Faculty of science and technology
module of mathematics 1
$1^{\text {st }}$ year LMD

Serie of exercise $\mathrm{N}^{\circ} 2$

Exercise 1

1. Let A, B and C be three parts of a set E . Give a simplified writing of the following subsets:
$[A \cup(A \cap B)] \cap B$
$(A \cap B) \cup\left(A \cap B^{C}\right)$
2. What is the power set of $\mathrm{E}=\{a, b, c, d\}$?
3. Prove that:
$(A \cap B)=(A \cup B) \Rightarrow A=B$
4. Let A, B be two parts of a set E . We note C_{E}^{A} as the complement of A in E . What is the correct answer?
$\square \overline{A \cup B}=\bar{A} \cup \bar{B}$
$\square \overline{A \cup B}=\bar{A} \cap \bar{B}$
$\square \overline{A \cup B}=A \cap B$

Exercise 2

We define the relation R :

$$
x R y \Leftrightarrow \cos ^{2}+\sin ^{2}=1
$$

1. show that \mathbf{R} is equivalence relation.
2. give the equivalence class of 0 .
3. Let E and F be two non-empty sets and f be a map from E to F . Let A, B be two subsets of E . What are the correct answers?

$$
A \subset \mathrm{~B} \Rightarrow f^{-1}(A) \subset f^{-1}(B)
$$$f^{-1}(A \cap B)=f^{-1}(A) \cap f^{-1}(B)$$f^{-1}(A \cap B) \subset f^{-1}(A) \cap f^{-1}(B)$

$\square \quad f^{-1}(A \cup B)=f^{-1}(A) \cap f^{-1}(B)$

