University of Biskra Mathematics Department Module: Analysis 2

First year license 2023/2024

Worksheet N° 3

Remark: Treat only the *first four examples* of each exercise and leave the rest to the students.

Exercise 1 (Separated variables equations) Find the solution of the following equations and, if possible, express your solution in the form y = f(x).

Exercise 2 (Linear differential equations) Solve the following first order differential equations

 $\begin{array}{lll} \bullet & xy' - 2y = -x \\ \bullet & xy' - 2y = x^3 e^x \text{ with } y(1) = 0 \\ \bullet & xy' - y = 2x \ln(x) \end{array} \begin{array}{lll} \bullet & xy' + 2y = \frac{\cos(x)}{x} \\ \bullet & (x+1)y' + 2y = (x+1)^{5/2} \\ \bullet & y' + y \tan(x) = \cos^2(x) \end{array} \begin{array}{lll} \bullet & y' + 2\frac{y}{x} = \frac{4}{x} \text{ with } y(1) = 6 \\ \bullet & xy' - 2y = x^4 e^x \\ \bullet & xy' + y = (1+x)e^x \end{array}$

Exercise 3 (*Homogeneous equations*) Show that each of the following differential equations is homogeneous and find the general solution of the equation.

•
$$y' = \frac{x^2 e^{y/x} + y^2}{xy}$$
 • $y' = \frac{\sqrt{x^2 - y^2} + y}{x}$ • $y' = \frac{x^4 + 2y^4}{xy^3}$

Exercise 4 (Bernoulli's equations) Solve the following Bernoulli's differential equations:

• $y' + \frac{y}{x} = 3x^2y^2$ • $y' - 4y = 2e^x\sqrt{y}$ • $y' - \frac{3}{4}y = (9x - 3)y^5$ • $3y' + \frac{3}{x}y = 2x^2y^4$

Exercise 5 (*Riccati's equations*) Solve the following differential equations:

• $x^3y' + y^2 + yx^2 + 2x^4 = 0$ • $y' + \frac{y}{x} = 3x^2y^2 + xe^x$ • $(y' - y^2)\cos x + y(2\cos^2 x + \sin x) = \cos^3 x$

Exercise 6 (Second order differential equations) Solve the following differential equations :

 $\begin{array}{ll} \bullet \ y'' - 3y' + 2y = 0 \\ \bullet \ y'' - 2y' + y = 0 \\ \bullet \ y'' + y = 2\cos(x) \\ \bullet \ y'' - 3y' + 2y = xe^x \\ \bullet \ y'' - 3y' + 2y = xe^x \\ \bullet \ y'' + yy' + y^2 = xy^3 \end{array} \\ \begin{array}{ll} \bullet \ y'' + 2y' + 2y = 0 \\ \bullet \ y'' + 2y' + 2y = 0 \\ \bullet \ y'' + 2y = 2\cos(x) \\ \bullet \ y'' - 3y' + 2y = \sin(x) + 2e^{-x} + xe^{-2x} + x^2 + x + 1 \\ \bullet \ y'' - 2y' + y = x^2e^x \\ \bullet \ y'' - 6y' + 9y = x^3e^{3x} (by \ variation \ of \ the \ constant) \end{array}$