جامعة محمد خيضر بسكرة كلية العلوم والتكنولوجيا الجذع المشترك لميدان العلوم والتكنولوجيا

Physics 2

Tutorial N°3

Exercise 1 : Electric dipôle

The water molecule is made up of two H⁺ ions and one O^{-2} ion, arranged so that the angle formed between the two OH bonds is equal to 104°

- 1. calculate the value of the dipole moment \vec{P} , knowing that the distance between O^{-2} and the two H⁺ ions are both equal to $d=1A^{\circ}$
- 2. Place \vec{P} at point O parallel to axis OX. Determine the direction and nature of the force exerted by \vec{P} on a charge q placed in M at a distance r from point O on axis OX
- 3. In place of the charge q, we place another dipole of moment \vec{p}_0 oriented along \overrightarrow{OM} . What is the potential energy of \vec{p}_0 in the field $\vec{E}(M)$ created in M by the molecule?

Exercise 2: Electric Flux

Consider a closed triangular box resting within a horizontal electric field of magnitude $E=7.80 \times 10^4$ (N/C) as shown in.

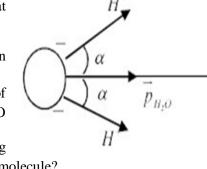
Calculate the electric flux through

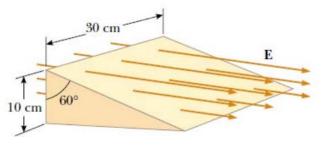
- a) The vertical rectangular surface,
- b) The slanted surface
- c) The entire surface of the box.

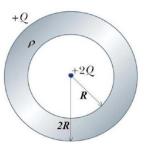
Exercise3:

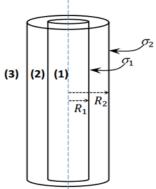
There is a +2Q point charge at the centre of an empty insulating sphere which carriers +Q total charge and has charge density ρ Find the electric fields in terms of k, Q, r, and R for

- 1. r<2R region
- 2. R<r<2R region
- 3. r>2R region


Exercise4:


Let two coaxial conducting cylinders 1 and 2, of radius R_1 and R_2 and length L, loaded with surface densities σ_1 and σ_2 , respectively.


- 1. Using Gauss's theorem, find the expression of electrostatic field, away from the two extremes of the cylinders and in each of the regions (1), (2) and (3), knowing that $\sigma_1 et \sigma_2$ are two positive constants
- 2. Give the expression of the electrostatic potential in zone (3).


Exercise 5:

A solid, non-conducting sphere of radius a has a charge of +2Q distributed uniformly throughout its volume. A conducting shell with an inner radius of b and an outer radius of c is located concentrically around the solid sphere, and has a net charge of -Q. Express all answers in terms of the given values and fundamental constants.

Physics 2

1. Use Gauss's Law to determine the magnitude and direction of the electric field E at a point located r away from the center of the spheres, where:

a. r > c

```
b. b > r > a.
```

- 2. Identify the total amount of charge induced on the inner surface of the conducting shell, at radius b.
- **3.** Identify the total amount of charge induced on the outer surface of the conducting shell, at radius c.
- 4. Use Gauss's Law to determine the magnitude and direction of the electric field E as a function of r, where r < a
- 5. Sketch a graph of electric field E as a function of radius r, from r = 0 to 2c, with radius a, b, and c clearly identified

from r = 0 to 2c, with radius a, b, and c clear

Exercise6:

Consider a sphere of radius R, center O, containing a surface distribution of charges whose

density σ is constant. This sphere is surrounded by other sphere of radius 2*R*, with the same center as the first one and also carrying the same distribution (σ) as the first.

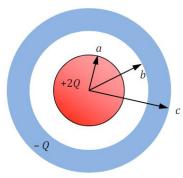
The position of a point M in space is identified by its distance r from the center O of the sphere.

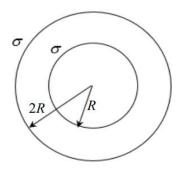
- 1. Determine the induced charge on each of the two spheres.
- 2. Using Gauss's theorem, determine the electric field at any point M in space.

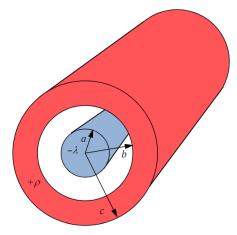
Exercise7:

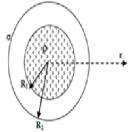
An infinitely long cylindrical conductor has a radius a and a linear charge density of $-\lambda$ as shown above. The conductor is surrounded by a cylindrical shell made of a nonconducting material of inner radius b, outer radius c, and with a constant volume charge density of $\rho > 0$. The conductor and nonconductor are located concentrically about a common axis.

- 1. Determine the net electric flux per unit length passing through a cylindrically symmetric Gaussian surface located just outside the surface of the conductor.
- 2. Use Gauss's Law to determine the magnitude of the electric field E as a function of radius r, where:


i. r < aii. a < r < biii. r > c


Exercise 8:


Consider two concentric spheres with the same center *O* and respective radii R_1 and $R_2 = \sqrt{2.5} R_1$, carrying charges such that :- The inner sphere (*O*, R_1) carries a volume charge density $\rho = \frac{15}{4R_1} C/m^3$. The outer sphere (*O*, R_2) carries a surface charge density $\sigma = -0.5 C/m^2$.


1- Determine the total charges carried by each sphere.

2- Using Gauss's theorem, find the electric field at any point in space point in space $(0 < r < \infty)$. Destinguish the regions: $(0 < r \le R_1)$, $(R_1 < r \le R_2)$, $(r \ge R_2)$.

