Worksheet $\mathrm{N}^{\circ} 0$

Exercise 1 Calculate the derivatives of the following univariate functions:

1. $f(x, y)=e^{x^{2}+y}, \quad g(x, y)=x^{2}+y^{2}, \quad h(x, y)=x^{y}$.
2. $\arcsin \left(\frac{x}{\sqrt{a}}\right), \quad \arccos \left(\frac{x}{\sqrt{a}}\right), \quad \arctan \left(\frac{x}{a}\right)$, with $a>0$.

Exercise 2 Let's consider the following functions:

$$
\begin{aligned}
& f_{1}(x)=\ln \left(\frac{\alpha x+\beta}{a x+b}\right) . \\
& f_{2}(x)=\frac{\alpha}{2 a} \ln \left(a x^{2}+b\right)+\frac{\beta}{\sqrt{a b}} \arctan \left(\sqrt{\frac{a}{b}} x\right), \text { with } a, b>0 . \\
& f_{3}(x)=\frac{\alpha}{\sqrt{a}} \arcsin \left(\sqrt{\frac{a}{b}} x\right)-\frac{\beta}{a} \sqrt{b-a x^{2}}, \text { with } a, b>0 . \\
& f_{4}(x)=\sum_{k=0}^{q} \frac{(-1)^{k} C_{q}^{k}}{(n+2 k+1)} \cos (x)^{n+2 k+1}, \quad \quad \text { with } n, k, q \in \mathbb{N} \text { and } C_{q}^{k}=\frac{q!}{(q-k)!k!} .
\end{aligned}
$$

1. Give the derivatives of the functions f_{1}, f_{2} and f_{3} in their simplified form.
2. Check that f_{4}^{\prime} can be expressed as a product of $\cos ^{n}$ and $\sin ^{m}$ (n and m are two natural numbers).
3. Check that the proposition of the second question remains true when we replace \cos with sin in the expression of f_{4}.

Exercise 3 Considering the polynomial $P_{2}(x)=x^{2}+a x+b$, with $a, b \in \mathbb{R}$. Show that:

1. If $a^{2}-4 b \geq 0$ then $P_{2}(x)$ can be rewritten $P_{2}(x)=(x+A)^{2}-B^{2}$.
2. If $a^{2}-4 b<0$ then $P_{2}(x)$ can be rewritten $P_{2}(x)=(x+A)^{2}+B^{2}$.

Exercise 4 Determine the expression of the function f that must be differentiated to obtain the following:

$$
\begin{array}{ll}
f^{\prime}(x)=\cos (x), & f^{\prime}(x)=x+2 x^{\sqrt{2}}+1, \\
f^{\prime}(x)=\frac{x+1}{\sqrt{1-x^{2}}}, & f^{\prime}(x)=e^{\frac{x}{2}}+1
\end{array}
$$

