Tutorial $\mathbf{N}^{\circ} 1$: Vector Calculus 2023/2024

Exercise 1.1

Determine the dimensions of constants v_{0} and k in the following equation.
$v=k t+v_{0}$

Exercise 1.2

\vec{A}, \vec{B} and \vec{C} are vectors as shown in the figure. Find the expression of the vector \vec{C} ?

Exercise 1.3

Write the given vector by using the standard basis vectors for R^{2} and R^{3}.
$(2,4)$
$(9,-6)$
$(3,2,-4)$
$(-1,2,5)$
$(2,4,0)$

Exercise 1.4

1/ Write the given vector without using the standard basis notation.

$$
\begin{aligned}
& \vec{V}_{1}=\vec{i}+\vec{j}-3 \vec{k} \\
& \vec{V}_{2}=\vec{i}-2 \vec{j}+2 \vec{k} \\
& \vec{V}_{3}=-\vec{i}+\vec{j}+3 \vec{k}
\end{aligned}
$$

Exercise 1.5

Calculate the scale product of the following two vectors, and then find the angle between them.
$\vec{V}_{1}=2 \vec{i}-3 \vec{j}+4 \vec{k} \quad$ and $\quad \vec{V}_{2}=-2 \vec{i}+3 \vec{j}+2 \vec{k}$

Exercise 1.6

\vec{A} and \vec{B} are non zero vectors. If $\vec{A} \cdot \vec{B}=0$ Explain that?

Exercise 1.7

We have the following vectors:
$\vec{V}_{1}=3 \vec{i}-2 \vec{j}-4 \vec{k} \quad \vec{V}_{2}=-2 \vec{i}+2 \vec{j}+\vec{k}$
$\vec{V}_{3}=2 \vec{i}+3 \vec{j}-4 \vec{k}$
1/ Calculate the vector product. $\vec{V}_{1} \wedge \vec{V}_{2},\left|\vec{V}_{1} \wedge \vec{V}_{2}\right|$, What do you represent?
2/ Calculate the mixed product. $\left(\vec{V}_{1} \wedge \vec{V}_{2}\right) \cdot \vec{V}_{.3}$, What do you represent?

Exercise 1.8

We have the following two functions $f(x, y, z)=2 x y^{2} z \quad$ is a scalar function.
$\vec{V}(x, y, z)=2 x y \vec{i}-y z \vec{j}+3 x y \vec{k}$ is a vector function.
$1 /$ Find the gradient of the scalar function $f(x, y, z)$.
2/ Find the divergence of the vector function $\vec{V}(x, y, z)$.
3/ Find the rotation of the vector function $\vec{V}(x, y, z)$.

2/ Find: $\quad \vec{A}=-3 \vec{V}_{1} \quad \vec{A}=\vec{V}_{1}+\vec{V}_{2}$

$$
\vec{B}=\vec{V}_{1}-\vec{V}_{2} \quad \vec{D}=\frac{\vec{V}_{1}-\vec{V}_{3}}{\left|\vec{V}_{2}\right|}
$$

2/ Determine the unit vector of \vec{V}_{1}, \vec{V}_{2} and \vec{V}_{3}.

