R. D. Field PHY 2049

RL Circuits
"Building-Up" Phase: — s
Connecting the switch to position A
corresponds to the "building up'' phase of an +

RL circuit. Summing all the potential = L%
changes in going around the loop gives -

e — IR Ld—l =0 -
dt
where I(t) is a function of time. If the switch is closed (position A) at t=0

and 1(0)=0 (assuming the current is zero at t=0) then

dl 1( €
== — 7 - =

) ., where I have define T=L/R.

dt 1 R

Dividing by (I-€¢/R) and multiplying by dt and integrating gives

Jz . jld (1= /R t

(I-e/R) It L, whichimplies "™ o |7 T
SOIVing for I(t) gives 150 "Building-Up" Phase of an RL Circuit

€

] t - 1_ e—l/T 1257

( ) R ( ) ’ 1.00
The potential change I(t) o7s
across the inductor 1s given 050 //

yields
AV, (t) = —ge '™ Time

The quantity T=L/R is call the time constant and has dimensions of time.

"Collapsing' Phase:
Connecting the switch to position B corresponds to the "collapsing' phase
of an RL circuit. Summing all the potential changes in going around the

) dl . . .
loop gives — IR — L P 0 , where I(t) is a function of time. If the

switch is closed (position B) at t=0 then I(0)=I¢ and
dl 1

R — — -t/
dt T and ](f) Ioe .
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Capacitors and Inductors

Capacitors Store Electric Potential Energy:

2
v, =<
Q 2C
¢ E 0=CAV, AV.=0/C

1
_ 2
Ug = 7 EOE (E-field energy density)

Inductors Store Magnetic Potential Energy:

1 2
U, = EL[
O, =Ll L=®,/1
dl
T
1 2
Up = 21, B (B-field energy density)
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An LC Circuit

\ At t = 0 the switch is closed and a
capacitor with initial charge Qg is

connected in series across a inductor
Q (assume there is no resistance). The
T
L

initial conditions are Q(0) = Qg and I(0)
= (0. Moving around the circuit in the
direction of the current flow yields

dl
g 14
C dt
Since I is flowing out of the capacitor, I = —dQ / dt , so that
d*Q 1
+ =0
dt> LC © '

This differential equation for Q(t) is the SHM differential equation we

studied earlier with @ = +/1/ LC and solution
O(t) = Acosmwt + Bsinwt .

The current 1s thus,

d
I(t) = —d—g: A® sin®wt — Bw coswt

Applying the initial conditions yields
O(t) = Q,cosmt
I(t) = O, sinwt
Thus, Q(t) and I(t) oscillate with SHM with angular frequency

® = +/1/ LC . The stored energy oscillates between electric and magnetic
according to

0’ (1) _ 0
2C 2C

U _i 2 _l 2,02 - 2
(1) = 2L] (t) = 2LQOOD sin” ot

U,(t) = cos’ ¢

Energy is conserved since Ugy¢(t) = Ug(t) + Ug(t) = Q02/2C 1S constant.
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LC Oscillations

Q(t) = Q,cosmt
I(t) = Q,m sinw¢

ot (radians)

1.0

0.5

=Ug+ U

0.0 +

ot (radians)

TArAYAYAYS
JAVAVAVAVAN
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U (f)_ZQ—Ccos Wt

U,(t)= ZQ—CSIH Wt
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Mechanical Analogy
t=0 L
: 0 t=0
e
Att=0 Att=0:
_l 2 _L 2
=5 kx, Ye (O
v = =0
At Later t: At Later t:
_dx ,__d0
YT dt
x(t) = x, cosmt Q(t) = Q,coswt
L [x [
\'m @ = LC
1 2 1 2 1 2 1 2
E=—mv:+—kx E=—LI"+—0
'2\ 2 _— 2 2C
Constant /
Correspondence:
x(t) < 0(1)
v(t) & 1(1)
m<> L
k<—1/C
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Another Differential Equation

Consider the 2" order differential equation

d’x(t) dx(t)
07 +D I +Cx(1) =0

where C and D are constants. We solve this equation by turning it into an

algebraic equation by looking for a solution of the form X (1) = Ae “.
Substituting this into the differential equation yields,

D _|(D ?
a’+Da+C=0 or a:_?_ ? _C.

Case I (C > (D/2)2, damped oscillations):
For C > (D/2)%, a = —D/Zii\/C— (D/2)> =-D/21i®’  where

o’ = \/ C—-(D/ 2)2 , and the most general solution has the form:
x(2) = e " (4e™" + Be ")
x(t) = e'Dt/z(A cos(®’t) + B sin(w ’t))
x(t) = Ae " sin(®’t + ¢)
x(t) = Ae " cos(w’t +¢)

where A, B, and ¢ are arbitrary constants.

Case II (C < (D/2)2, over damped):
For C<(D2)%, a=-D/2++/(D/2)>=C =-D/2+Y _ where
Y =(D/2)* = C . In this casc,

x(t) = e‘D”z(AeYZ + Be“”)_

Case III (C = (D/2)2, critically damped):
For C=(D/2)?, a=-D/2 , and
x(l_)z Ae_DZ/Z.
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An LRC Circuit

\ At t = 0 the switch is closed and a
capacitor with initial charge Qg is

connected in series across an inductor
Q and a resistor. The initial conditions are
L. Q@) =QgandI(0)=0. Moving around

C
— — the circuit in the direction of the current
R flow yieles "
- ——L—=1IR=0
C dt '

Since I is flowing out of the capacitor, I = —dQ / dt , so that

d’ R d 1
T X, T oo
dt L dt LC '
This differential equation for Q(t) is the differential equation we studied

earlier. If we take the case where R? < 4L/C (damped oscillations) then

O(t) = Q,e ** cosw’t
with ® = \/oo2 —(R/2L)* and @ =+/1/LC.

Time
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Traveling Waves

A "wave" is a traveling disturbance that transports energy
but not matter.

Constructing Traveling Waves:
To construct a wave with shape y = f(x) at time t = 0 traveling to the right
with speed v simply make the replacement X — X — VI .

y = f(x) at time =0 y = f(x-vt)
%m& %W&V
x=0 X=vt

Traveling Harmonic Waves:

Harmonic waves have the form
y = A sin(kx) or
y = Acos(kx) at time t =0, A

1.0 < »:
where k is the "wave number" ' /\ /\ /T\
: A

y=Asin(kx)

(k = 2m/A where A is the "wave 05
length'") and A is the 0.0 :
"amplitude". To construct an s E

harmonic wave traveling to the ' \/ \/
right with speed v, replace x by 1.0 :
x-vt as follows: kx (radians)

y = Asin(k(x-vt) = Asin(kx-wt) where ® = kv (v = ®/Kk). The period of the
oscillation, T = 21t/w = 1/f, where f is the linear frequency (measured in
Hertz where 1Hz = 1/sec) and  is the angular frequency (® = 2xnf). The
speed of propagation is given by v = w/k = Af .

y = y(x,t) = Asin(kx-ot) right moving harmonic wave
y = y(x,t) = Asin(kx+ot) left moving harmonic wave
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The Wave Equation

0 y(x,0) 19%y(x0)
ox’ v ot

Whenever analysis of a system results in an equation of the
form given above then we know that the system supports
traveling waves propagating at speed v.

General Proof:
Ify = y(x,t) = f(x-vt) then

a_y_ Y azy _ f/l
ox ox’>
ay ’ a 2y 2 ’7
—=-V =y
ot / Jt° /
and
a2y('x9t) 1 a2y(x,t) Va4 Va4
ox° R ot’ =/ -/ =0
Proof for Harmonic Wave:
Ify = y(x,t) = Asin(kx-®t) then
2 2
g Y — k> Asin(kx — or) azzy — 2 Asin(kx — o)
X
and
0°y(x,t) 1 90%y(x,¢) o’ ,
gxz - gﬁ =| -k + 5 [4sin(c—01) = 0

since ® = kv.
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Light Propagating in Empty Space

Since there are no charges and no y-axis -
current in empty space, Faraday's .
Law and Ampere's Law take the form

>.
§ 5. o e, / / x-axis

7-axis

EﬁE-dT:

Look for a solution of the form
E(x,t)=E (x,1))
B(x,t)=B.(x,t)Z

Faraday's Law:

Computing the left 'and right hand s.1de of y-axis ;;(x,t) E(x+dx,f)
Faraday's Law using a rectangle (in the
xy-plane) with width dx and height h T
(counterclockwise) gives T
9B, L 1h >
E (x+dx,t)h— E (x,t)h = - Y + 41 x-axis
or _» :
a E ’ aBZ 7-axis B
ox Ot
Ampere's Law: y-axis —
Computing the left and right hand side of E
Ampere's Law using a rectangle (in the
xz-plane) with width dx and height h K /
(counterclockwise) gives - >
h X-axis

oL,
B_(x,t)h— B_(x+dx,t)h = L€, Y hdx . o
B(x,t y

or

7-axis

3B E B(x+dx,t)

Tox STy,

y
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Electromagnetic Plane Waves (1)

We have the following two differential y-axis >
equations for Ey(x,t) and B,(x,t): E
0B,  OE,
or  oax O -
and / Z
oE y 1 aBZ z-axis B

o e, ox @
Taking the time derivative of (2) and using (1) gives
J°E, 1 9(9B.y 1 9 (9B 1 9°E,
o> _Eg(g) TR ax( ot ) UE, Ox’

which implies

2 2
9°E, J°E,

P — K€ YE :0.

Thus Ey(x,t) satisties the wave equation with speed v = 1/./¢e,, and has a
solution in the form of traveling waves as follows:

Ey(x,t) = E¢sin(kx-ot),
where E is the amplitude of the electric field oscillations and where the
wave has a unique speed

0) 1
v=c=—=\ = =2.99792%x10°m/ s (speed of light).
e e pect ot

From (1) we see that

0B. y
% - ox = —E k cos(kx — 1)

which has a solution given by

k . E, .
B_(x,t) = ansm(kx —Wt) = Tsm(kx - ot)

so that
B,(x,t) = Bysin(kx-mt),
where B = Eg/c is the amplitude of the magnetic field oscillations.
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Electromagnetic Plane Waves (2)

The plane harmonic wave solution

for light with frequency f and

wavelength A and speed ¢ = fA is

given by
E(x,t) = E, sin(kx — )
B(x,t) = B, sin(kx — 0t)?

where k = 21/A, ® = 2xf, and

EO = CBO.

_E> Direction of Propagation

Properties of the Electromagnetic Plane Wave:
e Wave travels at speed ¢ (C= 1/ U ).
E and B are perpendicular (E B =0).

[ )
e The wave travels in the direction of ExB .
e At any point and time E = ¢B.

Electromagnetic Radiation:

Wavelength (nm)
700 600 500 400

Visible spectrum

~-— Wavelength (m)
108 107 10° 10° 10* 10° 10° 10 1 107 10 10 107 10° 10°% 107 10°° 107 107101071 102 10" P 107 1071 10 1E

10 107 108 10* 10° 10 100 10* 10° 10 10" 10" 10" 10" 10" 10" 10" 10" 10" 10% 10*' 10% 10% 0™
Frequency (Hz) —=

FM radio

TV channels
Maritime, 3 2 Maritime, aeronautical,
Maritime and AM aeronautical, © o ' citizens band,
_ aeronautical uses  radio _ and mobile radio ot | e~ o and mobile radio b
T 3 = T T 14 T 1
10* 10° 10° 107 1t 10" 10'° 10"
Frequency (Hz)
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Energy Transport - Poynting Vector

Electric and Magnetic Energy Density: y-axis .
For an electromagnetic plane wave E

Ey(x,t) = E¢sin(kx-ot),

B,(x,t) = Bysin(kx-ot), / / i
where Bg = Eg/c. The electric energy density
is given by o

1 .
Ug = ESOE t= EeoEg sin’ (kx —@f) and the magnetic energy density is
1 1 1
u,=—B =—=E =—¢E’ =u,
2, 2u,¢’ 27 ’

where [ used E = ¢B. Thus, for light the electric and magnetic field
energy densities are equal and the total energy density is

1
u, =u, +u, =¢g,E° :EBZ =¢g,E; sin’ (kx —ot)

L ExBy,
Ko
The direction of the Poynting
Vector is the direction of energy
flow and the magnitude

Poynting Vector (§ =

is the energy per unit time per

unit area (units of Watts/mz).
Proof:

dU

tot tot

V = SOE Acdt so

1 E* E?
s LAV _ o pe_ ;
A dt Hoe M€

Intensity of the Radiation (Watts/m?):
The intensity, I, is the average of S as follows:
_ 1dU E;, . , E;
= ——(sin” (kx —wt)) =
4 dt pye <s1n (kx )> 2u,c
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Momentum Transport - Radiation
Pressure

Relativistic Energy and Momentum:

E2 = (cp)? + (myc?)?

energy momentum rest mass
For light my =0 and \' l
E = Cp (for light)

For light the average momentum per unit time per unit area is equal to the
intensity of the light, I, divided by speed of light, ¢, as follows:

ldp 11dU 1

— ==

Adt cA dt ¢

Total Absorption:
4 dp 1d U 1 Light

Total Absorption

Total Reflection
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The Radiation Power of the Sun

Problem: P=39x10*wW
The radiation power of the

sun is 3.9x1020 W and the ‘4 -

distance from the Earth to i

the sun is 1.5x101! m. Earthn ~ 4=15x107m

(a) What is the intensity of
the electromagnetic radiation from the sun at the surface of the Earth (outside

the atmosphere)? (answer: 1.4 kW/mz)

(b) What is the maximum value of the electric field in the light coming from
the sun? (answer: 1,020 V/m)

(c) What is the maximum energy density of the electric field in the light

coming from the sun? (answer: 4.6x107° J/m3)

(d) What is the maximum value of the magnetic field in the light coming
from the sun? (answer: 3.4 uT)

(e) What is the maximum energy density of the magnetic field in the light
coming from the sun? (answer: 4.6x107° J/m3)

(f) Assuming complete absorption what is the radiation pressure on the
Earth from the light coming from the sun? (answer: 4.7x107° N/mz)

(g) Assuming complete absorption what is the radiation force on the Earth
from the light coming from the sun? The radius of the Earth is about 6.4x10°
m. (answer: 6x108 N)

(h) What is the gravitational force on the Earth due to the sun. The mass of
the Earth and the sun are 5.98x10%4 kg and 1.99x1030 kg, respectively, and

G =6.67x10711 Nm2/kg2. (answer: 3.5x1022 N)
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