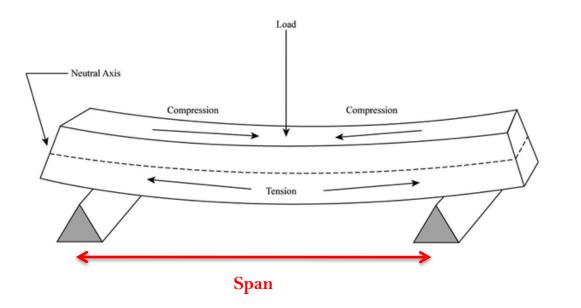
Semester 2 (2023/2024) University of Mohamed Khider-Biskra

Architecture Department

Module: Structure 2 "Lecture"


3rd year Bachelor (Architecture)

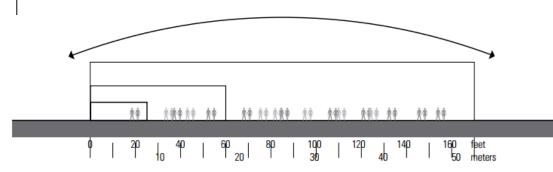
I.1. Introduction:

A roof should help in protecting the building against external conditions in order to provide comfort and safety for the building occupants.

A roof of Barcelona Airport

Is it possible to employ a simple span roof support over a distance greater than, say, 18m?

In essence, we want to:


a) Increase a beam's resistance to bending

b) Whilst minimizing the self weight of structural member

c) Maximizing its efficiency both economically and structurally

I.2. Definition:

Buildings that create unobstructed, column-free spaces grater than 18 m for a variety function/activities.

Examples of relevant activities:

• ...where visibility is important such as: auditoriums, covered Stadiums and Lecture hall.

• ...where flexibility is important such as: exhibition halls and certain type of manufacturing facilities

• ...where large movable objects are housed such a: aircraft hangars

Spectacular long-span structures in late 20th century

Upper limit of span for previously mentioned categories:

Largest covered stadium > 300 m Span

Awe-Inspiring stadium (Singapore)

Largest exhibition hall = 216 m Span

National exhibition and conventional centre (Shanghai-China) Largest hangar = 75-80 m span (to fit largest commercial fixed-wing aircraft with a wingspread of 69,4 m)

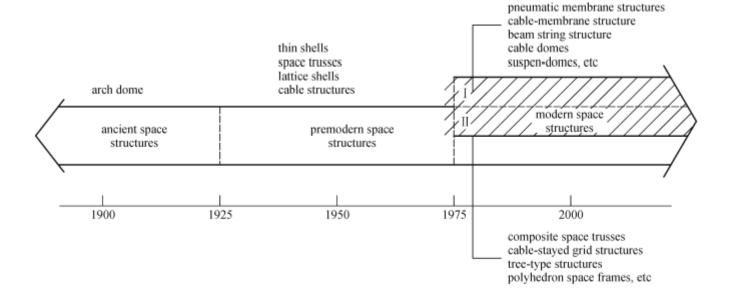
Aerium hangar (Brandenburg-Germany)

I.3.Purpose:

Communal activities:

Enables a large group of peopole to assemble without obstruction by the presence of Supporting column.

Economic activities:


For manufacturing and commerce; e.g., atrium at shopping complex- events and promotional activities

Prestige & status:

Dominate the landscape and easily become landmark- free advertisement for the owner and even for the city

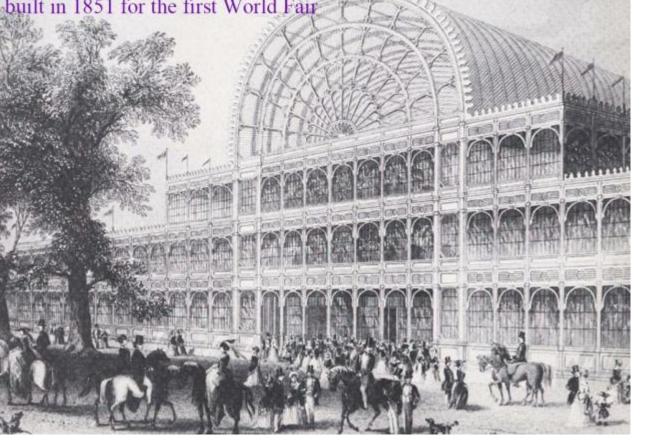
I.4.History:

Proposed periods of the history of long-span space structures (by the authors Dong et al, 2012):

Ancient long-span structures (before 1925):

The only materials available in ancient times:

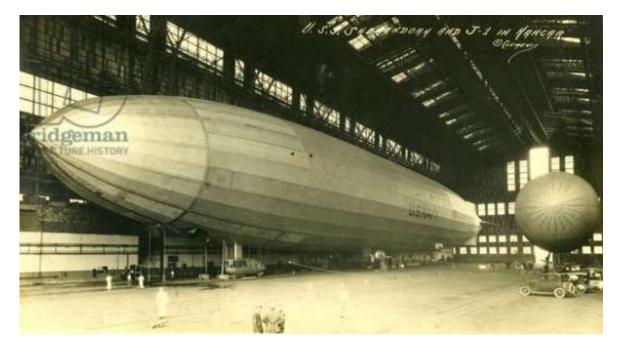
• Timber


- Masonry made of <u>stone</u> (vulnerable in tension and bending)
- Masonry of bricks made of <u>clay</u> (also vulnerable in tension and bending)

RESULT: Reaching long spans in such constructions = EXTREMELY DIFFICULT! ONLY POSSIBILITY: via the arch-and-vault systems (i.e., palaces)

working in compression only

Example: Crystal palace-London (Uk)


Exterior view of the Crystal Palace, - built in 1851 for the first World Fair

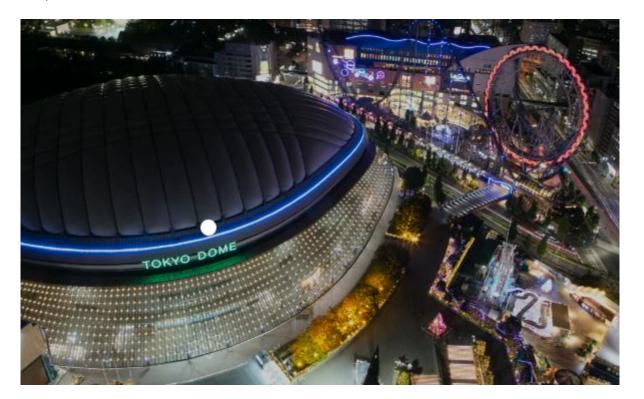
Later ancient space structures (between 1920 and 1975)

Examples:

• 1922: Airship hangar US Navy-New Jersey 79 m span

• 1937: Glenn L. Martin Co. Aircraft Assembly Building Baltimore -Flat

truss 91 m span


Modern space structures (after 1975)

Examples:

• 1975: Comprehensive Gymnasium of Seoul Olympic Games = first cable-dome in the world designed by the American engineer Geiger

1988: Tokyo Dome = air supported membrane structure (ellipse 180 m x 150 m)

What are the factors that must be taken into account in

the design and selection of a suitable roof structure?

- Function of the building
- Span of the roof
- Height of the space
- Aesthetic and design requirements
- Economic considerations
- Construction considerations
- The environment

I.5.Material used:

Material used for long-span structures:

- All reinforced concrete (RC) including precast
- All metal (e.g. mild-steel, structural steel, stainless steel or alloyed aluminium)
- All timber
- Laminated timber
- Metal + RC (combined)
- Plastic coated textile material (fabric) for roofing / cladding
- Fiber reinforced plastic for roofing / cladding

I.6.Classification:

Classified into two groups:

- Bending structures: have both <u>tensile</u> and <u>compressive</u> forces such as plate girder and trusses.
- Funicular structures: work either in <u>pure tension (cable-stayed roof and bicycle wheel</u>) or in <u>pure compression</u> (parabolic arch and dome).

I.7.Basic Geometries:

One-way System: also known as unidirectional system, is a structural system in which the structural members primarily carry loads in <u>one direction</u>, such as:

Beams

- Trusses
- > Arches
- Cable structures
- Plate structures
- Shell structures

Two-way System: also known as bidirectional system, is structural system in which the structural members primarily carry loads in <u>two direction</u>, such as:

- Plate structures
- Shell structures

ONE-WAY SYSTEMS

-

Concrete	Domes	*																		•	È.
Steel	Ribbed domes	∲/															$ \ge $			•	¢.
Shell Structures		\vdash									<u> </u>						\vdash				+
Concrete	Waffle slabs								<u> </u>		<u> </u>					\vdash					+
 Steel 	Space frames	Ψ						VVV						<u> </u>	<u> </u>	\rightarrow					+
Plate Structures				<u>~ ~ ~</u>	<u> </u>	<u> </u>									\vdash						+
TWO-WAY SYSTEM	AS			<							<u> </u>				\rightarrow						+
					\leq									\vdash	k –						+
Concrete	Barrel shells	PA A	VV	VV	νу	Pγ	VV			/			$\nabla \nearrow$		1	L	-				1
• Wood	Lamella vaults	6AA	(X)	(X)	K X I	X X	ĂХ	ХΧ	IX XI	$ \leq$											1
Shell Structures			XX	XX	\sim	\sim															T
Concrete	Folded plates	۲ <u>ــــــــــــــــــــــــــــــــــــ</u>								\sim		1									T
Timber	Folded plates									\sum	V										Ι
Plate Structures	case aparenta																			•	Ē.
Steel	Cable systems																				Ť.
Concrete Cable Structures	ronneo arones	97									-						1			•	Ť.
Steel Concrete	Built-up arches Formed arches	۲Ľ/			\sim						<u> </u>	1					\mathcal{X}			•	Ċ.
Timber	Laminated arches	1//		/													111				t
Arches	Included asket	1A7								-+							Kħ.				t
	Space trusses	<u>۴/ .</u>													-					•	¢.
	Shaped trusses			/		r			4	\leq	1				\rightarrow						+
 Steel 	Flat trusses			77	<				\rightarrow												+
	Shaped trusses	۴¥		\triangleleft	$ \ge $	┝╍┶	\ll	V V	\leftarrow		\geq										+
 Timber 	Flat trusses		$ \rightarrow $	$A \not =$	T	RI	\sim	X	ΔA		-				<u> </u>						+
Trusses						4	\leq								<u> </u>						+
Concrete	Precast tees	ф <u> </u>						-													+
	Plate girders	_		_						50											+
Steel	Wide-flange beams	J							Г		<u> </u>										1
• Timber	Laminated beams							III.													I
beams																		_	_		-

Chapter I: Long-Span Structures

References

- 1. Francis, D K C. Onouye, B. Zuberbuhle, D. 2014. Building Structures Illustrated. Second Edition, John Wiley & Sons, New Jersey.
- 2. Georgescu, M. 2017. Long span structures: part 1, European Erasmus Mundus Master Course Sustainable Constructions under Natural Hazards and Catastrophic Events.
- 3. Kamal, A. 2021. Introduction to long-span structures. College of Engineering, Taibah University.
- 4. Dong, S. Yang, Z. Dong, X. 2012. Application and development of modern long-span space structures in China. Journal of Frontiers in Structural and Civil Engineering, 6(3): 224–239.