Faculty of science and technology
module of mathematics 1
$1^{\text {st }}$ year LMD

Serie of exercise $\mathrm{N}^{\circ} 1$

Exercise 1

A. Make truth table for the statements:
$P \vee Q \Rightarrow P^{\wedge} Q$
$\overline{P^{\wedge} \mathrm{Q}}$ and $\bar{P} \vee \bar{Q}$ are logically.
B. Let P be a false assertion, Q a true assertion ad R a false assertion. What are the assertions true?
$\square \quad \mathrm{Q}$ and (P or R)
$\square \quad \mathrm{P}$ or $(\mathrm{Q}$ and R$)$
$\square \quad$ Non (P and Q and R)
$\square \quad(\mathrm{P}$ or Q$)$ and $(\mathrm{Q}$ or R$)$
C. Give the negation of each statement:
$\forall x \in R_{+} \forall y R_{+} \quad x+y>x . y$
$\forall x \in R \exists y \in R \quad x . y=1$
D. Which assertions are true?$\forall x \in R \quad x^{2}-x \geq 0$$\forall n \in N n^{2}-n$$\exists x<0 \quad \exp (x)<0$
$\square_{\exists} x>0 \quad \sqrt{x}=x$
Attention: $x^{2}-x$ is negative for $x=\frac{1}{2}$ for example!

Exercise 2

Prove that:

1. if n positive integer with $n^{2}>100$ then $n>10$.
2. $\sqrt{3}$ is irrational.
3. Prove using mathematical induction the following statement:

$$
\forall n \in N^{*} P(n)=1+2+3+\cdots+n=\frac{n(n+1)}{2}
$$

