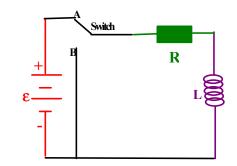
RL Circuits

"Building-Up" Phase:

Connecting the switch to **position A** corresponds to the **"building up" phase of an RL circuit**. Summing all the potential changes in going around the loop gives

$$\varepsilon - IR - L\frac{dI}{dt} = 0 ,$$



where I(t) is a function of time. If the switch is closed (position A) at t=0 and I(0)=0 (assuming the current is zero at t=0) then

$$\frac{dI}{dt} = -\frac{1}{\tau} \left(I - \frac{\varepsilon}{R} \right) , \text{ where I have define } \tau = L/R.$$

Dividing by $(I-\epsilon/R)$ and multiplying by dt and integrating gives

$$\int_0^I \frac{dI}{(I-\varepsilon / R)} = -\int_0^t \frac{1}{\tau} dt \text{ , which implies } \ln\left(\frac{I-\varepsilon / R}{-\varepsilon / R}\right) = -\frac{t}{\tau}.$$

Solving for I(t) gives

$$I(t) = \frac{\varepsilon}{R} \left(1 - e^{-t/\tau} \right).$$

The potential change across the inductor is given by $\Delta V_L(t)$ =-LdI/dt which

yields

$$\Delta V_L(t) = -\varepsilon e^{-t/\tau}$$

I(t) 0.75 0.50 0.25 0.00 0 1 2 3 Time

"Building-Up" Phase of an RL Circuit

The quantity $\tau = L/R$ is call the time constant and has dimensions of time.

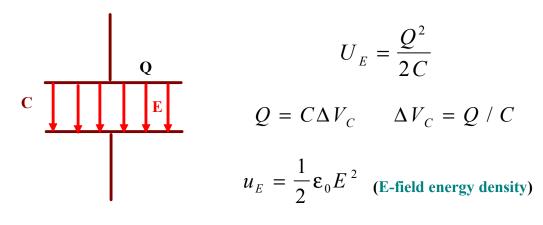
"Collapsing" Phase:

Connecting the switch to **position B** corresponds to the "collapsing" phase of an RL circuit. Summing all the potential changes in going around the loop gives $-IR - L \frac{dI}{dt} = 0$, where I(t) is a function of time. If the switch is closed (**position B**) at t=0 then I(0)=I₀ and

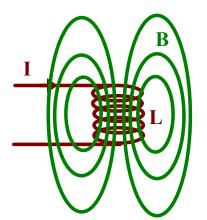
$$\frac{dI}{dt} = -\frac{1}{\tau}I \text{ and } I(t) = I_0 e^{-t/\tau}$$

Capacitors and Inductors

Capacitors Store Electric Potential Energy:



Inductors Store Magnetic Potential Energy:



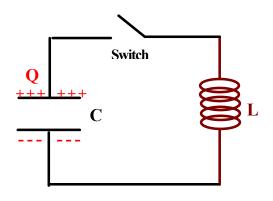
$$U_{B} = \frac{1}{2} LI^{2}$$

$$\Phi_{B} = LI \qquad L = \Phi_{B} / I$$

$$\varepsilon_{L} = -L \frac{dI}{dt}$$

$$u_{B} = \frac{1}{2\mu_{0}} B^{2} \quad \text{(B-field energy density)}$$

An LC Circuit



At t = 0 the switch is closed and a capacitor with initial charge Q_0 is connected in series across a inductor (assume there is no resistance). The initial conditions are $Q(0) = Q_0$ and I(0)= 0. Moving around the circuit in the direction of the current flow yields

$$\frac{Q}{C} - L \frac{dI}{dt} = 0$$

Since I is flowing out of the capacitor, I = -dQ / dt, so that

$$\frac{d^2Q}{dt^2} + \frac{1}{LC}Q = 0$$

This differential equation for Q(t) is the SHM differential equation we studied earlier with $\omega = \sqrt{1/LC}$ and solution $O(t) = A \cos \omega t + B \sin \omega t$

The current is thus,

$$I(t) = -\frac{dQ}{dt} = A\omega\sin\omega t - B\omega\cos\omega t$$

Applying the initial conditions yields

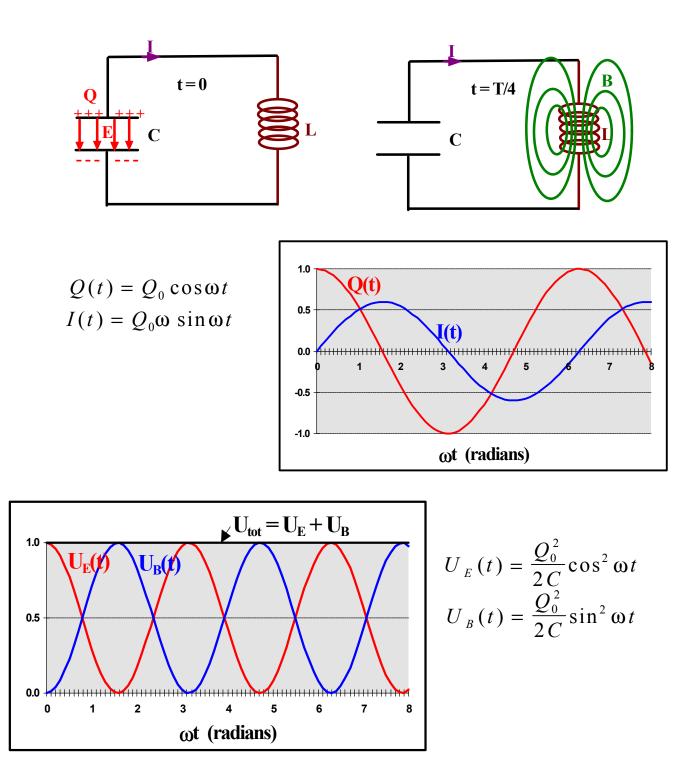
$$Q(t) = Q_0 \cos \omega t$$
$$I(t) = Q_0 \omega \sin \omega t$$

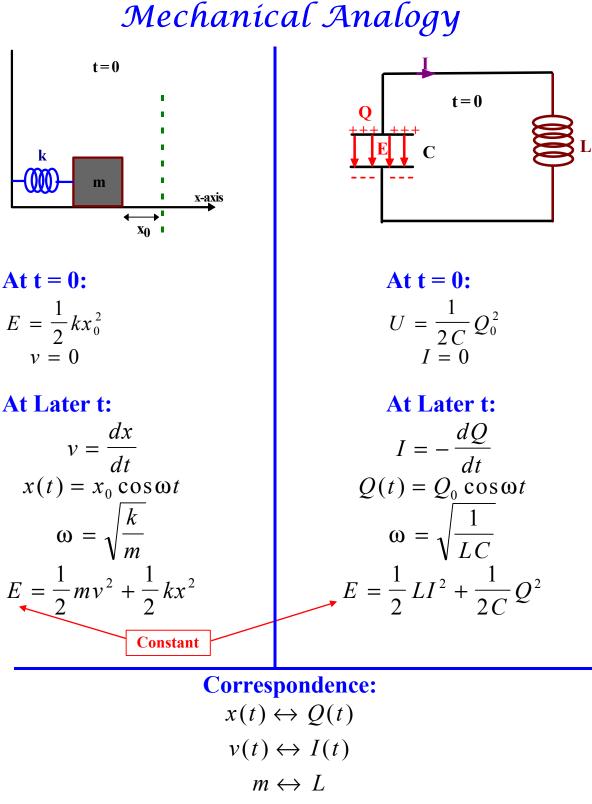
Thus, **Q(t)** and **I(t)** oscillate with SHM with angular frequency $\omega = \sqrt{1/LC}$. The stored energy oscillates between electric and magnetic according to

$$U_{E}(t) = \frac{Q^{2}(t)}{2C} = \frac{Q_{0}^{2}}{2C} \cos^{2} \omega t$$
$$U_{B}(t) = \frac{1}{2} LI^{2}(t) = \frac{1}{2} LQ_{0}^{2} \omega^{2} \sin^{2} \omega t$$

Energy is conserved since $U_{tot}(t) = U_E(t) + U_B(t) = Q_0^2/2C$ is constant.

LC Oscillations





 $k \leftrightarrow 1 / C$

Another Differential Equation

Consider the 2nd order differential equation

$$\frac{d^2x(t)}{dt^2} + D\frac{dx(t)}{dt} + Cx(t) = 0,$$

where **C** and **D** are constants. We solve this equation by turning it into an **algebraic equation** by looking for a solution of the form $x(t) = Ae^{at}$. Substituting this into the differential equation yields,

$$a^{2} + Da + C = 0$$
 or $a = -\frac{D}{2} \pm \sqrt{\left(\frac{D}{2}\right)^{2} - C}$

Case I (C > (D/2)², damped oscillations): For C > (D/2)², $a = -D/2 \pm i\sqrt{C - (D/2)^2} = -D/2 \pm i\omega'$, where $\omega' = \sqrt{C - (D/2)^2}$, and the most general solution has the form: $x(t) = e^{-Dt/2} \left(Ae^{i\omega't} + Be^{-i\omega't} \right)$

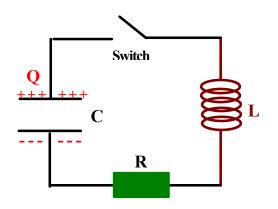
$$\begin{aligned} x(t) &= e^{-Dt/2} \left(A \cos(\omega' t) + B \sin(\omega' t) \right) \\ x(t) &= A e^{-Dt/2} \sin(\omega' t + \phi) \\ x(t) &= A e^{-Dt/2} \cos(\omega' t + \phi) \end{aligned}$$

where **A**, **B**, and ϕ are arbitrary constants.

Case II (C < (D/2)², over damped): For C < (D/2)², $a = -D/2 \pm \sqrt{(D/2)^2 - C} = -D/2 \pm \gamma$, where $\gamma = \sqrt{(D/2)^2 - C}$. In this case, $x(t) = e^{-Dt/2} \left(A e^{\gamma t} + B e^{-\gamma t} \right)$.

Case III (C = (D/2)², critically damped): For C = (D/2)², a = -D/2, and $x(t) = Ae^{-Dt/2}$.

An LRC Circuit



At $\mathbf{t} = \mathbf{0}$ the switch is closed and a capacitor with initial charge $\mathbf{Q}_{\mathbf{0}}$ is connected in series across an inductor and a resistor. The initial conditions are $\mathbf{Q}(\mathbf{0}) = \mathbf{Q}_{\mathbf{0}}$ and $\mathbf{I}(\mathbf{0}) = \mathbf{0}$. Moving around the circuit in the direction of the current flow yields

$$\frac{Q}{C} - L\frac{dI}{dt} - IR = 0$$

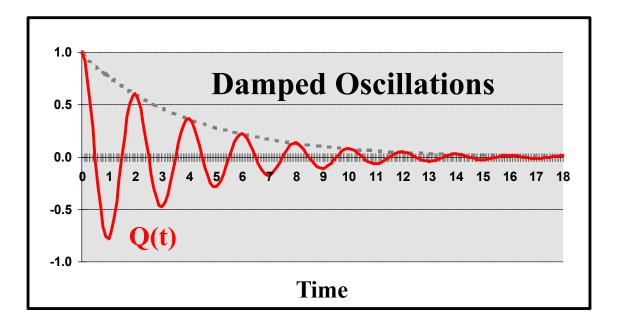
Since I is flowing out of the capacitor, I = -dQ / dt, so that

$$\frac{d^2Q}{dt^2} + \frac{R}{L}\frac{dQ}{dt} + \frac{1}{LC}Q = 0$$

This differential equation for Q(t) is the differential equation we studied earlier. If we take the case where $R^2 < 4L/C$ (damped oscillations) then

$$Q(t) = Q_0 e^{-Rt/2L} \cos\omega' t,$$

with $\omega' = \sqrt{\omega^2 - (R/2L)^2}$ and $\omega = \sqrt{1/LC}$.

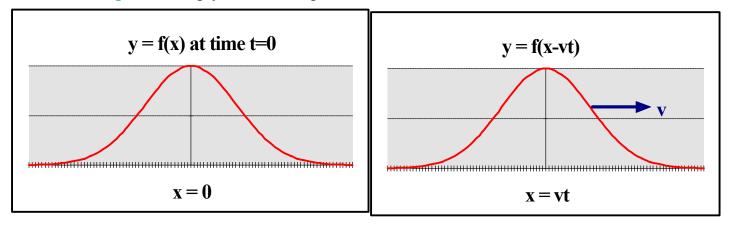


Traveling Waves

A "wave" is a traveling disturbance that transports energy but not matter.

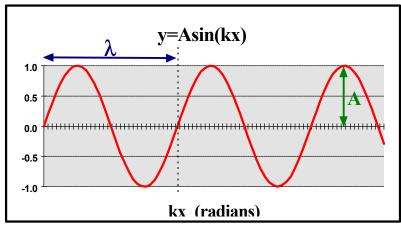
Constructing Traveling Waves:

To construct a wave with shape y = f(x) at time t = 0 traveling to the right with speed v simply make the replacement $x \rightarrow x - vt$.



Traveling Harmonic Waves:

Harmonic waves have the form $y = A \sin(kx)$ or $y = A\cos(kx)$ at time t = 0, where k is the "wave number" ($k = 2\pi/\lambda$ where λ is the "wave length") and A is the "amplitude". To construct an harmonic wave traveling to the right with speed v, replace x by x-vt as follows:



 $y = Asin(k(x-vt) = Asin(kx-\omega t))$ where $\omega = kv$ ($v = \omega/k$). The period of the oscillation, $T = 2\pi/\omega = 1/f$, where f is the linear frequency (measured in Hertz where 1Hz = 1/sec) and ω is the angular frequency ($\omega = 2\pi f$). The speed of propagation is given by $v = \omega/k = \lambda f$.

 $y = y(x,t) = Asin(kx-\omega t)$ right moving harmonic wave $y = y(x,t) = Asin(kx+\omega t)$ left moving harmonic wave

The Wave Equation

$$\frac{\partial^2 y(x,t)}{\partial x^2} - \frac{1}{v^2} \frac{\partial^2 y(x,t)}{\partial t^2} = 0$$

Whenever analysis of a system results in an equation of the form given above then we know that the system supports traveling waves propagating at speed v.

General Proof:

If $\mathbf{y} = \mathbf{y}(\mathbf{x}, \mathbf{t}) = \mathbf{f}(\mathbf{x} - \mathbf{v}\mathbf{t})$ then

$$\frac{\partial y}{\partial x} = f' \qquad \frac{\partial^2 y}{\partial x^2} = f''$$
$$\frac{\partial y}{\partial t} = -vf' \qquad \frac{\partial^2 y}{\partial t^2} = v^2 f''$$

and

$$\frac{\partial^2 y(x,t)}{\partial x^2} - \frac{1}{v^2} \frac{\partial^2 y(x,t)}{\partial t^2} = f'' - f'' = 0$$

Proof for Harmonic Wave:

If $y = y(x,t) = Asin(kx-\omega t)$ then

$$\frac{\partial^2 y}{\partial x^2} = -k^2 A \sin(kx - \omega t) \quad \frac{\partial^2 y}{\partial t^2} = -\omega^2 A \sin(kx - \omega t)$$

and

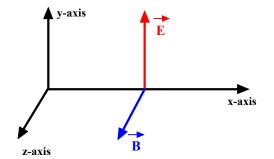
$$\frac{\partial^2 y(x,t)}{\partial x^2} - \frac{1}{v^2} \frac{\partial^2 y(x,t)}{\partial t^2} = \left(-k^2 + \frac{\omega^2}{v^2}\right) A\sin(kx - \omega t) = 0,$$

since $\boldsymbol{\omega} = \mathbf{k}\mathbf{v}$.

Light Propagating in Empty Space

Since there are no charges and no current in empty space, Faraday's Law and Ampere's Law take the form

$$\oint \vec{E} \cdot d\vec{l} = -\frac{d\Phi_B}{dt} \quad \oint \vec{B} \cdot d\vec{l} = \mu_0 \varepsilon_0 \frac{d\Phi_E}{dt}.$$



Look for a solution of the form

$$\vec{E}(x,t) = E_y(x,t)\hat{y}$$
$$\vec{B}(x,t) = B_z(x,t)\hat{z}$$

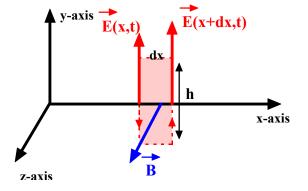
Faraday's Law:

Computing the left and right hand side of Faraday's Law using a rectangle (in the xy-plane) with width dx and height h (counterclockwise) gives

$$E_{y}(x+dx,t)h - E_{y}(x,t)h = -\frac{\partial B_{z}}{\partial t}hdx$$

or

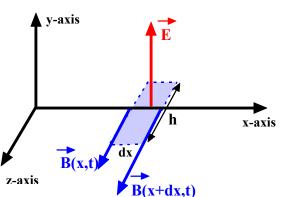
∂E_y	∂B_z
∂x	$-\frac{1}{\partial t}$



Ampere's Law:

Computing the left and right hand side of Ampere's Law using a rectangle (in the xz-plane) with width dx and height h (counterclockwise) gives

$$B_{z}(x,t)h - B_{z}(x+dx,t)h = \mu_{0}\varepsilon_{0}\frac{\partial E_{y}}{\partial t}hdx$$



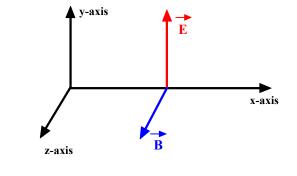
or

$$\boxed{-\frac{\partial B_z}{\partial x} = \mu_0 \varepsilon_0 \frac{\partial E_y}{\partial t}}$$

Electromagnetic Plane Waves (1)

We have the following two **differential** equations for $E_v(x,t)$ and $B_z(x,t)$:

$$\frac{\partial B_z}{\partial t} = -\frac{\partial E_y}{\partial x} \quad (1)$$



and

$$\frac{\partial E_{y}}{\partial t} = -\frac{1}{\mu_{0}\varepsilon_{0}}\frac{\partial B_{z}}{\partial x} \quad (2)$$

Taking the time derivative of (2) and using (1) gives

$$\frac{\partial^2 E_y}{\partial t^2} = -\frac{1}{\mu_0 \varepsilon_0} \frac{\partial}{\partial t} \left(\frac{\partial B_z}{\partial x} \right) = -\frac{1}{\mu_0 \varepsilon_0} \frac{\partial}{\partial x} \left(\frac{\partial B_z}{\partial t} \right) = \frac{1}{\mu_0 \varepsilon_0} \frac{\partial^2 E_y}{\partial x^2}$$

which implies

$$\frac{\partial^2 E_y}{\partial x^2} - \mu_0 \varepsilon_0 \frac{\partial^2 E_y}{\partial t^2} = 0$$

Thus $\mathbf{E}_{\mathbf{y}}(\mathbf{x},\mathbf{t})$ satisfies the wave equation with speed $v = 1 / \sqrt{\varepsilon_0 \mu_0}$ and has a solution in the form of traveling waves as follows:

 $\mathbf{E}_{\mathbf{V}}(\mathbf{x},\mathbf{t}) = \mathbf{E}_{\mathbf{0}} \mathbf{sin}(\mathbf{kx} - \mathbf{\omega t}),$

where E_0 is the amplitude of the electric field oscillations and where the wave has a unique speed

$$v = c = \frac{\omega}{k} = \lambda f = \frac{1}{\sqrt{\varepsilon_0 \mu_0}} = 2.99792 \quad 10^8 \, m \,/\, s \, \text{(speed of light)}.$$

From (1) we see that

$$\frac{\partial B_z}{\partial t} = -\frac{\partial E_y}{\partial x} = -E_0 k \cos(kx - \omega t),$$

which has a solution given by

$$B_{z}(x,t) = E_{0} \frac{k}{\omega} \sin(kx - \omega t) = \frac{E_{0}}{c} \sin(kx - \omega t),$$

so that

$$\mathbf{B}_{\mathbf{Z}}(\mathbf{x},\mathbf{t})=\mathbf{B}_{\mathbf{0}}\mathbf{sin}(\mathbf{k}\mathbf{x}\boldsymbol{-}\boldsymbol{\omega}\mathbf{t}),$$

where $B_0 = E_0/c$ is the amplitude of the magnetic field oscillations.

Electromagnetic Plane Waves (2)

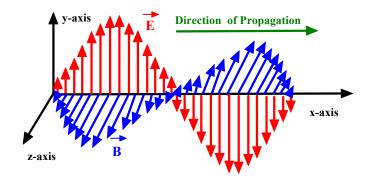
The plane harmonic wave solution

for light with frequency **f** and wavelength λ and speed **c** = **f** λ is given by

$$\vec{E}(x,t) = E_0 \sin(kx - \omega t)\hat{y}$$

$$\bar{B}(x,t) = B_0 \sin(kx - \omega t)\hat{z}$$

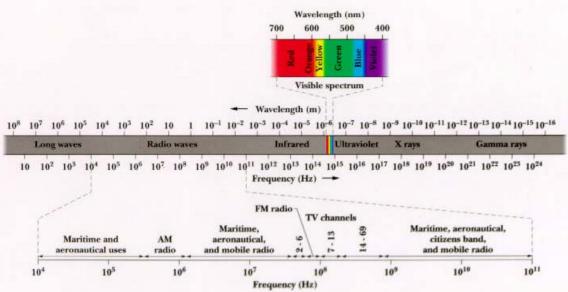
where $\mathbf{k} = 2\pi/\lambda$, $\boldsymbol{\omega} = 2\pi \mathbf{f}$, and $\mathbf{E}_0 = \mathbf{cB}_0$.



Properties of the Electromagnetic Plane Wave:

- Wave travels at speed c ($c=1/\sqrt{\mu_0}\epsilon_0$).
- E and B are perpendicular ($\vec{E} \cdot \vec{B} = 0$).
- The wave travels in the direction of \vec{E} \vec{B} .
- At any point and time **E** = **cB**.

Electromagnetic Radiation:

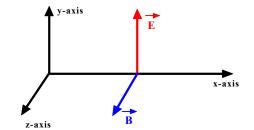


Energy Transport - Poynting Vector

Electric and Magnetic Energy Density: For an electromagnetic plane wave

$$E_{y}(x,t) = E_{0}sin(kx-\omega t),$$

$$B_{z}(x,t) = B_{0}sin(kx-\omega t),$$



where $B_0 = E_0/c$. The electric energy density is given by

 $u_E = \frac{1}{2}\varepsilon_0 E^2 = \frac{1}{2}\varepsilon_0 E_0^2 \sin^2(kx - \omega t) \text{ and the magnetic energy density is}$ $u_B = \frac{1}{2\mu_0}B^2 = \frac{1}{2\mu_0}c^2 E^2 = \frac{1}{2}\varepsilon_0 E^2 = u_E,$

where I used
$$\mathbf{E} = \mathbf{cB}$$
. Thus, for light the electric and magnetic field
energy densities are equal and the total energy density is

$$u_{tot} = u_E + u_B = \varepsilon_0 E^2 = \frac{1}{\mu_0} B^2 = \varepsilon_0 E_0^2 \sin^2(kx - \omega t)$$

Poynting Vector
$$(\vec{S} = \frac{1}{\mu_0}\vec{E} \quad \vec{B})$$
:

The direction of the Poynting Vector is the direction of energy flow and the magnitude

$$S = \frac{1}{\mu_0} EB = \frac{E^2}{\mu_0 c} = \frac{1}{A} \frac{dU}{dt}$$

is the energy per unit time per unit area (units of Watts/m²). Proof:

$$dU_{tot} = u_{tot}V = \varepsilon_0 E^2 Acdt \text{ so}$$
$$S = \frac{1}{A} \frac{dU}{dt} = \varepsilon_0 c E^2 = \frac{E^2}{\mu_0 c} = \frac{E_0^2}{\mu_0 c} \sin^2(kx - \omega t).$$

Intensity of the Radiation (Watts/m²)**:**

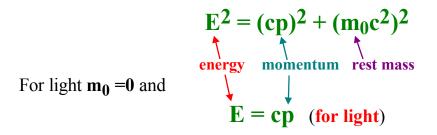
The intensity, **I**, is the **average of S** as follows:

$$I = \overline{S} = \frac{1}{A} \frac{d\overline{U}}{dt} = \frac{E_0^2}{\mu_0 c} \left\langle \sin^2(kx - \omega t) \right\rangle = \frac{E_0^2}{2\mu_0 c}.$$

y-axis E A Energy Flow x-axis B

Momentum Transport - Radiation Pressure

Relativistic Energy and Momentum:

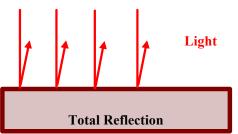


For light the **average momentum per unit time per unit area** is equal to the intensity of the light, **I**, divided by speed of light, **c**, as follows:

$$\frac{1}{A}\frac{d\overline{p}}{dt} = \frac{1}{c}\frac{1}{A}\frac{d\overline{U}}{dt} = \frac{1}{c}I$$

Total Absorption: $\overline{F} = \frac{d\overline{p}}{dt} = \frac{1}{c} \frac{d\overline{U}}{dt} = \frac{1}{c} IA$ $P = \frac{\overline{F}}{A} = \frac{1}{c} I \text{ (radiation pressure)}$ **Total Reflection:** $\overline{F} = \frac{d\overline{p}}{dt} = \frac{2}{c} \frac{d\overline{U}}{dt} = \frac{2}{c} IA$ $I = \frac{1}{c} IA$

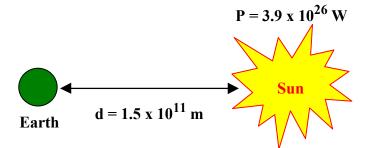
$$P = \frac{\overline{F}}{A} = \frac{2}{c} I \text{ (radiation pressure)}$$



The Radiation Power of the Sun

Problem:

The radiation power of the sun is 3.9×10^{26} W and the distance from the Earth to the sun is 1.5×10^{11} m. (a) What is the intensity of



the electromagnetic radiation from the sun at the surface of the Earth (outside the atmosphere)? (answer: 1.4 kW/m^2)

(b) What is the maximum value of the electric field in the light coming from the sun? (answer: 1,020 V/m)

(c) What is the maximum energy density of the electric field in the light coming from the sun? (answer: $4.6 \times 10^{-6} \text{ J/m}^3$)

(d) What is the maximum value of the magnetic field in the light coming from the sun? (answer: 3.4 T)

(e) What is the maximum energy density of the magnetic field in the light coming from the sun? (answer: $4.6 \times 10^{-6} \text{ J/m}^3$)

(f) Assuming complete absorption what is the radiation pressure on the Earth from the light coming from the sun? (answer: $4.7 \times 10^{-6} \text{ N/m}^2$)

(g) Assuming complete absorption what is the radiation force on the Earth from the light coming from the sun? The radius of the Earth is about 6.4×10^6 m. (answer: 6×10^8 N)

(h) What is the gravitational force on the Earth due to the sun. The mass of the Earth and the sun are 5.98×10^{24} kg and 1.99×10^{30} kg, respectively, and $G = 6.67 \times 10^{-11} \text{ Nm}^2/\text{kg}^2$. (answer: $3.5 \times 10^{22} \text{ N}$)