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Conductors in Static EquilibriumConductors in Static Equilibrium

Conductor: In a conductor some
electrons are free to move (without
restraint) within the volumn of the
material (Examples: copper, silver, aluminum, gold)

Conductor in Static Equilibrium:
When the charge distribution on a
conductor reaches static equilibrium
(i.e. nothing moving), the net electric
field withing the conducting

material is exactly zero (and the electric potential is constant).

Excess Charge:  For a conductor
in static equilibrium all the (extra)
electric charge reside on the
surface.  There is no net electric
charge within the volumn of the
conductor (i.e. ρ ρ = 0).

Electric Field at the Surface:
The electric field at the surface of a
conductor in static equilibrium is
normal to the surface and has a magnitude, E = σσ/εε0, where σσ is
the surface charge density (i.e. charge per unit area) and the net
charge on the conductor is

Q dA
Su r f a c e

= ∫ σ
.

Conductor

Conductor in
static equilibrium

E = 0
V = constant

Conductor in
static equilibrium

E = 0
V = constant

ρρ = 0

Surface Charge Density
σσ

E
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Gauss' Law ExamplesGauss' Law Examples

Problem: A solid insulating sphere of radius R
has charge distributed uniformly throughout its
volume.  The total charge of the sphere is Q.  What
is the magnitude of the electric field inside and
outside the sphere?
Answer:

Problem: A solid conducting sphere of radius R
has a net charge of Q. What is the magnitude of the
electric field inside and outside the sphere?  Where
are the charges located?
Answer: Charges are on the surface and
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Problem: A solid conducting sphere of radius
b has a spherical hole in it of radius a and has a
net charge of Q. If there is a point charge -q
located at the center of the hole, what is the
magnitude of the electric field inside and outside
the conductor?  Where are the charges on the
conductor located?
Answer: Charges are on the inside and outside
surface with Qin=q and Qout=Q-q and
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Gravitational Potential EnergyGravitational Potential Energy

Gravitational Force:  F = G m1m2/r2

Gravitational Potential Energy GPE:
U = GPE = mgh  (near surface of the Earth)

Kinetic Energy: KE =
1

2
2m v

Total Mechanical Energy: E = KE +U

Work Energy Theorem:
W = EB-EA = (KEB-KEA) + (UB-UA)
(work done on the system)

Energy Conservation: EA=EB
(if no external work done on system)

Example:

A ball is dropped from a height h. What is
the speed of the ball when it hits the
ground?

Solution: Ei = KEi +Ui = mgh Ef = KEf + Uf = mvf
2/2

E E v ghi f f= ⇒ = 2

h

vi = 0

vf = ?
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Electric Potential EnergyElectric Potential Energy

Gravitational Force:  F = K q1q2/r2

Electric Potential Energy:   EPE = U  (Units = Joules)

Kinetic Energy: KE =
1

2
2m v (Units = Joules)

Total Energy: E = KE + U (Units = Joules)
Work Energy Theorem: (work done on the system)

W = EB - EA = (KEB - KEA) + (UB - UA)
Energy Conservation: EA=EB (if no external work done on system)

Electric Potential Difference ∆∆V = ∆∆U/q:

Work done (against the electric force)
per unit charge in going from A to B
(without changing the kinetic energy).

∆∆V = WAB/q = ∆∆U/q = UB/q - UA/q

(Units = Volts 1V = 1 J / 1 C)

Electric Potential V = U/q:  U = qV

Units for the Electric Field (Volts/meter):
N/C = Nm/(Cm) = J/(Cm) = V/m

Energy Unit (electron-volt):  One electron-volt is the amount
of kinetic energy gained by an electron when it drops through one
Volt potential difference

1 eV = (1.6x10-19 C)(1 V) = 1.6x10-19 Joules

1 MeV = 106 eV 1 GeV=1,000 MeV 1 TeV=1,000 GeV

q

B

A
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Accelerating Charged ParticlesAccelerating Charged Particles

Example Problem: A particle with mass M
and charge q starts from rest a the point A. What is
its speed at the point B if VA=35V and VB=10V

(M = 1.8x10-5kg, q = 3x10-5C)?

Solution:
The total energy of the particle at A and B is

E KE U qV

E KE U Mv qV

A A A A

B B B B B

= + = +

= + = +

0
1

2
2 .

Setting EA = EB (energy conservation) yields
(Note: the particle gains an amount of kinetic

energy equal to its charge, q, time the change in
the electric potential.)

Solving for the particle speed gives
(Note: positive particles fall from high potential to
low potential VA >VB, while negative particles

travel from low potential to high potential,
VB >VA.)

Plugging in the numbers gives

v
C V

kg
m sB =

×
×

=
−

−

2 3 10 25

18 10
9 1

5

5

( )( )

.
. / .

VB = 10VVA = 35V

A B

q

+ -E

1

2
2Mv q V VB A B= −( )

v
q V V

MB
A B=

−2 ( )
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Potential Energy & ElectricPotential Energy & Electric
PotentialPotential

Mechanics (last semester!):
Work done by force F in going from A to B:

W F drA B
byF

A

B

→ = ⋅∫
r r

Potential Energy Difference ∆∆U:

W U U U F drA B
againstF

B A
A

B

→ = = − = − ⋅∫∆
r r

r r
F U

U

x
x

U

y
y

U

z
z= −∇ = − − −

∂
∂

∂
∂

∂
∂

$ $ $

Electrostatics (this semester):

Electrostatic Force:
r r
F qE=

Electric Potential Energy Difference ∆∆U:
(work done against E in moving q from A to B)

∆U U U qE drB A
A

B

= − = − ⋅∫
r r

Electric Potential Difference ∆∆V=∆∆U/q:
(work done against E per unit charge in going from A to B)

∆V V V E drB A
A

B

= − = − ⋅∫
r r

r r
E V

V

x
x

V

y
y

V

z
z= −∇ = − − −

∂
∂

∂
∂

∂
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$ $ $
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The Electric Potential of a PointThe Electric Potential of a Point
ChargeCharge

+Q E

r

V(r) V(r) = KQ/r

Potential from a point charge:

V(r) = ∆∆V = V(r) - V(infinity) = KQ/r

U = qV = work done against the electric force in bringing the
charge q from infinity to the point r.

+Q q

E

Potential from a system of N point charges:

V
Kq

r
i

ii

N

=
=

∑
1
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Electric Potential due to aElectric Potential due to a
Distribution of ChargeDistribution of Charge

dQ dV = K dQ/r

r

The electric potential from a continuous distribution of charge
is the superposition (i.e. integral) of all the (infinite)
contributions from each infinitesimal dQ as follows:

V
K

r
dQ= ∫ and

Q dQ= ∫
Example:
A total amount of charge Q is uniformily
distributed along a thin circle of radius R.
What is the electric potential at a point P at
the center of the circle?

Answer: V
KQ

R
=

Example:
A total amount of charge Q is uniformily
distributed along a thin semicircle of
radius R. What is the electric potential at a
point P at the center of the circle?

Answer: V
KQ

R
=

R
P

x-axis

R
P

x-axis
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Calculating the Electric PotentialCalculating the Electric Potential

Example:
A total amount of charge Q is
uniformily distributed along a
thin ring of radius R. What is
the electric potential at a point
P on the z-axis a distance z
from the center of the ring?

Answer: V z
KQ

z R
( ) =

+2 2

Example:
A total amount of charge Q is
uniformily distributed on the
surface of a disk of radius R.
What is the electric potential at
a point P on the z-axis a
distance z from the center of
the disk?

Answer: ( )V z
KQ

R
z R z( ) = + −

2
2

2 2

R

P z-axis

z

R

P z-axis

z
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Electric Potential EnergyElectric Potential Energy
For a system of point charges:
The potential energy U is the work required to assemble the final charge
configuration starting from an inital condition of infinite separation.

Two Particles:

U K
q q

r
q
Kq

r
q

Kq

r
= = 



 + 
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2
so we see that

U q Vi i
i

=
=

∑1
2 1

2

where Vi is the electric potential at i due to the other charges.

Three Particles:

U K
q q

r
K
q q

r
K
q q

r
= + +1 2

12

1 3

13

2 3

23

which is equivalent to

U q Vi i
i

=
=

∑1
2 1

3

where Vi is the electric potential at i due to the other charges.

N Particles:

U q Vi i
i

N

=
=

∑12 1

q1 q2

r

q1
q2

r12

q3

r13 r23
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Stored Electric Potential EnergyStored Electric Potential Energy

For a conductor with charge Q:
The potential energy U is the work required to assemble the final charge
configuration starting from an inital condition of infinite separation.

For a conductor the total charge Q resides
on the surface

Q d q d A= = ∫∫ σ
Also, V is constant on and inside the
conductor and

dU dQV V dA= =
1

2

1

2
σ

and hence

U VdQ V dA VQ
Surface Surface

= = =∫ ∫
1

2

1

2

1

2
σ

Stored Energy: U Q Vc ondu c t o r =
1

2
where Q is the charge on the conductor and V is the electric potential of
the conductor.

For a System of N Conductors:

U Q Vi i
i

N

=
=

∑12 1
where Qi is the charge on the i-th conductor and Vi is the electric
potential of the i-th conductor.

dQ=σσdA

V = constant

E=0
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Capacitors & CapacitanceCapacitors & Capacitance

Capacitor:
Any arrangement of conductors that is used to store electric charge (will also
store electric potential energy).

Capacitance:      C=Q/V    or    C=Q/∆∆V
Units: 1 farad = 1 F = 1 C/1 V 1 µµF=10-6 F 1 pF=10-9 F

Stored Energy:

U Q V
Q

C
C Vc ondu c t o r = = =

1

2 2

1

2

2
2

where Q is the charge on the conductor and V is the electric potential of the
conductor and C is the capacitance of the conductor.

Example (Isolated Conducting Sphere):
For an isolated conducting sphere with radius R, V=KQ/R and
hence C=R/K and U=KQ2/(2R).

Example (Parallel Plate Capacitor):
For two parallel conducting
plates of area A and separation d
we know that E = σσ/εε0 = Q/(Aεε0)

and ∆∆V = Ed = Qd/(Aεε0) so that

C = Aεε0/d.  The stored energy is

U = Q2/(2C) = Q2d/(2Aεε0).

E

d

+σσ

−σ−σ

Q Area A

-Q Area A

E=Q/(Aεε0)
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Capacitors in Series & ParallelCapacitors in Series & Parallel

Parallel:
In this case ∆∆V1=∆∆V2=∆∆V and
Q=Q1+Q2.  Hence,

Q = Q1 + Q2 = C1∆V1 + C2∆V2 =

(C1+C2)∆V

so C = Q/∆∆V = C1 + C2, where I

used Q1 = C1∆V1 and

Q2 = C2∆V2.

Capacitors in parallel add.

Series:
In this case ∆∆V=∆∆V1+∆∆V2 and Q=Q1=Q2.
Hence,
∆V = ∆V1 + ∆V2 = Q1/C1+Q2/C2 =
(1/C1+1/C2)Q

so 1/C = ∆∆V/Q = 1/C1 + 1/C2, where I used

Q1 = C1∆V1 and  Q2 = C2∆V2.

Capacitors in series add inverses.

∆∆VC1 C2

∆∆V

C1

C2
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Energy Density of the ElectricEnergy Density of the Electric
FieldField

Energy Density u:
Electric field lines contain energy! The amount of
energy per unit volume is

u = e0E2/2,
where E is the magnitude of the electric field.  The

energy density has units of Joules/m3.

Total Stored Energy U:
The total energy strored in the electric field lines in an infinitessimal volume
dV is dU = u dV and

U udV
Volume

= ∫
If u is constant throughout the volume, V, then U = u V.

Example: Parallel Plate Capacitor
Think of the work done in bringing in the charges
from infinity and placing them on the capacitor as the
work necessary to produce the electric field lines and
that the energy is strored in the electric field!

From before we know that C = Aεε0/d so that the

stored energy in the capacitor is

U = Q2/(2C) = Q2d/(2Aεε0).

The energy stored in the electric field is U = uV = e0E2V/2 with

E = σσ/e0 = Q/(e0A) and V = Ad, thus

U=Q2d/(2Aεε0),
which is the same as the energy stored in the capacitor!

Volume

E

+Q

-Q

d

Area A

E-field
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Electric Energy ExamplesElectric Energy Examples

Example:
How much electric energy is stored by a
solid conducting sphere of radius R and
total charge Q?

Answer:  U
KQ

R
=

2

2

Example:
How much electric energy is stored by a two thin
spherical conducting shells one of radius R1 and
charge Q and the other of radius R2 and charge -Q

(spherical capacitor)?

Answer:  U
KQ

R R
= −
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Example:
How much electric energy is stored by a
solid insulating sphere of radius R and
total charge Q uniformly distributed
throughout its volume?

Answer: U
KQ

R

KQ

R
= +
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