Exercise series $\mathrm{N}^{\circ} 1$

Exercise 1 : Consider the following assertions:
$A_{1}: \exists x \in \mathbb{R}, \forall y \in \mathbb{R}: x+y>0$.
$A_{2}: \forall x \in \mathbb{R}, \exists y \in \mathbb{R}: x+y>0$.
$A_{3}: \forall x \in \mathbb{R}, \forall y \in \mathbb{R}: x+y>0$.
$A_{4}: \exists x \in \mathbb{R}, \forall y \in \mathbb{R}: y^{2}>x$.

1. Are assertions A_{1}, A_{2}, A_{3} and A_{4} true or false?
2. Give their negation.

Exercise 2:

- If a and b are two positive or zero real numbers, show that:

$$
\sqrt{a}+\sqrt{b} \leq 2 \sqrt{a+b}
$$

- Prove by induction the following equalities:

$$
\sum_{k=1}^{n} k=\frac{n(n+1)}{2} \quad \text { and } \quad \sum_{k=0}^{n-1} 2^{k}=2^{n}-1, \quad \text { with } n \in \mathbb{N}^{*}
$$

- Show that $\sqrt{2}$ is not a rational number.

Exercise 3 Let x and $y \in \mathbb{R}$.

1. Show that the following relationships are always true:
(a) If $|x|<y$ then $-y<x<y$
(b) $|x+y| \leq|x|+|y|$.
(c) $||x|-|y|| \leq|x-y|$.
2. Solve the following inequalities:
(a) $|x-2|>5$.
(b) $|x+2|>|x|$.
(c) $|2 x-1|<|x-1|$.

Exercise 4 Determine (if they exist): the all upper and lower bounds, supremum, infimum, maximum, and minimum, of the following sets:

$$
\begin{gathered}
\left.\left.E_{1}=\left\{1, \frac{1}{3}, \frac{1}{5}, \ldots, \frac{1}{2 n+1}, \ldots ; n \in \mathbb{N}\right\}, \quad E_{2}=\right] 0,5\right], \quad E_{3}=\left\{4-\frac{1}{n} ; n \in \mathbb{N}^{*}\right\}, \\
E_{4}=\left\{\frac{1}{2}+\frac{n}{2 n+1}, \frac{1}{2}-\frac{n}{2 n+1} ; n \in \mathbb{N}^{*}\right\}
\end{gathered}
$$

Exercise 5 Show that the following relationships are true.

- $x-1<E(x) \leq x$,
- $E(x)+E(y) \leq E(x+y)$,
- $E(x)-E(y) \geq E(x-y)$,
- $E\left(\frac{E(n x)}{n}\right)=E(x)$,
with $x, y \in \mathbb{R}, n \in \mathbb{N}^{*}$ and $E($.$) is the integral part function.$

