PW 02 : The Loops

Exercise 1:

Write a Fortran program which allows you to enter integer number ${\bf N}$ and :

- displays the first 10 integers from 1 to 10 and inversed (from 10 to 1).
- displays the first 10 **odd** integers from 1 to 10.
- calculate and display the sum of **N** integers numbers
- calculate and display the sum of **even** numbers inferior to \mathbf{N} .
- calculate and display the sum of **Divided** numbers of N.

Exercise 2:

Write a Fortran program that allows you to enter a positive number N and calculate The factorial f. (f=1*2*3*...*N)?

Exercise 3:

Write a Fortran program enter two numbers **x** and **y** and calculate the power **p**

 $\mathbf{p} = \mathbf{x}^{\mathbf{y}}$. witch **x** is a **real** and **y** is a positive **integer** number entered.

Example: 7⁵=7x7x7x7x7=16807.

Exercise 4:

Write a Fortran program **PGCD** witch return the PGCD of two numbers a and b.

Example: a=24 b=36 the PGCD ??

Loop: $a < b (24 < 36) \rightarrow b = 36 - 24 = 12 \rightarrow b < a (12 < 24) \rightarrow b$

 $a=24-12=12 \rightarrow a=b=12 \text{ stop } \rightarrow \text{the PGCD} = 12$.

Exercise 5:

Write a Fortran program that calculates the solutions of an equation f,

$$f = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!}$$

which \mathbf{x} is a real and \mathbf{n} is an integer number.