
4.6: Gradient, Divergence, Curl, and Laplacian
In this final section we will establish some relationships between the gradient, divergence and curl, and we will also
introduce a new quantity called the Laplacian.  We will  then show how to write these quantities in cylindrical and
spherical coordinates.

Gradient

For a real-valued function  on , the gradient  is a vector-valued function on , that is, its value
at a point  is the vector

in , where each of the partial derivatives is evaluated at the point . So in this way, you can think of the symbol
 as being “applied” to a real-valued function  to produce a vector .

It turns out that the divergence and curl can also be expressed in terms of the symbol . This is done by thinking of 
as a vector in , namely

Here, the symbols  are to be thought of as “partial derivative operators” that will get “applied” to a

real-valued function, say , to produce the partial derivatives . For instance,  “applied” to

.

Is really a vector? Strictly speaking, no, since  are not actual numbers. But it helps to think of  as a

vector, especially with the divergence and curl, as we will soon see. The process of “applying”  to a real-

valued function  is normally thought of as multiplying the quantities:

For this reason,  is often referred to as the “del operator”, since it “operates” on functions.

Divergence

For  example,  it  is  often  convenient  to  write  the  divergence  div  f  as  ,  since  for  a  vector  field
, the dot product of f with  (thought of as a vector) makes sense:

We  can  also  write  curl  f  in  terms  of  ,  namely  as  ,  since  for  a  vector  field
, we have:
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∇ ∇ × f
f(x, y, z) = P(x, y, z)i + Q(x, y, z)j + R(x, y, z)k
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For a real-valued function , the gradient  is a vector field, so we can take its

divergence:

Note that this is a real-valued function, to which we will give a special name:

For a real-valued function , the Laplacian of , denoted by , is given by

Often the notation  is used for the Laplacian instead of , using the convention .

Let  be the position vector field on . Then  is a real-
valued function. Find

a. the gradient of 
b. the divergence of 
c. the curl of 
d. the Laplacian of 

Solution:
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Definition 4.7: Laplacian

f(x, y, z) f Δf

Δf(x, y, z) = ∇ ⋅ ∇f = + + .
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f∇2 Δf = ∇ ⋅ ∇∇2

Example 4.17

r(x, y, z) = xi + yj + zk R3 ∥r(x, y, z) = r ⋅ r = + +∥2 x2 y2 z2

∥r∥2
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(d) 

Note that we could have calculated  another way, using the  notation along with parts (a) and (b):

Notice that in Example 4.17 if we take the curl of the gradient of  we get

The following theorem shows that this will be the case in general:

For any smooth real-valued function .

We see by the smoothness of f that

since the mixed partial derivatives in each component are equal.

If a vector field  has a potential, then curl .

Another way of stating Theorem 4.15 is that gradients are irrotational. Also, notice that in Example 4.17 if we take the
divergence of the curl of r we trivially get

The following theorem shows that this will be the case in general:

For any smooth vector field 

The proof is straightforward and left as an exercise for the reader.

The flux of the curl of a smooth vector field  through any closed surface is zero.

Proof: Let  be a closed surface which bounds a solid . The flux of  through  is

Δ∥r = ( + + ) + ( + + ) + ( + + ) = 2 + 2 + 2 = 6∥2 ∂2
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∇ × (∇∥r ) = ∇ × 2r = 2∇ × r = 20 = 0.∥2
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(4.6.3)

(4.6.4)

□

Corollary 4.16

f(x, y, z) f = 0

∇ ⋅ (∇ × r) = ∇ ⋅ 0 = 0. (4.6.5)

Theorem 4.17.

f(x, y, z), ∇ ⋅ (∇ × f) = 0.

Corollary 4.18

f(x, y, z)

Σ S ∇ × f Σ
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There is another method for proving Theorem 4.15 which can be useful, and is often used in physics. Namely, if the
surface integral  for all  surfaces  in some solid region (usually all of  ),  then we must have

 throughout that region. The proof is not trivial, and physicists do not usually bother to prove it. But the
result is true, and can also be applied to double and triple integrals.

For instance, to prove Theorem 4.15, assume that  is a smooth real-valued function on . Let  be a simple
closed curve in  and let  be any capping surface for  (i.e.  is orientable and its boundary is ). Since  is a
vector field, then

Since the choice of  was arbitrary, then we must have  throughout , where n is any unit vector.
Using i, j and k in place of n, we see that we must have  in , which completes the proof.

A system of electric charges has a charge density  and produces an electrostatic field  at points
 in space. Gauss’ Law states that

for any closed surface  which encloses the charges,  with  being the solid region enclosed by .  Show that
. This is one of Maxwell’s Equations.

Solution

By the Divergence Theorem, we have

Often (especially in physics) it is convenient to use other coordinate systems when dealing with quantities such as the
gradient,  divergence,  curl  and  Laplacian.  We  will  present  the  formulas  for  these  in  cylindrical  and  spherical
coordinates.

Recall  from  Section  1.7  that  a  point   can  be  represented  in  cylindrical  coordinates
 At  each  point

(∇ × f) ⋅ dσ∬
Σ

= ∇ ⋅ (∇ × f) dV  (by the Divergence Theorem)∭
S

= 0 dV  (by Theorem 4.17)∭
S

= 0

(4.6.6)

(4.6.7)

(4.6.8)

(QED)

f(x, y, z) dσ = 0∬
Σ

Σ R3

f(x, y, z) = 0

f(x, y, z) R3 C

R3 Σ C Σ C ∇f

(∇ × (∇f)) ⋅ n dσ∬
Σ

= ∇f ⋅ dr by Stokes’ Theorem, so∮
C

= 0 by Corollary 4.13.

Σ (∇ × (∇f)) ⋅ n = 0 R3

∇ × (∇f) = 0 R3

Example 4.18

ρ(x, y, z) E(x, y, z)
(x, y, z)

E ⋅ dσ = 4π ρ dV∬
Σ

∭
S

Σ S Σ
∇ ⋅ E = 4πρ

∇ ⋅ EdV∭
S

(∇ ⋅ E − 4πρ) dV∭
S

∇ ⋅ E − 4πρ

∇ ⋅ E

= E ⋅ dσ∬
Σ

= 4π ρ dV  by Gauss’ Law, so combining the integrals gives∭
S

= 0 , so

= 0 since Σ and hence S was arbitrary, so

= 4πρ.

(x, y, z)
(r, θ, z),  where x = r cos θ, y = r sin θ, z = z.
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 respectively  (see  Figure  4.6.1).  Then
 form an orthonormal set of vectors. Note, by the right-hand rule, that 

Figure 4.6.1 Orthonormal vectors  in cylindrical coordinates (left) and spherical coordinates (right).

Similarly,  a  point   can  be  represented  in  spherical  coordinates  ,  where
 At each point , let  be unit vectors in the direction of

increasing , respectively (see Figure 4.6.2). Then the vectors  are orthonormal. By the right-hand rule, we
see that .

We can now summarize the expressions for the gradient, divergence, curl and Laplacian in Cartesian, cylindrical and
spherical coordinates in the following tables:

: Scalar function ; Vector field 

• gradient : 

• divergence : 

• curl : 

• Laplacian : 

: Scalar function ; Vector field 

• gradient : 

• divergence : 

(r, θ, z),  let  , ,  be unit vectors in the direction of increasing r, θ, z,er eθ ez

, ,er eθ ez × = .ez er eθ

, ,er eθ ez

(x, y, z) (ρ, θ, φ)
x = ρ sin φ cos θ, y = ρ sin φ sin θ, z = ρ cos φ. (ρ, θ, φ) , ,eρ eθ eφ

ρ, θ, φ , ,eρ eθ eφ

× =eθ eρ eφ
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• curl : 

• Laplacian : 

: Scalar function ; Vector field 

• gradient : 

• divergence : 

• curl : 

• Laplacian : 

The derivation of the above formulas for cylindrical and spherical coordinates is straightforward but extremely tedious.
The basic idea is to take the Cartesian equivalent of the quantity in question and to substitute into that formula using
the appropriate coordinate transformation. As an example, we will derive the formula for the gradient in spherical
coordinates.

Goal: Show that the gradient of a real-valued function  in spherical coordinates is:

Idea: In the Cartesian gradient formula , put the Cartesian basis vectors i, j, k  in

terms of the spherical coordinate basis vectors  and functions of . Then put the partial derivatives

 in terms of  and functions of .

Step 1: Get formulas for  in terms of i, j, k.

We  can  see  from  Figure  4.6.2  that  the  unit  vector   in  the   direction  at  a  general  point   is

 is the position vector of the point in Cartesian coordinates. Thus,

so using , we get:

Now, since the angle  is measured in the -plane, then the unit vector  direction must be parallel to the
-plane.  That  is,  .  To  figure  out  what   are,  note  that  since  ,  then  in

particular  when -plane. That occurs when the angle . Putting  into the formula
for , and we see that a vector perpendicular to that is . Since this
vector is also a unit vector and points in the (positive)  direction, it must be :

Lastly, since  we get:

Step 2: Use the three formulas from Step 1 to solve for i, j, k in terms of .

This comes down to solving a system of three equations in three unknowns. There are many ways of doing this, but we

∇ × f = ( − ) + ( − ) + ( (r ) − )1
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(ρ, θ, φ) F f = + +fρeρ fθeθ fφeφ
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1
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∇ ⋅ f = ( ) + sin φ + (sin φ )
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∂
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∂
∂ρ

fφ

∂fρ

∂φ
eθ

1
ρ sin φ

∂fρ

∂θ

1
ρ

∂
∂ρ

fθ eφ
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∂
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∂
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1
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∇F(x, y, z) = i + j + k
∂F
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, ,eρ eθ eφ ρ, θ and φ
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∂x

∂F
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∂z
, ,

∂F

∂ρ

∂F

∂θ

∂F

∂φ
ρ, θ and φ

, ,eρ eθ eφ

eρ ρ (ρ, θ, φ)

= ,  where r = xi + yj + zkeρ
r

∥r∥

= = ,eρ
r

∥r∥
xi + yj + zk

+ +x2 y2 z2− −−−−−−−−−√

x = ρ sin φ cos θ, y = ρ sin φ sin θ, z = ρ cos φ,  and ρ = + +x2 y2 z2− −−−−−−−−−√

= sin φ cos θi + sin φ sin θj + cos φkeρ

θ xy  in the θeθ

xy  is of the form ai + bj + 0keθ a and b ⊥eθ eρ

⊥eθ eρ  is in the xyeρ φ is π/2 φ = π/2
 gives  = cos θi + sin θj + 0keρ eρ − sin θi + cos θj + 0k

θ eθ

= − sin θi + cos θj + 0keθ

= × ,eφ eθ eρ

= cos φ cos θi + cos φ sin θj − sin φkeφ

, ,eρ eθ eφ
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will do it by combining the formulas for , which will give us an equation involving just i and j.
This, with the formula for , will then leave us with a system of two equations in two unknowns (i and j), which we
will use to solve first for j then for i. Lastly, we will solve for k.

First, note that

so that

and so:

Likewise, we see that

and so:

Lastly, we see that:

Step 3: Get formulas for .

By the Chain Rule, we have

which yields:

Step 4: Use the three formulas from Step 3 to solve for  in terms of .

Again, this involves solving a system of three equations in three unknowns. Using a similar process of elimination as in
Step 2, we get:

 and   to eliminate keρ eφ

eθ

sin φ + cos φ = cos θi + sin θjeρ eφ

sin θ(sin φ + cos φ ) + cos θ = ( θ + θ)j = j,eρ eφ eθ sin2 cos2

j = sin φ sin θ + cos θ + cos φ sin θeρ eθ eφ

cos θ(sin φ + cos φ ) − sin θ = ( θ + θ)i = i,eρ eφ eθ cos2 sin2

i = sin φ cos θ − sin θ + cos φ cos θeρ eθ eφ

k = cos φ − sin φeρ eφ

, ,  in terms of  , ,
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∂x
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∂z
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= sin φ cos θ + sin φ sin θ + cos φ
∂F

∂x
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∂y

∂F
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= −ρ sin φ sin θ + ρ sin φ cos θ
∂F

∂x
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= ρ cos φ cos θ + ρ cos φ sin θ − ρ sin φ
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(4.6.9)

, ,
∂F
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∂F
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∂F

∂z
, ,

∂F

∂ρ

∂F

∂θ

∂F

∂φ

∂F

∂x

∂F

∂y

∂F

∂z

= (ρ φ cos θ − sin θ + sin φ cos φ cos θ )1
ρ sin φ

sin2 ∂F

∂ρ

∂F

∂θ

∂F

∂φ

= (ρ φ sin θ + cos θ + sin φ cos φ sin θ )1
ρ sin φ

sin2 ∂F

∂ρ

∂F

∂θ

∂F

∂φ

= (ρ cos φ − sin φ )1
ρ

∂F

∂ρ

∂F

∂φ

(4.6.10)
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Step 5: Substitute the formulas for i, j, k from Step 2 and the formulas for  from Step 4 into the Cartesian

gradient formula .

Doing  this  last  step  is  perhaps  the  most  tedious,  since  it  involves  simplifying   terms!
Namely,

which  we  see  has  8  terms  involving  ,  6  terms  involving  ,  and  8  terms  involving  .  But  the  algebra  is
straightforward and yields the desired result:

In  Example  4.17  we  showed  that   in  Cartesian
coordinates. Verify that we get the same answers if we switch to spherical coordinates.

Solution

Since   (so  that   ).  The
gradient of  in spherical coordinates is
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∇F(x, y, z) = i + j + k
∂F
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∂F

∂y

∂F

∂z

3 × 3 + 3 × 3 + 2 × 2 = 22

∇F = (ρ φ cos θ − sin θ + sin φ cos φ cos θ ) (sin φ cos θ − sin θ + cos φ cos θ )
1

ρ sin φ
sin2 ∂F

∂ρ

∂F

∂θ

∂F

∂φ
eρ eθ eφ

+ (ρ φ sin θ + cos θ + sin φ cos φ sin θ ) (sin φ sin θ + cos θ + cos φ sin θ )
1

ρ sin φ
sin2 ∂F

∂ρ

∂F

∂θ

∂F

∂φ
eρ eθ eφ

+ (ρ cos φ − sin φ ) (cos φ − sin φ ),
1
ρ

∂F

∂ρ

∂F

∂φ
eρ eφ

eρ eθ eφ

∇F = + + ✓∂F

∂ρ
eρ

1
ρ sin φ

∂F

∂θ
eθ

1
ρ

∂F

∂φ
eφ (4.6.11)

Example 4.19

∇∥r = 2r and  Δ ∥r = 6,  where r(x, y, z) = xi + yj + zk∥2 ∥2

∥r = + + =  in spherical coordinates, let F(ρ, θ, φ) =∥2 x2 y2 z2 ρ2 ρ2 F(ρ, θ, φ) = ∥r∥2

F

∇F

ΔF

= + +
∂F

∂ρ
eρ

1
ρ sin φ

∂F

∂θ
eθ

1
ρ

∂F

∂φ
eφ

= 2ρ + (0) + (0)eρ
1

ρ sin φ
eθ

1
ρ

eφ

= 2ρ = 2ρ ,  as we showed earlier, soeρ
r

∥r∥

= 2ρ = 2r,  as expected. And the Laplacian is
r
ρ

= ( ) + + (sin φ )1
ρ2

∂
∂ρ

ρ2 ∂F

∂ρ

1

φρ2 sin2

F∂2

∂θ2

1
sin φρ2

∂
∂φ

∂F

∂φ

= ( 2ρ) + (0) + (sin φ(0))
1
ρ2

∂
∂ρ

ρ2 1
sin φρ2

1
sin φρ2

∂
∂φ

= (2 ) + 0 + 0
1
ρ2

∂
∂ρ

ρ3

= (6 ) = 6,  as expected.
1
ρ2

ρ2
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