Université Mohamed Khider de Biskra.

Faculté des Sciences Exactes et de la Vie

Département : Biologie Module : Analyse des Données.

Année Univ: 2022-2023 **Prof Chala Adel**

03^{eme}année LMD Biologie (BV+BA+Bioch+MicroBio).

Examen N°:01

Exercice No :01

On a étudié sur deux échantillons provenant de deux populations différentes la répartition des trois groupes sanguins : A, B, AB. Les résultats obtenus sont reportés dans un tableau dit tableau de contingence, à deux lignes et trois colonnes:

Groupes sanguins	A	В	AB	Total
Échantillons				
Echantillon I	120	79	33	232
Echantillon II	95	121	30	246

- 1) Déterminer les variables étudiés, et préciser ses natures, et aussi ses modalités.
- 2) Calculer l'effectif théorique pour chaque échantillon. (C₁₁, C₁₂, C₁₃, C₂₁, C₂₂, C₂₃).
- 3) Déterminer l'hypothèse nulle et hypothèse alternative.
- 4) Calculer la statistique de contingence χ_{obs}^2 .
- 5) Avec le taux de confiance 95%, tester si l'échantillon a un effet sur les groupes sanguins.

Exercice No :02

Afin de contrôler un lot de fabrication d'un médicament divisé en sachets, on a prélevé un échantillon aléatoire de 12 sachets que l'on a pesés, les résultats des poids sont donnés dans le tableau suivant :

1,02 g	1,12 g	0, 97g	1,01 g	1,25 g	1, 43 g
1,33 g	1,11 g	0,90 g	1,22 g	1,09 g	1,50 g

- 1) Calculer le moyen et écart type pour cet échantillon.
- 2) Comparer, au risque de 5 % la masse moyenne du lot à la valeur donnée par la norme de fabrication : 1, 20 gramme.

Exercice No :03

Pour mettre en évidence l'effet éventuel de l'absorption d'un médicament sur le rythme cardiaque, on forme deux groupes, de 22 sujets au total, par tirage au sort parmi les malades traités par deux médicaments différents:

Au premier groupe, on administre le médicament AX. Au deuxième groupe on administre le médicament BTX, les données d'observations sont trouvées dans la table (Tab 1).

On veut faire une comparaison entre les deux types de médicaments et ses influences sur le rythme cardiaque des malades, pour cela une étude intermédiaire veut réaliser avant de faire cette comparaison. Alors, on introduit ces données dans Logiciel SPSS 22, les résultats s'affichent dans les tableaux (Tab 2, Tab 3, Tab4):

rythme cardiaque du groupe 1 traité par le médicament AX	170	175	187	180	190	165	175	174	173	181		
(Battements par minute)												
rythme cardiaque du groupe 2 traité par le médicament BTX (Battements par minute)	155	160	164	150	160	159	154	156	160	167	153	158

Tab 1

Tests de normalité									
	Echantillon Kolmogorov-Smirnov ^a Shapiro-Wilk						Vilk		
		Statistique	Ddl	Signification	Statistique	ddl	Signification		
	AX	,204	10	,200 [*]	,964	10	,828,		
rythme card	втх	,170	12	,200*	,977	12	,969		

Tab 2

Test d'homogénéité de la variance							
Statistique de ddl1 ddl2 Signification Levene							
	Basé sur la moyenne	2,408	1	20	,136		
rythme card	Basé sur la médiane	1,213	1	20	,284		

Tab 3

		Т	Ddl	Sig.	Intervalle de confiance 95% de la	
				(bilatérale)	différence	
	_				Inférieure	Supérieure
	Hypothèse de variances	7 161	20	000	12 46524	24 52460
	égales	7,161	20	,000	13,46531	24,53469
rythme card	Hypothèse de variances	6 967	44-40		40,00044	04.04000
	inégales	6,867	14,546	,000	13,08611	24,91389

Tab 4

- 1) Etudier la validation du test de Student.
- 2) Etudier l'homogénéité entre les deux types de traitements (AX vs BTX).
- 3) Quelle est le traitement qui donne une rythme cardiaque plus battements par minute ? pourquoi ?

Indication:

$T_{25}^{0,05} = 2,060$	$T_{11}^{0,05} = 2,201$	$\chi_2^{0.05} = 5.99$	$\chi_3^{0,05} = 7.81$
$T_{15}^{0,05} = 2,131$	$T_{27}^{0,05} = 2,052$	$\chi_{10}^{0.05} = 18.31$	$\chi_4^{0,05} = 9,49$

Correction

Exercice No :01 (6,75 points)

1) Les variables étudiés, et préciser ses natures, et aussi ses modalités.

Variable qualitative 1 c'est Groupes Sanguins, ses modalités sont (A,B, AB). (0,5 point)

Variable qualitative 2 c'est Echantillons, ses modalités sont (Echantillons 1 et Echantillon 2). (0,5 point)

2) Calculer l'effectif théorique pour chaque échantillon. (C₁₁, C₁₂, C₁₃, C₂₁, C₂₂, C₂₃).

	A	В	AB	Total	
Echantillon 1	$O_{11}=120$	$O_{12} = 79$	$O_{13} = 33$	232	
	$C_{11}=104,168$	$C_{12} = 96,976$	$C_{13} = 30,392$		0,75 point
Echantillon 2	$O_{21} = 95$	$O_{22} = 121$	$O_{23} = 30$	246	
	$C_{21}=110,454$	$C_{22}=102,828$	C_{23} = 32,226		0,75 point
Total	215	200	63	478	
	0,449	0,418	0,131		0,75 point

3) Déterminer l'hypothèse nulle et hypothèse alternative.

Hypothèse nulle : (Il n'y a pas une différence significative entre l'effectifs observes et l'effectifs théoriques).

: (Il y a Independence entre échantillon et les groupes sanguins). (0, 5 point)

Hypothèse alternative : (Il y a une différence significative entre l'effectifs observes et l'effectifs théoriques)

: (Il y a une liaison entre échantillon et les groupes sanguins). (0, 5 point)

4) Calculer la statistique de contingence χ_{obs}^2 .

$$\chi_{obs}^{2} = \sum_{i=1}^{2} \sum_{j=1}^{3} \frac{\left(O_{ij} - C_{ij}\right)^{2}}{C_{ij}} (0,75 \text{ point})$$

$$= \frac{(120 - 104,168)^{2}}{104,168} + \frac{(79 - 96,976)^{2}}{96,976} + \frac{(33 - 30,392)^{2}}{30,392} + \frac{(95 - 110,454)^{2}}{110,454} + \frac{(121 - 102,828)^{2}}{102,828} + \frac{(30 - 32,226)^{2}}{32,226} = 11,489. (0,75 \text{ point})$$

 $\chi^2_{(k-1)(l-1)} = \chi^2_{(2-1)(3-1)} = \chi^2_2 = 5,99. (0, 5 \text{ point})$

5) Alors on accepte H₁, Il y a une différence significative entre l'effectifs observes et l'effectifs théoriques (0, 5 point)

Avec le taux de confiance 95%, l'échantillon a un effet sur les groupes sanguins.

Exercice N°:02 (07 points)

1) Calculer le moyen et écart type pour cet échantillon.

 $\bar{x} = 1,162$, (01,5 point) et écart type $\sigma_{n-1} = 0,186$. (01,5 point)

2) Comparer, au risque de 5 % la masse moyenne du lot à la valeur donnée par la norme de fabrication : 1, 20 gramme.

Hypothèse nulle : (Il n'y a pas une différence significative entre le moyen observe et le moyen théoriques).

: (Il y a coïncidence entre moyen observe et le moyen théoriques). (0, 5 point)

Hypothèse alternative : Il y a une différence significative entre le moyen observe et le moyen théoriques).

: (Il n'y a pas coïncidence entre moyen observe et le moyen théoriques). (0, 5 point)

$$T_{obs}(01 \text{ point}) = \frac{|\bar{x} - m|}{\frac{\sigma_{n-1}}{\sqrt{n-1}}} = \frac{|1,162 - 1,20|}{\frac{0,186}{\sqrt{12-1}}} = 0,696. (01 \text{ point})$$

 $T_{n-1} = T_{12-1} = T_{11} = 2,201.$ (0, 5 point)

Alors $T_{obs} < T_{n-1}$.On accepte H_0 , Il n'y a pas une différence significative entre le moyen observe et le moyen théoriques. (0, 5 point)

Exercice Nº:03 (06 points)

- 1) Etudier la validation du test de Student.
- a) Une seule variable qualitative « Type de médicament » dont deux modalités (AX, et BTX).

Une seule variable quantitative « Rythme cardiaque» dont 22 modalités. (0, 5 point)

b) Distribution est Gaussienne:

Hypothèse nulle : (La Distribution est Gaussienne).

Hypothèse alternative : (La Distribution n'est pas Gaussienne). (0, 5 point)

Comme n1=10<30 et n2=12<30, pour cela on utilise test de Shapiro Wilk. (0, 5 point)

Sig1=0,828>0,05 alors échantillon 1 est bien une gaussienne. (0, 5 point)

Sig2=0,969>0,05 alors échantillon 2 est bien une gaussienne. (0, 5 point)

c) Distribution est de variation homogène :

Hypothèse nulle : (La Distribution est de variation homogène).

Hypothèse alternative : (La Distribution n'est pas de variation homogène). (0, 5 point)

Sig=0,136>0,05 alors les deux échantillons sont bien de variation homogène. (0, 5 point)

- d) Le tirage est au hasard. (0, 5 point)
- 2) Etudier l'homogénéité entre les deux types de traitements (AX vs BTX).

Proposition d'hypothèses:

Hypothèse nulle : (Il n'y a pas une différence significative entre les deux moyens de traitement AX et BTX).

: (Il y a homogénéité entre les deux type de traitement).

Hypothèse alternative : (Il y a une différence significative entre les deux moyens de traitement AX et BTX).

: (Il n'y a pas homogénéité entre les deux type de traitement). (0, 5 point)

Calcule

Sig=0,000<0,05; (0, 5 point)

Conclusion:

Alors on accepte H1, donc Il y a une différence significative entre les deux moyens de traitement AX et BTX. (0, 5 point)

3) Quelle est le traitement qui donne une rythme cardiaque plus battements par minute ? pourquoi ?

On remarque que D= $\overline{x_{AX}} - \overline{x_{BTX}} \in [a, b]$. *Mais D* > 0, *alors* $\overline{x_{AX}} - \overline{x_{BTX}} > 0$, *alors* $\overline{x_{AX}} > 0$

 $\overline{x_{BTX}}$, alors Le traitement AX a un effet plus fort sur le rythme cardique. (0, 5 point)