Chapter 5 : Algorithmic

introduction

All program is a (very long) sequence of binary digits (either 0 or 1).
The first programs were written using this language (machine language).
These programs are therefore difficult to write and read as well as to maintain.
This is why another language intended for human beings was defined (it is assembly
language) and the program responsible for translating into machine language is called
“assembler”.
The goal of assembly language is to move away from machine details.
Unfortunately, the objective was not achieved.
It is for this reason that other languages closer to the human mind called “high-level
languages” have been proposed (such as Pascal, C, Fortran, etc.).

The program responsible for translating into machine language is called "compiler”
and the translation operation is called "compilation”.

The output of a compiler is either the equivalent program in machine language or
any existing errors in the source program text.
We can say that the compiler defines for the programmer as a virtual machine which
understands the high level language associated with this compiler.
Notice : knowing a programming language is not enough to write programs.
Generally, we must go through a step called an algorithmic step to determine all the
operations necessary to solve the given problem.
These operations must be coded using a machine-independent language; this language
is called algorithmic language and the generated text is called algorithm .
An algorithm is divided into 2 parts:
The header.

The body.

Program development cycle:
The development cycle of a “computer program (or application)” can be

summarized as follows :

Probléme —:l/
Analyse ‘\](
Algorithme —1/

Programme —](
Compilation —:l/

Exécution

Temps >

L1 50 L) Al QB LY e (s Jasha) daded e ke el)

Leiilaa XS Lol B 5l el yall 028 A4S daga Caneay Lao (AIY) 4a) Aall) o2a aladinly (oY) el) AUS o

7 el AV AAD) des) e g peall el a5 (genill A3] 8 5) D Auaiadia (5 AT dad iy pad a1 13l
A Jaaldi e i) g aaaaill 431 (e Caagl)

ccaagl) @aah ol ¢ AV AR il 5 e el Aal daa) Cuy Jaall ¢ gl

(e JEWL Jie) " sl dglle LI e g i) Jaadl A) il oAl clad 2158 &5) 13
“@Aﬂ\"f«&)ﬂh_}h‘:GAMEJ“PM\"I\N\M‘A\X&)A\&JJM\ GAL\‘).\S\MLA‘).\L} cu\)ﬁ‘)}ﬁj

daal) malijll pai 53 5 ga eladld (gl o AV AR 3 (Al el L) aa yiall s i) S
il gy Aai pal) (5 sinsall Aulle AR pgiy o) 531 Slen 4y e el Ciyad pa il of sl LSy
el o) AU A AS il A) 31 A8 jaa ; Adaa3la
Gl 5301 ansi 55kl o3 Ll e Jad Canlial) ppenaill 5f 5 Sl alag) Als ey e o con
Aga ol) Gl ey s e) oA Aad Axlll o2 andh ¢ AV o Aliie A2]
080) A i) Al s
o
)
An algorithm is a language designed to solve a problem in an automated manner
intended for humans, not computers.

The goal of this language is to allow programmers to write the solution principle for
a specific problem in the form of a sequence of instructions (commands) that will be
executed by the machine after translating it into a programming language.

ismalll 3 3eaY Gl 5l dea 0 4 A8y play JSEe s ppanail A3 o8 dia) 531

Claglatll (o Jubest JS5 (8 digea A3 Jal) Tase LUK (e yaall Zland) sa 22l o3 (e Caagl)
Asan dad) Lgan i aay ATV Ao g0 La i s AN (el Y1)

. instruction: in algorithmic language and almost all programming languages there are
only 3 types of instructions:
input instruction (read)
assignment instruction (assignment)
output instruction (write)
2 24l g (e Jadh £ il 3 2 gy U A0 A) i) paan (g Aa) g0 dadll B sclagladll]
(read) JAay) claglssi o
() Ly Cilaghai
(Write) g1AY) laglai e

We can schematize any automatic processing of information as follows:

Transformations
input —> N outpu_t
Informations —> _— Informations
(résult)

a) input instruction (Input)
In algorithmic language, any information input operation for processing is simply
modeled by: Read (information);
More precisely, the input instruction is given syntactically by
Read (parameter list)
(Jaayl) Juasy) Claglss (1
(Dla slae) 3ol 4 1 DA e Aalisy Aallaall il slaa L) dilae (sl ananal oy ¢dga) sad) 2l
Read (parameter list) <Y ddaul s (5 sa Sy JAY) Glagledi el) aty o3l iy
Example :
Read (x); parameters 1: x
Read (x,y,z); we have 3 parameters: X,y and z

RQ : type of each parameter is necessarily a variable.

b) assignment statement
Role: assign a value to a variable
Syntax: variable «—“Expression” X
Example :

Xe«—D5;
X <—5x+1;

Semantics:
Evaluate the expression to the right of the assignment operator; then put the result of
the evaluation in the variable located to the left of the assignment operator.
b sy e agmsall i) 8 dagill w5 Sl el Cpay e 33 g sall Al)l 8 jlal) s
Ay
Exercise: Let there be 2 variables x and y which contain the values X, and Yy
respectively
Write a sequence of instructions that allows you to permute the 2 values.
s e Y05 X0 Gl (Ao Jlasing y s X (i @llia (Sl 1 A
Oftadll Jaadiy Al st Al Cilaglail) (e Al S
Answer
Let A be a variable of type x or y:
A<—X;
X<—;
y<—A;

c) output instruction (Write)
For reasons of simplicity, the Output Operations are written algorithmically as:
Write ("parameter lists");

1)

Example: Write ("hello");
Write ("the content of x is ", X);

RQ:

Any variable used must be declared before the body of the algorithm.
2) Declaration:

Really, we must declare in the declaration part, any object to be used in the body of
the algorithm.

Variable declaration
Variables are declared using the VVar keyword
Any variable must be declared with its type

Example: Var x, y: integer;

RQ: the type of a variable allows you to know the possible values of this variable as
well as the operations applicable to this variable.

Predefined types (simple type) known by the
Language <C
Data type ompound type (programmer defined)

Simple types: we have the following types:
int (int in c), real (float), character (char) and boolean (int 1 or 0)
;_Lﬁl.*u.«aﬂ\g
A Al a8 Asladil wis IS gl e lay peall ¢ b Olad O g

BETIPING
Var daatidall LS aladiuly &) juaiall ge (SleY) o4
4o 5 g e gl e (e Y
;var x, y: integer :Jts
il 138 e didaall cillea) GllXS 5 priall 13¢) dlainall ail) 48 jee oll miy uiall ¢ 53
1) ikl s ¢(char) <aall «(float) sl ¢ (integer) gmasall AU)) Lal ddana) 5\9‘23
(0
Algorithmic Constructions:

Conditional Constructions:

This construct has the following syntax:

Set of instructions 1 /* start of program */
If (condition) then
Instruction Set 2
end if
Set of instructions 3 /* continuation of the program */

if the condition is true, then we execute the Instruction Set 2

This means that instruction set 2 will be executed only if the condition is met.

No (false) yes (true)

Action

Example : \1,
Write an algorithm that allows reading 2 integer values and displays the max value?

Algorithm Max
Var Xx,y: integer;

If (x >y) then
write (X);
End if

If (x <y) then
write (y);
End if

END

2) Alternative Conditional Constructions:
Syntax:

If (condition) then
| Action 1;
Else
Action 2;
End if
Algorithm Max

Var X,y : integer;

Read (x,y) ;
If (x >y) then

write (X);
else

write (y);
End if

END

If (condition) is true then we execute action 1 otherwise (if condition is false) we
execute action 2.

Organizational chart:

No (false) Yes (true)

Action 2

Action 1

Example
write an algorithm that allows you to solve a first degree equation (ax+b =0)
(ax+b =0) ¥ Aol e Aobae Jag el rans dpa) 53]

Algorithm Eq 1

Var a, b: real;
Begin

Read (a ,b) ;
If (a = 0) then
If (b #0) then

write (" impossible™) ;

else

|Write (“ infinite solution™);
End if
else
X «— -b/a;
to write (X);
End if
END

3) Selection constructs (choice):

In the case where the number of tests on the value of a variable is quite high
(usually more than three) and in order to avoid writing several if-then else blocks,
it is possible to use the select-case statement. Here is its general form:

dal ey (A e ST sale) 12a o ja puiiall dad e il HLid¥) axe Led o oS 0 A 8
alad) LIS Lia g ¢ Al jlaal el alasiind) (Sadll (e ¢ jf-then else i sac AU cains

Select case (variable_name)

case (expl) :

// block of instructions to execute if the variable has the value of exp 1
case (exp 2) :

// block of instructions to execute if the variable has the value of exp 2

case (expn) :

// block of instructions to execute if the variable has the value of exp n
case default

// block of instructions to execute if the variable has a value different from
values expl,...,expn.

end select

