2014/2 ENGINEERING DEPARTMENTS PHYSICS 2

RECITATION 3

(Electric Potential)

1. (a) Find the work done by a displacement of $+2 q$ charge from $A(0,6 a)$ to $\mathrm{B}(3 \mathrm{a}, 0)$.
(b) Find the potential energy of the new system.

Figure 1

(a)

$$
\begin{aligned}
U_{12} & =k \frac{q_{1} q_{2}}{r_{12}} \\
U_{A} & =k \frac{2 q(q)}{2 a}+k \frac{q(2 q)}{3 \sqrt{5} a}+k \frac{(-q)(2 q)}{10 a} \\
U_{A} & =U_{21}+U_{31}+U_{41} \\
& =k \frac{q^{2}}{a}+k \frac{2 q^{2}}{3 \sqrt{5} a}-k \frac{q^{2}}{5 a} \\
& =k \frac{q^{2}}{a}\left(\frac{4}{5}+\frac{2}{3 \sqrt{5}}\right)
\end{aligned}
$$

$$
u_{B}=\underbrace{k \frac{2 q(9)}{5 a}}_{u_{21}}+\underbrace{k a}_{u_{31}}+\frac{(2 q) q}{6 a}+\frac{k(-9)(2 q)}{5 a}
$$

$$
W_{A \rightarrow B}=U_{B}-U_{A}=k \frac{q^{2}}{a^{2}}\left(\frac{-2}{3 \sqrt{5}}-\frac{7}{15}\right)
$$

b)

$$
U_{\text {latest }}=U_{12}+U_{13}+U_{14}+U_{23}+U_{24}+U_{34}
$$

$U_{\text {latest }}=\frac{k(29)(9)}{5 a}+\frac{k(29)(9)}{6 a}+\frac{k(-9)(29)}{5 a}+\frac{k(9)(9)}{5 a}+\frac{k(9)(-9)}{8 a}+\frac{k(9)(-9)}{5 a}$
$U_{\text {latest }}=\frac{5}{24} k \frac{q^{2}}{a}$.
2. A uniform electric field of magnitude $325 \mathrm{~V} / \mathrm{m}$ is directed in the negative y direction in Figure 2. The coordinates of point A are $(-2,-3) \mathrm{m}$, and those of point B are $(4,5) \mathbf{m}$. Calculate the electric potential difference $\left(\mathbf{V}_{\mathbf{B}}-\mathbf{V}_{\mathbf{A}}\right)$ using $\mathbf{A C B}$ and $\mathbf{A B}$ paths.

Figure 2

$V_{B}-V_{A}=-\int_{A}^{B} \vec{E} \cdot d \vec{s}$

ACB path

$V_{B}-V_{A}=-\int_{A}^{c} \vec{E} \cdot d \vec{s}_{1}-\int_{c}^{B} \vec{E} \cdot d \vec{s}_{2}$
$V_{B}-V_{A}=-\int_{A}^{c}(-325 \hat{j}) \cdot d y \hat{j}-\int_{C}^{B}(-325 \hat{j}) \cdot d x \hat{i} \quad(\hat{j} \cdot \hat{i}=0)$
$V_{B}-V_{A}=325 \int_{A}^{c} d y$
$V_{B}-V_{A}=325 \int_{-3}^{5} d y=325[y]_{-3}^{5}=325[5-(-3)]$
$V_{B}-V_{A}=2600(V)$

AB path:

$$
\begin{aligned}
& V_{B}-V_{A}=-\int_{A}^{B} \vec{E} \cdot d \vec{s}_{3} \\
& V_{B}-V_{A}=-\int_{A}^{B}(-325 \hat{j}) \cdot(d x \hat{i}+d y \hat{j}) \\
& V_{B}-V_{A}=325 \int_{A}^{B} d y \\
& V_{B}-V_{A}=325 \int_{-3}^{5} d y=325[y]_{-3}^{5} \\
& \left.V_{B}-V_{A}=2600(V)\right]^{5}
\end{aligned}
$$

3. An electric dipole consists of two charges of $+5 \mu \mathrm{C}$ and $-5 \mu \mathrm{C}$ are placed at the points with coordinates $(-0.2 ; 0) m$ and $(0.2 ; 0) \mathrm{m}$, as shown in Figure 3. A test charge of $q_{0}=3 \boldsymbol{\mu}$ is moved from the point $\mathbf{x}=\mathbf{0 . 6 m}$ to the point $\mathbf{x}=\mathbf{- 0 . 4 m}$ with constant speed over a semicircle path intersecting y axis (radius of the path is $\mathbf{0 . 5 m}$).
How much work is done to move the test charge?

Figure 3
$V=k \frac{q}{r}$
$V_{a}=k \frac{q}{r_{1}}-k \frac{q}{r_{2}}$
$V_{a}=9.10^{9}\left(\frac{5.10^{-6}}{0.8}-\frac{5.10^{-6}}{0.4}\right)$
$V_{a}=-56250(V)$
$V_{b}=k \frac{q}{r_{3}}-k \frac{q}{r_{4}}$
$V b=9.10^{9}\left(\frac{5.10^{-6}}{0,2}-\frac{5.10^{-6}}{0,6}\right)$
$V_{b}=150000(v)$
4. A thin rod of length \mathbf{L} with charge per unit length $\boldsymbol{\lambda}$ lies along the x axis, as shown in Figure 4.
a) What are the electrical potentials of A and B points?
b) If the thin rod has a non-uniform charge density of $\boldsymbol{\lambda}=\boldsymbol{\alpha x}$ ($\boldsymbol{\alpha}$: constant), calculate the electrical potentials of A and B points.

(a)

$$
V=k \int \frac{d q}{r}
$$

$$
d q=\lambda d x
$$

$$
V_{A}=k \int_{0}^{L} \frac{d q}{r}=k \int_{0}^{L} \frac{\lambda d x}{r}
$$

$$
r=d+x
$$

$$
V_{A}=k \lambda \int_{0}^{L} \frac{d x}{x+d}
$$

$$
V_{A}=k \lambda\left(\left.\ln (x+d)\right|_{0} ^{L}\right)
$$

$$
V_{A}=k \lambda \ln \left(1+\frac{L}{d}\right)
$$

$$
V=k \int \frac{d q}{r}
$$

$$
r=\sqrt{b^{2}+\left(\frac{L}{2}-x\right)^{2}}
$$

$$
V_{B}=\int \frac{k \lambda d x}{\left(b^{2}+(L / 2-x)^{2}\right)^{1 / 2}}
$$

$$
u=\frac{L}{2}-x
$$

$$
d u=-d x
$$

$$
V_{B}=k \lambda \int \frac{-d u}{\sqrt{b^{2}+u^{2}}} \quad\left[\int \frac{d x}{\sqrt{x^{2}+a^{2}}}=\ln \left(x+\sqrt{x^{2}+a^{2}} \quad \text { vega } \sinh ^{-1} \frac{x}{a}\right]\right.
$$

$$
\begin{aligned}
& V_{B}=-k \lambda\left(\ln \left(u+\sqrt{u^{2}+b^{2}}\right)\right) \\
& V_{B}=-\left.k \lambda\left(\ln \left(\frac{L}{2}-x\right)+\sqrt{\left(\frac{L}{2}-x\right)^{2}+b^{2}}\right)\right|_{0} ^{L} \\
& V_{B}=-k \lambda\left[\ln \left(-\frac{L}{2}+\sqrt{\left.1-\frac{L}{2}\right)^{2}+b^{2}}\right)-\ln \left(\frac{L}{2}+\sqrt{\left(\frac{L}{2}\right)^{2}+b^{2}}\right)\right] \\
& V_{B}=k \lambda\left[\ln \left(\frac{\frac{L}{2}+\sqrt{L^{2} / 4+b^{2}}}{\frac{-L}{2}+\sqrt{\frac{L^{2}}{4}+b^{2}}}\right)\right]
\end{aligned}
$$

b) $\lambda=\alpha x$ ise

$$
\begin{aligned}
& V_{A}=k^{k} \frac{d q}{r}=k \int \frac{\lambda d x}{r}=k \alpha \int_{0}^{L} \frac{x d x}{(x+d)},\left[\int \frac{x d x}{a x+b}=\frac{x}{a}-\frac{b}{a^{2}} \ln (a x+b)\right] \\
& V_{A}=\left.k \alpha(x-d \cdot \ln (x+d))\right|_{0} ^{L} \\
& \left.V_{A}=k \alpha\left(L-d \cdot \ln \left(1+\frac{L}{d}\right)\right)^{2}\right] \\
& V_{B}=\int k \frac{d q}{r}=k \alpha \int \frac{x d x}{\sqrt{b^{2}+(L / 2-x)^{2}}} \quad\left[\begin{array}{l}
u=L / 2-x \\
d u=-d x
\end{array}\right] \\
& V_{B}=k \alpha\left[\frac{(L / 2-u) 1-d u)}{\sqrt{b^{2}+u^{2}}} \quad\left[\int \frac{x d x}{\sqrt{x^{2}+a^{2}}}=x^{2}+o^{2}\right]\right. \\
& V_{B}=k \alpha\left[\left(\frac{-L / 2 d u}{\left.\sqrt{b^{2}+u^{2}}+\int \frac{u d u}{\sqrt{b^{2}+u^{2}}}\right]} \quad\left[\int \frac{d x}{\sqrt{x^{2}+a^{2}}}=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)\right]\right.\right. \\
& V_{B}=-k \alpha\left[-\frac{L}{2}\left(\left.\ln \left(u+\sqrt{u^{2}+b^{2}}\right)\right|_{0} ^{2}+\left.\left(u^{2}+b^{2}\right)\right|_{0} ^{L}\right)\right] \\
& V_{B}=k \frac{\alpha L}{2} \ln \left(\frac{\sqrt{L^{2} / 4+b^{2}}+L / 2}{\sqrt{L^{2} / 4+b^{2}}-L / 2}\right)
\end{aligned}
$$

5. (a) When an electron is accelerated from plate A to plate B by an electric field, it gains kinetic energy of $5.25 \times 10^{-15} \mathrm{~J}$. What is the potential difference between the plates? Which plate has the high potential?
(b) The electrical field for the region is $\vec{E}=5 x^{2} \hat{i}-3 \hat{j}+2 \hat{k} \quad k V / m$. If point A is located at origin and point B is at $(4,3,0) \mathrm{m}$. Determine the electrical potential between the points of $A(0,0,0)$ and $B(4,3,0)$.
(a) $\quad W=\Delta K=q|\Delta v|$

$|\Delta V|=32,8 \cdot 10^{3} \mathrm{~V}$

Electrical field is formed from the high to low electrical potentials. Addition to this, electron moves reverse direction according to the electrical field that is why plate B has the high potential according to the potential of point A .
(b)

$$
\begin{aligned}
& V_{B}-V_{A}=-\int_{A}^{B} \vec{E} \cdot d \vec{r} \quad A(0,0,) \rightarrow B(4,3,0) \\
& V_{B}-V_{A}=-\int_{1}^{2} E_{x} d x+\int_{A}^{3} E_{y} d y-\int_{A}^{2} E_{z} d z \\
& V_{B}-V_{A}=-\int_{0}^{4} 5 x^{2} d x+\int_{0}^{3} 3 d y-\int_{0}^{0} d z \\
& V_{B}-V_{A}=-\left.\frac{5 x^{3}}{3}\right|_{0} ^{4}+\left.3 y\right|_{0} ^{3} \\
& V_{B}-V_{A}=-97,6 L V
\end{aligned}
$$

6. A thin rod of length \mathbf{L} and charge \mathbf{Q} has a charge per unit length $\boldsymbol{\lambda}$ $=\alpha y$ (α : cons.) lies along the y axis, as shown in Figure 5.
a) Calculate the electric potential at P point on x axis.
b) Obtain \mathbf{x} component of the electric field at point \mathbf{P} using the electric potential obtained in part (a).
c) If charge \mathbf{q} is located at point \mathbf{P}, calculate \mathbf{x} component of the electric force exerted by the rod.

Figure 5

$$
V_{f}=k \alpha\left(\sqrt{x^{2}+\frac{9 L^{2}}{16}}-\sqrt{x^{2}+\frac{L^{2}}{16}}\right)
$$

b)

$$
\begin{aligned}
& \vec{E}=-\vec{\nabla} V=-\left(\frac{\partial V}{\partial x} \hat{i}+\frac{\partial V}{\partial y} \hat{j}+\frac{\partial V}{\partial z} \hat{k}\right) \\
& E_{x}=-\frac{\partial V}{\partial x} \rightarrow E_{x}=-\frac{d V}{d x} \\
& E_{x}=-\frac{d}{d x}\left[k \alpha\left(\sqrt{x^{2}+\frac{9 L^{2}}{16}}-\sqrt{x^{2}+\frac{L^{2}}{16}}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& E_{x}=-k \alpha\left[\frac{1}{2}\left(x^{2}+\frac{9 L^{2}}{16}\right)^{-1 / 2} 2 x-\frac{1}{2}\left(x^{2}+\frac{L^{2}}{16}\right)^{-1 / 2} 2 x\right] \\
& E_{x}=k \alpha\left(\frac{x}{\sqrt{x^{2}+\frac{L^{2}}{16}}}-\frac{x}{\sqrt{x^{2}+\frac{9 L^{2}}{16}}}\right)
\end{aligned}
$$

c)

$$
\begin{aligned}
& \vec{F}_{f}=q \vec{E}=q\left(E_{x} \hat{i}+E_{y} \hat{j}+E_{z} \hat{k}\right) \\
& F_{P_{x}}=q E_{x} \\
& F_{e_{x}}=k \propto q\left(\frac{x}{\sqrt{x^{2}+\frac{2^{2}}{16}}}-\frac{x}{\sqrt{x^{2}+\frac{q^{2}}{16}}}\right)
\end{aligned}
$$

7. Consider two thin, conducting, spherical shells as shown in Figure 6. The inner shell has a radius $\mathbf{r}_{1}=15 \mathrm{~cm}$ and a charge of $\mathbf{1 0} \mathrm{nC}$. The outer shell has a radius $\mathbf{r}_{\mathbf{2}}=\mathbf{3 0} \mathrm{cm}$ and a charge of $\mathbf{- 1 5} \mathbf{n C}$. Find
a) the electric field E and
b) the electric potential V in regions \mathbf{A}, \mathbf{B}, and \mathbf{C}, with $\mathrm{V}=\mathbf{0}$ at $r=\infty$.

Şekil 6

Figure 6
a) $\Phi_{\epsilon}=\oint \vec{E} \cdot d \vec{A}=\frac{q_{i}}{\epsilon_{e}}$

A region;
$q_{i a}=0 ; \quad E_{A}=0 \quad\left(r<r_{4}\right)$
B region;
$E_{8} \cdot\left(4 \pi r^{2}\right)=\frac{q_{1}}{\epsilon_{0}}$
$E_{B}=\frac{1}{4 \pi \epsilon_{0}} \frac{q_{1}}{r^{2}}=k \frac{q_{1}}{r^{2}}$

$E_{6}=9.10^{3} \cdot \frac{10.10^{-9}}{r^{2}}$
$E_{B}=\frac{90}{r^{2}}(v \mid m) \quad\left(r_{1}<r<r_{2}\right)$
C region;
$E_{c} \cdot\left(4 \pi r^{2}\right)=\frac{q_{1}+q_{2}}{\epsilon_{0}}$
$E_{c}=\frac{1}{4 \pi \epsilon_{0}} \quad \frac{q_{1}+q_{2}}{r^{2}}=k \quad \frac{q_{1}+q_{2}}{r^{2}}=9.10^{3} \cdot \frac{(10-15) \cdot 10^{-9}}{r^{2}}$
$E_{c}=-\frac{45}{r^{2}}(v / m) \quad\left(r>r_{2}\right)$
b) $V_{c}=k \frac{\left(q_{1}+q_{2}\right)}{r} ; V_{c}=9.10^{9} \cdot \frac{(10-15) \cdot 10^{-3}}{r} ; V_{c}=-\frac{45}{r}(v)$

$$
V_{B}=V_{r_{1}}+\int_{r_{2}}^{r} k \frac{q_{1}}{r^{2}} d r \quad r \rightarrow r_{2} \quad V_{r_{2}}=-\frac{45}{0,3}=-150(v)
$$

$$
V_{S}=-150+k a_{1}\left(\frac{1}{r}-\frac{1}{r_{2}}\right)
$$

$$
V_{e}=-150+9.10^{2} \cdot 10.10^{-9}\left(\frac{1}{r}-\frac{1}{0.3}\right)
$$

$$
v_{0}=-450+\frac{90}{r}(\mathrm{v})
$$

$$
r_{i} \quad V_{9}=-450+\frac{90}{0,15}=+150(v)
$$

$$
V_{A}=+150 \mathrm{~V}
$$

2nd Method:

$$
\begin{array}{ll}
V_{C}-V_{\infty}=-\int_{x}^{c} \vec{E}_{C} d \vec{S}_{c} \\
V_{c}=-\int_{=}^{c} \bar{E}_{c} d \vec{S}_{c}=-\int_{x}^{c} E_{c} d S_{c} \operatorname{Cos} 0=-\int_{x}^{r} \frac{45}{r^{2}}(-d r)=+\int_{x}^{r} \frac{45}{r^{2}} d r=45\left|-\frac{1}{r}\right|_{x}^{r}=-\frac{45}{r}(\mathrm{~V}) & {\left[d S_{C}=-d r\right]} \\
\mathrm{r}=\mathrm{r}_{2} \quad V_{r 2}=-\frac{45}{0,3}=-150(\mathrm{~V}) & {\left[d S_{s}=-d r\right]}
\end{array}
$$

$$
\mathrm{r}-\mathrm{I}_{1} \quad V_{n}=-450+\frac{90}{0,15}=150(\mathrm{~V})
$$

$$
V_{A}=150(\mathrm{~V})
$$

$$
\begin{aligned}
& V_{s}=-\int_{=}^{r 2} \vec{E}_{C} d \vec{S}_{c}-\int_{n 2}^{s} \bar{E}_{s} d \vec{S}_{s}=-\int_{x}^{r 2} E_{C} d S_{c} \operatorname{Cos} 0-\int_{n 2}^{s} E_{s} d S_{s} \operatorname{Cos} 180=-\int_{\infty}^{r 2} \frac{45}{r^{2}}(-d r)-\int_{n}^{r} \frac{90}{r^{2}}(-d r)(-1)= \\
& =+\int_{\alpha}^{r_{2}} \frac{45}{r^{2}} d r-\int_{r_{2}}^{1} \frac{90}{r^{2}} d r=45\left|-\frac{1}{r}\right|_{=}^{\prime 2}-90\left|-\frac{1}{r}\right|_{r_{2}}^{r}=-\frac{45}{r_{2}}+90\left(\frac{1}{r}-\frac{1}{r_{2}}\right)=-\frac{45}{0,3}+90\left(\frac{1}{r}-\frac{1}{0,3}\right)=-450+\frac{90}{r}(\mathrm{~V})
\end{aligned}
$$

8. A solid insulating sphere of radius \mathbf{R} and charge \mathbf{Q} has a non-uniform charge density that varies with r according to the expression $\rho=A r^{2}$, where A is a constant and \mathbf{r}, \mathbf{R} is measured from the center of the sphere. Use Gauss's law to
a) Determine the magnitudes of the electric fields outside and inside the sphere.
b) Determine the electric potential of a point inside the sphere.
c) Draw $E=f(r)$ and $V=f(r)$ graphs.

$$
r>R
$$

$$
\begin{aligned}
& \text { a) } \begin{array}{l}
\Phi_{E}=\oint \vec{E} \cdot d \vec{A}=\frac{q_{i}}{\epsilon_{0}} R \\
q_{i}=Q=\int_{0}^{r} \rho d v=\int_{0}^{R} A r^{2} 4 \pi r^{2} d r=A 4 \pi \frac{e^{5}}{5}
\end{array} .=\frac{e^{5}}{}
\end{aligned}
$$

$$
E_{\text {out }} 4 \pi r^{2}=4 \pi A \frac{r^{5}}{\epsilon_{0}} \Rightarrow \vec{E}_{\text {out }}=\frac{A e^{5}}{5 \epsilon_{0} r^{2}} \hat{r}
$$

$$
r<R
$$

$$
q_{i}=\int_{0}^{r} \rho d v=\int_{0}^{r} A r^{2} 4 \pi r^{2} d r=A 4 \pi \frac{r^{5}}{5}
$$

$$
E_{i} \quad 4 \pi r^{2}=4 \pi A \frac{r^{5}}{5 \epsilon_{0}}
$$

$$
\vec{E}_{i}=A \frac{r^{3}}{5 \epsilon_{0}} \hat{r}
$$

b) $V_{A}-V_{\infty}=V_{A}=-\int_{\infty}^{\ell} \vec{E}_{\text {out }} \cdot d \vec{S}-\int_{R}^{r} \vec{E}_{i} \cdot d \vec{s} \quad d s=d r$

$$
\begin{aligned}
& V_{A}=-\int_{\infty}^{R} \frac{A R^{5}}{5 \epsilon_{0} r^{2}} d r-\int_{R}^{r} A \frac{r^{3}}{5 \epsilon_{0}} d r \\
& V_{A}=\frac{A R^{5}}{5 \epsilon_{0}}\left(\frac{1}{R}-0\right)-\frac{A}{5 \epsilon_{0}}\left(\frac{r^{4}}{4}-\frac{R^{4}}{4}\right) \\
& V_{A}=\frac{A}{20 \epsilon_{0}}\left(5 R^{4}-r^{4}\right)
\end{aligned}
$$

