PW 02 : The Loops

Exercise 1:

Write a Fortran program which allows you to enter integer number \mathbf{N} and :

- displays the first 10 integers from 1 to 10 and inversed (from 10 to 1).
- displays the first 10 odd integers from 1 to 10 .
- calculate and display the sum of \mathbf{N} integers numbers
- calculate and display the sum of even numbers inferior to \mathbf{N}.
- calculate and display the sum of Divided numbers of \mathbf{N}.

Exercise 2:

Write a Fortran program that allows you to enter a positive number \mathbf{N} and calculate The factorial f. $(\mathbf{f}=\mathbf{1 * 2 * 3 *} \ldots * \mathbf{N})$?

Exercise 3:

Write a Fortran program enter two numbers \mathbf{x} and \mathbf{y} and calculate the power \mathbf{p}
$\mathbf{p}=\boldsymbol{x}^{\boldsymbol{y}} . \quad$ witch \mathbf{x} is a real and \mathbf{y} is a positive integer number entered.
Example: $\mathbf{7}^{\mathbf{5}}=\mathbf{7 \times 7 \times 7 \times 7 \times 7}=16807$.

Exercise 4:

Write a Fortran program PGCD witch return the PGCD of two numbers a and b.
Example: $a=24 b=36$ the PGCD ??
Loop : $\mathrm{a}<\mathrm{b}(24<36) \rightarrow \mathrm{b}=36-24=12 \rightarrow \mathrm{~b}<\mathrm{a}(12<24) \rightarrow$

$$
a=24-12=12 \rightarrow a=b=12 \text { stop } \rightarrow \text { the } \mathbf{P G C D}=\mathbf{1 2} .
$$

Exercise 5:

Write a Fortran program that calculates the solutions of an equation f,

$$
\mathrm{f}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots \frac{x^{n}}{n!}
$$

which \mathbf{x} is a real and \mathbf{n} is an integer number.

