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Exercise 1 (./06.50 pts) Consider the recursive sequence (un)n∈N defined by{
u0 =

√
2

un+1 =
√

2 + un, n ∈ N.
1. Show that for all n ∈ N, we have un ≤ 2.

2. Check that (un)n∈N is a bounded sequence (upper and lower bounded).

3. Analyze the sign of u2n+1 − u2n according to n, then deduce that un is a monotonic sequence.

4. Check that (un)n∈N is a convergent sequence; then calculate its limit.

Exercise 2 (./09.00 pts) Considering the real function f defined by

f(x) =


sin(ax)

x
, if x < 0;

1, if x = 0;
ebx − x, if x > 0,

with a and b are two real numbers.

1. Determine the values of a and b for which f is continuous and differentiable at x = 0.

2. Check that, if a = b = 1 then

(a) the function f admits at least one extremum in the interval ]− 2π;−π[

(b) there exists at least one point of intersection of the graph of f with the line y = 2x, in
the interval ]0; 1[.

Exercise 3 (./04.50 pts) Let f be the real function defined by:

f(x) = loga(x)(1 + sin(x)), with a(x) = 1− x.
1. Determine the domain of the function f .

2. Using the Maclaurin expansion, calculate lim
x→0

f(x), then check if f admits a removable discon-

tinuity at x = 0.

Note:

• loga(.) denotes the logarithmic function with base a.

• Maclaurin series of ex, ln(1 + x) and sin(x) are
ex = 1 + x

1!
+ x2

2!
+ x3

3!
+ x4

4!
+ ...

ln(1 + x) = x
1
− x2

2
+ x3

3
− x4

4
+ ...

sin(x) = x
1!

+ −x3
3!

+ x5

5!
+ ...

Good luck
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Solution of the Exercise 1

1. To show that ∀n ∈ N, we have un ≤ 2, we use the induction technique.

(a) For n = 0, we have u0 =
√

2 ≤ 2, so P (0) is true.

(b) Assume that P (n) is true i.e. un ≤ 2.

(c) P (n+ 1)? (un ≤ 2?)

From (1b) we have un ≤ 2 ⇔ un + 2 ≤ 2 + 2

⇔
√
un + 2 ≤

√
4

⇔ un+1 ≤ 2

⇔ P (n+ 1) is true.

Conclusion: From the results (1a)–(1c) we conclude that:

∀n ∈ N, we have un ≤ 2.

2. On the one hand, we have already shown, in the first question, that (un)n∈N is an upper-
bounded sequence. On the other hand, the expression of un clearly shows that ∀n ∈ N,
un ≥ 0 (as

√
x ≥ 0) (lower-bounded sequence). So,

∀n ∈ N, we have 0 ≤ un ≤ 2.

3. Let put P2(un) = u2n+1 − u2n = −u2n + un + 2

P2(un) = 0⇒ ∆ = 9⇒

{
u
(1)
n = −1−3

−2 = 2

u
(2)
n = −1+3

−2 = −1
⇒

un -1 0 2

P2(un) - 0 + + 0 -

As 0 ≤ un ≤ 2, then we conclude that

∀n ∈ N, P2(un) ≥ 0 ⇔ ∀n ∈ N, u2n+1 − u2n ≥ 0

⇔ ∀n ∈ N, u2n+1 ≥ u2n
⇔ ∀n ∈ N, un+1 ≥ un(because

√
. is an increasing function and un ≥ 0)

⇔ (un)n∈N is an increasing sequence for all n ie is a monotonic sequence.

4. From the above results we have

(a) (un)n∈N is a bounded sequence
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(b) (un)n∈N is a monotonic sequence

therefore, the sequence (un)n∈N is convergent. Assume that lim
n→∞

un = l, so lim
n→∞

un+1 = l.

lim
n→∞

un+1 = l⇒ l = lim
n→∞

√
2 + un ⇒ l =

√
2 + l⇒ l2 − l − 2 = 0

⇒
{
l1 = 2
l2 = −1 rejected, because un ≥ 0.

⇒ lim
n→∞

un = 2.

Solution of the Exercise 2 (./09.00 pts) Considering the real function f defined by

f(x) =


sin(ax)

x
, if x < 0;

1, if x = 0;
ebx − x, if x > 0,

with a and b are two real numbers.

1. Determine the values of a and b for which f is continuous and differentiable at x = 0.

(a) f is continuous at x = 0 ⇒ lim
x→0−

f(x) = lim
x→0+

f(x) = f(0) = 1


1 = lim

x→0−
f(x) = lim

x→0−

sin(ax)
x

= lim
x→0−

a sin(ax)
ax

= a

1 = lim
x→0+

f(x) = lim
x→0+

ebx − x = 1 (b 6= 0)

So, f is continuous at x = 0 if a = 1 and b ∈ R∗.

(b) f is differentiable at x = 0 ⇒

{
1)f is continuous at x = 0⇒ a = 1 and b ∈ R∗

2) lim
x→0+

f(x)−f(0)
x−0 = lim

x→0−

f(x)−f(0)
x−0 = l, l ∈ R


lim
x→0−

f(x)−f(0)
x−0 = lim

x→0−

sin(x)−x
x2

= lim
x→0−

x−x3

3!
−x

x2
= lim

x→0−

−x
3!

= 0

lim
x→0+

f(x)−f(0)
x−0 = lim

x→0+

ebx−x−1
x

= lim
x→0+

1+(bx)+
(bx)2

2!
−x−1

x
= lim

x→0+

(bx)+
(bx)2

2!
−x

x
= b− 1⇒ b = 1

So, f is differentiable at x = 0 if a = 1 and b = 1.

2. For x ∈]− 2π,−π[ ⇒ f(x) = sin(x)
x

. We note that

X f(−2π) = f(−π) = 0,

X f is continuous on [−2π,−π]

X f is differentiable on ]− 2π,−π[,

so, based on the Roll theorem we deduce that ∃c ∈] − 2π,−π[ such that f ′(c) = 0 (c is an
extremum).
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3. To answer this question we use the intermediate value theorem. For this, let’s define the new
function g on ]0,1[ as follows:

g(x) = f(x)− 2x = ex − 3x.

We note that,

(a) g is continuous on ]0,1[,

(b)


g(0) = 1

g(1) = e1 − 3.
⇒ g(0)g(1) < 0

From (3a) and (3b) we conclude that
∃c ∈]0, 1[ such that g(c) = 0 ⇒ ∃c ∈]0, 1[ such that f(c) − 2c = 0 hence, ∃c ∈]0, 1[ such that
f(c) = 2c.

Exercise 4 (./04.50 pts) Note that the function f can be rewritten as follow:

f(x) =
ln(1 + sin(x))

ln(1− x)
.

1. Df = {x ∈ R, 1 + sin(x) > 0 and 1− x > 0 and 1− x 6= 1}
1 + sin(x) > 0⇒ sin(x) > −1
1− x > 0⇒ x < 1
1− x 6= 1⇒ x 6= 0

⇒


x ∈ D1 = R/{−π

2
+ 2kπ, k ∈ Z}

x ∈ D2 =]−∞, 1[
x ∈ D3 = R∗

hence Df = D1 ∩D2 ∩D3 =]−∞, 0[∪]0, 1[/{−π
2
− 2kπ, k ∈ N}.

2. ln(1 + sin(x)) = (x− x3/3 + ...)− (x− x3/3 + ...)2/2 + (x− x3/3 + ...)3/3− ....
ln(1− x) = −x+ x2/2− x3/3 + ....

lim
x→0

ln(1 + sin(x))

ln(1− x)
= lim

x→0

(x− x3/3 + ...)− (x− x3/3 + ...)2/2 + (x− x3/3 + ...)3/3− ....
−x+ x2/2− x3/3 + ....

= −1

3. As f is not defined at x = 0 and lim
x→0−

f(x) = lim
x→0+

f(x) we conclude that we can remove the

discontinuity of f at 0. Hence,

f̃(x) =

{
f(x), if x ∈ Df ;
−1, if x = 0.
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