University of Biskra Mathematics Department Module: Analysis 1

Exercise series N°2

Exercise 1 Let $z \in \mathbb{C}$, $x, y \in \mathbb{R}$, $r \in \mathbb{R}^*_+$, $\theta \in [0; 2\pi[$ and $i^2 = -1$.

1. Rewrite each z into polar form $(re^{i\theta})$.

a)
$$z = 6$$
, b) $z = 6i$, c) $z = 2 + 2i$, d) $z = -2 + 2i$, e) $z = 3 + \sqrt{3}i$.

2. Rewrite z from polar into x + iy form.

a)
$$z = 3e^{\frac{5\pi}{4}i}$$
, b) $z = 5e^{\frac{7\pi}{4}i}$, c) $z = re^{\frac{\pi}{12}i}$, d) $z = \sqrt{16e^{\frac{2\pi}{3}i}}$.

3. Compute the following, simplifying the results into x + iy form.

a)
$$z = (2+2i)^8$$
, b) $\sqrt{3} + \sqrt{3}i$.

4. Let $z = \sqrt{\frac{(1+i)}{\sqrt{2}}}$,

- (a) Compute z, and simplifying the results into x + iy form.
- (b) Deduce the values of $cos(\frac{\pi}{8})$ and $sin(\frac{\pi}{8})$

Exercise 2 Let $z, w \in \mathbb{C}$ and $i^2 = -1$.

1. Let z = 1 + i and $w = z^n$ with $n \in \mathbb{Z}$.

- (a) Determine the values of n for which w is a pure imaginary number (Re(w) = 0).
- (b) Determine the values of n for which w is a real number (Im(w) = 0).

2. Let $w = \frac{z-i}{z+1}$ with $z \neq -1$. Determine the set of points M with affix z of which

- (a) w is a pure imaginary number (Re(w) = 0).
- (b) w is a real number (Im(w) = 0).

Exercise 3 Let $z, z_0 = x_0 + y_0 \ i \in \mathbb{C}, r \in \mathbb{R}^*_+$ and $i^2 = -1$. Solve the following inequations.

- 1. $|z z_0| \le r$.
- 2. $|2z+i| \le |\overline{z}+1|$.
- 3. $\left|\frac{z-3}{z-5}\right| \le r$, with $z \ne 5$ (Left to the student).
- 4. $|2z + z_0| \le |\overline{z} + z_1|$, with $z_0, z_1 \in \mathbb{C}$ (Left to the student).

Exercise 4 Let $z \in \mathbb{C}$ and $i^2 = -1$. Solve the following equations

a)
$$5z + 2i = (i+1)z - 3$$
, b) $\frac{z-i}{z+1} = 4i$, c) $2z + i\overline{z} = 3$, d) $z^2 + z\overline{z} = 0$.

e) $z^2 + 2z + 2 = 0$, f) $-2z^2 + 6z - 5 = 0$, g) $2z^2 - z(1+5i) - 2(1-i) = 0$, h) $2z^2 - z(1+5i) - 2(1-i) = 0$.

Exercise 5 We consider the following polynomial $P(z) = z^3 + 9iz^2 + 2(6i - 11)z - 3(4i + 12)$, with $Z \in \mathbb{C}$.

- 1. Demonstrate that the equation P(z) = 0 admits a real solution z_1 .
- 2. Determine a polynomial Q(z) such that $P(z) = (z z_1)Q(z)$.
- 3. Solve the equation P(z) = 0 in \mathbb{C} .
- 4. Demonstrate that the points of the complex plane corresponding to the solutions of the equation P(z) = 0 are aligned.

Exercise 6 Let Z_n be a complex number defined by:

$$Z_n = \begin{cases} 8, & \text{if } n = 0; \\ \frac{1+i\sqrt{3}}{4}Z_{n-1}, & \text{else.} \end{cases}$$

and $(M_n)_{n \in \mathbb{N}}$ are the points of affix Z_n on the complex plane **P**.

- 1. Calculate z based on n.
- 2. For any natural number n, calculate the ratio

$$\frac{Z_n - Z_{n-1}}{Z_n}$$

3. We note $|Z_n| = r_n$, gives the limit of r_n when n tends towards infinity. What geometric interpretation can we give?

Exercise 7 (Left to the student).

1. Show that

$$\forall u, v \in \mathbb{C}: |u+v|^2 + |u-v|^2 = 2(|u|^2 + |v|^2)$$

2. Show that the following equivalence is false

for
$$u \in \mathbb{C}$$
 and $v \in \mathbb{C} : u = v \Leftrightarrow |u| = |w|$.

Exercise 8 We consider the following polynomial $P(z) = z^3 + 2(\sqrt{2} - 1)z^2 - 4(\sqrt{2} - 1)z - 8$, with $z \in \mathbb{C}$.

- 1. Compute P(2). Determine a factorization of P(z) by (z-2).
- 2. Solve the equation P(z) = 0 in \mathbb{C} .

Exercise 9 (Left to the student) We consider the function f of the plane which at any point M associates the affix point:

$$w = \frac{z+i}{z-2i}$$
, with $z \neq 2i$.

- 1. For $z \neq 2i$, we set $z = 2i + r^{i\theta}$, with and r > 0 and $\theta \in [0; 2\pi]$. Write w 1 using r and θ .
- 2. A is the affix point 2i,
 - (a) Determine the set E_1 of points M for which |w 1| = 3.
 - (b) Determine the set E_2 of points M for which $arg(w-1) = \frac{\pi}{4}$.
 - (c) Represent the sets E_1 and E_2