Mohamed Khider Biskra University

Faculty of Exact Sciences and SNV
Biology department

Module: Math and Stat
Level: Licence 1

Prof: Amel Chine
University year:2023/2024

Chapter 1

Real functions (Fonctions réelles)

Lesson objective:

1. How do you determine the domain of definition of a function; (Comment déterminer le domaine de définition d'une fonction);
2. How do you find Limits (Comment Calculer les limites);
3. How do you study the continuity and differentiability of a function (Comment étudier la continuité et la dérivabilité d'une fonction).

1.1 Definitions and properties

Definition 1 real function (fonction réelle): Let $I \subset \mathbb{R}$ et $J \subset \mathbb{R}$. We call real function, denoted f, any application

$$
\begin{aligned}
& f: I \rightarrow J \\
& x \rightarrow f(x),
\end{aligned}
$$

where I is the starting set (the antecedents) and J the arriving set (the images).

Remark 2 1. The function f denotes the function;
2. The real variable $x \in D_{f}$ is the antecedent;
3. The real number $f(x)$ is the image of x by f.

Definition 3 Domaine de définition (domain of function): Let $I \subset \mathbb{R}$ and $J \subset \mathbb{R}$. The set of elements of I which have exactly one image in J by the function f is called the domain of definition of I. We denote it D_{f} :

$$
D_{f}=\{x \in \mathbb{R} / f(x) \text { is defined }\}
$$

1.1.1 Examples (exemples)

Polynomial function (Fonction polynomiale): The general form of this function is:

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots \ldots+a_{n} x^{n}
$$

The domain of definition of polynomial functions is $\mathbb{R}=]-\infty,+\infty[$, as examples:

$$
f(x)=x^{2}, g(x)=3+5 x+2 x^{2}, \ldots \ldots
$$

where $f(x)$ and $g(x)$ are second degree polynomials and $D_{f}=\mathbb{R}, D_{g}=\mathbb{R}$.
$\underline{\text { Nth root function(Fonction racinen-ième): }}$ Let h a real fonction. The general form of root function is :

$$
f(x)=h^{\frac{p}{q}}=\sqrt[q]{h(x)^{p}},
$$

where $p \in \mathbb{Z}$ and $q \in \mathbb{N}^{*}$.
for $p=1$ and $q=2$ we obtain square root function (la fonction racine carrée), for examples:

$$
f(x)=\sqrt{x-1}, f(x)=\sqrt{x^{2}+2 x} .
$$

The condition for f to be defined is that the function $h(x)$ is positive or zero, that's meaning: $D_{f}=\{x \in \mathbb{R} / h(x) \geq 0\}$.

The domain of the function $f(x)=\sqrt{x-1}$ is $D_{f}=\{x \in \mathbb{R} / x-1 \geq 0\}$, so

$$
x-1 \geq 0 \Rightarrow x \geq 1
$$

then: $D_{f}=[1,+\infty[$.
for $p=1$ and $q=3$ we obtain cube root function (fonction racine cubique), for example:

$$
f(x)=\sqrt[3]{x-1}
$$

The domain of cube root function is $\mathbb{R}=]-\infty,+\infty[$.
$\underline{\text { Rational function (Fonction rationnelle): If } h \text { and } g \text { are two real functions, then The }}$ general form of rational functions is given by:

$$
f(x)=\frac{h(x)}{g(x)}, g(x) \neq 0
$$

The domain of quotient function $f=\frac{h(x)}{g(x)}$ is the intersection of the domains of $h(x)$ and $g(x)$.

Remark 4 If h is a polynomial function, then for f to be defined it is necessary that $g(x) \neq 0$.

Example 5 1. Let f_{1} a function defined by:

$$
f_{1}(x)=\frac{h_{1}(x)}{g_{1}(x)}=\frac{1}{x^{2}-1},
$$

so: f_{1} is défined $\Leftrightarrow g_{1}(x)=x^{2}-1 \neq 0$, or $D_{f_{1}}=\left\{x \in \mathbb{R} / x^{2}-1 \neq 0\right\}$, the solution of the equation $x^{2}-1=0$ gives us the points which do not belong to $D_{f_{1}}$. So we have

$$
x^{2}-1=(x-1)(x+1)
$$

and

$$
(x-1)(x+1)=0 \Rightarrow\left\{\begin{array}{c}
(x-1)=0 \\
\text { ou }(x+1)=0
\end{array}\right.
$$

then, $x \neq 1$ et $x \neq-1$
so

$$
\begin{aligned}
D_{f_{1}} & =\{x \in \mathbb{R} / x \neq-1 \text { and } x \neq 1\} \\
& =\mathbb{R}-\{-1,1\} \\
& =]-\infty,-1[\cup]-1,1[\cup] 1,+\infty[
\end{aligned}
$$

2. Let f_{2} a function defined by:

$$
f_{2}(x)=\frac{h_{2}(x)}{g_{2}(x)}=\frac{x^{2}+1}{x^{2}+2 x-1},
$$

The function f_{2} is defined $\Leftrightarrow g_{2}(x)=x^{2}+2 x-1 \neq 0$. We search the solution of the equation $x^{2}+2 x-1$, so we calculate the determinant Δ :

$$
\begin{aligned}
\Delta & =(2)^{2}-4(1)(-1) \\
& =8
\end{aligned}
$$

and $\Delta>0$, then we have two different solutions are:

$$
x_{1}=\sqrt{2}-1 \text { and } x_{2}=-\sqrt{2}-1
$$

Then:

$$
\begin{aligned}
D_{f_{2}} & =\mathbb{R}-\{-\sqrt{2}-1, \sqrt{2}-1\} \\
& =]-\infty,-\sqrt{2}-1[\cup]-\sqrt{2}-1, \sqrt{2}-1[\cup] \sqrt{2}-1,+\infty[
\end{aligned}
$$

3. Let f_{3} a function defined by:

$$
f_{3}(x)=\frac{h_{3}(x)}{g_{3}(x)}=\frac{\sqrt{x-1}}{x^{2}+2 x-1} .
$$

We observe that the function $h_{3}(x)$ is a square root function then to find the domain of f_{3} it is necessary to add the condition that $h_{3}(x) \geq 0$ and the intersection with $g_{3}(x) \neq 0$ gives us $D_{f_{3}}$.
$D_{f_{3}}=\left\{x \in \mathbb{R} / x-1 \geq 0\right.$ et $\left.x^{2}+2 x-1 \neq 0\right\}$, and we have:
$D_{h_{3}}=\left[1,+\infty\left[\right.\right.$ et $\left.D_{g_{3}}=\right]-\infty,-\sqrt{2}-1[\cup]-\sqrt{2}-1, \sqrt{2}-1[\cup] \sqrt{2}-1,+\infty[$. then the intersection gives us: $D_{f_{3}}=[1,+\infty[$.

Logarithmic function(Fonction logarithme): The $l n$ function is defined as follows:

$$
\begin{gathered}
\ln : \mathbb{R}_{+}^{*} \rightarrow \mathbb{R} \\
x \rightarrow \ln (x)
\end{gathered}
$$

therefore the domain of the function \ln is $\left.\mathbb{R}_{+}^{*}=\right] 0,+\infty[$
Exponential function(Fonction exponentielle): exponential function exp is defined as
following :

$$
\begin{aligned}
\exp & : \mathbb{R} \rightarrow \mathbb{R} \\
x & \rightarrow \exp (x)
\end{aligned}
$$

and the domain of the exponential function is \mathbb{R}.
Sinus and Cosinus functions(Fonctions sinus et cosinus): The sinus function is de-
fined as follows :

$$
\begin{aligned}
\sin & : \mathbb{R} \rightarrow \mathbb{R} \\
x & \mapsto \sin (x)
\end{aligned}
$$

and its domain is \mathbb{R}

The sinus function is defined as follows:

$$
\begin{aligned}
\cos & : \mathbb{R} \rightarrow \mathbb{R} \\
x & \mapsto \cos (x)
\end{aligned}
$$

and its domain is \mathbb{R}.
The functions sin and cos are bounded functions, i.e.

$$
\text { for } x \in \mathbb{R},-1 \leq \sin (x) \leq 1 \text { and }-1 \leq \cos (x) \leq 1 \text {. }
$$

1.1.2 Composition of two functions:

Let : $f: D_{1} \rightarrow \mathbb{R}$ and $g: D_{2} \rightarrow \mathbb{R}$, then the function $f \circ g$ is defined by:

$$
\begin{aligned}
D_{2} & \rightarrow \mathbb{R} \\
(f \circ g)(x) & =f(g(x))
\end{aligned}
$$

Example 6 1. Let: $f(x)=\sin (x)$ and $g(x)=x^{2}+2 x-1$ then $(f \circ g)(x)=f(g(x))=$ $\sin \left(x^{2}+2 x-1\right)$.
2. Let: $f(x)=\ln (x)$ and $g(x)=\frac{1}{x}$ then $(f \circ g)(x)=f(g(x))=\ln \left(\frac{1}{x}\right)$. the domain of f is $\left.\mathbb{R}_{+}^{*}=\right] 0,+\infty\left[\right.$ and the domain of g is \mathbb{R}^{*}, then the domaine of $f(g(x))$ is \mathbb{R}_{+}^{*}.

Definition 7 graphical representation (Représentation graphique): Let f a real fonction, the graph of f, noté $G(f)$, is defined by:

$$
G(f)=\left\{\left(x, f(x), x \in D_{f}\right\}\right.
$$

1.1.3 Function operations (Opérations sur les fonctions)

If f and g are two functions defined on the same interval $I \subset \mathbb{R}$, we then have the following results:

1. Sum (Somme):The sum function $f+g$ is defined for any real x of the interval I by:

$$
(f+g)(x)=f(x)+g(x)
$$

2. Product (Produit): the product function $f g$ is defined for all real x of the interval I by:

$$
(f g)(x)=f(x) g(x)
$$

3. Quotiont: when the function g does not equal 0 on the interval I, the quotient function f / g is defined for any real x of I by:

$$
\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}, g(x) \neq 0
$$

1.2 limit of a function (Limite d'une fonction)

Let $f:] a, b\left[\rightarrow \mathbb{R}\right.$ and let $\left.x_{0} \in\right] a, b\left[\right.$ where $\left.x_{0} \notin\right] a, b[$.

1. We say that $f(x)$ tends to a real limit l as x tends to x_{0} on the left if:

$$
\lim _{x \rightarrow x_{0}} f(x)=l
$$

2. We say that $f(x)$ tends to a real limit l as x approaches x_{0} on the right if:

$$
\lim _{x \rightarrow x_{0}} f(x)=l^{\prime}
$$

3. If we have

$$
\lim _{x \rightarrow x_{0}} f(x)=l=\lim _{x \rightarrow x_{0}} f(x)
$$

Then we say that l is the limit of f at the point x_{0}.
We say that f tends to an infinite limit $+\infty(-\infty)$ when x approaches x_{0} on the left and on the right if:

$$
\lim _{x \rightarrow x_{0}} f(x)=\lim _{x \rightarrow x_{0}} f(x)=\left\{\begin{array}{c}
+\infty \\
\text { or }-\infty
\end{array} .\right.
$$

Sometimes, in the calculations of the limits we find forms called indeterminate forms (IF) when calculating the limits, these forms are:

$$
+\infty-\infty, \frac{\infty}{\infty}, \frac{0}{0}, \frac{\infty}{0}, 0 \infty, 0^{\infty} .
$$

To remove the indeterminate form (IF) in the calculations of the limits, we use the following methods:

1.2.1 Method 01: Factoring higher degree polynomials (Factoriser le terme de plus haut degré)

We use this method when we have an indeterminate form of the type $(+\infty-\infty)$ for a polynomial function or $\left(\frac{\infty}{\infty}\right)$ for a rational function. This method consists of putting the
highest degree term into a factor and if we obtain a fraction we simplify as much as possible.

Example 8 1. We want to calculate $\lim _{x \rightarrow \infty}\left(x^{2}-2 x+1\right)$, we have: $\lim _{x \rightarrow \infty}\left(x^{2}-2 x+1\right)=$ $+\infty-\infty$, so it's an FI of the type $+\infty-\infty$. To remove the FI we put x^{2} as a factor, then:

$$
x^{2}-2 x+1=x^{2}\left(1-\frac{2}{x}+\frac{1}{x^{2}}\right)
$$

and

$$
\begin{aligned}
\lim _{x \rightarrow \infty} x^{2} & =+\infty \\
\lim _{x \rightarrow \infty}\left(\frac{2}{x}+\frac{1}{x^{2}}\right) & =0
\end{aligned}
$$

by product:

$$
\lim _{x \rightarrow \infty} x^{2}\left(1-\frac{2}{x}+\frac{1}{x^{2}}\right)=\infty .1=\infty
$$

2. We want to calculate $\lim _{x \rightarrow \infty}\left(\frac{x^{2}-2 x+1}{x+1}\right)$, we have: $\lim _{x \rightarrow \infty}\left(\frac{x^{2}-2 x+1}{x+1}\right)=\frac{\infty}{\infty}$, so it's an FI of the type $\frac{\infty}{\infty}$. To remove the FI we put the highest degree in the numerator and divide it by the highest degree in the denominator, then:

$$
\lim _{x \rightarrow \infty}\left(\frac{x^{2}-2 x+1}{x+1}\right)=\lim _{x \rightarrow \infty}\left(\frac{x^{2}}{x}\right)=\lim _{x \rightarrow \infty}(x)=+\infty
$$

1.2.2 Method 02: conjugate multiplication technique (Multiplier par l'expression conjuguée)

This method used when we have an indeterminate form of the type $(+\infty-\infty)$ in an expression with square roots $(\sqrt{A(x)}-\sqrt{B(x))}$. To remove the FI in this type we multiply and divide by the conjugate expression of $(\sqrt{A(x)}-\sqrt{B(x)})$, it is $(\sqrt{A(x)}+\sqrt{B(x)})$.

Example 9 We want to calculate: $\lim _{x \rightarrow \infty}(\sqrt{x}-\sqrt{x+3})$, wz have: $\lim _{x \rightarrow \infty}(\sqrt{x})=+\infty$ and $\lim _{x \rightarrow \infty}(\sqrt{x+3})=+\infty$ but the sum of these two limits equals $+\infty-\infty$.
so we multiply and divide by: $\sqrt{x}+\sqrt{x+3}$, we obtain:

$$
\begin{aligned}
\frac{(\sqrt{x}-\sqrt{x+3})(\sqrt{x}+\sqrt{x+3})}{(\sqrt{x}+\sqrt{x+3})} & =\frac{x-x+3}{\sqrt{x}+\sqrt{x+3}} \\
& =\frac{3}{\sqrt{x}+\sqrt{x+3}}
\end{aligned}
$$

so

$$
\begin{aligned}
\lim _{x \rightarrow \infty}(\sqrt{x}-\sqrt{x+3}) & =\lim _{x \rightarrow \infty}\left(\frac{3}{\sqrt{x}+\sqrt{x+3}}\right) \\
& =\frac{3}{+\infty} \\
& =0
\end{aligned}
$$

1.2.3 Method 03: Comparaison (La comparaison)

This method consists of comparing between two functions. We summarize this method as follows:

Let considred two functions f and g defined on the interval I in \mathbb{R},

1. If $f(x) \leq g(x)$ and $\lim _{x \rightarrow x_{0}} g(x)=-\infty$, then

$$
\lim _{x \rightarrow x_{0}} f(x)=-\infty
$$

2. If $g(x) \leq f(x)$ and $\lim _{x \rightarrow x_{0}} g(x)=+\infty$, then
3. Let f, g and h three fonctions defined on the interval I in \mathbb{R}, if $h(x) \leq f(x) \leq g(x)$ and $\lim _{x \rightarrow x_{0}} g(x)=\lim _{x \rightarrow x_{0}} h(x)=l$, then

$$
\lim _{x \rightarrow x_{0}} f(x)=l .
$$

Example 10 Let considred a function $f: f(x)=x^{2} \sin (x)-3 x^{2}$. We want to calculate
$\lim _{x \rightarrow+\infty}\left(x^{2} \sin (x)-3 x^{2}\right)$
We know that:

$$
-1 \leq \sin (x) \leq 1
$$

and $x^{2} \geq 0$, so

$$
\begin{gathered}
x^{2} \sin (x) \leq x^{2} \\
x^{2} \sin (x)-3 x^{2} \leq x^{2}-3 x^{2} \\
x^{2} \sin (x)-3 x^{2} \leq-2 x^{2}
\end{gathered}
$$

and $\lim _{x \rightarrow \infty}\left(-2 x^{2}\right)=-\infty$, We conclude that : $\lim _{x \rightarrow 0}\left(x^{2} \sin (x)\right)=-\infty$.

1.2.4 Method 04: Derivation method (Méthode de dérivation)

This method used when we have an indeterminate form of the type $\left(\frac{+\infty}{+\infty}, \frac{-\infty}{-\infty}\right.$ et $\left.\frac{0}{0}\right)$. This method consists of using the derivative of the function (Hospital rule). We summarize this method as follows:

Let f and g two functions differentiable on an interval $I=] a, b\left[\right.$ of \mathbb{R} and $g^{\prime}(x) \neq 0$, then
1.

$$
\text { if } \lim _{x \rightarrow x_{0}} f(x)=\lim _{x \rightarrow x_{0}} g(x)=0 \text { and } \lim _{x \rightarrow x_{0}} \frac{f^{\prime}(x)}{g^{\prime}(x)}=l \text { then } \lim _{x \rightarrow x_{0}} \frac{f(x)}{g(x)}=l
$$

2.

$$
\text { if } \lim _{x \rightarrow x_{0}} f(x)=\lim _{x \rightarrow x_{0}} g(x)=+\infty \text { and } \lim _{x \rightarrow x_{0}} \frac{f^{\prime}(x)}{g^{\prime}(x)}=l \text { then } \lim _{x \rightarrow x_{0}} \frac{f(x)}{g(x)}=l
$$

Remark 11 Sometimes you will have to use the hospital rule several times.

Example 12 1. Let h a function defined by:

$$
h(x)=\frac{\sqrt{x}}{\ln (x)},
$$

we calculate $\lim _{x \rightarrow+\infty}\left(\frac{\sqrt{x}}{\ln (x)}\right)=\frac{+\infty}{+\infty}$, so we use the hospital rule and we obtain

$$
\lim _{x \rightarrow+\infty}\left(\frac{\frac{1}{2 \sqrt{x}}}{\frac{1}{x}}\right)=\lim _{x \rightarrow+\infty}\left(\frac{\sqrt{x}}{2}\right)=+\infty
$$

1.2.5 Properties of Limits

If L, M, c, and k are real numbers and

$$
\lim _{x \rightarrow c} f(x)=L \text { and } \lim _{x \rightarrow c} g(x)=M, \text { then }
$$

Sum Rule: The limit of the sum of two functions is the sum of their limits

$$
\lim _{x \rightarrow c}(f(x)+g(x))=L+M
$$

Difference Rule: The limit of the difference of two functions is the difference of their limits

$$
\lim _{x \rightarrow c}(f(x)-g(x))=L-M
$$

Product Rule:The limit of a product of two functions is the product of their limits.

$$
\lim _{x \rightarrow c}(f(x) \cdot g(x))=L M
$$

Constant Multiple Rule: The limit of a constant times a function is the constant times the limit of the function

$$
\lim _{x \rightarrow c}(k f(x))=k L
$$

Quotient Rule: The limit of a quotient of two functions is the quotient of their limits, provided the limit of the denominator is not zero

$$
\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\frac{L}{M}, M \neq 0
$$

1.3 Continuity (Continuité)

Definition 13 Continuity left and right (Continuité à gauche et à droite): Let f a function defined on un intervalle $I(I \subset \mathbb{R})$. Let x_{0} a point of I.
-The function f is continuous to the left of x_{0} if and only if

$$
\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right) .
$$

-The function f is continuous to the right of x_{0} if and only if

$$
\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right) .
$$

-The function f is continuous at a point x_{0} if and only if

$$
\lim _{x \rightarrow x_{0}} f(x)=\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right) .
$$

Definition 14 Continuity (Continuité): Let f be a function defined on an interval I ($I \subset$ $\mathbb{R})$. We say that the function f is continuous in I if and only if f is continuous at each point of I.

Remark 15 -If $\lim _{x \rightarrow x_{0}} f(x) \neq \lim _{x \rightarrow x_{0}} f(x) \neq f\left(x_{0}\right)$ then the function f is discontinuous in x_{0}. -If $\lim _{x \rightarrow x_{0}} f(x) \neq \lim _{x \rightarrow x_{0}} f(x)$ and $\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)$ then f iscontinuous to the left of x_{0}.

$$
\text { -If } \lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right) \text { then } f \text { is continuous to the right of } x_{0} \text {. }
$$

Example 16 -Polynomial functions are continuous at every point in \mathbb{R}.
-Rational fractions functions are continuous where they are defined.
-Let f a function defined by: $f(x)=\frac{x+2}{x}$ and $D_{f}=\mathbb{R}-\{0\}$. The function f is continuous at $x_{0}=1$ because:

$$
\lim _{x \hookrightarrow 1}^{\leq} \frac{x+2}{x}=\underset{\substack{\geq \\ x \rightarrow 1}}{\lim } \frac{x+2}{x}=f(1)=3 .
$$

-Let g a function defined by: $g(x)=\left\{\begin{array}{c}\frac{|x|}{x} \text { if } x \neq 0 \\ 1 \text { if } x=0\end{array}, D_{f}=\mathbb{R}\right.$.
The fonction g is dicontinuous at $x_{0}=0$ because:

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{|x|}{x}=\lim _{x \rightarrow 0}^{<} \frac{-x}{x}=-1 \\
& \lim _{x \rightarrow 0} \frac{|x|}{x}=\lim _{x \rightarrow 0}^{\geq} \frac{x}{x}=1
\end{aligned}
$$

but it is continuous to the right because: $\underset{\substack{\backslash \\ x \rightarrow 0}}{\lim } \frac{|x|}{x}=\underset{\substack{\backslash \\ x \rightarrow 0}}{\lim } \frac{x}{x}=1=g(0)$.

1.3.1 Extension by continuity (Prolongement par continuité)

Let f a function defined on interval $I-\left\{x_{0}\right\}$. If $\lim _{x \rightarrow x_{0}} f(x)=l$ (existe) then the function \tilde{f} défined on I

$$
\tilde{f}=\left\{\begin{array}{c}
f(x) \text { if } x \neq x_{0} \\
l \text { if } x=x_{0}
\end{array}\right.
$$

is called the extension by continuity from f to x_{0}. The function f is then continuous in x_{0}.

Example 17 Let f defined by:

$$
f(x)=\frac{\sin (x)}{x}
$$

The domain $D_{f}=\mathbb{R}-\{0\}$ and the function f is continuous in D_{f} but $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1$.
So we can extend f to $x_{0}=0$

$$
\tilde{f}=\left\{\begin{array}{c}
\frac{\sin (x)}{x} \text { if } x \neq 0 \\
1 \text { if } x=0
\end{array}\right.
$$

1.4 Differentiability (Dérivabilité)

Definition 18 Differentiability left and right (Dérivée sur à droite et à gauche): Let f a function defined on interval I in R. Let a a point of I.
-The function f is differentiable in left at a point x_{0} if and only if

$$
\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=l .
$$

-The function f is differentiable in right at a point x_{0} if and only if

$$
\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=l^{\prime}
$$

-The function f is differentiable at a point x_{0} if and only if

$$
\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=\lim _{x \rightarrow a} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=f^{\prime}\left(x_{0}\right) .
$$

This number $f \prime\left(x_{0}\right)$ is called derivative of f at x_{0}.

Definition 19 derivative on I (Dérivée sur I): We say that f is differentiable on I if, for all x of I, f is differentiable on x. This function is called the derivative of f, denoted $f \wedge$.

Example 20 -Polynomial functions are differentiable at any point in \mathbb{R}.
-Rational fractions are differentiable where they are defined.
-Let f a function definie by: $f(x)=\frac{x+2}{x}$ and $D_{f}=\mathbb{R}-\{0\}$. the function f is differentiable at $x_{0}=1$ because:

$$
\lim _{x \rightarrow 1}^{\leq} \frac{\frac{x+2}{x}-3}{x-1}=\lim _{x \rightarrow 1}^{\leq} \frac{\frac{-2 x+2}{x}}{x-1}=\lim _{x \rightarrow 1} \frac{-2 x+2}{x(x-1)}=\frac{0}{0}(I F)
$$

we use hospital rule:

$$
\lim _{x \rightarrow 1}^{<} \frac{-2 x+2}{x(x-1)}=\lim _{x \rightarrow 1} \frac{-2}{2 x-1}=-2
$$

also

$$
\lim _{\substack{\geq \\ x \rightarrow 1}} \frac{-2 x+2}{x(x-1)}=\lim \frac{-2}{2 x-1}=-2
$$

then f is differentiable at $x_{0}=1$.

1.4.1 Properties (Propriétés)

Let f and g two fonctions differentiable on I.then we have:

1. for α and $\beta \in \mathbb{R}:(\alpha f+\beta g)^{\prime}=\alpha f^{\prime}+\beta g^{\prime}$ linearity(linéarité)

$$
(2 \cos (x)+3 \ln (x))^{\prime}=-2 \sin (x)+3\left(\frac{1}{x}\right)=-2 \sin (x)+\frac{3}{x} .
$$

2. Product derivative (Dérivé de produit):

$$
(f g)^{\prime}=f^{\prime} g+f g^{\prime}
$$

as

$$
(x \ln (x))^{\prime}=\ln (x)+x\left(\frac{1}{x}\right)=\ln (x)+1
$$

3. Derivative of the quotient :

$$
\left(\frac{f}{g}\right)^{\prime}=\frac{f^{\prime} g-f g^{\prime}}{g^{2}}
$$

we take an example:

$$
\left(\frac{x}{x^{2}+2}\right)^{\prime}=\frac{1\left(x^{2}+2\right)-x(2 x)}{\left(x^{2}+2\right)^{2}}=\frac{-x^{2}+2}{\left(x^{2}+2\right)^{2}}
$$

4. Derivative of composition functions:

$$
(f(g(x)))^{\prime}=g^{\prime}(x) f^{\prime}(g(x))
$$

for example:

$$
\left(\cos \left(x^{2}+2 x\right)\right)^{\prime}=-(2 x+2) \sin \left(x^{2}+2 x\right)
$$

Derivatives of usual functions: They are presented in the following table:

Function f	Derivative f^{\prime}	Function f	Derivative f^{\prime}
x^{α}	$\alpha x^{\alpha-1}$	$\sin (x)$	$\cos (x)$
$\ln (x)$	$\frac{1}{x}$	e^{x}	e^{x}
\sqrt{x}	$\frac{1}{2 \sqrt{x}}$	a^{x}	$\ln (a) a^{x}$
$\frac{1}{x}$	$\frac{-1}{x^{2}}$	$\sqrt[n]{x}$	$\frac{1}{n \sqrt[n]{x^{n-1}}}$
$\cos (x)$	$-\sin (x)$	$u(x)^{n}$	$n u^{\prime}(x) u^{n-1}$

