Tutorial ${ }^{\circ}{ }^{\circ} 5$: Exercises on Pascal's law and Archimedes thrust. (Hydrostatic)

Exercise 5.1:

To determine the volume mass of ethanol $\rho_{\text {ethanol }}$, glycerin is introduced into a U tube. In the left branch, water of density $\rho_{\text {water }}=1000 \mathrm{~kg} \cdot \mathrm{~m}^{-3}$ is poured over a height $h_{1}=10 \mathrm{~cm}$, which causes a difference in level between the points A and B. To bring the points A and B back to the same height, methanol is poured over a height $h_{1}=12.5 \mathrm{~cm}$ (diagram).

1. Write the fundamental hydrostatic relationship for the three fluids.
2. Deduce the volumic mass (density) of ethanol ρ ethanol

Solution

1- The fundamental hydrostatic relationship for the three fluids:

$$
\begin{equation*}
\text { Glycerin: } P_{A}-P_{B}=0 \tag{1}
\end{equation*}
$$

Water: $\quad P_{A}-P_{C}=\rho_{\text {water }} \cdot h_{1} . g$
Methanol $P_{B}-P_{D}=\rho_{\text {Methanol }} \cdot h_{2} \cdot g$
2- So we have:
from (1) $P_{A}=P_{B}$
from (2) $P_{A}=P_{C}+\rho_{\text {water }} . h_{1} . g$
from (3) $P_{B}=P_{D}+\rho_{\text {Methanol }} \cdot h_{2} \cdot g$
We also have: $P_{C}=P_{D}=P_{\text {atm }}$
from where: $\rho_{\text {Methanol }} \cdot h_{2} \cdot g=\rho_{\text {water }} \cdot h_{1} \cdot g$

$$
\rho_{\text {Methanol }}=\frac{\rho_{\text {water }} \cdot h_{1}}{h_{2}}=\frac{1000 \times 10}{12.5}=800 \mathrm{Kg} \cdot \mathrm{~m}^{-3}
$$

Exercise 5.2:

A hollow steel sphere of density $\rho_{\text {steel }}=7600 \mathrm{Kg} \cdot \mathrm{m}^{-3}$ and radius $r=20 \mathrm{~cm}$ and thicknesse $=5 \mathrm{~mm}$.
1- Determine the weight of this sphere.
2- Determine the Archimedes' thrust that would be exerted on this sphere if it were totally immersed in water.
3- Determine the force that Archimedes would exert on this ball if it were completely submerged in water.
4- Could this sphere float on the surface of water? If yes, then what is the fraction of its submerged volume?

Solution

1-The volume of the hollow sphere $V_{H C}$ is
Volume of the hollow sphere $V_{H C}=$ Volume of the sphere V_{S} - vacuum volume V_{V}

$$
\begin{gathered}
V_{H C}=\frac{4}{3} \pi r^{3}-\frac{4}{3} \pi(r-e)^{3}=\frac{4}{3} \pi\left[r^{3}-(r-e)^{3}\right]=\frac{4}{3} \pi\left[(0.2)^{3}-(0.2-0.008)^{3}\right] \\
V_{H C}=3.86 \times 10^{-3} \mathrm{~m}^{3}
\end{gathered}
$$

The weight $P_{H C}$ of the hollow sphere is then:

$$
P_{H C}=m g=\rho_{\text {steel }} \cdot V_{H C} . g=7600 \times 3.86 \times 10^{-3} \times 9.81=287.79 \mathrm{~N}
$$

2. The Archimedes thrust for the totally submerged ball is the weight of the displaced volume of the water therefore:

$$
\boldsymbol{\pi}=\boldsymbol{\rho}_{\text {water }} . \boldsymbol{V}_{\boldsymbol{S}} \cdot \boldsymbol{g}=\boldsymbol{\rho}_{\text {water } \cdot} \cdot \frac{4}{3} \pi r^{3} \cdot \boldsymbol{g}=\mathbf{1 0 0 0} \cdot \frac{4}{3} \pi \cdot(0.2)^{3} \cdot 9.81=328.74 \mathrm{~N}
$$

The ball will float because the Archimedes π thrust is greater than its weight $P_{H C}$:

$$
\pi>P_{H C}
$$

3- The volume of the submerged part of the ball is equal to the volume of the water $V_{\text {water }}$ displaced. At equilibrium, the Archimedes thrust π is equal to the weight of the volume of water displaced: $\pi=P_{H C}$

$$
\begin{gathered}
\rho_{\text {water }} V_{\text {water }} \cdot g=P_{H C} \\
V_{\text {water }}=\frac{P_{H C}}{\rho_{\text {water }} \cdot g}=\frac{287.79}{1000 \times 9.81}=2.93 \times 10^{-2} \mathrm{~m}^{3}
\end{gathered}
$$

1- Knowing that the volume of the sphere is:

$$
V_{S}=\frac{4}{3} \times \pi \times(0.2)^{3}=3.35 \times 10^{-2} \mathrm{~m}^{3}
$$

The fraction of the submerged volume of the ball compared to its volume:

$$
\frac{V_{\text {water }}}{V_{S}}=\frac{2.93 \times 10^{-2} \mathrm{~m}^{3}}{3.35 \times 10^{-2} \mathrm{~m}^{3}}=0.87=87 \%
$$

Exercise 5.3:

A very fine capillary tube with a radius r is introduced into a tank filled with water.

1. What phenomenon do we observe? Explain the phenomenon.
2. Demonstrate Jurin's law; the height h as a function of surface tension γ, contact angle θ, radius r of the capillary tube, density of water ρ and acceleration of gravity g.
3. Assuming that the raw sap is perfectly wetting and has the same properties as water: and, calculate the height of ascent: $\rho=1000 \mathrm{Kg} \cdot \mathrm{m}^{-3}$ and $\gamma=73 \cdot 10^{-3} \mathrm{~N} / \mathrm{m}$. calculate the height of sap rise in rayon xylene channels $r=25 \mu \mathrm{~m}$

Solution

1. We observe the rise of water in the capillary tube of an height h due to the Laplace pressure difference. The reverse pressure due to the weight of the riser in the capillary will limit the rise of the water to a height h

2- The pressure difference ΔP Laplace due to surface tension γ is expressed by:

$$
\Delta P=\frac{2 \gamma}{R}
$$

R : is the radius of curvature of the meniscus (interface between water and air).
In the triangle $A B C$ the cosine of the contact angle θ verifies $\cos \theta=\frac{r}{R}$ hence $R=\frac{r}{\cos \theta}$ r is the radius of the capillary tube. ΔP is then written:

$$
\Delta P=\frac{2 \gamma \cos \theta}{r}
$$

The water rises to a height h until the hydrostatic pressure π of the water riser in the balance tube ΔP, knowing that $\pi=\rho . g . h$, at pressure equilibrium we have: $\pi=\Delta P \Rightarrow \rho . g . h=$ $\frac{2 \gamma \cos \theta}{r}$
hence Jurin's law: $h=\frac{2 \gamma \cos \theta}{\text { r.p.g }}$
3. The sap is perfectly wet: $\theta^{0}=0 r=25 \mu m=25.10^{-6} m$

$$
h=\frac{2 \times 73.10^{-3} \times \cos 0}{25.10^{-6} \times 1000 \times 9.81}=0.595 \mathrm{~m}
$$

