obtain the percent uncertainty in the result.

Example: The Volume of a Sphere

Notice that uncertainties in a calculation always add. As a result, an experiment involv-
ing a subtraction should be avoided if possible. This is especially true if the measure-
ments being subtracted are close together. The result of such a calculation is a small
difference in the measurements and uncertainties that add together. It is possible that
the uncertainty in the result could be larger than the result itself !

 # (998 % 60) cm3
V # 4

32r  
3 # 4

32(6.20 cm % 2.0%)3 # 998 cm3 % 6.0%

 # 71.6+C % 4.2%

∆T # T2 " T1 # (99.2 % 1.5)+C " (27.6 % 1.5)+C # (71.6 % 3.0)+C

 # (35 % 1) cm2

A # !w # (5.5 cm % 1.8%) ! (6.4 cm % 1.6%) # 35 cm2 % 3.4%

! # 5.5 cm % 1.8%  (percent uncertainty)

! # 5.5 cm %
0.1 cm
5.5 cm

# 5.5 cm % 0.018  (fractional uncertainty)

S E C T I O N  B . 8   •   Propogation of Uncertainty A.29



Appendix C  •  Periodic Table of the Elements

*Lanthanide series

**Actinide series

Atomic numberSymbol

Electron configuration

20Ca
Atomic mass †

58

90

57

89

3

11

19

37

55

87

20

38

56

88

21

39

57-71*

89-103**

22

40

72

104

23

41

73

105

24

42

74

106

25

43

75

107

26

44

76

108

27

45

77

109

4

12

59 60 61 62

94939291

1

Li

Na

K

Rb

Cs

Fr

Ca

Sr

Ba

Ra

Sc

Y

Ti

Zr

Hf

Rf

V

Nb

Ta

Db

Cr

Mo

W

Sg

Mn

Tc

Re

Bh

Fe

Ru

Os

Hs

Co

Rh

Ir

Mt

Be

Mg

Ce Pr Nd Pm Sm

PuNpUPaTh

H

La

Ac

4s2

5f 66d 07s25f 46d 17s25f 36d17s25f 26d17s26d 27s26d17s2

4f 66s24f 56s24f 46s24f 36s25d14f 16s25d16s2

6d 37s26d 27s27s27s1

5d 76s25d 66s25d 56s25d 46s25d 36s25d 26s26s26s1

4d 85s14d 75s14d 55s24d 55s14d 45s14d 25s24d15s25s25s1

3d 74s23d 64s23d 54s23d 54s13d 34s23d 24s23d14s24s24s1

3s23s1

2s22s1

1s

(261) (262) (266) (264) (269) (268)

6.941 9.0122

1.007 9

22.990

39.098

85.468

132.91

(223)

40.078

87.62

137.33

(226)

44.956

88.906

47.867

91.224

178.49

50.942

92.906

180.95

51.996

95.94

183.84

54.938

(98)

186.21

55.845

101.07

190.23

58.933

102.91

192.2

24.305

140.12 140.91 144.24 (145) 150.36

(244)(237)238.03231.04232.04

40.078

138.91

(227)

Group
I

Group
II Transition elements
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1.007 9

26.982 28.086 30.974 32.066 35.453 39.948

58.693

106.42

195.08

63.546

107.87

196.97

65.39

112.41

200.59

114.82

204.38

118.71

207.2

121.76

208.98

127.60

(209)

126.90

(210)

131.29

(222)

162.50 164.93 167.26 168.93 173.04

(259)(258)(257)(252)(251)

158.93

(247)

157.25

(247)

151.96

(243)

69.723 72.61 74.922 78.96 79.904 83.80

10.811 12.011 14.007 15.999 18.998 20.180

4.002 6

174.97

(262)

1

13 14 15 16 17 18

28

46

78

29

47

79
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48

80

49

81 82 83

52

84

53

85

54

86

66  67 68 69 70

1021011009998

65

97

64

96

63

95

31 33 34 35 36

5 6 7 8 9 10

2

50 51

32

71

103

In

Ga

H

Al Si P S Cl Ar

Ni

Pd

Pt

Cu

Ag

Au

Zn

Cd

Hg Tl Pb Bi

Te

Po

I

At

Xe

Rn

Dy Ho Er Tm Yb

NoMdFmEsCf

Tb

Bk

Gd

Cm

Eu

Am

As Se Br Kr

B C N O F Ne

He

Sn Sb

Ge

Lu

Lr

Group
III

Group
IV

Group
V

Group
VI

Group
VII

Group
0

6d17s26d 07s25f 136d 07s25f 126d 07s25f 106d 07s25f 86d17s25f 76d17s25f 76d 07s2

5d14f 146s24f 146s24f 136s24f 126s24f 116s24f 106s25d14f 86s25d 14f 76s24f 76s2

6p66p56p46p36p26p15d106s25d106s15d 96s1

5p65p55p45p35p25p14d105s24d105s14d10

4p64p54p44p34p24p13d104s23d104s13d 84s2

3p63p53p43p33p23p1

2p62p52p42p32p22p1

1s21s1

5f 116d 07s2

(271) (272) (285)

110†† 111†† 112††

(289)
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SI Base Unit

Base Quantity Name Symbol

Length Meter m
Mass Kilogram kg
Time Second s
Electric current Ampere A
Temperature Kelvin K
Amount of substance Mole mol
Luminous intensity Candela cd

SI Units

Table D.1

Appendix D  •  SI Units

Expression in Expression in
Terms of Base Terms of Other

Quantity Name Symbol Units SI Units

Plane angle radian rad m/m
Frequency hertz Hz s!1

Force newton N kg " m/s2 J/m
Pressure pascal Pa kg/m " s2 N/m2

Energy; work joule J kg " m2/s2 N " m
Power watt W kg " m2/s3 J/s
Electric charge coulomb C A " s
Electric potential volt V kg " m2/A " s3 W/A
Capacitance farad F A2 " s4/kg " m2 C/V
Electric resistance ohm # kg " m2/A2 " s3 V/A
Magnetic flux weber Wb kg " m2/A " s2 V " s
Magnetic field tesla T kg/A " s2

Inductance henry H kg " m2/A2 " s2 T " m2/A

Some Derived SI Units

Table D.2

A.32



All Nobel Prizes in physics are listed (and marked with a P), as well as relevant Nobel
Prizes in Chemistry (C). The key dates for some of the scientific work are supplied;
they often antedate the prize considerably.

1901 (P) Wilhelm Roentgen for discovering x-rays (1895).
1902 (P) Hendrik A. Lorentz for predicting the Zeeman effect and Pieter Zeeman for

discovering the Zeeman effect, the splitting of spectral lines in magnetic fields.
1903 (P) Antoine-Henri Becquerel for discovering radioactivity (1896) and Pierre and

Marie Curie for studying radioactivity.
1904 (P) Lord Rayleigh for studying the density of gases and discovering argon.

(C) William Ramsay for discovering the inert gas elements helium, neon,
xenon, and krypton, and placing them in the periodic table.

1905 (P) Philipp Lenard for studying cathode rays, electrons (1898–1899).
1906 (P) J. J. Thomson for studying electrical discharge through gases and discover-

ing the electron (1897).
1907 (P) Albert A. Michelson for inventing optical instruments and measuring the

speed of light (1880s).
1908 (P) Gabriel Lippmann for making the first color photographic plate, using inter-

ference methods (1891).
(C) Ernest Rutherford for discovering that atoms can be broken apart by alpha
rays and for studying radioactivity.

1909 (P) Guglielmo Marconi and Carl Ferdinand Braun for developing wireless telegraphy.
1910 (P) Johannes D. van der Waals for studying the equation of state for gases and

liquids (1881).
1911 (P) Wilhelm Wien for discovering Wien’s law giving the peak of a blackbody

spectrum (1893).
(C) Marie Curie for discovering radium and polonium (1898) and isolating
radium.

1912 (P) Nils Dalén for inventing automatic gas regulators for lighthouses.
1913 (P) Heike Kamerlingh Onnes for the discovery of superconductivity and liquefy-

ing helium (1908).
1914 (P) Max T. F. von Laue for studying x-rays from their diffraction by crystals,

showing that x-rays are electromagnetic waves (1912).
(C) Theodore W. Richards for determining the atomic weights of sixty elements,
indicating the existence of isotopes.

1915 (P) William Henry Bragg and William Lawrence Bragg, his son, for studying the
diffraction of x-rays in crystals.

1917 (P) Charles Barkla for studying atoms by x-ray scattering (1906).
1918 (P) Max Planck for discovering energy quanta (1900).
1919 (P) Johannes Stark, for discovering the Stark effect, the splitting of spectral lines

in electric fields (1913).
1920 (P) Charles-Édouard Guillaume for discovering invar, a nickel–steel alloy with low

coefficient of expansion.
(C) Walther Nernst for studying heat changes in chemical reactions and formu-
lating the third law of thermodynamics (1918).

1921 (P) Albert Einstein for explaining the photoelectric effect and for his services to
theoretical physics (1905).
(C) Frederick Soddy for studying the chemistry of radioactive substances and
discovering isotopes (1912).

Appendix E  •  Nobel Prizes
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1922 (P) Niels Bohr for his model of the atom and its radiation (1913).
(C) Francis W. Aston for using the mass spectrograph to study atomic weights,
thus discovering 212 of the 287 naturally occurring isotopes.

1923 (P) Robert A. Millikan for measuring the charge on an electron (1911) and for
studying the photoelectric effect experimentally (1914).

1924 (P) Karl M. G. Siegbahn for his work in x-ray spectroscopy.
1925 (P) James Franck and Gustav Hertz for discovering the Franck–Hertz effect in

electron–atom collisions.
1926 (P) Jean-Baptiste Perrin for studying Brownian motion to validate the discontinu-

ous structure of matter and measure the size of atoms.
1927 (P) Arthur Holly Compton for discovering the Compton effect on x-rays, their

change in wavelength when they collide with matter (1922), and Charles T. R.
Wilson for inventing the cloud chamber, used to study charged particles (1906).

1928 (P) Owen W. Richardson for studying the thermionic effect and electrons emit-
ted by hot metals (1911).

1929 (P) Louis Victor de Broglie for discovering the wave nature of electrons (1923).
1930 (P) Chandrasekhara Venkata Raman for studying Raman scattering, the scatter-

ing of light by atoms and molecules with a change in wavelength (1928).
1932 (P) Werner Heisenberg for creating quantum mechanics (1925).
1933 (P) Erwin Schrödinger and Paul A. M. Dirac for developing wave mechanics

(1925) and relativistic quantum mechanics (1927).
(C) Harold Urey for discovering heavy hydrogen, deuterium (1931).

1935 (P) James Chadwick for discovering the neutron (1932).
(C) Irène and Frédéric Joliot-Curie for synthesizing new radioactive elements.

1936 (P) Carl D. Anderson for discovering the positron in particular and antimatter
in general (1932) and Victor F. Hess for discovering cosmic rays.
(C) Peter J. W. Debye for studying dipole moments and diffraction of x-rays and
electrons in gases.

1937 (P) Clinton Davisson and George Thomson for discovering the diffraction of elec-
trons by crystals, confirming de Broglie’s hypothesis (1927).

1938 (P) Enrico Fermi for producing the transuranic radioactive elements by neutron
irradiation (1934–1937).

1939 (P) Ernest O. Lawrence for inventing the cyclotron.
1943 (P) Otto Stern for developing molecular-beam studies (1923) and using them to

discover the magnetic moment of the proton (1933).
1944 (P) Isidor I. Rabi for discovering nuclear magnetic resonance in atomic and

molecular beams.
(C) Otto Hahn for discovering nuclear fission (1938).

1945 (P) Wolfgang Pauli for discovering the exclusion principle (1924).
1946 (P) Percy W. Bridgman for studying physics at high pressures.
1947 (P) Edward V. Appleton for studying the ionosphere.
1948 (P) Patrick M. S. Blackett for studying nuclear physics with cloud-chamber pho-

tographs of cosmic-ray interactions.
1949 (P) Hideki Yukawa for predicting the existence of mesons (1935).
1950 (P) Cecil F. Powell for developing the method of studying cosmic rays with pho-

tographic emulsions and discovering new mesons.
1951 (P) John D. Cockcroft and Ernest T. S. Walton for transmuting nuclei in an acceler-

ator (1932).
(C) Edwin M. McMillan for producing neptunium (1940) and Glenn T. Seaborg
for producing plutonium (1941) and further transuranic elements.

1952 (P) Felix Bloch and Edward Mills Purcell for discovering nuclear magnetic reso-
nance in liquids and gases (1946).

1953 (P) Frits Zernike for inventing the phase-contrast microscope, which uses inter-
ference to provide high contrast.

1954 (P) Max Born for interpreting the wave function as a probability (1926) and
other quantum-mechanical discoveries and Walther Bothe for developing the co-
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incidence method to study subatomic particles (1930–1931), producing, in
particular, the particle interpreted by Chadwick as the neutron.

1955 (P) Willis E. Lamb, Jr., for discovering the Lamb shift in the hydrogen spectrum
(1947) and Polykarp Kusch for determining the magnetic moment of the elec-
tron (1947).

1956 (P) John Bardeen, Walter H. Brattain, and William Shockley for inventing the tran-
sistor (1956).

1957 (P) T.-D. Lee and C.-N. Yang for predicting that parity is not conserved in beta
decay (1956).

1958 (P) Pavel A. Čerenkov for discovering Čerenkov radiation (1935) and Ilya M.
Frank and Igor Tamm for interpreting it (1937).

1959 (P) Emilio G. Segrè and Owen Chamberlain for discovering the antiproton (1955).
1960 (P) Donald A. Glaser for inventing the bubble chamber to study elementary par-

ticles (1952).
(C) Willard Libby for developing radiocarbon dating (1947).

1961 (P) Robert Hofstadter for discovering internal structure in protons and neutrons
and Rudolf L. Mössbauer for discovering the Mössbauer effect of recoilless
gamma-ray emission (1957).

1962 (P) Lev Davidovich Landau for studying liquid helium and other condensed
matter theoretically.

1963 (P) Eugene P. Wigner for applying symmetry principles to elementary-particle
theory and Maria Goeppert Mayer and J. Hans D. Jensen for studying the shell
model of nuclei (1947).

1964 (P) Charles H. Townes, Nikolai G. Basov, and Alexandr M. Prokhorov for develop-
ing masers (1951–1952) and lasers.

1965 (P) Sin-itiro Tomonaga, Julian S. Schwinger, and Richard P. Feynman for developing
quantum electrodynamics (1948).

1966 (P) Alfred Kastler for his optical methods of studying atomic energy levels.
1967 (P) Hans Albrecht Bethe for discovering the routes of energy production in stars

(1939).
1968 (P) Luis W. Alvarez for discovering resonance states of elementary particles.
1969 (P) Murray Gell-Mann for classifying elementary particles (1963).
1970 (P) Hannes Alfvén for developing magnetohydrodynamic theory and Louis Eugène

Félix Néel for discovering antiferromagnetism and ferrimagnetism (1930s).
1971 (P) Dennis Gabor for developing holography (1947).

(C) Gerhard Herzberg for studying the structure of molecules spectroscopically.
1972 (P) John Bardeen, Leon N. Cooper, and John Robert Schrieffer for explaining super-

conductivity (1957).
1973 (P) Leo Esaki for discovering tunneling in semiconductors, Ivar Giaever for dis-

covering tunneling in superconductors, and Brian D. Josephson for predicting
the Josephson effect, which involves tunneling of paired electrons
(1958–1962).

1974 (P) Anthony Hewish for discovering pulsars and Martin Ryle for developing radio
interferometry.

1975 (P) Aage N. Bohr, Ben R. Mottelson, and James Rainwater for discovering why some
nuclei take asymmetric shapes.

1976 (P) Burton Richter and Samuel C. C. Ting for discovering the J/psi particle, the
first charmed particle (1974).

1977 (P) John H. Van Vleck, Nevill F. Mott, and Philip W. Anderson for studying solids
quantum-mechanically.
(C) Ilya Prigogine for extending thermodynamics to show how life could arise in
the face of the second law.

1978 (P) Arno A. Penzias and Robert W. Wilson for discovering the cosmic background
radiation (1965) and Pyotr Kapitsa for his studies of liquid helium.

1979 (P) Sheldon L. Glashow, Abdus Salam , and Steven Weinberg for developing the the-
ory that unified the weak and electromagnetic forces (1958–1971).
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1980 (P) Val Fitch and James W. Cronin for discovering CP (charge-parity) violation
(1964), which possibly explains the cosmological dominance of matter over 
antimatter.

1981 (P) Nicolaas Bloembergen and Arthur L. Schawlow for developing laser spec-
troscopy and Kai M. Siegbahn for developing high-resolution electron spec-
troscopy (1958).

1982 (P) Kenneth G. Wilson for developing a method of constructing theories of
phase transitions to analyze critical phenomena.

1983 (P) William A. Fowler for theoretical studies of astrophysical nucleosynthesis
and Subramanyan Chandrasekhar for studying physical processes of importance
to stellar structure and evolution, including the prediction of white dwarf stars
(1930).

1984 (P) Carlo Rubbia for discovering the W and Z particles, verifying the elec-
troweak unification, and Simon van der Meer, for developing the method of sto-
chastic cooling of the CERN beam that allowed the discovery (1982–1983).

1985 (P) Klaus von Klitzing for the quantized Hall effect, relating to conductivity in
the presence of a magnetic field (1980).

1986 (P) Ernst Ruska for inventing the electron microscope (1931), and Gerd Binnig
and Heinrich Rohrer for inventing the scanning-tunneling electron microscope
(1981).

1987 (P) J. Georg Bednorz and Karl Alex Müller for the discovery of high-temperature
superconductivity (1986).

1988 (P) Leon M. Lederman, Melvin Schwartz, and Jack Steinberger for a collaborative ex-
periment that led to the development of a new tool for studying the weak nu-
clear force, which affects the radioactive decay of atoms.

1989 (P) Norman Ramsay for various techniques in atomic physics; and Hans Dehmelt
and Wolfgang Paul for the development of techniques for trapping single-
charge particles.

1990 (P) Jerome Friedman, Henry Kendall and Richard Taylor for experiments important
to the development of the quark model.

1991 (P) Pierre-Gilles de Gennes for discovering that methods developed for studying
order phenomena in simple systems can be generalized to more complex
forms of matter, in particular to liquid crystals and polymers.

1992 (P) George Charpak for developing detectors that trace the paths of evanescent
subatomic particles produced in particle accelerators.

1993 (P) Russell Hulse and Joseph Taylor for discovering evidence of gravitational
waves.

1994 (P) Bertram N. Brockhouse and Clifford G. Shull for pioneering work in neutron
scattering.

1995 (P) Martin L. Perl and Frederick Reines for discovering the tau particle and the
neutrino, respectively.

1996 (P) David M. Lee, Douglas C. Osheroff, and Robert C. Richardson for developing a
superfluid using helium-3.

1997 (P) Steven Chu, Claude Cohen-Tannoudji , and William D. Phillips for developing
methods to cool and trap atoms with laser light.

1998 (P) Robert B. Laughlin, Horst L. Störmer, and Daniel C. Tsui for discovering a new
form of quantum fluid with fractionally charged excitations.

1999 (P) Gerardus ’T Hooft and Martinus J. G. Veltman for studies in the quantum
structure of electroweak interactions in physics.

2000 (P) Zhores I. Alferov and Herbert Kroemer for developing semiconductor het-
erostructures used in high-speed electronics and optoelectronics and Jack St.
Clair Kilby for participating in the invention of the integrated circuit.

2001 (P) Eric A. Cornell, Wolfgang Ketterle, and Carl E. Wieman for the achievement of
Bose–Einstein condensation in dilute gases of alkali atoms.

2002 (P) Raymond Davis Jr. and Masatoshi Koshiba for the detection of cosmic neutri-
nos and Riccardo Giacconi for contributions to astrophysics that led to the dis-
covery of cosmic x-ray sources.
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CHAPTER 1
1. 0.141 nm

3. 2.15 ! 104 kg/m3

5. 4"#(r 2
3 $ r 1

3)/3

7. (a) 4.00 u % 6.64 ! 10$24 g (b) 55.9 u % 9.28 ! 10$23 g 
(c) 207 u % 3.44 ! 10$22 g

9. 8.72 ! 1011 atom/s

11. (a) 72.6 kg (b) 7.82 ! 1026 atoms

13. No.

15. (b) only

17. The units of G are m3/kg · s2

19. 9.19 nm/s

21. 1.39 ! 103 m2

23. (a) 0.071 4 gal/s (b) 2.70 ! 10$4 m3/s (c) 1.03 h

25. 11.4 ! 103 kg/m3

27. 667 lb/s

29. (a) 190 yr (b) 2.32 ! 104 times

31. 151&m

33. 1.00 ! 1010 lb

35. (a) 2.07 mm (b) 8.62 ! 1013 times as large

37. 5.0 m

39. 2.86 cm

41. ! 106 balls

43. ! 107

45. ! 102 kg; ! 103 kg

47. ! 102 tuners

49. (a) (346 ' 13) m2 (b) (66.0 ' 1.3) m

51. (1.61 ' 0.17) ! 103 kg/m3

53. 31 556 926.0 s

55. 5.2 m3, 3%

57. 2.57 ! 10$10 m 

59. 0.579 t ft3/s ( 1.19 ! 10$9 t2 ft3/s2

61. 3.41 m

63. 0.449%

65. (a) 0.529 cm/s (b) 11.5 cm/s

67. 1 ! 1010 gal/yr

69. ! 1011 stars

71. (a) 3.16 ! 107 s/yr (b) 6.05 ! 1010 yr

CHAPTER 2
1. (a) 2.30 m/s (b) 16.1 m/s (c) 11.5 m/s

3. (a) 5 m/s (b) 1.2 m/s (c) $ 2.5 m/s (d) $ 3.3 m/s  (e) 0

5. (a) 3.75 m/s (b) 0

7. (a) $ 2.4 m/s (b) $ 3.8 m/s (c) 4.0 s

9. (a) 5.0 m/s (b) $ 2.5 m/s (c) 0 (d) 5.0 m/s

11. 1.34 ! 104 m/s2

13. (a) 52.4 ft/s, 55.0 ft/s, 55.5 ft/s, 57.4 ft/s (b) 0.598 ft/s2

15. (a) 2.00 m (b) $3.00 m/s (c) $2.00 m/s2

17. (a) 1.3 m/s2 (b) 2.0 m/s2 at 3 s
(c) at t % 6 s and for t ) 10 s (d) $ 1.5 m/s2 at 8 s

19. 2.74 ! 105 m/s2, which is 2.79 ! 104 g

21. $ 16.0 cm/s2

23. (a) 4.53 s (b) 14.1 m/s

25. (a) 2.56 m (b) $ 3.00 m/s

27. (a) 20.0 s (b) no

29. 3.10 m/s

31. (a) $ 202 m/s2 (b) 198 m

33. (a) 4.98 ! 10$ 9 s (b) 1.20 ! 1015 m/s2

35. (a) vc /tm (c) vc t 0/2 (d) vc t 0 (e) yes, no

37. (a) 3.00 m/s (b) 6.00 s (c) $ 0.300 m/s2

(d) 2.05 m/s

39. 31 s

41. $99.3/h

43. (a) 10.0 m/s up (b) 4.68 m/s down

45. (a) 2.17 s (b) $ 21.2 m/s (c) 2.23 s

47. (a) 29.4 m/s (b) 44.1 m

49. (a) 7.82 m (b) 0.782 s

51. 7.96 s

53. (a) ax(t) % axi ( Jt, vx(t) % vxi ( axit ( (1/2)Jt2,
x(t) % xi ( vxit ( (1/2)axit 2 ( (1/6)Jt 3

55. (a) a % $ (10.0 ! 107 m/s3) t ( 3.00 ! 105 m/s2; 
x % $ (1.67 ! 107 m/s3) t3 ( (1.50 ! 105 m/s2) t2

(b) 3.00 ! 10$ 3 s (c) 450 m/s (d) 0.900 m

59. (a) Acela steadily cruises out of the city center at 45 mi/h. In
less than a minute it smoothly speeds up to 150 mi/h; then
its speed is nudged up to 170 mi/h. Next it smoothly slows to
a very low speed, which it maintains as it rolls into a railroad
yard. When it stops, it immediately begins backing up and
smoothly speeds up to 50 mi/h in reverse, all in less than
seven minutes after it started. (b) 2.2 mi/h/s % 0.98 m/s2

(c) 6.7 mi

61. 48.0 mm

63. (a) 15.0 s (b) 30.0 m/s (c) 225 m

65. (a) 5.43 m/s2 and 3.83 m/s2 (b) 10.9 m/s and 11.5 m/s 
(c) Maggie by 2.62 m

67. !103 m/s2

Answers to Odd-Numbered Problems



69. (a) 3.00 s (b) $ 15.3 m/s (c) 31.4 m/s down and 
34.8 m/s down

71. (c) v 2
boy/h, 0 (d) v boy, 0

73. (a) 5.46 s (b) 73.0 m
(c) vStan % 22.6 m/s, vKathy % 26.7 m/s

75. 0.577v

CHAPTER 3

1. ($ 2.75, $ 4.76) m

3. (a) 2.24 m (b) 2.24 m at 26.6°

5. y % 1.15; r % 2.31

7. 70.0 m

9. 310 km at 57° S of W

11. (a) 10.0 m (b) 15.7 m (c) 0

13. (a) ! 105 m vertically upward (b) ! 103 m vertically
upward

15. (a) 5.2 m at 60° (b) 3.0 m at 330° (c) 3.0 m at 150°
(d) 5.2 m at 300°

17. approximately 420 ft at $ 3°

19. 47.2 units at 122°

21. (a) ($ 11.1 î ( 6.40 ĵ) m (b) (1.65 î ( 2.86 ĵ) cm

(c) ($ 18.0 î $ 12.6 ĵ) in.

23. (a) 5.00 blocks at 53.1° N of E (b) 13.0 blocks

25. 358 m at 2.00° S of E

27. (a)

(b) C % 5.00î ( 4.00ĵ or 6.40 at 38.7°; D % $ 1.00î ( 8.00ĵ
or 8.06 at 97.2°

29. 196 cm at 345°

31. (a) 2.00 î $ 6.00 ĵ (b) 4.00 î ( 2.00 ĵ (c) 6.32
(d) 4.47 (e) 288°; 26.6°

33. 9.48 m at 166°

35. (a) 185 N at 77.8° from the ( x axis 

(b) ($ 39.3 î $ 181 ĵ) N

37. A ( B % (2.60 î ( 4.50 ĵ) m

39. "B " % 7.81, *x % 59.2°, *y % 39.8°, *z % 67.4°

41. (a) 8.00 î ( 12.0 ĵ $ 4.00k̂ (b) 2.00 î ( 3.00 ĵ $ 1.00k̂
(c) $ 24.0 î $ 36.0 ĵ ( 12.0k̂

43. (a) 5.92 m is the magnitude of (5.00 î $ 1.00ĵ $ 3.00k̂) m
(b) 19.0 m is the magnitude of (4.00 î $ 11.0ĵ $ 15.0k̂) m

45. 157 km

47. (a) $ 3.00 î ( 2.00 ĵ (b) 3.61 at 146°
(c) 3.00 î $ 6.00 ĵ

49. (a) 49.5 î ( 27.1 ĵ (b) 56.4 units at 28.7°

D = A – B

–B

B
A

C = A + B
B

51. 1.15°

53. (a) 2.00, 1.00, 3.00 (b) 3.74 (c) *x % 57.7°,
*y % 74.5°, *z % 36.7°

55. 2.29 km

57. (a) 11.2 m (b) 12.9 m at 36.4°

59. 240 m at 237°

61. 390 mi/h at 7.37° north of east

63. (a) zero (b) zero

65. 106°

CHAPTER 4
1. (a) 4.87 km at 209° from east (b) 23.3 m/s (c) 13.5 m/s

at 209°

3. 2.50 m/s

5. (a)(2.00 î ( 3.00 ĵ) m/s2

(b) (3.00t ( t2) î m ( (1.50t2 $ 2.00t) ĵ m

7. (a) (0.800 î $ 0.300 ĵ) m/s2 (b) 339°
(c) (360 î $ 72.7 ĵ) m, $15.2°

9. (a) x % 0.010 0 m, y % 2.41 ! 10$4 m
(b) v % (1.84 ! 107 î ( 8.78 ! 105 ĵ) m/s
(c) v % 1.85 ! 107 m/s
(d) * % 2.73°

11. (a) 3.34 î m/s (b) $50.9°

13. (a) 20.0° (b) 3.05 s

15. 53.1°

17. (a) 22.6 m (b) 52.3 m (c) 1.18 s

19. (a) The ball clears by 0.889 m while
(b) descending

21. (a) 18.1 m/s (b) 1.13 m (c) 2.79 m

23. 9.91 m/s

25. (a) 30.3 m/s (b) 2.09 s

27. 377 m/s2

29. 10.5 m/s, 219 m/s2 inward 

31. (a) 6.00 rev/s (b) 1.52 km/s2

(c) 1.28 km/s2

33. 1.48 m/s2 inward and 29.9° backward

35. (a) 13.0 m/s2 (b) 5.70 m/s (c) 7.50 m/s2

37. * % tan$1(1/4") % 4.55°

39. (a) 57.7 km/h at 60.0° west of vertical 
(b) 28.9 km/h downward

41. 2.02 ! 103 s; 21.0% longer

43. . Beth returns

first.

45. 15.3 m

47. (a) 101 m/s (b) 32 700 ft (c) 20.6 s
(d) 180 m/s

49. 54.4 m/s2

51. (a) 41.7 m/s (b) 3.81 s (c) (34.1 î $ 13.4 ĵ) m/s;
36.7 m/s

53. (a) 25.0 m/s2; 9.80 m/s2

tAlan %
2L/c

1 $ v2/c2 , tBeth %
2L/c

√1 $ v2/c2
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25. 3.73 m

27. A is in compression 3.83 kN and B is in tension 3.37 kN

29. 950 N

31. (a) Fx ) 19.6 N (b) Fx + $ 78.4 N

(c)9.80 m/s2

25.0 m/s2

a

(b)

n2

68 N

176 N

f k2

T
m2

n1

f k1

T

118 N

m1

T2
T1

9.80 N

+100–100

ax, m/s2

Fx ,N

–10

+10

33. (a) 706 N (b) 814 N (c) 706 N (d) 648 N

35. (a) 0.404 (b) 45.8 lb

37. (a) 256 m (b) 42.7 m

39. (a) 1.10 s (b) 0.875 s

41. (a) 1.78 m/s2 (b) 0.368 (c) 9.37 N (d) 2.67 m/s

43. 37.8 N

45. (a)

(b) 27.2 N, 1.29 m/s2

47. &k % (3/5)tan*

49. (a) 8.05 N (b) 53.2 N (c) 42.0 N

(c) 26.8 m/s2 inward at 21.4° below the horizontal

55. (a) 26.6° (b) 0.949

57. (a) 0.600 m (b) 0.402 m (c) 1.87 m/s2 toward center 
(d) 9.80 m/s2 down

59. (a) 6.80 km (b) 3.00 km vertically above the impact
point (c) 66.2°

61. (a) 46.5 m/s (b) $77.6° (c) 6.34 s

63. (a) 20.0 m/s, 5.00 s (b) (16.0 î $ 27.1 ĵ) m/s (c) 6.53 s 
(d) 24.5 î m

65. (a) 22.9 m/s (b) 360 m from the base of the cliff
(c) v % (114 î $ 44.3 ĵ) m/s

67. (a) 43.2 m (b) (9.66 î $ 25.5 ĵ) m/s

69. (a) 4.00 km/h (b) 4.00 km/h

71. Safe distances are less than 270 m or greater than
3.48 ! 103 m from the western shore.

CHAPTER 5

1. (a) 1/3 (b) 0.750 m/s2

3. (6.00 î ( 15.0 ĵ) N; 16.2 N

5. (a) (2.50 î ( 5.00 ĵ) N (b) 5.59 N

7. (a) 3.64 ! 10$18 N (b) 8.93 ! 10$ 30 N is 408 billion
times smaller

9. 2.38 kN

11. (a) 5.00 m/s2 at 36.9° (b) 6.08 m/s2 at 25.3°

13. (a) !10$22 m/s2 (b) !10$23 m

15. (a) 15.0 lb up (b) 5.00 lb up (c) 0

17. 613 N

21. (a) 49.0 N (b) 98.0 N (c) 24.5 N

23. 8.66 N east
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51. (a) 7. v + 14.3 m/s

9. (a) 68.6 N toward the center of the circle and 784 N up

(b) 0.857 m/s2

11. (a) 108 N (b) 56.2 N

13. (a) 4.81 m/s (b) 700 N up

15. No. The jungle lord needs a vine of tensile strength 1.38 kN.

17. 3.13 m/s

19. (a) 2.49 ! 104 N up (b) 12.1 m/s

21. (a) 3.60 m/s2 (b) zero (c) An observer in the car
(a noninertial frame) claims an 18.0-N force toward the
left and an 18.0-N force toward the right. An inertial
observer (outside the car) claims only an 18.0-N force
toward the right.

23. (a) 17.0° (b) 5.12 N

25. (a) 491 N (b) 50.1 kg (c) 2.00 m/s2

27. (a) v % [2(a $ &kg)!]1/2; (b) v, % (2&kg!/v), 
where v % [2(a $ &kg)!]1/2

29. 93.8 N

31. 0.092 7°

33. (a) 32.7 s$1 (b) 9.80 m/s2 down (c) 4.90 m/s2 down

35. 3.01 N up

37. (a) 1.47 N - s/m (b) 2.04 ! 10$ 3 s (c) 2.94 ! 10$ 2 N

39. (a) 0.034 7 s$ 1 (b) 2.50 m/s (c) a % $ cv

41. (a) x % k$ 1 ln(1 ( kv0t) (b) v % v0e$ kx

43. ! 101 N

45. (a) 13.7 m/s down

(b) t (s) x (m) v (m/s)

0 0 0

0.2 0 $ 1.96

0.4 $ 0.392 $ 3.88

. . . 1.0 $ 3.77 $ 8.71

. . . 2.0 $ 14.4 $ 12.56

. . . 4.0 $ 41.0 $ 13.67

47. (a) 49.5 m/s down and 4.95 m/s down

(b) t (s) y (m) v (m/s)

0 1 000 0

. . . 1 995 $ 9.7

. . . 2 980 $ 18.6

. . . 10 674 $ 47.7

. . . 10.1 671 $ 16.7

. . . 12 659 $ 4.95

. . . 145 0 $ 4.95

49. (a) 2.33 ! 10$ 4 kg/m (b) 57.0 m/s (c) 44.9 m/s. The
second trajectory is higher and shorter than the first. In
both cases, the ball attains maximum height when it has
covered 56% of its horizontal range, and attains minimum
speed a little later. The impact speeds are also similar,
30 m/s and 29 m/s.

250 N

n

250 N 250 N

480 N

250 N

320 N
n 160 N

(b) 0.408 m/s2 (c) 83.3 N

53. (a) FA % mg(sin * $ &s cos *)
(b) FB % mg(sin * $ &s cos *)/(cos * ( &s sin *)
(c) A’s job is easier
(d) B’s job is easier

55. (a) Mg/2, Mg/2, Mg/2, 3Mg/2, Mg (b) Mg/2

57. (b) * 0 15° 30° 45° 60°

P(N) 40.0 46.4 60.1 94.3 260

59. (a) 19.3° (b) 4.21 N

61. (M ( m1 ( m2)(m2g/m1)

63. (a)

(b)

(c)

(d)

65. (c) 3.56 N

67. (a) T % f/(2 sin *) (b) 410 N

69. (a) 30.7° (b) 0.843 N

71. 0.060 0 m

73. (a)

(b)

CHAPTER 6
1. Any speed up to 8.08 m/s

3. (a) 8.32 ! 10$8 N toward the nucleus 
(b) 9.13 ! 1022 m/s2 inward

5. (a) static friction (b) 0.085 0

*2 % tan$1# tan *1

2
$

T3 % 2mg/tan *1

T2 %
mg

sin*2
%

mg
sin[tan$1(1

2
tan *1)]

T1 %
2mg

sin *1

 
Mm2g

m1M ( m2(m1 ( M )

m1m2g
m1M ( m2(m1 ( M )

m2g (M ( m1)
m1M ( m2(m1 ( M )

m2g % m1M
m1M ( m2(m1 ( M ) &
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51. (a) 11.5 kN (b) 14.1 m/s % 50.9 km/h

53. (a) 0.016 2 kg/m (b) (c) 0.778 (d) 1.5% 
(e) For stacked coffee filters falling in air at terminal
speed, the graph of resistive force as a function of squared
speed demonstrates that the force is proportional to the
speed squared, within the experimental uncertainty, esti-
mated as ' 2%. This proportionality agrees with that pre-
dicted by the theoretical equation R % D#Av2. The value
of the constant slope of the graph implies that the drag co-
efficient for coffee filters is D % 0.78 ' 2%.

55. g (cos . tan * $ sin .)

57. (b) 732 N down at the equator and 735 N down at the poles

59. (a) 967 lb (b) $ 647 lb (pilot must be strapped in)
(c) Speed and radius of path can be adjusted so that
v2 % gR .

61. (a) 1.58 m/s2 (b) 455 N (c) 329 N (d) 397 N upward
and 9.15° inward

63. (a) 5.19 m/s (b) T % 555 N

1
2

1
2 D#A

21. (a) 0.020 4 m (b) 720 N/m

23. kg/s2

25. (a) 33.8 J (b) 135 J

27. 878 kN up

29. (a) 4.56 kJ (b) 6.34 kN (c) 422 km/s2 (d) 6.34 kN

31. (a) 650 J (b) 588 J (c) 0 (d) 0 (e) 62.0 J
(f) 1.76 m/s

33. (a) $ 168 J (b) 184 J (c) 500 J (d) 148 J
(e) 5.65 m/s

35. 2.04 m

37. 875 W

39. (a) 20.6 kJ (b) 686 W

41. $46.2

43. (a) 423 mi/gal (b) 776 mi/gal

45. (a) 0.013 5 gal (b) 73.8 (c) 8.08 kW

47. 2.92 m/s

49. (a) (2 ( 24t2 ( 72t4) J (b) 12t m/s2; 48t N
(c) (48t ( 288t3) W (d) 1 250 J

51. k1x2
max/2 ( k2x3

max/3

53. (a) (b) W/d

55. (b) 240 W

57. (a) 1.38 ! 104 J (b) 3.02 ! 104 W

59. (a) " % 2MgvT (b) " % 24MgvT

61. (a) 4.12 m (b) 3.35 m

63. 1.68 m/s

65. $ 1.37 ! 10$21 J

67. 0.799 J

69. (b) For a block of weight w pushed over a rough horizon-
tal surface at constant velocity, b % &k. For a load pulled
vertically upward at constant velocity, b % 1.

CHAPTER 8
1. (a) 259 kJ, 0, $ 259 kJ (b) 0, $ 259 kJ, $ 259 kJ

3. 22.0 kW

5. (a) v % (3gR)1/2 (b) 0.098 0 N down

7. (a) 1.47 m/s (b) 1.35 m/s

9. (a) 2.29 m/s (b) 1.98 m/s

11. 10.2 m

13. (a) 4.43 m/s (b) 5.00 m

15. 5.49 m/s

17. (a) 18.5 km, 51.0 km (b) 10.0 MJ

19. (a) 25.8 m (b) 27.1 m/s2

21. (a) $ 196 J (b) $ 196 J (c) $ 196 J. The force is con-
servative.

23. (a) 125 J (b) 50.0 J (c) 66.7 J (d) Nonconservative.
The results differ.

25. (a) $ 9.00 J; no; the force is conservative. (b) 3.39 m/s
(c) 9.00 J

27. 26.5 m/s

√2W/m
T cos 28.0°

T sin 28.0°

490 N

65. (b) 2.54 s; 23.6 rev/min

67. (a)

(b) &s % tan* (c) 8.57 m/s + v + 16.6 m/s

69. (a) 0.013 2 m/s (b) 1.03 m/s (c) 6.87 m/s

71. 12.8 N

73. F % $ kmv

CHAPTER 7

1. (a) 31.9 J (b) 0 (c) 0 (d) 31.9 J

3. $ 4.70 kJ

5. 28.9

7. (a) 16.0 J (b) 36.9°

9. (a) 11.3° (b) 156° (c) 82.3°

11. (a) 24.0 J (b) $ 3.00 J (c) 21.0 J

13. (a) 7.50 J (b) 15.0 J (c) 7.50 J (d) 30.0 J

15. (a) 0.938 cm (b) 1.25 J

17. (a) 0.768 m (b) 1.68 ! 105 J

19. 12.0 J

'

vmin % √ R g (tan * $ &s)
1 ( &s tan *

, vmax % √ R g (tan * ( &s)
1 $ &s tan *
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29. 6.92 m/s

31. 3.74 m/s

33. (a) $ 160 J (b) 73.5 J (c) 28.8 N (d) 0.679

35. (a) 1.40 m/s (b) 4.60 cm after release (c) 1.79 m/s

37. (a) 0.381 m (b) 0.143 m (c) 0.371 m

39. (a) ax % $ &kgx/L (b) v % (&kgL)1/2

41. (a) 40.0 J (b) $ 40.0 J (c) 62.5 J

43. (A/r 2) away from the other particle

45. (a) ( at !, $ at ", 0 at #, $, and % (b) $ stable; #
and % unstable 

(c) 

59. 1.24 m/s

61. (a) 0.400 m (b) 4.10 m/s (c) The block stays on the
track.

63. (h/5)(4 sin2 * ( 1)

65. (a) 6.15 m/s (b) 9.87 m/s

67. (a) 11.1 m/s (b) 19.6 m/s2 upward (c) 2.23 ! 103 N
upward (d) 1.01 ! 103 J (e) 5.14 m/s (f) 1.35 m
(g) 1.39 s

69. (b) 1.44 m (c) 0.400 m (d) No. A very strong wind
pulls the string out horizontally. The largest possible equi-
librium height is equal to L .

73. (a) 2.5R

CHAPTER 9
1. (a) (9.00 î $ 12.0 ĵ) kg · m/s (b) 15.0 kg · m/s at 307°

3. ~ 10$23 m/s

5. (b)

7. (a) 13.5 N · s (b) 9.00 kN (c) 18.0 kN

9. 260 N normal to the wall

11. (a) (9.05 î ( 6.12 ĵ) N · s (b) (377 î ( 255 ĵ) N

13. 15.0 N in the direction of the initial velocity of the exiting
water stream

15. 65.2 m/s

17. 301 m/s

19. (a) 2.50 m/s (b) 37.5 kJ (c) Each process is the time-
reversal of the other. The same momentum conservation
equation describes both.

21. (a) vgx % 1.15 m/s (b) vpx % $ 0.346 m/s

23. (a) 0.284 (b) 115 fJ and 45.4 fJ

25. 91.2 m/s

27. (a) 2.24 m/s to the right (b) No. Coupling order makes
no difference.

29. vorange % 3.99 m/s, vyellow % 3.01 m/s

31. vgreen % 7.07 m/s, vblue % 5.89 m/s

33. 2.50 m/s at $ 60.0°

35. (3.00 î $ 1.20 ĵ) m/s

37. (a) ($ 9.33 î $ 8.33 ĵ) Mm/s (b) 439 fJ

39. 0.006 73 nm from the oxygen nucleus along the bisector
of the angle

41. rCM % (11.7 î ( 13.3 ĵ) cm

43. (a) 15.9 g (b) 0.153 m

45. (a) (1.40 î ( 2.40 ĵ) m/s (b) (7.00 î ( 12.0 ĵ) kg · m/s

47. 0.700 m

49. (a) 39.0 MN (b) 3.20 m/s2 up

51. (a) 442 metric tons (b) 19.2 metric tons

53. 4.41 kg

55. (a) 1.33î m/s (b) $ 235î N (c) 0.680 s (d) $ 160î N · s
and (160îi N · s (e) 1.81 m (f) 0.454 m (g) $ 427 J
(h) ( 107 J (i) Equal friction forces act through different
distances on person and cart, to do different amounts of
work on them. The total work on both together, $ 320 J,

p % √2mK

2 4 6 8 x(m)

Fx

#

!

$

"

%

47. (b) 

–2 20 x(m)

50

100

U( J)

Equilibrium at x % 0

(c) 0.823 m/s

49. ! 103 W peak or ~ 102 W sustainable

51. 48.2°

53. (a) 0.225 J (b) /Emech % $ 0.363 J (c) No; the normal
force changes in a complicated way.

55. (a) 23.6 cm (b) 5.90 m/s2 up the incline; no.
(c) Gravitational potential energy is transformed into ki-
netic energy plus elastic potential energy and then en-
tirely into elastic potential energy.

57. 0.328



Answers to Odd-Numbered Problems A.43

becomes ( 320 J of extra internal energy in this perfectly
inelastic collision.

57. 240 s

59. (a) 0; inelastic (b) ($ 0.250î ( 0.750ĵ $ 2.00k̂) m/s; 
perfectly inelastic (c) either a % $ 6.74 with 
v % $ 0.419k̂ m/s or a % 2.74 with v % $ 3.58k̂ m/s

61. (a) vi % v(m ( #V )/m (b) The cart slows with constant
acceleration and eventually comes to rest.

63. (a) m/M % 0.403 (b) No changes; no difference.

65. (a) 6.29 m/s (b) 6.16 m/s

67. (a) 100 m/s (b) 374 J

69. (a) (20.0 î ( 7.00 ĵ) m/s (b) 4.00 î m/s2 (c) 4.00 î m/s2

(d) (50.0 î ( 35.0 ĵ) m (e) 600 J (f ) 674 J (g) 674 J

71. (3Mgx/L) ĵ

73.

CHAPTER 10
1. (a) 5.00 rad, 10.0 rad/s, 4.00 rad/s2 (b) 53.0 rad,

22.0 rad/s, 4.00 rad/s2

3. (a) 4.00 rad/s2 (b) 18.0 rad

5. (a) 5.24 s (b) 27.4 rad

7. 50.0 rev

9. (a) 7.27 ! 10$5 rad/s (b) 2.57 ! 104 s % 428 min

11. ! 107 rev

13. (a) 8.00 rad/s (b) 8.00 m/s, ar % $ 64.0 m/s2,
at % 4.00 m/s2 (c) 9.00 rad

15. (a) 25.0 rad/s (b) 39.8 rad/s2 (c) 0.628 s

17. (a) 126 rad/s (b) 3.77 m/s (c) 1.26 km/s2 (d) 20.1 m

19. (a) 0(2h3/g)1/2 (b) 0.011 6 m (c) Yes; the deflection is
only 0.02% of the original height.

21. (a) 143 kg · m2 (b) 2.57 kJ

23. 11mL2/12

25. 5.80 kg · m2; the height makes no difference

29. (23/48)MR202

31. $3.55 N · m

33. 8.02 ! 103 N

35. (a) 24.0 N · m (b) 0.035 6 rad/s2 (c) 1.07 m/s2

37. (a) 0.309 m/s2 (b) 7.67 N and 9.22 N

39. 21.5 N

41. 24.5 km

43. (a) 1.59 m/s (b) 53.1 rad/s

45. (a) 11.4 N, 7.57 m/s2, 9.53 m/s down (b) 9.53 m/s

49. (a) 2(Rg/3)1/2 (b) 4(Rg/3)1/2 (c) (Rg)1/2

51. (a) 500 J (b) 250 J (c) 750 J

53. (a) for the disk, larger than for the hoop
(b)

55. 1.21 ! 10$4 kg · m2; height is unnecessary

57. !

59. (a) 4.00 J (b) 1.60 s (c) yes

 13

1
3 tan *

1
2 g sin *2

3 g sin *

m1(R ( !/2)
(m1 ( m2)

61. (a) (3g/L)1/2 (b) 3g/2L (c) 

(d)

63. $ 0.322 rad/s2

65. (b) 2gM(sin * $ & cos *)(m ( 2M)$1

67. (a) ! $10$22 s$2 (b) ! $1016 N · m (c) ! 1013 m

71. (a) 118 N and 156 N (b) 1.17 kg · m2

73. (a) 1 % $ 0.176 rad/s2 (b) 1.29 rev (c) 9.26 rev

75. (a) 61.2 J (b) 50.8 J

79. (a) 2.70R (b) Fx % $ 20mg/7, Fy % $ mg

81. ! 101 m

83. (a) (3gh/4)1/2 (b) (3gh/4)1/2

85. (c) (8Fd/3M)1/2

87. F1 to right, F2 no rolling, F3 and F4 to left

CHAPTER 11
1. $ 7.00 î ( 16.0 ĵ $ 10.0k̂
3. (a)$17.0 k̂ (b) 70.62

5. 0.343 N · m horizontally north

7. 45.0°

9. F3 % F1 ( F2; no

11. (17.5k̂) kg · m2/s

13. (60.0k̂) kg · m2/s

15. mvR[cos(vt/R ) ( 1]k̂
17. (a) zero (b) [$ mvi

3 sin2 * cos */2g]k̂
(c) [$ 2mvi

3 sin2 * cos */g]k̂ (d) The downward gravita-
tional force exerts a torque in the $ z direction.

19. $ m!gt cos * ˆ̂k
23. (a) 0.360 kg · m2/s (b) 0.540 kg · m2/s

25. (a) 0.433 kg · m2/s (b) 1.73 kg · m2/s

27. (a) 1.57 ! 108 kg · m2/s (b) 6.26 ! 103 s % 1.74 h

29. 7.14 rev/min

31. (a) 9.20 rad/s (b) 9.20 rad/s

33. (a) 0.360 rad/s counterclockwise (b) 99.9 J

35. (a) mv! down (b) M/(M ( m)

37. (a) 0 % 2mvid/(M ( 2m)R2 (b) No; some mechanical
energy changes into internal energy

39. !10$13 rad/s

41. 5.45 ! 1022 N · m

43. 7.50 ! 10$11 s

45. (a) 7md 2/3 (b) mgd k̂ (c) 3g/7d counterclockwise
(d) 2g/7 upward (e) mgd (f) (g) m

(h)

47. 0.910 km/s

49. (a) viri/r (b) T % (mvi
2ri

2)r$3 (c) mvi
2(ri

2/r 2 $1)
(d) 4.50 m/s, 10.1 N, 0.450 J

51. (a) 3 750 kg · m2/s (b) 1.88 kJ (c) 3 750 kg · m2/s 
(d) 10.0 m/s (e) 7.50 kJ (f) 5.62 kJ

53. An increase of 0.550 s

55. 4[ga(√2 $ 1)/3]1/2

1
2

√2gd/21
√14gd3/3√6g/7d

$  
3
2 Mg î (  14 Mg ĵ

$  
3
2g î $   

3
4g ĵ
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CHAPTER 12
1. 10.0 N up; 6.00 N - m counterclockwise

3. [(m1 ( mb)d ( (m1!/2)]/m2

5. (3.85 cm, 6.85 cm)

7. ($ 1.50 m, $ 1.50 m)

9. 177 kg

11. 8.33%

13. (a) fs % 268 N, n % 1 300 N (b) 0.324

15. (a) 1.04 kN at 60.0° (b) (370 î ( 900 ĵ) N

17. 2.94 kN on each rear wheel and 4.41 kN on each front
wheel

19. (a) 29.9 N (b) 22.2 N

21. (a) 1.73 rad/s2 (b) 1.56 rad/s
(c) ($ 4.72 î ( 6.62 ĵ) kN (d) 38.9 ĵ kN

23. 2.82 m

25. 88.2 N and 58.8 N

27. 4.90 mm

29. 10 ! 1010 N/m2

31. 23.8 &m

33. (a) 3.14 ! 104 N (b) 6.28 ! 104 N

35. 1.80 ! 108 N/m2

37. 0.860 mm

39. nA % 5.98 ! 105 N, nB % 4.80 ! 105 N

41. 9.00 ft

43. (a)

(b) T % 343 N; Rx % 171 N to the right, Ry % 683 N up
(c) 5.13 m

45. (a) T % Fg(L ( d)/sin * (2L ( d)
(b) Rx % Fg(L ( d) cot */(2L ( d); Ry % FgL/(2L ( d)

47. FA % ($ 6.47 ! 105 î ( 1.27 ! 105 ĵ) N, 
FB % 6.47 ! 105 î N

49. 5.08 kN; Rx % 4.77 kN, Ry % 8.26 kN

51. T % 2.71 kN, Rx % 2.65 kN

53. (a) 20.1 cm to the left of the front edge; &k % 0.571
(b) 0.501 m

55. (a) M % (m/2)(2&s sin * $ cos *)(cos * $ &s sin *)$1

(b) R % (m ( M )g (1 ( &s
2)1/2;

57. (a) 133 N (b) nA % 429 N and nB % 257 N
(c) Rx % 133 N and Ry % $ 257 N

59. 66.7 N

63. 1.09 m

65. (a) 4 500 N (b) 4.50 ! 106 N/m2 (c) The board will
break.

67. 5.73 rad/s

F % g[M 2 ( &s
2(m ( M )2]1/2

3.00 m3.00 m
700 N

x
200 N 80.0 N

60.0°

T

O

Ry

Rx

69. nA % 11.0 kN, nE % 3.67 kN; FAB % FDE % 7.35 kN com-
pression; FAC % FCE % 6.37 kN compression; FBC % FCD %
4.24 kN tension; FBD % 8.49 kN compression

71. (a) Py % (Fg /L)(d $ ah/g) (b) 0.306 m 
(c) 

73. Decrease h, increase d

CHAPTER 13
1. !10$7 N toward you

3. (a) 2.50 ! 10$5 N toward the 500-kg object 
(b) between the objects and 0.245 m from the 500-kg object

5. ($ 100 î ( 59.3 ĵ)pN

7. 7.41 ! 10$10 N

9. 0.613 m/s2 toward the Earth

11. (a) 3.46 ! 108 m (b) 3.34 ! 10$3 m/s2 toward the Earth

13. 1.26 ! 1032 kg

15. 1.90 ! 1027 kg

17. 35.2 AU

19. 8.92 ! 107 m

21. After 393 yr, Mercury would be farther from the Sun than
Pluto

23. g % (Gm/!2)( ) toward the opposite corner

25. g % 2MGr(r 2 ( a2)$3/2 toward the center of mass

27. 4.17 ! 1010 J

29. (a) 1.84 ! 109 kg/m3 (b) 3.27 ! 106 m/s2

(c) $ 2.08 ! 1013 J

31. (a) $ 1.67 ! 10$14 J (b) at the center

33. 1.66 ! 104 m/s

37. (a) 5.30 ! 103 s (b) 7.79 km/s (c) 6.43 ! 109 J

39. 469 MJ

41. 15.6 km/s

43. (b) 1.00 ! 107 m (c) 1.00 ! 104 m/s

45. (a) 0.980 (b) 127 yr (c) $ 2.13 ! 1017 J

49. (b) 2[Gm3(1/2r $ 1/R)]1/2

51. (b) 1.10 ! 1032 kg

53. (a) $ 7.04 ! 104 J (b) $ 1.57 ! 105 J (c) 13.2 m/s

55. 7.79 ! 1014 kg

57. 0 % 0.057 2 rad/s or 1 rev in 110 s

59. vesc % (8"G#/3)1/2R

61. (a) m2(2G/d)1/2(m1 ( m2)$1/2 and
m1(2G/d)1/2(m1 ( m2)$1/2;
relative speed (2G/d)1/2(m1 ( m2)1/2

(b) 1.07 ! 1032 J and 2.67 ! 1031 J

63. (a) 8.50 ! 108 J (b) 2.71 ! 109 J

65. (a) 200 Myr (b) !1041 kg; !1011 stars

67. (GME/4RE)1/2

71. t (s) x (m) y (m) vx (m/s) vy (m/s)

0 0 12 740 000 5 000 0
10 50 000 12 740 000 4 999.9 $ 24.6
20 99 999 12 739 754 4 999.7 $ 49.1
30 149 996 12 739 263 4 999.4 $ 73.7…

1
2 ( √2

($306 î ( 5.53 ĵ) N
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The object does not hit the Earth; its minimum radius
is 1.33RE as shown in the diagram below. Its period is
1.09 ! 104 s. A circular orbit would require speed
5.60 km/s.

49. 103 m/s

51. (a) 4.43 m/s

(b) The siphon can be no higher than 10.3 m.

53. 12.6 m/s

55. 1.91 m

59. 0.604 m

63. 17.3 N and 31.7 N

65. 90.04%

67. 758 Pa

69. 4.43 m/s

71. (a) 1.25 cm (b) 13.8 m/s

73. (a) 3.307 g (b) 3.271 g (c) 3.48 ! 10$4 N

75. (c) 1.70 m2

CHAPTER 15
1. (a) The motion repeats precisely. (b) 1.82 s

(c) No, the force is not in the form of Hooke’s law.

3. (a) 1.50 Hz, 0.667 s (b) 4.00 m (c) " rad
(d) 2.83 m

5. (b) 18.8 cm/s, 0.333 s (c) 178 cm /s2, 0.500 s
(d) 12.0 cm 

7. (a) 2.40 s (b) 0.417 Hz (c) 2.62 rad/s

9. 40.9 N/m

11. (a) 40.0 cm/s, 160 cm/s2 (b) 32.0 cm/s, $ 96.0 cm/s2

(c) 0.232 s

13. 0.628 m/s

15. (a) 0.542 kg (b) 1.81 s (c) 1.20 m/s2

17. 2.23 m/s

19. (a) 28.0 mJ (b) 1.02 m/s (c) 12.2 mJ (d) 15.8 mJ

21. (a) E increases by a factor of 4. (b) vmax is doubled. 
(c) amax is doubled. (d) Period is unchanged.

23. 2.60 cm and $ 2.60 cm 

25. (b) 0.628 s

27. (a) 35.7 m (b) 29.1 s

29. !100 s

31. Assuming simple harmonic motion, (a) 0.820 m/s
(b) 2.57 rad/s2 (c) 0.641 N. More precisely, 
(a) 0.817 m/s (b) 2.54 rad/s2 (c) 0.634 N

35. 0.944 kg - m2

39. (a) 5.00 ! 10$7 kg - m2 (b) 3.16 ! 10$4 N - m/rad

41. 1.00 ! 10$3 s$1

43. (a) 7.00 Hz (b) 2.00% (c) 10.6 s

45. (a) 1.00 s (b) 5.09 cm 

47. 318 N

49. 1.74 Hz

51. (a) 2Mg ; Mg(1( y/L)
(b) T % (4"/3)(2L/g)1/2; 2.68 s

53. 6.62 cm

55. 9.19 ! 1013 Hz

x

y

CHAPTER 14
1. 0.111 kg

3. 6.24 MPa

5. 5.27 ! 1018 kg

7. 1.62 m

9. 7.74 ! 10$3 m2

11. 271 kN horizontally backward

13.

15. 0.722 mm

17. 10.5 m; no; some alcohol and water evaporate

19. 98.6 kPa

21. (a) 1.57 Pa, 1.55 ! 10$2 atm, 11.8 mm Hg (b) The fluid
level in the tap should rise. (c) Blockage of flow of the
cerebrospinal fluid

23. 0.258 N

25. (a) 9.80 N (b) 6.17 N

27. (a) 1.017 9 ! 103 N down, 1.029 7 ! 103 N up (b) 86.2 N

29. (a) 7.00 cm (b) 2.80 kg

33. 1 430 m3

35. 1 250 kg/m3 and 500 kg/m3

37. 1.28 ! 104 m2

39. (a) 17.7 m/s (b) 1.73 mm

41. 31.6 m/s

43. 0.247 cm

45. (a) 1 atm ( 15.0 MPa (b) 2.95 m/s (c) 4.34 kPa

47. 2.51 ! 10$3 m3/s

P0 ( 1
2#d √g2 ( a2
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57. (a) 23. 520 m/s

25. 1.64 m/s2

27. 13.5 N

29. 586 m/s

31. 0.329 s

33. (a) s and kg · m/s2 (b) time interval (period) and force
(tension)

37. 55.1 Hz

39. (a) 62.5 m/s (b) 7.85 m (c) 7.96 Hz (d) 21.1 W

41.

43. (a) A % 40 (b) A % 7.00, B % 0, C % 3.00. One can take
the dot product of the given equation with each one of î, ĵ,
and k̂. (c) A % 0, B % 7.00 mm, C % 3.00/m, D % 4.00/s,
E % 2.00. Consider the average value of both sides of the
given equation to find A. Then consider the maximum
value of both sides to find B. One can evaluate the partial
derivative of both sides of the given equation with respect
to x and separately with respect to t to obtain equations
yielding C and D upon chosen substitutions for x and t.
Then substitute x % 0 and t % 0 to obtain E.

47. ! 1 min

49. (a) (3.33î) m/s (b) $ 5.48 cm (c) 0.667 m, 5.00 Hz 
(d) 11.0 m/s

51. 0.456 m/s

53. (a) 39.2 N (b) 0.892 m (c) 83.6 m/s

55. (a) 179 m/s (b) 17.7 kW

57. 0.084 3 rad

61. (a) (0.707)2(L/g)1/2 (b) L/4

63. 3.86 ! 10$4

65. (b) 31.6 m/s

67. (a) (b) (c) 

69. (a) &0 ( (&L $ &0)x/L

CHAPTER 17
1. 5.56 km

3. 7.82 m

5. (a) 826 m (b) 1.47 s

7. 5.67 mm

9. 1.50 mm to 75.0 &m

11. (a) 2.00 &m, 40.0 cm, 54.6 m/s (b) $ 0.433 &m 
(c) 1.72 mm/s

13. /P % (0.200 N/m2) sin(62.8 x/m $ 2.16 ! 104 t/s)

15. 5.81 m

19. 66.0 dB

21. (a) 3.75 W/m2 (b) 0.600 W/m2

23. (a) 2.34 m and 0.390 m (b) 0.161 N/m2 for both notes
(c) 4.25 ! 10$7 m and 7.09 ! 10$8 m (d) The wave-
lengths and displacement amplitudes would be larger by a
factor of 1.09. The answer to (b) is unchanged.

25. (a) 1.32 ! 10$4 W/m2 (b) 81.2 dB

e$2bx&03

2k
 A0

2&03

2k
  A0

2e$2bx

√2 "0

(b) 

(c) T % 2"g$1/2 [Li ( (dM/dt)t/2#a2]1/2

59. f % (2"L)$1 (gL ( kh2/M)1/2

61. (b) 1.23 Hz

63. (a) 3.00 s (b) 14.3 J (c) 25.5°

65. If the cyclist goes over them at one certain speed, the wash-
board bumps can excite a resonance vibration of the bike,
so large in amplitude as to make the rider lose control.
!101 m

73. For *max % 5.00° there is precise agreement. 
For *max % 100° there are large differences, and the
period is 23% greater than small-angle period.

75. (b) after 42.1 min

CHAPTER 16
1. y % 6 [(x $ 4.5t)2 ( 3]$1

3. (a) left (b) 5.00 m/s

5. 184 km

7. 0.319 m

9. 2.00 cm, 2.98 m, 0.576 Hz, 1.72 m/s

11. (a) 3.77 m/s (b) 118 m/s2

13. (a) 0.250 m (b) 40.0 rad/s (c) 0.300 rad/m
(d) 20.9 m (e) 133 m/s (f) (x

15. (a) y % (8.00 cm) sin(7.85x ( 6"t)
(b) y % (8.00 cm) sin(7.85x ( 6"t $ 0.785)

17. (a) $ 1.51 m/s, 0 (b) 16.0 m, 0.500 s, 32.0 m/s

19. (a) 0.500 Hz, 3.14 rad/s (b) 3.14 rad/m
(c) (0.100 m) sin(3.14x/m $ 3.14t/s)
(d) (0.100 m) sin($3.14t/s)
(e) (0.100 m) sin(4.71 rad $ 3.14t/s) (f) 0.314 m/s

21. 80.0 N

dT
dt

%
"(dM/dt)

2#a2g 1/2[Li ( (dM/dt)t/2#a2]1/2

h

Li L

a
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27. (a) 0.691 m (b) 691 km

29. 65.6 dB

31. (a) 65.0 dB (b) 67.8 dB (c) 69.6 dB

33. (a) 30.0 m (b) 9.49 ! 105 m

35. (a) 332 J (b) 46.4 dB

37. (a) 338 Hz (b) 483 Hz

39. 26.4 m/s

41. 19.3 m

43. (a) 0.364 m (b) 0.398 m (c) 941 Hz (d) 938 Hz

45. 2.82 ! 108 m/s

47. (a) 56.3 s (b) 56.6 km farther along

49. 22.3° left of center

51. f ! 300 Hz, 3 ! 100 m, duration !10$1 s

55. 6.01 km

57. (a) 55.8 m/s (b) 2 500 Hz

59. 1 204.2 Hz

61. 1.60

63. 2.34 m

65. (a) 0.948° (b) 4.40°

67. 1.34 ! 104 N

69. (b) 531 Hz

71. (a) 6.45 (b) 0

CHAPTER 18
1. (a) $1.65 cm (b) $6.02 cm (c) 1.15 cm

3. (a) ( x, $ x (b) 0.750 s (c) 1.00 m

5. (a) 9.24 m (b) 600 Hz

7. (a) zero (b) 0.300 m

9. (a) 2 (b) 9.28 m and 1.99 m

11. (a) 156° (b) 0.058 4 cm

13. 15.7 m, 31.8 Hz, 500 m/s

15. At 0.089 1 m, 0.303 m, 0.518 m, 0.732 m, 0.947 m,
1.16 m from one speaker

17. (a) 4.24 cm (b) 6.00 cm (c) 6.00 cm
(d) 0.500 cm, 1.50 cm, 2.50 cm

19. 0.786 Hz, 1.57 Hz, 2.36 Hz, 3.14 Hz

21. (a) 350 Hz (b) 400 kg

23. 1.27 cm

25. (a) reduced by 1/2 (b) reduced by 
(c) increased by

27. (a) 163 N (b) 660 Hz

29.

31. (a) 3 loops (b) 16.7 Hz (c) 1 loop

33. (a) 3.66 m/s (b) 0.200 Hz

35. 9.00 kHz

37. (a) 0.357 m (b) 0.715 m

39. 57.6 Hz

41. n(206 Hz) for n % 1 to 9 and n(84.5 Hz) for n % 2 to 23

Mg
4Lf  

2 tan *

√2
1/√2

43. 50.0 Hz, 1.70 m

45. (a) 350 m/s (b) 1.14 m

47. (a) 162 Hz (b) 1.06 m

49. (a) 1.59 kHz (b) odd-numbered harmonics
(c) 1.11 kHz

51. 5.64 beats/s

53. (a) 1.99 beats/s (b) 3.38 m/s

55. The second harmonic of E is close to the third harmonic
of A, and the fourth harmonic of C# is close to the fifth
harmonic of A.

57. (a) 34.8 m/s (b) 0.977 m

59. 3.85 m/s away from the station or 3.77 m/s toward the
station

61. 21.5 m

63. (a) 59.9 Hz (b) 20.0 cm

65. (a) 1/2 (b) [n/(n ( 1)]2T (c) 9/16

67. y1 ( y2 % 11.2 sin(2.00x $ 10.0t ( 63.4°)

69. (a) 78.9 N (b) 211 Hz

CHAPTER 19
1. (a) $ 274°C (b) 1.27 atm (c) 1.74 atm

3. (a) $ 320°F (b) 77.3 K

5. (a) 810°F (b) 450 K

7. (a) 1 337 K, 2 993 K (b) 1 596°C % 1 596 K

9. 3.27 cm

11. 55.0°C

13. (a) 0.176 mm (b) 8.78 &m (c) 0.093 0 cm3

15. (a) $ 179°C (attainable)
(b) $ 376°C (below 0 K, unattainable)

17. 0.548 gal

19. (a) 99.8 mL
(b) about 6% of the volume change of the acetone

21. (a) 99.4 cm3 (b) 0.943 cm

23. 1.14°C

25. 5 336 images

27. (a) 400 kPa (b) 449 kPa

29. 1.50 ! 1029 molecules

31. 1.61 MPa % 15.9 atm

33. 472 K

35. (a) 41.6 mol (b) 1.20 kg, nearly in agreement with the
tabulated density

37. (a) 1.17 g (b) 11.5 mN (c) 1.01 kN
(d) The molecules must be moving very fast.

39. 4.39 kg

41. 3.55 L

43.

45. (a) 94.97 cm (b) 95.03 cm

47. 3.55 cm

49. It falls by 0.094 3 Hz

m1 $ m2 %
P0VM

R
 # 1

T1
$

1
T2

$
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51. (a) Expansion makes density drop. (b) 5 ! 10$5/°C

53. (a) h % nRT/(mg ( P0A) (b) 0.661 m

55. We assume that 1 /T is much less than 1.

57. (a) 0.340% (b) 0.480%

59. 0.750

61. 2.74 m

63. (b) 1.33 kg/m3

67. No. Steel is not strong enough.

69. (a) Lf % Li e 1 /T (b) 2.00 ! 10$4%; 59.4%

71. (a) 6.17 ! 10$3 kg/m (b) 632 N (c) 580 N; 192 Hz

73. 4.54 m

CHAPTER 20
1. (10.0 ( 0.117)°C

3. 0.234 kJ/kg - °C

5. 1.78 ! 104 kg

7. 29.6°C

9. (a) 0.435 cal/g - °C (b) beryllium

11. 23.6°C

13. 50.7 ks

15. 1.22 ! 105 J

17. 0.294 g

19. 0.414 kg

21. (a) 0°C (b) 114 g

23. $ 1.18 MJ

25. $ 466 J

27. (a) $ 4PiVi (b) It is proportional to the square of the
volume, according to T % (Pi /nRVi)V 2

29. Q % $ 720 J

31. Q W /E int

BC $ 0 $
CA $ ( $
AB ( $ (

33. 3.60 kJ

35. (a) 7.50 kJ (b) 900 K

37. $3.10 kJ; 37.6 kJ

39. (a) 0.041 0 m3 (b) ( 5.48 kJ (c) $ 5.48 kJ

41. 2.22 ! 10$2 W/m - °C

43. 51.2°C

45. 67.9°C

47. 3.77 ! 1026 J/s

49. 3.49 ! 103 K

51. 277 K % 4°C

53. 2.27 km

55. (a) 16.8 L (b) 0.351 L/s

57. c % "/#R /T

59. $ 1.87 kJ

61. 5.87 ! 104 °C

63. 5.31 h

65. 1.44 kg

67. 38.6 m3/d

71. 9.32 kW

73. (a) 3.16 ! 1022 W (b) 5.78 ! 103 K, 0.327% less than
5 800 K (c) 3.17 ! 1022 W, 0.408% larger

CHAPTER 21

1. 0.943 N; 1.57 Pa

3. 3.65 ! 104 N

5. 3.32 mol

7. (a) 3.54 ! 1023 atoms (b) 6.07 ! 10$21 J (c) 1.35 km/s

9. (a) 8.76 ! 10$21 J for both (b) 1.62 km/s for helium
and 514 m/s for argon

13. (a) 3.46 kJ (b) 2.45 kJ (c) $ 1.01 kJ

15. (a) 209 J (b) zero (c) 317 K

17. 1.18 atm

19. Between 10$2 and 10$3 °C

21. (a) 316 K (b) 200 J

23. (a) (b) 

25. (a) 1.39 atm (b) 366 K, 253 K
(c) 0, $ 4.66 kJ, $ 4 . 66 k J

27. 227 K

29. (a)

C %
'
m

i%1
 niCi

'
m

i%1
 ni

C %
n1C1 ( n2C 2

n1 ( n2

P

3Pi

2Pi

Pi

0 4 8 V(L)

B

A C

(b) 8.79 L (c) 900 K (d) 300 K (e) $ 336 J

31. (a) 28.0 kJ (b) 46.1 kJ (c) Isothermal process, 
Pf % 10.0 atm; adiabatic process, Pf % 25.1 atm

33. (a) 9.95 cal/K, 13.9 cal/K (b) 13.9 cal/K, 17.9 cal/K

35. 2.33 ! 10$21 J

37. (a) 6.80 m/s (b) 7.41 m/s (c) 7.00 m/s

41. (a) 2.37 ! 104 K (b) 1.06 ! 103 K

43. (b) 0.278
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45. (a) 3.21 ! 1012 molecules (b) 779 km
(c) 6.42 ! 10$4 s$1

49. (a) 9.36 ! 10$8 m (b) 9.36 ! 10$8 atm (c) 302 atm

51. (a) 100 kPa, 66.5 L, 400 K, 5.82 kJ, 7.48 kJ, $ 1.66 kJ

(b) 133 kPa, 49.9 L, 400 K, 5.82 kJ, 5.82 kJ, 0

(c) 120 kPa, 41.6 L, 300 K, 0, $ 910 J, ( 910 J

(d) 120 kPa, 43.3 L, 312 K, 722 J, 0, ( 722 J

55. 510 K and 290 K

57. 0.623

59. (a) Pressure increases as volume decreases
(d) 0.500 atm$1, 0.300 atm$1

61. (a) 0.514 m3 (b) 2.06 m3 (c) 2.38 ! 103 K
(d) $ 480 kJ (e) 2.28 MJ

63. 1.09 ! 10$3; 2.69 ! 10$2; 0.529; 1.00; 0.199; 1.01 ! 10$41;
1.25 ! 10$1082

67. (a) 0.203 mol (b) TB % TC % 900 K, VC % 15.0 L

(c, d) P, atm V, L T, K E int, kJ

A 1.00 5.00 300 0.760
B 3.00 5.00 900 2.28
C 1.00 15.0 900 2.28
A 1.00 5.00 300 0.760

(e) Lock the piston in place and put the cylinder into an
oven at 900 K. Keep the gas in the oven while gradually let-
ting the gas expand to lift a load on the piston as far as it
can. Move the cylinder from the oven back to the 300-K
room and let the gas cool and contract.

(f, g) Q , kJ W, kJ /E int, kJ

AB 1.52 0 1.52
BC 1.67 $ 1.67 0
CD $ 2.53 ( 1.01 $ 1.52
ABCA 0.656 $ 0.656 0

69. 1.60 ! 104 K

CHAPTER 22
1. (a) 6.94% (b) 335 J

3. (a) 10.7 kJ (b) 0.533 s

5. (a) 29.4 L/h (b) 185 hp (c) 527 N - m
(d) 1.91 ! 105 W

7. (a) 24.0 J (b) 144 J

9. (a) 2.93 (b) coefficient of performance for a refrigerator
(c) $300 is twice as large as $150

11. (a) 67.2% (b) 58.8 kW

13. (a) 741 J (b) 459 J

15. (a) 4.20 W (b) 31.2 g

17. (a) 564 K (b) 212 kW (c) 47.5%

19. (b) 1 $ Tc /Th (c) (Tc ( Th)/2 (d) (ThTc)1/2

21. (a) 214 J, 64.3 J
(b) $ 35.7 J, $ 35.7 J. The net effect is the transport of 
energy by heat from the cold to the hot reservoir without
expenditure of external work. (c) 333 J, 233 J 

(d) 83.3 J, 83.3 J, 0. The net effect is converting energy,
taken in by heat, entirely into energy output by work in a
cyclic process.
(e) $ 0.111 J/K. The entropy of the Universe has decreased.

23. 9.00

27. 72.2 J

29. 1.86

31. (a) 244 kPa (b) 192 J

33. 146 kW, 70.8 kW

35. $ 610 J/K

37. 195 J/K

39. 236 J/K

41. 1.02 kJ/K

43. ! 100 W/K from metabolism; much more if you are using
high-power electric appliances or an automobile, or if your
taxes are paying for a war.

45. 5.76 J/K; temperature is constant if the gas is ideal

47. 18.4 J/K

49. (a) 1 (b) 6

51. (a) Result Number of Ways to Draw

All R 1
2 R, 1 G 3
1R, 2 G 3
All G 1

(b) Result Number of Ways to Draw

All R 1
4R, 1G 5
3R, 2G 10
2R, 3G 10
1R, 4G 5
All G 1

53. (a) 5.00 kW (b) 763 W

55. (a) 0.476 J/K (b) 417 J (c) Wnet % T 1 /SU % 167 J

57. (a) 2nRTi ln 2 (b) 0.273

59. 5.97 ! 104 kg/s

61. (a) 3.19 cal/K (b) 98.19°F, 2.59 cal/K

63. (a) 8.48 kW (b) 1.52 kW (c) 1.09 ! 104 J/K
(d) COP drops by 20.0%

65. (a) 10.5nRTi (b) 8.50nRTi (c) 0.190 (d) 0.833

67. (a) nCP ln 3
(b) Both ask for the change in entropy between the same
two states of the same system. Entropy is a function of
state. The change in entropy does not depend on path,
but only on original and final states.

71. (a) 20.0°C (c) /S % ( 4.88 J/K (d) Yes

CHAPTER 23
1. (a) ( 160 zC, 1.01 u (b) ( 160 zC, 23.0 u

(c) $ 160 zC, 35.5 u (d) ( 320 zC, 40.1 u
(e) $ 480 zC, 14.0 u (f) ( 640 zC, 14.0 u
(g) ( 1.12 aC, 14.0 u (h) $ 160 zC, 18.0 u

3. The force is ! 1026 N.
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5. (a) 1.59 nN away from the other
(b) 1.24 ! 1036 times larger
(c) 8.61 ! 10$11 C/kg

7. 0.872 N at 330°

9. (a) 2.16 ! 10$5 N toward the other (b) 8.99 ! 10$7 N
away from the other

11. (a) 82.2 nN (b) 2.19 Mm/s

13. (a) 55.8 pN/C down (b) 102 nN/C up

15. 1.82 m to the left of the negative charge

17. $ 9Q and ( 27Q

19. (a) ($ 0.599 î $ 2.70 ĵ) kN/C (b) ($ 3.00 î $ 13.5 ĵ) &N

21. (a) 5.91ke q/a2 at 58.8° (b) 5.91ke q2/a2 at 58.8°

23. (a) î (b) As long as the charge is
symmetrically placed, the number of charges does not
matter. A continuous ring corresponds to n becoming
larger without limit.

25. 1.59 ! 106 N/C toward the rod

27. (a) 6.64 î MN/C (b) 24.1 î MN/C (c) 6.40 î MN/C
(d) 0.664 î MN/C, taking the axis of the ring as the x axis

31. (a) 93.6 MN/C; the near-field approximation is 104 MN/C,
about 11% high (b) 0.516 MN/C; the point-charge
approximation is 0.519 MN/C, about 0.6% high

33. $ 21.6 î MN/C

37. (a) 86.4 pC for each
(b) 324 pC, 459 pC, 459 pC, 432 pC 
(c) 57.6 pC, 106 pC, 154 pC, 96.0 pC

39.

[ke Qx/(R2 ( x2)3/2]

41. (a)

+

+ +

The field is zero at the center of the triangle.
(b) 1.73keq ĵ/a2

43. (a) 61.3 Gm/s2 (b) 19.5 &s (c) 11.7 m (d) 1.20 fJ

45. K/ed in the direction of motion

47. (a) 111 ns (b) 5.68 mm (c) (450 î ( 102 ĵ) km/s

49. (a) 36.9°, 53.1° (b) 167 ns, 221 ns

51. (a) 21.8 &m (b) 2.43 cm

53. (a) mv2/qR (b) mv2/21/2qR oriented at 135° to the x axis

55. (a) 10.9 nC (b) 5.44 mN

57. 40.9 N at 263°

59.

63. $ 707 ĵ mN

65. (a) *1 % *2

67. (a) 0.307 s (b) Yes. Ignoring gravity makes a difference of
2.28%.

69. (a) F % 1.90(keq2/s2)( î ( ĵ ( k̂) (b) F % 3.29(keq2/s2)
in the direction away from the diagonally opposite vertex

CHAPTER 24
1. (a) 858 N - m2/C (b) 0 (c) 657 N - m2/C

3. 4.14 MN/C

5. (a) aA (b) bA (c) 0

7. 1.87 kN - m2/C

9. (a) $ 6.89 MN - m2/C (b) The number of lines entering
exceeds the number leaving by 2.91 times or more.

11. $Q /40 for S1; 0 for S2; $2Q /40 for S3; 0 for S4

13. E0"r 2

15. (a) (Q /240 (b) $Q /240

17. $ 18.8 kN - m2/C

19. 0 if R + d; if R ) d

21. (a) 3.20 MN - m2/C (b) 19.2 MN - m2/C (c) The answer
to (a) could change, but the answer to (b) would stay the
same.

23. 2.33 ! 1021 N/C

25. $ 2.48 &C/m2

27. 5.94 ! 105 m/s

29. E % #r/240 away from the axis

31. (a) 0 (b) 7.19 MN/C away from the center

33. (a) !1 mN (b) !100 nC (c) !10 kN/C
(d) !10 kN - m2/C

35. (a) 51.4 kN/C outward (b) 646 N - m2/C

37. 508 kN/C up

39. (a) 0 (b) 5 400 N/C outward (c) 540 N/C outward

41. E % Q /240A vertically upward in each case if Q ) 0

43. (a) ( 708 nC/m2 and $ 708 nC/m2 (b) ( 177 nC and
$ 177 nC

45. 2.00 N

47. (a) $ 3, ( 33 (b) 33/2"40r radially outward

49. (a) 80.0 nC/m2 on each face (b) 9.04k̂ kN/C
(c) $ 9.04k̂ kN/C

51. E % 0 inside the sphere and within the material of the
shell. E % keQ /r 2 radially inward between the sphere and
the shell. E % 2keQ /r 2 radially outward outside the shell.
Charge $ Q resides on the outer surface of the sphere.

23

40
 √R2 $ d2

Q % 2L √ k(L $ Li)
ke
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( Q is on the inner surface of the shell. (2Q is on the
outer surface of the shell.

53. (b) Q /240 (c) Q /40

55. (a) ( 2Q (b) radially outward (c) 2keQ /r 2 (d) 0 (e) 0
(f) 3Q (g) 3keQ /r 2 radially outward (h) 3Q r 3/a 3

(i) 3keQr/a3 radially outward ( j) $ 3Q (k) ( 2Q
(l) See below.

29. 5keq 2/9d

31. 0.720 m, 1.44 m, 2.88 m. No. The radii of the equipoten-
tials are inversely proportional to the potential.

33. 7.26 Mm/s 

35.

37. (a) 10.0 V, $ 11.0 V, $ 32.0 V
(b) 7.00 N/C in the ( x direction

39. E % ($ 5 ( 6xy)î ( (3x2 $ 2z2)ĵ $ 4yz k̂ ; 7.07 N/C

41.

43. (a) C/m2 (b) ke1[L $ d ln(1 ( L/d)]

45. $ 1.51 MV

47. ke3(" ( 2 ln 3)

49. (a) 0, 1.67 MV (b) 5.84 MN/C away, 1.17 MV
(c) 11.9 MN/C away, 1.67 MV

51. (a) 450 kV (b) 7.51 &C

53. 253 MeV

55. (a) $ 27.2 eV (b) $ 6.80 eV (c) 0

59. keQ2/2R

63. V2 $ V1 % ($ 3/2"40) ln(r2/r1)

69. (b) Er % (2kep cos *)/r 3; E* % (kep sin *)/r 3; yes; no
(c) V % kepy(x2 ( y2)$3/2;
E % 3kepxy(x2 ( y2)$5/2 î ( kep(2y2 $ x2)(x2 ( y2)$5/2 ĵ

71.

73. (a) 8 876 V (b) 112 V

CHAPTER 26

1. (a) 48.0 &C (b) 6.00 &C

3. (a) 1.33 &C/m2 (b) 13.3 pF

5. (a) 5.00 &C on the larger and 2.00 &C on the smaller
sphere (b) 89.9 kV

7. (a) 11.1 kV/m toward the negative plate.
(b) 98.3 nC/m2 (c) 3.74 pF (d) 74.7 pC

9. 4.42 &m

11. (a) 2.68 nF (b) 3.02 kV

13. (a) 15.6 pF (b) 256 kV

15. 708 &F

17. (a) 3.53 &F (b) 6.35 V and 2.65 V (c) 31.8 &C on each

19. 6.00 pF and 3.00 pF

21. (a) 5.96 &F (b) 89.5 &C on 20 &F, 63.2 &C on 6 &F,
26.3 &C on 15 &F and on 3 &F

23. 120 &C; 80.0 &C and 40.0 &C

25. 10

27. 6.04 &F

29. 12.9 &F

31. (a) 216 &J (b) 54.0 &J

V % " ke C   %R √x 
2 ( R 

2 ( x 
2 ln # x

R ( √x 
2 ( R2 $&

Ey %
k e Q

y √!2 ( y2

%#1 ( √ 1
8 $  

k e q  
2

m L &1/2

0 a b c r

E

57. (a) #r/340; Q /4"40r 2; 0; Q /4"40r 2, all radially outward
(b) $ Q /4"b2 and ( Q /4"c 2

59. * % tan$1[qQ /(2"40dmv 2)]

61. For r 5 a, E % 3/2"40r radially outward. For a 5 r 5 b,
E % [3(#"(r 2 $ a2)]/2"40r radially outward. For r ) b,
E % [3(#"(b2 $ a2)]/2"40r radially outward.

63. (a) 6/40 away from both plates (b) 0 (c) 6/40 away
from both plates

65. 6/240 radially outward

69. E % a/240 radially outward

73. (b) g % GMEr/RE
3 radially inward

CHAPTER 25

1. 1.35 MJ

3. (a) 152 km/s (b) 6.49 Mm/s

5. (a) $ 600 &J (b) $ 50.0 V

7. 38.9 V; the origin

9. ( 260 V

11. (a) 2QE/k (b) QE/k (c) (d) 2(QE $ &kmg)/k

13. (a) 0.400 m/s (b) the same 

15. (a) 1.44 ! 10$7 V (b) $ 7.19 ! 10$8 V
(c) $ 1.44 ! 10$7 V, ( 7.19 ! 10$8 V

17. (a) 6.00 m (b) $ 2.00 &C

19. $ 11.0 MV

21. 8.95 J

25. (a) no point at a finite distance from the charges
(b) 2keq/a

27. (a) 

(b) faster than calculated in (a)

v 2 %  √ 2m 1 ke  q 1q 2

m2(m1 ( m2)
  # 1

r 1 ( r 2
$

1
d $

v1 %  √ 2m 2 ke q 1q 2

m1(m1 ( m2)
  # 1

r1 ( r2
$

1
d $

2" √m/k
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33. (a) Circuit diagram: 9. (a) 2.55 A/m2 (b) 5.31 ! 1010 m$3 (c) 1.20 ! 1010 s

11. 0.130 mm/s

13. 500 mA

15. 6.43 A

17. (a) 1.82 m (b) 280 &m

19. (a) !1018 7 (b) !10$7 7 (c) !100 aA, !1 GA

21. R/9

23. 6.00 ! 10$ 15/7 - m

25. 0.181 V/m

27. 21.2 nm

29. 1.44 ! 103°C

31. (a) 31.5 n7 - m (b) 6.35 MA/m2 (c) 49.9 mA
(d) 659 &m/s (e) 0.400 V

33. 0.125

35. 67.6°C

37. 7.50 W

39. 28.9 7

41. 36.1%

43. (a) 5.97 V/m (b) 74.6 W (c) 66.1 W

45. 0.833 W

47. $0.232

49. 26.9 cents/d

51. (a) 184 W (b) 461°C

53. !$1

55. (a) Q /4C (b) Q /4 and 3Q /4 (c) Q2/32C and
3Q2/32C (d) 3Q2/8C

59. Experimental resistivity % 1.47 &7 - m ' 4%, in
agreement with 1.50 &7 - m

61. (a) (8.00 î) V/m (b) 0.637 7 (c) 6.28 A
(d) (200 î) MA/m2

63. 2 020°C

65. (a) 667 A (b) 50.0 km

67. Material !" ! !/(1 " 20!)

Silver 4.1 ! 10$3/°C
Copper 4.2 ! 10$3/°C
Gold 3.6 ! 10$3/°C
Aluminum 4.2 ! 10$3/°C
Tungsten 4.9 ! 10$3/°C
Iron 5.6 ! 10$3/°C
Platinum 4.25 ! 10$3/°C
Lead 4.2 ! 10$3/°C
Nichrome 0.4 ! 10$3/°C
Carbon $ 0.5 ! 10$3/°C
Germanium $ 24 ! 10$3/°C
Silicon $ 30 ! 10$3/°C

69. No. The fuses should pass no more than 3.87 A.

73. (b) 1.79 P7

75. (a) 

(b) 
40!v ∆V (8 $ 1)

d
 clockwise

40!

2d
 (! ( 2x ( 8! $ 28x)

35. (a) 1.50 &C (b) 1.83 kV

39. 9.79 kg

43. (a) 81.3 pF (b) 2.40 kV

45. 1.04 m

47. (a) 369 pC (b) 118 pF, 3.12 V (c) $ 45.5 nJ

49. 22.5 V

51. (b) $ 8.78 ! 106 N/C - m; $ 5.53 ! 10$2 î N

55. (a) 11.2 pF (b) 134 pC (c) 16.7 pF (d) 66.9 pC

57. (a) $ 2Q /3 on upper plate, $ Q /3 on lower plate
(b) 2Qd/340A

59. 0.188 m2

61. (a) (b) 1.76 pF

63. (b) 1/C approaches 

65. (a) Q 0
2 d(! $ x)/(2!340) (b) Q 0

2 d/(2!340) to the right
(c) Q 0

2/(2!440) (d) Q 0
2/(2!440)

67. 4.29 &F

69. (a) The additional energy comes from work done by the
electric field in the wires as it forces more charge onto the
already-charged plates. (b) Q /Q 0 % 8

71. 750 &C on C 1 and 250 &C on C 2

73. 19.0 kV

75. C

CHAPTER 27

1. 7.50 ! 1015 electrons

3. (a) 0.632 I09 (b) 0.999 95 I09 (c) I09

5. q0/2"

7. 0.265 C

4
3

1
4" 4 0a

(
1

4" 4 0b

C %
4 0 A

d
  # 8 1

2
(

8 2 8 3

8 2 ( 8 3
$

100 V

5.00   Fµ25.0   Fµ

268 V

25.0   F

5.00   F

µ

µ

Stored energy % 0.150 J
(b) Potential difference % 268 V
Circuit diagram:
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CHAPTER 28
1. (a) 6.73 7 (b) 1.97 7

3. (a) 4.59 7 (b) 8.16%

5. 12.0 7

7. Circuit diagram:

51. (a) !10$14 A (b) Vh/2 ( (!10$10 V) and 
Vh/2 $ (!10$10 V), where Vh is the potential of the live
wire, !102 V

53. (a) either 3.84 7 or 0.375 7 (b) impossible

55. (a) :2/3R (b) 3:2/R (c) in the parallel connection

57. (a) R : ; (b) R : 0 (c) R % r

59. 6.00 7; 3.00 7

61. (a) 4.40 7 (b) 32.0 W, 9.60 W, 70.4 W (c) 48.0 W

63. (a) R + 1 050 7 (b) R < 10.0 7

65. (a) 9.93 &C (b) 33.7 nA (c) 334 nW (d) 337 nW

67. (a) 40.0 W (b) 80.0 V, 40.0 V, 40.0 V

69. (a) 0.991 (b) 0.648 (c) Insulation should be added to
the ceiling.

71. (a) 0 in 3 k7 and 333 &A in 12 k7 and 15 k7 (b) 50.0 &C
(c) (278 &A) e$t/180 ms (d) 290 ms

73. (a) ln(://V ) % (0.011 8)t ( 0.088 2 (b) 84.7 s, 8.47 &F

75. q1 % (240 &C)(1 $ e$1 000t/6); q2 % (360 &C)(1 $ e$1 000t/6)

CHAPTER 29
1. (a) up (b) out of the plane of the paper (c) no deflec-

tion (d) into the plane of the paper

3. negative z direction

5. ($ 20.9ĵ) mT

7. 48.9° or 131°

9. 2.34 aN

11. 0.245 T east

13. (a) 4.73 N (b) 5.46 N (c) 4.73 N

15. 1.07 m/s

17. 2"rIB sin * up

19. 2.98 &N west

21. 18.4 mA - m2

23. 9.98 N - m clockwise as seen looking down from above

27. (a) 118 &N - m (b) $ 118 &J + U + 118 &J

29. (a) 49.6 aN south (b) 1.29 km

31. 115 keV

33. r1 % rd % rp

35. 4.98 ! 108 rad/s

37. 7.88 pT

39. m % 2.99 u, either 31H( or 32He(

41. (a) 8.28 cm (b) 8.23 cm; ratio is independent of both /V
and B

43. (a) 4.31 ! 107 rad/s (b) 51.7 Mm/s

45. (a) 7.66 ! 107 rad/s (b) 26.8 Mm/s (c) 3.76 MeV
(d) 3.13 ! 103 rev (e) 257 &s

47. 70.1 mT

49. 1.28 ! 1029 m$3, 1.52

51. 43.3 &T

53. (a) The electric current experiences a magnetic force.

55. (a) $ 8.00 ! 10$21 kg - m/s (b) 8.90°

57. (a) (3.52î $ 1.60 ĵ) aN (b) 24.4°

√2

120 V 192 Ω

0.800 Ω

0.800 Ω

power 73.8 W

9. (a) 227 mA (b) 5.68 V

11. (a) 75.0 V (b) 25.0 W, 6.25 W, and 6.25 W; 37.5 W

13. 1.00 k7

15. 14.2 W to 2 7, 28.4 W to 4 7, 1.33 W to 3 7, 4.00 W to 1 7

17. (a) /tp % 2 /t/3 (b) /ts % 3 /t

19. (a) /V 4 ) /V 3 ) /V 1 ) /V2
(b) /V 1 % /3, /V 2 % 2 /9, /V 3 % 4 /9, /V 4 % 2 /3
(c) I1 ) I4 ) I2 % I3 (d) I1 % I, I2 % I 3 % I/3, I 4 % 2I/3
(e) I 4 increases while I1, I2, and I 3 decrease
(f) I1 % 3I/4, I 2 % I 3 % 0, I 4 % 3I/4

21. 846 mA down in the 8-7 resistor; 462 mA down in the
middle branch; 1.31 A up in the right-hand branch

23. (a) $ 222 J and 1.88 kJ (b) 687 J, 128 J, 25.6 J, 616 J, 205 J
(c) 1.66 kJ of chemical energy is transformed into internal
energy

25. 50.0 mA from a to e

27. starter 171 A; battery 0.283 A

29. (a) 909 mA (b) $ 1.82 V % Vb $ Va

31. (a) 5.00 s (b) 150 &C (c) 4.06 &A

33. U0/4

37. (a) 6.00 V (b) 8.29 &s

39. (a) 12.0 s (b) I(t) % (3.00 &A)e$t/12.0 s; 
q(t) % (36.0 &C) (1 $ e$t/12.0 s)

41. 0.302 7

43. 16.6 k7

45.

::::

r = 25.0 Ω

0.260 Ω 0.261 Ω 0.521 Ω

Common 100-mA
terminal

50-mA
terminal

25-mA
terminal

47. 145 7, 0.756 mA

49. (a) 12.5 A, 6.25 A, 8.33 A (b) No; together they would
require 27.1 A.
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59. (2"/d)(2me /V/e)1/2

61. 0.588 T

63. 0.713 A counterclockwise as seen from above

65. 438 kHz

67. 3.70 ! 10$24 N - m

69. (a) 0.501 m (b) 45.0°

71. (a) 1.33 m/s (b) Positive ions moving toward you in
magnetic field to the right feel upward magnetic force,
and migrate upward in the blood vessel. Negative ions
moving toward you feel downward magnetic force and
accumulate at the bottom of this section of vessel. Thus
both species can participate in the generation of the
emf.

CHAPTER 30
1. 12.5 T

3. (a) 28.3 &T into the paper (b) 24.7 &T into the paper

5. into the paper

7. 26.2 &T into the paper

9. (a) 2I1 out of the page (b) 6I1 into the page

11. (a) along the line (y % $ 0.420 m, z % 0)
(b) ($ 34.7 ĵ) mN (c) (17.3 ĵ) kN/C

13. (a) 4.5 (b) stronger

15. ($13.0 ĵ) &T

17. ($27.0 î) &N

19. (a) 12.0 cm to the left of wire 1 (b) 2.40 A, downward

21. 20.0 &T toward the bottom of the page

23. 200 &T toward the top of the page; 133 &T toward the
bottom of the page

25. (a) 6.34 mN/m inward (b) greater

27. (a) 0 (b) tangent to the wall in a

counterclockwise sense (c) inward

29. (a) (b) 

31. 31.8 mA

33. 226 &N away from the center of the loop, 0

35. (a) 3.13 mWb (b) 0

37. (a) 11.3 GV - m/s (b) 0.100 A

39. (a) 9.27 ! 10$24 A - m2 (b) down

41. 0.191 T

43. 2.62 MA/m

45. (b) 6.45 ! 104 K - A/T - m

47. (a) 8.63 ! 1045 electrons (b) 4.01 ! 1020 kg

49.

51. 12 layers, 120 m

&0I
2"w

 ln #1 (
w
b $ k̂

& 0bR 
3

3r2

1
3&0br 

2
1

&0I 2

(2"R)2

&0I 

2"R

&0I
"L

  
&0I
4"x

53. 143 pT away along the axis

59. (a) 2.46 N up (b) 107 m/s2 up

61. (a) 274 &T (b) ($ 274 ĵ) &T (c) (1.15 î) mN
(d) (0.384 î) m/s2 (e) acceleration is constant
(f) (0.999 î) m/s

63. 81.7 A

65. to the right

69. out of the plane of the paper

71.

73. (a) to the left (b) toward

the top of the page

CHAPTER 31
1. 500 mV

3. 9.82 mV

5. 160 A

7. (a) 1.60 A counterclockwise (b) 20.1 &T (c) up

9. (a) (&0IL/2") ln(1 ( w/h) (b) $ 4.80 &V; current is
counterclockwise

11. 283 &A upward

13. (68.2 mV) e$1.6t, tending to produce counterclockwise
current

15. 272 m

17. (0.422 V) cos 0t

19. (a) eastward (b) 458 &V

21. (a) 3.00 N to the right (b) 6.00 W

23. 360 T

25. (a) 233 Hz (b) 1.98 mV

27. 2.83 mV

29. (a) F % N 2B2w 2v/R to the left (b) 0 (c) F % N 2B 2w2v/R
to the left

31. 145 &A

33. 1.80 mN/C upward and to the left, perpendicular to r1

35. (a) 7.54 kV (b) The plane of the coil is parallel to B.

37. (28.6 mV) sin(4"t)

39. (a) 110 V (b) 8.53 W (c) 1.22 kW

41. (a) (8.00 mWb) cos(377t) (b) (3.02 V) sin(377t)
(c) (3.02 A) sin(377t) (d) (9.10 W) sin2(377t)
(e) (24.1 mN - m) sin2(377t)

43. (b) Larger R makes current smaller, so the loop must
travel faster to maintain equality of magnetic force
and weight. (c) The magnetic force is proportional to
the product of field and current, while the current is
itself proportional to field. If B becomes two times
smaller, the speed must become four times larger to
compensate.

45. ($ 2.87 ĵ ( 5.75k̂) Gm/s2

&0I(2r 
2 ( a 

2)
"r(4r 

2 ( a 
2)

&0I(2r 
2 $ a 

2)
"r (4r 

2 $ a 
2)

1
3#&00R 

2

&0I
4"

 (1 $ e$2")

&0I1I2L
"R
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47. (a) Doubling N doubles the amplitude. (b) Doubling 0
doubles the amplitude and halves the period. (c) Dou-
bling 0 and halving N leaves the amplitude the same and
cuts the period in half.

49. 62.3 mA down through 6.00 7, 860 mA down through
5.00 7, 923 mA up through 3.00 7

51. !10$4 V, by reversing a 20-turn coil of diameter 3 cm in
0.1 s in a field of 10$3 T

53. (a) 254 km/s (b) 215 V

55. 1.20 &C

57. (a) 0.900 A (b) 0.108 N (c) b (d) no

59. (a) a"r 2 (b) $ b"r 2 (c) $ b"r 2/R (d) b 2" 2r 4/R

61. (a) 36.0 V (b) 600 mWb/s (c) 35.9 V (d) 4.32 N - m

65. 6.00 A

67. (a) (1.19 V) cos(120"t) (b) 88.5 mW

71. ($ 87.1 mV) cos(200"t ( .)

CHAPTER 32
1. 19.5 mV

3. 100 V

5. (18.8 V) cos(377t)

7. $ 0.421 A/s

9. (a) 188 &T (b) 33.3 nT - m 2 (c) 0.375 mH (d) B and
=B are proportional to current; L is independent of
current

11. 0.750 m

13. :0/k2L

15. (a) 0.139 s (b) 0.461 s

17. (a) 2.00 ms (b) 0.176 A (c) 1.50 A (d) 3.22 ms

19. (a) 0.800 (b) 0

21. (a) 6.67 A/s (b) 0.332 A/s

23. (500 mA)(1 $ e$10t/s), 1.50 A $ (0.25 A) e$10t/s

25. 0 for t 5 0; (10 A)(1 $ e$10 000t ) for 0 5 t 5 200 &s;
(63.9 A) e$10 000t for t ) 200 &s

27. (a) 5.66 ms (b) 1.22 A (c) 58.1 ms

29. 0.064 8 J

31. 2.44 &J

33. 44.2 nJ/m3 for the E-field and 995 &J/m3 for the B-field

35. (a) 0.500 J (b) 17.0 W (c) 11.0 W

37. 2.27 mT

39. 1.73 mH

41. 80.0 mH

43. (a) 18.0 mH (b) 34.3 mH (c) $ 9.00 mV

45. (L1L2 $ M2)/(L1 ( L2 $ 2M )

47. 20.0 V

49. 608 pF

51. (a) 135 Hz (b) 119 &C (c) $ 114 mA

53. (a) 6.03 J (b) 0.529 J (c) 6.56 J

55. (a) 4.47 krad/s (b) 4.36 krad/s (c) 2.53%

57. L % 199 mH; C % 127 nF

59. (b) &0 J s
2/2 away from the other sheet (c) &0 Js and zero

(d) &0 J s
2/2

61. (a) $ 20.0 mV (b) $ (10.0 MV/s2)t 2 (c) 63.2 &s

63. (Q /2N )(3L/C )1/2

65. (a) L ( ("/2)N 2&0R (b) ! 100 nH (c) ! 1 ns

71. (a) 72.0 V; b
(b)

(b)

0

0

100 200
t(µs)µ

Current in R1 (mA)

–10

Current in R2 (mA)

+5

100 200

10

t(µs)µ

(c) 75.2 &s

73. 300 7

75. (a) It creates a magnetic field. (b) The long narrow rec-
tangular area between the conductors encloses all of the
magnetic flux.

77. (a) 62.5 GJ (b) 2 000 N

79. (a) 2.93 mT up (b) 3.42 Pa (c) clockwise as seen from
above (d) up (e) 1.30 mN

CHAPTER 33
1. /v(t) % (283 V) sin(628t)

3. 2.95 A, 70.7 V

5. 14.6 Hz

7. 3.38 W

9. (a) 42.4 mH (b) 942 rad/s

11. 5.60 A

13. 0.450 Wb

15. (a) 141 mA (b) 235 mA

17. 100 mA

19. (a) 194 V (b) current leads by 49.9°

21. (a) 78.5 7 (b) 1.59 k7 (c) 1.52 k7 (d) 138 mA
(e) $ 84.3°
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23. (a) 17.4° (b) voltage leads the current

25. 1.88 V

27.

(b)

XL = 200 Ω

R = 300 ΩXC = 90.9 Ω

XL – XC  =
109 Ω

Z

φ

29. (a) either 123 nF or 124 nF (b) 51.5 kV

31. 8.00 W

33. (a) 16.0 7 (b) $ 12.0 7

35.

37. 1.82 pF

39. (a) 633 f F (b) 8.46 mm (c) 25.1 7

41. 242 mJ

43. 0.591 and 0.987; the circuit in Problem 23

45. 687 V

47. 87.5 7

49. (a) 29.0 kW (b) 5.80 ! 10$3 (c) If the generator were
limited to 4 500 V, no more than 17.5 kW could be deliv-
ered to the load, never 5 000 kW.

51. (b) 0; 1 (c) fh % (10.88RC)$1

53. (a) 613 &F (b) 0.756

55. (a) 580 &H and 54.6 &F (b) 1 (c) 894 Hz (d) /Vout
leads /Vin by 60.0° at 200 Hz. /Vout and /Vin are in
phase at 894 Hz. /Vout lags /V in by 60.0° at 4 000 Hz.
(e) 1.56 W, 6.25 W, 1.56 W (f) 0.408

57. 56.7 W

59. 99.6 mH

61. (a) 225 mA (b) 450 mA

63. (a) 1.25 A (b) Current lags voltage by 46.7°.

65. (a) 200 mA; voltage leads by 36.8° (b) 40.0 V; . % 0°
(c) 20.0 V; . % $ 90.0° (d) 50.0 V; . % ( 90.0°

67. (b) 31.6

71. f (Hz) XL (7) XC (7) Z (7)

300 283 12 600 12 300
600 565 6 280 5 720
800 754 4 710 3 960

1 000 942 3 770 2 830
1 500 1 410 2 510 1 100
2 000 1 880 1 880 40.0
3 000 2 830 1 260 1 570
4 000 3 770 942 2 830
6 000 5 650 628 5 020

10 000 9 420 377 9 040

√ 800 #"d
"(/V  )2

73. (a) 1.84 kHz
(b)
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CHAPTER 34
1. (a) (3.15 ĵ) kN/C (b) (525 k̂) nT (c) ($ 483 ĵ) aN

3. 2.25 ! 108 m/s

5. (a) 6.00 MHz (b) ($ 73.3k̂) nT
(c) B % [($ 73.3k̂) nT][cos(0.126x $ 3.77 ! 107t)

7. (a) 0.333 &T (b) 0.628 &m (c) 477 THz

9. 75.0 MHz

11. 3.33 &J/m3

13. 307 &W/m2

15. 3.33 ! 103 m2

17. (a) 332 kW/m2 radially inward (b) 1.88 kV/m 
and 222 &T

19. (a) E # B % 0 (b) (11.5 î $ 28.6 ĵ) W/m2

21. 29.5 nT

23. (a) 2.33 mT (b) 650 MW/m2 (c) 510 W

25. (a) 540 V/m (b) 2.58 &J/m3 (c) 773 W/m2

(d) 77.3% of the intensity in Example 34.5



27. 83.3 nPa

29. (a) 1.90 kN/C (b) 50.0 pJ (c) 1.67 ! 10$19 kg - m/s

31. (a) 11.3 kJ (b) 1.13 ! 10$4 kg - m/s

33. (a) 134 m (b) 46.9 m

35. (a) away along the perpendicular bisector of the line
segment joining the antennas (b) along the extensions
of the line segment joining the antennas

37. (a) E % &0c J max[cos(kx $ 0t)]ĵ

(b) S % &0c J 2
max[cos2(kx $ 0t)]î

(c) (d) 3.48 A/m

39. 545 THz

41. (a) 6.00 pm (b) 7.50 cm

43. 60.0 km

45. 1.00 Mm % 621 mi; not very practical

47. (a) 3.77 ! 1026 W (b) 1.01 kV/m and 3.35 &T

49. (a) 2"2r2f Bmax cos *, where * is the angle between the
magnetic field and the normal to the loop (b) The loop
should be in the vertical plane containing the line of sight
to the transmitter.

51. (a) 6.67 ! 10$16 T (b) 5.31 ! 10$17 W/m2

(c) 1.67 ! 10$14 W (d) 5.56 ! 10$23 N

53. 95.1 mV/m

55. (a) Bmax % 583 nT, k % 419 rad/m, 0 % 126 Grad/s; 
B vibrates in xz plane (b) Sav % (40.6 î) W/m2

(c) 271 nPa (d) (406 î) nm/s2

57. (a) 22.6 h (b) 30.6 s

59. (a) 8.32 ! 107 W/m2 (b) 1.05 kW

61. (a) 1.50 cm (b) 25.0 &J (c) 7.37 mJ/m3

(d) 40.8 kV/m, 136 &T (e) 83.3 &N

63. 637 nPa

65. 40 E2A/2m

67. (a) 16.1 cm (b) 0.163 m2 (c) 470 W/m2 (d) 76.8 W
(e) 595 N/C (f) 1.98 &T (g) The cats are nonmagnetic
and carry no macroscopic charge or current. Oscillating
charges within molecules make them emit infrared radia-
tion. (h) 119 W

69. 4.77 Gm

CHAPTER 35
1. 299.5 Mm/s

3. 114 rad/s

5. (c) 0.055 7 °

9. 23.3°

11. 15.4°; 2.56 m

13. 19.5° above the horizon

15. (a) 1.52 (b) 417 nm (c) 474 THz (d) 198 Mm/s

17. 158 Mm/s

19. 30.0° and 19.5° at entry; 19.5° and 30.0° at exit

21. 3.88 mm

I %
&0c J 2

max

8

1
4

1
2

23. 30.4° and 22.3°

25. !10$11 s; between 103 and 104 wavelengths

29. 0.171°

31. 86.8°

33. 27.9°

35. 4.61°

37. (a) 33.4° (b) 53.4° (c) There is no critical angle.

39. 1.000 08

41. 1.08 cm 5 d 5 1.17 cm

43. Skylight incident from above travels down the plastic. If
the index of refraction of the plastic is greater than 1.41,
the rays close in direction to the vertical are totally
reflected from the side walls of the slab and from both
facets at the bottom of the plastic, where it is not
immersed in gasoline. This light returns up inside the
plastic and makes it look bright. Where the plastic is
immersed in gasoline, total internal reflection is frustrated
and the downward-propagating light passes from the
plastic out into the gasoline. Little light is reflected up,
and the gauge looks dark.

45. Scattered light leaving the photograph in all forward
horizontal directions in air is gathered by refraction into
a fan in the water of half-angle 48.6°. At larger angles
you see things on the other side of the globe, reflected
by total internal reflection at the back surface of the
cylinder.

47. 77.5°

49. 2.27 m

51. (a) 0.172 mm/s (b) 0.345 mm/s (c) northward at 50.0°
below the horizontal (d) northward at 50.0° below the
horizontal

53. 62.2%

55. 82 reflections

57. (b) 68.5%

59. 27.5°

61. (a) It always happens. (b) 30.3° (c) It cannot happen.

63. 2.37 cm

67. 1.93

69. (a) n % [1 ( (4t/d)2]1/2 (b) 2.10 cm (c) violet

71. (a) 1.20 (b) 3.40 ns

CHAPTER 36
1. !10$9 s younger

3. 35.0 in.

5. 10.0 ft, 30.0 ft, 40.0 ft

7. (a) 13.3 cm, $ 0.333, real and inverted (b) 20.0 cm,
$ 1.00, real and inverted (c) no image is formed

9. (a) $ 12.0 cm; 0.400 (b) $ 15.0 cm; 0.250 (c) upright

11. (a) q % 45.0 cm; M % $ 0.500 (b) q % $ 60.0 cm; M %
3.00 (c) Image (a) is real, inverted, and diminished.
Image (b) is virtual, upright, and enlarged. The ray
diagrams are like Figures 36.15a and 36.15b, respectively.
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13. At 0.708 cm in front of the reflecting surface. Image is vir-
tual, upright, and diminished. 

15. 7.90 mm 

17. (a) a concave mirror with radius of curvature 2.08 m
(b) 1.25 m from the object

19. (a) 25.6 m (b) 0.058 7 rad (c) 2.51 m (d) 0.023 9 rad
(e) 62.8 m from your eyes

21. 38.2 cm below the top surface of the ice

23. 8.57 cm

25. (a) 45.0 cm (b) $ 90.0 cm (c) $ 6.00 cm

27. 1.50 cm/s

29. (a) 16.4 cm (b) 16.4 cm

31. (a) 650 cm from the lens on the opposite side from the
object; real, inverted, enlarged (b) 600 cm from the
lens on the same side as the object; virtual, upright,
enlarged

33. 2.84 cm

37. (a) $ 12.3 cm, to the left of the lens (b) 0.615 
(c)

69. 1.50 m in front of the mirror; 1.40 cm (inverted)

71. (a) 30.0 cm and 120 cm (b) 24.0 cm (c) real, inverted,
diminished with M % $ 0.250

73. $ 75.0

75. (a) 44.6 diopters (b) 3.03 diopters

77. (a) 20.0 cm to the right of the second lens, $ 6.00
(b) inverted (c) 6.67 cm to the right of the second lens,
$ 2.00, inverted

CHAPTER 37
1. 1.58 cm

3. (a) 55.7 m (b) 124 m

5. 1.54 mm

7. (a) 2.62 mm (b) 2.62 mm

9. 11.3 m

11. (a) 10.0 m (b) 516 m (c) Only the runway centerline is
a maximum for the interference patterns for both
frequencies. If the frequencies were related by a ratio of
small integers k/!, the plane could by mistake fly along the
kth side maximum of one signal where it coincides with
the !th side maximum of the other.

13. (a) 13.2 rad (b) 6.28 rad (c) 0.012 7 degree
(d) 0.059 7 degree

15. (a) 1.93 &m (b) 3.003 (c) maximum

17. 48.0 &m

19. (a) 7.95 rad (b) 0.453

21. (a) and (b) 19.7 kN/C at 35.0° (c) 9.36 kN/C at 169°

23. 10.0 sin(100"t ( 0.927)

25. 26.2 sin(0t ( 36.6°)

27. "/2

29. 360°/N

31. (a) green (b) violet

33. 0.500 cm

35. no reflection maxima in the visible spectrum

37. 290 nm
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39. (a) 7.10 cm (b) 0.074 0 mm (c) 23.3 MW/m2

41. (a) (b) Both images are real and

inverted. One is enlarged, the other diminished.

43. 1.24 cm

45. 21.3 cm

47. $ 4.00 diopters, a diverging lens

49. $ 3.70 diopters

51. $ 575

53. (a) $ 800 (b) image is inverted

55. (a) virtual (b) infinity (c) 15.0 cm, $ 5.00 cm

57. $ 40.0 cm

59. (a) 23.1 cm (b) 0.147 cm 

61. (a) 67.5 cm (b) The lenses can be displaced in two ways.
The first lens can be displaced 1.28 cm farther away from
the object, and the second lens 17.7 cm toward the object.
Alternatively, the first lens can be displaced 0.927 cm
toward the object and the second lens 4.44 cm toward the
object. 

63. q % 5.71 cm; real 

65. 0.107 m to the right of the vertex of the hemispherical
face

67. 8.00 cm

p %
d
2

' √  d2

4
$ fd

O F I FL1

L2O, F F

Ray diagram:



39. 4.35 &m

41. 39.6 &m

43. 1 ( N3/2L

45. 1.25 m

47. (a) !10$3 degree (b) !1011 Hz, microwave

49. 20.0 ! 10$6 °C$1

51. 3.58°

53. 1.62 km

55. 421 nm

59. (a) 2(4h2 ( d 2)1/2 $ 2d (b) (4h2 ( d 2)1/2 $ d

61. y, % (n $ 1)tL/d

63. (a) 70.6 m (b) 136 m

65. 1.73 cm

67. (a) 4.86 cm from the top (b) 78.9 nm and 128 nm
(c) 2.63 ! 10$6 rad

69. 0.505 mm

CHAPTER 38
1. 4.22 mm

3. 0.230 mm

5. three maxima, at 0° and near 46° on both sides

7. 51.8 &m wide and 949 &m high

9. 0.016 2

11. 1.00 mrad

13. 3.09 m

15. violet; between 186 m and 271 m

17. 13.1 m

19. Neither. It can resolve objects no closer than several cen-
timeters apart.

21. 0.244 rad % 14.0°

23. 7.35°

25. 5.91° in first order, 13.2° in second order, 26.5° in third
order

27. (a) 478.7 nm, 647.6 nm, and 696.6 nm (b) 20.51°,
28.30°, and 30.66°

29. (a) 12 000, 24 000, 36 000 (b) 11.1 pm

31. (a) 2 800 grooves (b) 4.72 &m

33. (a) 5 orders (b) 10 orders in the short-wavelength region

35. 93.4 pm

37. 14.4°

39. 5.51 m, 2.76 m, 1.84 m

41. (a) 54.7° (b) 63.4° (c) 71.6°

43. 1.11

45. 60.5°

47. 36.9° above the horizon

49. (a) 6 (b) 7.50°

51. 632.8 nm

53. (a) 25.6° (b) 19.0°

55. 545 nm

57. (a) 3.53 ! 103 grooves/cm (c) Eleven maxima

59. 4.58 &m 5 d 5 5.23 &m

61. 15.4

63. (a) 41.8° (b) 0.593 (c) 0.262 m

67. (b) 3.77 nm/cm

69. (b) 15.3 &m

71. . % 1.391 557 4 after seventeen steps or fewer

73. a % 99.5 &m ' 1%

Answers to Odd-Numbered Problems A.59

CHAPTER 39
5. 0.866c

7. (a) 64.9/min (b) 10.6/min

9. 1.54 ns

11. 0.800c

13. (a) 39.2 &s (b) accurate to one digit

15. (a) 20.0 m (b) 19.0 m (c) 0.312c

17. (a) 21.0 yr (b) 14.7 ly (c) 10.5 ly (d) 35.7 yr

19. (c) 2.00 kHz (d) ' 0.075 0 m/s ( 0.2 mi/h

21. 0.220c % 6.59 ! 107 m/s

23. (a) 17.4 m (b) 3.30°

25. (a) 2.50 ! 108 m/s (b) 4.97 m (c) $ 1.33 ! 10$8 s

27. 0.960c

29. (a) 2.73 ! 10$24 kg - m/s (b) 1.58 ! 10$22 kg - m/s
(c) 5.64 ! 10$22 kg - m/s

31. 4.50 ! 10$14

33. 0.285c

35. (a) 5.37 ! 10$11 J (b) 1.33 ! 10$9 J

37. 1.63 ! 103 MeV/c

39. (a) 938 MeV (b) 3.00 GeV (c) 2.07 GeV

41. 8.84 ! 10$28 kg and 2.51 ! 10$28 kg

45. (a) 3.91 ! 104 (b) u % 0.999 999 999 7c (c) 7.67 cm

47. 4.08 MeV and 29.6 MeV

49. ! 10$15

1

0.8

0.6

0.4

0.2

0 5 10 15 20
Distance from center
of pattern (mm)

I/Imax



51. 0.842 kg

53. 4.19 ! 109 kg/s

55. (a) 26.6 Mm (b) 3.87 km/s (c) $ 8.34 ! 10$11

(d) 5.29 ! 10$10 (e) ( 4.46 ! 10$10

57. (a) a few hundred seconds (b) ! 108 km

59. (a) 0.800c (b) 7.50 ks (c) 1.44 Tm, $ 0.385c (d) 4.88 ks

61. 0.712%

63. (a) 0.946c (b) 0.160 ly (c) 0.114 yr (d) 7.50 ! 1022 J

65. (a) 76.0 min (b) 52.1 min

67. yes, with 18.8 m to spare

69. (b) For u small compared to c, the relativistic expression
agrees with the classical expression. As u approaches c, the
acceleration approaches zero, so that the object can never
reach or surpass the speed of light.
(c) Perform (1 $ u2/c2)$3/2 du % (qE/m) dt to obtain 
u % qEct(m2c2 ( q2E2t2)$1/2 and then
dx % qEct(m2c2 ( q2E2t2)$1/2 dt to obtain

x % (c/qE)[(m2c2 ( q2E2t2)1/2 $ mc]

75. 1.82 ! 10$3 eV

))

))
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Aberrations
chromatic, 1153, 1165
spherical, 1132, 1152–1154, 1164

ABS. See Antilock braking systems
Absolute pressure (P), 426
Absolute temperature scale, 584–586,

585
Absolute uncertainty, A.29
Absolute zero, 585
Absorptivity, 628
Abundances, isotopic, A.4t–A.13t
AC. See Alternating-current
AC–DC converters, 1053–1054
Accelerating reference frames, 115,

159–162
and general relativity, 1273–1274

Acceleration (a), 23, 31–34
angular (!), 293–296, 295, 307–312
average (a!), 31
average angular (!!), 293–296, 295
of center of mass (aCM), 275
centripetal (ac), 92–93, 150–152, 298,

391–392
constant, motion in one dimension

with, 36–40
constant, motion in two dimensions

with, 80–83
and dimensional analysis, 11t
of electric charges, 988, 1079–1080
gravitational (g), 41, 365–366,

394–395t, 468
instantaneous (a), 31–32
instantaneous angular (!), 293–296,

295, 307–312
radial component of (ar), 94–96,

151–158, 298
and relationship to sign of velocity, 

35
relative (a"), 96–99
relativistic, 1268
tangential component of (at), 

94–96
transverse (ay), 495
units of, 118t

Acceleration–time graphs, 32–33,
458–459

Acceleration vectors (a), 78–80
Accelerators, 1242
Accommodation, eye, 1156, 1158
Accretion disks, 409
Acela [train], 54–55
Action forces, 120, 342

Addition
associative law of, 62
commutative law of, 62
and differentiation, A.24
and significant figures, 15–16
and uncertainty, A.29
of vectors, 61–62, 66–67

Adiabatic free expansion, 617, 619
and entropy changes, 688–690, 693
as irreversible process, 674

Adiabatic processes, 619, 649–650
in Carnot cycles, 675–676

Aeronautics, 436
Air
dielectric strength of, 782, 791, 812
reduction of pollution in, 783

Air columns, standing waves in, 559–562
Air conditioners, 671
Air drag, 162. See also Resistive forces
Air resistance
of automobiles, 205–206t
negligible, 83

Airbags, 257
Airplanes
and shock waves, 528
wings of, 436

Aldrin, Edwin “Buzz,” 119
Algebra, A.15–A.19
matrix, 870

Alternating-current (AC) circuits,
1033–1065

capacitors in, 1041–1043
inductors in, 1038–1040
power in, 1047–1049
resistors in, 1034–1038
series RLC, 1043–1047
sources for, 1034

Alternating-current (AC) generators,
982–984

Ammeters, 879
Amorphous solids, 1229
Amount of substance, 4, 591–592
Ampère, André-Marie, 933, 959
Ampere (A), 4, 833, 932
Ampère–Maxwell law, 943, 989
Ampère’s law, 933–938, 934
Amplitude (A)
displacement (smax), 515
of periodic waves, 492
pressure (#Pmax), 515
of simple harmonic motion, 455, 1018
voltage (#Vmax), 1034

Analog sound recording, 528–531
Analysis problems, 47
Analytic methods vs. numerical

modeling, 167–168
Analyzers, polaroid, 1227
Analyzing problems, 46–47. See also

Problem-solving strategies
Angle of deviation ($), 1109
Angle of incidence (%1), 1099
Angle of reflection (%"1), 1099
Angle of refraction (%2), 1102
Angular acceleration (!), 293–296´,

295
and torque, 307–312

Angular displacement (#%), 293–296,
294

Angular frequency (&)
in AC circuits, 1034
of periodic waves, 493
of simple harmonic motion, 455, 457,

1018, 1021
Angular impulse–angular momentum

theorem, 356
Angular magnification (m), 1159
of microscopes, 1161–1162
of telescopes, 1163–1164

Angular momentum (L), 336–361, 340
and atomic magnetic moments, 945
conservation of, 345–349
defined, 339–343
and planetary motion, 397–398, 406
and rotational motion, 343–345
spin (S), 946

Angular position (%), 293–296, 294
maximum (%max), 468

Angular speed (&), 293–296
Angular wave number (k), 493
Anisotropic materials, 587
Antennas, 1079–1080, 1133
Antiderivatives. See Integration
Antifreeze, 443
Antilock braking systems (ABS),

136–137
Antilogarithms, A.19
Antinodes, 550–551, 559
Apertures, circular, 1215–1216
Aphelion, 397
Apogee, 397
Apollo 11 [spacecraft], 1100,

1118–1119
Apollo 13 [spacecraft], 412
Applied forces (Fapp), 192
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Approximating, 13–14
and limiting techniques, 721
with rays, 1097–1098
and series expansions, 1250, 1269, A.23
and small angles, 351, 1138–1139, 1180
and small values, 588, A.23

Aqueous humor, 1155
Arago, Dominique, 1207
Archimedes, 427, 429
Archimedes’s principle, 427–430
Area
and dimensional analysis, 11t
of geometric shapes, A.20t

Areas under curves. See Integration
Arguments of trigonometric functions,

455
Aristotle, 40, 215–216
Associative law of addition
for vectors, 62

Astigmatism, 1158
Astronomical units (AU), 399, 414
Astronomy and astrophysics. See also

Gravitation; Kepler’s laws; Planetary
motion; Planets; Relativity; Stars;
Sun; Universe

and Doppler shift, 525
history of, 396–399

Atmospheres
escape speeds from, 408
and heat engines, 669
law of, 663
and molecular speed distributions, 656
and polarization by scattering in, 1231
pressure of, 426, 446–447
and radiation, 628

Atomic clocks, 5–6
Atomic mass, 9–10, 592, A.4t–A.13t,

A.30t–A.31t
Atomic mass units (u), 9–10
Atomic nucleus
liquid drop model of, 791

Atomic number (Z), 8, A.4t–A.13t,
A.30t–A.31t

Atomic spectroscopy, 1220
Atomic spectrum, 1222
Atomizers, 437
Atoms, 8
Bohr model of hydrogen, 352–353,

731, 791, 852
magnetic dipole moments of, 944–946

Atwood machines, 129–130, 311–312
Audio systems, 1053, 1056
Audiovisual devices. See also Movies;

Musical instruments; Sound
recording

compact discs (CDs), 299, 529–532,
1203, 1221, 1236

digital video discs (DVD), 1203
loudspeakers, 548–549
and magnetic recording, 951
phonographs, 528–529

Audiovisual devices (Continued)
pickup coils, 971–972
radio, 813, 1051, 1061
television, 728, 765, 900, 1156–1157

Auroras, 910
Autobiography [Cellini], 1117
Automobiles
airbags for, 257
and diesel engines, 650, 680–681,

682–683, 701
and energy, 205–208, 828
and gasoline engines, 679–682
and hybrid drive systems, 985
intermittent windshield wipers for, 877
shock absorbers for, 472
and simple harmonic motion, 465
suspension systems of, 460–461
taillights of, 1100–1101

Average, 643
Average acceleration (a!), 31, 79–80
Average angular acceleration (!!),

293–296, 295
Average angular speed (&!), 293–296,

294
Average coefficient of linear expansion

(!), 587–588t
Average coefficient of volume

expansion ('), 588t
Average power ( ), 203, 1047
Average speed (v(), 27, 656–657
Average velocity (v!), 26–27, 78–79
Avogadro’s number (NA), 592

Back-of-the-envelope calculations, 14.
See also Approximating

Bainbridge mass spectrometers, 911
Balances
current, 933
equal-arm, 987–988
torsional, 393–394, 895, 1077

Ball-park figures, 13. See also
Approximating

Balloons, hot-air, 420
Banked curves, 155
Barometers, 426
Barometric pressure (P0), 426
Base of logarithms, A.19
Base quantities, 4, A.32t
Batteries, 858–861
chemical energy in, 799, 845–846
recharging, 1014–1015, 1061

Beam splitters, 1194
Beams, 368–369
Beat frequency ( fb), 564–565
Beats, 544, 564–566
Belknap, C. J., 249
Bell, Alexander Graham, 519
Bernoulli, Daniel, 433, 434
Bernoulli effect, 435, 436
Bernoulli’s equation, 433–436, 434

!

Betatrons, 1001
Big Bang, 1088
Bimetallic strips, 589, 601
Binary numbers, 530, 531t
Binary stars, 409
Binding energy, 245, 404, 406
Binomial expansions, 1250, 1269, A.23
Biophysics. See also Health; Medicine
eyes, 1080, 1087, 1155–1159, 1216–1217
hearing, 519–522, 564

Biot, Jean-Baptiste, 927
Biot–Savart law, 927–932
Birefringent materials, 1229
Black bodies, 629, 1076
Black holes, 409–410, 1275, 1282
Blue shifts, 1281
Bode plots, 1064
Bohr, Niels, 352, 957
Bohr magneton ()B), 946
Boiling. See Vaporization
Boiling points, 612t
Boltzmann, Ludwig, 656
Boltzmann distribution law, 654–655
Boltzmann’s constant (kB), 593
Bond energy, 605. See also Internal energy
Bound systems, 397, 406
Boundaries
of systems, 183

Boundary conditions
and standing waves, 552–553, 555, 560

Boyle’s law, 584, 592
Bragg, William Lawrence, 1225
Bragg’s law, 1225
Brahe, Tycho, 396
Brewster, David, 1228
Brewster’s angle, 1119, 1228
Brewster’s law, 1228
Bridges
Tacoma Narrows, 473–474
trusses for, 372–373

British thermal units (Btu), 606
Brown, Robert, 579
Brownian motion, 579
Bubble chambers, 918
Bulk modulus (B), 373–375, 374t
and speed of sound waves, 513–514,

516
Bunsen, Robert, 870
Buoyant forces (B), 163, 164, 427–430,

782
Burn rates, 279

Calculus, A.23–A.28. See also Chain rule;
Definite integrals; Derivatives;
Differential equations;
Differentiation; Fourier series;
Gradient; Integration; Mean value
theorem; Partial derivatives

development of, 3, 28, 392, A.23
vs. numerical modeling, 168–169
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Caloric, 605
Calorie (cal), 212, 606
Calorimeters, 609
flow, 637

Calorimetry, 609–611
and entropy changes, 689–690

Cameras, 1153–1155
pinhole, 1239

Candela (cd), 4
Capacitance (C), 795–830
calculation of, 797–802
equivalent (Ceq), 803–805

Capacitive reactance (XC), 1042,
1056

Capacitors, 795–796
in AC circuits, 1041–1043
charging of, 873–876
circuits of, 800, 802–806, 870, 873
construction of, 812t–814
cylindrical, 801–802
discharging of, 876–878
electrolytic, 813
parallel-plate, 767, 798–800
spherical, 802
variable, 813

Carlson, Chester, 784
Carnot, Sadi, 675
Carnot cycles, 675–676
entropy changes in, 685

Carnot engines, 675–678
Carnot’s theorem, 675
Cars. See Automobiles
Cartesian coordinate systems, 59. See

also Coordinate systems
Cartesian coordinates (x, y, z), 59
Cataracts, 1174
Categorizing problems, 46–47. See also

Problem-solving strategies
Cathode ray tubes (CRT), 727–728
Cavendish, Henry, 393, 711
Cavities
electric fields in, 780
thermal expansion of, 587

CCD. See Charge-coupled devices
CD. See Compact discs
CDS. See Cinema Digital Sound
Celestial equator, 412
Cellini, Benvenuto, 1117
Celsius, Anders, 585
Celsius temperature scale, 583, 610
Center of gravity, 272
vs. center of mass, 365–366

Center of mass (rCM), 270–274, 
272

vs. center of gravity, 365–366
Center of percussion, 333
Central forces (F), 403
Central maxima, 1206
Centrifugal casting, 172–173
“Centrifugal” forces, 159–160
Centrifuges, 665

Centripetal acceleration (ac), 92–93
and rotation about a fixed axis, 298
and second law of motion, 150–152
and speed of waves on a string,

496–497
and universal gravitation, 391–392

Ceramics
superconductivity in, 844

Cerenkov effect, 539
Cesium-133
and standard second, 5

Chain rule, 193–194, 313, A.24
Change (#) in a quantity, 25
Charge carriers, 833
and Hall effect, 914–916

Charge-coupled devices (CCD), 1154
Charge density (*, +, or ,), 720
Charges. See Electric charge
Charles’s and Gay–Lussac’s law, 584, 592
Charon, 1217–1218
Chemical energy
in batteries, 799, 845–846
in fuel, 278, 679

Chemistry. See Physical chemistry
Chimneys, falling, 310, 329
Chromatic aberration, 1153, 1165
Ciliary muscles, eye, 1156, 1158
Cinema. See Movies
Cinema Digital Sound (CDS), 532
Circles, A.20
Circuit breakers, 880
Circuit diagrams, 802
Circuit elements, 796. See also Batteries;

Capacitors; Diodes; Inductors;
Junctions; Resistors; Transformers;
Transistors

Circuit symbols
for AC sources, 1034
for batteries, 802
for capacitors, 802
for diodes, 1054
for ground, 710
for inductors, 1006
for resistors, 845
for switches, 802
for transformers, 1051

Circuits. See also Kirchhoff’s rules;
Parallel combinations; Series
combinations

alternating-current, 1033–1065
of capacitors, 800, 802–806, 870, 873
direct-current, 858–893
filter, 1055–1056
household, 865, 880–882
LC, 1015–1020
LRC, 1020–1022, 1043–1047,

1049–1051
RC, 873–878
of resistors, 845
RL, 1006–1011, 1007
short, 881–882

Circular motion, 150–180
and angular momentum, 341
nonuniform, 157–158
and orbits, 406
uniform, 91–93, 151–156, 465–467

Civil engineering
and banked curves, 155
and bridges, 372–373, 473–474
and chimneys, 310, 329
and concrete, 375–376
and dams, 425–426

Cladding, in optical fibers, 1114
Classical mechanics, 1. See also

Mechanics
Classical physics, 3. See also Quantum

mechanics
Clausius, Rudolf, 671, 683
Clausius statement of the second law of

thermodynamics, 671–672
Clocks
atomic, 5–6
mechanical, 2
moving, 1255
and pendulums, 140

Coaxial cables, 801, 840, 1012–1013
Coefficients
of damping (b), 471
of drag (D), 164, 206
Hall (RH), 915
of kinetic friction ()k), 132t
of linear expansion (!), 587–588t
of performance (COP), 672, 677
of resistivity, temperature (!), 837t,

843, 855
of rolling friction ()r), 205
of static friction ()s), 132t
of volume expansion ('), 588t

Coherence, 1177
Coils
Helmholtz, 963
pickup, 971–972
primary, 949, 968–969
Rogowski, 993–994
saddle, 963
search, 999
secondary, 949, 968–969

Collins, S. C., 1030
Collision frequency ( f ), 658
Collisions, 260
elastic, 260–267
glancing, 267
inelastic, 260–261
in one dimension, 260–267
perfectly inelastic, 261, 278
in two dimensions, 267–270

Columbia [space shuttle], 0, 278
Comets
Halley, 360, 397, 414

Common logarithms, A.19
Commutative law of addition
for vectors, 62
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Commutative law of multiplication
for scalar (dot) products, 187
and vector (cross) products, 337

Commutators, 984
Compact discs (CDs), 299, 529–532,

1203, 1221, 1236
Compasses, 895
dip, 962

Component vectors, 65
and scalar (dot) products, 187

Components of vectors, 65–70
Compound microscopes, 1160–1162
Compressibility (-), 375, 664
and speed of sound waves, 513–514

Compression, 515
Compression ratios, 680
Compression strokes, 679
Compton, Arthur, 177
Computer modeling, 169–170
Concave mirrors, 1131–1133. See also

Mirrors
Conceptualizing problems, 46–47. See

also Problem-solving strategies
Concrete, prestressed, 375–376
Condensation
latent heat of, 611–612t

Conduction
electrical, 710, 841–843
thermal, 197, 623–627, 687–688

Conduction electrons, 709, 841
Conductivity (+), 835, 842
Conductors, 709
electric potential due to charged,

778–781
in electrostatic equilibrium, 750–752
motion in magnetic fields of, 970,

973–977, 980–981
resistivity of, 837t

Cones, eye, 1156
Conservation of electric charge, 708, 870
Conservation of energy, 182, 196–199
and calorimetry, 609–611
and first law of thermodynamics,

618–619
and Kirchhoff’s rules, 870
and Lenz’s law, 978–979
mechanical, 220–228, 221, 313
and motional emf, 975, 977
and planetary motion, 406
and reflection and transmission of

waves, 500
relativistic, 1268–1272
and simple harmonic motion, 463

Conservation of momentum
angular, 345–349
linear, 252–256, 254, 275, 277–280
relativistic, 1267–1268, 1270

Conservative fields, 768
Conservative forces, 218, 221, 228–229
and potential energy, 234–236, 403
work done by, 228–229, 403, 768

Constant-volume gas thermometers,
584–586

Constructive interference, 545–549,
1177–1180, 1190

Contact forces, 112–113
Contact lenses, 1169
Continuity equation for fluids, 432
Convection, 627–628
and energy transfer, 197

Conversion of units, 12–13, A.1t–A.2t
Converters, AC–DC, 1053–1054
Convex mirrors, 1134. See also Mirrors
Cooper, Gordon, 1278
Coordinate systems, 59–60
Cartesian or rectangular, 59
polar, 59
right-handed, 66
rotating, 159
transformations between, Galilean, 98,

1247
transformations between, Lorentz,

1262–1267, 1263
Copernicus, Nicholaus, 46, 396
Coplanar vectors, 364
Coriolis forces, 159–160, 323
Corneas, 1155
Corner cube reflectors, 1119
Cornu, Marie, 1199
Corona discharge, 780–782
Cosine function, A.21. See also

Trigonometric functions
and components of vectors, 65, 83
and direction cosines, 213
and law of cosines, 64, A.22
and power factor (cos .), 1048,

1051
Cosmic background radiation, 1088
Cosmic rays, 1082
in Earth’s magnetic field, 910
and time dilation, 1255

Coulomb, Charles, 705, 711
Coulomb (C), 711, 933
Coulomb constant (ke), 711
Coulomb’s law, 711–715
Crests, 492
Critical angle (%c), 1111–1112
Critical temperature (Tc), 844–845t
Critically damped oscillators, 471–472,

1022
Cross product, 337–339
CRT. See Cathode ray tubes
Crystalline lenses, 1155
Crystalline solids, 1229
diffraction of X-rays by, 1224–1225

Curie, Pierre, 951
Curie temperature (TCurie), 951t
Curie’s constant (C), 952
Curie’s law, 951–952
Current, electric. See Electric current
Current, fluid. See Flow
Current balances, 933

Current density ( J ), 835, 842
Cutoff ratio, 682
Cyclic processes, 619
and heat engines, 670
vs. one-time isothermal processes, 671

Cycloids, 316
Cyclotron frequency (&), 908–909
Cyclotrons, 908, 913–914

Dalton, John, 606
Dalton’s law of partial pressures, 602
Damped oscillators, 471–472,

1020–1022
Damping coefficients (b), 471
Dams, 425–426
D’Arsonval galvanometers, 879, 907
DC. See Direct-current
de Maricourt, Pierre, 895
Deceleration, 32
Decibels (dB), 519
Declination, magnetic, 954
Dees, cyclotron, 913
Defibrillators, 810, 825
Definite integrals, 45, A.26, A.28t. See

also Integration
Deformable systems. See also Rigid objects
moment of inertia of, 346
work done on, 605, 615–617

Degree of freedom, 644
Delta (#), 25
Demagnetization, 950
Democritus, 7
Density (*), 9t–10, 422t
of air, 446–447
and Archimedes’s principle, 428–430
of the Earth, 395
and incompressible liquids, 423
linear mass (, or )), 273–274, 302,

488, 496
and mean free path, 658
measurement of, 443
and moment of inertia, 302
and resistive forces, 164, 206
and speed of sound waves, 513–514
surface charge (+), 720, 779, 818
surface mass (+), 302
volumetric mass (*), 302

Depth of field, 1154
Derivatives, 29, 79–80, A.23–A.25t. See

also Differentiation
of exponential functions, 34, 164
partial, 235, 495, 503–504, 516, 773,

1069–1070
second, 31, A.24

Derived quantities, 4, A.32t
Destructive interference, 545–549,

1177–1180, 1190
Determinants, 338
Deuterium
as moderator, 266–267
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Devices. See Audiovisual devices;
Electronic devices; Mechanical
devices; Optical devices

Dewar, James, 629
Dewar flasks, 629
Diagrams. See Energy diagrams; Energy-

level diagrams; Free-body diagrams;
Graphs; Motion diagrams; PV
diagrams

Dialogue Concerning Two New World
Systems [Galilei], 46

Diamagnetism, 947–948, 952
perfect, 952, 1031

Diamonds, 1112
Dielectric constant (-), 810, 812t
Dielectric strength, 812t
of air, 782, 791, 812

Dielectrics, 796, 810–814
atomic description of, 817–820

Diesel engines, 650, 680–681, 682–683,
701

Differential equations, 163–164, 168
second-order, 454–455, 1069
separable, 875, 1007–1008

Differentials, perfect, A.27
Differentiation, A.23–A.25. See also

Derivatives
inexact, 618
partial, 235
total, 649

Diffraction, 1069, 1097, 1178. See also
Interference

of X-rays by crystals, 1224–1225
Diffraction grating spectrometers, 1219
Diffraction gratings, 1187, 1217–1224
resolution of, 1221–1222

Diffraction patterns, 1188, 1205–1241.
See also Interference

defined, 1206–1207
from slits, 1207–1214

Diffuse reflection, 1098–1099
Diffusion, 658
Digital cameras, 1154
Digital micromirror devices (DMD),

1101–1102, 1220
Digital sound recording, 530–532
Digital Theater Sound (DTS), 533
Digital video discs (DVD), 1203
Dimensional analysis, 10–12
Dimensions, 10, A.2t–A.3t
Diodes, 838, 1053–1054
Diopters, 1158
Dipole antennas, 1079–1080
Dipoles. See Electric dipoles; Magnetic

dipoles
Direct-current (DC) circuits, 858–893
and electrical meters, 879–880
and electrical safety, 881–882
and emf, 859–861
and household wiring, 880–882
and Kirchhoff’s rules, 869–873

Direct-current (DC) circuits (Continued)
and RC circuits, 873–878
resistor combinations in, 862–869

Direct-current (DC) generators, 984
Direction cosines, 213
Direction of propagation, 1069
Disorder. See Entropy
Dispersion, 488, 1109–1111, 1239
Displacement (#x), 25–26, 61
angular (#%), 293–296, 294

Displacement amplitude (smax), 515
Displacement current (Id), 942–944, 

943
Displacement vectors (#r), 78–80
Displacement volume, 681
Dissimilar metals
and bimetallic strips, 589

Distance (d), 26, A.20
Distribution functions, 654–657
Distribution of molecular speeds,

655–657
Distributive law of multiplication
for scalar (dot) products, 187
for vector (cross) products, 338

Diverging mirrors, 1134. See also Mirrors
Division
and significant figures, 15
and uncertainty, A.29

DMD. See Digital micromirror devices
Dolby Digital Sound, 533
Domain walls, 949
Domains, 949
Doppler, Christian Johann, 522
Doppler effect
non-relativistic, for sound, 522–528,

541
relativistic, for light, 1262

Dot product, 186–188
Double rainbows, 1094, 1111
Double-refracting materials, 1229
Double-slit interference patterns. See

Young’s double-slit experiment
Drag, aerodynamic, 436
Drag coefficients (D), 164, 206
Drag racing, 23, 144
Drift speed (vd), 834, 841–842
Drude, Paul, 841
DTS. See Digital Theater Sound
Dulong–Petit law, 654
DVD. See Digital video discs
Dynamics. See also Laws of motion
and numerical modeling, 167–170

e (Euler’s number), 163, 875, A.19
Ear trumpets, 518
Ears, 512, 519–522, 564. See also

Biophysics
Earth, 399t. See also Planetary motion
atmosphere of, 408
density of, 395

Earth (Continued)
escape speed from, 408t
magnetic field of, 895, 910,

953–954
Mohorovicic discontinuity of, 540
orbit of, 397
orbital velocity of, 1248–1250
Van Allen belts of, 910

Earthquakes
and Richter scale, 240–241
and waves, 489

Eccentricity (e), 396
Eddy currents, 986–988
in transformers, 987, 1051

Edison, Thomas, 528, 1053
Efficiency, thermal. See Thermal

efficiency
Eigenzeit. See Proper time intervals
Einstein, Albert, 1244, 1251
and Brownian motion, 579
and development of special relativity,

3, 988, 1243, 1245, 1249–1250
and general relativity, 402, 1195,

1273–1275
and photoelectric effect, 1093,

1095–1096
and special relativity, 6, 1249–1252,

1254, 1263
Elastic collisions, 260–267
Elastic limit, 374
Elastic modulus, 373, 374t
Elastic potential energy (Us), 197,

222–228
Elasticity, 373–376
Electric charge (q), 707–709
distributions of, 719–723, 746–750,

774–778
electromagnetic radiation from

accelerating, 988, 1079–1080
and electrostatic equilibrium,

750–752
fundamental (e), 708, 712, 781–782
induction of, 709–711
point, 711, 724, 768–771
positive and negative, 707
source and test, 715–716
of subatomic particles, 712t

Electric current (I ), 4, 831–857, 833
average (Iav), 832
direct, 859
displacement (Id), 942–944, 943
eddy, 986–988
induced, 968–970
instantaneous (i), 833, 1034
magnetic field of, 927–932
magnetic force on, 900–904
model of, 833–835
root-mean-square (Irms), 1037

Electric current density ( J ), 835, 842
Electric dipole moment (p), 815, 905
induced, 817
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Electric dipoles, 719
electric field lines for, 724, 772–773,

942
in electric fields, 815–817
electric potential due to, 769, 773–774
electromagnetic waves from oscillating,

1079–1080
equipotential surfaces for, 772–773

Electric field lines. See Field lines
Electric fields (E), 706–738, 717t
in capacitors, 799–802
of charge distributions, 719–723
defined, 715–719
electric dipoles in, 815–817
and electric potential, 772–774
energy density of, 808, 1012
and Gauss’s law, 743–745
induced, 981–982
motion of charged particles in,

725–728
potential difference in uniform,

765–768
and superposition principle, 718–719,

744
Electric flux (/E), 740–743
and Gauss’s law, 743–745

Electric forces (Fe), 711–715
Electric generators. See Generators
Electric potential (V ), 762–794
defined, 764
due to charge distributions, 774–778
due to charged conductors, 778–781
due to point charges, 768–771
obtaining, from electric fields, 

772–774
in uniform electric fields, 765–768

Electrical conduction, 710
model of, 841–843

Electrical engineering. See also Circuits;
Electronic devices

and generators, 669, 782–783,
982–984, 994–995, 1034

and household wiring, 880–882
and magnetic recording, 951
and motors, 984–986
and power generation, 669, 967,

982–986, 1034, 1272
and solar energy, 628, 1078–1079, 

1193
and sound recording, 299, 528–533,

568, 971–972
and transformers, 846–847, 987, 1033,

1051–1054
Electrical induction, 709–711, 710
Electrical meters, 879–880
loading of, 889

Electrical power, 845–849
generation of, 669, 967, 982–986, 1034,

1272
transmission of, 1051–1054

Electrical safety, 881–882

Electrical transmission, 198, 831, 846–847
and electric generators, 982
and energy transfer, 198
and motors, 984
and superconductors, 1031
and transformers, 1051–1054

Electrolytes, 813
Electromagnetic forces, 113
Electromagnetic radiation, 198,

1079–1080
from black holes, 409–410
and energy transfer, 198

Electromagnetic spectrum, 1080–1082
Electromagnetic waves, 487, 988,

1066–1091
energy carried by, 1074–1076
and linear wave equation, 504
plane, 1069–1073
production of, 1079–1080

Electromagnetism, 1, 704–1091. See also
Capacitance; Circuits; Dielectrics;
Electric current; Electric fields;
Electric potential; Electromagnetic
waves; Faraday’s law; Gauss’s law;
Inductance; Magnetic fields;
Resistance

defined, 705
history of, 705, 895–896, 927, 968

Electromotive force. See emf
Electron beams
bending of, with magnetic fields, 

909
Electron configurations, A.30t–A.31t
Electron gas, 841
Electron guns, 728
Electron microscopes, 102
Electron volt (eV), 764–765, 1270
Electronic devices. See also Circuits;

Electrical meters; Generators;
Sound recording

AC–DC converters, 1053–1054
charge-coupled devices (CCD), 1154
compact discs (CDs), 299, 529–532,

1203, 1221, 1236
digital micromirror devices (DMD),

1101–1102, 1220
digital video discs (DVD), 1203
grating light valves (GLV), 1220
microwave ovens, 816, 1085
photocopiers, 784
stud-finders, 813

Electrons
discovery of, 8
e/me ratio of, 912
free or conduction, 709, 841
as fundamental particles, 912
and magnetic dipole moments of

atoms, 944–946
and spin, 945–946

Electrostatic equilibrium, 750–752
applications of, 782–784

Electrostatic precipitators, 783
Elementary-particle physics. See

Subatomic physics
Elements, A.4t–A.13t
periodic table of, A.30t–A.31t

Elevators, 128–129
Ellipses, 396, A.20
and orbits, 396–397, 406

emf (0), 859–861
back, 985, 1004, 1040
induced, 968–970, 981–982
motional, 973–977
self-induced, 1004

Emissivity (e), 628
Endeavor [space shuttle], 394
Energy (E), 181–216. See also

Conservation of energy; Internal
energy; Kinetic energy; Potential
energy

and automobiles, 205–208
binding, 245, 404
bond, 605
chemical, 278, 679, 799, 845–846
electric, 807–810, 1015–1019
and electromagnetic waves, 1074–1076
equipartition theorem of, 644,

650–654
and intensity of sound waves, 516–522
magnetic, 1011–1013, 1015–1019
mass as a form of, 1270, 1272
mechanical (Emech), 220–228, 221
relativistic, 1268–1272
rest (ER), 1270
and rotational motion, 312–316
and simple harmonic motion, 462–465
thermal, 605
total (E), 1270
units of, 185, 212, A.2t
zero-point, 585

Energy conversion
in automobile engines, 679–680

Energy density
in electric fields (uE), 808, 1012, 

1074
in electromagnetic waves (u),

1074–1075
in magnetic fields (uB), 1011–1012,

1074
Energy diagrams, 236–238
Energy-level diagrams, 652–653
and thermal excitation, 655

Energy reservoirs, 617
Energy transfer
by heat, 581, 605, 608, 623–628
and matter transfer or convection,

197–198, 627–628
by mechanical waves, 197–198, 487,

500–503, 516–522
by radiation, 197–198, 628–629
and transfer variables, 615
by work, 185, 193–201
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Engineering. See also Civil engineering;
Electrical engineering; Fluid
mechanics; Materials science;
Mechanical engineering

genetic, 4
role of physics in, 3–4
units used in, 626

Engines. See Heat engines
Entropy (S), 683–693, 691
in irreversible processes, 687–690
on a microscopic scale, 690–693
in reversible processes, 686–687

Envelopes
for diffraction patterns, 1188, 1213,

1241
for oscillatory motion, 471, 550

Environments, 182–183
Equal-arm balances, 987–988
Equalization circuits, 529
Equations. See also Differential

equations; Kinematic equations
Bernoulli’s, 433–436, 434
coefficients of, A.17
continuity, for fluids, 432
Galilean transformation, 98, 1247
lens makers’, 1143
linear, 870, A.17–A.19
linear wave, 503–504
Lorentz transformation, 1262–1267,

1263
Maxwell’s, 988–989, 1067–1069, 1245,

1247
mirror, 1132–1133
quadratic, 89, A.17
of state, 591–592
thin lens, 1143–1144

Equations of state, 591
for an ideal gas, 592

Equilibrium, 112, 123, 236–238,
362–388

neutral, 237
rotational, 363–364
stable, 236–237
static, 364, 366–373
thermal, 581–582
unstable, 237

Equilibrium position, 453
Equipartition of energy theorem, 644,

650–654
Equipotential surfaces, 766
and field lines, 772–773, 779

Equivalent capacitance (Ceq), 803–805
Equivalent resistance (Req), 863–868
Escape speed (vesc), 407–408t, 656
Escher, M. C., 1167
Estimating, 13–14. See also

Approximating
Ether, 1247–1250
Euler, Leonhard, 168
Euler method, 168–170
Euler’s number (e), 163, A.19

Evaporation, 640, 656–657
Event horizons, 409
Events, 1247, 1251–1252
and Lorentz transformation equations,

1262–1264
Excited states, 653
Exhaust speed (ve), 278
Exhaust strokes, 679–680
Experiments. See also Instrumentation;

Measurement; Thought experiments
Michelson–Morley, 1248–1250
Millikan oil-drop, 781–782
and null results, 1250
Young’s double-slit, 1177–1182

Exponential decay
and damped oscillators, 471

Exponents, A.14, A.16t–A.17
and uncertainty, A.29

Exposure times, 1153
Extended objects
and center of mass, 271–272

External agents, 192
Extraordinary (E) rays, 1229–1230
Eyepiece lenses, 1160–1163
Eyes, 1155–1159. See also Biophysics
resolution of, 1216–1217
sensitivity of, 1080, 1087, 1156

f -numbers, 1154
Factoring, A.17
Fahrenheit, Daniel Gabriel, 585
Fahrenheit temperature scale, 585–586
Far point of the eye, 1156
Farad (F), 797
Faraday, Michael, 968
and capacitance, 797
and electric fields, 715, 723
and electromagnetic induction, 705,

896, 968
Faraday disks, 994–995
Faraday’s law of induction, 967–1002, 989
applications of, 971–973
defined, 968–970
and electromagnetic waves, 1072–1073
and inductance, 1005, 1014
and inductive reactance, 1040

Farsightedness, 1157
Fermat, Pierre de, 1114
Fermat’s principle, 1114–1115
Ferris wheels, 150, 152
Ferromagnetism, 947–951, 949
Feynman, Richard, 730
Fiber optics, 1114
Fictitious forces, 159
Field forces, 112–113, 715
electrical, 715–719
gravitational, 401–402
magnetic, 896–900
superposition of, 404, 718–719
work done by, 198

Field lines, 723
closed, 930, 942
electric, 723–725, 751, 942
and equipotential surfaces, 772–773,

779
magnetic, 896, 930, 942

Filter circuits, 1055–1056
Finalizing problems, 46–47. See also

Problem-solving strategies
First law of motion, 114–115
First law of thermodynamics, 618–623
First-order maxima, 1180
Fission, 266, 757, 1272
Fizeau, Armand H. L., 1097, 1118
Flat mirrors, 1127–1130. See also Mirrors
Flats, CD, 299, 530
Floating objects, 428–430
Flow
ideal fluid, 431
laminar, 431
rate of, 832
turbulent, 431

Flow calorimeters, 637
Flow rate, 432
Fluid mechanics, 420–449
and fluid dynamics, 431–437
and fluid statics, 421–430

Fluids, 421. See also Gases; Liquids
Flux
electric (/E), 740–743
magnetic (/B), 940–941

Flux compression, 994
Flux linking, 1014
Focal length ( f ), 1133, 1143
Focal point (F ), 1133
Focus (ellipse), 396
Foot (ft), 7
Force (F), 32, 112–114
action vs. reaction, 120, 342
applied (Fapp), 192
buoyant (B), 163, 164, 427–430
central, 403
“centrifugal,” 159–160
conservative, 218, 221, 228–229,

234–236, 403, 768
contact, 112–113
Coriolis, 159–160
electric (Fe), 711–715
fictitious, 159
field, 112–113, 198, 401–402
of friction (f), 131–137
fundamental, 113
gravitational (Fg), 113, 119–120,

390–401
impulsive, 258
of kinetic friction (fk), 132, 199–203
Lorentz, 910, 989
magnetic (FB), 896–900
net (1F), 112, 117, 275, 363–365
nonconservative, 221, 228–234, 229
normal (n), 121
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Force (F) (Continued)
radial (Fr), 151–158
relativistic, 1268
resistive (R), 162–167
restoring, 191–192, 453, 468
of static friction (fs), 131
tangential (Ft), 157–158
units of, 117–118t, A.1t
viscous, 431

Force constant. See Spring constant
Forced convection, 628
Forced oscillators, 472–474
Fourier, Jean Baptiste Joseph, 567
Fourier analysis, 1195
Fourier series, 567–568
Fourier synthesis, 568
Fourier Transform Infrared

Spectroscopy (FTIR), 1195
Fourier transforms, 1195
Fourier’s theorem, 567–568
Fractional uncertainty, A.29
Franklin, Benjamin, 707
Fraunhofer diffraction patterns,

1207–1210
Free-body diagrams, 121–122
Free electrons, 709, 841
Free expansion. See Adiabatic free

expansion
Free-fall, 40–44
and conservation of mechanical

energy, 224–225
and gravitation force, 394–395
and projectile motion, 83–91

Freezing. See Solidification
Frequency ( f or &), 457
angular (&), 455, 457
beat ( fb), 564–565
collision ( f ), 658
cyclotron (&), 908–909
fundamental ( f1), 553–555, 554
natural (&0), 471, 554, 1018
of periodic waves ( f ), 492
precessional (&p), 351
quantization of standing-wave, 544,

553–555
resonance (&0), 473, 558, 1049

Fresnel, Augustin, 1207
Fresnel diffraction patterns, 1207
Fresnel lenses, 1146
Friction, 112. See also Resistive forces
and automobiles, 205–206t
coefficients of kinetic ()k), 132t
coefficients of rolling ()r), 205
coefficients of static ()s), 132t
and damped oscillations, 471–472
and electric current, 834
forces of (f), 112, 131–137
forces of kinetic (fk), 132
forces of rolling (fr), 

205–206t
forces of static (fs), 131
internal, 431

Friction (Continued)
and irreversible processes, 674–675
work done by kinetic, 199–203

Frictionless surfaces, 122
Fringe fields, 818–819
Fringes, 1178–1180, 1208
shifts in, 1249–1250

Front-back reversals, 1128
FTIR. See Fourier Transform Infrared

Spectroscopy
Fulcrums, 367
Full width at half maximum, 1240
Functions, A.23
Fundamental forces, 113, 707
Fundamental frequency ( f1), 553–555,

554
Fundamental particles
electron as, 912

Fundamental quantities
angular momentum ( ), 351–353
electric charge (e), 708, 712, 781–782

Fuses, 880
Fusion [melting], 611
and entropy changes, 686
latent heat of, 611–612t, 686

Fusion [nuclear], 910, 960, 1272

Gabor, Dennis, 1222
Galaxies
black holes at centers of, 410

Galilean relativity, 98–99, 1246–1248
Galilean transformation equations, 98,

1247
Galilei, Galileo, 46
and falling objects, 40
and inertia, 115
and speed of light, 1096
and telescopes, 1172

Galileo [spacecraft], 389
Galvanometers, 879, 907
Gamma rays, 1081–1082
gravitational red-shifts of, 1274

Gas constant (R), 592–593
Gas laws, 584, 592–594
Gases. See also Fluids; Materials science
diatomic, 651–652
and first law of thermodynamics,

619–623
ideal, 591–594
kinetic energy of, 586
polyatomic, 652
pressure of, 584–586
and PV diagrams, 616–617, 619
speed of sound in, 513–514t
thermal conduction of, 623–624t
work done on, 615–617

Gasoline engines, 679–682
Gauge pressure, 426
Gauss, Karl Friedrich, 742, 959
Gauss (G), 899
Gaussian surfaces, 743

2

Gauss’s law, 739–761, 988–989
for charge distributions, 746–750
defined, 743–745
formal derivation of, 752–753
for gravitation, 761
for magnetism, 941–942, 989

Gauss’s probability integral, A.28t
Gedanken experiments. See Thought

experiments
Geiger, Hans, 790
Geiger tubes, 792
Gems, 1112–1113
General relativity. See Relativity,

general
Generators, 669, 982–984. See also

Motors
AC, 982–984, 1034
DC, 984
homopolar, 994–995
Van de Graaff, 782–783

Genetic engineering, 4
Geocentric model, 396
Geometric optics, 1094–1175, 1097. See

also Optics; Reflection; Refraction;
Wave optics

Geometry, A.20–A.21
Geophysics. See also Earth
and Coriolis forces, 159–160, 323
and density of the earth, 395
and global positioning system (GPS),

6, 1281
and icebergs, 430
and law of atmospheres, 663
and lunar tides, 417, 452
and Mohorovicic discontinuity, 540
and seiches, 573
and seismology, 240–241, 489
and temperature gradient of the

ocean, 697
and tsunamis, 511

Geosynchronous satellites, 400–401
GFI. See Ground-fault interrupters
Gilbert, William, 705, 895
Glancing collisions, 267
Glasses, eye, 1157–1158
Global positioning system (GPS)
and general relativity, 1281
and special relativity, 6, 1281

GPS. See Global positioning system
Gradient, thermal, 624
Gradient [mathematical operator] (3),

235, 773
Graphical methods, A.18–A.19
Graphite
as moderator, 266–267

Graphs. See also Energy diagrams;
Energy-level diagrams; Free-body
diagrams; Motion diagrams; PV
diagrams

acceleration–time, 32–33
Bode plots, 1064
position–time, 25, 33
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Graphs (Continued)
slopes of, 28–29, 36
space–time, 1259–1262
velocity–time, 31–34

Grating light valves (GLV), 1220
Gravitation, 389–419. See also Kepler’s

laws; Planetary motion; Relativity,
general

Gauss’s law for, 761
history of, 390
law of universal, 390–393
universal constant (G) of, 391, 

393–394
Gravitational acceleration (g), 41,

395t
and center of mass vs. center of gravity,

365–366
and pendulums, 468
and universal gravitation, 394–395

Gravitational constant (G), 391
measurement of, 393–394

Gravitational fields, 401–402
Gravitational forces (Fg), 113, 119–120,

390–401
Gravitational lenses, 1275
Gravitational mass, 119, 1273
Gravitational potential energy (Ug), 219,

770
Gravitational radius, 1282
Gravitational slingshots, 282
Gravitational waves, 1195
Ground, electrical, 710
Ground-fault interrupters (GFI), 881,

971
Ground states, 652–653
Guerike, Otto von, 447
Guesstimates, 13. See also

Approximating
Gyroscopes, 350–351

Hafele, J. C., 1255
Half-life (T1/2), A.4t–A.13t. See also Time

constant
of RC circuits, 878
and time dilation, 1255–1256

Half-power points, 1050–1051
Half-wave antennas, 1079
Half-wave rectifiers, 1054–1055
Hall, Edwin, 914
Hall coefficient (R H), 915
Hall effect, 914–916
Hall field, 914
Hall voltage (#VH), 914
Hand with Reflection Sphere [Escher],

1167
Harmonic series, 553–555, 554
Harmonics, 553, 555
superposition of, 566–568

Health. See also Biophysics; Medicine
and noise pollution, 520

Hearing. See Ears

Heat (Q), 197, 604–639, 605. See also
Energy; Internal energy;
Temperature

and calorimetry, 607–611
and energy transfer, 197–198, 623–629
and first law of thermodynamics,

618–623
and internal energy, 605–607
latent (L), 606, 611–615
mechanical equivalent of, 606–607
path dependence of, 616–617
in thermodynamic processes, 615–617
units of, A.2t

Heat capacity (C ), 606, 608, 796. See also
Specific heat

Heat death, 687
Heat engines, 667–683, 669
automobile, 679–683
Carnot, 675–678
perfect, 670
real, 675
steam, 678
Stirling, 700

Heat pumps, 671–673
perfect, 671–672

Heat sinks, 846
Heavy water, 266–267
Height (h), maximum, of a projectile,

86–91
Heinlein, Robert, 416
Helical motion, 908
Heliocentric model, 396
Helium
atmospheric, 408, 656
liquid, 615, 629

Helmholtz coils, 963
Henry, Joseph, 705, 896, 968, 1005, 1024
Henry (H), 1005
Henry I, King of England, 4
Hertz, Heinrich, 705, 989, 1068–1069,

1095
Hertz (Hz), 457, 492
High-pass filters, 1055–1056
History of physics, 3
Ampère, André-Marie, 933
astronomy and astrophysics, 396–399
Bernoulli, Daniel, 434
Boltzmann, Ludwig, 656
Brown, Robert, 579
Carnot, Sadi, 675
Coulomb, Charles, 711
Einstein, Albert, 3, 579, 1251
electricity, 705
Faraday, Michael, 968
Galilei, Galileo, 46
Gauss, Karl Friedrich, 742
gravitation, 390
Henry, Joseph, 1005
Hertz, Heinrich, 1068
Huygens, Christian, 1108
Joule, James, 606
Kelvin, William Thomson, Lord, 669

History of physics (Continued)
Kirchhoff, Gustav, 870
light, 1067, 1093, 1095–1096
magnetism, 705, 895–896, 927, 968
Maxwell, James Clerk, 1067
mechanics, 1, 112
Newton, Isaac, 3, 114
Oersted, Hans Christian, 895
Ohm, Georg Simon, 835
optics, 1093
quantum mechanics, 3
relativity, 3, 1243, 1245, 1250–1251,

1273
Tesla, Nikola, 1053
thermodynamics, 579, 605

Hoffman, Jeffrey A., 394
Holography, 1222–1224
Hooke’s law, 190, 453, 907
Horizontal range (R) of a projectile,

86–91
Horsepower (hp), 204
Hubble, Edwin, 1262
Hubble Space Telescope [satellite], 394,

1205
images from, 410
resolution of, 1217

Huygens, Christian, 469, 1093,
1095–1096, 1107–1108

Huygens’s principle, 1107–1109, 1178,
1208

Hybrid drive systems, 985
Hydraulic presses, 424
Hydrodynamica [Bernoulli], 434
Hydrogen
atmospheric, 408, 656

Hydrogen atom
Bohr model of, 352–353
Thomson model of, 759

Hydrometers, 443
Hyperbolas, A.21
and orbits, 397

Hyperopia, 1157
Hysteresis, magnetic, 950
in transformers, 1051

Ice point of water, 583
Icebergs, 430
Ideal absorbers, 629
Ideal fluid flow, 431
Ideal gas law, 592–593
deviations from, 619

Ideal gases, 591–594
adiabatic processes for, 617, 619,

649–650
isothermal expansion of, 620–622
molar specific heats of, 646–649
molecular model of, 641–646
quasi-static, reversible processes for, 

686
Ideal reflectors, 629
Illusions, optical, 1130, 1174
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Image (I), 1127
real, 1127–1128
sign conventions for, 1134t, 1139t, 1144t
virtual, 1127–1128

Image distance (q), 1127
Image formation, 1126–1175
and aberration, 1132, 1152–1153
by cameras, 1153–1155
by compound microscopes, 1160–1162
by eyes, 1155–1159
by flat mirrors, 1127–1130
by lenses, 1141–1152
by refraction, 1138–1141
by simple magnifiers, 1159–1160
by spherical mirrors, 1131–1138
by telescopes, 1162–1165

Impedance (Z), 1045–1046t
Impedance matching, 861, 890, 1053,

1064
Impedance triangles, 1045
Impulse (I), 256–260, 257
Impulse-momentum theorem, 257
and kinetic theory of gases, 642
for rotational motion, 357

Impulsive forces, 258
Incoherence, 1177
Indefinite integrals, A.25, A.27t–A.28t.

See also Integration
Index of refraction (n), 1104t–1107,

1230t
and chromatic aberration, 1153
and dispersion, 1109
measurement of, 1124–1125
and polarizing angle, 1228

Induced dipole moments, 817
Inductance (L), 1003–1032
defined, 1005
mutual, 1013–1015
self-, 1004–1006

Induction
electrical, 709–711, 710
magnetic, 967–973

Induction furnaces, 999
Induction welding, 991
Inductive reactance (XL), 1040
Inductors, 1006
in AC circuits, 1038–1040

Inelastic collisions, 260–261
Inertia, 115
Inertial mass, 119, 1273
Inertial reference frames, 114–115, 1246
and twin paradox, 1258

Inexact differentials, 618
Infrared waves, 1080–1081
Instantaneous acceleration (a), 31–32, 80
Instantaneous angular acceleration (!),

293–296, 295
Instantaneous angular speed (&),

293–296, 294
Instantaneous electric current (i), 833,

1034

Instantaneous power (!), 203–204
Instantaneous speed (v), 28–30, 29
Instantaneous velocity (v), 28–30, 29, 79
Instantaneous voltage (#v), 1034
Instrument Landing System, 1198
Instrumentation. See also Experiments;

Lenses; Measurement; Medicine
accelerators, 1242
accelerometers, 161
ammeters, 879
balances, 393–394, 895, 933, 987–988,

1077
barometers, 426
beam splitters, 1194
betatrons, 1001
bubble chambers, 918
calorimeters, 609, 637
cathode ray tubes (CRT), 727–728
clocks, 2, 5–6, 140, 1255
compasses, 895
cyclotrons, 908, 913–914
Dewar flasks, 629
electron guns, 728
electrostatic precipitators, 783
flowmeters, 915–916, 924
galvanometers, 879, 907
Geiger tubes, 792
Helmholtz coils, 963
hydrometers, 443
interferometers, 1194–1196, 1249
keratometers, 1169
magnetic bottles, 910, 921
manometers, 426
microscopes, 102, 1160–1162, 1202
oscilloscopes, 728
periscopes, 1117
spectrometers, 911–912, 1219
and standards, 4–6
synchrotrons, 913
telescopes, 394, 1162–1165, 1205,

1217, 1238
thermometers, 448, 583–586, 843
Thomson’s apparatus, 912
tokamaks, 960
Van de Graaff generators, 782–783
voltmeters, 811, 879–880

Insulation, home, 626–627
Insulators, 709
resistivity of, 837t

Intake strokes, 679
Integration, 44–46, 189, 256–257,

A.25–A.28t
along a path, 685, 763, 902, 931, 934,

939, 1073
of exponential functions, 190, 192
of inverse functions, 279, 621, 650,

875–876, 1007, 1269
over a surface, 741–742
partial, A.26–A.27
and separation of variables, 686, 1038
of vectors, 720, 902, 928

Intensity (I ), 517, 1183
in diffraction grating patterns, 1219
in double-slit diffraction patterns,

1212–1214
in double-slit interference patterns,

1182–1184
of electromagnetic waves, 1074–1075,

1183
luminous, 4
of polarized beams, 1227
in single-slit diffraction patterns,

1210–1212
of sound waves, 516–522, 565

Interference, 544–549, 545, 1069,
1176–1204. See also Diffraction

conditions for, 1177
constructive, 545–549, 1177–1180,

1190
destructive, 545–549, 1177–1180, 1190
from a double-slit, 1177–1184
from multiple slits, 1188
spatial, 564
temporal, 564–566
in thin films, 1189–1194
from a triple-slit, 1186–1187

Interference microscopes, 1202
Interferograms, 1195
Interferometers, 1194–1196, 1249
Internal combustion engines, 669
Internal energy (E int), 197, 605. See also

Energy; Kinetic energy; Potential
energy; Temperature

and first law of thermodynamics,
618–619

and heat, 605–607
and hysteresis cycles, 951
and kinetic theory of gases, 644
and nonconservative forces, 229
and resistors, 845
rotational, 646, 651–653
translational, 641–646, 651–652
vibrational, 646, 651–654
and work done by friction, 201

Internal friction, 431
Internal resistance (r), 860
Invariant mass (m), 1267, 1270
Inverse-square laws, 391
electrical, 711
gravitational, 397–398
and potential energy, 770

Inverted pulses, 499
Io, 389, 1096
Iridescence, 1176, 1238
Irises, eye, 1155
Irradiance, 1074
Irreversible processes, 668, 673–675, 674
and entropy changes, 687–690

Isobaric processes, 620
Isolated systems, 196, 220–228, 221
and first law of thermodynamics,

618–619
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Isothermal expansion, 620–622
Isothermal processes, 620
in Carnot cycles, 675–676
one-time, 671

Isotherms, 620
Isotopes, 8, A.4t–A.13t
Isotropic materials, 588
Isovolumetric processes, 620

Jackets, in optical fibers, 1114
Jacob’s ladder, 851
James testers, 146
Jewett, Frank Baldwin, 912
Joule, James, 605, 606, 607, 632
Joule ( J), 185, 606
Joule heating, 846
Jumpers, 868–869
Junction rule, 869–873
Junctions, 864
Jupiter, 399t. See also Planetary motion
atmosphere of, 408
escape speed from, 408t
magnetic field of, 954
moon of, 389, 1096
and speed of light, 1096

Kamerlingh-Onnes, Heike, 844
Kaons (K0), 256
Keating, R. E., 1255
Keck Observatory, 1165
Kelvin, William Thomson, Lord, 4, 585,

669
Kelvin (K), 4, 585
Kelvin–Planck form of the second law of

thermodynamics, 670
Kelvin temperature scale, 585–586, 610
Kepler, Johannes, 390, 396
Kepler’s laws, 396–401. See also

Astronomy; Gravitation; Planetary
motion

Keratometers, 1169
Kilocalorie (kcal), 212
Kilogram (kg), 4–6, 5, 116, 118t
Kilowatt-hour (kWh), 204
Kinematic equations
for motion of charged particles in

electric fields, 726–727, 767
for motion with constant angular

acceleration, 296-297t
and numerical modeling, 168
for one-dimensional motion with

constant acceleration, 36–37, 38t,
46, 297t

for simple harmonic motion, 455, 457
for two-dimensional motion with

constant acceleration, 80–83
Kinematics, 24. See also Dynamics
in one dimension, 23–57
rotational, 296–297
in two dimensions, 77–110

Kinetic energy (K ), 193–196, 194. See
also Conservation of energy;
Energy; Potential energy

and charges in electric fields, 766
and collisions, 260–261
and equipartition of energy, 650–654
and kinetic theory of gases, 641–646
and planetary motion, 405–407
relativistic, 1268–1270
rotational (KR), 300–302, 313
total (K ), 313, 318, 462
and work-kinetic energy theorem, 194

Kinetic theory of gases, 640–666, 641.
See also Statistical mechanics

and adiabatic processes for an ideal
gas, 617, 619, 649–650

and the Boltzmann distribution law,
654–655

and distribution of molecular speeds,
655–657

and entropy, 690
and equipartition of energy, 650–654
and mean free paths, 658–659
and molar specific heat of an ideal gas,

646–649
and molecular model of an ideal gas,

641–646
Kirchhoff, Gustav, 870
Kirchhoff’s rules, 869–873
and RL circuits, 1007

Krypton-86
and standard meter, 4

Kuiper belt, 399

Ladders, 369–370
Lagrange, Joseph Louis, 417
Lagrange points, 417
Laminar flow, 431
Land, Edwin H., 1226
Laser Interferometer Gravitational-Wave

Observatory (LIGO), 1195–1196
Laser printers, 784
Latent heat (L), 606, 611–615
of fusion or solidification (Lf ),

611–612t, 686
of vaporization or condensation (Lv),

611–612t
Lateral magnification (M ), 1128, 1132,

1145
of microscopes, 1161–1162

Laue patterns, 1224–1225
Law of atmospheres, 663
Law of cosines, 64, A.22
Law of inertia. See First law of motion
Law of reflection, 1099
from Fermat’s principle, 1115
from Huygens’s principle, 1108–1109

Law of sines, 64, A.22
Law of thermal conduction, 624
Law of universal gravitation, 390–393
Lawrence, Ernest O., 913

Laws of motion, 111–149
applications of, 122–131
and circular motion, 150–180
first, 114–115
and rotational motion, 307-314t,

340–342
second, 116–118, 117
third, 120–122

Laws of physics, 1–3. See also Ampère–
Maxwell law; Ampère’s law; Angular
impulse–angular momentum
theorem; Archimedes’s principle;
Bernoulli’s equation; Biot–Savart
law; Boltzmann distribution law;
Boyle’s law; Bragg’s law; Brewster’s
law; Carnot’s theorem; Charles’s and
Gay–Lussac’s law; Conservation of
energy; Conservation of
momentum; Continuity equation for
fluids; Coulomb’s law; Curie’s law;
Dalton’s law of partial pressures;
Dulong– Petit law; Equations of
state; Equipartition of energy
theorem; Faraday’s law; Fermat’s
principle; Galilean transformation
equations; Gas laws; Gauss’s law;
Hooke’s law; Huygens’s principle;
Impulse– momentum theorem;
Inverse-square laws; Kepler’s laws;
Kinematic equations; Kinetic theory
of gases; Kirchhoff’s rules; Law of
atmospheres; Law of reflection; Law
of thermal conduction; Law of
universal gravitation; Laws of
motion; Laws of thermodynamics;
Lennard–Jones law; Lens makers’
equation; Lenz’s law; Lorentz force
law; Malus’s law; Maxwell’s
equations; Mirror equation; Ohm’s
law; Parallel-axis theorem; Pascal’s
law; Principle of equivalence; Snell’s
law of refraction; Stefan’s law;
Superposition principle; Thin lens
equation; Torricelli’s law; Wave
equations; Work–kinetic energy
theorem

Laws of thermodynamics
first, 618–623
second, 668–670, 671–672
zeroth, 581–582

LC circuits, 1015–1020
Length (x, y, z, r, l, d, or h)
path (r), 548–549
standards of, 4–5t
units of, A.1t

Length contraction, 1258–1259
Lennard–Jones law
force for, 215
potential for, 237–238, 464
and simple harmonic motion, 463–464
and thermal expansion, 587
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Lens makers’ equation, 1143
Lenses, 1141–1152. See also Refraction
aberrations in, 1152–1153
anti-reflective coatings for, 1193
combinations of, 1149–1152
contact, 1169
converging, 1144–1145
diverging, 1144–1146
eyepiece, 1160–1163
Fresnel, 1146
gravitational, 1275
objective, 1160–1163
testing of, 1192
thick, 1142–1143
thin, 1143–1146
zoom, 1172

Lenz, Heinrich, 977
Lenz’s law, 977–981
and eddy currents, 986
and inductance, 1004–1005

Leucippus, 7
Lever arm. See Moment arm
Lift, aerodynamic, 436
Light, 1092–1241. See also Optics; Speed

of light
and diffraction patterns, 1205–1241
dual nature of, 1095–1096
as electromagnetic waves, 1068, 1070,

1249
and general relativity, 1273–1275
history of, 1067, 1093, 1095–1096
and image formation, 1126–1175
and interference, 1176–1204
and laws of geometric optics, 1094–1125
monochromatic, 1177
polarization of, 1225–1232
spectrum of, 1080–1081
white, 1109–1110
world-lines for, 1259–1260

Lightbulbs, 863, 868–869
Lightning, 704, 716, 762
Lightyear (ly), 1257
LIGO. See Laser Interferometer

Gravitational-Wave Observatory
Line density. See Flux
Line of action, 306
Linear charge density (,), 720
Linear equations, A.17–A.19
and Kirchhoff’s rules, 870

Linear expansion, average coefficient of
(!), 587–588t

Linear mass density (, or )), 273–274,
302

and speed of wave propagation, 488,
496, 554

Linear momentum (p), 251–291, 253
conservation of, 252–256
relativistic, 1267–1268, 1270
total (ptot), 275

Linear wave equations, 503–504
Linear waves, 544
Linearly polarized light, 1226

Linearly polarized waves, 1069
Lines, A.20
Liquid crystal displays, 1232
Liquids. See also Fluids; Materials science
and bulk modulus, 375
speed of sound in, 514t
thermal expansion of, 586–591

Live wires, 880
Livingston, M. S., 913
Lloyd, Humphrey, 1188
Lloyd’s mirror, 1188
Load resistance (R), 860
matching of, 861, 890, 1053

Locomotives, 669
and heat engines, 669
and simple harmonic motion, 465

Logarithms, 163, A.19
Longitudinal waves, 488
Loop rule, 869–873
Lorentz, Hendrik, A., 1263
Lorentz force law, 910, 989
Lorentz transformation equations,

1262–1267, 1263
Loudness, 521–522
Loudspeakers, 548–549
Louis XIV, King of France, 4
Lovell, Jim, 595
Low-pass filters, 1056
LRC circuits, 1020–1022, 1043–1047,

1049–1051
Luminous intensity, 4

Mach angle (%), 528
Mach number, 528
Machines, 148
Macroscopic states
and thermal equilibrium, 615

Macrostates, 683–684, 690–693
Magnes, 895
Magnetic bottles, 910, 921
Magnetic braking, 987–988
Magnetic declination, 954
Magnetic dipole moment (!), 905
of atoms, 944–946t

Magnetic dipoles
in magnetic fields, 879, 904–907
in nonuniform magnetic fields, 919

Magnetic field lines. See Field lines
Magnetic field strength (H), 947
Magnetic fields (B), 894–925, 899t
applications of charged particles

moving in, 910–914
current loops in, 904–907
defined, 896–900
due to current-carrying wires, 927–933,

935–936
due to current loops, 930–932
due to solenoids, 938–940
energy density of, 1011–1012
motion of charged particles in, 

907–910

Magnetic fields (B) (Continued)
motion of conductors through, 970,

973–977, 980–981
sources of, 926–966

Magnetic flux (/B), 940–941
Magnetic flux density. See Magnetic

fields
Magnetic forces (FB), 896–900
between current-carrying conductors,

932–933
on current-carrying conductors,

900–904
Magnetic hysteresis, 950
Magnetic induction, 967–973. See also

Magnetic fields
Magnetic permeability ()m), 948
Magnetic poles
and monopoles, 895, 942, 989
north and south, 895

Magnetic recording, 951
Magnetic resonance imaging (MRI), 845
Magnetic susceptibility (4), 947–948t
Magnetism in matter, 944–953
classification of, 947–953

Magnetite, 705, 895
Magnetization (M), 946–947
remanent, 950
saturation, 953

Magnetization curves, 950
Magnetrons, 1085–1086
Magnets
bar, 895–897, 931, 938, 942
superconducting, 845

Magnification
angular (m), 1159, 1161–1164
lateral (M ), 1128, 1132, 1145,

1161–1162
Magnifiers, simple, 1159–1160. See also

Microscopes; Telescopes
Magnifying glasses, 1159–1160
Magnitude of vectors, 61, 79
Major axis, 396
Malus, E. L., 1227
Malus’s law, 1227
Manometers, 426
Maricourt, Pierre de, 895
Mariner 10 [spacecraft], 1077
Mars, 399t. See also Planetary motion
escape speed from, 408t
mass of, 399t, 400

Marsden, A., 790
Mass (m), 116. See also Center of mass
atomic, 9–10, 592, A.4t–A.13t
as form of energy, 1270, 1272
gravitational vs. inertial, 119, 1273
invariant, 1267, 1270
molar (M), 592
negligible, 122
of planets, 399t
“relativistic,” 1267
as scalar quantity, 116
standards of, 5t
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Mass (m) (Continued)
units of, 4–6, 5, 116, 118t, A.1t
vs. weight, 116

Mass number (A), 8, A.4t–A.13t
Mass spectrometers, 911–912
Materials science. See also Deformable

systems; Friction; Gases; Liquids;
Optics; Rigid Objects; Solids

and crystalline vs. amorphous
materials, 1229

and electrical properties of solids, 709,
835–845, 838, 1031

and magnetic properties of solids,
947–952, 1031

and mechanical properties of
materials, 373–376

and optical properties of materials,
1104–1107, 1230, 1230

and thermal properties of materials,
197, 583, 586–591, 620–622,
623–627

Mathematical Principles of Natural
Philosophy [Newton], 390

Mathematics, A.14–A.29. See also
Addition; Algebra; Approximating;
Calculus; Determinants; Division;
Equations; Fourier series;
Geometry; Logarithms;
Measurement; Multiplication;
Numerical modeling; Rounding;
Series expansions; Significant
figures; Subtraction; Trigonometric
functions; Units; Vectors

Matrix algebra, 870
Matter
fundamental particles of, 912
structure of, 7–9, 8

Matter transfer, 197. See also Convection
and energy transfer, 197–198, 627–628
and waves, 487

Maxima of intensity, 1180, 1187–1188,
1206, 1219

Maximum angular position (%max)
[pendulums], 468

Maximum angular separation (%max)
[apertures], 1215

Maximum height (h) of a projectile,
86–91

Maxwell, James Clerk, 1067
and electromagnetic waves, 1067–1068,

1093, 1095
and electromagnetism, 705, 896, 942,

944
and Maxwell’s equations, 988,

1067–1068
and molecular speed distributions, 655

Maxwell–Boltzmann speed distribution
function (Nv), 655–657, 656

Maxwell’s equations, 988–989
and electromagnetic waves, 1067–1069
and special relativity, 1245, 1247

Mean free path ("), 658–659, 842

Mean free time, 658
Mean solar day, 5
Mean value theorem, 257
Measurement, 2–22. See also

Experiments; Instrumentation
of density, 443
and disturbing the system, 582
of electric current, 879
of forces, 113–114
of the gravitational constant, 393–394
of magnetic fields, 914
of moments of inertia, 470
of potential difference, 879–880
of pressure, 421, 426–427
of speed of light, 1096–1097
of temperature, 582–584
uncertainty in, A.28–A.29
of wavelength of light, 1181

Measurements
of electric current, 879

Mechanical devices. See also Heat engines
air conditioners, 671
balances, 393–394, 895, 987–988, 1077
machines, 148
photocopiers, 784

Mechanical energy (Emech), 221
changes in, for nonconservative forces,

229–234
conservation of, 220–228, 221
heat equivalent of, 606–607
and planetary motion, 406

Mechanical engineering. See also
Aeronautics; Airplanes;
Automobiles; Bridges;
Locomotives; Satellites; Spacecraft

and heat engines, 667–683, 669, 700
and machines, 148

Mechanical equivalent of heat, 606–607
Mechanical waves, 197, 450–577, 487
and energy transfer, 197–198, 487,

500–503, 516–522
motion of, 486–511
sound, 512–542
speed of, 513–514

Mechanics, 1–449. See also Classical
mechanics; Dynamics; Energy; Fluid
mechanics; Force; Kinematics;
Momentum; Motion; Quantum
mechanics; Statistical mechanics

history of, 1, 112
Media for wave propagation, 487
effects of changes in, 499–501, 560
and ether, 1247–1250

Medicine. See also Biophysics; Health
and blood flowmeters, 915–916, 924
and contact lenses, 1169
and cyclotrons, 913
and defibrillators, 810, 825
and ears, 512, 519–522, 564
and eyeglasses, 1157–1158
and eyes, 1157–1159, 1169, 1174
and fiber optics, 1114

Medicine (Continued)
and MRI, 845
and spinal taps, 442
and steam burns, 613
and sunglasses, 1081, 1229
and ultrasound, 536

Meissner effect, 952, 1031
Melting. See Fusion
Melting points, 612t
Mercury [element]
in barometers, 426
superconductivity of, 844
in thermometers, 583–584

Mercury [planet], 399t. See also
Planetary motion

escape speed from, 408t
Metal detectors, 1051
Metals
and bimetallic strips, 589, 601
charge carriers in, 915
thermal conduction of, 623–625, 624t

Meter (m), 4
Michelson, Albert A., 1194, 1248–1250
Michelson interferometers, 1194–1196,

1249
Michelson–Morley experiment,

1248–1250
Microscopes
compound, 1160–1162
electron, 102
interference, 1202

Microstates, 683–684, 690–693
Microwave ovens, 816, 1085
Microwaves, 1080–1081
cosmic background, 1088

Migrating planets, 399
Millikan, Robert, 708, 781–782
Minima of intensity, 1206
Minor axis, 396
Mirages, 1121
Mirror equation, 1132–1133
Mirrors, 1127–1138. See also Reflection
concave, 1131–1133
convex, 1134
flat, 1127–1130
Lloyd’s, 1188
parabolic, 1164
ray diagrams for, 1134–1136
spherical, 1131–1138

Models, 7–9
of atomic nucleus, 791
computer, 169–170
of electric current, 833–835
of electrical conduction, 841–843
of entropy, 690–693
of hydrogen atom, 352–353, 759
of ideal gases, 641–646
numerical, 167–170
particle, 24, 182, 270
of phase changes, 613
of solar system, 396
of solids, 463–464
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Models (Continued)
of structure of matter, 7–9
system, 182

Moderators, 266–267
Modern physics, 3, 1242–1283. See also

Quantum mechanics; Relativity
Modulus, elastic, 373, 374t
bulk (B ), 373–375, 374t
shear (S ), 373–374t
Young’s (Y ), 373–374t

Mohorovicic discontinuity, 540
Molar mass (M ), 592
Molar specific heats, 646–649. See also

Specific heat
at constant pressure (CP), 646–647t
at constant volume (CV), 646–647t,

651–652
of solids, 653–654

Mole (n), 4, 591
Molecules
polar vs. nonpolar, 816

Moment arm (d), 306
Moment of inertia (I ), 300–302, 304t,

343
calculation of, 302–305
changes in, 346
measurement of, 470
and rotational acceleration, 308–312

Momentum (p), 252. See also Angular
momentum; Linear momentum

and collisions, 260–261
in electromagnetic waves, 1076–1079
and impulses, 256–260
relativistic, 1267–1268, 1270

Monochromatic light, 1177
Monopoles, magnetic, 895, 942, 989
Moon, 399t. See also Planetary motion
escape speed from, 408t
planetary, 389, 1096, 1217–1218
and universal gravitation, 391–392

Morley, Edward W., 1248–1250
Morse, Samuel, 959
Most probable speed (vmp), 656–657
Motion. See Circular motion; Kinematics;

Laws of motion; Oscillatory motion;
Periodic motion; Planetary motion;
Precessional motion; Projectile
motion; Rotational motion; Simple
harmonic motion; Waves

Motion diagrams, 34–35
Motion pictures. See Movies
Motors, 984–986. See also Generators;

Heat engines
homopolar, 995

Movies
Apollo 13, 595
Batman Returns, 533
Dick Tracy, 532
digital, 1101
Indiana Jones and the Last Crusade, 362
inertia portrayed in, 138

Movies (Continued)
It Happened One Night, 138
Jurassic Park, 533
Last Action Hero, 533
M*A*S*H, 1233
sound recording for, 532–533
stable equilibrium portrayed in, 362
Star Wars Episode II: Attack of the Clones,

1101
MRI. See Magnetic resonance imaging
Multiplication
commutative law of, 187, 337
and differentiation, A.24
distributive law of, 187, 338
scalar (dot) product of two vectors,

186–188, 741
and significant figures, 15
and uncertainty, A.29
vector (cross) product of two vectors,

337–339
of vectors by scalars, 65

Muons
gravitational red-shifts of, 1274
length contraction of, 1259
and time dilation, 1255–1256

Musgrave, F. Story, 394
Music
Ariadne auf Naxos, 540
Bach, Johann Sebastian, 537
and harmonic series, 555
Mass in B minor [Bach], 537
and musical scale, 572
and pitch, 566–567
Santana, Carlos, 543
Strauss, Richard, 540

Musical instruments, 555–556
electric, 971–972
and harmonic series, 555
and nonsinusoidal waves, 566–567
percussion, 561, 563–564
and resonance, 558–562
string, 543, 555–556, 561, 567
tuning of, 561, 564, 566
wind, 559–561, 566–567

Mutual inductance (M), 1013–1015
Mutual induction, 1013
Myopia, 1157–1158

Natural convection, 628
Natural frequency (&0), 471
and harmonic series, 554
of LC circuits, 1018

Natural logarithms, 163, 279, 875, A.19
Near point of the eye, 1156, 1159
Nearsightedness, 1157–1158
Negative charges, 707
Negatives of vectors, 62–63
Neptune, 399t. See also Planetary

motion
escape speed from, 408t

Net force (1F), 112, 117
and equilibrium, 363–365
motion under, 123
on a system of particles, 275

Net torque (15), 363–365
Net work (1W), 189
and heat engines, 670
in PV diagrams, 619

Neutral equilibrium, 237
Neutral wires, 880
Neutron stars, 347, 409
Neutrons, 8
discovery of, 8

Newton (N), 117–118t
Newton, Isaac, 114
and development of calculus, 3, 392,

A.23
and gravitation, 390–392, 401, 1273
and laws of motion, 3, 112
and linear momentum, 253
and optics, 1093, 1095, 1191
and telescopes, 1164
and time, 1252

Newtonian mechanics. See Classical
mechanics; Mechanics

Newton 6 meter (N 6 m), 185
Newton’s laws of motion. See First law

of motion; Laws of motion;
Second law of motion; Third law
of motion

Newton’s rings, 1191–1192
Nitrogen
atmospheric, 408, 656
liquid, 615, 629
molecular speed distribution in,

656–657
Niven, Larry, 417
Nobel prizes, A.33–A.36
Nodes, 550, 559
Noise
and harmonic series, 564, 566
signal, 529

Noise pollution, 520
Nonconservative forces, 221, 228–229
and changes in mechanical energy,

229–234, 606–607
and damped oscillations, 471–472
and induced electric fields, 981

Noninertial reference frames, 115,
159–162

and general relativity, 1273–1274
and twin paradox, 1258

Nonisolated systems, 196–199
Nonlinear waves, 544
Nonmetals
thermal conduction of, 623–625, 624t

Nonohmic materials, 835, 838
Nonpolar molecules, 816
Nonuniform circular motion, 157–158.

See also Circular motion
Normal forces (n), 121
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Normal modes, 553–555
in air columns, 560
in circular membranes, 563
in rods, 563
on strings fixed at both ends, 553

Nuclear forces, 113
Nuclear physics. See Subatomic physics
Nuclear reactors, 1272
Nucleus, 8
discovery of, 8
magnetic dipole moment of, 946

Number density (nV(E)), 654–655
Numerical modeling, 167–170

Object, optical (O), 1127
virtual, 1149

Object distance (p), 1127
Objective lenses, 1160–1163
Objects, physical. See also Deformable

systems; Rigid objects
extended, 271–272
floating, 428–430
submerged, 428–430

Oersted, Hans Christian, 705, 895, 927,
933

Ohm, Georg Simon, 835
Ohm (7), 836
Ohmic materials, 835, 838
Ohm’s law, 835, 838
Oil-drop experiment, 781–782
One-time isothermal processes, 671
O’Neill, G. K., 418
Open-circuit voltage (0), 860
Optic axis, 1229
Optical activity, 1232
Optical devices. See also Cameras; Lenses;

Microscopes; Mirrors; Telescopes
optical fibers, 1114

Optical fibers, 1114
Optical illusions, 1130, 1174
Optical resolution, 1214–1217
Optical stress analysis, 1230
Optics, 1, 1092–1241. See also Diffraction;

Dispersion; Electromagnetic waves;
Image formation; Interference;
Light; Polarization; Reflection;
Refraction; Speed of light

geometric, 1094–1175
history of, 1093
wave, 1176–1241

Orbits. See Planetary motion
Order number (m), 1180
Order-of-magnitude (~) calculations,

13–14. See also Approximating
Ordinary (O) rays, 1229–1230
Oscillatory motion, 451–485. See also

Periodic motion; Simple harmonic
motion

damped, 471–472, 1020–1022
forced, 472–474
stick-and-slip, 484

Oscilloscopes, 728
Otto cycles, 679–680
Overdamped oscillators, 472–472, 1022
Oxygen
atmospheric, 408, 656
liquid, 615, 629
paramagnetism of, 952

P waves, 489
Paleomagnetism, 954
Parabolas, 36, 84, A.21
and orbits, 397
and projectile motion, 77, 84–91

Parabolic mirrors, 1164
Paradoxes
moving clocks, 1255
pole-in-the-barn, 1260–1261
speed of light, 1248
twin, 1257–1259

Parallax, 1167
Parallel-axis theorem, 304–305, 317, 349
Parallel combinations
of capacitors, 803–804
of resistors, 862–869, 864

Paramagnetism, 947–948, 951–952
Paraxial rays, 1132
Partial derivatives, 235, 495, 503–504,

516, 773, 1069–1070. See also
Differentiation

Partial integration, A.26–A.27
Partial pressure (P i), 602
Particle models of motion, 24, 182, 270
Pascal, Blaise, 424
Pascal (Pa), 422
Pascal’s law, 424
Path dependence
of work done by nonconservative

forces, 229
of work in PV diagrams, 616–617

Path difference ($), 1180, 1182–1183
Path independence
of average velocity, 79
of entropy changes, 684
of internal energy changes, 618–619
of work done by conservative forces, 228

Path length (r), 548–549
Pendulums, 468–470
as accelerometers, 161
ballistic, 264–265
as clocks, 140, 468
conical, 153
and conservation of mechanical

energy, 225
physical, 469–470
and resonance, 558
simple, 468–469
torsional, 470

Penzias, Arno, 1088
Percent uncertainty, A.29
Perfect diamagnetism, 952, 1031

Perfect differentials, A.27
Perfectly inelastic collisions, 261, 278
Perigee, 397
Perihelion, 397
Period (T )
of periodic waves, 492
of simple harmonic motion, 455–456
of uniform circular motion, 93, 908

Periodic motion, 450–577. See also
Oscillatory motion; Simple
harmonic motion; Waves

Periscopes, 1117
Permeability, magnetic ()m), 948
Permeability of free space ()0), 928, 943
Permittivity of free space (80), 712, 943
Pfund, A. H., 1124
Phase (&t 9 .), 455
in AC circuits, 1035
and reflection, 1188–1189
and superposition and interference of

sinusoidal waves, 547–549
Phase constant (.)
and interference, 547–549, 1182–1183
of periodic waves, 493
in series RLC circuits, 1044–1045
of simple harmonic motion, 455, 1018

Phases of matter, 421, 604. See also
Fluids; Gases; Liquids; Solids

changes in, 607, 611–613
Phasor diagrams, 1035
for circuits, 1035–1036, 1039,

1041–1042, 1044–1046
for diffraction patterns, 1210–1211
for interference patterns, 1186–1188

Phasors, 1036, 1184–1188
Phonographs, 528–529
Photoconductors, 784
Photocopiers, 784
Photoelectric effect, 1095
Photons, 1096, 1270
Physical chemistry. See also

Thermodynamics
and batteries, 799, 845–846, 858–861,

1014–1015, 1061
and bond energy, 605
and chemical energy, 278, 679, 799,

845–846
and scrubbers, 783
and surfactants, 816

Physical optics. See Wave optics
Physical pendulums, 469–470
Physics. See also Astronomy and

astrophysics; Biophysics;
Engineering; Geophysics; History of
physics; Laws of physics; Physical
chemistry

interdisciplinary nature of, 3–4
subdisciplines of, 1, 3

Physics [Aristotle], 215–216
Physiology, 367–368, 384, 512
Pickup coils, 971–972
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Pinch effect, 960
Pinhole cameras, 1239
Pions (:9 and :(), 256
Pitch, musical, 566–567
Pitot tubes, 445
Pits, CD, 299, 530–531
Planck, Max, 1093, 1095, 1243
Planck length, 418
Planck’s constant (h), 352, 945, 1096
Plane polar coordinates (r, %), 59
Plane-polarized light, 1226
Plane waves, 1069
Planetary motion, 396–401. See also

Astronomy; Gravitation; Kepler’s
laws

and energy, 405–410
Planets, 399t. See also specific planet
escape speeds from, 408t

Plasma, 910
balls of, 739

Plates of capacitors, 796
Platinum–iridium bars
and standard meter, 4

Plug-in problems, 47. See also Problem-
solving strategies

Pluto, 397, 399t. See also Planetary motion
escape speed from, 408t
moon of, 1217–1218

Point charges, 711
electric field lines for, 724, 772
electric potential due to, 768–771, 769
equipotential surfaces for, 772

Poisson, Simeon, 1207
Polar coordinate systems, 59
Polar coordinates (r, %), 59, 293
Polar molecules, 816
Polarization, 1069, 1225–1232
by double refraction, 1229–1230
induced, 816
linear, 1069
of molecules, 816
by reflection, 1227–1229
rotation of plane of, 1232
by scattering, 1230–1231
by selective absorption, 1226–1227

Polarization angle (%p), 1228
Polarizers, 1226
Polarizing angle, 1119
Polaroid materials, 1226
Pole-in-the-barn paradox, 1260–1261
Position (x), 24–28
angular (%), 293–296, 294
average (xCM), 270–271
equilibrium, 453

Position–time graphs, 25, 33, 458–459
Position vectors (r), 78–80
average (rCM), 271

Positive charges, 707
Potential difference (#V ), 764
due to point charges, 768–771
in uniform electric fields, 765–768

Potential energy (U ), 197, 217–250,
219, 234. See also Conservation of
energy; Electric potential; Energy;
Kinetic energy; Lennard–Jones law

in capacitors, 807–810, 876, 878
chemical, 278, 679, 799, 845–846
and conservative forces, 234–236, 403
elastic (Us), 197, 222–228, 462
electric (V ), 763–766, 764, 1015–1017
of electric dipoles in electric fields, 815
and equipartition of energy, 650–654
gravitational (Ug), 219, 403–405
of magnetic dipoles in magnetic fields,

906
and planetary motion, 405–408
of a system, 218–220

Pound (lb), 118t
Power (!), 203–205
in AC circuits, 1037, 1047–1051
average ( ), 203, 1048
delivered by automobile engines, 206,

681–683
and efficiency of heat engines, 677
electrical, 845–849, 860
and forced oscillators, 473
instantaneous (!), 203–204
and rotational motion, 312–316

Power factor (cos .), 1048, 1051
Power of a lens (P), 1158
Power strokes, 679–680
Power transfer
by electricity, 198, 831, 846–847
by mechanical waves, 501–503,

516–522
by thermal conduction, 623–626

Powers. See Exponents
Poynting vectors (S), 1074–1079
Pre-emphasis, 529
Precessional frequency (&p), 351
Precessional motion, 350–351
Prefixes
for powers of ten, 7t

Presbyopia, 1158
Pressure (P), 375, 421–423
absolute (P), 426
atmospheric (P0), 426
gauge, 426
and kinetic theory of gases, 641–644
measurement of, 421, 426–427
and musical instruments, 559–561
partial (Pi), 602
radiation, 1076–1079
units of, 422, A.2t
variation of, with depth, 423–426
waves of, 515–516

Pressure amplitude (#Pmax), 515
Primary coils
of AC transformers, 1051
and Faraday’s law of induction,

968–969
of Rowland rings, 949

!

Primary maxima, 1187–1188
Principal axes
and moment of inertia, 344
of spherical mirrors, 1131

Principle of equivalence, 1274
Prisms, 1109–1111
Probability
and distribution functions, 654–657
and entropy, 684
and Gauss’s probability integral,

A.28t
Problem-solving strategies, 46–47
for calorimetry, 614
for capacitors, 806
for conservation of mechanical energy,

224
for electric fields, 720–721
for electric potential, 775
for isolated systems, 224, 230
for Kirchhoff’s rules, 871
for laws of motion, 124
for nonconservative forces, 230
for static equilibrium, 366
for thin-film interference, 1192
for two-dimensional collisions, 268

Processes
adiabatic, 619, 649–650, 675–676
cyclic, 619, 670, 671
irreversible, 668, 673–675, 674,

687–690
isobaric, 620
isothermal, 620, 671, 675–676
isovolumetric, 620
quasi-static, 616, 686
random-walk, 658
reversible, 673–675, 686–687
thermodynamic, heat and work in,

615–617
Products. See Multiplication
Projectile motion, 83–91, 277
Propagation of uncertainty, A.28–A.29
Proper length (Lp), 1258–1259
Proper time intervals (#tp), 1253–1256,

1254, 1259
Proportionalities (;)
and dimensional analysis, 11

Propulsion, rocket, 277–280
Protons, 8
collisions between, 269
discovery of, 8

Ptolemy, Claudius, 396
Pulses, 488, 490
inverted, 499

Pupils, eye, 1155
Pure numbers, 455
Pure rolling motion, 316–319
PV diagrams, 616–617
and adiabatic processes, 650
and Carnot cycles, 676
for diesel engines, 681
and heat engines, 670
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PV diagrams (Continued)
and net work, 619
and Otto cycles, 680

Pythagorean theorem, 60, 643, 1254,
A.21

Quadratic equations, 89, A.17
Quality factor (Q), 1051
Quantities
basic vs. derived, 4
vector vs. scalar, 26

Quantization, 553
of angular momentum, 352–353, 945
of electric charge, 708
of energy, 652–653
of standing-wave frequencies, 544,

553–555
Quantum mechanics, 1. See also

Mechanics
and ferromagnetism, 949
history of, 3
and magnetic dipole moments of

atoms, 945–946
Quarks, 8, 9, 712
Quarter-wave plates, 1240
Quasi-static processes, 616
for an ideal gas, 686

Queckensted tests, 442
Quenching, 631

R values, 626–627t
Radar, police, 525, 1278–1279
Radial acceleration component (ar),

94–96, 151–158, 298
Radial forces (Fr), 151–158, 312
Radian (rad), 293–294, A.20
Radiation, 628–629. See also

Electromagnetic radiation
Cerenkov, 539
cosmic background, 1088
and energy transfer, 197–198
thermal, 845–846

Radiation pressure (P ), 1076–1079
Radiators, 628
Radio, 813, 1051, 1061
waves, discovery of, 1068–1069
waves, in electromagntic spectrum,

1080–1081
Rail guns, 926, 964
Rainbow holograms, 1224
Rainbows, 1094, 1109–1111
Random-walk processes, 658
Range (R), horizontal, of a projectile,

86–91
Rarefaction, 515
Ray approximation, 1097–1098
Ray diagrams
for mirrors, 1134–1136
for thin lenses, 1145–1149

Rayleigh, John William Strutt, Lord,
1233

Rayleigh’s criterion, 1214
Rays, 1069
gravitational deflection of light,

1273–1275
ordinary vs. extraordinary, 1229–1230
paraxial, 1132

RC circuits, 873–878
as filters, 1055–1056
as rectifiers, 1054–1055

Reactance
capacitive (XC), 1042, 1056
inductive (XL), 1040

Reaction forces, 120, 342
Reasonable values, 5
Reber, Grote, 1235
Recoil, 255–256
Rectangular coordinate systems, 59
Rectangular coordinates. See Cartesian

coordinates
Rectification, 1054
Rectifiers, 1054–1056
Red shifts, 525, 1262, 1274, 1279
Reference circles, 466
Reference frames
inertial, 114–115, 1246
moving, 96–99, 496
noninertial or accelerating, 115,

159–162, 1258, 1273–1274
Reference intensity (I0), 519
Reference lines, 293–294
Reflecting telescopes, 1162, 1164
Reflection, 499–501, 1069, 1098–1102.

See also Mirrors
and Huygens’s principle, 1108–1109
images formed by, 1127–1138
law of, 1099, 1108–1109, 1115
phase changes upon, 1188–1189
polarization by, 1227–1229
total internal, 1111–1114

Reflection gratings, 1217–1218
Reflections on the Motive Power of Heat

[Carnot], 675
Refracting telescopes, 1162–1163
Refraction, 1069, 1102–1107. See also

Lenses
and Huygens’s principle, 1108–1109,

1178
images formed by, 1138–1141
index of, 1104t, 1124–1125
polarization by double, 1229–1230
Snell’s law of, 1105, 1108–1109, 1115

Refrigerators, 671–673, 672
Relative acceleration (a"), 96–99
Relative speed (v"), 522–523
Relative velocity (v"), 96–99
Relativity, Galilean, 98–99, 1246–1248
Relativity, general, 402, 1273–1275. See

also Gravitation
history of, 3, 1273

Relativity, special, 1, 1244–1283
consequences of, 1251–1262
history of, 3, 1243, 1245, 1250–1251
and Maxwell’s equations, 988
and spin, 945
and standard second, 6

Resistance (R), 831–857
defined, 835–840, 836
equivalent (R eq), 863–868
internal (r ), 860
load (R), 860
temperature dependence of, 841,

843–844
Resistive forces (R), 162–167. See also

Friction
and automobiles, 205–206t

Resistivity (*), 836–837t, 842
temperature dependence of, 843–844

Resistors, 837–838
in AC circuits, 1034–1038
composition, 838
shunt (Rp), 879
wire-wound, 838

Resolution, optical, 1214–1217,
1221–1222

Resolving power (R), 1221–1222
Resonance, 473, 558–559
in forced oscillators, 472–474
in LC circuits, 1016
in musical instruments, 558–562
in planetary motion, 399
in series RLC circuits, 1049–1051

Resonance frequency (&0), 473, 558,
1049

Rest energy (ER), 1270
Restoring forces, 191, 453
and pendulums, 468
and springs, 191–192, 453

Resultant force. See Net force
Resultant vectors (R), 61
Retardation plates, 1240
Retinas, 1155–1156
Retroreflection, 1100–1101
Revere, Paul, 1235
Reversible processes, 673–675
and entropy changes, 686–687

Richer, Jean, 140
Richter scale, 240–241
Right-hand rule, 295
and angular momentum, 340
and magnetic forces, 898, 905, 930
and vector (cross) products, 337–338

Rigid objects, 293. See also Deformable
systems

angular momentum of, 343–345
moment of inertia of, 300–305,

308–312
rolling of, 316–319
rotational dynamics of, 302–319
rotational kinematics of, 296–297
in static equilibrium, 366–373

Index I.17



Rings
astronomical, 417
Newton’s, 1191–1192
Rowland, 949

Ripple, 1055
RL circuits, 1006–1011, 1007
rms. See Root-mean-square
Rocketry. See Spacecraft
Rods, eye, 1156
Roemer, Ole, 1096, 1118
Roentgen, Wilhelm, 1224
Rogowski coils, 993–994
Roller coasters, 157
Rolling motion, 316–319
Romognosi, Gian Dominico, 895
Root-mean-square electric current

(Irms), 1037
Root-mean-square speed (vrms), 645t,

656–657
Root-mean-square voltage (#Vrms), 1038
Rotational equilibrium, 363–364
Rotational motion, 292–335
dynamics of, 302–319
kinematics of, 296–297
kinetic energy (KR) of, 300–302
reference frames for, 159–160

Rounding
and significant figures, 15

Rowland rings, 949
Rutherford, Ernest, 790

S waves, 489
Saddle coils, 963
Sampling, digital, 530
Satellites. See also Spacecraft
attitude control of, 907
geosynchronous, 400–401, 407
Hubble Space Telescope, 394, 410
Solar and Heliospheric Observatory

(SOHO), 416–417
Saturation, magnetic, 950
Saturn, 399t. See also Planetary motion
escape speed from, 408t
rings of, 417

Savart, Félix, 927
Scalar product, 186–188, 741
Scalar quantities, 26, 60–61
Scattering, 1230
polarization by, 1230–1231

Schwarzschild radius (RS), 409
Science
role of physics in, 3–4

Science fiction
Heinlein, Robert, 416
Niven, Larry, 417
Turtledove, Harry, 596
Verne, Jules, 51, 1167

Scientific notation, A.14–A.15
and significant figures, 15

Scott, David, 40

Scrubbers, 783
SDDS. See Sony Dynamic Digital Sound
Search coils, 999
Second (s), 4–6, 5
Second law of motion, 116–118, 117
and charged particles, 725
and linear wave equations, 503–504
relativistic, 1268
and rotational motion, 307–312,

340–342
and simple harmonic motion,

453–454
Second law of thermodynamics,

668–672
Clausius statement of, 671–672
Kelvin–Planck form of, 670

Secondary coils
of AC transformers, 1051
and Faraday’s law of induction,

968–969
of Rowland rings, 949

Secondary maxima, 1187–1188
Seesaws, 344–345, 367
Seiches, 573
Self-inductance, 1004–1006
Semiconductors, 709, 844
charge carriers in, 915

Semimajor axis, 396
Semiminor axis, 396
Series combinations
of capacitors, 804–806
of heat engines, 697
of resistors, 862–869
of springs, 211

Series expansions, mathematical, 1250,
1269, A.23

Seurat, Georges, 1235
Shadows, 1097
Shear modulus (S), 373–374t
Shear strain, 374
Shear stress, 374
in fluids, 421

Shock waves, 527–528
Short circuits, 881–882
Shunt resistors (Rp), 879
SI system of units, 4–7, 118t, A.1t–A.3t,

A.32t
Side maxima, 1206
Sight. See Eyes
Significant figures, 15–16
Simple harmonic motion, 451–485, 454.

See also Oscillatory motion; Periodic
motion

and energy, 462–465, 1017
mathematical representation of,

454–461
and restoring forces in springs,

191–192, 453
and sinusoidal waves, 491
and standing waves, 550, 553
vs. uniform circular motion, 465–467

Simple pendulums, 468–469
Simultaneity, 1252–1253
Sine function, A.21. See also

Trigonometric functions
and components of vectors, 65, 83
and law of sines, 64, A.22

Sinusoidal waves, 491–496
rate of energy transfer by, 501–503
superposition of, 547–548

Skin effect, 999
Sky color, 1092, 1231
Slingshots, gravitational, 282
Slits
diffraction of light waves from,

1207–1214
interference of light waves from,

1177–1184, 1186–1188,
1212–1213

Slopes of graphs, 28–29, 36, A.17
Slugs, 7, 118t
Smokestacks, falling, 310, 329
Snell, Willebrord, 1105
Snell’s law of refraction, 1105
and Brewster’s law, 1228
from Fermat’s principle, 1115
from Huygens’s principle, 1108–1109

Soap, 816
Soap bubbles, 1191, 1194
Solar and Heliospheric Observatory

(SOHO) [satellite], 416–417
Solar cells, 1193
Solar energy, 628, 1078–1079
Solar sailing, 1077, 1086
Solenoids, 938–940, 982, 1006
Solid angles (#7), 752
Solidification
latent heat of, 611-612t

Solids. See also Materials science
and bulk modulus, 375
crystalline vs. amorphous, 1229
elastic properties of, 373–376
models for, 463–464
molar specific heat of, 653–654
speed of sound in, 514t
thermal expansion of, 586–591

Sonic booms, 528
Sony Dynamic Digital Sound (SDDS),

533
Sound, 512–542
Doppler effect for, 522–528, 541
and energy transfer, 197,

516–522
intensity of, 516–522, 565
interference of, 548–549
and linear wave equations, 504
as longitudinal pressure waves, 488,

515–516
medium for, 487
recording of, 528–533
speed of, 513–514t, 665

Sound level ('), 519–521, 520t
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Sound recording, 528–533. See also
Audiovisual devices

digital, 530–532
for movies, 532–533
and pickup coils, 971–972
synthesized, 568

Soundtracks, 532–533
Source charges, 715–716
Source particles, 402
Space shuttles. See also Spacecraft
Columbia, 0, 278
Endeavor, 394
shock waves from, 528

Space–time, curvature of, 1274–1275
Space–time coordinates (x, y, z, t),1263
Space–time graphs, 1259–1262
Spacecraft. See also Satellites; Space

shuttles
Apollo 11, 1100, 1118–1119
Apollo 13, 412
Galileo, 389
and gyroscopes, 351
Mariner 10, 1077
and propulsion, 277–280
Voyager, 412
Voyager 2, 351

Spatial interference, 564
Special relativity. See Relativity, special
Specific heat (c), 607–611, 608t. See also

Heat capacity
molar, at constant pressure (CP),

646–649, 647t
molar, at constant volume (CV),

646–649, 647t, 651–652
Spectra
atomic, 1222
electromagnetic, 1080–1082
visible, 1109

Spectrometers
diffraction grating, 1219
mass, 911–912

Spectroscopy, 1195
atomic, 1220

Specular reflection, 1098–1099
Speed (v), 24–28, 79
average (v(), 27, 656–657
average angular (&(), 293–296, 294
and dimensional analysis, 11t
distribution of molecular, 655–657
drift (vd), 834, 841–842
escape (vesc), 407–408t
exhaust (ve), 278
instantaneous (v), 28–30, 29
instantaneous angular (&), 293–296,

294
most probable (vmp), 656–657
relative (v"), 522–523
root-mean-square (vrms), 645t, 656–657
of sound waves, 513–514t, 665
terminal (vT), 163, 165t
transverse (vy), 495

Speed (v)(Continued)
units of, A.1t
vs. velocity, 27
of waves (v), 492–493

Speed of light (c), 5
and electromagnetic waves, 988,

1069–1070
and ether, 1248–1250
and Lorentz transformation equations,

1265, 1268
in materials, 1103–1105
measurement of, 1096–1097
and Schwarzschild radius, 409
and special relativity, 1245, 1247–1248

Spherical aberration, 1132, 1152–1154,
1164

Spherical mirrors, 1131–1138. See also
Mirrors

Spherical waves, 518, 1069, 1098
and Doppler effect, 522–523

Spin, 945–946
Spin angular momentum (S), 946
Spinal taps, 442
Spirit-in-glass thermometers, 448
Spontaneity. See also Entropy; Second

law of thermodynamics
of energy transfers by heat, 672

Sports
acrobatics, 346
air hockey, 114
baseball, 79, 106, 437
basketball, 26, 103–104, 107
billiards, 267, 269–270
Bonds, Barry, 106
bowling, 251
bungee jumping, 242, 478
cycling, 72
discus, 103–104
diving, 336, 346
drag racing, 23, 144
Eldridge, Todd, 346
football, 113
Fosbury, Dick, 286
gasing, 292
golf, 436–437
high jumping, 241, 286
hockey, ice, 118
Johnson, Dave, 241
Lackey, John, 665
long jumping, 88
Matsushima, Akira, 72
merry-go-rounds, 159–160, 347–348
Muldowney, Shirley, 144
pole vaulting, 217
Powell, Mike, 88
rock climbing, 122
Ruiz, Mark, 336
skateboarding, 248, 358–359
skating, 346
ski jumping, 90–91, 108–109, 438
skiing, 232–233

Sports (Continued)
sky diving, 165
sledding, 133
“the wave,” 509

Spring constant (k), 190
Springs
potential energy in, 222–228
and simple harmonic motion, 453–454
torsional, 907
work done by, 190–193

Square waves, 568, 1058
Stable equilibrium, 236
Standards, 4
of amount of substance, 4
of electric current, 4
of length, 4–5t
of luminous intensity, 4
of mass, 4–5t
of temperature, 4
of time, 4–6t

Standing waves, 543–577, 550
in air columns, 559–562
electromagnetic, 1069
properties of, 549–552
and resonance, 558–559
in rods and membranes, 563–564
in strings fixed at both ends, 552–557
vs. interference patterns, 1178

Stars. See also Astronomy; Sun
binary, 409
neutron, 347, 409
red shifts of, 525, 1262, 1274, 1279
white dwarf, 409, 415

State variables, 615, 618, 684–686
States of matter, 421, 604. See also Fluids;

Gases; Liquids; Solids
Static equilibrium, 364, 366–373
Statistical mechanics, 651, 654–657, 683.

See also Entropy; Kinetic theory of
gases

Steady flow. See Laminar flow
Steady-state conditions
of forced oscillators, 473

Steam burns, 613
Steam point of water, 583
Stefan’s law, 628–629
Steradian, 752–753
Stick-and-slip motion, 484
Stiffness of springs, 190
Stirling, Robert, 700
Stirling engines, 700
Strain, 373
shear, 374
tensile, 373
volume, 374–375

Stapp, Col. John P., 52
Streamlines, 431
and airplane wings, 436

Stress, 373
optical analysis of, 1230
shear, 374, 421
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Stress (Continued)
tensile, 373, 421
volume, 374–375, 421

Strings
and musical instruments, 543,

555–556, 561
rate of energy transfer by waves on,

501–503
reflection and transmission of waves

on, 499–501
sinusoidal waves on, 494–496
speed of waves on, 496–499
standing waves on, 552–557
tension in, 488, 496–499

Stroboscopic photographs, 34–35
of motion of center of mass, 276
of standing waves, 550

Struts, 142
Strutt, John William, Lord Rayleigh, 1233
Stud-finders, 813
Subatomic physics, 1270, 1272,

1282–1283
Submerged objects, 428–430
Subtraction
and significant figures, 15–16
and uncertainty, A.29
of vectors, 63–64

Sun, 399t. See also Astronomy; Stars
chromosphere of, 1200
escape speed from, 408t
mass of, 399t, 400
radiation from, 628, 1078

Sunday Afternoon on the Island of 
La Grande Jatte [Seurat], 1235

Sunglasses, 1081, 1229
Sunsets, 1231
Sunspots, 639
Superconductors, 844–845
and Meissner effect, 952, 1031
resistance of, 1030–1031

Supernovae, 347, 409
Superposition, 544–549
of electric potentials, 769
of fields, 718–719, 744
of harmonics, 566–568
of sinusoidal waves, 547–548

Superposition principle, 544
for electric fields, 718–719, 744
for electromagnetic waves, 1071–1072
for gravitational forces, 404

Surface charge density (+), 720, 779,
818

Surfactants, 816
Susceptibility, magnetic (4), 947–948t
Symbols for quantities, 11, A.2t–A.3t
in circuits, 710

Synchrotrons, 913
Synthesizers, 568
System boundaries, 183
System models, 182
Système International (SI), 4

Systems, 182–183
deformable, 346, 605
and entropy changes, 687
in equilibrium, 236–238
isolated, 196, 220–228, 221, 254
mechanical vs. electrical, 1021t
nonisolated, 196–199
of particles, angular momentum of,

341–343
of particles, motion of, 274–277

Tangent function, A.21. See also
Trigonometric functions

Tangential acceleration component
(at), 94–96, 298

Tangential forces (Ft), 157–158,
312–313

Tangential velocity (v), 298
Tangents to curves, 28–29, 79. See also

Derivatives
Target of a projectile, 88
Technology. See also Engineering
role of physics in, 3–4

Telecommunications, 1114. See also
Movies; Radio; Television

and antennas, 1079–1080, 1133
Telescopes, 1162–1165. See also Hubble

Space Telescope
reflecting, 1162, 1164
refracting, 1162–1163
resolution of, 1217
Very Large Array, 1238

Television, 728, 765, 900, 1156–1157
Temperature (T), 4, 580–603, 582. See

also Heat; Internal energy
critical (Tc), 844–845t
Curie (TCurie), 951t
and electric current, 834
and internal energy, 197
measurement of, 582–584
molecular interpretation of, 644–646
and resistance, 841, 843–844
as scalar quantity, 60
and speed of sound waves, 514

Temperature coefficient of resistivity
(!), 837t, 843, 855

Temperature gradient, 624
of the ocean, 697

Temperature scales
absolute, 584–586, 585
Celsius, 583, 585–586, 610
Fahrenheit, 585–586
Kelvin, 585–586, 610

Temporal interference, 564–566
Tensile strain, 373
Tensile stress, 373
in fluids, 421

Tension (T ), 122
and conservation of mechanical

energy, 225–226

Tension (T )(Continued)
and speed of wave propagation, 488,

496–499, 554
Terminal speed (vT), 163, 165t
Terminal voltage, 860–861
Tesla, Nikola, 1053
Tesla (T), 899
Test charges, 715–716
Test particles, 402
Thermal conduction, 197, 623–627
and entropy changes, 687–688

Thermal conductivity (k), 624t–625
Thermal contact, 581–582
Thermal efficiency (e), 670
of Carnot cycles (eC), 676–678
Curzon–Ahlborn (eC–A), 677
of diesel engines, 701
of ideal engines, 675–679
of Otto cycles, 680
of real engines, 675, 680–681

Thermal energy, 605. See also Internal
energy

Thermal equilibrium, 581–582
and state variables, 615

Thermal excitation, 655
Thermal expansion, 586
of solids and liquids, 586–591
and thermometers, 583

Thermal radiation, 845–846
Thermodynamic variables, 593
Thermodynamics, 1, 578–702. See also

Entropy; Heat; Kinetic theory of
gases; Laws of thermodynamics;
Temperature

Thermometers
alcohol, 583–584
constant-volume gas, 584–586
mercury, 583–584
resistance, 843
spirit-in-glass, 448

Thermos bottles, 629
Thermostats, 589, 601
Thin films
interference in, 1189–1194

Thin lens equation, 1143–1144
Third law of motion, 120–122
and rotational motion, 342
and universal gravitation, 391

Thompson, Benjamin, 607
Thomson, Joseph John, 8, 759, 912
Thomson, William, Lord Kelvin, 4, 585,

669
Thomson’s apparatus, 912
Thoreau, Henry David, 1117
Thought experiments
for relativity of time, 1252–1253
for time dilation, 1257–1258

Threshold of hearing, 519–521
Threshold of pain, 519, 521
Thrust, 278–279
Tidal waves. See Tsunamis
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Tides
lunar, 417, 452

Timbre, 566
Time (t)
and general relativity, 1274
relativity of, 1247, 1252–1253
standards of, 5–6t
units of, A.1t

Time constant (5). See also Half-life
of RC circuits, 875–876
of RL circuits, 1008, 1010–1011
of terminal speeds, 163

Time dilation, 1253–1257, 1254
Tokamaks, 960
Toner, 784
Tops, 292, 327, 350–351
Toroids, 936
Torque (5), 306–307
and angular acceleration, 307–312
and angular momentum, 340
on electric dipoles in electric fields,

815, 817, 905
on magnetic dipoles in magnetic

fields, 879, 904–907
net (15), 363–365
and potential energy, 815
and rotational equilibrium, 363–364
and vector (cross) products, 337–339,

815
Torquers, 907
Torricelli, Evangelista, 426, 446
Torricelli’s law, 435–436
Torsion constant (-), 470
Torsional balances, 393–394, 895, 1077
Torsional pendulums, 470
Total energy (E), 1270
Total force. See Net force
Total internal reflection, 1111–1114
Total kinetic energy. See under Kinetic

energy
Transfer variables, 615
Transformers, 846–847, 1033,

1051–1054
and eddy currents, 987, 1051
and hysteresis, 1051
ideal, 1051
step-up vs. step-down, 1051

Transistors, 838
Transmission, 499–501, 500
Transmission axis, 1226
Transmission gratings, 1217
Transportation. See Aeronautics;

Airplanes; Automobiles;
Locomotives; Satellites; Space
shuttles; Spacecraft

Transverse acceleration (ay), 495
Transverse speed (vy), 495
Transverse waves, 488
Trigonometric functions, A.21–A.23
arguments of, 455
on calculators, 67

Trigonometric functions (Continued)
and components of vectors, 65
identities for, 547, 550, 1037, 1039,

1041, 1048, 1183, A.21–A.22t
and relation between Cartesian and

polar coordinates, 59–60
and second-order differential

equations, 455
small-angle approximations for, 351

Triple point of water, 585
Trusses, 372–373
Tsunamis, 511
Tube of flow, 431–432
Turbines, 983
Turbulence, 431
and airplane wings, 436
and irreversible processes, 674–675

Turning points, 236–237, 463
Turtledove, Harry, 596
Twin paradox, 1257–1259

Ultrasound, 536
Ultraviolet waves, 1081
Unbalanced force. See Net force
Unbound systems, 397, 406
Uncertainty, A.28–A.29
Underdamped oscillators, 471–472
Uniform circular motion, 91–93. See also

Circular motion
and second law of motion, 151–156
vs. simple harmonic motion, 465–467

Unit vectors (î, ĵ, k̂), 66–70
and direction cosines, 213
and scalar (dot) products, 187–188

Units. See also specific quantity
conversion of, 12–13, A.1t–A.2t
and dimensional analysis, 10–12, 11t
engineering, 626
SI, 4–7, 118t, A.1t–A.3t, A.32t
U.S. customary, 7, 118t, 204, A.1t–A.2t

Universal gas constant (R), 592–593
Universal gravitation. See Gravitation
Universal gravitational constant (G), 391
measurement of, 393–394

Universe
expansion of, 1262

Unknowns, A.15
Unpolarized light, 1226
Unreasonable values, 5
Unstable equilibrium, 237
Uranus, 399t. See also Planetary motion
escape speed from, 408t

U.S. customary system of units, 7

Van Allen belts, 910
Van de Graaff, Robert J., 782
Van de Graaff generators, 782–783
Vaporization
latent heat of, 611-612t

Variable-area optical soundtracks, 532
Variables. See Unknowns
Vector product, 337–339
Vectors, 26, 58–76, 60–61
arithmetic properties of, 61–65, 66–67
components of, 65–70
coplanar, 364
in kinematics, 78–80
scalar (dot) product of, 186–188
unit, 66–70
vector (cross) product of, 337–339

Velocity (v), 24–28, 58
average (v(), 26–27
of center of mass (vCM), 274
and dimensional analysis, 11t
Galilean transformation equation for,

1247
instantaneous (v), 28–30, 29
Lorentz transformation equations for,

1264–1267
and relationship to sign of acceleration,

35
relative (v"), 96–99
tangential (v), 298
vs. speed, 27

Velocity selectors, 911
Velocity–time graphs, 31–34, 458–459
Velocity vectors (v), 78–80
Venturi tubes, 435
Venus, 399t. See also Planetary motion
escape speed from, 408t
magnetic field of, 954

Verne, Jules, 51, 1167
Virtual objects, 1149
Viscosity, 163, 431
Viscous forces, 431
Visible spectrum, 1109
Vision. See Eyes
Void fractions, 599
Volt (V), 764
Voltage, 764. See also Potential difference
breakdown, 812
Hall (#VH), 914
instantaneous (#v), 1034
open-circuit (0), 860
root-mean-square (#V rms), 1038
terminal, 860–861

Voltage amplitude (#Vmax), 1034
Voltage drops, 862
Voltmeters, 811, 879–880
Volume (V )
and dimensional analysis, 11t
displacement, 681
of geometric shapes, A.20t

Volume charge density (*), 720
Volume expansion, average coefficient

of ('), 588t
Volume flux, 432
Volume strain, 374–375
Volume stress, 374–375. See also Pressure
in fluids, 421

Index I.21



“Vomit Comet,” 105–106
von Laue, Max, 1224
von Neumann, John, 1027
Voyager [spacecraft], 412
Voyager 2 [spacecraft], 351

Walden [Thoreau], 1117
Washboarded roads, 482
Water, 604
density of, 590–591
diamagnetism of, 952
ice point of, 583
as polar molecule, 816–817
specific heat of, 608t, 609
steam point of, 583
triple point of, 585

Water waves, 450, 488–489
Watt, James, 204
Watt (W), 204
Wave equations
linear, 503–504, 1070

Wave fronts, 522, 1069, 1097
Wave functions (y(x, t)), 490
Wave number (k), 493
Wave optics, 1176–1241. See also

Diffraction; Geometric optics;
Interference; Optics; Polarization

Waveforms, 490
Wavelength (,), 492
Wavelets, 1107
Waves, 486–511. See also

Electromagnetic waves;
Mechanical waves; Sound;
Standing waves

gravitational, 1195
linear, 544
longitudinal, 488
nonlinear, 544
plane, 1069
and propagation of a disturbance,

487–491

Waves (Continued)
reflection and transmission of,

499–501
shock, 527–528
sinusoidal, 491–496, 547–548
speed of mechanical, 513–514
spherical, 518, 522–523, 1069, 1098
square, 568, 1058
transverse, 488
water, 450, 488–489

Weak forces, 113
Weber, Wilhelm, 959
Weber (Wb), 940
Weight, 119–120
vs. mass, 116, 119

Welding, induction, 991
Wheelchairs, 371
Wheeler, John, 1274
White dwarf stars, 409, 415
White light, 1109–1110
Wilson, Robert, 1088
Windmills, 181, 195
Wiring, household, 880–882
Work (W ), 183–193, 184, 197
and Bernoulli’s equation, 434
by conductors moving in magnetic

fields, 974
by a conservative force, 228–229, 403,

763–764
by a constant force, 183–186
on deformable systems, 605, 615–617
in electric fields, 726, 763–764, 807,

815–817
and electric generators, 982
and energy transfer, 185, 193–201
and forced oscillators, 472
on a gas, 615–617
by gravity, 196
in magnetic fields, 934
and motors, 984–985
net (1W ), 189, 619, 670
path dependence of, 229, 616–617

Work (W )(Continued)
and rotational motion, 312–316
by a spring, 190–193
in thermodynamic processes,

615–617
units of, 185, A.2t
by a varying force, 188–193

Work–kinetic energy theorem, 193–196,
194

and charged particles in electric fields,
726

and charged particles in magnetic
fields, 899

relativistic, 1268–1269
for rotational motion, 301, 312–313

World-lines, 1259–1260

X-rays, 1081
from black holes, 409–410
diffraction of by crystals, 1224–1225

Xerography, 784

y-intercepts, A.17
Yard (yd), 4
Yerkes Observatory, 1165
Young, Thomas, 1093, 1095, 1178
Young’s double-slit experiment,

1177–1182
Young’s modulus (Y ), 373–374t
and speed of sound waves, 514

Zero-gravity simulations, 105–106
Zero-point energy, 585
Zeros
and significant figures, 15

Zeroth law of thermodynamics,
581–582

Zeroth-order maxima, 1180
Zonules, eye, 1156
Zoom lenses, 1172
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Quantity Symbol Valueb

Atomic mass unit u 1.660 538 73 (13) ! 10"27 kg
931.494 013 (37) MeV/c2

Avogadro’s number NA 6.022 141 99 (47) ! 1023 particles/mol

Bohr magneton 9.274 008 99 (37) ! 10"24 J/T

Bohr radius 5.291 772 083 (19) ! 10"11 m

Boltzmann’s constant 1.380 650 3 (24) ! 10"23 J/K

Compton wavelength 2.426 310 215 (18) ! 10"12 m

Coulomb constant 8.987 551 788 . . . ! 109 N #m2/C2 (exact)

Deuteron mass md 3.343 583 09 (26) ! 10"27 kg
2.013 553 212 71 (35) u

Electron mass me 9.109 381 88 (72) ! 10"31 kg
5.485 799 110 (12) ! 10"4 u
0.510 998 902 (21) MeV/c 2

Electron volt eV 1.602 176 462 (63) ! 10"19 J
Elementary charge e 1.602 176 462 (63) ! 10"19 C
Gas constant R 8.314 472 (15) J/K #mol
Gravitational constant G 6.673 (10) ! 10"11 N #m2/kg2

Josephson frequency– 4.835 978 98 (19) ! 1014 Hz/V

Magnetic flux 2.067 833 636 (81) ! 10"15 T #m2

Neutron mass mn 1.674 927 16 (13) ! 10"27 kg
1.008 664 915 78 (55) u
939.565 330 (38) MeV/c2

Nuclear magneton 5.050 783 17 (20) ! 10"27 J/T

Permeability of free $0 4% ! 10"7 T #m/A (exact)
space

Permittivity of free 8.854 187 817 . . . ! 10"12 C2/N #m2 (exact)

Planck’s constant h 6.626 068 76 (52) ! 10"34 J #s

1.054 571 596 (82) ! 10"34 J #s

Proton mass mp 1.672 621 58 (13) ! 10"27 kg
1.007 276 466 88 (13) u
938.271 998 (38) MeV/c2

Rydberg constant RH 1.097 373 156 854 9 (83) ! 107 m"1

Speed of light in c 2.997 924 58 ! 108 m/s (exact)
vacuum

a These constants are the values recommended in 1998 by CODATA, based on a least-squares adjust-
ment of data from different measurements. For a more complete list, see P. J. Mohr and B. N. Taylor,
Rev. Mod. Phys. 72:351, 2000.

b The numbers in parentheses for the values above represent the uncertainties of the last two 
digits.
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Mean Radius Distance from
Body Mass (kg) (m) Period (s) the Sun (m)

Mercury 3.18 ! 1023 2.43 ! 106 7.60 ! 106 5.79 ! 1010

Venus 4.88 ! 1024 6.06 ! 106 1.94 ! 107 1.08 ! 1011

Earth 5.98 ! 1024 6.37 ! 106 3.156 ! 107 1.496 ! 1011

Mars 6.42 ! 1023 3.37 ! 106 5.94 ! 107 2.28 ! 1011

Jupiter 1.90 ! 1027 6.99 ! 107 3.74 ! 108 7.78 ! 1011

Saturn 5.68 ! 1026 5.85 ! 107 9.35 ! 108 1.43 ! 1012

Uranus 8.68 ! 1025 2.33 ! 107 2.64 ! 109 2.87 ! 1012

Neptune 1.03 ! 1026 2.21 ! 107 5.22 ! 109 4.50 ! 1012

Pluto !1.4 ! 1022 !1.5 ! 106 7.82 ! 109 5.91 ! 1012

Moon 7.36 ! 1022 1.74 ! 106 — —
Sun 1.991 ! 1030 6.96 ! 108 — —

Solar System Data

Average Earth–Moon distance 3.84 ! 108 m
Average Earth–Sun distance 1.496 ! 1011 m
Average radius of the Earth 6.37 ! 106 m
Density of air (20°C and 1 atm) 1.20 kg/m3

Density of water (20°C and 1 atm) 1.00 ! 103 kg/m3

Free-fall acceleration 9.80 m/s2

Mass of the Earth 5.98 ! 1024 kg
Mass of the Moon 7.36 ! 1022 kg
Mass of the Sun 1.99 ! 1030 kg
Standard atmospheric pressure 1.013 ! 105 Pa

a These are the values of the constants as used in the text.

Physical Data Often Useda

Power Prefix Abbreviation Power Prefix Abbreviation

10"24 yocto y 101 deka da
10"21 zepto z 102 hecto h
10"18 atto a 103 kilo k
10"15 femto f 106 mega M
10"12 pico p 109 giga G
10"9 nano n 1012 tera T
10"6 micro $ 1015 peta P
10"3 milli m 1018 exa E
10"2 centi c 1021 zetta Z
10"1 deci d 1024 yotta Y

Some Prefixes for Powers of Ten



Symbol Meaning

' is equal to
" is defined as
+ is not equal to
, is proportional to
# is on the order of
- is greater than
. is less than
--(..) is much greater (less) than
! is approximately equal to
/x the change in x

the sum of all quantities xi from i ' 1 to i ' N

$x $ the magnitude of x (always a nonnegative quantity)
/x : 0 /x approaches zero

the derivative of x with respect to t

the partial derivative of x with respect to t

integral%
0x
0t

dx
dt

&
N

i'1
 x i

Symbol Unit Symbol Unit

A ampere K kelvin
u atomic mass unit kg kilogram
atm atmosphere kmol kilomole
Btu British thermal unit L liter
C coulomb lb pound
°C degree Celsius ly lightyear
cal calorie m meter
d day min minute
eV electron volt mol mole
°F degree Fahrenheit N newton
F farad Pa pascal
ft foot rad radian
G gauss rev revolution
g gram s second
H henry T tesla
h hour V volt
hp horsepower W watt
Hz hertz Wb weber
in. inch yr year
J joule 1 ohm

Standard Abbreviations and Symbols for Units

Mathematical Symbols Used in the Text and 
Their Meaning



Length
1 in. ' 2.54 cm (exact)
1 m ' 39.37 in. ' 3.281 ft
1 ft ' 0.304 8 m
12 in. ' 1 ft
3 ft ' 1 yd
1 yd ' 0.914 4 m
1 km ' 0.621 mi
1 mi ' 1.609 km
1 mi ' 5 280 ft
1 $m ' 10"6 m ' 103 nm
1 lightyear ' 9.461 ! 1015 m

Area
1 m2 ' 104 cm2 ' 10.76 ft2

1 ft2 ' 0.092 9 m2 ' 144 in.2

1 in.2 ' 6.452 cm2

Volume
1 m3 ' 106 cm3 ' 6.102 ! 104 in.3

1 ft3 ' 1 728 in.3 ' 2.83 ! 10"2 m3

1 L ' 1 000 cm3 ' 1.057 6 qt ' 0.035 3 ft3

1 ft3 ' 7.481 gal ' 28.32 L ' 2.832 ! 10"2 m3

1 gal ' 3.786 L ' 231 in.3

Mass
1 000 kg ' 1 t (metric ton)
1 slug ' 14.59 kg
1 u ' 1.66 ! 10"27 kg ' 931.5 MeV/c2

Some Approximations Useful for Estimation Problems
1 m ! 1 yd 1 m/s ! 2 mi/h
1 kg ! 2 lb 1 yr ! % ! 107 s
1 N ! lb 60 mi/h ! 100 ft/s

1 L ! gal 1 km ! mi

a See Table A.1 of Appendix A for a more complete list.

1
2

1
4

1
4

Conversionsa

Force
1 N ' 0.224 8 lb
1 lb ' 4.448 N

Velocity
1 mi/h ' 1.47 ft/s ' 0.447 m/s ' 1.61 km/h
1 m/s ' 100 cm/s ' 3.281 ft/s
1 mi/min ' 60 mi/h ' 88 ft/s

Acceleration
1 m/s2 ' 3.28 ft/s2 ' 100 cm/s2

1 ft/s2 ' 0.304 8 m/s2 ' 30.48 cm/s2

Pressure
1 bar ' 105 N/m2 ' 14.50 lb/in.2

1 atm ' 760 mm Hg ' 76.0 cm Hg
1 atm ' 14.7 lb/in.2 ' 1.013 ! 105 N/m2

1 Pa ' 1 N/m2 ' 1.45 ! 10"4 lb/in.2

Time
1 yr ' 365 days ' 3.16 ! 107 s
1 day ' 24 h ' 1.44 ! 103 min ' 8.64 ! 104 s

Energy
1 J ' 0.738 ft # lb
1 cal ' 4.186 J
1 Btu ' 252 cal ' 1.054 ! 103 J
1 eV ' 1.6 ! 10"19 J
1 kWh ' 3.60 ! 106 J

Power
1 hp ' 550 ft # lb/s ' 0.746 kW
1 W ' 1 J/s ' 0.738 ft # lb/s
1 Btu/h ' 0.293 W

Alpha 2 3 Iota 4 5 Rho 6 7

Beta 8 9 Kappa : ; Sigma < =

Gamma > ? Lambda @ * Tau A B

Delta / C Mu D $ Upsilon E F

Epsilon G ( Nu H I Phi ) J

Zeta K L Xi M N Chi O P

Eta H Q Omicron R S Psi T U

Theta V W Pi X % Omega 1 Y

The Greek Alphabet



Linear (v) and angular (   )
velocity vectors
Velocity component vectors

Torque vectors (  )τ
ω

Displacement and
position vectors

Force vectors (F)
Force component vectors

Acceleration vectors (a)
Acceleration component vectors

Linear ( p) and
angular (L)
momentum vectors

Linear or rotational
motion directions

Springs

Pulleys

Part 1 (Chapters 1–15) : Mechanics

Part 4 (Chapters 23–34) : Electricity and Magnetism

Light rays

Lenses and prisms

Mirrors

Objects

Images

Part 5 (Chapters 35–38) : Light and Optics

Electric fields

Magnetic fields

Positive charges

Negative charges

Resistors

Batteries and other
DC power supplies

Switches

Capacitors

Ground symbol

AC Generators

Ammeters

Voltmeters

Inductors (coils)

V

A

+

–

– +

Pedagogical Color Chart
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