Mohamed Khider University of Biskra Science and Technology Faculty Common Core in Science and Technology **Engineer Science Technology First Year -Physics 1- Practical Works**

كرة جامعة محمد خيضر بس كلية العلوم و التكنولوج الجذع المشترك لميدان العلوم و التكنولوجيا

First Semester 2023/24

Level: 1st Year ST-Engineer

<u>Group</u>	:	••	•••	•••		•••	•••	••	•••	
<u>Date :</u>		•••		••	•••	•••	•••	• •	••	

Module: PW Physics 1				
Members of the Group:				

Practical Work Report 4: Elastic and Inelastic Collisions

a. Elastic collision:

1-Fill in the table. (δt is the time that takes for the tab to pass from δx =2cm, through the optical barrier).

m _B (gr)		
t (a)		
t_A (S)		
ť _A (s)		
ť _B (s)		
$v_A = \delta x / t_A$ (m/s)		
$v'_A = \delta x / t'_A$ (m/s)		
$v'_B = \delta x / t'_B$ (m/s)		
$E_{cA} = m_A v_A^2 / 2 \qquad (J)$		
$E'_{cA} = m_A v'_A^2 / 2$ (J)		
$E'_{cB} = m_B v'^2 / 2$ (J)		
P _A =m _A .v _A		
P' _A =m _A .v' _A		
P' _B =m _B .v' _B		
$(\vec{p}_{A}+\vec{p}_{B})/(\vec{p}'_{A}+\vec{p}'_{B})$		
(E _{cA} +E _{cB})/(E' _{cA} +E' _{cB})		

Common Core in Science and Technology Engineer Science Technology First Year -Physics 1- Practical Works

2- According to the results of the table, is there conservation of momentum and kinetic

energy?....

b. Inelastic Collision :

Mohamed Khider University of Biskra Science and Technology Faculty

1-Fill in the table.

m _B (gr)		
t _A (s)		
ť _B (s)		
$v_A = \delta x / t_A$ (m/s)		
$v'_{A} = \delta x / t'_{B} = v'_{B} (m/s)$		
$E_{cA} = m_A v_A^2 / 2 \qquad (J)$		
$E'_{cA} = m_A v'_A^2 / 2$ (J)		
$E'_{cB} = m_B v'_B ^2/2$ (J)		
P _A =m _A .v _A		
P' _A =m _A .v' _A		
P' _B =m _B .v' _B		
(E _{cA} +E _{cB})/(E' _{cA} +E' _{cB})		

2- According to the results of the table, is there conservation of momentum and kinetic

energy?....

.....

4. Conclusion:

First Semester 2023/24

Practical Work N°4: Elastic and Inelastic Collisions

1. Objective of the experiment:

The objective of this experiment is to verify that momentum is saved as well as kinetic energy by measuring the velocities of bodies in collision before and after.

2. Collisions:

In this experiment, we will verify the laws of conservation of momentum and mechanical energy. In collisions, the sum of the **external forces** to the study system (consisting of two carts) is zero: $\sum \vec{F}_{ext} = \vec{0} = d\vec{p}/dt$. As a consequence, the momentum p = m v is conserved. Figure 4 shows the diagram of the experiment, where cart A (velocity v_A) impacts cart B initially at timeout ($v_B = 0$). Under these conditions, the law of conservation of momentum give: In this experiment, we will verify the laws of conservation of momentum and mechanical

$$\mathbf{m}_{A}.\mathbf{v}_{A} = \mathbf{m}_{A}.\mathbf{v}_{A}' + \mathbf{m}_{B}.\mathbf{v}_{B}'$$
 (1)

Where v'_A and v'_B indicate the velocities of carts A and B respectively after the collision.

Elastic collisions

In addition to conserving momentum, elastic collisions also conserve energy mechanics. In our case study (with $v_B = 0$):

$$m_A. v_A^2/2 = m_A. v_A^2/2 + m_B. v_B^2/2$$
 (2)

The solution of equations 1 and 2 are given in 3 and 4:

$$v'_{A} = [(m_{A} - m_{B})/(m_{A} + m_{B})] \cdot v_{A}$$
 (3)

$$v'_{B} = [2 m_{A}/(m_{A} + m_{B})] \cdot v_{A}$$
 (4)

Inelastic collisions

Collisions with snagging are the extreme case among inelastic collisions. Both carts will remain close together after the collisions ($v'_A = v'_B = v'$). With this condition, we can calculate the velocities after the collision:

$$v' = [m_A/(m_A + m_B)].v_A$$
 (5)

Mohamed Khider University of Biskra Science and Technology Faculty Common Core in Science and Technology Engineer Science Technology First Year -Physics 1- Practical Works

3. Manipulation :

Elastic Collision:

Fig.2

- Assemble the experiment bench as shown.

- Adjust the distance between the optic barriers

Such as the collisions occur between them.

- Before the collisions one of the carts with a

Fixed mass $m_A = g$, is in motion; while the other

cart with a variable mass m_{B} is at rest.

When passing, the chronometer records the corresponding time $\delta t_{\text{A}}.$

-After the collisions, the two moving carts go in opposite directions and each one passes

through optic barrier. The chronometer records the two times $\delta t'_A$ and $\delta t'_B$.

- Repeat the previous steps by varying the mass m_B of the cart.

Note: δt is the time it takes for the tab to pass from $\delta x=2cm$, through the optical barrier.

Inelastic collision:

After the collisions, the two moving carts adhere and go in the same direction and pass through a L.B. The stopwatch still records the lap time. Wear it on the board.